1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Frontend/CompilerInstance.h" 10 #include "clang/AST/ASTConsumer.h" 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/Decl.h" 13 #include "clang/Basic/CharInfo.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/LangStandard.h" 17 #include "clang/Basic/SourceManager.h" 18 #include "clang/Basic/Stack.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Basic/Version.h" 21 #include "clang/Config/config.h" 22 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 23 #include "clang/Frontend/FrontendAction.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/LogDiagnosticPrinter.h" 27 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Frontend/Utils.h" 30 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 31 #include "clang/Lex/HeaderSearch.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorOptions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Serialization/ASTReader.h" 37 #include "clang/Serialization/GlobalModuleIndex.h" 38 #include "clang/Serialization/InMemoryModuleCache.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CrashRecoveryContext.h" 42 #include "llvm/Support/Errc.h" 43 #include "llvm/Support/FileSystem.h" 44 #include "llvm/Support/Host.h" 45 #include "llvm/Support/LockFileManager.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/Program.h" 49 #include "llvm/Support/Signals.h" 50 #include "llvm/Support/TimeProfiler.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <time.h> 54 #include <utility> 55 56 using namespace clang; 57 58 CompilerInstance::CompilerInstance( 59 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 60 InMemoryModuleCache *SharedModuleCache) 61 : ModuleLoader(/* BuildingModule = */ SharedModuleCache), 62 Invocation(new CompilerInvocation()), 63 ModuleCache(SharedModuleCache ? SharedModuleCache 64 : new InMemoryModuleCache), 65 ThePCHContainerOperations(std::move(PCHContainerOps)) {} 66 67 CompilerInstance::~CompilerInstance() { 68 assert(OutputFiles.empty() && "Still output files in flight?"); 69 } 70 71 void CompilerInstance::setInvocation( 72 std::shared_ptr<CompilerInvocation> Value) { 73 Invocation = std::move(Value); 74 } 75 76 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 77 return (BuildGlobalModuleIndex || 78 (TheASTReader && TheASTReader->isGlobalIndexUnavailable() && 79 getFrontendOpts().GenerateGlobalModuleIndex)) && 80 !ModuleBuildFailed; 81 } 82 83 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 84 Diagnostics = Value; 85 } 86 87 void CompilerInstance::setVerboseOutputStream(raw_ostream &Value) { 88 OwnedVerboseOutputStream.release(); 89 VerboseOutputStream = &Value; 90 } 91 92 void CompilerInstance::setVerboseOutputStream(std::unique_ptr<raw_ostream> Value) { 93 OwnedVerboseOutputStream.swap(Value); 94 VerboseOutputStream = OwnedVerboseOutputStream.get(); 95 } 96 97 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 98 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 99 100 llvm::vfs::FileSystem &CompilerInstance::getVirtualFileSystem() const { 101 return getFileManager().getVirtualFileSystem(); 102 } 103 104 void CompilerInstance::setFileManager(FileManager *Value) { 105 FileMgr = Value; 106 } 107 108 void CompilerInstance::setSourceManager(SourceManager *Value) { 109 SourceMgr = Value; 110 } 111 112 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 113 PP = std::move(Value); 114 } 115 116 void CompilerInstance::setASTContext(ASTContext *Value) { 117 Context = Value; 118 119 if (Context && Consumer) 120 getASTConsumer().Initialize(getASTContext()); 121 } 122 123 void CompilerInstance::setSema(Sema *S) { 124 TheSema.reset(S); 125 } 126 127 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 128 Consumer = std::move(Value); 129 130 if (Context && Consumer) 131 getASTConsumer().Initialize(getASTContext()); 132 } 133 134 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 135 CompletionConsumer.reset(Value); 136 } 137 138 std::unique_ptr<Sema> CompilerInstance::takeSema() { 139 return std::move(TheSema); 140 } 141 142 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getASTReader() const { 143 return TheASTReader; 144 } 145 void CompilerInstance::setASTReader(IntrusiveRefCntPtr<ASTReader> Reader) { 146 assert(ModuleCache.get() == &Reader->getModuleManager().getModuleCache() && 147 "Expected ASTReader to use the same PCM cache"); 148 TheASTReader = std::move(Reader); 149 } 150 151 std::shared_ptr<ModuleDependencyCollector> 152 CompilerInstance::getModuleDepCollector() const { 153 return ModuleDepCollector; 154 } 155 156 void CompilerInstance::setModuleDepCollector( 157 std::shared_ptr<ModuleDependencyCollector> Collector) { 158 ModuleDepCollector = std::move(Collector); 159 } 160 161 static void collectHeaderMaps(const HeaderSearch &HS, 162 std::shared_ptr<ModuleDependencyCollector> MDC) { 163 SmallVector<std::string, 4> HeaderMapFileNames; 164 HS.getHeaderMapFileNames(HeaderMapFileNames); 165 for (auto &Name : HeaderMapFileNames) 166 MDC->addFile(Name); 167 } 168 169 static void collectIncludePCH(CompilerInstance &CI, 170 std::shared_ptr<ModuleDependencyCollector> MDC) { 171 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 172 if (PPOpts.ImplicitPCHInclude.empty()) 173 return; 174 175 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 176 FileManager &FileMgr = CI.getFileManager(); 177 auto PCHDir = FileMgr.getDirectory(PCHInclude); 178 if (!PCHDir) { 179 MDC->addFile(PCHInclude); 180 return; 181 } 182 183 std::error_code EC; 184 SmallString<128> DirNative; 185 llvm::sys::path::native((*PCHDir)->getName(), DirNative); 186 llvm::vfs::FileSystem &FS = FileMgr.getVirtualFileSystem(); 187 SimpleASTReaderListener Validator(CI.getPreprocessor()); 188 for (llvm::vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 189 Dir != DirEnd && !EC; Dir.increment(EC)) { 190 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 191 // used here since we're not interested in validating the PCH at this time, 192 // but only to check whether this is a file containing an AST. 193 if (!ASTReader::readASTFileControlBlock( 194 Dir->path(), FileMgr, CI.getPCHContainerReader(), 195 /*FindModuleFileExtensions=*/false, Validator, 196 /*ValidateDiagnosticOptions=*/false)) 197 MDC->addFile(Dir->path()); 198 } 199 } 200 201 static void collectVFSEntries(CompilerInstance &CI, 202 std::shared_ptr<ModuleDependencyCollector> MDC) { 203 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 204 return; 205 206 // Collect all VFS found. 207 SmallVector<llvm::vfs::YAMLVFSEntry, 16> VFSEntries; 208 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 209 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 210 llvm::MemoryBuffer::getFile(VFSFile); 211 if (!Buffer) 212 return; 213 llvm::vfs::collectVFSFromYAML(std::move(Buffer.get()), 214 /*DiagHandler*/ nullptr, VFSFile, VFSEntries); 215 } 216 217 for (auto &E : VFSEntries) 218 MDC->addFile(E.VPath, E.RPath); 219 } 220 221 // Diagnostics 222 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 223 const CodeGenOptions *CodeGenOpts, 224 DiagnosticsEngine &Diags) { 225 std::error_code EC; 226 std::unique_ptr<raw_ostream> StreamOwner; 227 raw_ostream *OS = &llvm::errs(); 228 if (DiagOpts->DiagnosticLogFile != "-") { 229 // Create the output stream. 230 auto FileOS = std::make_unique<llvm::raw_fd_ostream>( 231 DiagOpts->DiagnosticLogFile, EC, 232 llvm::sys::fs::OF_Append | llvm::sys::fs::OF_Text); 233 if (EC) { 234 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 235 << DiagOpts->DiagnosticLogFile << EC.message(); 236 } else { 237 FileOS->SetUnbuffered(); 238 OS = FileOS.get(); 239 StreamOwner = std::move(FileOS); 240 } 241 } 242 243 // Chain in the diagnostic client which will log the diagnostics. 244 auto Logger = std::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 245 std::move(StreamOwner)); 246 if (CodeGenOpts) 247 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 248 if (Diags.ownsClient()) { 249 Diags.setClient( 250 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 251 } else { 252 Diags.setClient( 253 new ChainedDiagnosticConsumer(Diags.getClient(), std::move(Logger))); 254 } 255 } 256 257 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 258 DiagnosticsEngine &Diags, 259 StringRef OutputFile) { 260 auto SerializedConsumer = 261 clang::serialized_diags::create(OutputFile, DiagOpts); 262 263 if (Diags.ownsClient()) { 264 Diags.setClient(new ChainedDiagnosticConsumer( 265 Diags.takeClient(), std::move(SerializedConsumer))); 266 } else { 267 Diags.setClient(new ChainedDiagnosticConsumer( 268 Diags.getClient(), std::move(SerializedConsumer))); 269 } 270 } 271 272 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 273 bool ShouldOwnClient) { 274 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 275 ShouldOwnClient, &getCodeGenOpts()); 276 } 277 278 IntrusiveRefCntPtr<DiagnosticsEngine> 279 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 280 DiagnosticConsumer *Client, 281 bool ShouldOwnClient, 282 const CodeGenOptions *CodeGenOpts) { 283 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 284 IntrusiveRefCntPtr<DiagnosticsEngine> 285 Diags(new DiagnosticsEngine(DiagID, Opts)); 286 287 // Create the diagnostic client for reporting errors or for 288 // implementing -verify. 289 if (Client) { 290 Diags->setClient(Client, ShouldOwnClient); 291 } else 292 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 293 294 // Chain in -verify checker, if requested. 295 if (Opts->VerifyDiagnostics) 296 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 297 298 // Chain in -diagnostic-log-file dumper, if requested. 299 if (!Opts->DiagnosticLogFile.empty()) 300 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 301 302 if (!Opts->DiagnosticSerializationFile.empty()) 303 SetupSerializedDiagnostics(Opts, *Diags, 304 Opts->DiagnosticSerializationFile); 305 306 // Configure our handling of diagnostics. 307 ProcessWarningOptions(*Diags, *Opts); 308 309 return Diags; 310 } 311 312 // File Manager 313 314 FileManager *CompilerInstance::createFileManager( 315 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) { 316 if (!VFS) 317 VFS = FileMgr ? &FileMgr->getVirtualFileSystem() 318 : createVFSFromCompilerInvocation(getInvocation(), 319 getDiagnostics()); 320 assert(VFS && "FileManager has no VFS?"); 321 FileMgr = new FileManager(getFileSystemOpts(), std::move(VFS)); 322 return FileMgr.get(); 323 } 324 325 // Source Manager 326 327 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 328 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 329 } 330 331 // Initialize the remapping of files to alternative contents, e.g., 332 // those specified through other files. 