xref: /llvm-project/clang/lib/CodeGen/CodeGenTypes.cpp (revision a1fae98ba95c18ea6b673fc3c177b917e0f5aa56)
1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTypes.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36   SkippedLayout = false;
37 }
38 
39 CodeGenTypes::~CodeGenTypes() {
40   for (llvm::FoldingSet<CGFunctionInfo>::iterator
41        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
42     delete &*I++;
43 }
44 
45 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
46   return CGM.getCodeGenOpts();
47 }
48 
49 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
50                                      llvm::StructType *Ty,
51                                      StringRef suffix) {
52   SmallString<256> TypeName;
53   llvm::raw_svector_ostream OS(TypeName);
54   OS << RD->getKindName() << '.';
55 
56   // FIXME: We probably want to make more tweaks to the printing policy. For
57   // example, we should probably enable PrintCanonicalTypes and
58   // FullyQualifiedNames.
59   PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy();
60   Policy.SuppressInlineNamespace = false;
61 
62   // Name the codegen type after the typedef name
63   // if there is no tag type name available
64   if (RD->getIdentifier()) {
65     // FIXME: We should not have to check for a null decl context here.
66     // Right now we do it because the implicit Obj-C decls don't have one.
67     if (RD->getDeclContext())
68       RD->printQualifiedName(OS, Policy);
69     else
70       RD->printName(OS, Policy);
71   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
72     // FIXME: We should not have to check for a null decl context here.
73     // Right now we do it because the implicit Obj-C decls don't have one.
74     if (TDD->getDeclContext())
75       TDD->printQualifiedName(OS, Policy);
76     else
77       TDD->printName(OS);
78   } else
79     OS << "anon";
80 
81   if (!suffix.empty())
82     OS << suffix;
83 
84   Ty->setName(OS.str());
85 }
86 
87 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
88 /// ConvertType in that it is used to convert to the memory representation for
89 /// a type.  For example, the scalar representation for _Bool is i1, but the
90 /// memory representation is usually i8 or i32, depending on the target.
91 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
92   if (T->isConstantMatrixType()) {
93     const Type *Ty = Context.getCanonicalType(T).getTypePtr();
94     const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
95     return llvm::ArrayType::get(ConvertType(MT->getElementType()),
96                                 MT->getNumRows() * MT->getNumColumns());
97   }
98 
99   llvm::Type *R = ConvertType(T);
100 
101   // Check for the boolean vector case.
102   if (T->isExtVectorBoolType()) {
103     auto *FixedVT = cast<llvm::FixedVectorType>(R);
104     // Pad to at least one byte.
105     uint64_t BytePadded = std::max<uint64_t>(FixedVT->getNumElements(), 8);
106     return llvm::IntegerType::get(FixedVT->getContext(), BytePadded);
107   }
108 
109   // If this is a bool type, or a bit-precise integer type in a bitfield
110   // representation, map this integer to the target-specified size.
111   if ((ForBitField && T->isBitIntType()) ||
112       (!T->isBitIntType() && R->isIntegerTy(1)))
113     return llvm::IntegerType::get(getLLVMContext(),
114                                   (unsigned)Context.getTypeSize(T));
115 
116   // Else, don't map it.
117   return R;
118 }
119 
120 /// isRecordLayoutComplete - Return true if the specified type is already
121 /// completely laid out.
122 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
123   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
124   RecordDeclTypes.find(Ty);
125   return I != RecordDeclTypes.end() && !I->second->isOpaque();
126 }
127 
128 static bool
129 isSafeToConvert(QualType T, CodeGenTypes &CGT,
130                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
131 
132 
133 /// isSafeToConvert - Return true if it is safe to convert the specified record
134 /// decl to IR and lay it out, false if doing so would cause us to get into a
135 /// recursive compilation mess.
136 static bool
137 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
138                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
139   // If we have already checked this type (maybe the same type is used by-value
140   // multiple times in multiple structure fields, don't check again.
141   if (!AlreadyChecked.insert(RD).second)
142     return true;
143 
144   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
145 
146   // If this type is already laid out, converting it is a noop.
147   if (CGT.isRecordLayoutComplete(Key)) return true;
148 
149   // If this type is currently being laid out, we can't recursively compile it.
