1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/SourceManager.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Basic/Version.h" 19 #include "clang/Config/config.h" 20 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 21 #include "clang/Frontend/FrontendAction.h" 22 #include "clang/Frontend/FrontendActions.h" 23 #include "clang/Frontend/FrontendDiagnostic.h" 24 #include "clang/Frontend/LogDiagnosticPrinter.h" 25 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 26 #include "clang/Frontend/TextDiagnosticPrinter.h" 27 #include "clang/Frontend/Utils.h" 28 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 29 #include "clang/Lex/HeaderSearch.h" 30 #include "clang/Lex/PTHManager.h" 31 #include "clang/Lex/Preprocessor.h" 32 #include "clang/Sema/CodeCompleteConsumer.h" 33 #include "clang/Sema/Sema.h" 34 #include "clang/Serialization/ASTReader.h" 35 #include "clang/Serialization/GlobalModuleIndex.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Support/CrashRecoveryContext.h" 38 #include "llvm/Support/Errc.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/Host.h" 41 #include "llvm/Support/LockFileManager.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/Program.h" 45 #include "llvm/Support/Signals.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <sys/stat.h> 49 #include <system_error> 50 #include <time.h> 51 52 using namespace clang; 53 54 CompilerInstance::CompilerInstance(bool BuildingModule) 55 : ModuleLoader(BuildingModule), 56 Invocation(new CompilerInvocation()), ModuleManager(nullptr), 57 BuildGlobalModuleIndex(false), HaveFullGlobalModuleIndex(false), 58 ModuleBuildFailed(false) { 59 } 60 61 CompilerInstance::~CompilerInstance() { 62 assert(OutputFiles.empty() && "Still output files in flight?"); 63 } 64 65 void CompilerInstance::setInvocation(CompilerInvocation *Value) { 66 Invocation = Value; 67 } 68 69 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 70 return (BuildGlobalModuleIndex || 71 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 72 getFrontendOpts().GenerateGlobalModuleIndex)) && 73 !ModuleBuildFailed; 74 } 75 76 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 77 Diagnostics = Value; 78 } 79 80 void CompilerInstance::setTarget(TargetInfo *Value) { 81 Target = Value; 82 } 83 84 void CompilerInstance::setFileManager(FileManager *Value) { 85 FileMgr = Value; 86 if (Value) 87 VirtualFileSystem = Value->getVirtualFileSystem(); 88 else 89 VirtualFileSystem.reset(); 90 } 91 92 void CompilerInstance::setSourceManager(SourceManager *Value) { 93 SourceMgr = Value; 94 } 95 96 void CompilerInstance::setPreprocessor(Preprocessor *Value) { PP = Value; } 97 98 void CompilerInstance::setASTContext(ASTContext *Value) { Context = Value; } 99 100 void CompilerInstance::setSema(Sema *S) { 101 TheSema.reset(S); 102 } 103 104 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 105 Consumer = std::move(Value); 106 } 107 108 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 109 CompletionConsumer.reset(Value); 110 } 111 112 std::unique_ptr<Sema> CompilerInstance::takeSema() { 113 return std::move(TheSema); 114 } 115 116 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 117 return ModuleManager; 118 } 119 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 120 ModuleManager = Reader; 121 } 122 123 std::shared_ptr<ModuleDependencyCollector> 124 CompilerInstance::getModuleDepCollector() const { 125 return ModuleDepCollector; 126 } 127 128 void CompilerInstance::setModuleDepCollector( 129 std::shared_ptr<ModuleDependencyCollector> Collector) { 130 ModuleDepCollector = Collector; 131 } 132 133 // Diagnostics 134 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 135 const CodeGenOptions *CodeGenOpts, 136 DiagnosticsEngine &Diags) { 137 std::error_code EC; 138 std::unique_ptr<raw_ostream> StreamOwner; 139 raw_ostream *OS = &llvm::errs(); 140 if (DiagOpts->DiagnosticLogFile != "-") { 141 // Create the output stream. 142 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 143 DiagOpts->DiagnosticLogFile, EC, 144 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 145 if (EC) { 146 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 147 << DiagOpts->DiagnosticLogFile << EC.message(); 148 } else { 149 FileOS->SetUnbuffered(); 150 FileOS->SetUseAtomicWrites(true); 151 OS = FileOS.get(); 152 StreamOwner = std::move(FileOS); 153 } 154 } 155 156 // Chain in the diagnostic client which will log the diagnostics. 157 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 158 std::move(StreamOwner)); 159 if (CodeGenOpts) 160 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 161 assert(Diags.ownsClient()); 162 Diags.setClient( 163 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 164 } 165 166 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 167 DiagnosticsEngine &Diags, 168 StringRef OutputFile) { 169 auto SerializedConsumer = 170 clang::serialized_diags::create(OutputFile, DiagOpts); 171 172 if (Diags.ownsClient()) { 173 Diags.setClient(new ChainedDiagnosticConsumer( 174 Diags.takeClient(), std::move(SerializedConsumer))); 175 } else { 176 Diags.setClient(new ChainedDiagnosticConsumer( 177 Diags.getClient(), std::move(SerializedConsumer))); 178 } 179 } 180 181 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 182 bool ShouldOwnClient) { 183 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 184 ShouldOwnClient, &getCodeGenOpts()); 185 } 186 187 IntrusiveRefCntPtr<DiagnosticsEngine> 188 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 189 DiagnosticConsumer *Client, 190 bool ShouldOwnClient, 191 const CodeGenOptions *CodeGenOpts) { 192 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 193 IntrusiveRefCntPtr<DiagnosticsEngine> 194 Diags(new DiagnosticsEngine(DiagID, Opts)); 195 196 // Create the diagnostic client for reporting errors or for 197 // implementing -verify. 198 if (Client) { 199 Diags->setClient(Client, ShouldOwnClient); 200 } else 201 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 202 203 // Chain in -verify checker, if requested. 204 if (Opts->VerifyDiagnostics) 205 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 206 207 // Chain in -diagnostic-log-file dumper, if requested. 208 if (!Opts->DiagnosticLogFile.empty()) 209 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 210 211 if (!Opts->DiagnosticSerializationFile.empty()) 212 SetupSerializedDiagnostics(Opts, *Diags, 213 Opts->DiagnosticSerializationFile); 214 215 // Configure our handling of diagnostics. 216 ProcessWarningOptions(*Diags, *Opts); 217 218 return Diags; 219 } 220 221 // File Manager 222 223 void CompilerInstance::createFileManager() { 224 if (!hasVirtualFileSystem()) { 225 // TODO: choose the virtual file system based on the CompilerInvocation. 226 setVirtualFileSystem(vfs::getRealFileSystem()); 227 } 228 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 229 } 230 231 // Source Manager 232 233 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 234 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 235 } 236 237 // Initialize the remapping of files to alternative contents, e.g., 238 // those specified through other files. 239 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 240 SourceManager &SourceMgr, 241 FileManager &FileMgr, 242 const PreprocessorOptions &InitOpts) { 243 // Remap files in the source manager (with buffers). 244 for (const auto &RB : InitOpts.RemappedFileBuffers) { 245 // Create the file entry for the file that we're mapping from. 246 const FileEntry *FromFile = 247 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 248 if (!FromFile) { 249 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 250 if (!InitOpts.RetainRemappedFileBuffers) 251 delete RB.second; 252 continue; 253 } 254 255 // Override the contents of the "from" file with the contents of 256 // the "to" file. 257 SourceMgr.overrideFileContents(FromFile, RB.second, 258 InitOpts.RetainRemappedFileBuffers); 259 } 260 261 // Remap files in the source manager (with other files). 