333 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 334 SourceManager &SourceMgr, 335 FileManager &FileMgr, 336 const PreprocessorOptions &InitOpts) { 337 // Remap files in the source manager (with buffers). 338 for (const auto &RB : InitOpts.RemappedFileBuffers) { 339 // Create the file entry for the file that we're mapping from. 340 const FileEntry *FromFile = 341 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 342 if (!FromFile) { 343 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 344 if (!InitOpts.RetainRemappedFileBuffers) 345 delete RB.second; 346 continue; 347 } 348 349 // Override the contents of the "from" file with the contents of the 350 // "to" file. If the caller owns the buffers, then pass a MemoryBufferRef; 351 // otherwise, pass as a std::unique_ptr<MemoryBuffer> to transfer ownership 352 // to the SourceManager. 353 if (InitOpts.RetainRemappedFileBuffers) 354 SourceMgr.overrideFileContents(FromFile, RB.second->getMemBufferRef()); 355 else 356 SourceMgr.overrideFileContents( 357 FromFile, std::unique_ptr<llvm::MemoryBuffer>( 358 const_cast<llvm::MemoryBuffer *>(RB.second))); 359 } 360 361 // Remap files in the source manager (with other files). 362 for (const auto &RF : InitOpts.RemappedFiles) { 363 // Find the file that we're mapping to. 364 auto ToFile = FileMgr.getFile(RF.second); 365 if (!ToFile) { 366 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 367 continue; 368 } 369 370 // Create the file entry for the file that we're mapping from. 371 const FileEntry *FromFile = 372 FileMgr.getVirtualFile(RF.first, (*ToFile)->getSize(), 0); 373 if (!FromFile) { 374 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 375 continue; 376 } 377 378 // Override the contents of the "from" file with the contents of 379 // the "to" file. 380 SourceMgr.overrideFileContents(FromFile, *ToFile); 381 } 382 383 SourceMgr.setOverridenFilesKeepOriginalName( 384 InitOpts.RemappedFilesKeepOriginalName); 385 } 386 387 // Preprocessor 388 389 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 390 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 391 392 // The AST reader holds a reference to the old preprocessor (if any). 393 TheASTReader.reset(); 394 395 // Create the Preprocessor. 396 HeaderSearch *HeaderInfo = 397 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 398 getDiagnostics(), getLangOpts(), &getTarget()); 399 PP = std::make_shared<Preprocessor>(Invocation->getPreprocessorOptsPtr(), 400 getDiagnostics(), getLangOpts(), 401 getSourceManager(), *HeaderInfo, *this, 402 /*IdentifierInfoLookup=*/nullptr, 403 /*OwnsHeaderSearch=*/true, TUKind); 404 getTarget().adjust(getLangOpts()); 405 PP->Initialize(getTarget(), getAuxTarget()); 406 407 if (PPOpts.DetailedRecord) 408 PP->createPreprocessingRecord(); 409 410 // Apply remappings to the source manager. 411 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 412 PP->getFileManager(), PPOpts); 413 414 // Predefine macros and configure the preprocessor. 415 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 416 getFrontendOpts()); 417 418 // Initialize the header search object. In CUDA compilations, we use the aux 419 // triple (the host triple) to initialize our header search, since we need to 420 // find the host headers in order to compile the CUDA code. 421 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 422 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 423 PP->getAuxTargetInfo()) 424 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 425 426 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 427 PP->getLangOpts(), *HeaderSearchTriple); 428 429 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 430 431 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) { 432 std::string ModuleHash = getInvocation().getModuleHash(); 433 PP->getHeaderSearchInfo().setModuleHash(ModuleHash); 434 PP->getHeaderSearchInfo().setModuleCachePath( 435 getSpecificModuleCachePath(ModuleHash)); 436 } 437 438 // Handle generating dependencies, if requested. 439 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 440 if (!DepOpts.OutputFile.empty()) 441 addDependencyCollector(std::make_shared<DependencyFileGenerator>(DepOpts)); 442 if (!DepOpts.DOTOutputFile.empty()) 443 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 444 getHeaderSearchOpts().Sysroot); 445 446 // If we don't have a collector, but we are collecting module dependencies, 447 // then we're the top level compiler instance and need to create one. 448 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 449 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 450 DepOpts.ModuleDependencyOutputDir); 451 } 452 453 // If there is a module dep collector, register with other dep collectors 454 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 455 if (ModuleDepCollector) { 456 addDependencyCollector(ModuleDepCollector); 457 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 458 collectIncludePCH(*this, ModuleDepCollector); 459 collectVFSEntries(*this, ModuleDepCollector); 460 } 461 462 for (auto &Listener : DependencyCollectors) 463 Listener->attachToPreprocessor(*PP); 464 465 // Handle generating header include information, if requested. 466 if (DepOpts.ShowHeaderIncludes) 467 AttachHeaderIncludeGen(*PP, DepOpts); 468 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 469 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 470 if (OutputPath == "-") 471 OutputPath = ""; 472 AttachHeaderIncludeGen(*PP, DepOpts, 473 /*ShowAllHeaders=*/true, OutputPath, 474 /*ShowDepth=*/false); 475 } 476 477 if (DepOpts.ShowIncludesDest != ShowIncludesDestination::None) { 478 AttachHeaderIncludeGen(*PP, DepOpts, 479 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 480 /*ShowDepth=*/true, /*MSStyle=*/true); 481 } 482 } 483 484 std::string CompilerInstance::getSpecificModuleCachePath(StringRef ModuleHash) { 485 // Set up the module path, including the hash for the module-creation options. 486 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 487 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 488 llvm::sys::path::append(SpecificModuleCache, ModuleHash); 489 return std::string(SpecificModuleCache.str()); 490 } 491 492 // ASTContext 493 494 void CompilerInstance::createASTContext() { 495 Preprocessor &PP = getPreprocessor(); 496 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 497 PP.getIdentifierTable(), PP.getSelectorTable(), 498 PP.getBuiltinInfo()); 499 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 500 setASTContext(Context); 501 } 502 503 // ExternalASTSource 504 505 void CompilerInstance::createPCHExternalASTSource( 506 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 507 void *DeserializationListener, bool OwnDeserializationListener) { 508 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 509 TheASTReader = createPCHExternalASTSource( 510 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 511 AllowPCHWithCompilerErrors, getPreprocessor(), getModuleCache(), 512 getASTContext(), getPCHContainerReader(), 513 getFrontendOpts().ModuleFileExtensions, DependencyCollectors, 514 DeserializationListener, OwnDeserializationListener, Preamble, 515 getFrontendOpts().UseGlobalModuleIndex); 516 } 517 518 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 519 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 520 bool AllowPCHWithCompilerErrors, Preprocessor &PP, 521 InMemoryModuleCache &ModuleCache, ASTContext &Context, 522 const PCHContainerReader &PCHContainerRdr, 523 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 524 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 525 void *DeserializationListener, bool OwnDeserializationListener, 526 bool Preamble, bool UseGlobalModuleIndex) { 527 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 528 529 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 530 PP, ModuleCache, &Context, PCHContainerRdr, Extensions, 531 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 532 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 533 HSOpts.ModulesValidateSystemHeaders, HSOpts.ValidateASTInputFilesContent, 534 UseGlobalModuleIndex)); 535 536 // We need the external source to be set up before we read the AST, because 537 // eagerly-deserialized declarations may use it. 538 Context.setExternalSource(Reader.get()); 539 540 Reader->setDeserializationListener( 541 static_cast<ASTDeserializationListener *>(DeserializationListener), 542 /*TakeOwnership=*/OwnDeserializationListener); 543 544 for (auto &Listener : DependencyCollectors) 545 Listener->attachToASTReader(*Reader); 546 547 switch (Reader->ReadAST(Path, 548 Preamble ? serialization::MK_Preamble 549 : serialization::MK_PCH, 550 SourceLocation(), 551 ASTReader::ARR_None)) { 552 case ASTReader::Success: 553 // Set the predefines buffer as suggested by the PCH reader. Typically, the 554 // predefines buffer will be empty. 555 PP.setPredefines(Reader->getSuggestedPredefines()); 556 return Reader; 557 558 case ASTReader::Failure: 559 // Unrecoverable failure: don't even try to process the input file. 560 break; 561 562 case ASTReader::Missing: 563 case ASTReader::OutOfDate: 564 case ASTReader::VersionMismatch: 565 case ASTReader::ConfigurationMismatch: 566 case ASTReader::HadErrors: 567 // No suitable PCH file could be found. Return an error. 568 break; 569 } 570 571 Context.setExternalSource(nullptr); 572 return nullptr; 573 } 574 575 // Code Completion 576 577 static bool EnableCodeCompletion(Preprocessor &PP, 578 StringRef Filename, 579 unsigned Line, 580 unsigned Column) { 581 // Tell the source manager to chop off the given file at a specific 582 // line and column. 583 auto Entry = PP.getFileManager().getFile(Filename); 584 if (!Entry) { 585 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 586 << Filename; 587 return true; 588 } 589 590 // Truncate the named file at the given line/column. 