1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/CharInfo.h" 15 #include "clang/Basic/Diagnostic.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/MemoryBufferCache.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Basic/Version.h" 21 #include "clang/Config/config.h" 22 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 23 #include "clang/Frontend/FrontendAction.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/LogDiagnosticPrinter.h" 27 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Frontend/Utils.h" 30 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 31 #include "clang/Lex/HeaderSearch.h" 32 #include "clang/Lex/PTHManager.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Sema/CodeCompleteConsumer.h" 36 #include "clang/Sema/Sema.h" 37 #include "clang/Serialization/ASTReader.h" 38 #include "clang/Serialization/GlobalModuleIndex.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Errc.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/Host.h" 44 #include "llvm/Support/LockFileManager.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/Program.h" 48 #include "llvm/Support/Signals.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <sys/stat.h> 52 #include <system_error> 53 #include <time.h> 54 #include <utility> 55 56 using namespace clang; 57 58 CompilerInstance::CompilerInstance( 59 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 60 MemoryBufferCache *SharedPCMCache) 61 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 62 Invocation(new CompilerInvocation()), 63 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 64 ThePCHContainerOperations(std::move(PCHContainerOps)) { 65 // Don't allow this to invalidate buffers in use by others. 66 if (SharedPCMCache) 67 getPCMCache().finalizeCurrentBuffers(); 68 } 69 70 CompilerInstance::~CompilerInstance() { 71 assert(OutputFiles.empty() && "Still output files in flight?"); 72 } 73 74 void CompilerInstance::setInvocation( 75 std::shared_ptr<CompilerInvocation> Value) { 76 Invocation = std::move(Value); 77 } 78 79 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 80 return (BuildGlobalModuleIndex || 81 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 82 getFrontendOpts().GenerateGlobalModuleIndex)) && 83 !ModuleBuildFailed; 84 } 85 86 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 87 Diagnostics = Value; 88 } 89 90 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 91 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 92 93 void CompilerInstance::setFileManager(FileManager *Value) { 94 FileMgr = Value; 95 if (Value) 96 VirtualFileSystem = Value->getVirtualFileSystem(); 97 else 98 VirtualFileSystem.reset(); 99 } 100 101 void CompilerInstance::setSourceManager(SourceManager *Value) { 102 SourceMgr = Value; 103 } 104 105 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 106 PP = std::move(Value); 107 } 108 109 void CompilerInstance::setASTContext(ASTContext *Value) { 110 Context = Value; 111 112 if (Context && Consumer) 113 getASTConsumer().Initialize(getASTContext()); 114 } 115 116 void CompilerInstance::setSema(Sema *S) { 117 TheSema.reset(S); 118 } 119 120 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 121 Consumer = std::move(Value); 122 123 if (Context && Consumer) 124 getASTConsumer().Initialize(getASTContext()); 125 } 126 127 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 128 CompletionConsumer.reset(Value); 129 } 130 131 std::unique_ptr<Sema> CompilerInstance::takeSema() { 132 return std::move(TheSema); 133 } 134 135 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 136 return ModuleManager; 137 } 138 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 139 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 140 "Expected ASTReader to use the same PCM cache"); 141 ModuleManager = std::move(Reader); 142 } 143 144 std::shared_ptr<ModuleDependencyCollector> 145 CompilerInstance::getModuleDepCollector() const { 146 return ModuleDepCollector; 147 } 148 149 void CompilerInstance::setModuleDepCollector( 150 std::shared_ptr<ModuleDependencyCollector> Collector) { 151 ModuleDepCollector = std::move(Collector); 152 } 153 154 static void collectHeaderMaps(const HeaderSearch &HS, 155 std::shared_ptr<ModuleDependencyCollector> MDC) { 156 SmallVector<std::string, 4> HeaderMapFileNames; 157 HS.getHeaderMapFileNames(HeaderMapFileNames); 158 for (auto &Name : HeaderMapFileNames) 159 MDC->addFile(Name); 160 } 161 162 static void collectIncludePCH(CompilerInstance &CI, 163 std::shared_ptr<ModuleDependencyCollector> MDC) { 164 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 165 if (PPOpts.ImplicitPCHInclude.empty()) 166 return; 167 168 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 169 FileManager &FileMgr = CI.getFileManager(); 170 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 171 if (!PCHDir) { 172 MDC->addFile(PCHInclude); 173 return; 174 } 175 176 std::error_code EC; 177 SmallString<128> DirNative; 178 llvm::sys::path::native(PCHDir->getName(), DirNative); 179 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 180 SimpleASTReaderListener Validator(CI.getPreprocessor()); 181 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 182 Dir != DirEnd && !EC; Dir.increment(EC)) { 183 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 184 // used here since we're not interested in validating the PCH at this time, 185 // but only to check whether this is a file containing an AST. 186 if (!ASTReader::readASTFileControlBlock( 187 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 188 /*FindModuleFileExtensions=*/false, Validator, 189 /*ValidateDiagnosticOptions=*/false)) 190 MDC->addFile(Dir->getName()); 191 } 192 } 193 194 static void collectVFSEntries(CompilerInstance &CI, 195 std::shared_ptr<ModuleDependencyCollector> MDC) { 196 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 197 return; 198 199 // Collect all VFS found. 200 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 201 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 202 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 203 llvm::MemoryBuffer::getFile(VFSFile); 204 if (!Buffer) 205 return; 206 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 207 VFSFile, VFSEntries); 208 } 209 210 for (auto &E : VFSEntries) 211 MDC->addFile(E.VPath, E.RPath); 212 } 213 214 // Diagnostics 215 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 216 const CodeGenOptions *CodeGenOpts, 217 DiagnosticsEngine &Diags) { 218 std::error_code EC; 219 std::unique_ptr<raw_ostream> StreamOwner; 220 raw_ostream *OS = &llvm::errs(); 221 if (DiagOpts->DiagnosticLogFile != "-") { 222 // Create the output stream. 223 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 224 DiagOpts->DiagnosticLogFile, EC, 225 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 226 if (EC) { 227 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 228 << DiagOpts->DiagnosticLogFile << EC.message(); 229 } else { 230 FileOS->SetUnbuffered(); 231 OS = FileOS.get(); 232 StreamOwner = std::move(FileOS); 233 } 234 } 235 236 // Chain in the diagnostic client which will log the diagnostics. 237 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 238 std::move(StreamOwner)); 239 if (CodeGenOpts) 240 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 241 assert(Diags.ownsClient()); 242 Diags.setClient( 243 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 244 } 245 246 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 247 DiagnosticsEngine &Diags, 248 StringRef OutputFile) { 249 auto SerializedConsumer = 250 clang::serialized_diags::create(OutputFile, DiagOpts); 251 252 if (Diags.ownsClient()) { 253 Diags.setClient(new ChainedDiagnosticConsumer( 254 Diags.takeClient(), std::move(SerializedConsumer))); 255 } else { 256 Diags.setClient(new ChainedDiagnosticConsumer( 257 Diags.getClient(), std::move(SerializedConsumer))); 258 } 259 } 260 261 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 262 bool ShouldOwnClient) { 263 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 264 ShouldOwnClient, &getCodeGenOpts()); 265 } 266 267 IntrusiveRefCntPtr<DiagnosticsEngine> 268 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 269 DiagnosticConsumer *Client, 270 bool ShouldOwnClient, 271 const CodeGenOptions *CodeGenOpts) { 272 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 273 IntrusiveRefCntPtr<DiagnosticsEngine> 274 Diags(new DiagnosticsEngine(DiagID, Opts)); 275 276 // Create the diagnostic client for reporting errors or for 277 // implementing -verify. 278 if (Client) { 279 Diags->setClient(Client, ShouldOwnClient); 280 } else 281 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 282 283 // Chain in -verify checker, if requested. 284 if (Opts->VerifyDiagnostics) 285 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 286 287 // Chain in -diagnostic-log-file dumper, if requested. 288 if (!Opts->DiagnosticLogFile.empty()) 289 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 290 291 if (!Opts->DiagnosticSerializationFile.empty()) 292 SetupSerializedDiagnostics(Opts, *Diags, 293 Opts->DiagnosticSerializationFile); 294 295 // Configure our handling of diagnostics. 296 ProcessWarningOptions(*Diags, *Opts); 297 298 return Diags; 299 } 300 301 // File Manager 302 303 FileManager *CompilerInstance::createFileManager() { 304 if (!hasVirtualFileSystem()) { 305 if (IntrusiveRefCntPtr<vfs::FileSystem> VFS = 306 createVFSFromCompilerInvocation(getInvocation(), getDiagnostics())) 307 setVirtualFileSystem(VFS); 308 else 309 return nullptr; 310 } 311 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 312 return FileMgr.get(); 313 } 314 315 // Source Manager 316 317 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 318 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 319 } 320 321 // Initialize the remapping of files to alternative contents, e.g., 322 // those specified through other files. 