262 for (const auto &RF : InitOpts.RemappedFiles) { 263 // Find the file that we're mapping to. 264 const FileEntry *ToFile = FileMgr.getFile(RF.second); 265 if (!ToFile) { 266 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 267 continue; 268 } 269 270 // Create the file entry for the file that we're mapping from. 271 const FileEntry *FromFile = 272 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 273 if (!FromFile) { 274 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 275 continue; 276 } 277 278 // Override the contents of the "from" file with the contents of 279 // the "to" file. 280 SourceMgr.overrideFileContents(FromFile, ToFile); 281 } 282 283 SourceMgr.setOverridenFilesKeepOriginalName( 284 InitOpts.RemappedFilesKeepOriginalName); 285 } 286 287 // Preprocessor 288 289 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 290 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 291 292 // Create a PTH manager if we are using some form of a token cache. 293 PTHManager *PTHMgr = nullptr; 294 if (!PPOpts.TokenCache.empty()) 295 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 296 297 // Create the Preprocessor. 298 HeaderSearch *HeaderInfo = new HeaderSearch(&getHeaderSearchOpts(), 299 getSourceManager(), 300 getDiagnostics(), 301 getLangOpts(), 302 &getTarget()); 303 PP = new Preprocessor(&getPreprocessorOpts(), getDiagnostics(), getLangOpts(), 304 getSourceManager(), *HeaderInfo, *this, PTHMgr, 305 /*OwnsHeaderSearch=*/true, TUKind); 306 PP->Initialize(getTarget()); 307 308 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 309 // That argument is used as the IdentifierInfoLookup argument to 310 // IdentifierTable's ctor. 311 if (PTHMgr) { 312 PTHMgr->setPreprocessor(&*PP); 313 PP->setPTHManager(PTHMgr); 314 } 315 316 if (PPOpts.DetailedRecord) 317 PP->createPreprocessingRecord(); 318 319 // Apply remappings to the source manager. 320 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 321 PP->getFileManager(), PPOpts); 322 323 // Predefine macros and configure the preprocessor. 324 InitializePreprocessor(*PP, PPOpts, getFrontendOpts()); 325 326 // Initialize the header search object. 327 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 328 PP->getLangOpts(), PP->getTargetInfo().getTriple()); 329 330 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 331 332 if (PP->getLangOpts().Modules) 333 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 334 335 // Handle generating dependencies, if requested. 336 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 337 if (!DepOpts.OutputFile.empty()) 338 TheDependencyFileGenerator.reset( 339 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 340 if (!DepOpts.DOTOutputFile.empty()) 341 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 342 getHeaderSearchOpts().Sysroot); 343 344 for (auto &Listener : DependencyCollectors) 345 Listener->attachToPreprocessor(*PP); 346 347 // If we don't have a collector, but we are collecting module dependencies, 348 // then we're the top level compiler instance and need to create one. 349 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) 350 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 351 DepOpts.ModuleDependencyOutputDir); 352 353 // Handle generating header include information, if requested. 354 if (DepOpts.ShowHeaderIncludes) 355 AttachHeaderIncludeGen(*PP); 356 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 357 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 358 if (OutputPath == "-") 359 OutputPath = ""; 360 AttachHeaderIncludeGen(*PP, /*ShowAllHeaders=*/true, OutputPath, 361 /*ShowDepth=*/false); 362 } 363 364 if (DepOpts.PrintShowIncludes) { 365 AttachHeaderIncludeGen(*PP, /*ShowAllHeaders=*/false, /*OutputPath=*/"", 366 /*ShowDepth=*/true, /*MSStyle=*/true); 367 } 368 } 369 370 std::string CompilerInstance::getSpecificModuleCachePath() { 371 // Set up the module path, including the hash for the 372 // module-creation options. 373 SmallString<256> SpecificModuleCache( 374 getHeaderSearchOpts().ModuleCachePath); 375 if (!getHeaderSearchOpts().DisableModuleHash) 376 llvm::sys::path::append(SpecificModuleCache, 377 getInvocation().getModuleHash()); 378 return SpecificModuleCache.str(); 379 } 380 381 // ASTContext 382 383 void CompilerInstance::createASTContext() { 384 Preprocessor &PP = getPreprocessor(); 385 Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 386 PP.getIdentifierTable(), PP.getSelectorTable(), 387 PP.getBuiltinInfo()); 388 Context->InitBuiltinTypes(getTarget()); 389 } 390 391 // ExternalASTSource 392 393 void CompilerInstance::createPCHExternalASTSource( 394 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 395 void *DeserializationListener, bool OwnDeserializationListener) { 396 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 397 ModuleManager = createPCHExternalASTSource( 398 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 399 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 400 DeserializationListener, OwnDeserializationListener, Preamble, 401 getFrontendOpts().UseGlobalModuleIndex); 402 } 403 404 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 405 StringRef Path, const std::string &Sysroot, bool DisablePCHValidation, 406 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 407 void *DeserializationListener, bool OwnDeserializationListener, 408 bool Preamble, bool UseGlobalModuleIndex) { 409 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 410 411 IntrusiveRefCntPtr<ASTReader> Reader( 412 new ASTReader(PP, Context, Sysroot.empty() ? "" : Sysroot.c_str(), 413 DisablePCHValidation, AllowPCHWithCompilerErrors, 414 /*AllowConfigurationMismatch*/ false, 415 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 416 417 // We need the external source to be set up before we read the AST, because 418 // eagerly-deserialized declarations may use it. 419 Context.setExternalSource(Reader.get()); 420 421 Reader->setDeserializationListener( 422 static_cast<ASTDeserializationListener *>(DeserializationListener), 423 /*TakeOwnership=*/OwnDeserializationListener); 424 switch (Reader->ReadAST(Path, 425 Preamble ? serialization::MK_Preamble 426 : serialization::MK_PCH, 427 SourceLocation(), 428 ASTReader::ARR_None)) { 429 case ASTReader::Success: 430 // Set the predefines buffer as suggested by the PCH reader. Typically, the 431 // predefines buffer will be empty. 432 PP.setPredefines(Reader->getSuggestedPredefines()); 433 return Reader; 434 435 case ASTReader::Failure: 436 // Unrecoverable failure: don't even try to process the input file. 437 break; 438 439 case ASTReader::Missing: 440 case ASTReader::OutOfDate: 441 case ASTReader::VersionMismatch: 442 case ASTReader::ConfigurationMismatch: 443 case ASTReader::HadErrors: 444 // No suitable PCH file could be found. Return an error. 445 break; 446 } 447 448 Context.setExternalSource(nullptr); 449 return nullptr; 450 } 451 452 // Code Completion 453 454 static bool EnableCodeCompletion(Preprocessor &PP, 455 const std::string &Filename, 456 unsigned Line, 457 unsigned Column) { 458 // Tell the source manager to chop off the given file at a specific 459 // line and column. 460 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 461 if (!Entry) { 462 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 463 << Filename; 464 return true; 465 } 466 467 // Truncate the named file at the given line/column. 