1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/MemoryBufferCache.h" 17 #include "clang/Basic/SourceManager.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Basic/Version.h" 20 #include "clang/Config/config.h" 21 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 22 #include "clang/Frontend/FrontendAction.h" 23 #include "clang/Frontend/FrontendActions.h" 24 #include "clang/Frontend/FrontendDiagnostic.h" 25 #include "clang/Frontend/LogDiagnosticPrinter.h" 26 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 27 #include "clang/Frontend/TextDiagnosticPrinter.h" 28 #include "clang/Frontend/Utils.h" 29 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 30 #include "clang/Lex/HeaderSearch.h" 31 #include "clang/Lex/PTHManager.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorOptions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Serialization/ASTReader.h" 37 #include "clang/Serialization/GlobalModuleIndex.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Errc.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/Host.h" 43 #include "llvm/Support/LockFileManager.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/Path.h" 46 #include "llvm/Support/Program.h" 47 #include "llvm/Support/Signals.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <sys/stat.h> 51 #include <system_error> 52 #include <time.h> 53 #include <utility> 54 55 using namespace clang; 56 57 CompilerInstance::CompilerInstance( 58 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 59 MemoryBufferCache *SharedPCMCache) 60 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 61 Invocation(new CompilerInvocation()), 62 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 63 ThePCHContainerOperations(std::move(PCHContainerOps)) { 64 // Don't allow this to invalidate buffers in use by others. 65 if (SharedPCMCache) 66 getPCMCache().finalizeCurrentBuffers(); 67 } 68 69 CompilerInstance::~CompilerInstance() { 70 assert(OutputFiles.empty() && "Still output files in flight?"); 71 } 72 73 void CompilerInstance::setInvocation( 74 std::shared_ptr<CompilerInvocation> Value) { 75 Invocation = std::move(Value); 76 } 77 78 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 79 return (BuildGlobalModuleIndex || 80 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 81 getFrontendOpts().GenerateGlobalModuleIndex)) && 82 !ModuleBuildFailed; 83 } 84 85 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 86 Diagnostics = Value; 87 } 88 89 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 90 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 91 92 void CompilerInstance::setFileManager(FileManager *Value) { 93 FileMgr = Value; 94 if (Value) 95 VirtualFileSystem = Value->getVirtualFileSystem(); 96 else 97 VirtualFileSystem.reset(); 98 } 99 100 void CompilerInstance::setSourceManager(SourceManager *Value) { 101 SourceMgr = Value; 102 } 103 104 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 105 PP = std::move(Value); 106 } 107 108 void CompilerInstance::setASTContext(ASTContext *Value) { 109 Context = Value; 110 111 if (Context && Consumer) 112 getASTConsumer().Initialize(getASTContext()); 113 } 114 115 void CompilerInstance::setSema(Sema *S) { 116 TheSema.reset(S); 117 } 118 119 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 120 Consumer = std::move(Value); 121 122 if (Context && Consumer) 123 getASTConsumer().Initialize(getASTContext()); 124 } 125 126 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 127 CompletionConsumer.reset(Value); 128 } 129 130 std::unique_ptr<Sema> CompilerInstance::takeSema() { 131 return std::move(TheSema); 132 } 133 134 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 135 return ModuleManager; 136 } 137 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 138 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 139 "Expected ASTReader to use the same PCM cache"); 140 ModuleManager = std::move(Reader); 141 } 142 143 std::shared_ptr<ModuleDependencyCollector> 144 CompilerInstance::getModuleDepCollector() const { 145 return ModuleDepCollector; 146 } 147 148 void CompilerInstance::setModuleDepCollector( 149 std::shared_ptr<ModuleDependencyCollector> Collector) { 150 ModuleDepCollector = std::move(Collector); 151 } 152 153 static void collectHeaderMaps(const HeaderSearch &HS, 154 std::shared_ptr<ModuleDependencyCollector> MDC) { 155 SmallVector<std::string, 4> HeaderMapFileNames; 156 HS.getHeaderMapFileNames(HeaderMapFileNames); 157 for (auto &Name : HeaderMapFileNames) 158 MDC->addFile(Name); 159 } 160 161 static void collectIncludePCH(CompilerInstance &CI, 162 std::shared_ptr<ModuleDependencyCollector> MDC) { 163 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 164 if (PPOpts.ImplicitPCHInclude.empty()) 165 return; 166 167 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 168 FileManager &FileMgr = CI.getFileManager(); 169 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 170 if (!PCHDir) { 171 MDC->addFile(PCHInclude); 172 return; 173 } 174 175 std::error_code EC; 176 SmallString<128> DirNative; 177 llvm::sys::path::native(PCHDir->getName(), DirNative); 178 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 179 SimpleASTReaderListener Validator(CI.getPreprocessor()); 180 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 181 Dir != DirEnd && !EC; Dir.increment(EC)) { 182 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 183 // used here since we're not interested in validating the PCH at this time, 184 // but only to check whether this is a file containing an AST. 185 if (!ASTReader::readASTFileControlBlock( 186 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 187 /*FindModuleFileExtensions=*/false, Validator, 188 /*ValidateDiagnosticOptions=*/false)) 189 MDC->addFile(Dir->getName()); 190 } 191 } 192 193 static void collectVFSEntries(CompilerInstance &CI, 194 std::shared_ptr<ModuleDependencyCollector> MDC) { 195 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 196 return; 197 198 // Collect all VFS found. 199 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 200 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 201 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 202 llvm::MemoryBuffer::getFile(VFSFile); 203 if (!Buffer) 204 return; 205 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 206 VFSFile, VFSEntries); 207 } 208 209 for (auto &E : VFSEntries) 210 MDC->addFile(E.VPath, E.RPath); 211 } 212 213 // Diagnostics 214 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 215 const CodeGenOptions *CodeGenOpts, 216 DiagnosticsEngine &Diags) { 217 std::error_code EC; 218 std::unique_ptr<raw_ostream> StreamOwner; 219 raw_ostream *OS = &llvm::errs(); 220 if (DiagOpts->DiagnosticLogFile != "-") { 221 // Create the output stream. 222 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 223 DiagOpts->DiagnosticLogFile, EC, 224 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 225 if (EC) { 226 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 227 << DiagOpts->DiagnosticLogFile << EC.message(); 228 } else { 229 FileOS->SetUnbuffered(); 230 OS = FileOS.get(); 231 StreamOwner = std::move(FileOS); 232 } 233 } 234 235 // Chain in the diagnostic client which will log the diagnostics. 236 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 237 std::move(StreamOwner)); 238 if (CodeGenOpts) 239 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 240 assert(Diags.ownsClient()); 241 Diags.setClient( 242 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 243 } 244 245 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 246 DiagnosticsEngine &Diags, 247 StringRef OutputFile) { 248 auto SerializedConsumer = 249 clang::serialized_diags::create(OutputFile, DiagOpts); 250 251 if (Diags.ownsClient()) { 252 Diags.setClient(new ChainedDiagnosticConsumer( 253 Diags.takeClient(), std::move(SerializedConsumer))); 254 } else { 255 Diags.setClient(new ChainedDiagnosticConsumer( 256 Diags.getClient(), std::move(SerializedConsumer))); 257 } 258 } 259 260 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 261 bool ShouldOwnClient) { 262 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 263 ShouldOwnClient, &getCodeGenOpts()); 264 } 265 266 IntrusiveRefCntPtr<DiagnosticsEngine> 267 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 268 DiagnosticConsumer *Client, 269 bool ShouldOwnClient, 270 const CodeGenOptions *CodeGenOpts) { 271 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 272 IntrusiveRefCntPtr<DiagnosticsEngine> 273 Diags(new DiagnosticsEngine(DiagID, Opts)); 274 275 // Create the diagnostic client for reporting errors or for 276 // implementing -verify. 277 if (Client) { 278 Diags->setClient(Client, ShouldOwnClient); 279 } else 280 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 281 282 // Chain in -verify checker, if requested. 