323 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 324 SourceManager &SourceMgr, 325 FileManager &FileMgr, 326 const PreprocessorOptions &InitOpts) { 327 // Remap files in the source manager (with buffers). 328 for (const auto &RB : InitOpts.RemappedFileBuffers) { 329 // Create the file entry for the file that we're mapping from. 330 const FileEntry *FromFile = 331 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 332 if (!FromFile) { 333 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 334 if (!InitOpts.RetainRemappedFileBuffers) 335 delete RB.second; 336 continue; 337 } 338 339 // Override the contents of the "from" file with the contents of 340 // the "to" file. 341 SourceMgr.overrideFileContents(FromFile, RB.second, 342 InitOpts.RetainRemappedFileBuffers); 343 } 344 345 // Remap files in the source manager (with other files). 346 for (const auto &RF : InitOpts.RemappedFiles) { 347 // Find the file that we're mapping to. 348 const FileEntry *ToFile = FileMgr.getFile(RF.second); 349 if (!ToFile) { 350 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 351 continue; 352 } 353 354 // Create the file entry for the file that we're mapping from. 355 const FileEntry *FromFile = 356 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 357 if (!FromFile) { 358 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 359 continue; 360 } 361 362 // Override the contents of the "from" file with the contents of 363 // the "to" file. 364 SourceMgr.overrideFileContents(FromFile, ToFile); 365 } 366 367 SourceMgr.setOverridenFilesKeepOriginalName( 368 InitOpts.RemappedFilesKeepOriginalName); 369 } 370 371 // Preprocessor 372 373 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 374 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 375 376 // Create a PTH manager if we are using some form of a token cache. 377 PTHManager *PTHMgr = nullptr; 378 if (!PPOpts.TokenCache.empty()) 379 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 380 381 // Create the Preprocessor. 382 HeaderSearch *HeaderInfo = 383 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 384 getDiagnostics(), getLangOpts(), &getTarget()); 385 PP = std::make_shared<Preprocessor>( 386 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 387 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 388 /*OwnsHeaderSearch=*/true, TUKind); 389 getTarget().adjust(getLangOpts()); 390 PP->Initialize(getTarget(), getAuxTarget()); 391 392 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 393 // That argument is used as the IdentifierInfoLookup argument to 394 // IdentifierTable's ctor. 395 if (PTHMgr) { 396 PTHMgr->setPreprocessor(&*PP); 397 PP->setPTHManager(PTHMgr); 398 } 399 400 if (PPOpts.DetailedRecord) 401 PP->createPreprocessingRecord(); 402 403 // Apply remappings to the source manager. 404 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 405 PP->getFileManager(), PPOpts); 406 407 // Predefine macros and configure the preprocessor. 408 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 409 getFrontendOpts()); 410 411 // Initialize the header search object. In CUDA compilations, we use the aux 412 // triple (the host triple) to initialize our header search, since we need to 413 // find the host headers in order to compile the CUDA code. 414 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 415 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 416 PP->getAuxTargetInfo()) 417 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 418 419 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 420 PP->getLangOpts(), *HeaderSearchTriple); 421 422 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 423 424 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 425 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 426 427 // Handle generating dependencies, if requested. 428 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 429 if (!DepOpts.OutputFile.empty()) 430 TheDependencyFileGenerator.reset( 431 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 432 if (!DepOpts.DOTOutputFile.empty()) 433 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 434 getHeaderSearchOpts().Sysroot); 435 436 // If we don't have a collector, but we are collecting module dependencies, 437 // then we're the top level compiler instance and need to create one. 438 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 439 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 440 DepOpts.ModuleDependencyOutputDir); 441 } 442 443 // If there is a module dep collector, register with other dep collectors 444 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 445 if (ModuleDepCollector) { 446 addDependencyCollector(ModuleDepCollector); 447 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 448 collectIncludePCH(*this, ModuleDepCollector); 449 collectVFSEntries(*this, ModuleDepCollector); 450 } 451 452 for (auto &Listener : DependencyCollectors) 453 Listener->attachToPreprocessor(*PP); 454 455 // Handle generating header include information, if requested. 456 if (DepOpts.ShowHeaderIncludes) 457 AttachHeaderIncludeGen(*PP, DepOpts); 458 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 459 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 460 if (OutputPath == "-") 461 OutputPath = ""; 462 AttachHeaderIncludeGen(*PP, DepOpts, 463 /*ShowAllHeaders=*/true, OutputPath, 464 /*ShowDepth=*/false); 465 } 466 467 if (DepOpts.PrintShowIncludes) { 468 AttachHeaderIncludeGen(*PP, DepOpts, 469 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 470 /*ShowDepth=*/true, /*MSStyle=*/true); 471 } 472 } 473 474 std::string CompilerInstance::getSpecificModuleCachePath() { 475 // Set up the module path, including the hash for the 476 // module-creation options. 477 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 478 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 479 llvm::sys::path::append(SpecificModuleCache, 480 getInvocation().getModuleHash()); 481 return SpecificModuleCache.str(); 482 } 483 484 // ASTContext 485 486 void CompilerInstance::createASTContext() { 487 Preprocessor &PP = getPreprocessor(); 488 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 489 PP.getIdentifierTable(), PP.getSelectorTable(), 490 PP.getBuiltinInfo()); 491 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 492 setASTContext(Context); 493 } 494 495 // ExternalASTSource 496 497 void CompilerInstance::createPCHExternalASTSource( 498 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 499 void *DeserializationListener, bool OwnDeserializationListener) { 500 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 501 ModuleManager = createPCHExternalASTSource( 502 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 503 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 504 getPCHContainerReader(), 505 getFrontendOpts().ModuleFileExtensions, 506 TheDependencyFileGenerator.get(), 507 DependencyCollectors, 508 DeserializationListener, 509 OwnDeserializationListener, Preamble, 510 getFrontendOpts().UseGlobalModuleIndex); 511 } 512 513 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 514 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 515 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 516 const PCHContainerReader &PCHContainerRdr, 517 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 518 DependencyFileGenerator *DependencyFile, 519 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 520 void *DeserializationListener, bool OwnDeserializationListener, 521 bool Preamble, bool UseGlobalModuleIndex) { 522 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 523 524 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 525 PP, &Context, PCHContainerRdr, Extensions, 526 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 527 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 528 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 529 530 // We need the external source to be set up before we read the AST, because 531 // eagerly-deserialized declarations may use it. 532 Context.setExternalSource(Reader.get()); 533 534 Reader->setDeserializationListener( 535 static_cast<ASTDeserializationListener *>(DeserializationListener), 536 /*TakeOwnership=*/OwnDeserializationListener); 537 538 if (DependencyFile) 539 DependencyFile->AttachToASTReader(*Reader); 540 for (auto &Listener : DependencyCollectors) 541 Listener->attachToASTReader(*Reader); 542 543 switch (Reader->ReadAST(Path, 544 Preamble ? serialization::MK_Preamble 545 : serialization::MK_PCH, 546 SourceLocation(), 547 ASTReader::ARR_None)) { 548 case ASTReader::Success: 549 // Set the predefines buffer as suggested by the PCH reader. Typically, the 550 // predefines buffer will be empty. 551 PP.setPredefines(Reader->getSuggestedPredefines()); 552 return Reader; 553 554 case ASTReader::Failure: 555 // Unrecoverable failure: don't even try to process the input file. 556 break; 557 558 case ASTReader::Missing: 559 case ASTReader::OutOfDate: 560 case ASTReader::VersionMismatch: 561 case ASTReader::ConfigurationMismatch: 562 case ASTReader::HadErrors: 563 // No suitable PCH file could be found. Return an error. 564 break; 565 } 566 567 Context.setExternalSource(nullptr); 568 return nullptr; 569 } 570 571 // Code Completion 572 573 static bool EnableCodeCompletion(Preprocessor &PP, 574 StringRef Filename, 575 unsigned Line, 576 unsigned Column) { 577 // Tell the source manager to chop off the given file at a specific 578 // line and column. 