468 PP.SetCodeCompletionPoint(Entry, Line, Column); 469 return false; 470 } 471 472 void CompilerInstance::createCodeCompletionConsumer() { 473 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 474 if (!CompletionConsumer) { 475 setCodeCompletionConsumer( 476 createCodeCompletionConsumer(getPreprocessor(), 477 Loc.FileName, Loc.Line, Loc.Column, 478 getFrontendOpts().CodeCompleteOpts, 479 llvm::outs())); 480 if (!CompletionConsumer) 481 return; 482 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 483 Loc.Line, Loc.Column)) { 484 setCodeCompletionConsumer(nullptr); 485 return; 486 } 487 488 if (CompletionConsumer->isOutputBinary() && 489 llvm::sys::ChangeStdoutToBinary()) { 490 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 491 setCodeCompletionConsumer(nullptr); 492 } 493 } 494 495 void CompilerInstance::createFrontendTimer() { 496 FrontendTimer.reset(new llvm::Timer("Clang front-end timer")); 497 } 498 499 CodeCompleteConsumer * 500 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 501 const std::string &Filename, 502 unsigned Line, 503 unsigned Column, 504 const CodeCompleteOptions &Opts, 505 raw_ostream &OS) { 506 if (EnableCodeCompletion(PP, Filename, Line, Column)) 507 return nullptr; 508 509 // Set up the creation routine for code-completion. 510 return new PrintingCodeCompleteConsumer(Opts, OS); 511 } 512 513 void CompilerInstance::createSema(TranslationUnitKind TUKind, 514 CodeCompleteConsumer *CompletionConsumer) { 515 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 516 TUKind, CompletionConsumer)); 517 } 518 519 // Output Files 520 521 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 522 assert(OutFile.OS && "Attempt to add empty stream to output list!"); 523 OutputFiles.push_back(std::move(OutFile)); 524 } 525 526 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 527 for (OutputFile &OF : OutputFiles) { 528 // Manually close the stream before we rename it. 529 OF.OS.reset(); 530 531 if (!OF.TempFilename.empty()) { 532 if (EraseFiles) { 533 llvm::sys::fs::remove(OF.TempFilename); 534 } else { 535 SmallString<128> NewOutFile(OF.Filename); 536 537 // If '-working-directory' was passed, the output filename should be 538 // relative to that. 539 FileMgr->FixupRelativePath(NewOutFile); 540 if (std::error_code ec = 541 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 542 getDiagnostics().Report(diag::err_unable_to_rename_temp) 543 << OF.TempFilename << OF.Filename << ec.message(); 544 545 llvm::sys::fs::remove(OF.TempFilename); 546 } 547 } 548 } else if (!OF.Filename.empty() && EraseFiles) 549 llvm::sys::fs::remove(OF.Filename); 550 551 } 552 OutputFiles.clear(); 553 } 554 555 llvm::raw_fd_ostream * 556 CompilerInstance::createDefaultOutputFile(bool Binary, 557 StringRef InFile, 558 StringRef Extension) { 559 return createOutputFile(getFrontendOpts().OutputFile, Binary, 560 /*RemoveFileOnSignal=*/true, InFile, Extension, 561 /*UseTemporary=*/true); 562 } 563 564 llvm::raw_null_ostream *CompilerInstance::createNullOutputFile() { 565 auto OS = llvm::make_unique<llvm::raw_null_ostream>(); 566 llvm::raw_null_ostream *Ret = OS.get(); 567 addOutputFile(OutputFile("", "", std::move(OS))); 568 return Ret; 569 } 570 571 llvm::raw_fd_ostream * 572 CompilerInstance::createOutputFile(StringRef OutputPath, 573 bool Binary, bool RemoveFileOnSignal, 574 StringRef InFile, 575 StringRef Extension, 576 bool UseTemporary, 577 bool CreateMissingDirectories) { 578 std::string OutputPathName, TempPathName; 579 std::error_code EC; 580 std::unique_ptr<llvm::raw_fd_ostream> OS = createOutputFile( 581 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 582 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 583 if (!OS) { 584 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 585 << EC.message(); 586 return nullptr; 587 } 588 589 llvm::raw_fd_ostream *Ret = OS.get(); 590 // Add the output file -- but don't try to remove "-", since this means we are 591 // using stdin. 592 addOutputFile(OutputFile((OutputPathName != "-") ? OutputPathName : "", 593 TempPathName, std::move(OS))); 594 595 return Ret; 596 } 597 598 std::unique_ptr<llvm::raw_fd_ostream> CompilerInstance::createOutputFile( 599 StringRef OutputPath, std::error_code &Error, bool Binary, 600 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 601 bool UseTemporary, bool CreateMissingDirectories, 602 std::string *ResultPathName, std::string *TempPathName) { 603 assert((!CreateMissingDirectories || UseTemporary) && 604 "CreateMissingDirectories is only allowed when using temporary files"); 605 606 std::string OutFile, TempFile; 607 if (!OutputPath.empty()) { 608 OutFile = OutputPath; 609 } else if (InFile == "-") { 610 OutFile = "-"; 611 } else if (!Extension.empty()) { 612 SmallString<128> Path(InFile); 613 llvm::sys::path::replace_extension(Path, Extension); 614 OutFile = Path.str(); 615 } else { 616 OutFile = "-"; 617 } 618 619 std::unique_ptr<llvm::raw_fd_ostream> OS; 620 std::string OSFile; 621 622 if (UseTemporary) { 623 if (OutFile == "-") 624 UseTemporary = false; 625 else { 626 llvm::sys::fs::file_status Status; 627 llvm::sys::fs::status(OutputPath, Status); 628 if (llvm::sys::fs::exists(Status)) { 629 // Fail early if we can't write to the final destination. 630 if (!llvm::sys::fs::can_write(OutputPath)) 631 return nullptr; 632 633 // Don't use a temporary if the output is a special file. This handles 634 // things like '-o /dev/null' 635 if (!llvm::sys::fs::is_regular_file(Status)) 636 UseTemporary = false; 637 } 638 } 639 } 640 641 if (UseTemporary) { 642 // Create a temporary file. 643 SmallString<128> TempPath; 644 TempPath = OutFile; 645 TempPath += "-%%%%%%%%"; 646 int fd; 647 std::error_code EC = 648 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 649 650 if (CreateMissingDirectories && 651 EC == llvm::errc::no_such_file_or_directory) { 652 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 653 EC = llvm::sys::fs::create_directories(Parent); 654 if (!EC) { 655 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 656 } 657 } 658 659 if (!EC) { 660 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 661 OSFile = TempFile = TempPath.str(); 662 } 663 // If we failed to create the temporary, fallback to writing to the file 664 // directly. This handles the corner case where we cannot write to the 665 // directory, but can write to the file. 666 } 667 668 if (!OS) { 669 OSFile = OutFile; 670 OS.reset(new llvm::raw_fd_ostream( 671 OSFile, Error, 672 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 673 if (Error) 674 return nullptr; 675 } 676 677 // Make sure the out stream file gets removed if we crash. 678 if (RemoveFileOnSignal) 679 llvm::sys::RemoveFileOnSignal(OSFile); 680 681 if (ResultPathName) 682 *ResultPathName = OutFile; 683 if (TempPathName) 684 *TempPathName = TempFile; 685 686 return OS; 687 } 688 689 // Initialization Utilities 690 691 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 692 return InitializeSourceManager(Input, getDiagnostics(), 693 getFileManager(), getSourceManager(), 694 getFrontendOpts()); 695 } 696 697 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input, 698 DiagnosticsEngine &Diags, 699 FileManager &FileMgr, 700 SourceManager &SourceMgr, 701 const FrontendOptions &Opts) { 702 SrcMgr::CharacteristicKind 703 Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 704 705 if (Input.isBuffer()) { 706 SourceMgr.setMainFileID(SourceMgr.createFileID( 707 std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind)); 708 assert(!SourceMgr.getMainFileID().isInvalid() && 709 "Couldn't establish MainFileID!"); 710 return true; 711 } 712 713 StringRef InputFile = Input.getFile(); 714 715 // Figure out where to get and map in the main file. 716 if (InputFile != "-") { 717 const FileEntry *File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 718 if (!File) { 719 Diags.Report(diag::err_fe_error_reading) << InputFile; 720 return false; 721 } 722 723 // The natural SourceManager infrastructure can't currently handle named 724 // pipes, but we would at least like to accept them for the main 725 // file. Detect them here, read them with the volatile flag so FileMgr will 726 // pick up the correct size, and simply override their contents as we do for 727 // STDIN. 