591 PP.SetCodeCompletionPoint(*Entry, Line, Column); 592 return false; 593 } 594 595 void CompilerInstance::createCodeCompletionConsumer() { 596 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 597 if (!CompletionConsumer) { 598 setCodeCompletionConsumer( 599 createCodeCompletionConsumer(getPreprocessor(), 600 Loc.FileName, Loc.Line, Loc.Column, 601 getFrontendOpts().CodeCompleteOpts, 602 llvm::outs())); 603 if (!CompletionConsumer) 604 return; 605 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 606 Loc.Line, Loc.Column)) { 607 setCodeCompletionConsumer(nullptr); 608 return; 609 } 610 } 611 612 void CompilerInstance::createFrontendTimer() { 613 FrontendTimerGroup.reset( 614 new llvm::TimerGroup("frontend", "Clang front-end time report")); 615 FrontendTimer.reset( 616 new llvm::Timer("frontend", "Clang front-end timer", 617 *FrontendTimerGroup)); 618 } 619 620 CodeCompleteConsumer * 621 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 622 StringRef Filename, 623 unsigned Line, 624 unsigned Column, 625 const CodeCompleteOptions &Opts, 626 raw_ostream &OS) { 627 if (EnableCodeCompletion(PP, Filename, Line, Column)) 628 return nullptr; 629 630 // Set up the creation routine for code-completion. 631 return new PrintingCodeCompleteConsumer(Opts, OS); 632 } 633 634 void CompilerInstance::createSema(TranslationUnitKind TUKind, 635 CodeCompleteConsumer *CompletionConsumer) { 636 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 637 TUKind, CompletionConsumer)); 638 // Attach the external sema source if there is any. 639 if (ExternalSemaSrc) { 640 TheSema->addExternalSource(ExternalSemaSrc.get()); 641 ExternalSemaSrc->InitializeSema(*TheSema); 642 } 643 } 644 645 // Output Files 646 647 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 648 OutputFiles.push_back(std::move(OutFile)); 649 } 650 651 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 652 for (OutputFile &OF : OutputFiles) { 653 if (!OF.TempFilename.empty()) { 654 if (EraseFiles) { 655 llvm::sys::fs::remove(OF.TempFilename); 656 } else { 657 SmallString<128> NewOutFile(OF.Filename); 658 659 // If '-working-directory' was passed, the output filename should be 660 // relative to that. 661 FileMgr->FixupRelativePath(NewOutFile); 662 if (std::error_code ec = 663 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 664 getDiagnostics().Report(diag::err_unable_to_rename_temp) 665 << OF.TempFilename << OF.Filename << ec.message(); 666 667 llvm::sys::fs::remove(OF.TempFilename); 668 } 669 } 670 } else if (!OF.Filename.empty() && EraseFiles) 671 llvm::sys::fs::remove(OF.Filename); 672 } 673 OutputFiles.clear(); 674 if (DeleteBuiltModules) { 675 for (auto &Module : BuiltModules) 676 llvm::sys::fs::remove(Module.second); 677 BuiltModules.clear(); 678 } 679 NonSeekStream.reset(); 680 } 681 682 std::unique_ptr<raw_pwrite_stream> 683 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 684 StringRef Extension) { 685 return createOutputFile(getFrontendOpts().OutputFile, Binary, 686 /*RemoveFileOnSignal=*/true, InFile, Extension, 687 getFrontendOpts().UseTemporary); 688 } 689 690 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 691 return std::make_unique<llvm::raw_null_ostream>(); 692 } 693 694 std::unique_ptr<raw_pwrite_stream> 695 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 696 bool RemoveFileOnSignal, StringRef InFile, 697 StringRef Extension, bool UseTemporary, 698 bool CreateMissingDirectories) { 699 std::string OutputPathName, TempPathName; 700 std::error_code EC; 701 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 702 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 703 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 704 if (!OS) { 705 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 706 << EC.message(); 707 return nullptr; 708 } 709 710 // Add the output file -- but don't try to remove "-", since this means we are 711 // using stdin. 712 addOutputFile( 713 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 714 715 return OS; 716 } 717 718 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 719 StringRef OutputPath, std::error_code &Error, bool Binary, 720 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 721 bool UseTemporary, bool CreateMissingDirectories, 722 std::string *ResultPathName, std::string *TempPathName) { 723 assert((!CreateMissingDirectories || UseTemporary) && 724 "CreateMissingDirectories is only allowed when using temporary files"); 725 726 std::string OutFile, TempFile; 727 if (!OutputPath.empty()) { 728 OutFile = std::string(OutputPath); 729 } else if (InFile == "-") { 730 OutFile = "-"; 731 } else if (!Extension.empty()) { 732 SmallString<128> Path(InFile); 733 llvm::sys::path::replace_extension(Path, Extension); 734 OutFile = std::string(Path.str()); 735 } else { 736 OutFile = "-"; 737 } 738 739 std::unique_ptr<llvm::raw_fd_ostream> OS; 740 std::string OSFile; 741 742 if (UseTemporary) { 743 if (OutFile == "-") 744 UseTemporary = false; 745 else { 746 llvm::sys::fs::file_status Status; 747 llvm::sys::fs::status(OutputPath, Status); 748 if (llvm::sys::fs::exists(Status)) { 749 // Fail early if we can't write to the final destination. 750 if (!llvm::sys::fs::can_write(OutputPath)) { 751 Error = make_error_code(llvm::errc::operation_not_permitted); 752 return nullptr; 753 } 754 755 // Don't use a temporary if the output is a special file. This handles 756 // things like '-o /dev/null' 757 if (!llvm::sys::fs::is_regular_file(Status)) 758 UseTemporary = false; 759 } 760 } 761 } 762 763 if (UseTemporary) { 764 // Create a temporary file. 765 // Insert -%%%%%%%% before the extension (if any), and because some tools 766 // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build 767 // artifacts, also append .tmp. 768 StringRef OutputExtension = llvm::sys::path::extension(OutFile); 769 SmallString<128> TempPath = 770 StringRef(OutFile).drop_back(OutputExtension.size()); 771 TempPath += "-%%%%%%%%"; 772 TempPath += OutputExtension; 773 TempPath += ".tmp"; 774 int fd; 775 std::error_code EC = 776 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 777 778 if (CreateMissingDirectories && 779 EC == llvm::errc::no_such_file_or_directory) { 780 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 781 EC = llvm::sys::fs::create_directories(Parent); 782 if (!EC) { 783 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 784 } 785 } 786 787 if (!EC) { 788 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 789 OSFile = TempFile = std::string(TempPath.str()); 790 } 791 // If we failed to create the temporary, fallback to writing to the file 792 // directly. This handles the corner case where we cannot write to the 793 // directory, but can write to the file. 794 } 795 796 if (!OS) { 797 OSFile = OutFile; 798 OS.reset(new llvm::raw_fd_ostream( 799 OSFile, Error, 800 (Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_Text))); 801 if (Error) 802 return nullptr; 803 } 804 805 // Make sure the out stream file gets removed if we crash. 806 if (RemoveFileOnSignal) 807 llvm::sys::RemoveFileOnSignal(OSFile); 808 809 if (ResultPathName) 810 *ResultPathName = OutFile; 811 if (TempPathName) 812 *TempPathName = TempFile; 813 814 if (!Binary || OS->supportsSeeking()) 815 return std::move(OS); 816 817 auto B = std::make_unique<llvm::buffer_ostream>(*OS); 818 assert(!NonSeekStream); 819 NonSeekStream = std::move(OS); 820 return std::move(B); 821 } 822 823 // Initialization Utilities 824 825 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 826 return InitializeSourceManager(Input, getDiagnostics(), getFileManager(), 827 getSourceManager()); 828 } 829 830 // static 831 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input, 832 DiagnosticsEngine &Diags, 833 FileManager &FileMgr, 834 SourceManager &SourceMgr) { 835 SrcMgr::CharacteristicKind Kind = 836 Input.getKind().getFormat() == InputKind::ModuleMap 837 ? Input.isSystem() ? SrcMgr::C_System_ModuleMap 838 : SrcMgr::C_User_ModuleMap 839 : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 840 841 if (Input.isBuffer()) { 842 SourceMgr.setMainFileID(SourceMgr.createFileID(Input.getBuffer(), Kind)); 843 assert(SourceMgr.getMainFileID().isValid() && 844 "Couldn't establish MainFileID!"); 845 return true; 846 } 847 848 StringRef InputFile = Input.getFile(); 849 850 // Figure out where to get and map in the main file. 851 if (InputFile != "-") { 852 auto FileOrErr = FileMgr.getFileRef(InputFile, /*OpenFile=*/true); 853 if (!FileOrErr) { 854 // FIXME: include the error in the diagnostic. 855 consumeError(FileOrErr.takeError()); 856 Diags.Report(diag::err_fe_error_reading) << InputFile; 857 return false; 858 } 859 FileEntryRef File = *FileOrErr; 860 861 // The natural SourceManager infrastructure can't currently handle named 862 // pipes, but we would at least like to accept them for the main 863 // file. Detect them here, read them with the volatile flag so FileMgr will 864 // pick up the correct size, and simply override their contents as we do for 865 // STDIN. 866 if (File.getFileEntry().isNamedPipe()) { 867 auto MB = 868 FileMgr.getBufferForFile(&File.getFileEntry(), /*isVolatile=*/true); 869 if (MB) { 870 // Create a new virtual file that will have the correct size. 871 const FileEntry *FE = 872 FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 873 SourceMgr.overrideFileContents(FE, std::move(*MB)); 874 SourceMgr.setMainFileID( 875 SourceMgr.createFileID(FE, SourceLocation(), Kind)); 876 } else { 877 Diags.Report(diag::err_cannot_open_file) << InputFile 878 << MB.getError().message(); 879 return false; 880 } 881 } else { 882 SourceMgr.setMainFileID( 883 SourceMgr.createFileID(File, SourceLocation(), Kind)); 884 } 885 } else { 886 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 887 llvm::MemoryBuffer::getSTDIN(); 888 if (std::error_code EC = SBOrErr.getError()) { 889 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 890 return false; 891 } 892 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 893 894 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 895 SB->getBufferSize(), 0); 896 SourceMgr.setMainFileID( 897 SourceMgr.createFileID(File, SourceLocation(), Kind)); 898 SourceMgr.overrideFileContents(File, std::move(SB)); 899 } 900 901 assert(SourceMgr.getMainFileID().isValid() && 902 "Couldn't establish MainFileID!"); 903 return true; 904 } 905 906 // High-Level Operations 907 908 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 909 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 910 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 911 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 912 913 // Mark this point as the bottom of the stack if we don't have somewhere 914 // better. We generally expect frontend actions to be invoked with (nearly) 915 // DesiredStackSpace available. 