283 if (Opts->VerifyDiagnostics) 284 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 285 286 // Chain in -diagnostic-log-file dumper, if requested. 287 if (!Opts->DiagnosticLogFile.empty()) 288 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 289 290 if (!Opts->DiagnosticSerializationFile.empty()) 291 SetupSerializedDiagnostics(Opts, *Diags, 292 Opts->DiagnosticSerializationFile); 293 294 // Configure our handling of diagnostics. 295 ProcessWarningOptions(*Diags, *Opts); 296 297 return Diags; 298 } 299 300 // File Manager 301 302 void CompilerInstance::createFileManager() { 303 if (!hasVirtualFileSystem()) { 304 // TODO: choose the virtual file system based on the CompilerInvocation. 305 setVirtualFileSystem(vfs::getRealFileSystem()); 306 } 307 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 308 } 309 310 // Source Manager 311 312 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 313 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 314 } 315 316 // Initialize the remapping of files to alternative contents, e.g., 317 // those specified through other files. 318 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 319 SourceManager &SourceMgr, 320 FileManager &FileMgr, 321 const PreprocessorOptions &InitOpts) { 322 // Remap files in the source manager (with buffers). 323 for (const auto &RB : InitOpts.RemappedFileBuffers) { 324 // Create the file entry for the file that we're mapping from. 325 const FileEntry *FromFile = 326 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 327 if (!FromFile) { 328 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 329 if (!InitOpts.RetainRemappedFileBuffers) 330 delete RB.second; 331 continue; 332 } 333 334 // Override the contents of the "from" file with the contents of 335 // the "to" file. 336 SourceMgr.overrideFileContents(FromFile, RB.second, 337 InitOpts.RetainRemappedFileBuffers); 338 } 339 340 // Remap files in the source manager (with other files). 341 for (const auto &RF : InitOpts.RemappedFiles) { 342 // Find the file that we're mapping to. 343 const FileEntry *ToFile = FileMgr.getFile(RF.second); 344 if (!ToFile) { 345 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 346 continue; 347 } 348 349 // Create the file entry for the file that we're mapping from. 350 const FileEntry *FromFile = 351 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 352 if (!FromFile) { 353 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 354 continue; 355 } 356 357 // Override the contents of the "from" file with the contents of 358 // the "to" file. 359 SourceMgr.overrideFileContents(FromFile, ToFile); 360 } 361 362 SourceMgr.setOverridenFilesKeepOriginalName( 363 InitOpts.RemappedFilesKeepOriginalName); 364 } 365 366 // Preprocessor 367 368 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 369 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 370 371 // Create a PTH manager if we are using some form of a token cache. 372 PTHManager *PTHMgr = nullptr; 373 if (!PPOpts.TokenCache.empty()) 374 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 375 376 // Create the Preprocessor. 377 HeaderSearch *HeaderInfo = 378 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 379 getDiagnostics(), getLangOpts(), &getTarget()); 380 PP = std::make_shared<Preprocessor>( 381 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 382 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 383 /*OwnsHeaderSearch=*/true, TUKind); 384 PP->Initialize(getTarget(), getAuxTarget()); 385 386 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 387 // That argument is used as the IdentifierInfoLookup argument to 388 // IdentifierTable's ctor. 389 if (PTHMgr) { 390 PTHMgr->setPreprocessor(&*PP); 391 PP->setPTHManager(PTHMgr); 392 } 393 394 if (PPOpts.DetailedRecord) 395 PP->createPreprocessingRecord(); 396 397 // Apply remappings to the source manager. 398 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 399 PP->getFileManager(), PPOpts); 400 401 // Predefine macros and configure the preprocessor. 402 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 403 getFrontendOpts()); 404 405 // Initialize the header search object. In CUDA compilations, we use the aux 406 // triple (the host triple) to initialize our header search, since we need to 407 // find the host headers in order to compile the CUDA code. 408 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 409 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 410 PP->getAuxTargetInfo()) 411 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 412 413 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 414 PP->getLangOpts(), *HeaderSearchTriple); 415 416 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 417 418 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 419 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 420 421 // Handle generating dependencies, if requested. 422 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 423 if (!DepOpts.OutputFile.empty()) 424 TheDependencyFileGenerator.reset( 425 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 426 if (!DepOpts.DOTOutputFile.empty()) 427 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 428 getHeaderSearchOpts().Sysroot); 429 430 // If we don't have a collector, but we are collecting module dependencies, 431 // then we're the top level compiler instance and need to create one. 432 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 433 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 434 DepOpts.ModuleDependencyOutputDir); 435 } 436 437 // If there is a module dep collector, register with other dep collectors 438 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 439 if (ModuleDepCollector) { 440 addDependencyCollector(ModuleDepCollector); 441 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 442 collectIncludePCH(*this, ModuleDepCollector); 443 collectVFSEntries(*this, ModuleDepCollector); 444 } 445 446 for (auto &Listener : DependencyCollectors) 447 Listener->attachToPreprocessor(*PP); 448 449 // Handle generating header include information, if requested. 450 if (DepOpts.ShowHeaderIncludes) 451 AttachHeaderIncludeGen(*PP, DepOpts); 452 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 453 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 454 if (OutputPath == "-") 455 OutputPath = ""; 456 AttachHeaderIncludeGen(*PP, DepOpts, 457 /*ShowAllHeaders=*/true, OutputPath, 458 /*ShowDepth=*/false); 459 } 460 461 if (DepOpts.PrintShowIncludes) { 462 AttachHeaderIncludeGen(*PP, DepOpts, 463 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 464 /*ShowDepth=*/true, /*MSStyle=*/true); 465 } 466 } 467 468 std::string CompilerInstance::getSpecificModuleCachePath() { 469 // Set up the module path, including the hash for the 470 // module-creation options. 471 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 472 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 473 llvm::sys::path::append(SpecificModuleCache, 474 getInvocation().getModuleHash()); 475 return SpecificModuleCache.str(); 476 } 477 478 // ASTContext 479 480 void CompilerInstance::createASTContext() { 481 Preprocessor &PP = getPreprocessor(); 482 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 483 PP.getIdentifierTable(), PP.getSelectorTable(), 484 PP.getBuiltinInfo()); 485 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 486 setASTContext(Context); 487 } 488 489 // ExternalASTSource 490 491 void CompilerInstance::createPCHExternalASTSource( 492 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 493 void *DeserializationListener, bool OwnDeserializationListener) { 494 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 495 ModuleManager = createPCHExternalASTSource( 496 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 497 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 498 getPCHContainerReader(), 499 getFrontendOpts().ModuleFileExtensions, 500 DeserializationListener, 501 OwnDeserializationListener, Preamble, 502 getFrontendOpts().UseGlobalModuleIndex); 503 } 504 505 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 506 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 507 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 508 const PCHContainerReader &PCHContainerRdr, 509 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 510 void *DeserializationListener, bool OwnDeserializationListener, 511 bool Preamble, bool UseGlobalModuleIndex) { 512 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 513 514 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 515 PP, Context, PCHContainerRdr, Extensions, 516 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 517 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 518 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 519 520 // We need the external source to be set up before we read the AST, because 521 // eagerly-deserialized declarations may use it. 522 Context.setExternalSource(Reader.get()); 523 524 Reader->setDeserializationListener( 525 static_cast<ASTDeserializationListener *>(DeserializationListener), 526 /*TakeOwnership=*/OwnDeserializationListener); 527 switch (Reader->ReadAST(Path, 528 Preamble ? serialization::MK_Preamble 529 : serialization::MK_PCH, 530 SourceLocation(), 531 ASTReader::ARR_None)) { 532 case ASTReader::Success: 533 // Set the predefines buffer as suggested by the PCH reader. Typically, the 534 // predefines buffer will be empty. 