579 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 580 if (!Entry) { 581 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 582 << Filename; 583 return true; 584 } 585 586 // Truncate the named file at the given line/column. 587 PP.SetCodeCompletionPoint(Entry, Line, Column); 588 return false; 589 } 590 591 void CompilerInstance::createCodeCompletionConsumer() { 592 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 593 if (!CompletionConsumer) { 594 setCodeCompletionConsumer( 595 createCodeCompletionConsumer(getPreprocessor(), 596 Loc.FileName, Loc.Line, Loc.Column, 597 getFrontendOpts().CodeCompleteOpts, 598 llvm::outs())); 599 if (!CompletionConsumer) 600 return; 601 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 602 Loc.Line, Loc.Column)) { 603 setCodeCompletionConsumer(nullptr); 604 return; 605 } 606 607 if (CompletionConsumer->isOutputBinary() && 608 llvm::sys::ChangeStdoutToBinary()) { 609 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 610 setCodeCompletionConsumer(nullptr); 611 } 612 } 613 614 void CompilerInstance::createFrontendTimer() { 615 FrontendTimerGroup.reset( 616 new llvm::TimerGroup("frontend", "Clang front-end time report")); 617 FrontendTimer.reset( 618 new llvm::Timer("frontend", "Clang front-end timer", 619 *FrontendTimerGroup)); 620 } 621 622 CodeCompleteConsumer * 623 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 624 StringRef Filename, 625 unsigned Line, 626 unsigned Column, 627 const CodeCompleteOptions &Opts, 628 raw_ostream &OS) { 629 if (EnableCodeCompletion(PP, Filename, Line, Column)) 630 return nullptr; 631 632 // Set up the creation routine for code-completion. 633 return new PrintingCodeCompleteConsumer(Opts, OS); 634 } 635 636 void CompilerInstance::createSema(TranslationUnitKind TUKind, 637 CodeCompleteConsumer *CompletionConsumer) { 638 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 639 TUKind, CompletionConsumer)); 640 // Attach the external sema source if there is any. 641 if (ExternalSemaSrc) { 642 TheSema->addExternalSource(ExternalSemaSrc.get()); 643 ExternalSemaSrc->InitializeSema(*TheSema); 644 } 645 } 646 647 // Output Files 648 649 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 650 OutputFiles.push_back(std::move(OutFile)); 651 } 652 653 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 654 for (OutputFile &OF : OutputFiles) { 655 if (!OF.TempFilename.empty()) { 656 if (EraseFiles) { 657 llvm::sys::fs::remove(OF.TempFilename); 658 } else { 659 SmallString<128> NewOutFile(OF.Filename); 660 661 // If '-working-directory' was passed, the output filename should be 662 // relative to that. 663 FileMgr->FixupRelativePath(NewOutFile); 664 if (std::error_code ec = 665 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 666 getDiagnostics().Report(diag::err_unable_to_rename_temp) 667 << OF.TempFilename << OF.Filename << ec.message(); 668 669 llvm::sys::fs::remove(OF.TempFilename); 670 } 671 } 672 } else if (!OF.Filename.empty() && EraseFiles) 673 llvm::sys::fs::remove(OF.Filename); 674 } 675 OutputFiles.clear(); 676 if (DeleteBuiltModules) { 677 for (auto &Module : BuiltModules) 678 llvm::sys::fs::remove(Module.second); 679 BuiltModules.clear(); 680 } 681 NonSeekStream.reset(); 682 } 683 684 std::unique_ptr<raw_pwrite_stream> 685 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 686 StringRef Extension) { 687 return createOutputFile(getFrontendOpts().OutputFile, Binary, 688 /*RemoveFileOnSignal=*/true, InFile, Extension, 689 /*UseTemporary=*/true); 690 } 691 692 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 693 return llvm::make_unique<llvm::raw_null_ostream>(); 694 } 695 696 std::unique_ptr<raw_pwrite_stream> 697 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 698 bool RemoveFileOnSignal, StringRef InFile, 699 StringRef Extension, bool UseTemporary, 700 bool CreateMissingDirectories) { 701 std::string OutputPathName, TempPathName; 702 std::error_code EC; 703 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 704 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 705 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 706 if (!OS) { 707 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 708 << EC.message(); 709 return nullptr; 710 } 711 712 // Add the output file -- but don't try to remove "-", since this means we are 713 // using stdin. 714 addOutputFile( 715 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 716 717 return OS; 718 } 719 720 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 721 StringRef OutputPath, std::error_code &Error, bool Binary, 722 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 723 bool UseTemporary, bool CreateMissingDirectories, 724 std::string *ResultPathName, std::string *TempPathName) { 725 assert((!CreateMissingDirectories || UseTemporary) && 726 "CreateMissingDirectories is only allowed when using temporary files"); 727 728 std::string OutFile, TempFile; 729 if (!OutputPath.empty()) { 730 OutFile = OutputPath; 731 } else if (InFile == "-") { 732 OutFile = "-"; 733 } else if (!Extension.empty()) { 734 SmallString<128> Path(InFile); 735 llvm::sys::path::replace_extension(Path, Extension); 736 OutFile = Path.str(); 737 } else { 738 OutFile = "-"; 739 } 740 741 std::unique_ptr<llvm::raw_fd_ostream> OS; 742 std::string OSFile; 743 744 if (UseTemporary) { 745 if (OutFile == "-") 746 UseTemporary = false; 747 else { 748 llvm::sys::fs::file_status Status; 749 llvm::sys::fs::status(OutputPath, Status); 750 if (llvm::sys::fs::exists(Status)) { 751 // Fail early if we can't write to the final destination. 752 if (!llvm::sys::fs::can_write(OutputPath)) { 753 Error = make_error_code(llvm::errc::operation_not_permitted); 754 return nullptr; 755 } 756 757 // Don't use a temporary if the output is a special file. This handles 758 // things like '-o /dev/null' 759 if (!llvm::sys::fs::is_regular_file(Status)) 760 UseTemporary = false; 761 } 762 } 763 } 764 765 if (UseTemporary) { 766 // Create a temporary file. 767 // Insert -%%%%%%%% before the extension (if any), and because some tools 768 // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build 769 // artifacts, also append .tmp. 770 StringRef OutputExtension = llvm::sys::path::extension(OutFile); 771 SmallString<128> TempPath = 772 StringRef(OutFile).drop_back(OutputExtension.size()); 773 TempPath += "-%%%%%%%%"; 774 TempPath += OutputExtension; 775 TempPath += ".tmp"; 776 int fd; 777 std::error_code EC = 778 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 779 780 if (CreateMissingDirectories && 781 EC == llvm::errc::no_such_file_or_directory) { 782 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 783 EC = llvm::sys::fs::create_directories(Parent); 784 if (!EC) { 785 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 786 } 787 } 788 789 if (!EC) { 790 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 791 OSFile = TempFile = TempPath.str(); 792 } 793 // If we failed to create the temporary, fallback to writing to the file 794 // directly. This handles the corner case where we cannot write to the 795 // directory, but can write to the file. 796 } 797 798 if (!OS) { 799 OSFile = OutFile; 800 OS.reset(new llvm::raw_fd_ostream( 801 OSFile, Error, 802 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 803 if (Error) 804 return nullptr; 805 } 806 807 // Make sure the out stream file gets removed if we crash. 808 if (RemoveFileOnSignal) 809 llvm::sys::RemoveFileOnSignal(OSFile); 810 811 if (ResultPathName) 812 *ResultPathName = OutFile; 813 if (TempPathName) 814 *TempPathName = TempFile; 815 816 if (!Binary || OS->supportsSeeking()) 817 return std::move(OS); 818 819 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 820 assert(!NonSeekStream); 821 NonSeekStream = std::move(OS); 822 return std::move(B); 823 } 824 825 // Initialization Utilities 826 827 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 828 return InitializeSourceManager( 829 Input, getDiagnostics(), getFileManager(), getSourceManager(), 830 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 831 getDependencyOutputOpts(), getFrontendOpts()); 832 } 833 834 // static 835 bool CompilerInstance::InitializeSourceManager( 836 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 837 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 838 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 839 SrcMgr::CharacteristicKind Kind = 840 Input.getKind().getFormat() == InputKind::ModuleMap 841 ? Input.isSystem() ? SrcMgr::C_System_ModuleMap 842 : SrcMgr::C_User_ModuleMap 843 : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 844 845 if (Input.isBuffer()) { 846 SourceMgr.setMainFileID(SourceMgr.createFileID(SourceManager::Unowned, 847 Input.getBuffer(), Kind)); 848 assert(SourceMgr.getMainFileID().isValid() && 849 "Couldn't establish MainFileID!"); 850 return true; 851 } 852 853 StringRef InputFile = Input.getFile(); 854 855 // Figure out where to get and map in the main file. 856 if (InputFile != "-") { 857 const FileEntry *File; 858 if (Opts.FindPchSource.empty()) { 859 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 860 } else { 861 // When building a pch file in clang-cl mode, the .h file is built as if 862 // it was included by a cc file. Since the driver doesn't know about 863 // all include search directories, the frontend must search the input 864 // file through HeaderSearch here, as if it had been included by the 865 // cc file at Opts.FindPchSource. 