916 noteBottomOfStack(); 917 918 raw_ostream &OS = getVerboseOutputStream(); 919 920 if (!Act.PrepareToExecute(*this)) 921 return false; 922 923 // Create the target instance. 924 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 925 getInvocation().TargetOpts)); 926 if (!hasTarget()) 927 return false; 928 929 // Create TargetInfo for the other side of CUDA/OpenMP/SYCL compilation. 930 if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 931 getLangOpts().SYCLIsDevice) && 932 !getFrontendOpts().AuxTriple.empty()) { 933 auto TO = std::make_shared<TargetOptions>(); 934 TO->Triple = llvm::Triple::normalize(getFrontendOpts().AuxTriple); 935 if (getFrontendOpts().AuxTargetCPU) 936 TO->CPU = getFrontendOpts().AuxTargetCPU.getValue(); 937 if (getFrontendOpts().AuxTargetFeatures) 938 TO->FeaturesAsWritten = getFrontendOpts().AuxTargetFeatures.getValue(); 939 TO->HostTriple = getTarget().getTriple().str(); 940 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 941 } 942 943 if (!getTarget().hasStrictFP() && !getLangOpts().ExpStrictFP) { 944 if (getLangOpts().getFPRoundingMode() != 945 llvm::RoundingMode::NearestTiesToEven) { 946 getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_rounding); 947 getLangOpts().setFPRoundingMode(llvm::RoundingMode::NearestTiesToEven); 948 } 949 if (getLangOpts().getFPExceptionMode() != LangOptions::FPE_Ignore) { 950 getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_exceptions); 951 getLangOpts().setFPExceptionMode(LangOptions::FPE_Ignore); 952 } 953 // FIXME: can we disable FEnvAccess? 954 } 955 956 // Inform the target of the language options. 957 // 958 // FIXME: We shouldn't need to do this, the target should be immutable once 959 // created. This complexity should be lifted elsewhere. 960 getTarget().adjust(getLangOpts()); 961 962 // Adjust target options based on codegen options. 963 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 964 965 if (auto *Aux = getAuxTarget()) 966 getTarget().setAuxTarget(Aux); 967 968 // rewriter project will change target built-in bool type from its default. 969 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 970 getTarget().noSignedCharForObjCBool(); 971 972 // Validate/process some options. 973 if (getHeaderSearchOpts().Verbose) 974 OS << "clang -cc1 version " CLANG_VERSION_STRING 975 << " based upon " << BACKEND_PACKAGE_STRING 976 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 977 978 if (getFrontendOpts().ShowTimers) 979 createFrontendTimer(); 980 981 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 982 llvm::EnableStatistics(false); 983 984 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 985 // Reset the ID tables if we are reusing the SourceManager and parsing 986 // regular files. 987 if (hasSourceManager() && !Act.isModelParsingAction()) 988 getSourceManager().clearIDTables(); 989 990 if (Act.BeginSourceFile(*this, FIF)) { 991 if (llvm::Error Err = Act.Execute()) { 992 consumeError(std::move(Err)); // FIXME this drops errors on the floor. 993 } 994 Act.EndSourceFile(); 995 } 996 } 997 998 // Notify the diagnostic client that all files were processed. 999 getDiagnostics().getClient()->finish(); 1000 1001 if (getDiagnosticOpts().ShowCarets) { 1002 // We can have multiple diagnostics sharing one diagnostic client. 1003 // Get the total number of warnings/errors from the client. 1004 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 1005 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 1006 1007 if (NumWarnings) 1008 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 1009 if (NumWarnings && NumErrors) 1010 OS << " and "; 1011 if (NumErrors) 1012 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 1013 if (NumWarnings || NumErrors) { 1014 OS << " generated"; 1015 if (getLangOpts().CUDA) { 1016 if (!getLangOpts().CUDAIsDevice) { 1017 OS << " when compiling for host"; 1018 } else { 1019 OS << " when compiling for " << getTargetOpts().CPU; 1020 } 1021 } 1022 OS << ".\n"; 1023 } 1024 } 1025 1026 if (getFrontendOpts().ShowStats) { 1027 if (hasFileManager()) { 1028 getFileManager().PrintStats(); 1029 OS << '\n'; 1030 } 1031 llvm::PrintStatistics(OS); 1032 } 1033 StringRef StatsFile = getFrontendOpts().StatsFile; 1034 if (!StatsFile.empty()) { 1035 std::error_code EC; 1036 auto StatS = std::make_unique<llvm::raw_fd_ostream>( 1037 StatsFile, EC, llvm::sys::fs::OF_Text); 1038 if (EC) { 1039 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1040 << StatsFile << EC.message(); 1041 } else { 1042 llvm::PrintStatisticsJSON(*StatS); 1043 } 1044 } 1045 1046 return !getDiagnostics().getClient()->getNumErrors(); 1047 } 1048 1049 /// Determine the appropriate source input kind based on language 1050 /// options. 1051 static Language getLanguageFromOptions(const LangOptions &LangOpts) { 1052 if (LangOpts.OpenCL) 1053 return Language::OpenCL; 1054 if (LangOpts.CUDA) 1055 return Language::CUDA; 1056 if (LangOpts.ObjC) 1057 return LangOpts.CPlusPlus ? Language::ObjCXX : Language::ObjC; 1058 return LangOpts.CPlusPlus ? Language::CXX : Language::C; 1059 } 1060 1061 /// Compile a module file for the given module, using the options 1062 /// provided by the importing compiler instance. Returns true if the module 1063 /// was built without errors. 1064 static bool 1065 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1066 StringRef ModuleName, FrontendInputFile Input, 1067 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1068 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1069 [](CompilerInstance &) {}, 1070 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1071 [](CompilerInstance &) {}) { 1072 llvm::TimeTraceScope TimeScope("Module Compile", ModuleName); 1073 1074 // Construct a compiler invocation for creating this module. 1075 auto Invocation = 1076 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1077 1078 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1079 1080 // For any options that aren't intended to affect how a module is built, 1081 // reset them to their default values. 1082 Invocation->getLangOpts()->resetNonModularOptions(); 1083 PPOpts.resetNonModularOptions(); 1084 1085 // Remove any macro definitions that are explicitly ignored by the module. 1086 // They aren't supposed to affect how the module is built anyway. 1087 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1088 PPOpts.Macros.erase( 1089 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1090 [&HSOpts](const std::pair<std::string, bool> &def) { 1091 StringRef MacroDef = def.first; 1092 return HSOpts.ModulesIgnoreMacros.count( 1093 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1094 }), 1095 PPOpts.Macros.end()); 1096 1097 // If the original compiler invocation had -fmodule-name, pass it through. 1098 Invocation->getLangOpts()->ModuleName = 1099 ImportingInstance.getInvocation().getLangOpts()->ModuleName; 1100 1101 // Note the name of the module we're building. 1102 Invocation->getLangOpts()->CurrentModule = std::string(ModuleName); 1103 1104 // Make sure that the failed-module structure has been allocated in 1105 // the importing instance, and propagate the pointer to the newly-created 1106 // instance. 1107 PreprocessorOptions &ImportingPPOpts 1108 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1109 if (!ImportingPPOpts.FailedModules) 1110 ImportingPPOpts.FailedModules = 1111 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1112 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1113 1114 // If there is a module map file, build the module using the module map. 1115 // Set up the inputs/outputs so that we build the module from its umbrella 1116 // header. 1117 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1118 FrontendOpts.OutputFile = ModuleFileName.str(); 1119 FrontendOpts.DisableFree = false; 1120 FrontendOpts.GenerateGlobalModuleIndex = false; 1121 FrontendOpts.BuildingImplicitModule = true; 1122 FrontendOpts.OriginalModuleMap = std::string(OriginalModuleMapFile); 1123 // Force implicitly-built modules to hash the content of the module file. 1124 HSOpts.ModulesHashContent = true; 1125 FrontendOpts.Inputs = {Input}; 1126 1127 // Don't free the remapped file buffers; they are owned by our caller. 1128 PPOpts.RetainRemappedFileBuffers = true; 1129 1130 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1131 assert(ImportingInstance.getInvocation().getModuleHash() == 1132 Invocation->getModuleHash() && "Module hash mismatch!"); 1133 1134 // Construct a compiler instance that will be used to actually create the 1135 // module. Since we're sharing an in-memory module cache, 1136 // CompilerInstance::CompilerInstance is responsible for finalizing the 1137 // buffers to prevent use-after-frees. 1138 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1139 &ImportingInstance.getModuleCache()); 1140 auto &Inv = *Invocation; 1141 Instance.setInvocation(std::move(Invocation)); 1142 1143 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1144 ImportingInstance.getDiagnosticClient()), 1145 /*ShouldOwnClient=*/true); 1146 1147 // Note that this module is part of the module build stack, so that we 1148 // can detect cycles in the module graph. 1149 Instance.setFileManager(&ImportingInstance.getFileManager()); 1150 Instance.createSourceManager(Instance.getFileManager()); 1151 SourceManager &SourceMgr = Instance.getSourceManager(); 1152 SourceMgr.setModuleBuildStack( 1153 ImportingInstance.getSourceManager().getModuleBuildStack()); 1154 SourceMgr.pushModuleBuildStack(ModuleName, 1155 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1156 1157 // If we're collecting module dependencies, we need to share a collector 1158 // between all of the module CompilerInstances. Other than that, we don't 1159 // want to produce any dependency output from the module build. 