535 PP.setPredefines(Reader->getSuggestedPredefines()); 536 return Reader; 537 538 case ASTReader::Failure: 539 // Unrecoverable failure: don't even try to process the input file. 540 break; 541 542 case ASTReader::Missing: 543 case ASTReader::OutOfDate: 544 case ASTReader::VersionMismatch: 545 case ASTReader::ConfigurationMismatch: 546 case ASTReader::HadErrors: 547 // No suitable PCH file could be found. Return an error. 548 break; 549 } 550 551 Context.setExternalSource(nullptr); 552 return nullptr; 553 } 554 555 // Code Completion 556 557 static bool EnableCodeCompletion(Preprocessor &PP, 558 StringRef Filename, 559 unsigned Line, 560 unsigned Column) { 561 // Tell the source manager to chop off the given file at a specific 562 // line and column. 563 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 564 if (!Entry) { 565 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 566 << Filename; 567 return true; 568 } 569 570 // Truncate the named file at the given line/column. 571 PP.SetCodeCompletionPoint(Entry, Line, Column); 572 return false; 573 } 574 575 void CompilerInstance::createCodeCompletionConsumer() { 576 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 577 if (!CompletionConsumer) { 578 setCodeCompletionConsumer( 579 createCodeCompletionConsumer(getPreprocessor(), 580 Loc.FileName, Loc.Line, Loc.Column, 581 getFrontendOpts().CodeCompleteOpts, 582 llvm::outs())); 583 if (!CompletionConsumer) 584 return; 585 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 586 Loc.Line, Loc.Column)) { 587 setCodeCompletionConsumer(nullptr); 588 return; 589 } 590 591 if (CompletionConsumer->isOutputBinary() && 592 llvm::sys::ChangeStdoutToBinary()) { 593 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 594 setCodeCompletionConsumer(nullptr); 595 } 596 } 597 598 void CompilerInstance::createFrontendTimer() { 599 FrontendTimerGroup.reset( 600 new llvm::TimerGroup("frontend", "Clang front-end time report")); 601 FrontendTimer.reset( 602 new llvm::Timer("frontend", "Clang front-end timer", 603 *FrontendTimerGroup)); 604 } 605 606 CodeCompleteConsumer * 607 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 608 StringRef Filename, 609 unsigned Line, 610 unsigned Column, 611 const CodeCompleteOptions &Opts, 612 raw_ostream &OS) { 613 if (EnableCodeCompletion(PP, Filename, Line, Column)) 614 return nullptr; 615 616 // Set up the creation routine for code-completion. 617 return new PrintingCodeCompleteConsumer(Opts, OS); 618 } 619 620 void CompilerInstance::createSema(TranslationUnitKind TUKind, 621 CodeCompleteConsumer *CompletionConsumer) { 622 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 623 TUKind, CompletionConsumer)); 624 // Attach the external sema source if there is any. 625 if (ExternalSemaSrc) { 626 TheSema->addExternalSource(ExternalSemaSrc.get()); 627 ExternalSemaSrc->InitializeSema(*TheSema); 628 } 629 } 630 631 // Output Files 632 633 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 634 OutputFiles.push_back(std::move(OutFile)); 635 } 636 637 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 638 for (OutputFile &OF : OutputFiles) { 639 if (!OF.TempFilename.empty()) { 640 if (EraseFiles) { 641 llvm::sys::fs::remove(OF.TempFilename); 642 } else { 643 SmallString<128> NewOutFile(OF.Filename); 644 645 // If '-working-directory' was passed, the output filename should be 646 // relative to that. 647 FileMgr->FixupRelativePath(NewOutFile); 648 if (std::error_code ec = 649 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 650 getDiagnostics().Report(diag::err_unable_to_rename_temp) 651 << OF.TempFilename << OF.Filename << ec.message(); 652 653 llvm::sys::fs::remove(OF.TempFilename); 654 } 655 } 656 } else if (!OF.Filename.empty() && EraseFiles) 657 llvm::sys::fs::remove(OF.Filename); 658 } 659 OutputFiles.clear(); 660 NonSeekStream.reset(); 661 } 662 663 std::unique_ptr<raw_pwrite_stream> 664 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 665 StringRef Extension) { 666 return createOutputFile(getFrontendOpts().OutputFile, Binary, 667 /*RemoveFileOnSignal=*/true, InFile, Extension, 668 /*UseTemporary=*/true); 669 } 670 671 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 672 return llvm::make_unique<llvm::raw_null_ostream>(); 673 } 674 675 std::unique_ptr<raw_pwrite_stream> 676 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 677 bool RemoveFileOnSignal, StringRef InFile, 678 StringRef Extension, bool UseTemporary, 679 bool CreateMissingDirectories) { 680 std::string OutputPathName, TempPathName; 681 std::error_code EC; 682 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 683 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 684 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 685 if (!OS) { 686 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 687 << EC.message(); 688 return nullptr; 689 } 690 691 // Add the output file -- but don't try to remove "-", since this means we are 692 // using stdin. 693 addOutputFile( 694 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 695 696 return OS; 697 } 698 699 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 700 StringRef OutputPath, std::error_code &Error, bool Binary, 701 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 702 bool UseTemporary, bool CreateMissingDirectories, 703 std::string *ResultPathName, std::string *TempPathName) { 704 assert((!CreateMissingDirectories || UseTemporary) && 705 "CreateMissingDirectories is only allowed when using temporary files"); 706 707 std::string OutFile, TempFile; 708 if (!OutputPath.empty()) { 709 OutFile = OutputPath; 710 } else if (InFile == "-") { 711 OutFile = "-"; 712 } else if (!Extension.empty()) { 713 SmallString<128> Path(InFile); 714 llvm::sys::path::replace_extension(Path, Extension); 715 OutFile = Path.str(); 716 } else { 717 OutFile = "-"; 718 } 719 720 std::unique_ptr<llvm::raw_fd_ostream> OS; 721 std::string OSFile; 722 723 if (UseTemporary) { 724 if (OutFile == "-") 725 UseTemporary = false; 726 else { 727 llvm::sys::fs::file_status Status; 728 llvm::sys::fs::status(OutputPath, Status); 729 if (llvm::sys::fs::exists(Status)) { 730 // Fail early if we can't write to the final destination. 731 if (!llvm::sys::fs::can_write(OutputPath)) { 732 Error = make_error_code(llvm::errc::operation_not_permitted); 733 return nullptr; 734 } 735 736 // Don't use a temporary if the output is a special file. This handles 737 // things like '-o /dev/null' 738 if (!llvm::sys::fs::is_regular_file(Status)) 739 UseTemporary = false; 740 } 741 } 742 } 743 744 if (UseTemporary) { 745 // Create a temporary file. 746 SmallString<128> TempPath; 747 TempPath = OutFile; 748 TempPath += "-%%%%%%%%"; 749 int fd; 750 std::error_code EC = 751 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 752 753 if (CreateMissingDirectories && 754 EC == llvm::errc::no_such_file_or_directory) { 755 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 756 EC = llvm::sys::fs::create_directories(Parent); 757 if (!EC) { 758 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 759 } 760 } 761 762 if (!EC) { 763 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 764 OSFile = TempFile = TempPath.str(); 765 } 766 // If we failed to create the temporary, fallback to writing to the file 767 // directly. This handles the corner case where we cannot write to the 768 // directory, but can write to the file. 769 } 770 771 if (!OS) { 772 OSFile = OutFile; 773 OS.reset(new llvm::raw_fd_ostream( 774 OSFile, Error, 775 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 776 if (Error) 777 return nullptr; 778 } 779 780 // Make sure the out stream file gets removed if we crash. 