150   if (CGT.isRecordBeingLaidOut(Key))
151     return false;
152 
153   // If this type would require laying out bases that are currently being laid
154   // out, don't do it.  This includes virtual base classes which get laid out
155   // when a class is translated, even though they aren't embedded by-value into
156   // the class.
157   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
158     for (const auto &I : CRD->bases())
159       if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT,
160                            AlreadyChecked))
161         return false;
162   }
163 
164   // If this type would require laying out members that are currently being laid
165   // out, don't do it.
166   for (const auto *I : RD->fields())
167     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
168       return false;
169 
170   // If there are no problems, lets do it.
171   return true;
172 }
173 
174 /// isSafeToConvert - Return true if it is safe to convert this field type,
175 /// which requires the structure elements contained by-value to all be
176 /// recursively safe to convert.
177 static bool
178 isSafeToConvert(QualType T, CodeGenTypes &CGT,
179                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
180   // Strip off atomic type sugar.
181   if (const auto *AT = T->getAs<AtomicType>())
182     T = AT->getValueType();
183 
184   // If this is a record, check it.
185   if (const auto *RT = T->getAs<RecordType>())
186     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
187 
188   // If this is an array, check the elements, which are embedded inline.
189   if (const auto *AT = CGT.getContext().getAsArrayType(T))
190     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
191 
192   // Otherwise, there is no concern about transforming this.  We only care about
193   // things that are contained by-value in a structure that can have another
194   // structure as a member.
195   return true;
196 }
197 
198 
199 /// isSafeToConvert - Return true if it is safe to convert the specified record
200 /// decl to IR and lay it out, false if doing so would cause us to get into a
201 /// recursive compilation mess.
202 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
203   // If no structs are being laid out, we can certainly do this one.
204   if (CGT.noRecordsBeingLaidOut()) return true;
205 
206   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
207   return isSafeToConvert(RD, CGT, AlreadyChecked);
208 }
209 
210 /// isFuncParamTypeConvertible - Return true if the specified type in a
211 /// function parameter or result position can be converted to an IR type at this
212 /// point.  This boils down to being whether it is complete, as well as whether
213 /// we've temporarily deferred expanding the type because we're in a recursive
214 /// context.
215 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
216   // Some ABIs cannot have their member pointers represented in IR unless
217   // certain circumstances have been reached.
218   if (const auto *MPT = Ty->getAs<MemberPointerType>())
219     return getCXXABI().isMemberPointerConvertible(MPT);
220 
221   // If this isn't a tagged type, we can convert it!
222   const TagType *TT = Ty->getAs<TagType>();
223   if (!TT) return true;
224 
225   // Incomplete types cannot be converted.
226   if (TT->isIncompleteType())
227     return false;
228 
229   // If this is an enum, then it is always safe to convert.
230   const RecordType *RT = dyn_cast<RecordType>(TT);
231   if (!RT) return true;
232 
233   // Otherwise, we have to be careful.  If it is a struct that we're in the
234   // process of expanding, then we can't convert the function type.  That's ok
235   // though because we must be in a pointer context under the struct, so we can
236   // just convert it to a dummy type.
237   //
238   // We decide this by checking whether ConvertRecordDeclType returns us an
239   // opaque type for a struct that we know is defined.
240   return isSafeToConvert(RT->getDecl(), *this);
241 }
242 
243 
244 /// Code to verify a given function type is complete, i.e. the return type
245 /// and all of the parameter types are complete.  Also check to see if we are in
246 /// a RS_StructPointer context, and if so whether any struct types have been
247 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
248 /// that cannot be converted to an IR type.
249 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
250   if (!isFuncParamTypeConvertible(FT->getReturnType()))
251     return false;
252 
253   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
254     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
255       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
256         return false;
257 
258   return true;
259 }
260 
261 /// UpdateCompletedType - When we find the full definition for a TagDecl,
262 /// replace the 'opaque' type we previously made for it if applicable.
263 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
264   // If this is an enum being completed, then we flush all non-struct types from
265   // the cache.  This allows function types and other things that may be derived
266   // from the enum to be recomputed.
267   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
268     // Only flush the cache if we've actually already converted this type.
269     if (TypeCache.count(ED->getTypeForDecl())) {
270       // Okay, we formed some types based on this.  We speculated that the enum
271       // would be lowered to i32, so we only need to flush the cache if this
272       // didn't happen.