1160 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1161 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1162 1163 ImportingInstance.getDiagnostics().Report(ImportLoc, 1164 diag::remark_module_build) 1165 << ModuleName << ModuleFileName; 1166 1167 PreBuildStep(Instance); 1168 1169 // Execute the action to actually build the module in-place. Use a separate 1170 // thread so that we get a stack large enough. 1171 llvm::CrashRecoveryContext CRC; 1172 CRC.RunSafelyOnThread( 1173 [&]() { 1174 GenerateModuleFromModuleMapAction Action; 1175 Instance.ExecuteAction(Action); 1176 }, 1177 DesiredStackSize); 1178 1179 PostBuildStep(Instance); 1180 1181 ImportingInstance.getDiagnostics().Report(ImportLoc, 1182 diag::remark_module_build_done) 1183 << ModuleName; 1184 1185 // Delete the temporary module map file. 1186 // FIXME: Even though we're executing under crash protection, it would still 1187 // be nice to do this with RemoveFileOnSignal when we can. However, that 1188 // doesn't make sense for all clients, so clean this up manually. 1189 Instance.clearOutputFiles(/*EraseFiles=*/true); 1190 1191 return !Instance.getDiagnostics().hasErrorOccurred(); 1192 } 1193 1194 static const FileEntry *getPublicModuleMap(const FileEntry *File, 1195 FileManager &FileMgr) { 1196 StringRef Filename = llvm::sys::path::filename(File->getName()); 1197 SmallString<128> PublicFilename(File->getDir()->getName()); 1198 if (Filename == "module_private.map") 1199 llvm::sys::path::append(PublicFilename, "module.map"); 1200 else if (Filename == "module.private.modulemap") 1201 llvm::sys::path::append(PublicFilename, "module.modulemap"); 1202 else 1203 return nullptr; 1204 if (auto FE = FileMgr.getFile(PublicFilename)) 1205 return *FE; 1206 return nullptr; 1207 } 1208 1209 /// Compile a module file for the given module in a separate compiler instance, 1210 /// using the options provided by the importing compiler instance. Returns true 1211 /// if the module was built without errors. 1212 static bool compileModule(CompilerInstance &ImportingInstance, 1213 SourceLocation ImportLoc, Module *Module, 1214 StringRef ModuleFileName) { 1215 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1216 InputKind::ModuleMap); 1217 1218 // Get or create the module map that we'll use to build this module. 1219 ModuleMap &ModMap 1220 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1221 bool Result; 1222 if (const FileEntry *ModuleMapFile = 1223 ModMap.getContainingModuleMapFile(Module)) { 1224 // Canonicalize compilation to start with the public module map. This is 1225 // vital for submodules declarations in the private module maps to be 1226 // correctly parsed when depending on a top level module in the public one. 1227 if (const FileEntry *PublicMMFile = getPublicModuleMap( 1228 ModuleMapFile, ImportingInstance.getFileManager())) 1229 ModuleMapFile = PublicMMFile; 1230 1231 // Use the module map where this module resides. 1232 Result = compileModuleImpl( 1233 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1234 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1235 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1236 ModuleFileName); 1237 } else { 1238 // FIXME: We only need to fake up an input file here as a way of 1239 // transporting the module's directory to the module map parser. We should 1240 // be able to do that more directly, and parse from a memory buffer without 1241 // inventing this file. 1242 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1243 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1244 1245 std::string InferredModuleMapContent; 1246 llvm::raw_string_ostream OS(InferredModuleMapContent); 1247 Module->print(OS); 1248 OS.flush(); 1249 1250 Result = compileModuleImpl( 1251 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1252 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1253 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1254 ModuleFileName, 1255 [&](CompilerInstance &Instance) { 1256 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1257 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1258 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1259 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1260 Instance.getSourceManager().overrideFileContents( 1261 ModuleMapFile, std::move(ModuleMapBuffer)); 1262 }); 1263 } 1264 1265 // We've rebuilt a module. If we're allowed to generate or update the global 1266 // module index, record that fact in the importing compiler instance. 1267 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1268 ImportingInstance.setBuildGlobalModuleIndex(true); 1269 } 1270 1271 return Result; 1272 } 1273 1274 /// Compile a module in a separate compiler instance and read the AST, 1275 /// returning true if the module compiles without errors. 1276 /// 1277 /// Uses a lock file manager and exponential backoff to reduce the chances that 1278 /// multiple instances will compete to create the same module. On timeout, 1279 /// deletes the lock file in order to avoid deadlock from crashing processes or 1280 /// bugs in the lock file manager. 1281 static bool compileModuleAndReadAST(CompilerInstance &ImportingInstance, 1282 SourceLocation ImportLoc, 1283 SourceLocation ModuleNameLoc, 1284 Module *Module, StringRef ModuleFileName) { 1285 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1286 1287 auto diagnoseBuildFailure = [&] { 1288 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1289 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1290 }; 1291 1292 // FIXME: have LockFileManager return an error_code so that we can 1293 // avoid the mkdir when the directory already exists. 1294 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1295 llvm::sys::fs::create_directories(Dir); 1296 1297 while (1) { 1298 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1299 llvm::LockFileManager Locked(ModuleFileName); 1300 switch (Locked) { 1301 case llvm::LockFileManager::LFS_Error: 1302 // ModuleCache takes care of correctness and locks are only necessary for 1303 // performance. Fallback to building the module in case of any lock 1304 // related errors. 1305 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1306 << Module->Name << Locked.getErrorMessage(); 1307 // Clear out any potential leftover. 1308 Locked.unsafeRemoveLockFile(); 1309 LLVM_FALLTHROUGH; 1310 case llvm::LockFileManager::LFS_Owned: 1311 // We're responsible for building the module ourselves. 1312 if (!compileModule(ImportingInstance, ModuleNameLoc, Module, 1313 ModuleFileName)) { 1314 diagnoseBuildFailure(); 1315 return false; 1316 } 1317 break; 1318 1319 case llvm::LockFileManager::LFS_Shared: 1320 // Someone else is responsible for building the module. Wait for them to 1321 // finish. 1322 switch (Locked.waitForUnlock()) { 1323 case llvm::LockFileManager::Res_Success: 1324 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1325 break; 1326 case llvm::LockFileManager::Res_OwnerDied: 1327 continue; // try again to get the lock. 1328 case llvm::LockFileManager::Res_Timeout: 1329 // Since ModuleCache takes care of correctness, we try waiting for 1330 // another process to complete the build so clang does not do it done 1331 // twice. If case of timeout, build it ourselves. 1332 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1333 << Module->Name; 1334 // Clear the lock file so that future invocations can make progress. 1335 Locked.unsafeRemoveLockFile(); 1336 continue; 1337 } 1338 break; 1339 } 1340 1341 // Try to read the module file, now that we've compiled it. 1342 ASTReader::ASTReadResult ReadResult = 1343 ImportingInstance.getASTReader()->ReadAST( 1344 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1345 ModuleLoadCapabilities); 1346 1347 if (ReadResult == ASTReader::OutOfDate && 1348 Locked == llvm::LockFileManager::LFS_Shared) { 1349 // The module may be out of date in the presence of file system races, 1350 // or if one of its imports depends on header search paths that are not 1351 // consistent with this ImportingInstance. Try again... 1352 continue; 1353 } else if (ReadResult == ASTReader::Missing) { 1354 diagnoseBuildFailure(); 1355 } else if (ReadResult != ASTReader::Success && 1356 !Diags.hasErrorOccurred()) { 1357 // The ASTReader didn't diagnose the error, so conservatively report it. 1358 diagnoseBuildFailure(); 1359 } 1360 return ReadResult == ASTReader::Success; 1361 } 1362 } 1363 1364 /// Diagnose differences between the current definition of the given 1365 /// configuration macro and the definition provided on the command line. 1366 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1367 Module *Mod, SourceLocation ImportLoc) { 1368 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1369 SourceManager &SourceMgr = PP.getSourceManager(); 1370 1371 // If this identifier has never had a macro definition, then it could 1372 // not have changed. 1373 if (!Id->hadMacroDefinition()) 1374 return; 1375 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1376 1377 // Find the macro definition from the command line. 1378 MacroInfo *CmdLineDefinition = nullptr; 1379 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1380 // We only care about the predefines buffer. 1381 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1382 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1383 continue; 1384 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1385 CmdLineDefinition = DMD->getMacroInfo(); 1386 break; 1387 } 1388 1389 auto *CurrentDefinition = PP.getMacroInfo(Id); 1390 if (CurrentDefinition == CmdLineDefinition) { 1391 // Macro matches. Nothing to do. 1392 } else if (!CurrentDefinition) { 1393 // This macro was defined on the command line, then #undef'd later. 1394 // Complain. 1395 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1396 << true << ConfigMacro << Mod->getFullModuleName(); 1397 auto LatestDef = LatestLocalMD->getDefinition(); 1398 assert(LatestDef.isUndefined() && 1399 "predefined macro went away with no #undef?"); 1400 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1401 << true; 1402 return; 1403 } else if (!CmdLineDefinition) { 1404 // There was no definition for this macro in the predefines buffer, 1405 // but there was a local definition. Complain. 