1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the code that handles AST -> LLVM type lowering. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenTypes.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Module.h" 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 36 SkippedLayout = false; 37 LongDoubleReferenced = false; 38 } 39 40 CodeGenTypes::~CodeGenTypes() { 41 for (llvm::FoldingSet<CGFunctionInfo>::iterator 42 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 43 delete &*I++; 44 } 45 46 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const { 47 return CGM.getCodeGenOpts(); 48 } 49 50 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 51 llvm::StructType *Ty, 52 StringRef suffix) { 53 SmallString<256> TypeName; 54 llvm::raw_svector_ostream OS(TypeName); 55 OS << RD->getKindName() << '.'; 56 57 // FIXME: We probably want to make more tweaks to the printing policy. For 58 // example, we should probably enable PrintCanonicalTypes and 59 // FullyQualifiedNames. 60 PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy(); 61 Policy.SuppressInlineNamespace = false; 62 63 // Name the codegen type after the typedef name 64 // if there is no tag type name available 65 if (RD->getIdentifier()) { 66 // FIXME: We should not have to check for a null decl context here. 67 // Right now we do it because the implicit Obj-C decls don't have one. 68 if (RD->getDeclContext()) 69 RD->printQualifiedName(OS, Policy); 70 else 71 RD->printName(OS, Policy); 72 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 73 // FIXME: We should not have to check for a null decl context here. 74 // Right now we do it because the implicit Obj-C decls don't have one. 75 if (TDD->getDeclContext()) 76 TDD->printQualifiedName(OS, Policy); 77 else 78 TDD->printName(OS); 79 } else 80 OS << "anon"; 81 82 if (!suffix.empty()) 83 OS << suffix; 84 85 Ty->setName(OS.str()); 86 } 87 88 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 89 /// ConvertType in that it is used to convert to the memory representation for 90 /// a type. For example, the scalar representation for _Bool is i1, but the 91 /// memory representation is usually i8 or i32, depending on the target. 92 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) { 93 if (T->isConstantMatrixType()) { 94 const Type *Ty = Context.getCanonicalType(T).getTypePtr(); 95 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty); 96 return llvm::ArrayType::get(ConvertType(MT->getElementType()), 97 MT->getNumRows() * MT->getNumColumns()); 98 } 99 100 llvm::Type *R = ConvertType(T); 101 102 // Check for the boolean vector case. 103 if (T->isExtVectorBoolType()) { 104 auto *FixedVT = cast<llvm::FixedVectorType>(R); 105 // Pad to at least one byte. 106 uint64_t BytePadded = std::max<uint64_t>(FixedVT->getNumElements(), 8); 107 return llvm::IntegerType::get(FixedVT->getContext(), BytePadded); 108 } 109 110 // If this is a bool type, or a bit-precise integer type in a bitfield 111 // representation, map this integer to the target-specified size. 112 if ((ForBitField && T->isBitIntType()) || 113 (!T->isBitIntType() && R->isIntegerTy(1))) 114 return llvm::IntegerType::get(getLLVMContext(), 115 (unsigned)Context.getTypeSize(T)); 116 117 // Else, don't map it. 118 return R; 119 } 120 121 /// isRecordLayoutComplete - Return true if the specified type is already 122 /// completely laid out. 123 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 124 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 125 RecordDeclTypes.find(Ty); 126 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 127 } 128 129 /// isFuncParamTypeConvertible - Return true if the specified type in a 130 /// function parameter or result position can be converted to an IR type at this 131 /// point. This boils down to being whether it is complete. 132 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 133 // Some ABIs cannot have their member pointers represented in IR unless 134 // certain circumstances have been reached. 135 if (const auto *MPT = Ty->getAs<MemberPointerType>()) 136 return getCXXABI().isMemberPointerConvertible(MPT); 137 138 // If this isn't a tagged type, we can convert it! 139 const TagType *TT = Ty->getAs<TagType>(); 140 if (!TT) return true; 141 142 // Incomplete types cannot be converted. 