781 if (RemoveFileOnSignal) 782 llvm::sys::RemoveFileOnSignal(OSFile); 783 784 if (ResultPathName) 785 *ResultPathName = OutFile; 786 if (TempPathName) 787 *TempPathName = TempFile; 788 789 if (!Binary || OS->supportsSeeking()) 790 return std::move(OS); 791 792 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 793 assert(!NonSeekStream); 794 NonSeekStream = std::move(OS); 795 return std::move(B); 796 } 797 798 // Initialization Utilities 799 800 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 801 return InitializeSourceManager( 802 Input, getDiagnostics(), getFileManager(), getSourceManager(), 803 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 804 getDependencyOutputOpts(), getFrontendOpts()); 805 } 806 807 // static 808 bool CompilerInstance::InitializeSourceManager( 809 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 810 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 811 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 812 SrcMgr::CharacteristicKind 813 Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 814 815 if (Input.isBuffer()) { 816 SourceMgr.setMainFileID(SourceMgr.createFileID( 817 std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind)); 818 assert(SourceMgr.getMainFileID().isValid() && 819 "Couldn't establish MainFileID!"); 820 return true; 821 } 822 823 StringRef InputFile = Input.getFile(); 824 825 // Figure out where to get and map in the main file. 826 if (InputFile != "-") { 827 const FileEntry *File; 828 if (Opts.FindPchSource.empty()) { 829 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 830 } else { 831 // When building a pch file in clang-cl mode, the .h file is built as if 832 // it was included by a cc file. Since the driver doesn't know about 833 // all include search directories, the frontend must search the input 834 // file through HeaderSearch here, as if it had been included by the 835 // cc file at Opts.FindPchSource. 836 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 837 if (!FindFile) { 838 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 839 return false; 840 } 841 const DirectoryLookup *UnusedCurDir; 842 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 843 Includers; 844 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 845 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 846 /*FromDir=*/nullptr, 847 /*CurDir=*/UnusedCurDir, Includers, 848 /*SearchPath=*/nullptr, 849 /*RelativePath=*/nullptr, 850 /*RequestingModule=*/nullptr, 851 /*SuggestedModule=*/nullptr, /*SkipCache=*/true); 852 // Also add the header to /showIncludes output. 853 if (File) 854 DepOpts.ShowIncludesPretendHeader = File->getName(); 855 } 856 if (!File) { 857 Diags.Report(diag::err_fe_error_reading) << InputFile; 858 return false; 859 } 860 861 // The natural SourceManager infrastructure can't currently handle named 862 // pipes, but we would at least like to accept them for the main 863 // file. Detect them here, read them with the volatile flag so FileMgr will 864 // pick up the correct size, and simply override their contents as we do for 865 // STDIN. 866 if (File->isNamedPipe()) { 867 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 868 if (MB) { 869 // Create a new virtual file that will have the correct size. 870 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 871 SourceMgr.overrideFileContents(File, std::move(*MB)); 872 } else { 873 Diags.Report(diag::err_cannot_open_file) << InputFile 874 << MB.getError().message(); 875 return false; 876 } 877 } 878 879 SourceMgr.setMainFileID( 880 SourceMgr.createFileID(File, SourceLocation(), Kind)); 881 } else { 882 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 883 llvm::MemoryBuffer::getSTDIN(); 884 if (std::error_code EC = SBOrErr.getError()) { 885 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 886 return false; 887 } 888 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 889 890 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 891 SB->getBufferSize(), 0); 892 SourceMgr.setMainFileID( 893 SourceMgr.createFileID(File, SourceLocation(), Kind)); 894 SourceMgr.overrideFileContents(File, std::move(SB)); 895 } 896 897 assert(SourceMgr.getMainFileID().isValid() && 898 "Couldn't establish MainFileID!"); 899 return true; 900 } 901 902 // High-Level Operations 903 904 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 905 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 906 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 907 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 908 909 // FIXME: Take this as an argument, once all the APIs we used have moved to 910 // taking it as an input instead of hard-coding llvm::errs. 911 raw_ostream &OS = llvm::errs(); 912 913 // Create the target instance. 914 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 915 getInvocation().TargetOpts)); 916 if (!hasTarget()) 917 return false; 918 919 // Create TargetInfo for the other side of CUDA compilation. 920 if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) { 921 auto TO = std::make_shared<TargetOptions>(); 922 TO->Triple = getFrontendOpts().AuxTriple; 923 TO->HostTriple = getTarget().getTriple().str(); 924 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 925 } 926 927 // Inform the target of the language options. 928 // 929 // FIXME: We shouldn't need to do this, the target should be immutable once 930 // created. This complexity should be lifted elsewhere. 931 getTarget().adjust(getLangOpts()); 932 933 // Adjust target options based on codegen options. 934 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 935 936 // rewriter project will change target built-in bool type from its default. 937 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 938 getTarget().noSignedCharForObjCBool(); 939 940 // Validate/process some options. 941 if (getHeaderSearchOpts().Verbose) 942 OS << "clang -cc1 version " CLANG_VERSION_STRING 943 << " based upon " << BACKEND_PACKAGE_STRING 944 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 945 946 if (getFrontendOpts().ShowTimers) 947 createFrontendTimer(); 948 949 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 950 llvm::EnableStatistics(false); 951 952 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 953 // Reset the ID tables if we are reusing the SourceManager and parsing 954 // regular files. 955 if (hasSourceManager() && !Act.isModelParsingAction()) 956 getSourceManager().clearIDTables(); 957 958 if (Act.BeginSourceFile(*this, FIF)) { 959 Act.Execute(); 960 Act.EndSourceFile(); 961 } 962 } 963 964 // Notify the diagnostic client that all files were processed. 965 getDiagnostics().getClient()->finish(); 966 967 if (getDiagnosticOpts().ShowCarets) { 968 // We can have multiple diagnostics sharing one diagnostic client. 969 // Get the total number of warnings/errors from the client. 970 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 971 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 972 973 if (NumWarnings) 974 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 975 if (NumWarnings && NumErrors) 976 OS << " and "; 977 if (NumErrors) 978 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 979 if (NumWarnings || NumErrors) 980 OS << " generated.\n"; 981 } 982 983 if (getFrontendOpts().ShowStats) { 984 if (hasFileManager()) { 985 getFileManager().PrintStats(); 986 OS << '\n'; 987 } 988 llvm::PrintStatistics(OS); 989 } 990 StringRef StatsFile = getFrontendOpts().StatsFile; 991 if (!StatsFile.empty()) { 992 std::error_code EC; 993 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 994 llvm::sys::fs::F_Text); 995 if (EC) { 996 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 997 << StatsFile << EC.message(); 998 } else { 999 llvm::PrintStatisticsJSON(*StatS); 1000 } 1001 } 1002 1003 return !getDiagnostics().getClient()->getNumErrors(); 1004 } 1005 1006 /// \brief Determine the appropriate source input kind based on language 1007 /// options. 1008 static InputKind getSourceInputKindFromOptions(const LangOptions &LangOpts) { 1009 if (LangOpts.OpenCL) 1010 return IK_OpenCL; 1011 if (LangOpts.CUDA) 1012 return IK_CUDA; 1013 if (LangOpts.ObjC1) 1014 return LangOpts.CPlusPlus? IK_ObjCXX : IK_ObjC; 1015 return LangOpts.CPlusPlus? IK_CXX : IK_C; 1016 } 1017 1018 /// \brief Compile a module file for the given module, using the options 1019 /// provided by the importing compiler instance. Returns true if the module 1020 /// was built without errors. 1021 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1022 SourceLocation ImportLoc, 1023 Module *Module, 1024 StringRef ModuleFileName) { 1025 ModuleMap &ModMap 1026 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1027 1028 // Construct a compiler invocation for creating this module. 1029 auto Invocation = 1030 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1031 1032 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1033 1034 // For any options that aren't intended to affect how a module is built, 1035 // reset them to their default values. 