1406 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1407 << false << ConfigMacro << Mod->getFullModuleName(); 1408 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1409 diag::note_module_def_undef_here) 1410 << false; 1411 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1412 /*Syntactically=*/true)) { 1413 // The macro definitions differ. 1414 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1415 << false << ConfigMacro << Mod->getFullModuleName(); 1416 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1417 diag::note_module_def_undef_here) 1418 << false; 1419 } 1420 } 1421 1422 /// Write a new timestamp file with the given path. 1423 static void writeTimestampFile(StringRef TimestampFile) { 1424 std::error_code EC; 1425 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::OF_None); 1426 } 1427 1428 /// Prune the module cache of modules that haven't been accessed in 1429 /// a long time. 1430 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1431 llvm::sys::fs::file_status StatBuf; 1432 llvm::SmallString<128> TimestampFile; 1433 TimestampFile = HSOpts.ModuleCachePath; 1434 assert(!TimestampFile.empty()); 1435 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1436 1437 // Try to stat() the timestamp file. 1438 if (std::error_code EC = llvm::sys::fs::status(TimestampFile, StatBuf)) { 1439 // If the timestamp file wasn't there, create one now. 1440 if (EC == std::errc::no_such_file_or_directory) { 1441 writeTimestampFile(TimestampFile); 1442 } 1443 return; 1444 } 1445 1446 // Check whether the time stamp is older than our pruning interval. 1447 // If not, do nothing. 1448 time_t TimeStampModTime = 1449 llvm::sys::toTimeT(StatBuf.getLastModificationTime()); 1450 time_t CurrentTime = time(nullptr); 1451 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1452 return; 1453 1454 // Write a new timestamp file so that nobody else attempts to prune. 1455 // There is a benign race condition here, if two Clang instances happen to 1456 // notice at the same time that the timestamp is out-of-date. 1457 writeTimestampFile(TimestampFile); 1458 1459 // Walk the entire module cache, looking for unused module files and module 1460 // indices. 1461 std::error_code EC; 1462 SmallString<128> ModuleCachePathNative; 1463 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1464 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1465 Dir != DirEnd && !EC; Dir.increment(EC)) { 1466 // If we don't have a directory, there's nothing to look into. 1467 if (!llvm::sys::fs::is_directory(Dir->path())) 1468 continue; 1469 1470 // Walk all of the files within this directory. 1471 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1472 File != FileEnd && !EC; File.increment(EC)) { 1473 // We only care about module and global module index files. 1474 StringRef Extension = llvm::sys::path::extension(File->path()); 1475 if (Extension != ".pcm" && Extension != ".timestamp" && 1476 llvm::sys::path::filename(File->path()) != "modules.idx") 1477 continue; 1478 1479 // Look at this file. If we can't stat it, there's nothing interesting 1480 // there. 1481 if (llvm::sys::fs::status(File->path(), StatBuf)) 1482 continue; 1483 1484 // If the file has been used recently enough, leave it there. 1485 time_t FileAccessTime = llvm::sys::toTimeT(StatBuf.getLastAccessedTime()); 1486 if (CurrentTime - FileAccessTime <= 1487 time_t(HSOpts.ModuleCachePruneAfter)) { 1488 continue; 1489 } 1490 1491 // Remove the file. 1492 llvm::sys::fs::remove(File->path()); 1493 1494 // Remove the timestamp file. 1495 std::string TimpestampFilename = File->path() + ".timestamp"; 1496 llvm::sys::fs::remove(TimpestampFilename); 1497 } 1498 1499 // If we removed all of the files in the directory, remove the directory 1500 // itself. 1501 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1502 llvm::sys::fs::directory_iterator() && !EC) 1503 llvm::sys::fs::remove(Dir->path()); 1504 } 1505 } 1506 1507 void CompilerInstance::createASTReader() { 1508 if (TheASTReader) 1509 return; 1510 1511 if (!hasASTContext()) 1512 createASTContext(); 1513 1514 // If we're implicitly building modules but not currently recursively 1515 // building a module, check whether we need to prune the module cache. 1516 if (getSourceManager().getModuleBuildStack().empty() && 1517 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1518 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1519 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1520 pruneModuleCache(getHeaderSearchOpts()); 1521 } 1522 1523 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1524 std::string Sysroot = HSOpts.Sysroot; 1525 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1526 std::unique_ptr<llvm::Timer> ReadTimer; 1527 if (FrontendTimerGroup) 1528 ReadTimer = std::make_unique<llvm::Timer>("reading_modules", 1529 "Reading modules", 1530 *FrontendTimerGroup); 1531 TheASTReader = new ASTReader( 1532 getPreprocessor(), getModuleCache(), &getASTContext(), 1533 getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, 1534 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1535 /*AllowASTWithCompilerErrors=*/false, 1536 /*AllowConfigurationMismatch=*/false, HSOpts.ModulesValidateSystemHeaders, 1537 HSOpts.ValidateASTInputFilesContent, 1538 getFrontendOpts().UseGlobalModuleIndex, std::move(ReadTimer)); 1539 if (hasASTConsumer()) { 1540 TheASTReader->setDeserializationListener( 1541 getASTConsumer().GetASTDeserializationListener()); 1542 getASTContext().setASTMutationListener( 1543 getASTConsumer().GetASTMutationListener()); 1544 } 1545 getASTContext().setExternalSource(TheASTReader); 1546 if (hasSema()) 1547 TheASTReader->InitializeSema(getSema()); 1548 if (hasASTConsumer()) 1549 TheASTReader->StartTranslationUnit(&getASTConsumer()); 1550 1551 for (auto &Listener : DependencyCollectors) 1552 Listener->attachToASTReader(*TheASTReader); 1553 } 1554 1555 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1556 llvm::Timer Timer; 1557 if (FrontendTimerGroup) 1558 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1559 *FrontendTimerGroup); 1560 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1561 1562 // Helper to recursively read the module names for all modules we're adding. 1563 // We mark these as known and redirect any attempt to load that module to 1564 // the files we were handed. 1565 struct ReadModuleNames : ASTReaderListener { 1566 CompilerInstance &CI; 1567 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1568 1569 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1570 1571 void ReadModuleName(StringRef ModuleName) override { 1572 LoadedModules.push_back( 1573 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1574 } 1575 1576 void registerAll() { 1577 ModuleMap &MM = CI.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1578 for (auto *II : LoadedModules) 1579 MM.cacheModuleLoad(*II, MM.findModule(II->getName())); 1580 LoadedModules.clear(); 1581 } 1582 1583 void markAllUnavailable() { 1584 for (auto *II : LoadedModules) { 1585 if (Module *M = CI.getPreprocessor() 1586 .getHeaderSearchInfo() 1587 .getModuleMap() 1588 .findModule(II->getName())) { 1589 M->HasIncompatibleModuleFile = true; 1590 1591 // Mark module as available if the only reason it was unavailable 1592 // was missing headers. 1593 SmallVector<Module *, 2> Stack; 1594 Stack.push_back(M); 1595 while (!Stack.empty()) { 1596 Module *Current = Stack.pop_back_val(); 1597 if (Current->IsUnimportable) continue; 1598 Current->IsAvailable = true; 1599 Stack.insert(Stack.end(), 1600 Current->submodule_begin(), Current->submodule_end()); 1601 } 1602 } 1603 } 1604 LoadedModules.clear(); 1605 } 1606 }; 1607 1608 // If we don't already have an ASTReader, create one now. 1609 if (!TheASTReader) 1610 createASTReader(); 1611 1612 // If -Wmodule-file-config-mismatch is mapped as an error or worse, allow the 1613 // ASTReader to diagnose it, since it can produce better errors that we can. 1614 bool ConfigMismatchIsRecoverable = 1615 getDiagnostics().getDiagnosticLevel(diag::warn_module_config_mismatch, 1616 SourceLocation()) 1617 <= DiagnosticsEngine::Warning; 1618 1619 auto Listener = std::make_unique<ReadModuleNames>(*this); 1620 auto &ListenerRef = *Listener; 1621 ASTReader::ListenerScope ReadModuleNamesListener(*TheASTReader, 1622 std::move(Listener)); 1623 1624 // Try to load the module file. 1625 switch (TheASTReader->ReadAST( 1626 FileName, serialization::MK_ExplicitModule, SourceLocation(), 1627 ConfigMismatchIsRecoverable ? ASTReader::ARR_ConfigurationMismatch : 0)) { 1628 case ASTReader::Success: 1629 // We successfully loaded the module file; remember the set of provided 1630 // modules so that we don't try to load implicit modules for them. 1631 ListenerRef.registerAll(); 1632 return true; 1633 1634 case ASTReader::ConfigurationMismatch: 1635 // Ignore unusable module files. 1636 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1637 << FileName; 1638 // All modules provided by any files we tried and failed to load are now 1639 // unavailable; includes of those modules should now be handled textually. 1640 ListenerRef.markAllUnavailable(); 1641 return true; 1642 1643 default: 1644 return false; 1645 } 1646 } 1647 1648 namespace { 1649 enum ModuleSource { 1650 MS_ModuleNotFound, 1651 MS_ModuleCache, 1652 MS_PrebuiltModulePath, 1653 MS_ModuleBuildPragma 1654 }; 1655 } // end namespace 1656 1657 /// Select a source for loading the named module and compute the filename to 1658 /// load it from. 1659 static ModuleSource selectModuleSource( 1660 Module *M, StringRef ModuleName, std::string &ModuleFilename, 1661 const std::map<std::string, std::string, std::less<>> &BuiltModules, 1662 HeaderSearch &HS) { 1663 assert(ModuleFilename.empty() && "Already has a module source?"); 1664 1665 // Check to see if the module has been built as part of this compilation 1666 // via a module build pragma. 1667 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1668 if (BuiltModuleIt != BuiltModules.end()) { 1669 ModuleFilename = BuiltModuleIt->second; 1670 return MS_ModuleBuildPragma; 1671 } 1672 1673 // Try to load the module from the prebuilt module path. 1674 const HeaderSearchOptions &HSOpts = HS.getHeaderSearchOpts(); 1675 if (!HSOpts.PrebuiltModuleFiles.empty() || 1676 !HSOpts.PrebuiltModulePaths.empty()) { 1677 ModuleFilename = HS.getPrebuiltModuleFileName(ModuleName); 1678 if (HSOpts.EnablePrebuiltImplicitModules && ModuleFilename.empty()) 1679 ModuleFilename = HS.getPrebuiltImplicitModuleFileName(M); 1680 if (!ModuleFilename.empty()) 1681 return MS_PrebuiltModulePath; 1682 } 1683 1684 // Try to load the module from the module cache. 