866 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 867 if (!FindFile) { 868 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 869 return false; 870 } 871 const DirectoryLookup *UnusedCurDir; 872 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 873 Includers; 874 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 875 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 876 /*FromDir=*/nullptr, 877 /*CurDir=*/UnusedCurDir, Includers, 878 /*SearchPath=*/nullptr, 879 /*RelativePath=*/nullptr, 880 /*RequestingModule=*/nullptr, 881 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 882 /*SkipCache=*/true); 883 // Also add the header to /showIncludes output. 884 if (File) 885 DepOpts.ShowIncludesPretendHeader = File->getName(); 886 } 887 if (!File) { 888 Diags.Report(diag::err_fe_error_reading) << InputFile; 889 return false; 890 } 891 892 // The natural SourceManager infrastructure can't currently handle named 893 // pipes, but we would at least like to accept them for the main 894 // file. Detect them here, read them with the volatile flag so FileMgr will 895 // pick up the correct size, and simply override their contents as we do for 896 // STDIN. 897 if (File->isNamedPipe()) { 898 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 899 if (MB) { 900 // Create a new virtual file that will have the correct size. 901 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 902 SourceMgr.overrideFileContents(File, std::move(*MB)); 903 } else { 904 Diags.Report(diag::err_cannot_open_file) << InputFile 905 << MB.getError().message(); 906 return false; 907 } 908 } 909 910 SourceMgr.setMainFileID( 911 SourceMgr.createFileID(File, SourceLocation(), Kind)); 912 } else { 913 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 914 llvm::MemoryBuffer::getSTDIN(); 915 if (std::error_code EC = SBOrErr.getError()) { 916 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 917 return false; 918 } 919 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 920 921 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 922 SB->getBufferSize(), 0); 923 SourceMgr.setMainFileID( 924 SourceMgr.createFileID(File, SourceLocation(), Kind)); 925 SourceMgr.overrideFileContents(File, std::move(SB)); 926 } 927 928 assert(SourceMgr.getMainFileID().isValid() && 929 "Couldn't establish MainFileID!"); 930 return true; 931 } 932 933 // High-Level Operations 934 935 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 936 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 937 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 938 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 939 940 // FIXME: Take this as an argument, once all the APIs we used have moved to 941 // taking it as an input instead of hard-coding llvm::errs. 942 raw_ostream &OS = llvm::errs(); 943 944 // Create the target instance. 945 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 946 getInvocation().TargetOpts)); 947 if (!hasTarget()) 948 return false; 949 950 // Create TargetInfo for the other side of CUDA and OpenMP compilation. 951 if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) && 952 !getFrontendOpts().AuxTriple.empty()) { 953 auto TO = std::make_shared<TargetOptions>(); 954 TO->Triple = getFrontendOpts().AuxTriple; 955 TO->HostTriple = getTarget().getTriple().str(); 956 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 957 } 958 959 // Inform the target of the language options. 960 // 961 // FIXME: We shouldn't need to do this, the target should be immutable once 962 // created. This complexity should be lifted elsewhere. 963 getTarget().adjust(getLangOpts()); 964 965 // Adjust target options based on codegen options. 966 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 967 968 // rewriter project will change target built-in bool type from its default. 969 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 970 getTarget().noSignedCharForObjCBool(); 971 972 // Validate/process some options. 973 if (getHeaderSearchOpts().Verbose) 974 OS << "clang -cc1 version " CLANG_VERSION_STRING 975 << " based upon " << BACKEND_PACKAGE_STRING 976 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 977 978 if (getFrontendOpts().ShowTimers) 979 createFrontendTimer(); 980 981 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 982 llvm::EnableStatistics(false); 983 984 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 985 // Reset the ID tables if we are reusing the SourceManager and parsing 986 // regular files. 987 if (hasSourceManager() && !Act.isModelParsingAction()) 988 getSourceManager().clearIDTables(); 989 990 if (Act.BeginSourceFile(*this, FIF)) { 991 Act.Execute(); 992 Act.EndSourceFile(); 993 } 994 } 995 996 // Notify the diagnostic client that all files were processed. 997 getDiagnostics().getClient()->finish(); 998 999 if (getDiagnosticOpts().ShowCarets) { 1000 // We can have multiple diagnostics sharing one diagnostic client. 1001 // Get the total number of warnings/errors from the client. 1002 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 1003 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 1004 1005 if (NumWarnings) 1006 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 1007 if (NumWarnings && NumErrors) 1008 OS << " and "; 1009 if (NumErrors) 1010 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 1011 if (NumWarnings || NumErrors) { 1012 OS << " generated"; 1013 if (getLangOpts().CUDA) { 1014 if (!getLangOpts().CUDAIsDevice) { 1015 OS << " when compiling for host"; 1016 } else { 1017 OS << " when compiling for " << getTargetOpts().CPU; 1018 } 1019 } 1020 OS << ".\n"; 1021 } 1022 } 1023 1024 if (getFrontendOpts().ShowStats) { 1025 if (hasFileManager()) { 1026 getFileManager().PrintStats(); 1027 OS << '\n'; 1028 } 1029 llvm::PrintStatistics(OS); 1030 } 1031 StringRef StatsFile = getFrontendOpts().StatsFile; 1032 if (!StatsFile.empty()) { 1033 std::error_code EC; 1034 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 1035 llvm::sys::fs::F_Text); 1036 if (EC) { 1037 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1038 << StatsFile << EC.message(); 1039 } else { 1040 llvm::PrintStatisticsJSON(*StatS); 1041 } 1042 } 1043 1044 return !getDiagnostics().getClient()->getNumErrors(); 1045 } 1046 1047 /// \brief Determine the appropriate source input kind based on language 1048 /// options. 1049 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) { 1050 if (LangOpts.OpenCL) 1051 return InputKind::OpenCL; 1052 if (LangOpts.CUDA) 1053 return InputKind::CUDA; 1054 if (LangOpts.ObjC1) 1055 return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC; 1056 return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C; 1057 } 1058 1059 /// \brief Compile a module file for the given module, using the options 1060 /// provided by the importing compiler instance. Returns true if the module 1061 /// was built without errors. 1062 static bool 1063 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1064 StringRef ModuleName, FrontendInputFile Input, 1065 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1066 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1067 [](CompilerInstance &) {}, 1068 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1069 [](CompilerInstance &) {}) { 1070 // Construct a compiler invocation for creating this module. 1071 auto Invocation = 1072 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1073 1074 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1075 1076 // For any options that aren't intended to affect how a module is built, 1077 // reset them to their default values. 1078 Invocation->getLangOpts()->resetNonModularOptions(); 1079 PPOpts.resetNonModularOptions(); 1080 1081 // Remove any macro definitions that are explicitly ignored by the module. 1082 // They aren't supposed to affect how the module is built anyway. 1083 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1084 PPOpts.Macros.erase( 1085 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1086 [&HSOpts](const std::pair<std::string, bool> &def) { 1087 StringRef MacroDef = def.first; 1088 return HSOpts.ModulesIgnoreMacros.count( 1089 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1090 }), 1091 PPOpts.Macros.end()); 1092 1093 // If the original compiler invocation had -fmodule-name, pass it through. 1094 Invocation->getLangOpts()->ModuleName = 1095 ImportingInstance.getInvocation().getLangOpts()->ModuleName; 1096 1097 // Note the name of the module we're building. 1098 Invocation->getLangOpts()->CurrentModule = ModuleName; 1099 1100 // Make sure that the failed-module structure has been allocated in 1101 // the importing instance, and propagate the pointer to the newly-created 1102 // instance. 1103 PreprocessorOptions &ImportingPPOpts 1104 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1105 if (!ImportingPPOpts.FailedModules) 1106 ImportingPPOpts.FailedModules = 1107 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1108 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1109 1110 // If there is a module map file, build the module using the module map. 1111 // Set up the inputs/outputs so that we build the module from its umbrella 1112 // header. 1113 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1114 FrontendOpts.OutputFile = ModuleFileName.str(); 1115 FrontendOpts.DisableFree = false; 1116 FrontendOpts.GenerateGlobalModuleIndex = false; 1117 FrontendOpts.BuildingImplicitModule = true; 1118 FrontendOpts.OriginalModuleMap = OriginalModuleMapFile; 1119 // Force implicitly-built modules to hash the content of the module file. 1120 HSOpts.ModulesHashContent = true; 1121 FrontendOpts.Inputs = {Input}; 1122 1123 // Don't free the remapped file buffers; they are owned by our caller. 