273       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
274         TypeCache.clear();
275     }
276     // If necessary, provide the full definition of a type only used with a
277     // declaration so far.
278     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
279       DI->completeType(ED);
280     return;
281   }
282 
283   // If we completed a RecordDecl that we previously used and converted to an
284   // anonymous type, then go ahead and complete it now.
285   const RecordDecl *RD = cast<RecordDecl>(TD);
286   if (RD->isDependentType()) return;
287 
288   // Only complete it if we converted it already.  If we haven't converted it
289   // yet, we'll just do it lazily.
290   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
291     ConvertRecordDeclType(RD);
292 
293   // If necessary, provide the full definition of a type only used with a
294   // declaration so far.
295   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
296     DI->completeType(RD);
297 }
298 
299 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
300   QualType T = Context.getRecordType(RD);
301   T = Context.getCanonicalType(T);
302 
303   const Type *Ty = T.getTypePtr();
304   if (RecordsWithOpaqueMemberPointers.count(Ty)) {
305     TypeCache.clear();
306     RecordsWithOpaqueMemberPointers.clear();
307   }
308 }
309 
310 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
311                                     const llvm::fltSemantics &format,
312                                     bool UseNativeHalf = false) {
313   if (&format == &llvm::APFloat::IEEEhalf()) {
314     if (UseNativeHalf)
315       return llvm::Type::getHalfTy(VMContext);
316     else
317       return llvm::Type::getInt16Ty(VMContext);
318   }
319   if (&format == &llvm::APFloat::BFloat())
320     return llvm::Type::getBFloatTy(VMContext);
321   if (&format == &llvm::APFloat::IEEEsingle())
322     return llvm::Type::getFloatTy(VMContext);
323   if (&format == &llvm::APFloat::IEEEdouble())
324     return llvm::Type::getDoubleTy(VMContext);
325   if (&format == &llvm::APFloat::IEEEquad())
326     return llvm::Type::getFP128Ty(VMContext);
327   if (&format == &llvm::APFloat::PPCDoubleDouble())
328     return llvm::Type::getPPC_FP128Ty(VMContext);
329   if (&format == &llvm::APFloat::x87DoubleExtended())
330     return llvm::Type::getX86_FP80Ty(VMContext);
331   llvm_unreachable("Unknown float format!");
332 }
333 
334 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
335   assert(QFT.isCanonical());
336   const Type *Ty = QFT.getTypePtr();
337   const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
338   // First, check whether we can build the full function type.  If the
339   // function type depends on an incomplete type (e.g. a struct or enum), we
340   // cannot lower the function type.
341   if (!isFuncTypeConvertible(FT)) {
342     // This function's type depends on an incomplete tag type.
343 
344     // Force conversion of all the relevant record types, to make sure
345     // we re-convert the FunctionType when appropriate.
346     if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
347       ConvertRecordDeclType(RT->getDecl());
348     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
349       for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
350         if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
351           ConvertRecordDeclType(RT->getDecl());
352 
353     SkippedLayout = true;
354 
355     // Return a placeholder type.
356     return llvm::StructType::get(getLLVMContext());
357   }
358 
359   // While we're converting the parameter types for a function, we don't want
360   // to recursively convert any pointed-to structs.  Converting directly-used
361   // structs is ok though.
362   if (!RecordsBeingLaidOut.insert(Ty).second) {
363     SkippedLayout = true;
364     return llvm::StructType::get(getLLVMContext());
365   }
366 
367   // The function type can be built; call the appropriate routines to
368   // build it.
369   const CGFunctionInfo *FI;
370   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
371     FI = &arrangeFreeFunctionType(
372         CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
373   } else {
374     const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
375     FI = &arrangeFreeFunctionType(
376         CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
377   }
378 
379   llvm::Type *ResultType = nullptr;
380   // If there is something higher level prodding our CGFunctionInfo, then
381   // don't recurse into it again.
382   if (FunctionsBeingProcessed.count(FI)) {
383 
384     ResultType = llvm::StructType::get(getLLVMContext());
385     SkippedLayout = true;
386   } else {
387 
388     // Otherwise, we're good to go, go ahead and convert it.