728 if (File->isNamedPipe()) { 729 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 730 if (MB) { 731 // Create a new virtual file that will have the correct size. 732 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 733 SourceMgr.overrideFileContents(File, std::move(*MB)); 734 } else { 735 Diags.Report(diag::err_cannot_open_file) << InputFile 736 << MB.getError().message(); 737 return false; 738 } 739 } 740 741 SourceMgr.setMainFileID( 742 SourceMgr.createFileID(File, SourceLocation(), Kind)); 743 } else { 744 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 745 llvm::MemoryBuffer::getSTDIN(); 746 if (std::error_code EC = SBOrErr.getError()) { 747 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 748 return false; 749 } 750 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 751 752 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 753 SB->getBufferSize(), 0); 754 SourceMgr.setMainFileID( 755 SourceMgr.createFileID(File, SourceLocation(), Kind)); 756 SourceMgr.overrideFileContents(File, std::move(SB)); 757 } 758 759 assert(!SourceMgr.getMainFileID().isInvalid() && 760 "Couldn't establish MainFileID!"); 761 return true; 762 } 763 764 // High-Level Operations 765 766 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 767 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 768 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 769 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 770 771 // FIXME: Take this as an argument, once all the APIs we used have moved to 772 // taking it as an input instead of hard-coding llvm::errs. 773 raw_ostream &OS = llvm::errs(); 774 775 // Create the target instance. 776 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 777 getInvocation().TargetOpts)); 778 if (!hasTarget()) 779 return false; 780 781 // Inform the target of the language options. 782 // 783 // FIXME: We shouldn't need to do this, the target should be immutable once 784 // created. This complexity should be lifted elsewhere. 785 getTarget().adjust(getLangOpts()); 786 787 // rewriter project will change target built-in bool type from its default. 788 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 789 getTarget().noSignedCharForObjCBool(); 790 791 // Validate/process some options. 792 if (getHeaderSearchOpts().Verbose) 793 OS << "clang -cc1 version " CLANG_VERSION_STRING 794 << " based upon " << BACKEND_PACKAGE_STRING 795 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 796 797 if (getFrontendOpts().ShowTimers) 798 createFrontendTimer(); 799 800 if (getFrontendOpts().ShowStats) 801 llvm::EnableStatistics(); 802 803 for (unsigned i = 0, e = getFrontendOpts().Inputs.size(); i != e; ++i) { 804 // Reset the ID tables if we are reusing the SourceManager and parsing 805 // regular files. 806 if (hasSourceManager() && !Act.isModelParsingAction()) 807 getSourceManager().clearIDTables(); 808 809 if (Act.BeginSourceFile(*this, getFrontendOpts().Inputs[i])) { 810 Act.Execute(); 811 Act.EndSourceFile(); 812 } 813 } 814 815 // Notify the diagnostic client that all files were processed. 816 getDiagnostics().getClient()->finish(); 817 818 if (getDiagnosticOpts().ShowCarets) { 819 // We can have multiple diagnostics sharing one diagnostic client. 820 // Get the total number of warnings/errors from the client. 821 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 822 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 823 824 if (NumWarnings) 825 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 826 if (NumWarnings && NumErrors) 827 OS << " and "; 828 if (NumErrors) 829 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 830 if (NumWarnings || NumErrors) 831 OS << " generated.\n"; 832 } 833 834 if (getFrontendOpts().ShowStats && hasFileManager()) { 835 getFileManager().PrintStats(); 836 OS << "\n"; 837 } 838 839 return !getDiagnostics().getClient()->getNumErrors(); 840 } 841 842 /// \brief Determine the appropriate source input kind based on language 843 /// options. 844 static InputKind getSourceInputKindFromOptions(const LangOptions &LangOpts) { 845 if (LangOpts.OpenCL) 846 return IK_OpenCL; 847 if (LangOpts.CUDA) 848 return IK_CUDA; 849 if (LangOpts.ObjC1) 850 return LangOpts.CPlusPlus? IK_ObjCXX : IK_ObjC; 851 return LangOpts.CPlusPlus? IK_CXX : IK_C; 852 } 853 854 /// \brief Compile a module file for the given module, using the options 855 /// provided by the importing compiler instance. Returns true if the module 856 /// was built without errors. 857 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 858 SourceLocation ImportLoc, 859 Module *Module, 860 StringRef ModuleFileName) { 861 ModuleMap &ModMap 862 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 863 864 // Construct a compiler invocation for creating this module. 865 IntrusiveRefCntPtr<CompilerInvocation> Invocation 866 (new CompilerInvocation(ImportingInstance.getInvocation())); 867 868 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 869 870 // For any options that aren't intended to affect how a module is built, 871 // reset them to their default values. 872 Invocation->getLangOpts()->resetNonModularOptions(); 873 PPOpts.resetNonModularOptions(); 874 875 // Remove any macro definitions that are explicitly ignored by the module. 876 // They aren't supposed to affect how the module is built anyway. 877 const HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 878 PPOpts.Macros.erase( 879 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 880 [&HSOpts](const std::pair<std::string, bool> &def) { 881 StringRef MacroDef = def.first; 882 return HSOpts.ModulesIgnoreMacros.count(MacroDef.split('=').first) > 0; 883 }), 884 PPOpts.Macros.end()); 885 886 // Note the name of the module we're building. 887 Invocation->getLangOpts()->CurrentModule = Module->getTopLevelModuleName(); 888 889 // Make sure that the failed-module structure has been allocated in 890 // the importing instance, and propagate the pointer to the newly-created 891 // instance. 892 PreprocessorOptions &ImportingPPOpts 893 = ImportingInstance.getInvocation().getPreprocessorOpts(); 894 if (!ImportingPPOpts.FailedModules) 895 ImportingPPOpts.FailedModules = new PreprocessorOptions::FailedModulesSet; 896 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 897 898 // If there is a module map file, build the module using the module map. 899 // Set up the inputs/outputs so that we build the module from its umbrella 900 // header. 901 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 902 FrontendOpts.OutputFile = ModuleFileName.str(); 903 FrontendOpts.DisableFree = false; 904 FrontendOpts.GenerateGlobalModuleIndex = false; 905 FrontendOpts.Inputs.clear(); 906 InputKind IK = getSourceInputKindFromOptions(*Invocation->getLangOpts()); 907 908 // Don't free the remapped file buffers; they are owned by our caller. 909 PPOpts.RetainRemappedFileBuffers = true; 910 911 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 912 assert(ImportingInstance.getInvocation().getModuleHash() == 913 Invocation->getModuleHash() && "Module hash mismatch!"); 914 915 // Construct a compiler instance that will be used to actually create the 916 // module. 