1124 PPOpts.RetainRemappedFileBuffers = true; 1125 1126 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1127 assert(ImportingInstance.getInvocation().getModuleHash() == 1128 Invocation->getModuleHash() && "Module hash mismatch!"); 1129 1130 // Construct a compiler instance that will be used to actually create the 1131 // module. Since we're sharing a PCMCache, 1132 // CompilerInstance::CompilerInstance is responsible for finalizing the 1133 // buffers to prevent use-after-frees. 1134 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1135 &ImportingInstance.getPreprocessor().getPCMCache()); 1136 auto &Inv = *Invocation; 1137 Instance.setInvocation(std::move(Invocation)); 1138 1139 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1140 ImportingInstance.getDiagnosticClient()), 1141 /*ShouldOwnClient=*/true); 1142 1143 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1144 1145 // Note that this module is part of the module build stack, so that we 1146 // can detect cycles in the module graph. 1147 Instance.setFileManager(&ImportingInstance.getFileManager()); 1148 Instance.createSourceManager(Instance.getFileManager()); 1149 SourceManager &SourceMgr = Instance.getSourceManager(); 1150 SourceMgr.setModuleBuildStack( 1151 ImportingInstance.getSourceManager().getModuleBuildStack()); 1152 SourceMgr.pushModuleBuildStack(ModuleName, 1153 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1154 1155 // If we're collecting module dependencies, we need to share a collector 1156 // between all of the module CompilerInstances. Other than that, we don't 1157 // want to produce any dependency output from the module build. 1158 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1159 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1160 1161 ImportingInstance.getDiagnostics().Report(ImportLoc, 1162 diag::remark_module_build) 1163 << ModuleName << ModuleFileName; 1164 1165 PreBuildStep(Instance); 1166 1167 // Execute the action to actually build the module in-place. Use a separate 1168 // thread so that we get a stack large enough. 1169 const unsigned ThreadStackSize = 8 << 20; 1170 llvm::CrashRecoveryContext CRC; 1171 CRC.RunSafelyOnThread( 1172 [&]() { 1173 SmallString<64> CrashInfoMessage("While building module for '"); 1174 CrashInfoMessage += ModuleName; 1175 CrashInfoMessage += "'"; 1176 llvm::PrettyStackTraceString CrashInfo(CrashInfoMessage.c_str()); 1177 1178 GenerateModuleFromModuleMapAction Action; 1179 Instance.ExecuteAction(Action); 1180 }, 1181 ThreadStackSize); 1182 1183 PostBuildStep(Instance); 1184 1185 ImportingInstance.getDiagnostics().Report(ImportLoc, 1186 diag::remark_module_build_done) 1187 << ModuleName; 1188 1189 // Delete the temporary module map file. 1190 // FIXME: Even though we're executing under crash protection, it would still 1191 // be nice to do this with RemoveFileOnSignal when we can. However, that 1192 // doesn't make sense for all clients, so clean this up manually. 1193 Instance.clearOutputFiles(/*EraseFiles=*/true); 1194 1195 return !Instance.getDiagnostics().hasErrorOccurred(); 1196 } 1197 1198 /// \brief Compile a module file for the given module, using the options 1199 /// provided by the importing compiler instance. Returns true if the module 1200 /// was built without errors. 1201 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1202 SourceLocation ImportLoc, 1203 Module *Module, 1204 StringRef ModuleFileName) { 1205 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1206 InputKind::ModuleMap); 1207 1208 // Get or create the module map that we'll use to build this module. 1209 ModuleMap &ModMap 1210 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1211 bool Result; 1212 if (const FileEntry *ModuleMapFile = 1213 ModMap.getContainingModuleMapFile(Module)) { 1214 // Use the module map where this module resides. 1215 Result = compileModuleImpl( 1216 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1217 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1218 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1219 ModuleFileName); 1220 } else { 1221 // FIXME: We only need to fake up an input file here as a way of 1222 // transporting the module's directory to the module map parser. We should 1223 // be able to do that more directly, and parse from a memory buffer without 1224 // inventing this file. 1225 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1226 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1227 1228 std::string InferredModuleMapContent; 1229 llvm::raw_string_ostream OS(InferredModuleMapContent); 1230 Module->print(OS); 1231 OS.flush(); 1232 1233 Result = compileModuleImpl( 1234 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1235 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1236 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1237 ModuleFileName, 1238 [&](CompilerInstance &Instance) { 1239 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1240 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1241 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1242 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1243 Instance.getSourceManager().overrideFileContents( 1244 ModuleMapFile, std::move(ModuleMapBuffer)); 1245 }); 1246 } 1247 1248 // We've rebuilt a module. If we're allowed to generate or update the global 1249 // module index, record that fact in the importing compiler instance. 1250 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1251 ImportingInstance.setBuildGlobalModuleIndex(true); 1252 } 1253 1254 return Result; 1255 } 1256 1257 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1258 SourceLocation ImportLoc, 1259 SourceLocation ModuleNameLoc, Module *Module, 1260 StringRef ModuleFileName) { 1261 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1262 1263 auto diagnoseBuildFailure = [&] { 1264 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1265 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1266 }; 1267 1268 // FIXME: have LockFileManager return an error_code so that we can 1269 // avoid the mkdir when the directory already exists. 1270 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1271 llvm::sys::fs::create_directories(Dir); 1272 1273 while (1) { 1274 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1275 llvm::LockFileManager Locked(ModuleFileName); 1276 switch (Locked) { 1277 case llvm::LockFileManager::LFS_Error: 1278 // PCMCache takes care of correctness and locks are only necessary for 1279 // performance. Fallback to building the module in case of any lock 1280 // related errors. 1281 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1282 << Module->Name << Locked.getErrorMessage(); 1283 // Clear out any potential leftover. 1284 Locked.unsafeRemoveLockFile(); 1285 // FALLTHROUGH 1286 case llvm::LockFileManager::LFS_Owned: 1287 // We're responsible for building the module ourselves. 1288 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1289 ModuleFileName)) { 1290 diagnoseBuildFailure(); 1291 return false; 1292 } 1293 break; 1294 1295 case llvm::LockFileManager::LFS_Shared: 1296 // Someone else is responsible for building the module. Wait for them to 1297 // finish. 1298 switch (Locked.waitForUnlock()) { 1299 case llvm::LockFileManager::Res_Success: 1300 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1301 break; 1302 case llvm::LockFileManager::Res_OwnerDied: 1303 continue; // try again to get the lock. 1304 case llvm::LockFileManager::Res_Timeout: 1305 // Since PCMCache takes care of correctness, we try waiting for another 1306 // process to complete the build so clang does not do it done twice. If 1307 // case of timeout, build it ourselves. 1308 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1309 << Module->Name; 1310 // Clear the lock file so that future invokations can make progress. 1311 Locked.unsafeRemoveLockFile(); 1312 continue; 1313 } 1314 break; 1315 } 1316 1317 // Try to read the module file, now that we've compiled it. 1318 ASTReader::ASTReadResult ReadResult = 1319 ImportingInstance.getModuleManager()->ReadAST( 1320 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1321 ModuleLoadCapabilities); 1322 1323 if (ReadResult == ASTReader::OutOfDate && 1324 Locked == llvm::LockFileManager::LFS_Shared) { 1325 // The module may be out of date in the presence of file system races, 1326 // or if one of its imports depends on header search paths that are not 1327 // consistent with this ImportingInstance. Try again... 1328 continue; 1329 } else if (ReadResult == ASTReader::Missing) { 1330 diagnoseBuildFailure(); 1331 } else if (ReadResult != ASTReader::Success && 1332 !Diags.hasErrorOccurred()) { 1333 // The ASTReader didn't diagnose the error, so conservatively report it. 1334 diagnoseBuildFailure(); 1335 } 1336 return ReadResult == ASTReader::Success; 1337 } 1338 } 1339 1340 /// \brief Diagnose differences between the current definition of the given 1341 /// configuration macro and the definition provided on the command line. 1342 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1343 Module *Mod, SourceLocation ImportLoc) { 1344 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1345 SourceManager &SourceMgr = PP.getSourceManager(); 1346 1347 // If this identifier has never had a macro definition, then it could 1348 // not have changed. 1349 if (!Id->hadMacroDefinition()) 1350 return; 1351 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1352 1353 // Find the macro definition from the command line. 1354 MacroInfo *CmdLineDefinition = nullptr; 1355 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1356 // We only care about the predefines buffer. 