389     ResultType = GetFunctionType(*FI);
390   }
391 
392   RecordsBeingLaidOut.erase(Ty);
393 
394   if (RecordsBeingLaidOut.empty())
395     while (!DeferredRecords.empty())
396       ConvertRecordDeclType(DeferredRecords.pop_back_val());
397   return ResultType;
398 }
399 
400 /// ConvertType - Convert the specified type to its LLVM form.
401 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
402   T = Context.getCanonicalType(T);
403 
404   const Type *Ty = T.getTypePtr();
405 
406   // For the device-side compilation, CUDA device builtin surface/texture types
407   // may be represented in different types.
408   if (Context.getLangOpts().CUDAIsDevice) {
409     if (T->isCUDADeviceBuiltinSurfaceType()) {
410       if (auto *Ty = CGM.getTargetCodeGenInfo()
411                          .getCUDADeviceBuiltinSurfaceDeviceType())
412         return Ty;
413     } else if (T->isCUDADeviceBuiltinTextureType()) {
414       if (auto *Ty = CGM.getTargetCodeGenInfo()
415                          .getCUDADeviceBuiltinTextureDeviceType())
416         return Ty;
417     }
418   }
419 
420   // RecordTypes are cached and processed specially.
421   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
422     return ConvertRecordDeclType(RT->getDecl());
423 
424   // The LLVM type we return for a given Clang type may not always be the same,
425   // most notably when dealing with recursive structs. We mark these potential
426   // cases with ShouldUseCache below. Builtin types cannot be recursive.
427   // TODO: when clang uses LLVM opaque pointers we won't be able to represent
428   // recursive types with LLVM types, making this logic much simpler.
429   llvm::Type *CachedType = nullptr;
430   bool ShouldUseCache =
431       Ty->isBuiltinType() ||
432       (noRecordsBeingLaidOut() && FunctionsBeingProcessed.empty());
433   if (ShouldUseCache) {
434     llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI =
435         TypeCache.find(Ty);
436     if (TCI != TypeCache.end())
437       CachedType = TCI->second;
438       // With expensive checks, check that the type we compute matches the
439       // cached type.
440 #ifndef EXPENSIVE_CHECKS
441     if (CachedType)
442       return CachedType;
443 #endif
444   }
445 
446   // If we don't have it in the cache, convert it now.
447   llvm::Type *ResultType = nullptr;
448   switch (Ty->getTypeClass()) {
449   case Type::Record: // Handled above.
450 #define TYPE(Class, Base)
451 #define ABSTRACT_TYPE(Class, Base)
452 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
453 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
454 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
455 #include "clang/AST/TypeNodes.inc"
456     llvm_unreachable("Non-canonical or dependent types aren't possible.");
457 
458   case Type::Builtin: {
459     switch (cast<BuiltinType>(Ty)->getKind()) {
460     case BuiltinType::Void:
461     case BuiltinType::ObjCId:
462     case BuiltinType::ObjCClass:
463     case BuiltinType::ObjCSel:
464       // LLVM void type can only be used as the result of a function call.  Just
465       // map to the same as char.
466       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
467       break;
468 
469     case BuiltinType::Bool:
470       // Note that we always return bool as i1 for use as a scalar type.
471       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
472       break;
473 
474     case BuiltinType::Char_S:
475     case BuiltinType::Char_U:
476     case BuiltinType::SChar:
477     case BuiltinType::UChar:
478     case BuiltinType::Short:
479     case BuiltinType::UShort:
480     case BuiltinType::Int:
481     case BuiltinType::UInt:
482     case BuiltinType::Long:
483     case BuiltinType::ULong:
484     case BuiltinType::LongLong:
485     case BuiltinType::ULongLong:
486     case BuiltinType::WChar_S:
487     case BuiltinType::WChar_U:
488     case BuiltinType::Char8:
489     case BuiltinType::Char16:
490     case BuiltinType::Char32:
491     case BuiltinType::ShortAccum:
492     case BuiltinType::Accum:
493     case BuiltinType::LongAccum:
494     case BuiltinType::UShortAccum:
495     case BuiltinType::UAccum:
496     case BuiltinType::ULongAccum:
497     case BuiltinType::ShortFract:
498     case BuiltinType::Fract:
499     case BuiltinType::LongFract:
500     case BuiltinType::UShortFract:
501     case BuiltinType::UFract:
502     case BuiltinType::ULongFract:
503     case BuiltinType::SatShortAccum:
504     case BuiltinType::SatAccum:
505     case BuiltinType::SatLongAccum:
506     case BuiltinType::SatUShortAccum:
507     case BuiltinType::SatUAccum:
508     case BuiltinType::SatULongAccum:
509     case BuiltinType::SatShortFract:
510     case BuiltinType::SatFract:
511     case BuiltinType::SatLongFract:
512     case BuiltinType::SatUShortFract:
513     case BuiltinType::SatUFract:
514     case BuiltinType::SatULongFract:
515       ResultType = llvm::IntegerType::get(getLLVMContext(),
516                                  static_cast<unsigned>(Context.getTypeSize(T)));
517       break;
518 
519     case BuiltinType::Float16:
520       ResultType =
521           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
522                            /* UseNativeHalf = */ true);
523       break;
524 
525     case BuiltinType::Half:
526       // Half FP can either be storage-only (lowered to i16) or native.