1036 Invocation->getLangOpts()->resetNonModularOptions(); 1037 PPOpts.resetNonModularOptions(); 1038 1039 // Remove any macro definitions that are explicitly ignored by the module. 1040 // They aren't supposed to affect how the module is built anyway. 1041 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1042 PPOpts.Macros.erase( 1043 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1044 [&HSOpts](const std::pair<std::string, bool> &def) { 1045 StringRef MacroDef = def.first; 1046 return HSOpts.ModulesIgnoreMacros.count( 1047 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1048 }), 1049 PPOpts.Macros.end()); 1050 1051 // Note the name of the module we're building. 1052 Invocation->getLangOpts()->CurrentModule = Module->getTopLevelModuleName(); 1053 1054 // Make sure that the failed-module structure has been allocated in 1055 // the importing instance, and propagate the pointer to the newly-created 1056 // instance. 1057 PreprocessorOptions &ImportingPPOpts 1058 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1059 if (!ImportingPPOpts.FailedModules) 1060 ImportingPPOpts.FailedModules = 1061 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1062 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1063 1064 // If there is a module map file, build the module using the module map. 1065 // Set up the inputs/outputs so that we build the module from its umbrella 1066 // header. 1067 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1068 FrontendOpts.OutputFile = ModuleFileName.str(); 1069 FrontendOpts.DisableFree = false; 1070 FrontendOpts.GenerateGlobalModuleIndex = false; 1071 FrontendOpts.BuildingImplicitModule = true; 1072 // Force implicitly-built modules to hash the content of the module file. 1073 HSOpts.ModulesHashContent = true; 1074 FrontendOpts.Inputs.clear(); 1075 InputKind IK = getSourceInputKindFromOptions(*Invocation->getLangOpts()); 1076 1077 // Don't free the remapped file buffers; they are owned by our caller. 1078 PPOpts.RetainRemappedFileBuffers = true; 1079 1080 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1081 assert(ImportingInstance.getInvocation().getModuleHash() == 1082 Invocation->getModuleHash() && "Module hash mismatch!"); 1083 1084 // Construct a compiler instance that will be used to actually create the 1085 // module. Since we're sharing a PCMCache, 1086 // CompilerInstance::CompilerInstance is responsible for finalizing the 1087 // buffers to prevent use-after-frees. 1088 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1089 &ImportingInstance.getPreprocessor().getPCMCache()); 1090 auto &Inv = *Invocation; 1091 Instance.setInvocation(std::move(Invocation)); 1092 1093 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1094 ImportingInstance.getDiagnosticClient()), 1095 /*ShouldOwnClient=*/true); 1096 1097 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1098 1099 // Note that this module is part of the module build stack, so that we 1100 // can detect cycles in the module graph. 1101 Instance.setFileManager(&ImportingInstance.getFileManager()); 1102 Instance.createSourceManager(Instance.getFileManager()); 1103 SourceManager &SourceMgr = Instance.getSourceManager(); 1104 SourceMgr.setModuleBuildStack( 1105 ImportingInstance.getSourceManager().getModuleBuildStack()); 1106 SourceMgr.pushModuleBuildStack(Module->getTopLevelModuleName(), 1107 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1108 1109 // If we're collecting module dependencies, we need to share a collector 1110 // between all of the module CompilerInstances. Other than that, we don't 1111 // want to produce any dependency output from the module build. 1112 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1113 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1114 1115 // Get or create the module map that we'll use to build this module. 1116 std::string InferredModuleMapContent; 1117 if (const FileEntry *ModuleMapFile = 1118 ModMap.getContainingModuleMapFile(Module)) { 1119 // Use the module map where this module resides. 1120 FrontendOpts.Inputs.emplace_back(ModuleMapFile->getName(), IK); 1121 } else { 1122 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1123 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1124 FrontendOpts.Inputs.emplace_back(FakeModuleMapFile, IK); 1125 1126 llvm::raw_string_ostream OS(InferredModuleMapContent); 1127 Module->print(OS); 1128 OS.flush(); 1129 1130 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1131 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1132 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1133 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1134 SourceMgr.overrideFileContents(ModuleMapFile, std::move(ModuleMapBuffer)); 1135 } 1136 1137 // Construct a module-generating action. Passing through the module map is 1138 // safe because the FileManager is shared between the compiler instances. 1139 GenerateModuleFromModuleMapAction CreateModuleAction( 1140 ModMap.getModuleMapFileForUniquing(Module), Module->IsSystem); 1141 1142 ImportingInstance.getDiagnostics().Report(ImportLoc, 1143 diag::remark_module_build) 1144 << Module->Name << ModuleFileName; 1145 1146 // Execute the action to actually build the module in-place. Use a separate 1147 // thread so that we get a stack large enough. 1148 const unsigned ThreadStackSize = 8 << 20; 1149 llvm::CrashRecoveryContext CRC; 1150 CRC.RunSafelyOnThread([&]() { Instance.ExecuteAction(CreateModuleAction); }, 1151 ThreadStackSize); 1152 1153 ImportingInstance.getDiagnostics().Report(ImportLoc, 1154 diag::remark_module_build_done) 1155 << Module->Name; 1156 1157 // Delete the temporary module map file. 1158 // FIXME: Even though we're executing under crash protection, it would still 1159 // be nice to do this with RemoveFileOnSignal when we can. However, that 1160 // doesn't make sense for all clients, so clean this up manually. 1161 Instance.clearOutputFiles(/*EraseFiles=*/true); 1162 1163 // We've rebuilt a module. If we're allowed to generate or update the global 1164 // module index, record that fact in the importing compiler instance. 1165 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1166 ImportingInstance.setBuildGlobalModuleIndex(true); 1167 } 1168 1169 return !Instance.getDiagnostics().hasErrorOccurred(); 1170 } 1171 1172 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1173 SourceLocation ImportLoc, 1174 SourceLocation ModuleNameLoc, Module *Module, 1175 StringRef ModuleFileName) { 1176 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1177 1178 auto diagnoseBuildFailure = [&] { 1179 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1180 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1181 }; 1182 1183 // FIXME: have LockFileManager return an error_code so that we can 1184 // avoid the mkdir when the directory already exists. 1185 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1186 llvm::sys::fs::create_directories(Dir); 1187 1188 while (1) { 1189 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1190 llvm::LockFileManager Locked(ModuleFileName); 1191 switch (Locked) { 1192 case llvm::LockFileManager::LFS_Error: 1193 // PCMCache takes care of correctness and locks are only necessary for 1194 // performance. Fallback to building the module in case of any lock 1195 // related errors. 1196 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1197 << Module->Name << Locked.getErrorMessage(); 1198 // Clear out any potential leftover. 1199 Locked.unsafeRemoveLockFile(); 1200 // FALLTHROUGH 1201 case llvm::LockFileManager::LFS_Owned: 1202 // We're responsible for building the module ourselves. 1203 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1204 ModuleFileName)) { 1205 diagnoseBuildFailure(); 1206 return false; 1207 } 1208 break; 1209 1210 case llvm::LockFileManager::LFS_Shared: 1211 // Someone else is responsible for building the module. Wait for them to 1212 // finish. 1213 switch (Locked.waitForUnlock()) { 1214 case llvm::LockFileManager::Res_Success: 1215 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1216 break; 1217 case llvm::LockFileManager::Res_OwnerDied: 1218 continue; // try again to get the lock. 1219 case llvm::LockFileManager::Res_Timeout: 1220 // Since PCMCache takes care of correctness, we try waiting for another 1221 // process to complete the build so clang does not do it done twice. If 1222 // case of timeout, build it ourselves. 1223 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1224 << Module->Name; 1225 // Clear the lock file so that future invokations can make progress. 