1685 if (M) { 1686 ModuleFilename = HS.getCachedModuleFileName(M); 1687 return MS_ModuleCache; 1688 } 1689 1690 return MS_ModuleNotFound; 1691 } 1692 1693 ModuleLoadResult CompilerInstance::findOrCompileModuleAndReadAST( 1694 StringRef ModuleName, SourceLocation ImportLoc, 1695 SourceLocation ModuleNameLoc, bool IsInclusionDirective) { 1696 // Search for a module with the given name. 1697 HeaderSearch &HS = PP->getHeaderSearchInfo(); 1698 Module *M = HS.lookupModule(ModuleName, true, !IsInclusionDirective); 1699 1700 // Select the source and filename for loading the named module. 1701 std::string ModuleFilename; 1702 ModuleSource Source = 1703 selectModuleSource(M, ModuleName, ModuleFilename, BuiltModules, HS); 1704 if (Source == MS_ModuleNotFound) { 1705 // We can't find a module, error out here. 1706 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1707 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1708 ModuleBuildFailed = true; 1709 // FIXME: Why is this not cached? 1710 return ModuleLoadResult::OtherUncachedFailure; 1711 } 1712 if (ModuleFilename.empty()) { 1713 if (M && M->HasIncompatibleModuleFile) { 1714 // We tried and failed to load a module file for this module. Fall 1715 // back to textual inclusion for its headers. 1716 return ModuleLoadResult::ConfigMismatch; 1717 } 1718 1719 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1720 << ModuleName; 1721 ModuleBuildFailed = true; 1722 // FIXME: Why is this not cached? 1723 return ModuleLoadResult::OtherUncachedFailure; 1724 } 1725 1726 // Create an ASTReader on demand. 1727 if (!getASTReader()) 1728 createASTReader(); 1729 1730 // Time how long it takes to load the module. 1731 llvm::Timer Timer; 1732 if (FrontendTimerGroup) 1733 Timer.init("loading." + ModuleFilename, "Loading " + ModuleFilename, 1734 *FrontendTimerGroup); 1735 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1736 llvm::TimeTraceScope TimeScope("Module Load", ModuleName); 1737 1738 // Try to load the module file. If we are not trying to load from the 1739 // module cache, we don't know how to rebuild modules. 1740 unsigned ARRFlags = Source == MS_ModuleCache 1741 ? ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing 1742 : Source == MS_PrebuiltModulePath 1743 ? 0 1744 : ASTReader::ARR_ConfigurationMismatch; 1745 switch (getASTReader()->ReadAST(ModuleFilename, 1746 Source == MS_PrebuiltModulePath 1747 ? serialization::MK_PrebuiltModule 1748 : Source == MS_ModuleBuildPragma 1749 ? serialization::MK_ExplicitModule 1750 : serialization::MK_ImplicitModule, 1751 ImportLoc, ARRFlags)) { 1752 case ASTReader::Success: { 1753 if (M) 1754 return M; 1755 assert(Source != MS_ModuleCache && 1756 "missing module, but file loaded from cache"); 1757 1758 // A prebuilt module is indexed as a ModuleFile; the Module does not exist 1759 // until the first call to ReadAST. Look it up now. 1760 M = HS.lookupModule(ModuleName, true, !IsInclusionDirective); 1761 1762 // Check whether M refers to the file in the prebuilt module path. 1763 if (M && M->getASTFile()) 1764 if (auto ModuleFile = FileMgr->getFile(ModuleFilename)) 1765 if (*ModuleFile == M->getASTFile()) 1766 return M; 1767 1768 ModuleBuildFailed = true; 1769 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1770 << ModuleName; 1771 return ModuleLoadResult(); 1772 } 1773 1774 case ASTReader::OutOfDate: 1775 case ASTReader::Missing: 1776 // The most interesting case. 1777 break; 1778 1779 case ASTReader::ConfigurationMismatch: 1780 if (Source == MS_PrebuiltModulePath) 1781 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1782 // produce a warning here! 1783 getDiagnostics().Report(SourceLocation(), 1784 diag::warn_module_config_mismatch) 1785 << ModuleFilename; 1786 // Fall through to error out. 1787 LLVM_FALLTHROUGH; 1788 case ASTReader::VersionMismatch: 1789 case ASTReader::HadErrors: 1790 // FIXME: Should this set ModuleBuildFailed = true? 1791 ModuleLoader::HadFatalFailure = true; 1792 // FIXME: The ASTReader will already have complained, but can we shoehorn 1793 // that diagnostic information into a more useful form? 1794 return ModuleLoadResult(); 1795 1796 case ASTReader::Failure: 1797 // FIXME: Should this set ModuleBuildFailed = true? 1798 ModuleLoader::HadFatalFailure = true; 1799 return ModuleLoadResult(); 1800 } 1801 1802 // ReadAST returned Missing or OutOfDate. 1803 if (Source != MS_ModuleCache) { 1804 // We don't know the desired configuration for this module and don't 1805 // necessarily even have a module map. Since ReadAST already produces 1806 // diagnostics for these two cases, we simply error out here. 1807 ModuleBuildFailed = true; 1808 return ModuleLoadResult(); 1809 } 1810 1811 // The module file is missing or out-of-date. Build it. 1812 assert(M && "missing module, but trying to compile for cache"); 1813 1814 // Check whether there is a cycle in the module graph. 1815 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1816 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1817 for (; Pos != PosEnd; ++Pos) { 1818 if (Pos->first == ModuleName) 1819 break; 1820 } 1821 1822 if (Pos != PosEnd) { 1823 SmallString<256> CyclePath; 1824 for (; Pos != PosEnd; ++Pos) { 1825 CyclePath += Pos->first; 1826 CyclePath += " -> "; 1827 } 1828 CyclePath += ModuleName; 1829 1830 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1831 << ModuleName << CyclePath; 1832 // FIXME: Should this set ModuleBuildFailed = true? 1833 // FIXME: Why is this not cached? 1834 return ModuleLoadResult::OtherUncachedFailure; 1835 } 1836 1837 // Check whether we have already attempted to build this module (but 1838 // failed). 1839 if (getPreprocessorOpts().FailedModules && 1840 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1841 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1842 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1843 ModuleBuildFailed = true; 1844 // FIXME: Why is this not cached? 1845 return ModuleLoadResult::OtherUncachedFailure; 1846 } 1847 1848 // Try to compile and then read the AST. 1849 if (!compileModuleAndReadAST(*this, ImportLoc, ModuleNameLoc, M, 1850 ModuleFilename)) { 1851 assert(getDiagnostics().hasErrorOccurred() && 1852 "undiagnosed error in compileModuleAndReadAST"); 1853 if (getPreprocessorOpts().FailedModules) 1854 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1855 ModuleBuildFailed = true; 1856 // FIXME: Why is this not cached? 1857 return ModuleLoadResult::OtherUncachedFailure; 1858 } 1859 1860 // Okay, we've rebuilt and now loaded the module. 1861 return M; 1862 } 1863 1864 ModuleLoadResult 1865 CompilerInstance::loadModule(SourceLocation ImportLoc, 1866 ModuleIdPath Path, 1867 Module::NameVisibilityKind Visibility, 1868 bool IsInclusionDirective) { 1869 // Determine what file we're searching from. 1870 StringRef ModuleName = Path[0].first->getName(); 1871 SourceLocation ModuleNameLoc = Path[0].second; 1872 1873 // If we've already handled this import, just return the cached result. 1874 // This one-element cache is important to eliminate redundant diagnostics 1875 // when both the preprocessor and parser see the same import declaration. 1876 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1877 // Make the named module visible. 1878 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1879 TheASTReader->makeModuleVisible(LastModuleImportResult, Visibility, 1880 ImportLoc); 1881 return LastModuleImportResult; 1882 } 1883 1884 // If we don't already have information on this module, load the module now. 1885 Module *Module = nullptr; 1886 ModuleMap &MM = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1887 if (auto MaybeModule = MM.getCachedModuleLoad(*Path[0].first)) { 1888 // Use the cached result, which may be nullptr. 1889 Module = *MaybeModule; 1890 } else if (ModuleName == getLangOpts().CurrentModule) { 1891 // This is the module we're building. 1892 Module = PP->getHeaderSearchInfo().lookupModule( 1893 ModuleName, /*AllowSearch*/ true, 1894 /*AllowExtraModuleMapSearch*/ !IsInclusionDirective); 1895 /// FIXME: perhaps we should (a) look for a module using the module name 1896 // to file map (PrebuiltModuleFiles) and (b) diagnose if still not found? 1897 //if (Module == nullptr) { 1898 // getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1899 // << ModuleName; 1900 // ModuleBuildFailed = true; 1901 // return ModuleLoadResult(); 1902 //} 1903 MM.cacheModuleLoad(*Path[0].first, Module); 1904 } else { 1905 ModuleLoadResult Result = findOrCompileModuleAndReadAST( 1906 ModuleName, ImportLoc, ModuleNameLoc, IsInclusionDirective); 1907 // FIXME: Can we pull 'ModuleBuildFailed = true' out of the return 1908 // sequences for findOrCompileModuleAndReadAST and do it here (as long as 1909 // the result is not a config mismatch)? See FIXMEs there. 1910 if (!Result.isNormal()) 1911 return Result; 1912 Module = Result; 1913 MM.cacheModuleLoad(*Path[0].first, Module); 1914 if (!Module) 1915 return Module; 1916 } 1917 1918 // If we never found the module, fail. Otherwise, verify the module and link 1919 // it up. 1920 if (!Module) 1921 return ModuleLoadResult(); 1922 1923 // Verify that the rest of the module path actually corresponds to 1924 // a submodule. 1925 bool MapPrivateSubModToTopLevel = false; 1926 if (Path.size() > 1) { 1927 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1928 StringRef Name = Path[I].first->getName(); 1929 clang::Module *Sub = Module->findSubmodule(Name); 1930 1931 // If the user is requesting Foo.Private and it doesn't exist, try to 1932 // match Foo_Private and emit a warning asking for the user to write 1933 // @import Foo_Private instead. FIXME: remove this when existing clients 1934 // migrate off of Foo.Private syntax. 