527       ResultType = getTypeForFormat(
528           getLLVMContext(), Context.getFloatTypeSemantics(T),
529           Context.getLangOpts().NativeHalfType ||
530               !Context.getTargetInfo().useFP16ConversionIntrinsics());
531       break;
532     case BuiltinType::BFloat16:
533     case BuiltinType::Float:
534     case BuiltinType::Double:
535     case BuiltinType::LongDouble:
536     case BuiltinType::Float128:
537     case BuiltinType::Ibm128:
538       ResultType = getTypeForFormat(getLLVMContext(),
539                                     Context.getFloatTypeSemantics(T),
540                                     /* UseNativeHalf = */ false);
541       break;
542 
543     case BuiltinType::NullPtr:
544       // Model std::nullptr_t as i8*
545       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
546       break;
547 
548     case BuiltinType::UInt128:
549     case BuiltinType::Int128:
550       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
551       break;
552 
553 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
554     case BuiltinType::Id:
555 #include "clang/Basic/OpenCLImageTypes.def"
556 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
557     case BuiltinType::Id:
558 #include "clang/Basic/OpenCLExtensionTypes.def"
559     case BuiltinType::OCLSampler:
560     case BuiltinType::OCLEvent:
561     case BuiltinType::OCLClkEvent:
562     case BuiltinType::OCLQueue:
563     case BuiltinType::OCLReserveID:
564       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
565       break;
566     case BuiltinType::SveInt8:
567     case BuiltinType::SveUint8:
568     case BuiltinType::SveInt8x2:
569     case BuiltinType::SveUint8x2:
570     case BuiltinType::SveInt8x3:
571     case BuiltinType::SveUint8x3:
572     case BuiltinType::SveInt8x4:
573     case BuiltinType::SveUint8x4:
574     case BuiltinType::SveInt16:
575     case BuiltinType::SveUint16:
576     case BuiltinType::SveInt16x2:
577     case BuiltinType::SveUint16x2:
578     case BuiltinType::SveInt16x3:
579     case BuiltinType::SveUint16x3:
580     case BuiltinType::SveInt16x4:
581     case BuiltinType::SveUint16x4:
582     case BuiltinType::SveInt32:
583     case BuiltinType::SveUint32:
584     case BuiltinType::SveInt32x2:
585     case BuiltinType::SveUint32x2:
586     case BuiltinType::SveInt32x3:
587     case BuiltinType::SveUint32x3:
588     case BuiltinType::SveInt32x4:
589     case BuiltinType::SveUint32x4:
590     case BuiltinType::SveInt64:
591     case BuiltinType::SveUint64:
592     case BuiltinType::SveInt64x2:
593     case BuiltinType::SveUint64x2:
594     case BuiltinType::SveInt64x3:
595     case BuiltinType::SveUint64x3:
596     case BuiltinType::SveInt64x4:
597     case BuiltinType::SveUint64x4:
598     case BuiltinType::SveBool:
599     case BuiltinType::SveBoolx2:
600     case BuiltinType::SveBoolx4:
601     case BuiltinType::SveFloat16:
602     case BuiltinType::SveFloat16x2:
603     case BuiltinType::SveFloat16x3:
604     case BuiltinType::SveFloat16x4:
605     case BuiltinType::SveFloat32:
606     case BuiltinType::SveFloat32x2:
607     case BuiltinType::SveFloat32x3:
608     case BuiltinType::SveFloat32x4:
609     case BuiltinType::SveFloat64:
610     case BuiltinType::SveFloat64x2:
611     case BuiltinType::SveFloat64x3:
612     case BuiltinType::SveFloat64x4:
613     case BuiltinType::SveBFloat16:
614     case BuiltinType::SveBFloat16x2:
615     case BuiltinType::SveBFloat16x3:
616     case BuiltinType::SveBFloat16x4: {
617       ASTContext::BuiltinVectorTypeInfo Info =
618           Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
619       return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
620                                            Info.EC.getKnownMinValue() *
621                                                Info.NumVectors);
622     }
623     case BuiltinType::SveCount:
624       return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
625 #define PPC_VECTOR_TYPE(Name, Id, Size) \