1226 Locked.unsafeRemoveLockFile(); 1227 continue; 1228 } 1229 break; 1230 } 1231 1232 // Try to read the module file, now that we've compiled it. 1233 ASTReader::ASTReadResult ReadResult = 1234 ImportingInstance.getModuleManager()->ReadAST( 1235 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1236 ModuleLoadCapabilities); 1237 1238 if (ReadResult == ASTReader::OutOfDate && 1239 Locked == llvm::LockFileManager::LFS_Shared) { 1240 // The module may be out of date in the presence of file system races, 1241 // or if one of its imports depends on header search paths that are not 1242 // consistent with this ImportingInstance. Try again... 1243 continue; 1244 } else if (ReadResult == ASTReader::Missing) { 1245 diagnoseBuildFailure(); 1246 } else if (ReadResult != ASTReader::Success && 1247 !Diags.hasErrorOccurred()) { 1248 // The ASTReader didn't diagnose the error, so conservatively report it. 1249 diagnoseBuildFailure(); 1250 } 1251 return ReadResult == ASTReader::Success; 1252 } 1253 } 1254 1255 /// \brief Diagnose differences between the current definition of the given 1256 /// configuration macro and the definition provided on the command line. 1257 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1258 Module *Mod, SourceLocation ImportLoc) { 1259 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1260 SourceManager &SourceMgr = PP.getSourceManager(); 1261 1262 // If this identifier has never had a macro definition, then it could 1263 // not have changed. 1264 if (!Id->hadMacroDefinition()) 1265 return; 1266 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1267 1268 // Find the macro definition from the command line. 1269 MacroInfo *CmdLineDefinition = nullptr; 1270 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1271 // We only care about the predefines buffer. 1272 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1273 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1274 continue; 1275 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1276 CmdLineDefinition = DMD->getMacroInfo(); 1277 break; 1278 } 1279 1280 auto *CurrentDefinition = PP.getMacroInfo(Id); 1281 if (CurrentDefinition == CmdLineDefinition) { 1282 // Macro matches. Nothing to do. 1283 } else if (!CurrentDefinition) { 1284 // This macro was defined on the command line, then #undef'd later. 1285 // Complain. 1286 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1287 << true << ConfigMacro << Mod->getFullModuleName(); 1288 auto LatestDef = LatestLocalMD->getDefinition(); 1289 assert(LatestDef.isUndefined() && 1290 "predefined macro went away with no #undef?"); 1291 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1292 << true; 1293 return; 1294 } else if (!CmdLineDefinition) { 1295 // There was no definition for this macro in the predefines buffer, 1296 // but there was a local definition. Complain. 1297 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1298 << false << ConfigMacro << Mod->getFullModuleName(); 1299 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1300 diag::note_module_def_undef_here) 1301 << false; 1302 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1303 /*Syntactically=*/true)) { 1304 // The macro definitions differ. 1305 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1306 << false << ConfigMacro << Mod->getFullModuleName(); 1307 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1308 diag::note_module_def_undef_here) 1309 << false; 1310 } 1311 } 1312 1313 /// \brief Write a new timestamp file with the given path. 1314 static void writeTimestampFile(StringRef TimestampFile) { 1315 std::error_code EC; 1316 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1317 } 1318 1319 /// \brief Prune the module cache of modules that haven't been accessed in 1320 /// a long time. 1321 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1322 struct stat StatBuf; 1323 llvm::SmallString<128> TimestampFile; 1324 TimestampFile = HSOpts.ModuleCachePath; 1325 assert(!TimestampFile.empty()); 1326 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1327 1328 // Try to stat() the timestamp file. 1329 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1330 // If the timestamp file wasn't there, create one now. 1331 if (errno == ENOENT) { 1332 writeTimestampFile(TimestampFile); 1333 } 1334 return; 1335 } 1336 1337 // Check whether the time stamp is older than our pruning interval. 1338 // If not, do nothing. 1339 time_t TimeStampModTime = StatBuf.st_mtime; 1340 time_t CurrentTime = time(nullptr); 1341 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1342 return; 1343 1344 // Write a new timestamp file so that nobody else attempts to prune. 1345 // There is a benign race condition here, if two Clang instances happen to 1346 // notice at the same time that the timestamp is out-of-date. 1347 writeTimestampFile(TimestampFile); 1348 1349 // Walk the entire module cache, looking for unused module files and module 1350 // indices. 1351 std::error_code EC; 1352 SmallString<128> ModuleCachePathNative; 1353 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1354 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1355 Dir != DirEnd && !EC; Dir.increment(EC)) { 1356 // If we don't have a directory, there's nothing to look into. 1357 if (!llvm::sys::fs::is_directory(Dir->path())) 1358 continue; 1359 1360 // Walk all of the files within this directory. 1361 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1362 File != FileEnd && !EC; File.increment(EC)) { 1363 // We only care about module and global module index files. 1364 StringRef Extension = llvm::sys::path::extension(File->path()); 1365 if (Extension != ".pcm" && Extension != ".timestamp" && 1366 llvm::sys::path::filename(File->path()) != "modules.idx") 1367 continue; 1368 1369 // Look at this file. If we can't stat it, there's nothing interesting 1370 // there. 1371 if (::stat(File->path().c_str(), &StatBuf)) 1372 continue; 1373 1374 // If the file has been used recently enough, leave it there. 1375 time_t FileAccessTime = StatBuf.st_atime; 1376 if (CurrentTime - FileAccessTime <= 1377 time_t(HSOpts.ModuleCachePruneAfter)) { 1378 continue; 1379 } 1380 1381 // Remove the file. 1382 llvm::sys::fs::remove(File->path()); 1383 1384 // Remove the timestamp file. 1385 std::string TimpestampFilename = File->path() + ".timestamp"; 1386 llvm::sys::fs::remove(TimpestampFilename); 1387 } 1388 1389 // If we removed all of the files in the directory, remove the directory 1390 // itself. 1391 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1392 llvm::sys::fs::directory_iterator() && !EC) 1393 llvm::sys::fs::remove(Dir->path()); 1394 } 1395 } 1396 1397 void CompilerInstance::createModuleManager() { 1398 if (!ModuleManager) { 1399 if (!hasASTContext()) 1400 createASTContext(); 1401 1402 // If we're implicitly building modules but not currently recursively 1403 // building a module, check whether we need to prune the module cache. 1404 if (getSourceManager().getModuleBuildStack().empty() && 1405 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1406 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1407 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1408 pruneModuleCache(getHeaderSearchOpts()); 1409 } 1410 1411 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1412 std::string Sysroot = HSOpts.Sysroot; 1413 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1414 std::unique_ptr<llvm::Timer> ReadTimer; 1415 if (FrontendTimerGroup) 1416 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1417 "Reading modules", 1418 *FrontendTimerGroup); 1419 ModuleManager = new ASTReader( 1420 getPreprocessor(), getASTContext(), getPCHContainerReader(), 1421 getFrontendOpts().ModuleFileExtensions, 1422 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1423 /*AllowASTWithCompilerErrors=*/false, 1424 /*AllowConfigurationMismatch=*/false, 1425 HSOpts.ModulesValidateSystemHeaders, 1426 getFrontendOpts().UseGlobalModuleIndex, 1427 std::move(ReadTimer)); 1428 if (hasASTConsumer()) { 1429 ModuleManager->setDeserializationListener( 1430 getASTConsumer().GetASTDeserializationListener()); 1431 getASTContext().setASTMutationListener( 1432 getASTConsumer().GetASTMutationListener()); 1433 } 1434 getASTContext().setExternalSource(ModuleManager); 1435 if (hasSema()) 1436 ModuleManager->InitializeSema(getSema()); 1437 if (hasASTConsumer()) 1438 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1439 1440 if (TheDependencyFileGenerator) 1441 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1442 for (auto &Listener : DependencyCollectors) 1443 Listener->attachToASTReader(*ModuleManager); 1444 } 1445 } 1446 1447 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1448 llvm::Timer Timer; 1449 if (FrontendTimerGroup) 1450 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1451 *FrontendTimerGroup); 1452 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1453 1454 // Helper to recursively read the module names for all modules we're adding. 