1357 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1358 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1359 continue; 1360 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1361 CmdLineDefinition = DMD->getMacroInfo(); 1362 break; 1363 } 1364 1365 auto *CurrentDefinition = PP.getMacroInfo(Id); 1366 if (CurrentDefinition == CmdLineDefinition) { 1367 // Macro matches. Nothing to do. 1368 } else if (!CurrentDefinition) { 1369 // This macro was defined on the command line, then #undef'd later. 1370 // Complain. 1371 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1372 << true << ConfigMacro << Mod->getFullModuleName(); 1373 auto LatestDef = LatestLocalMD->getDefinition(); 1374 assert(LatestDef.isUndefined() && 1375 "predefined macro went away with no #undef?"); 1376 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1377 << true; 1378 return; 1379 } else if (!CmdLineDefinition) { 1380 // There was no definition for this macro in the predefines buffer, 1381 // but there was a local definition. Complain. 1382 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1383 << false << ConfigMacro << Mod->getFullModuleName(); 1384 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1385 diag::note_module_def_undef_here) 1386 << false; 1387 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1388 /*Syntactically=*/true)) { 1389 // The macro definitions differ. 1390 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1391 << false << ConfigMacro << Mod->getFullModuleName(); 1392 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1393 diag::note_module_def_undef_here) 1394 << false; 1395 } 1396 } 1397 1398 /// \brief Write a new timestamp file with the given path. 1399 static void writeTimestampFile(StringRef TimestampFile) { 1400 std::error_code EC; 1401 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1402 } 1403 1404 /// \brief Prune the module cache of modules that haven't been accessed in 1405 /// a long time. 1406 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1407 struct stat StatBuf; 1408 llvm::SmallString<128> TimestampFile; 1409 TimestampFile = HSOpts.ModuleCachePath; 1410 assert(!TimestampFile.empty()); 1411 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1412 1413 // Try to stat() the timestamp file. 1414 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1415 // If the timestamp file wasn't there, create one now. 1416 if (errno == ENOENT) { 1417 writeTimestampFile(TimestampFile); 1418 } 1419 return; 1420 } 1421 1422 // Check whether the time stamp is older than our pruning interval. 1423 // If not, do nothing. 1424 time_t TimeStampModTime = StatBuf.st_mtime; 1425 time_t CurrentTime = time(nullptr); 1426 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1427 return; 1428 1429 // Write a new timestamp file so that nobody else attempts to prune. 1430 // There is a benign race condition here, if two Clang instances happen to 1431 // notice at the same time that the timestamp is out-of-date. 1432 writeTimestampFile(TimestampFile); 1433 1434 // Walk the entire module cache, looking for unused module files and module 1435 // indices. 1436 std::error_code EC; 1437 SmallString<128> ModuleCachePathNative; 1438 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1439 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1440 Dir != DirEnd && !EC; Dir.increment(EC)) { 1441 // If we don't have a directory, there's nothing to look into. 1442 if (!llvm::sys::fs::is_directory(Dir->path())) 1443 continue; 1444 1445 // Walk all of the files within this directory. 1446 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1447 File != FileEnd && !EC; File.increment(EC)) { 1448 // We only care about module and global module index files. 1449 StringRef Extension = llvm::sys::path::extension(File->path()); 1450 if (Extension != ".pcm" && Extension != ".timestamp" && 1451 llvm::sys::path::filename(File->path()) != "modules.idx") 1452 continue; 1453 1454 // Look at this file. If we can't stat it, there's nothing interesting 1455 // there. 1456 if (::stat(File->path().c_str(), &StatBuf)) 1457 continue; 1458 1459 // If the file has been used recently enough, leave it there. 1460 time_t FileAccessTime = StatBuf.st_atime; 1461 if (CurrentTime - FileAccessTime <= 1462 time_t(HSOpts.ModuleCachePruneAfter)) { 1463 continue; 1464 } 1465 1466 // Remove the file. 1467 llvm::sys::fs::remove(File->path()); 1468 1469 // Remove the timestamp file. 1470 std::string TimpestampFilename = File->path() + ".timestamp"; 1471 llvm::sys::fs::remove(TimpestampFilename); 1472 } 1473 1474 // If we removed all of the files in the directory, remove the directory 1475 // itself. 1476 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1477 llvm::sys::fs::directory_iterator() && !EC) 1478 llvm::sys::fs::remove(Dir->path()); 1479 } 1480 } 1481 1482 void CompilerInstance::createModuleManager() { 1483 if (!ModuleManager) { 1484 if (!hasASTContext()) 1485 createASTContext(); 1486 1487 // If we're implicitly building modules but not currently recursively 1488 // building a module, check whether we need to prune the module cache. 1489 if (getSourceManager().getModuleBuildStack().empty() && 1490 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1491 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1492 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1493 pruneModuleCache(getHeaderSearchOpts()); 1494 } 1495 1496 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1497 std::string Sysroot = HSOpts.Sysroot; 1498 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1499 std::unique_ptr<llvm::Timer> ReadTimer; 1500 if (FrontendTimerGroup) 1501 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1502 "Reading modules", 1503 *FrontendTimerGroup); 1504 ModuleManager = new ASTReader( 1505 getPreprocessor(), &getASTContext(), getPCHContainerReader(), 1506 getFrontendOpts().ModuleFileExtensions, 1507 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1508 /*AllowASTWithCompilerErrors=*/false, 1509 /*AllowConfigurationMismatch=*/false, 1510 HSOpts.ModulesValidateSystemHeaders, 1511 getFrontendOpts().UseGlobalModuleIndex, 1512 std::move(ReadTimer)); 1513 if (hasASTConsumer()) { 1514 ModuleManager->setDeserializationListener( 1515 getASTConsumer().GetASTDeserializationListener()); 1516 getASTContext().setASTMutationListener( 1517 getASTConsumer().GetASTMutationListener()); 1518 } 1519 getASTContext().setExternalSource(ModuleManager); 1520 if (hasSema()) 1521 ModuleManager->InitializeSema(getSema()); 1522 if (hasASTConsumer()) 1523 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1524 1525 if (TheDependencyFileGenerator) 1526 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1527 for (auto &Listener : DependencyCollectors) 1528 Listener->attachToASTReader(*ModuleManager); 1529 } 1530 } 1531 1532 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1533 llvm::Timer Timer; 1534 if (FrontendTimerGroup) 1535 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1536 *FrontendTimerGroup); 1537 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1538 1539 // Helper to recursively read the module names for all modules we're adding. 1540 // We mark these as known and redirect any attempt to load that module to 1541 // the files we were handed. 1542 struct ReadModuleNames : ASTReaderListener { 1543 CompilerInstance &CI; 1544 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1545 1546 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1547 1548 void ReadModuleName(StringRef ModuleName) override { 1549 LoadedModules.push_back( 1550 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1551 } 1552 1553 void registerAll() { 1554 for (auto *II : LoadedModules) { 1555 CI.KnownModules[II] = CI.getPreprocessor() 1556 .getHeaderSearchInfo() 1557 .getModuleMap() 1558 .findModule(II->getName()); 1559 } 1560 LoadedModules.clear(); 1561 } 1562 1563 void markAllUnavailable() { 1564 for (auto *II : LoadedModules) { 1565 if (Module *M = CI.getPreprocessor() 1566 .getHeaderSearchInfo() 1567 .getModuleMap() 1568 .findModule(II->getName())) { 1569 M->HasIncompatibleModuleFile = true; 1570 1571 // Mark module as available if the only reason it was unavailable 1572 // was missing headers. 1573 SmallVector<Module *, 2> Stack; 1574 Stack.push_back(M); 1575 while (!Stack.empty()) { 1576 Module *Current = Stack.pop_back_val(); 1577 if (Current->IsMissingRequirement) continue; 1578 Current->IsAvailable = true; 1579 Stack.insert(Stack.end(), 1580 Current->submodule_begin(), Current->submodule_end()); 1581 } 1582 } 1583 } 1584 LoadedModules.clear(); 1585 } 1586 }; 1587 1588 // If we don't already have an ASTReader, create one now. 1589 if (!ModuleManager) 1590 createModuleManager(); 1591 1592 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1593 auto &ListenerRef = *Listener; 1594 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1595 std::move(Listener)); 1596 1597 // Try to load the module file. 1598 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1599 SourceLocation(), 1600 ASTReader::ARR_ConfigurationMismatch)) { 1601 case ASTReader::Success: 1602 // We successfully loaded the module file; remember the set of provided 1603 // modules so that we don't try to load implicit modules for them. 1604 ListenerRef.registerAll(); 1605 return true; 1606 1607 case ASTReader::ConfigurationMismatch: 1608 // Ignore unusable module files. 1609 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1610 << FileName; 1611 // All modules provided by any files we tried and failed to load are now 1612 // unavailable; includes of those modules should now be handled textually. 