917 CompilerInstance Instance(/*BuildingModule=*/true); 918 Instance.setInvocation(&*Invocation); 919 920 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 921 ImportingInstance.getDiagnosticClient()), 922 /*ShouldOwnClient=*/true); 923 924 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 925 926 // Note that this module is part of the module build stack, so that we 927 // can detect cycles in the module graph. 928 Instance.setFileManager(&ImportingInstance.getFileManager()); 929 Instance.createSourceManager(Instance.getFileManager()); 930 SourceManager &SourceMgr = Instance.getSourceManager(); 931 SourceMgr.setModuleBuildStack( 932 ImportingInstance.getSourceManager().getModuleBuildStack()); 933 SourceMgr.pushModuleBuildStack(Module->getTopLevelModuleName(), 934 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 935 936 // If we're collecting module dependencies, we need to share a collector 937 // between all of the module CompilerInstances. 938 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 939 940 // Get or create the module map that we'll use to build this module. 941 std::string InferredModuleMapContent; 942 if (const FileEntry *ModuleMapFile = 943 ModMap.getContainingModuleMapFile(Module)) { 944 // Use the module map where this module resides. 945 FrontendOpts.Inputs.push_back( 946 FrontendInputFile(ModuleMapFile->getName(), IK)); 947 } else { 948 llvm::raw_string_ostream OS(InferredModuleMapContent); 949 Module->print(OS); 950 OS.flush(); 951 FrontendOpts.Inputs.push_back( 952 FrontendInputFile("__inferred_module.map", IK)); 953 954 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 955 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 956 ModuleMapFile = Instance.getFileManager().getVirtualFile( 957 "__inferred_module.map", InferredModuleMapContent.size(), 0); 958 SourceMgr.overrideFileContents(ModuleMapFile, std::move(ModuleMapBuffer)); 959 } 960 961 // Construct a module-generating action. Passing through the module map is 962 // safe because the FileManager is shared between the compiler instances. 963 GenerateModuleAction CreateModuleAction( 964 ModMap.getModuleMapFileForUniquing(Module), Module->IsSystem); 965 966 ImportingInstance.getDiagnostics().Report(ImportLoc, 967 diag::remark_module_build) 968 << Module->Name << ModuleFileName; 969 970 // Execute the action to actually build the module in-place. Use a separate 971 // thread so that we get a stack large enough. 972 const unsigned ThreadStackSize = 8 << 20; 973 llvm::CrashRecoveryContext CRC; 974 CRC.RunSafelyOnThread([&]() { Instance.ExecuteAction(CreateModuleAction); }, 975 ThreadStackSize); 976 977 ImportingInstance.getDiagnostics().Report(ImportLoc, 978 diag::remark_module_build_done) 979 << Module->Name; 980 981 // Delete the temporary module map file. 982 // FIXME: Even though we're executing under crash protection, it would still 983 // be nice to do this with RemoveFileOnSignal when we can. However, that 984 // doesn't make sense for all clients, so clean this up manually. 985 Instance.clearOutputFiles(/*EraseFiles=*/true); 986 987 // We've rebuilt a module. If we're allowed to generate or update the global 988 // module index, record that fact in the importing compiler instance. 989 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 990 ImportingInstance.setBuildGlobalModuleIndex(true); 991 } 992 993 return !Instance.getDiagnostics().hasErrorOccurred(); 994 } 995 996 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 997 SourceLocation ImportLoc, 998 SourceLocation ModuleNameLoc, Module *Module, 999 StringRef ModuleFileName) { 1000 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1001 1002 auto diagnoseBuildFailure = [&] { 1003 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1004 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1005 }; 1006 1007 // FIXME: have LockFileManager return an error_code so that we can 1008 // avoid the mkdir when the directory already exists. 1009 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1010 llvm::sys::fs::create_directories(Dir); 1011 1012 while (1) { 1013 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1014 llvm::LockFileManager Locked(ModuleFileName); 1015 switch (Locked) { 1016 case llvm::LockFileManager::LFS_Error: 1017 Diags.Report(ModuleNameLoc, diag::err_module_lock_failure) 1018 << Module->Name; 1019 return false; 1020 1021 case llvm::LockFileManager::LFS_Owned: 1022 // We're responsible for building the module ourselves. 1023 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1024 ModuleFileName)) { 1025 diagnoseBuildFailure(); 1026 return false; 1027 } 1028 break; 1029 1030 case llvm::LockFileManager::LFS_Shared: 1031 // Someone else is responsible for building the module. Wait for them to 1032 // finish. 1033 switch (Locked.waitForUnlock()) { 1034 case llvm::LockFileManager::Res_Success: 1035 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1036 break; 1037 case llvm::LockFileManager::Res_OwnerDied: 1038 continue; // try again to get the lock. 1039 case llvm::LockFileManager::Res_Timeout: 1040 Diags.Report(ModuleNameLoc, diag::err_module_lock_timeout) 1041 << Module->Name; 1042 // Clear the lock file so that future invokations can make progress. 1043 Locked.unsafeRemoveLockFile(); 1044 return false; 1045 } 1046 break; 1047 } 1048 1049 // Try to read the module file, now that we've compiled it. 1050 ASTReader::ASTReadResult ReadResult = 1051 ImportingInstance.getModuleManager()->ReadAST( 1052 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1053 ModuleLoadCapabilities); 1054 1055 if (ReadResult == ASTReader::OutOfDate && 1056 Locked == llvm::LockFileManager::LFS_Shared) { 1057 // The module may be out of date in the presence of file system races, 1058 // or if one of its imports depends on header search paths that are not 1059 // consistent with this ImportingInstance. Try again... 1060 continue; 1061 } else if (ReadResult == ASTReader::Missing) { 1062 diagnoseBuildFailure(); 1063 } else if (ReadResult != ASTReader::Success && 1064 !Diags.hasErrorOccurred()) { 1065 // The ASTReader didn't diagnose the error, so conservatively report it. 1066 diagnoseBuildFailure(); 1067 } 1068 return ReadResult == ASTReader::Success; 1069 } 1070 } 1071 1072 /// \brief Diagnose differences between the current definition of the given 1073 /// configuration macro and the definition provided on the command line. 1074 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1075 Module *Mod, SourceLocation ImportLoc) { 1076 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1077 SourceManager &SourceMgr = PP.getSourceManager(); 1078 1079 // If this identifier has never had a macro definition, then it could 1080 // not have changed. 1081 if (!Id->hadMacroDefinition()) 1082 return; 1083 1084 // If this identifier does not currently have a macro definition, 1085 // check whether it had one on the command line. 1086 if (!Id->hasMacroDefinition()) { 1087 MacroDirective::DefInfo LatestDef = 1088 PP.getMacroDirectiveHistory(Id)->getDefinition(); 1089 for (MacroDirective::DefInfo Def = LatestDef; Def; 1090 Def = Def.getPreviousDefinition()) { 1091 FileID FID = SourceMgr.getFileID(Def.getLocation()); 1092 if (FID.isInvalid()) 1093 continue; 1094 1095 // We only care about the predefines buffer. 1096 if (FID != PP.getPredefinesFileID()) 1097 continue; 1098 1099 // This macro was defined on the command line, then #undef'd later. 1100 // Complain. 1101 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1102 << true << ConfigMacro << Mod->getFullModuleName(); 1103 if (LatestDef.isUndefined()) 1104 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1105 << true; 1106 return; 1107 } 1108 1109 // Okay: no definition in the predefines buffer. 