1455 // We mark these as known and redirect any attempt to load that module to 1456 // the files we were handed. 1457 struct ReadModuleNames : ASTReaderListener { 1458 CompilerInstance &CI; 1459 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1460 1461 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1462 1463 void ReadModuleName(StringRef ModuleName) override { 1464 LoadedModules.push_back( 1465 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1466 } 1467 1468 void registerAll() { 1469 for (auto *II : LoadedModules) { 1470 CI.KnownModules[II] = CI.getPreprocessor() 1471 .getHeaderSearchInfo() 1472 .getModuleMap() 1473 .findModule(II->getName()); 1474 } 1475 LoadedModules.clear(); 1476 } 1477 1478 void markAllUnavailable() { 1479 for (auto *II : LoadedModules) { 1480 if (Module *M = CI.getPreprocessor() 1481 .getHeaderSearchInfo() 1482 .getModuleMap() 1483 .findModule(II->getName())) { 1484 M->HasIncompatibleModuleFile = true; 1485 1486 // Mark module as available if the only reason it was unavailable 1487 // was missing headers. 1488 SmallVector<Module *, 2> Stack; 1489 Stack.push_back(M); 1490 while (!Stack.empty()) { 1491 Module *Current = Stack.pop_back_val(); 1492 if (Current->IsMissingRequirement) continue; 1493 Current->IsAvailable = true; 1494 Stack.insert(Stack.end(), 1495 Current->submodule_begin(), Current->submodule_end()); 1496 } 1497 } 1498 } 1499 LoadedModules.clear(); 1500 } 1501 }; 1502 1503 // If we don't already have an ASTReader, create one now. 1504 if (!ModuleManager) 1505 createModuleManager(); 1506 1507 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1508 auto &ListenerRef = *Listener; 1509 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1510 std::move(Listener)); 1511 1512 // Try to load the module file. 1513 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1514 SourceLocation(), 1515 ASTReader::ARR_ConfigurationMismatch)) { 1516 case ASTReader::Success: 1517 // We successfully loaded the module file; remember the set of provided 1518 // modules so that we don't try to load implicit modules for them. 1519 ListenerRef.registerAll(); 1520 return true; 1521 1522 case ASTReader::ConfigurationMismatch: 1523 // Ignore unusable module files. 1524 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1525 << FileName; 1526 // All modules provided by any files we tried and failed to load are now 1527 // unavailable; includes of those modules should now be handled textually. 1528 ListenerRef.markAllUnavailable(); 1529 return true; 1530 1531 default: 1532 return false; 1533 } 1534 } 1535 1536 ModuleLoadResult 1537 CompilerInstance::loadModule(SourceLocation ImportLoc, 1538 ModuleIdPath Path, 1539 Module::NameVisibilityKind Visibility, 1540 bool IsInclusionDirective) { 1541 // Determine what file we're searching from. 1542 StringRef ModuleName = Path[0].first->getName(); 1543 SourceLocation ModuleNameLoc = Path[0].second; 1544 1545 // If we've already handled this import, just return the cached result. 1546 // This one-element cache is important to eliminate redundant diagnostics 1547 // when both the preprocessor and parser see the same import declaration. 1548 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1549 // Make the named module visible. 1550 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1551 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1552 ImportLoc); 1553 return LastModuleImportResult; 1554 } 1555 1556 clang::Module *Module = nullptr; 1557 1558 // If we don't already have information on this module, load the module now. 1559 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1560 = KnownModules.find(Path[0].first); 1561 if (Known != KnownModules.end()) { 1562 // Retrieve the cached top-level module. 1563 Module = Known->second; 1564 } else if (ModuleName == getLangOpts().CurrentModule) { 1565 // This is the module we're building. 1566 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1567 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1568 } else { 1569 // Search for a module with the given name. 1570 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1571 HeaderSearchOptions &HSOpts = 1572 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1573 1574 std::string ModuleFileName; 1575 bool LoadFromPrebuiltModulePath = false; 1576 // We try to load the module from the prebuilt module paths. If not 1577 // successful, we then try to find it in the module cache. 1578 if (!HSOpts.PrebuiltModulePaths.empty()) { 1579 // Load the module from the prebuilt module path. 1580 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName( 1581 ModuleName, "", /*UsePrebuiltPath*/ true); 1582 if (!ModuleFileName.empty()) 1583 LoadFromPrebuiltModulePath = true; 1584 } 1585 if (!LoadFromPrebuiltModulePath && Module) { 1586 // Load the module from the module cache. 1587 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module); 1588 } else if (!LoadFromPrebuiltModulePath) { 1589 // We can't find a module, error out here. 1590 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1591 << ModuleName 1592 << SourceRange(ImportLoc, ModuleNameLoc); 1593 ModuleBuildFailed = true; 1594 return ModuleLoadResult(); 1595 } 1596 1597 if (ModuleFileName.empty()) { 1598 if (Module && Module->HasIncompatibleModuleFile) { 1599 // We tried and failed to load a module file for this module. Fall 1600 // back to textual inclusion for its headers. 1601 return ModuleLoadResult::ConfigMismatch; 1602 } 1603 1604 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1605 << ModuleName; 1606 ModuleBuildFailed = true; 1607 return ModuleLoadResult(); 1608 } 1609 1610 // If we don't already have an ASTReader, create one now. 1611 if (!ModuleManager) 1612 createModuleManager(); 1613 1614 llvm::Timer Timer; 1615 if (FrontendTimerGroup) 1616 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1617 *FrontendTimerGroup); 1618 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1619 1620 // Try to load the module file. If we are trying to load from the prebuilt 1621 // module path, we don't have the module map files and don't know how to 1622 // rebuild modules. 1623 unsigned ARRFlags = LoadFromPrebuiltModulePath ? 1624 ASTReader::ARR_ConfigurationMismatch : 1625 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing; 1626 switch (ModuleManager->ReadAST(ModuleFileName, 1627 LoadFromPrebuiltModulePath ? 1628 serialization::MK_PrebuiltModule : 1629 serialization::MK_ImplicitModule, 1630 ImportLoc, 1631 ARRFlags)) { 1632 case ASTReader::Success: { 1633 if (LoadFromPrebuiltModulePath && !Module) { 1634 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1635 if (!Module || !Module->getASTFile() || 1636 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1637 // Error out if Module does not refer to the file in the prebuilt 1638 // module path. 1639 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1640 << ModuleName; 1641 ModuleBuildFailed = true; 1642 KnownModules[Path[0].first] = nullptr; 1643 return ModuleLoadResult(); 1644 } 1645 } 1646 break; 1647 } 1648 1649 case ASTReader::OutOfDate: 1650 case ASTReader::Missing: { 1651 if (LoadFromPrebuiltModulePath) { 1652 // We can't rebuild the module without a module map. Since ReadAST 1653 // already produces diagnostics for these two cases, we simply 1654 // error out here. 1655 ModuleBuildFailed = true; 1656 KnownModules[Path[0].first] = nullptr; 1657 return ModuleLoadResult(); 1658 } 1659 1660 // The module file is missing or out-of-date. Build it. 1661 assert(Module && "missing module file"); 1662 // Check whether there is a cycle in the module graph. 1663 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1664 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1665 for (; Pos != PosEnd; ++Pos) { 1666 if (Pos->first == ModuleName) 1667 break; 1668 } 1669 1670 if (Pos != PosEnd) { 1671 SmallString<256> CyclePath; 1672 for (; Pos != PosEnd; ++Pos) { 1673 CyclePath += Pos->first; 1674 CyclePath += " -> "; 1675 } 1676 CyclePath += ModuleName; 1677 1678 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1679 << ModuleName << CyclePath; 1680 return ModuleLoadResult(); 1681 } 1682 1683 // Check whether we have already attempted to build this module (but 1684 // failed). 1685 if (getPreprocessorOpts().FailedModules && 1686 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1687 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1688 << ModuleName 1689 << SourceRange(ImportLoc, ModuleNameLoc); 1690 ModuleBuildFailed = true; 1691 return ModuleLoadResult(); 1692 } 1693 1694 // Try to compile and then load the module. 