1613 ListenerRef.markAllUnavailable(); 1614 return true; 1615 1616 default: 1617 return false; 1618 } 1619 } 1620 1621 ModuleLoadResult 1622 CompilerInstance::loadModule(SourceLocation ImportLoc, 1623 ModuleIdPath Path, 1624 Module::NameVisibilityKind Visibility, 1625 bool IsInclusionDirective) { 1626 // Determine what file we're searching from. 1627 // FIXME: Should we be deciding whether this is a submodule (here and 1628 // below) based on -fmodules-ts or should we pass a flag and make the 1629 // caller decide? 1630 std::string ModuleName; 1631 if (getLangOpts().ModulesTS) { 1632 // FIXME: Same code as Sema::ActOnModuleDecl() so there is probably a 1633 // better place/way to do this. 1634 for (auto &Piece : Path) { 1635 if (!ModuleName.empty()) 1636 ModuleName += "."; 1637 ModuleName += Piece.first->getName(); 1638 } 1639 } 1640 else 1641 ModuleName = Path[0].first->getName(); 1642 1643 SourceLocation ModuleNameLoc = Path[0].second; 1644 1645 // If we've already handled this import, just return the cached result. 1646 // This one-element cache is important to eliminate redundant diagnostics 1647 // when both the preprocessor and parser see the same import declaration. 1648 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1649 // Make the named module visible. 1650 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1651 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1652 ImportLoc); 1653 return LastModuleImportResult; 1654 } 1655 1656 clang::Module *Module = nullptr; 1657 1658 // If we don't already have information on this module, load the module now. 1659 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1660 = KnownModules.find(Path[0].first); 1661 if (Known != KnownModules.end()) { 1662 // Retrieve the cached top-level module. 1663 Module = Known->second; 1664 } else if (ModuleName == getLangOpts().CurrentModule) { 1665 // This is the module we're building. 1666 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1667 /// FIXME: perhaps we should (a) look for a module using the module name 1668 // to file map (PrebuiltModuleFiles) and (b) diagnose if still not found? 1669 //if (Module == nullptr) { 1670 // getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1671 // << ModuleName; 1672 // ModuleBuildFailed = true; 1673 // return ModuleLoadResult(); 1674 //} 1675 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1676 } else { 1677 // Search for a module with the given name. 1678 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1679 HeaderSearchOptions &HSOpts = 1680 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1681 1682 std::string ModuleFileName; 1683 enum ModuleSource { 1684 ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma 1685 } Source = ModuleNotFound; 1686 1687 // Check to see if the module has been built as part of this compilation 1688 // via a module build pragma. 1689 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1690 if (BuiltModuleIt != BuiltModules.end()) { 1691 ModuleFileName = BuiltModuleIt->second; 1692 Source = ModuleBuildPragma; 1693 } 1694 1695 // Try to load the module from the prebuilt module path. 1696 if (Source == ModuleNotFound && (!HSOpts.PrebuiltModuleFiles.empty() || 1697 !HSOpts.PrebuiltModulePaths.empty())) { 1698 ModuleFileName = 1699 PP->getHeaderSearchInfo().getPrebuiltModuleFileName(ModuleName); 1700 if (!ModuleFileName.empty()) 1701 Source = PrebuiltModulePath; 1702 } 1703 1704 // Try to load the module from the module cache. 1705 if (Source == ModuleNotFound && Module) { 1706 ModuleFileName = PP->getHeaderSearchInfo().getCachedModuleFileName(Module); 1707 Source = ModuleCache; 1708 } 1709 1710 if (Source == ModuleNotFound) { 1711 // We can't find a module, error out here. 1712 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1713 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1714 ModuleBuildFailed = true; 1715 return ModuleLoadResult(); 1716 } 1717 1718 if (ModuleFileName.empty()) { 1719 if (Module && Module->HasIncompatibleModuleFile) { 1720 // We tried and failed to load a module file for this module. Fall 1721 // back to textual inclusion for its headers. 1722 return ModuleLoadResult::ConfigMismatch; 1723 } 1724 1725 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1726 << ModuleName; 1727 ModuleBuildFailed = true; 1728 return ModuleLoadResult(); 1729 } 1730 1731 // If we don't already have an ASTReader, create one now. 1732 if (!ModuleManager) 1733 createModuleManager(); 1734 1735 llvm::Timer Timer; 1736 if (FrontendTimerGroup) 1737 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1738 *FrontendTimerGroup); 1739 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1740 1741 // Try to load the module file. If we are not trying to load from the 1742 // module cache, we don't know how to rebuild modules. 1743 unsigned ARRFlags = Source == ModuleCache ? 1744 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing : 1745 ASTReader::ARR_ConfigurationMismatch; 1746 switch (ModuleManager->ReadAST(ModuleFileName, 1747 Source == PrebuiltModulePath 1748 ? serialization::MK_PrebuiltModule 1749 : Source == ModuleBuildPragma 1750 ? serialization::MK_ExplicitModule 1751 : serialization::MK_ImplicitModule, 1752 ImportLoc, ARRFlags)) { 1753 case ASTReader::Success: { 1754 if (Source != ModuleCache && !Module) { 1755 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1756 if (!Module || !Module->getASTFile() || 1757 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1758 // Error out if Module does not refer to the file in the prebuilt 1759 // module path. 1760 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1761 << ModuleName; 1762 ModuleBuildFailed = true; 1763 KnownModules[Path[0].first] = nullptr; 1764 return ModuleLoadResult(); 1765 } 1766 } 1767 break; 1768 } 1769 1770 case ASTReader::OutOfDate: 1771 case ASTReader::Missing: { 1772 if (Source != ModuleCache) { 1773 // We don't know the desired configuration for this module and don't 1774 // necessarily even have a module map. Since ReadAST already produces 1775 // diagnostics for these two cases, we simply error out here. 1776 ModuleBuildFailed = true; 1777 KnownModules[Path[0].first] = nullptr; 1778 return ModuleLoadResult(); 1779 } 1780 1781 // The module file is missing or out-of-date. Build it. 1782 assert(Module && "missing module file"); 1783 // Check whether there is a cycle in the module graph. 1784 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1785 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1786 for (; Pos != PosEnd; ++Pos) { 1787 if (Pos->first == ModuleName) 1788 break; 1789 } 1790 1791 if (Pos != PosEnd) { 1792 SmallString<256> CyclePath; 1793 for (; Pos != PosEnd; ++Pos) { 1794 CyclePath += Pos->first; 1795 CyclePath += " -> "; 1796 } 1797 CyclePath += ModuleName; 1798 1799 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1800 << ModuleName << CyclePath; 1801 return ModuleLoadResult(); 1802 } 1803 1804 // Check whether we have already attempted to build this module (but 1805 // failed). 1806 if (getPreprocessorOpts().FailedModules && 1807 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1808 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1809 << ModuleName 1810 << SourceRange(ImportLoc, ModuleNameLoc); 1811 ModuleBuildFailed = true; 1812 return ModuleLoadResult(); 1813 } 1814 1815 // Try to compile and then load the module. 1816 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1817 ModuleFileName)) { 1818 assert(getDiagnostics().hasErrorOccurred() && 1819 "undiagnosed error in compileAndLoadModule"); 1820 if (getPreprocessorOpts().FailedModules) 1821 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1822 KnownModules[Path[0].first] = nullptr; 1823 ModuleBuildFailed = true; 1824 return ModuleLoadResult(); 1825 } 1826 1827 // Okay, we've rebuilt and now loaded the module. 1828 break; 1829 } 1830 1831 case ASTReader::ConfigurationMismatch: 1832 if (Source == PrebuiltModulePath) 1833 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1834 // produce a warning here! 1835 getDiagnostics().Report(SourceLocation(), 1836 diag::warn_module_config_mismatch) 1837 << ModuleFileName; 1838 // Fall through to error out. 1839 LLVM_FALLTHROUGH; 1840 case ASTReader::VersionMismatch: 1841 case ASTReader::HadErrors: 1842 ModuleLoader::HadFatalFailure = true; 1843 // FIXME: The ASTReader will already have complained, but can we shoehorn 1844 // that diagnostic information into a more useful form? 1845 KnownModules[Path[0].first] = nullptr; 1846 return ModuleLoadResult(); 1847 1848 case ASTReader::Failure: 1849 ModuleLoader::HadFatalFailure = true; 1850 // Already complained, but note now that we failed. 1851 KnownModules[Path[0].first] = nullptr; 1852 ModuleBuildFailed = true; 1853 return ModuleLoadResult(); 1854 } 1855 1856 // Cache the result of this top-level module lookup for later. 1857 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1858 } 1859 1860 // If we never found the module, fail. 1861 if (!Module) 1862 return ModuleLoadResult(); 1863 1864 // Verify that the rest of the module path actually corresponds to 1865 // a submodule. 1866 bool MapPrivateSubModToTopLevel = false; 1867 if (!getLangOpts().ModulesTS && Path.size() > 1) { 1868 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1869 StringRef Name = Path[I].first->getName(); 1870 clang::Module *Sub = Module->findSubmodule(Name); 1871 1872 // If the user is requesting Foo.Private and it doesn't exist, try to 1873 // match Foo_Private and emit a warning asking for the user to write 1874 // @import Foo_Private instead. FIXME: remove this when existing clients 1875 // migrate off of Foo.Private syntax. 