1110 return; 1111 } 1112 1113 // This identifier has a macro definition. Check whether we had a definition 1114 // on the command line. 1115 MacroDirective::DefInfo LatestDef = 1116 PP.getMacroDirectiveHistory(Id)->getDefinition(); 1117 MacroDirective::DefInfo PredefinedDef; 1118 for (MacroDirective::DefInfo Def = LatestDef; Def; 1119 Def = Def.getPreviousDefinition()) { 1120 FileID FID = SourceMgr.getFileID(Def.getLocation()); 1121 if (FID.isInvalid()) 1122 continue; 1123 1124 // We only care about the predefines buffer. 1125 if (FID != PP.getPredefinesFileID()) 1126 continue; 1127 1128 PredefinedDef = Def; 1129 break; 1130 } 1131 1132 // If there was no definition for this macro in the predefines buffer, 1133 // complain. 1134 if (!PredefinedDef || 1135 (!PredefinedDef.getLocation().isValid() && 1136 PredefinedDef.getUndefLocation().isValid())) { 1137 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1138 << false << ConfigMacro << Mod->getFullModuleName(); 1139 PP.Diag(LatestDef.getLocation(), diag::note_module_def_undef_here) 1140 << false; 1141 return; 1142 } 1143 1144 // If the current macro definition is the same as the predefined macro 1145 // definition, it's okay. 1146 if (LatestDef.getMacroInfo() == PredefinedDef.getMacroInfo() || 1147 LatestDef.getMacroInfo()->isIdenticalTo(*PredefinedDef.getMacroInfo(),PP, 1148 /*Syntactically=*/true)) 1149 return; 1150 1151 // The macro definitions differ. 1152 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1153 << false << ConfigMacro << Mod->getFullModuleName(); 1154 PP.Diag(LatestDef.getLocation(), diag::note_module_def_undef_here) 1155 << false; 1156 } 1157 1158 /// \brief Write a new timestamp file with the given path. 1159 static void writeTimestampFile(StringRef TimestampFile) { 1160 std::error_code EC; 1161 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1162 } 1163 1164 /// \brief Prune the module cache of modules that haven't been accessed in 1165 /// a long time. 1166 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1167 struct stat StatBuf; 1168 llvm::SmallString<128> TimestampFile; 1169 TimestampFile = HSOpts.ModuleCachePath; 1170 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1171 1172 // Try to stat() the timestamp file. 1173 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1174 // If the timestamp file wasn't there, create one now. 1175 if (errno == ENOENT) { 1176 writeTimestampFile(TimestampFile); 1177 } 1178 return; 1179 } 1180 1181 // Check whether the time stamp is older than our pruning interval. 1182 // If not, do nothing. 1183 time_t TimeStampModTime = StatBuf.st_mtime; 1184 time_t CurrentTime = time(nullptr); 1185 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1186 return; 1187 1188 // Write a new timestamp file so that nobody else attempts to prune. 1189 // There is a benign race condition here, if two Clang instances happen to 1190 // notice at the same time that the timestamp is out-of-date. 1191 writeTimestampFile(TimestampFile); 1192 1193 // Walk the entire module cache, looking for unused module files and module 1194 // indices. 1195 std::error_code EC; 1196 SmallString<128> ModuleCachePathNative; 1197 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1198 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1199 Dir != DirEnd && !EC; Dir.increment(EC)) { 1200 // If we don't have a directory, there's nothing to look into. 1201 if (!llvm::sys::fs::is_directory(Dir->path())) 1202 continue; 1203 1204 // Walk all of the files within this directory. 1205 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1206 File != FileEnd && !EC; File.increment(EC)) { 1207 // We only care about module and global module index files. 1208 StringRef Extension = llvm::sys::path::extension(File->path()); 1209 if (Extension != ".pcm" && Extension != ".timestamp" && 1210 llvm::sys::path::filename(File->path()) != "modules.idx") 1211 continue; 1212 1213 // Look at this file. If we can't stat it, there's nothing interesting 1214 // there. 1215 if (::stat(File->path().c_str(), &StatBuf)) 1216 continue; 1217 1218 // If the file has been used recently enough, leave it there. 1219 time_t FileAccessTime = StatBuf.st_atime; 1220 if (CurrentTime - FileAccessTime <= 1221 time_t(HSOpts.ModuleCachePruneAfter)) { 1222 continue; 1223 } 1224 1225 // Remove the file. 1226 llvm::sys::fs::remove(File->path()); 1227 1228 // Remove the timestamp file. 1229 std::string TimpestampFilename = File->path() + ".timestamp"; 1230 llvm::sys::fs::remove(TimpestampFilename); 1231 } 1232 1233 // If we removed all of the files in the directory, remove the directory 1234 // itself. 1235 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1236 llvm::sys::fs::directory_iterator() && !EC) 1237 llvm::sys::fs::remove(Dir->path()); 1238 } 1239 } 1240 1241 void CompilerInstance::createModuleManager() { 1242 if (!ModuleManager) { 1243 if (!hasASTContext()) 1244 createASTContext(); 1245 1246 // If we're implicitly building modules but not currently recursively 1247 // building a module, check whether we need to prune the module cache. 1248 if (getLangOpts().ImplicitModules && 1249 getSourceManager().getModuleBuildStack().empty() && 1250 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1251 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1252 pruneModuleCache(getHeaderSearchOpts()); 1253 } 1254 1255 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1256 std::string Sysroot = HSOpts.Sysroot; 1257 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1258 ModuleManager = new ASTReader(getPreprocessor(), *Context, 1259 Sysroot.empty() ? "" : Sysroot.c_str(), 1260 PPOpts.DisablePCHValidation, 1261 /*AllowASTWithCompilerErrors=*/false, 1262 /*AllowConfigurationMismatch=*/false, 1263 HSOpts.ModulesValidateSystemHeaders, 1264 getFrontendOpts().UseGlobalModuleIndex); 1265 if (hasASTConsumer()) { 1266 ModuleManager->setDeserializationListener( 1267 getASTConsumer().GetASTDeserializationListener()); 1268 getASTContext().setASTMutationListener( 1269 getASTConsumer().GetASTMutationListener()); 1270 } 1271 getASTContext().setExternalSource(ModuleManager); 1272 if (hasSema()) 1273 ModuleManager->InitializeSema(getSema()); 1274 if (hasASTConsumer()) 1275 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1276 } 1277 } 1278 1279 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1280 // Helper to recursively read the module names for all modules we're adding. 1281 // We mark these as known and redirect any attempt to load that module to 1282 // the files we were handed. 1283 struct ReadModuleNames : ASTReaderListener { 1284 CompilerInstance &CI; 1285 std::vector<StringRef> ModuleFileStack; 1286 std::vector<StringRef> ModuleNameStack; 1287 bool Failed; 1288 bool TopFileIsModule; 1289 1290 ReadModuleNames(CompilerInstance &CI) 1291 : CI(CI), Failed(false), TopFileIsModule(false) {} 1292 1293 bool needsImportVisitation() const override { return true; } 1294 1295 void visitImport(StringRef FileName) override { 1296 if (!CI.ExplicitlyLoadedModuleFiles.insert(FileName).second) { 1297 if (ModuleFileStack.size() == 0) 1298 TopFileIsModule = true; 1299 return; 1300 } 1301 1302 ModuleFileStack.push_back(FileName); 1303 ModuleNameStack.push_back(StringRef()); 1304 if (ASTReader::readASTFileControlBlock(FileName, CI.getFileManager(), 1305 *this)) { 1306 CI.getDiagnostics().Report( 1307 SourceLocation(), CI.getFileManager().getBufferForFile(FileName) 1308 ? diag::err_module_file_invalid 1309 : diag::err_module_file_not_found) 1310 << FileName; 1311 for (int I = ModuleFileStack.size() - 2; I >= 0; --I) 1312 CI.getDiagnostics().Report(SourceLocation(), 1313 diag::note_module_file_imported_by) 1314 << ModuleFileStack[I] 1315 << !ModuleNameStack[I].empty() << ModuleNameStack[I]; 1316 Failed = true; 1317 } 1318 ModuleNameStack.pop_back(); 1319 ModuleFileStack.pop_back(); 1320 } 1321 1322 void ReadModuleName(StringRef ModuleName) override { 1323 if (ModuleFileStack.size() == 1) 1324 TopFileIsModule = true; 1325 ModuleNameStack.back() = ModuleName; 1326 1327 auto &ModuleFile = CI.ModuleFileOverrides[ModuleName]; 1328 if (!ModuleFile.empty() && 1329 CI.getFileManager().getFile(ModuleFile) != 1330 CI.getFileManager().getFile(ModuleFileStack.back())) 1331 CI.getDiagnostics().Report(SourceLocation(), 1332 diag::err_conflicting_module_files) 1333 << ModuleName << ModuleFile << ModuleFileStack.back(); 1334 ModuleFile = ModuleFileStack.back(); 1335 } 1336 } RMN(*this); 1337 1338 // If we don't already have an ASTReader, create one now. 1339 if (!ModuleManager) 1340 createModuleManager(); 1341 1342 // Tell the module manager about this module file. 1343 if (getModuleManager()->getModuleManager().addKnownModuleFile(FileName)) { 1344 getDiagnostics().Report(SourceLocation(), diag::err_module_file_not_found) 1345 << FileName; 1346 return false; 1347 } 1348 1349 // Build our mapping of module names to module files from this file 1350 // and its imports. 