626     case BuiltinType::Id: \
627       ResultType = \
628         llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
629       break;
630 #include "clang/Basic/PPCTypes.def"
631 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
632 #include "clang/Basic/RISCVVTypes.def"
633     {
634       ASTContext::BuiltinVectorTypeInfo Info =
635           Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
636       return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
637                                            Info.EC.getKnownMinValue() *
638                                            Info.NumVectors);
639     }
640 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS)                  \
641   case BuiltinType::Id: {                                                      \
642     if (BuiltinType::Id == BuiltinType::WasmExternRef)                         \
643       ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \
644     else                                                                       \
645       llvm_unreachable("Unexpected wasm reference builtin type!");             \
646   } break;
647 #include "clang/Basic/WebAssemblyReferenceTypes.def"
648     case BuiltinType::Dependent:
649 #define BUILTIN_TYPE(Id, SingletonId)
650 #define PLACEHOLDER_TYPE(Id, SingletonId) \
651     case BuiltinType::Id:
652 #include "clang/AST/BuiltinTypes.def"
653       llvm_unreachable("Unexpected placeholder builtin type!");
654     }
655     break;
656   }
657   case Type::Auto:
658   case Type::DeducedTemplateSpecialization:
659     llvm_unreachable("Unexpected undeduced type!");
660   case Type::Complex: {
661     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
662     ResultType = llvm::StructType::get(EltTy, EltTy);
663     break;
664   }
665   case Type::LValueReference:
666   case Type::RValueReference: {
667     const ReferenceType *RTy = cast<ReferenceType>(Ty);
668     QualType ETy = RTy->getPointeeType();
669     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
670     unsigned AS = getTargetAddressSpace(ETy);
671     ResultType = llvm::PointerType::get(PointeeType, AS);
672     break;
673   }
674   case Type::Pointer: {
675     const PointerType *PTy = cast<PointerType>(Ty);
676     QualType ETy = PTy->getPointeeType();
677     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
678     if (PointeeType->isVoidTy())
679       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
680     unsigned AS = getTargetAddressSpace(ETy);
681     ResultType = llvm::PointerType::get(PointeeType, AS);
682     break;
683   }
684 
685   case Type::VariableArray: {
686     const VariableArrayType *A = cast<VariableArrayType>(Ty);
687     assert(A->getIndexTypeCVRQualifiers() == 0 &&
688            "FIXME: We only handle trivial array types so far!");
689     // VLAs resolve to the innermost element type; this matches
690     // the return of alloca, and there isn't any obviously better choice.
691     ResultType = ConvertTypeForMem(A->getElementType());
692     break;
693   }
694   case Type::IncompleteArray: {
695     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
696     assert(A->getIndexTypeCVRQualifiers() == 0 &&
697            "FIXME: We only handle trivial array types so far!");
698     // int X[] -> [0 x int], unless the element type is not sized.  If it is
699     // unsized (e.g. an incomplete struct) just use [0 x i8].
700     ResultType = ConvertTypeForMem(A->getElementType());
701     if (!ResultType->isSized()) {
702       SkippedLayout = true;
703       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
704     }
705     ResultType = llvm::ArrayType::get(ResultType, 0);
706     break;
707   }
708   case Type::ConstantArray: {
709     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
710     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
711 
712     // Lower arrays of undefined struct type to arrays of i8 just to have a
713     // concrete type.