1876 if (!Sub && PP->getLangOpts().ImplicitModules && Name == "Private" && 1877 Module == Module->getTopLevelModule()) { 1878 SmallString<128> PrivateModule(Module->Name); 1879 PrivateModule.append("_Private"); 1880 1881 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> PrivPath; 1882 auto &II = PP->getIdentifierTable().get( 1883 PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID()); 1884 PrivPath.push_back(std::make_pair(&II, Path[0].second)); 1885 1886 if (PP->getHeaderSearchInfo().lookupModule(PrivateModule)) 1887 Sub = 1888 loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective); 1889 if (Sub) { 1890 MapPrivateSubModToTopLevel = true; 1891 if (!getDiagnostics().isIgnored( 1892 diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) { 1893 getDiagnostics().Report(Path[I].second, 1894 diag::warn_no_priv_submodule_use_toplevel) 1895 << Path[I].first << Module->getFullModuleName() << PrivateModule 1896 << SourceRange(Path[0].second, Path[I].second) 1897 << FixItHint::CreateReplacement(SourceRange(Path[0].second), 1898 PrivateModule); 1899 getDiagnostics().Report(Sub->DefinitionLoc, 1900 diag::note_private_top_level_defined); 1901 } 1902 } 1903 } 1904 1905 if (!Sub) { 1906 // Attempt to perform typo correction to find a module name that works. 1907 SmallVector<StringRef, 2> Best; 1908 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1909 1910 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1911 JEnd = Module->submodule_end(); 1912 J != JEnd; ++J) { 1913 unsigned ED = Name.edit_distance((*J)->Name, 1914 /*AllowReplacements=*/true, 1915 BestEditDistance); 1916 if (ED <= BestEditDistance) { 1917 if (ED < BestEditDistance) { 1918 Best.clear(); 1919 BestEditDistance = ED; 1920 } 1921 1922 Best.push_back((*J)->Name); 1923 } 1924 } 1925 1926 // If there was a clear winner, user it. 1927 if (Best.size() == 1) { 1928 getDiagnostics().Report(Path[I].second, 1929 diag::err_no_submodule_suggest) 1930 << Path[I].first << Module->getFullModuleName() << Best[0] 1931 << SourceRange(Path[0].second, Path[I-1].second) 1932 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1933 Best[0]); 1934 1935 Sub = Module->findSubmodule(Best[0]); 1936 } 1937 } 1938 1939 if (!Sub) { 1940 // No submodule by this name. Complain, and don't look for further 1941 // submodules. 1942 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1943 << Path[I].first << Module->getFullModuleName() 1944 << SourceRange(Path[0].second, Path[I-1].second); 1945 break; 1946 } 1947 1948 Module = Sub; 1949 } 1950 } 1951 1952 // Make the named module visible, if it's not already part of the module 1953 // we are parsing. 1954 if (ModuleName != getLangOpts().CurrentModule) { 1955 if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) { 1956 // We have an umbrella header or directory that doesn't actually include 1957 // all of the headers within the directory it covers. Complain about 1958 // this missing submodule and recover by forgetting that we ever saw 1959 // this submodule. 1960 // FIXME: Should we detect this at module load time? It seems fairly 1961 // expensive (and rare). 1962 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1963 << Module->getFullModuleName() 1964 << SourceRange(Path.front().second, Path.back().second); 1965 1966 return ModuleLoadResult::MissingExpected; 1967 } 1968 1969 // Check whether this module is available. 1970 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 1971 getDiagnostics(), Module)) { 1972 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 1973 << SourceRange(Path.front().second, Path.back().second); 1974 LastModuleImportLoc = ImportLoc; 1975 LastModuleImportResult = ModuleLoadResult(); 1976 return ModuleLoadResult(); 1977 } 1978 1979 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1980 } 1981 1982 // Check for any configuration macros that have changed. 1983 clang::Module *TopModule = Module->getTopLevelModule(); 1984 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1985 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1986 Module, ImportLoc); 1987 } 1988 1989 LastModuleImportLoc = ImportLoc; 1990 LastModuleImportResult = ModuleLoadResult(Module); 1991 return LastModuleImportResult; 1992 } 1993 1994 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc, 1995 StringRef ModuleName, 1996 StringRef Source) { 1997 // Avoid creating filenames with special characters. 1998 SmallString<128> CleanModuleName(ModuleName); 1999 for (auto &C : CleanModuleName) 2000 if (!isAlphanumeric(C)) 2001 C = '_'; 2002 2003 // FIXME: Using a randomized filename here means that our intermediate .pcm 2004 // output is nondeterministic (as .pcm files refer to each other by name). 2005 // Can this affect the output in any way? 2006 SmallString<128> ModuleFileName; 2007 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 2008 CleanModuleName, "pcm", ModuleFileName)) { 2009 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 2010 << ModuleFileName << EC.message(); 2011 return; 2012 } 2013 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 2014 2015 FrontendInputFile Input( 2016 ModuleMapFileName, 2017 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 2018 InputKind::ModuleMap, /*Preprocessed*/true)); 2019 2020 std::string NullTerminatedSource(Source.str()); 2021 2022 auto PreBuildStep = [&](CompilerInstance &Other) { 2023 // Create a virtual file containing our desired source. 2024 // FIXME: We shouldn't need to do this. 2025 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 2026 ModuleMapFileName, NullTerminatedSource.size(), 0); 2027 Other.getSourceManager().overrideFileContents( 2028 ModuleMapFile, 2029 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 2030 2031 Other.BuiltModules = std::move(BuiltModules); 2032 Other.DeleteBuiltModules = false; 2033 }; 2034 2035 auto PostBuildStep = [this](CompilerInstance &Other) { 2036 BuiltModules = std::move(Other.BuiltModules); 2037 }; 2038 2039 // Build the module, inheriting any modules that we've built locally. 2040 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 2041 ModuleFileName, PreBuildStep, PostBuildStep)) { 2042 BuiltModules[ModuleName] = ModuleFileName.str(); 2043 llvm::sys::RemoveFileOnSignal(ModuleFileName); 2044 } 2045 } 2046 2047 void CompilerInstance::makeModuleVisible(Module *Mod, 2048 Module::NameVisibilityKind Visibility, 2049 SourceLocation ImportLoc) { 2050 if (!ModuleManager) 2051 createModuleManager(); 2052 if (!ModuleManager) 2053 return; 2054 2055 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 2056 } 2057 2058 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 2059 SourceLocation TriggerLoc) { 2060 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 2061 return nullptr; 2062 if (!ModuleManager) 2063 createModuleManager(); 2064 // Can't do anything if we don't have the module manager. 2065 if (!ModuleManager) 2066 return nullptr; 2067 // Get an existing global index. This loads it if not already 2068 // loaded. 2069 ModuleManager->loadGlobalIndex(); 2070 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 2071 // If the global index doesn't exist, create it. 2072 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 2073 hasPreprocessor()) { 2074 llvm::sys::fs::create_directories( 2075 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2076 GlobalModuleIndex::writeIndex( 2077 getFileManager(), getPCHContainerReader(), 2078 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2079 ModuleManager->resetForReload(); 2080 ModuleManager->loadGlobalIndex(); 2081 GlobalIndex = ModuleManager->getGlobalIndex(); 2082 } 2083 // For finding modules needing to be imported for fixit messages, 2084 // we need to make the global index cover all modules, so we do that here. 2085 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 2086 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2087 bool RecreateIndex = false; 2088 for (ModuleMap::module_iterator I = MMap.module_begin(), 2089 E = MMap.module_end(); I != E; ++I) { 2090 Module *TheModule = I->second; 2091 const FileEntry *Entry = TheModule->getASTFile(); 2092 if (!Entry) { 2093 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2094 Path.push_back(std::make_pair( 2095 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2096 std::reverse(Path.begin(), Path.end()); 2097 // Load a module as hidden. This also adds it to the global index. 2098 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2099 RecreateIndex = true; 2100 } 2101 } 2102 if (RecreateIndex) { 2103 GlobalModuleIndex::writeIndex( 2104 getFileManager(), getPCHContainerReader(), 2105 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2106 ModuleManager->resetForReload(); 2107 ModuleManager->loadGlobalIndex(); 2108 GlobalIndex = ModuleManager->getGlobalIndex(); 2109 } 2110 HaveFullGlobalModuleIndex = true; 2111 } 2112 return GlobalIndex; 2113 } 2114 2115 // Check global module index for missing imports. 2116 bool 2117 CompilerInstance::lookupMissingImports(StringRef Name, 2118 SourceLocation TriggerLoc) { 2119 // Look for the symbol in non-imported modules, but only if an error 2120 // actually occurred. 2121 if (!buildingModule()) { 2122 // Load global module index, or retrieve a previously loaded one. 2123 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2124 TriggerLoc); 2125 2126 // Only if we have a global index. 2127 if (GlobalIndex) { 2128 GlobalModuleIndex::HitSet FoundModules; 2129 2130 // Find the modules that reference the identifier. 2131 // Note that this only finds top-level modules. 2132 // We'll let diagnoseTypo find the actual declaration module. 2133 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2134 return true; 2135 } 2136 } 2137 2138 return false; 2139 } 2140 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 2141 2142 void CompilerInstance::setExternalSemaSource( 2143 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2144 ExternalSemaSrc = std::move(ESS); 2145 } 2146