1351 RMN.visitImport(FileName); 1352 1353 if (RMN.Failed) 1354 return false; 1355 1356 // If we never found a module name for the top file, then it's not a module, 1357 // it's a PCH or preamble or something. 1358 if (!RMN.TopFileIsModule) { 1359 getDiagnostics().Report(SourceLocation(), diag::err_module_file_not_module) 1360 << FileName; 1361 return false; 1362 } 1363 1364 return true; 1365 } 1366 1367 ModuleLoadResult 1368 CompilerInstance::loadModule(SourceLocation ImportLoc, 1369 ModuleIdPath Path, 1370 Module::NameVisibilityKind Visibility, 1371 bool IsInclusionDirective) { 1372 // Determine what file we're searching from. 1373 StringRef ModuleName = Path[0].first->getName(); 1374 SourceLocation ModuleNameLoc = Path[0].second; 1375 1376 // If we've already handled this import, just return the cached result. 1377 // This one-element cache is important to eliminate redundant diagnostics 1378 // when both the preprocessor and parser see the same import declaration. 1379 if (!ImportLoc.isInvalid() && LastModuleImportLoc == ImportLoc) { 1380 // Make the named module visible. 1381 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule && 1382 ModuleName != getLangOpts().ImplementationOfModule) 1383 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1384 ImportLoc, /*Complain=*/false); 1385 return LastModuleImportResult; 1386 } 1387 1388 clang::Module *Module = nullptr; 1389 1390 // If we don't already have information on this module, load the module now. 1391 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1392 = KnownModules.find(Path[0].first); 1393 if (Known != KnownModules.end()) { 1394 // Retrieve the cached top-level module. 1395 Module = Known->second; 1396 } else if (ModuleName == getLangOpts().CurrentModule || 1397 ModuleName == getLangOpts().ImplementationOfModule) { 1398 // This is the module we're building. 1399 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1400 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1401 } else { 1402 // Search for a module with the given name. 1403 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1404 if (!Module) { 1405 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1406 << ModuleName 1407 << SourceRange(ImportLoc, ModuleNameLoc); 1408 ModuleBuildFailed = true; 1409 return ModuleLoadResult(); 1410 } 1411 1412 auto Override = ModuleFileOverrides.find(ModuleName); 1413 bool Explicit = Override != ModuleFileOverrides.end(); 1414 if (!Explicit && !getLangOpts().ImplicitModules) { 1415 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1416 << ModuleName; 1417 ModuleBuildFailed = true; 1418 return ModuleLoadResult(); 1419 } 1420 1421 std::string ModuleFileName = 1422 Explicit ? Override->second 1423 : PP->getHeaderSearchInfo().getModuleFileName(Module); 1424 1425 // If we don't already have an ASTReader, create one now. 1426 if (!ModuleManager) 1427 createModuleManager(); 1428 1429 if (TheDependencyFileGenerator) 1430 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1431 1432 if (ModuleDepCollector) 1433 ModuleDepCollector->attachToASTReader(*ModuleManager); 1434 1435 for (auto &Listener : DependencyCollectors) 1436 Listener->attachToASTReader(*ModuleManager); 1437 1438 // Try to load the module file. 1439 unsigned ARRFlags = 1440 Explicit ? 0 : ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing; 1441 switch (ModuleManager->ReadAST(ModuleFileName, 1442 Explicit ? serialization::MK_ExplicitModule 1443 : serialization::MK_ImplicitModule, 1444 ImportLoc, ARRFlags)) { 1445 case ASTReader::Success: 1446 break; 1447 1448 case ASTReader::OutOfDate: 1449 case ASTReader::Missing: { 1450 if (Explicit) { 1451 // ReadAST has already complained for us. 1452 ModuleLoader::HadFatalFailure = true; 1453 KnownModules[Path[0].first] = nullptr; 1454 return ModuleLoadResult(); 1455 } 1456 1457 // The module file is missing or out-of-date. Build it. 1458 assert(Module && "missing module file"); 1459 // Check whether there is a cycle in the module graph. 1460 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1461 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1462 for (; Pos != PosEnd; ++Pos) { 1463 if (Pos->first == ModuleName) 1464 break; 1465 } 1466 1467 if (Pos != PosEnd) { 1468 SmallString<256> CyclePath; 1469 for (; Pos != PosEnd; ++Pos) { 1470 CyclePath += Pos->first; 1471 CyclePath += " -> "; 1472 } 1473 CyclePath += ModuleName; 1474 1475 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1476 << ModuleName << CyclePath; 1477 return ModuleLoadResult(); 1478 } 1479 1480 // Check whether we have already attempted to build this module (but 1481 // failed). 1482 if (getPreprocessorOpts().FailedModules && 1483 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1484 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1485 << ModuleName 1486 << SourceRange(ImportLoc, ModuleNameLoc); 1487 ModuleBuildFailed = true; 1488 return ModuleLoadResult(); 1489 } 1490 1491 // Try to compile and then load the module. 1492 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1493 ModuleFileName)) { 1494 assert(getDiagnostics().hasErrorOccurred() && 1495 "undiagnosed error in compileAndLoadModule"); 1496 if (getPreprocessorOpts().FailedModules) 1497 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1498 KnownModules[Path[0].first] = nullptr; 1499 ModuleBuildFailed = true; 1500 return ModuleLoadResult(); 1501 } 1502 1503 // Okay, we've rebuilt and now loaded the module. 1504 break; 1505 } 1506 1507 case ASTReader::VersionMismatch: 1508 case ASTReader::ConfigurationMismatch: 1509 case ASTReader::HadErrors: 1510 ModuleLoader::HadFatalFailure = true; 1511 // FIXME: The ASTReader will already have complained, but can we showhorn 1512 // that diagnostic information into a more useful form? 1513 KnownModules[Path[0].first] = nullptr; 1514 return ModuleLoadResult(); 1515 1516 case ASTReader::Failure: 1517 ModuleLoader::HadFatalFailure = true; 1518 // Already complained, but note now that we failed. 1519 KnownModules[Path[0].first] = nullptr; 1520 ModuleBuildFailed = true; 1521 return ModuleLoadResult(); 1522 } 1523 1524 // Cache the result of this top-level module lookup for later. 1525 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1526 } 1527 1528 // If we never found the module, fail. 1529 if (!Module) 1530 return ModuleLoadResult(); 1531 1532 // Verify that the rest of the module path actually corresponds to 1533 // a submodule. 1534 if (Path.size() > 1) { 1535 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1536 StringRef Name = Path[I].first->getName(); 1537 clang::Module *Sub = Module->findSubmodule(Name); 1538 1539 if (!Sub) { 1540 // Attempt to perform typo correction to find a module name that works. 