714     if (!EltTy->isSized()) {
715       SkippedLayout = true;
716       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
717     }
718 
719     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
720     break;
721   }
722   case Type::ExtVector:
723   case Type::Vector: {
724     const auto *VT = cast<VectorType>(Ty);
725     // An ext_vector_type of Bool is really a vector of bits.
726     llvm::Type *IRElemTy = VT->isExtVectorBoolType()
727                                ? llvm::Type::getInt1Ty(getLLVMContext())
728                                : ConvertType(VT->getElementType());
729     ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements());
730     break;
731   }
732   case Type::ConstantMatrix: {
733     const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
734     ResultType =
735         llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
736                                    MT->getNumRows() * MT->getNumColumns());
737     break;
738   }
739   case Type::FunctionNoProto:
740   case Type::FunctionProto:
741     ResultType = ConvertFunctionTypeInternal(T);
742     break;
743   case Type::ObjCObject:
744     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
745     break;
746 
747   case Type::ObjCInterface: {
748     // Objective-C interfaces are always opaque (outside of the
749     // runtime, which can do whatever it likes); we never refine
750     // these.
751     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
752     if (!T)
753       T = llvm::StructType::create(getLLVMContext());
754     ResultType = T;
755     break;
756   }
757 
758   case Type::ObjCObjectPointer: {
759     // Protocol qualifications do not influence the LLVM type, we just return a
760     // pointer to the underlying interface type. We don't need to worry about
761     // recursive conversion.
762     llvm::Type *T =
763       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
764     ResultType = T->getPointerTo();
765     break;
766   }
767 
768   case Type::Enum: {
769     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
770     if (ED->isCompleteDefinition() || ED->isFixed())
771       return ConvertType(ED->getIntegerType());
772     // Return a placeholder 'i32' type.  This can be changed later when the
773     // type is defined (see UpdateCompletedType), but is likely to be the
774     // "right" answer.
775     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
776     break;
777   }
778 
779   case Type::BlockPointer: {
780     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
781     llvm::Type *PointeeType = CGM.getLangOpts().OpenCL
782                                   ? CGM.getGenericBlockLiteralType()
783                                   : ConvertTypeForMem(FTy);
784     // Block pointers lower to function type. For function type,
785     // getTargetAddressSpace() returns default address space for
786     // function pointer i.e. program address space. Therefore, for block
787     // pointers, it is important to pass the pointee AST address space when
788     // calling getTargetAddressSpace(), to ensure that we get the LLVM IR
789     // address space for data pointers and not function pointers.
790     unsigned AS = Context.getTargetAddressSpace(FTy.getAddressSpace());
791     ResultType = llvm::PointerType::get(PointeeType, AS);
792     break;
793   }
794 
795   case Type::MemberPointer: {
796     auto *MPTy = cast<MemberPointerType>(Ty);
797     if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
798       auto *C = MPTy->getClass();
799       auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr});
800       if (Insertion.second)
801         Insertion.first->second = llvm::StructType::create(getLLVMContext());
802       ResultType = Insertion.first->second;
803     } else {
804       ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
805     }
806     break;
807   }
808 
809   case Type::Atomic: {
810     QualType valueType = cast<AtomicType>(Ty)->getValueType();
811     ResultType = ConvertTypeForMem(valueType);
812 
813     // Pad out to the inflated size if necessary.
814     uint64_t valueSize = Context.getTypeSize(valueType);
815     uint64_t atomicSize = Context.getTypeSize(Ty);
816     if (valueSize != atomicSize) {
817       assert(valueSize < atomicSize);
818       llvm::Type *elts[] = {
819         ResultType,
820         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
821       };
822       ResultType =
823           llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts));
824     }
825     break;
826   }
827   case Type::Pipe: {
828     ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
829     break;
830   }
831   case Type::BitInt: {
832     const auto &EIT = cast<BitIntType>(Ty);
833     ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
834     break;
835   }
836   }
837 
838   assert(ResultType && "Didn't convert a type?");
839   assert((!CachedType || CachedType == ResultType) &&
840          "Cached type doesn't match computed type");
841 
842   if (ShouldUseCache)
843     TypeCache[Ty] = ResultType;
844   return ResultType;
845 }
846 
847 bool CodeGenModule::isPaddedAtomicType(QualType type) {
848   return isPaddedAtomicType(type->castAs<AtomicType>());
849 }
850 
851 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
852   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
853 }
854 
855 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
856 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
857   // TagDecl's are not necessarily unique, instead use the (clang)
858   // type connected to the decl.