1935 if (!Sub && PP->getLangOpts().ImplicitModules && Name == "Private" && 1936 Module == Module->getTopLevelModule()) { 1937 SmallString<128> PrivateModule(Module->Name); 1938 PrivateModule.append("_Private"); 1939 1940 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> PrivPath; 1941 auto &II = PP->getIdentifierTable().get( 1942 PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID()); 1943 PrivPath.push_back(std::make_pair(&II, Path[0].second)); 1944 1945 if (PP->getHeaderSearchInfo().lookupModule(PrivateModule, true, 1946 !IsInclusionDirective)) 1947 Sub = 1948 loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective); 1949 if (Sub) { 1950 MapPrivateSubModToTopLevel = true; 1951 if (!getDiagnostics().isIgnored( 1952 diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) { 1953 getDiagnostics().Report(Path[I].second, 1954 diag::warn_no_priv_submodule_use_toplevel) 1955 << Path[I].first << Module->getFullModuleName() << PrivateModule 1956 << SourceRange(Path[0].second, Path[I].second) 1957 << FixItHint::CreateReplacement(SourceRange(Path[0].second), 1958 PrivateModule); 1959 getDiagnostics().Report(Sub->DefinitionLoc, 1960 diag::note_private_top_level_defined); 1961 } 1962 } 1963 } 1964 1965 if (!Sub) { 1966 // Attempt to perform typo correction to find a module name that works. 1967 SmallVector<StringRef, 2> Best; 1968 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1969 1970 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1971 JEnd = Module->submodule_end(); 1972 J != JEnd; ++J) { 1973 unsigned ED = Name.edit_distance((*J)->Name, 1974 /*AllowReplacements=*/true, 1975 BestEditDistance); 1976 if (ED <= BestEditDistance) { 1977 if (ED < BestEditDistance) { 1978 Best.clear(); 1979 BestEditDistance = ED; 1980 } 1981 1982 Best.push_back((*J)->Name); 1983 } 1984 } 1985 1986 // If there was a clear winner, user it. 1987 if (Best.size() == 1) { 1988 getDiagnostics().Report(Path[I].second, 1989 diag::err_no_submodule_suggest) 1990 << Path[I].first << Module->getFullModuleName() << Best[0] 1991 << SourceRange(Path[0].second, Path[I-1].second) 1992 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1993 Best[0]); 1994 1995 Sub = Module->findSubmodule(Best[0]); 1996 } 1997 } 1998 1999 if (!Sub) { 2000 // No submodule by this name. Complain, and don't look for further 2001 // submodules. 2002 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 2003 << Path[I].first << Module->getFullModuleName() 2004 << SourceRange(Path[0].second, Path[I-1].second); 2005 break; 2006 } 2007 2008 Module = Sub; 2009 } 2010 } 2011 2012 // Make the named module visible, if it's not already part of the module 2013 // we are parsing. 2014 if (ModuleName != getLangOpts().CurrentModule) { 2015 if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) { 2016 // We have an umbrella header or directory that doesn't actually include 2017 // all of the headers within the directory it covers. Complain about 2018 // this missing submodule and recover by forgetting that we ever saw 2019 // this submodule. 2020 // FIXME: Should we detect this at module load time? It seems fairly 2021 // expensive (and rare). 2022 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 2023 << Module->getFullModuleName() 2024 << SourceRange(Path.front().second, Path.back().second); 2025 2026 return ModuleLoadResult::MissingExpected; 2027 } 2028 2029 // Check whether this module is available. 2030 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 2031 getDiagnostics(), Module)) { 2032 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 2033 << SourceRange(Path.front().second, Path.back().second); 2034 LastModuleImportLoc = ImportLoc; 2035 LastModuleImportResult = ModuleLoadResult(); 2036 return ModuleLoadResult(); 2037 } 2038 2039 TheASTReader->makeModuleVisible(Module, Visibility, ImportLoc); 2040 } 2041 2042 // Check for any configuration macros that have changed. 2043 clang::Module *TopModule = Module->getTopLevelModule(); 2044 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 2045 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 2046 Module, ImportLoc); 2047 } 2048 2049 // Resolve any remaining module using export_as for this one. 2050 getPreprocessor() 2051 .getHeaderSearchInfo() 2052 .getModuleMap() 2053 .resolveLinkAsDependencies(TopModule); 2054 2055 LastModuleImportLoc = ImportLoc; 2056 LastModuleImportResult = ModuleLoadResult(Module); 2057 return LastModuleImportResult; 2058 } 2059 2060 void CompilerInstance::createModuleFromSource(SourceLocation ImportLoc, 2061 StringRef ModuleName, 2062 StringRef Source) { 2063 // Avoid creating filenames with special characters. 2064 SmallString<128> CleanModuleName(ModuleName); 2065 for (auto &C : CleanModuleName) 2066 if (!isAlphanumeric(C)) 2067 C = '_'; 2068 2069 // FIXME: Using a randomized filename here means that our intermediate .pcm 2070 // output is nondeterministic (as .pcm files refer to each other by name). 2071 // Can this affect the output in any way? 2072 SmallString<128> ModuleFileName; 2073 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 2074 CleanModuleName, "pcm", ModuleFileName)) { 2075 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 2076 << ModuleFileName << EC.message(); 2077 return; 2078 } 2079 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 2080 2081 FrontendInputFile Input( 2082 ModuleMapFileName, 2083 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 2084 InputKind::ModuleMap, /*Preprocessed*/true)); 2085 2086 std::string NullTerminatedSource(Source.str()); 2087 2088 auto PreBuildStep = [&](CompilerInstance &Other) { 2089 // Create a virtual file containing our desired source. 2090 // FIXME: We shouldn't need to do this. 2091 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 2092 ModuleMapFileName, NullTerminatedSource.size(), 0); 2093 Other.getSourceManager().overrideFileContents( 2094 ModuleMapFile, 2095 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 2096 2097 Other.BuiltModules = std::move(BuiltModules); 2098 Other.DeleteBuiltModules = false; 2099 }; 2100 2101 auto PostBuildStep = [this](CompilerInstance &Other) { 2102 BuiltModules = std::move(Other.BuiltModules); 2103 }; 2104 2105 // Build the module, inheriting any modules that we've built locally. 2106 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 2107 ModuleFileName, PreBuildStep, PostBuildStep)) { 2108 BuiltModules[std::string(ModuleName)] = std::string(ModuleFileName.str()); 2109 llvm::sys::RemoveFileOnSignal(ModuleFileName); 2110 } 2111 } 2112 2113 void CompilerInstance::makeModuleVisible(Module *Mod, 2114 Module::NameVisibilityKind Visibility, 2115 SourceLocation ImportLoc) { 2116 if (!TheASTReader) 2117 createASTReader(); 2118 if (!TheASTReader) 2119 return; 2120 2121 TheASTReader->makeModuleVisible(Mod, Visibility, ImportLoc); 2122 } 2123 2124 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 2125 SourceLocation TriggerLoc) { 2126 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 2127 return nullptr; 2128 if (!TheASTReader) 2129 createASTReader(); 2130 // Can't do anything if we don't have the module manager. 2131 if (!TheASTReader) 2132 return nullptr; 2133 // Get an existing global index. This loads it if not already 2134 // loaded. 2135 TheASTReader->loadGlobalIndex(); 2136 GlobalModuleIndex *GlobalIndex = TheASTReader->getGlobalIndex(); 2137 // If the global index doesn't exist, create it. 2138 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 2139 hasPreprocessor()) { 2140 llvm::sys::fs::create_directories( 2141 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2142 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2143 getFileManager(), getPCHContainerReader(), 2144 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2145 // FIXME this drops the error on the floor. This code is only used for 2146 // typo correction and drops more than just this one source of errors 2147 // (such as the directory creation failure above). It should handle the 2148 // error. 2149 consumeError(std::move(Err)); 2150 return nullptr; 2151 } 2152 TheASTReader->resetForReload(); 2153 TheASTReader->loadGlobalIndex(); 2154 GlobalIndex = TheASTReader->getGlobalIndex(); 2155 } 2156 // For finding modules needing to be imported for fixit messages, 2157 // we need to make the global index cover all modules, so we do that here. 2158 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 2159 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2160 bool RecreateIndex = false; 2161 for (ModuleMap::module_iterator I = MMap.module_begin(), 2162 E = MMap.module_end(); I != E; ++I) { 2163 Module *TheModule = I->second; 2164 const FileEntry *Entry = TheModule->getASTFile(); 2165 if (!Entry) { 2166 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2167 Path.push_back(std::make_pair( 2168 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2169 std::reverse(Path.begin(), Path.end()); 2170 // Load a module as hidden. This also adds it to the global index. 2171 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2172 RecreateIndex = true; 2173 } 2174 } 2175 if (RecreateIndex) { 2176 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2177 getFileManager(), getPCHContainerReader(), 2178 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2179 // FIXME As above, this drops the error on the floor. 2180 consumeError(std::move(Err)); 2181 return nullptr; 2182 } 2183 TheASTReader->resetForReload(); 2184 TheASTReader->loadGlobalIndex(); 2185 GlobalIndex = TheASTReader->getGlobalIndex(); 2186 } 2187 HaveFullGlobalModuleIndex = true; 2188 } 2189 return GlobalIndex; 2190 } 2191 2192 // Check global module index for missing imports. 2193 bool 2194 CompilerInstance::lookupMissingImports(StringRef Name, 2195 SourceLocation TriggerLoc) { 2196 // Look for the symbol in non-imported modules, but only if an error 2197 // actually occurred. 2198 if (!buildingModule()) { 2199 // Load global module index, or retrieve a previously loaded one. 2200 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2201 TriggerLoc); 2202 2203 // Only if we have a global index. 2204 if (GlobalIndex) { 2205 GlobalModuleIndex::HitSet FoundModules; 2206 2207 // Find the modules that reference the identifier. 2208 // Note that this only finds top-level modules. 2209 // We'll let diagnoseTypo find the actual declaration module. 2210 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2211 return true; 2212 } 2213 } 2214 2215 return false; 2216 } 2217 void CompilerInstance::resetAndLeakSema() { llvm::BuryPointer(takeSema()); } 2218 2219 void CompilerInstance::setExternalSemaSource( 2220 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2221 ExternalSemaSrc = std::move(ESS); 2222 } 2223