1541 SmallVector<StringRef, 2> Best; 1542 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1543 1544 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1545 JEnd = Module->submodule_end(); 1546 J != JEnd; ++J) { 1547 unsigned ED = Name.edit_distance((*J)->Name, 1548 /*AllowReplacements=*/true, 1549 BestEditDistance); 1550 if (ED <= BestEditDistance) { 1551 if (ED < BestEditDistance) { 1552 Best.clear(); 1553 BestEditDistance = ED; 1554 } 1555 1556 Best.push_back((*J)->Name); 1557 } 1558 } 1559 1560 // If there was a clear winner, user it. 1561 if (Best.size() == 1) { 1562 getDiagnostics().Report(Path[I].second, 1563 diag::err_no_submodule_suggest) 1564 << Path[I].first << Module->getFullModuleName() << Best[0] 1565 << SourceRange(Path[0].second, Path[I-1].second) 1566 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1567 Best[0]); 1568 1569 Sub = Module->findSubmodule(Best[0]); 1570 } 1571 } 1572 1573 if (!Sub) { 1574 // No submodule by this name. Complain, and don't look for further 1575 // submodules. 1576 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1577 << Path[I].first << Module->getFullModuleName() 1578 << SourceRange(Path[0].second, Path[I-1].second); 1579 break; 1580 } 1581 1582 Module = Sub; 1583 } 1584 } 1585 1586 // Don't make the module visible if we are in the implementation. 1587 if (ModuleName == getLangOpts().ImplementationOfModule) 1588 return ModuleLoadResult(Module, false); 1589 1590 // Make the named module visible, if it's not already part of the module 1591 // we are parsing. 1592 if (ModuleName != getLangOpts().CurrentModule) { 1593 if (!Module->IsFromModuleFile) { 1594 // We have an umbrella header or directory that doesn't actually include 1595 // all of the headers within the directory it covers. Complain about 1596 // this missing submodule and recover by forgetting that we ever saw 1597 // this submodule. 1598 // FIXME: Should we detect this at module load time? It seems fairly 1599 // expensive (and rare). 1600 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1601 << Module->getFullModuleName() 1602 << SourceRange(Path.front().second, Path.back().second); 1603 1604 return ModuleLoadResult(nullptr, true); 1605 } 1606 1607 // Check whether this module is available. 1608 clang::Module::Requirement Requirement; 1609 clang::Module::UnresolvedHeaderDirective MissingHeader; 1610 if (!Module->isAvailable(getLangOpts(), getTarget(), Requirement, 1611 MissingHeader)) { 1612 if (MissingHeader.FileNameLoc.isValid()) { 1613 getDiagnostics().Report(MissingHeader.FileNameLoc, 1614 diag::err_module_header_missing) 1615 << MissingHeader.IsUmbrella << MissingHeader.FileName; 1616 } else { 1617 getDiagnostics().Report(ImportLoc, diag::err_module_unavailable) 1618 << Module->getFullModuleName() 1619 << Requirement.second << Requirement.first 1620 << SourceRange(Path.front().second, Path.back().second); 1621 } 1622 LastModuleImportLoc = ImportLoc; 1623 LastModuleImportResult = ModuleLoadResult(); 1624 return ModuleLoadResult(); 1625 } 1626 1627 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc, 1628 /*Complain=*/true); 1629 } 1630 1631 // Check for any configuration macros that have changed. 1632 clang::Module *TopModule = Module->getTopLevelModule(); 1633 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1634 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1635 Module, ImportLoc); 1636 } 1637 1638 // Determine whether we're in the #include buffer for a module. The #includes 1639 // in that buffer do not qualify as module imports; they're just an 1640 // implementation detail of us building the module. 1641 bool IsInModuleIncludes = !getLangOpts().CurrentModule.empty() && 1642 getSourceManager().getFileID(ImportLoc) == 1643 getSourceManager().getMainFileID(); 1644 1645 // If this module import was due to an inclusion directive, create an 1646 // implicit import declaration to capture it in the AST. 1647 if (IsInclusionDirective && hasASTContext() && !IsInModuleIncludes) { 1648 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 1649 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 1650 ImportLoc, Module, 1651 Path.back().second); 1652 TU->addDecl(ImportD); 1653 if (Consumer) 1654 Consumer->HandleImplicitImportDecl(ImportD); 1655 } 1656 1657 LastModuleImportLoc = ImportLoc; 1658 LastModuleImportResult = ModuleLoadResult(Module, false); 1659 return LastModuleImportResult; 1660 } 1661 1662 void CompilerInstance::makeModuleVisible(Module *Mod, 1663 Module::NameVisibilityKind Visibility, 1664 SourceLocation ImportLoc, 1665 bool Complain){ 1666 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc, Complain); 1667 } 1668 1669 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 1670 SourceLocation TriggerLoc) { 1671 if (!ModuleManager) 1672 createModuleManager(); 1673 // Can't do anything if we don't have the module manager. 1674 if (!ModuleManager) 1675 return nullptr; 1676 // Get an existing global index. This loads it if not already 1677 // loaded. 1678 ModuleManager->loadGlobalIndex(); 1679 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 1680 // If the global index doesn't exist, create it. 1681 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 1682 hasPreprocessor()) { 1683 llvm::sys::fs::create_directories( 1684 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1685 GlobalModuleIndex::writeIndex( 1686 getFileManager(), 1687 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1688 ModuleManager->resetForReload(); 1689 ModuleManager->loadGlobalIndex(); 1690 GlobalIndex = ModuleManager->getGlobalIndex(); 1691 } 1692 // For finding modules needing to be imported for fixit messages, 1693 // we need to make the global index cover all modules, so we do that here. 1694 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 1695 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1696 bool RecreateIndex = false; 1697 for (ModuleMap::module_iterator I = MMap.module_begin(), 1698 E = MMap.module_end(); I != E; ++I) { 1699 Module *TheModule = I->second; 1700 const FileEntry *Entry = TheModule->getASTFile(); 1701 if (!Entry) { 1702 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 1703 Path.push_back(std::make_pair( 1704 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 1705 std::reverse(Path.begin(), Path.end()); 1706 // Load a module as hidden. This also adds it to the global index. 1707 loadModule(TheModule->DefinitionLoc, Path, 1708 Module::Hidden, false); 1709 RecreateIndex = true; 1710 } 1711 } 1712 if (RecreateIndex) { 1713 GlobalModuleIndex::writeIndex( 1714 getFileManager(), 1715 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1716 ModuleManager->resetForReload(); 1717 ModuleManager->loadGlobalIndex(); 1718 GlobalIndex = ModuleManager->getGlobalIndex(); 1719 } 1720 HaveFullGlobalModuleIndex = true; 1721 } 1722 return GlobalIndex; 1723 } 1724 1725 // Check global module index for missing imports. 1726 bool 1727 CompilerInstance::lookupMissingImports(StringRef Name, 1728 SourceLocation TriggerLoc) { 1729 // Look for the symbol in non-imported modules, but only if an error 1730 // actually occurred. 1731 if (!buildingModule()) { 1732 // Load global module index, or retrieve a previously loaded one. 1733 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 1734 TriggerLoc); 1735 1736 // Only if we have a global index. 1737 if (GlobalIndex) { 1738 GlobalModuleIndex::HitSet FoundModules; 1739 1740 // Find the modules that reference the identifier. 1741 // Note that this only finds top-level modules. 1742 // We'll let diagnoseTypo find the actual declaration module. 1743 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 1744 return true; 1745 } 1746 } 1747 1748 return false; 1749 } 1750 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 1751