859   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
860 
861   llvm::StructType *&Entry = RecordDeclTypes[Key];
862 
863   // If we don't have a StructType at all yet, create the forward declaration.
864   if (!Entry) {
865     Entry = llvm::StructType::create(getLLVMContext());
866     addRecordTypeName(RD, Entry, "");
867   }
868   llvm::StructType *Ty = Entry;
869 
870   // If this is still a forward declaration, or the LLVM type is already
871   // complete, there's nothing more to do.
872   RD = RD->getDefinition();
873   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
874     return Ty;
875 
876   // If converting this type would cause us to infinitely loop, don't do it!
877   if (!isSafeToConvert(RD, *this)) {
878     DeferredRecords.push_back(RD);
879     return Ty;
880   }
881 
882   // Okay, this is a definition of a type.  Compile the implementation now.
883   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
884   (void)InsertResult;
885   assert(InsertResult && "Recursively compiling a struct?");
886 
887   // Force conversion of non-virtual base classes recursively.
888   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
889     for (const auto &I : CRD->bases()) {
890       if (I.isVirtual()) continue;
891       ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
892     }
893   }
894 
895   // Layout fields.
896   std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
897   CGRecordLayouts[Key] = std::move(Layout);
898 
899   // We're done laying out this struct.
900   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
901   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
902 
903   // If this struct blocked a FunctionType conversion, then recompute whatever
904   // was derived from that.
905   // FIXME: This is hugely overconservative.
906   if (SkippedLayout)
907     TypeCache.clear();
908 
909   // If we're done converting the outer-most record, then convert any deferred
910   // structs as well.
911   if (RecordsBeingLaidOut.empty())
912     while (!DeferredRecords.empty())
913       ConvertRecordDeclType(DeferredRecords.pop_back_val());
914 
915   return Ty;
916 }
917 
918 /// getCGRecordLayout - Return record layout info for the given record decl.
919 const CGRecordLayout &
920 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
921   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
922 
923   auto I = CGRecordLayouts.find(Key);
924   if (I != CGRecordLayouts.end())
925     return *I->second;
926   // Compute the type information.
927   ConvertRecordDeclType(RD);
928 
929   // Now try again.
930   I = CGRecordLayouts.find(Key);
931 
932   assert(I != CGRecordLayouts.end() &&
933          "Unable to find record layout information for type");
934   return *I->second;
935 }
936 
937 bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
938   assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
939   return isZeroInitializable(T);
940 }
941 
942 bool CodeGenTypes::isZeroInitializable(QualType T) {
943   if (T->getAs<PointerType>())
944     return Context.getTargetNullPointerValue(T) == 0;
945 
946   if (const auto *AT = Context.getAsArrayType(T)) {
947     if (isa<IncompleteArrayType>(AT))
948       return true;
949     if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
950       if (Context.getConstantArrayElementCount(CAT) == 0)
951         return true;
952     T = Context.getBaseElementType(T);
953   }
954 
955   // Records are non-zero-initializable if they contain any
956   // non-zero-initializable subobjects.
957   if (const RecordType *RT = T->getAs<RecordType>()) {
958     const RecordDecl *RD = RT->getDecl();
959     return isZeroInitializable(RD);
960   }
961 
962   // We have to ask the ABI about member pointers.
963   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
964     return getCXXABI().isZeroInitializable(MPT);
965 
966   // Everything else is okay.
967   return true;
968 }
969 
970 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
971   return getCGRecordLayout(RD).isZeroInitializable();
972 }
973 
974 unsigned CodeGenTypes::getTargetAddressSpace(QualType T) const {
975   // Return the address space for the type. If the type is a
976   // function type without an address space qualifier, the
977   // program address space is used. Otherwise, the target picks
978   // the best address space based on the type information
979   return T->isFunctionType() && !T.hasAddressSpace()
980              ? getDataLayout().getProgramAddressSpace()
981              : getContext().getTargetAddressSpace(T.getAddressSpace());
982 }
983