1695 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1696 ModuleFileName)) { 1697 assert(getDiagnostics().hasErrorOccurred() && 1698 "undiagnosed error in compileAndLoadModule"); 1699 if (getPreprocessorOpts().FailedModules) 1700 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1701 KnownModules[Path[0].first] = nullptr; 1702 ModuleBuildFailed = true; 1703 return ModuleLoadResult(); 1704 } 1705 1706 // Okay, we've rebuilt and now loaded the module. 1707 break; 1708 } 1709 1710 case ASTReader::ConfigurationMismatch: 1711 if (LoadFromPrebuiltModulePath) 1712 getDiagnostics().Report(SourceLocation(), 1713 diag::warn_module_config_mismatch) 1714 << ModuleFileName; 1715 // Fall through to error out. 1716 case ASTReader::VersionMismatch: 1717 case ASTReader::HadErrors: 1718 ModuleLoader::HadFatalFailure = true; 1719 // FIXME: The ASTReader will already have complained, but can we shoehorn 1720 // that diagnostic information into a more useful form? 1721 KnownModules[Path[0].first] = nullptr; 1722 return ModuleLoadResult(); 1723 1724 case ASTReader::Failure: 1725 ModuleLoader::HadFatalFailure = true; 1726 // Already complained, but note now that we failed. 1727 KnownModules[Path[0].first] = nullptr; 1728 ModuleBuildFailed = true; 1729 return ModuleLoadResult(); 1730 } 1731 1732 // Cache the result of this top-level module lookup for later. 1733 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1734 } 1735 1736 // If we never found the module, fail. 1737 if (!Module) 1738 return ModuleLoadResult(); 1739 1740 // Verify that the rest of the module path actually corresponds to 1741 // a submodule. 1742 if (Path.size() > 1) { 1743 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1744 StringRef Name = Path[I].first->getName(); 1745 clang::Module *Sub = Module->findSubmodule(Name); 1746 1747 if (!Sub) { 1748 // Attempt to perform typo correction to find a module name that works. 1749 SmallVector<StringRef, 2> Best; 1750 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1751 1752 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1753 JEnd = Module->submodule_end(); 1754 J != JEnd; ++J) { 1755 unsigned ED = Name.edit_distance((*J)->Name, 1756 /*AllowReplacements=*/true, 1757 BestEditDistance); 1758 if (ED <= BestEditDistance) { 1759 if (ED < BestEditDistance) { 1760 Best.clear(); 1761 BestEditDistance = ED; 1762 } 1763 1764 Best.push_back((*J)->Name); 1765 } 1766 } 1767 1768 // If there was a clear winner, user it. 1769 if (Best.size() == 1) { 1770 getDiagnostics().Report(Path[I].second, 1771 diag::err_no_submodule_suggest) 1772 << Path[I].first << Module->getFullModuleName() << Best[0] 1773 << SourceRange(Path[0].second, Path[I-1].second) 1774 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1775 Best[0]); 1776 1777 Sub = Module->findSubmodule(Best[0]); 1778 } 1779 } 1780 1781 if (!Sub) { 1782 // No submodule by this name. Complain, and don't look for further 1783 // submodules. 1784 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1785 << Path[I].first << Module->getFullModuleName() 1786 << SourceRange(Path[0].second, Path[I-1].second); 1787 break; 1788 } 1789 1790 Module = Sub; 1791 } 1792 } 1793 1794 // Make the named module visible, if it's not already part of the module 1795 // we are parsing. 1796 if (ModuleName != getLangOpts().CurrentModule) { 1797 if (!Module->IsFromModuleFile) { 1798 // We have an umbrella header or directory that doesn't actually include 1799 // all of the headers within the directory it covers. Complain about 1800 // this missing submodule and recover by forgetting that we ever saw 1801 // this submodule. 1802 // FIXME: Should we detect this at module load time? It seems fairly 1803 // expensive (and rare). 1804 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1805 << Module->getFullModuleName() 1806 << SourceRange(Path.front().second, Path.back().second); 1807 1808 return ModuleLoadResult::MissingExpected; 1809 } 1810 1811 // Check whether this module is available. 1812 clang::Module::Requirement Requirement; 1813 clang::Module::UnresolvedHeaderDirective MissingHeader; 1814 if (!Module->isAvailable(getLangOpts(), getTarget(), Requirement, 1815 MissingHeader)) { 1816 if (MissingHeader.FileNameLoc.isValid()) { 1817 getDiagnostics().Report(MissingHeader.FileNameLoc, 1818 diag::err_module_header_missing) 1819 << MissingHeader.IsUmbrella << MissingHeader.FileName; 1820 } else { 1821 getDiagnostics().Report(ImportLoc, diag::err_module_unavailable) 1822 << Module->getFullModuleName() 1823 << Requirement.second << Requirement.first 1824 << SourceRange(Path.front().second, Path.back().second); 1825 } 1826 LastModuleImportLoc = ImportLoc; 1827 LastModuleImportResult = ModuleLoadResult(); 1828 return ModuleLoadResult(); 1829 } 1830 1831 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1832 } 1833 1834 // Check for any configuration macros that have changed. 1835 clang::Module *TopModule = Module->getTopLevelModule(); 1836 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1837 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1838 Module, ImportLoc); 1839 } 1840 1841 LastModuleImportLoc = ImportLoc; 1842 LastModuleImportResult = ModuleLoadResult(Module); 1843 return LastModuleImportResult; 1844 } 1845 1846 void CompilerInstance::makeModuleVisible(Module *Mod, 1847 Module::NameVisibilityKind Visibility, 1848 SourceLocation ImportLoc) { 1849 if (!ModuleManager) 1850 createModuleManager(); 1851 if (!ModuleManager) 1852 return; 1853 1854 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 1855 } 1856 1857 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 1858 SourceLocation TriggerLoc) { 1859 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 1860 return nullptr; 1861 if (!ModuleManager) 1862 createModuleManager(); 1863 // Can't do anything if we don't have the module manager. 1864 if (!ModuleManager) 1865 return nullptr; 1866 // Get an existing global index. This loads it if not already 1867 // loaded. 1868 ModuleManager->loadGlobalIndex(); 1869 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 1870 // If the global index doesn't exist, create it. 1871 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 1872 hasPreprocessor()) { 1873 llvm::sys::fs::create_directories( 1874 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1875 GlobalModuleIndex::writeIndex( 1876 getFileManager(), getPCHContainerReader(), 1877 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1878 ModuleManager->resetForReload(); 1879 ModuleManager->loadGlobalIndex(); 1880 GlobalIndex = ModuleManager->getGlobalIndex(); 1881 } 1882 // For finding modules needing to be imported for fixit messages, 1883 // we need to make the global index cover all modules, so we do that here. 1884 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 1885 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1886 bool RecreateIndex = false; 1887 for (ModuleMap::module_iterator I = MMap.module_begin(), 1888 E = MMap.module_end(); I != E; ++I) { 1889 Module *TheModule = I->second; 1890 const FileEntry *Entry = TheModule->getASTFile(); 1891 if (!Entry) { 1892 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 1893 Path.push_back(std::make_pair( 1894 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 1895 std::reverse(Path.begin(), Path.end()); 1896 // Load a module as hidden. This also adds it to the global index. 1897 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 1898 RecreateIndex = true; 1899 } 1900 } 1901 if (RecreateIndex) { 1902 GlobalModuleIndex::writeIndex( 1903 getFileManager(), getPCHContainerReader(), 1904 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1905 ModuleManager->resetForReload(); 1906 ModuleManager->loadGlobalIndex(); 1907 GlobalIndex = ModuleManager->getGlobalIndex(); 1908 } 1909 HaveFullGlobalModuleIndex = true; 1910 } 1911 return GlobalIndex; 1912 } 1913 1914 // Check global module index for missing imports. 1915 bool 1916 CompilerInstance::lookupMissingImports(StringRef Name, 1917 SourceLocation TriggerLoc) { 1918 // Look for the symbol in non-imported modules, but only if an error 1919 // actually occurred. 1920 if (!buildingModule()) { 1921 // Load global module index, or retrieve a previously loaded one. 1922 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 1923 TriggerLoc); 1924 1925 // Only if we have a global index. 1926 if (GlobalIndex) { 1927 GlobalModuleIndex::HitSet FoundModules; 1928 1929 // Find the modules that reference the identifier. 1930 // Note that this only finds top-level modules. 1931 // We'll let diagnoseTypo find the actual declaration module. 1932 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 1933 return true; 1934 } 1935 } 1936 1937 return false; 1938 } 1939 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 1940 1941 void CompilerInstance::setExternalSemaSource( 1942 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 1943 ExternalSemaSrc = std::move(ESS); 1944 } 1945