143 return !TT->isIncompleteType(); 144 } 145 146 147 /// Code to verify a given function type is complete, i.e. the return type 148 /// and all of the parameter types are complete. Also check to see if we are in 149 /// a RS_StructPointer context, and if so whether any struct types have been 150 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 151 /// that cannot be converted to an IR type. 152 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 153 if (!isFuncParamTypeConvertible(FT->getReturnType())) 154 return false; 155 156 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 157 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 158 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 159 return false; 160 161 return true; 162 } 163 164 /// UpdateCompletedType - When we find the full definition for a TagDecl, 165 /// replace the 'opaque' type we previously made for it if applicable. 166 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 167 // If this is an enum being completed, then we flush all non-struct types from 168 // the cache. This allows function types and other things that may be derived 169 // from the enum to be recomputed. 170 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 171 // Only flush the cache if we've actually already converted this type. 172 if (TypeCache.count(ED->getTypeForDecl())) { 173 // Okay, we formed some types based on this. We speculated that the enum 174 // would be lowered to i32, so we only need to flush the cache if this 175 // didn't happen. 176 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 177 TypeCache.clear(); 178 } 179 // If necessary, provide the full definition of a type only used with a 180 // declaration so far. 181 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 182 DI->completeType(ED); 183 return; 184 } 185 186 // If we completed a RecordDecl that we previously used and converted to an 187 // anonymous type, then go ahead and complete it now. 188 const RecordDecl *RD = cast<RecordDecl>(TD); 189 if (RD->isDependentType()) return; 190 191 // Only complete it if we converted it already. If we haven't converted it 192 // yet, we'll just do it lazily. 193 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 194 ConvertRecordDeclType(RD); 195 196 // If necessary, provide the full definition of a type only used with a 197 // declaration so far. 198 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 199 DI->completeType(RD); 200 } 201 202 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 203 QualType T = Context.getRecordType(RD); 204 T = Context.getCanonicalType(T); 205 206 const Type *Ty = T.getTypePtr(); 207 if (RecordsWithOpaqueMemberPointers.count(Ty)) { 208 TypeCache.clear(); 209 RecordsWithOpaqueMemberPointers.clear(); 210 } 211 } 212 213 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 214 const llvm::fltSemantics &format, 215 bool UseNativeHalf = false) { 216 if (&format == &llvm::APFloat::IEEEhalf()) { 217 if (UseNativeHalf) 218 return llvm::Type::getHalfTy(VMContext); 219 else 220 return llvm::Type::getInt16Ty(VMContext); 221 } 222 if (&format == &llvm::APFloat::BFloat()) 223 return llvm::Type::getBFloatTy(VMContext); 224 if (&format == &llvm::APFloat::IEEEsingle()) 225 return llvm::Type::getFloatTy(VMContext); 226 if (&format == &llvm::APFloat::IEEEdouble()) 227 return llvm::Type::getDoubleTy(VMContext); 228 if (&format == &llvm::APFloat::IEEEquad()) 229 return llvm::Type::getFP128Ty(VMContext); 230 if (&format == &llvm::APFloat::PPCDoubleDouble()) 231 return llvm::Type::getPPC_FP128Ty(VMContext); 232 if (&format == &llvm::APFloat::x87DoubleExtended()) 233 return llvm::Type::getX86_FP80Ty(VMContext); 234 llvm_unreachable("Unknown float format!"); 235 } 236 237 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) { 238 assert(QFT.isCanonical()); 239 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr()); 240 // First, check whether we can build the full function type. If the 241 // function type depends on an incomplete type (e.g. a struct or enum), we 242 // cannot lower the function type. 243 if (!isFuncTypeConvertible(FT)) { 244 // This function's type depends on an incomplete tag type. 245 246 // Force conversion of all the relevant record types, to make sure 247 // we re-convert the FunctionType when appropriate. 248 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 249 ConvertRecordDeclType(RT->getDecl()); 250 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 251 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 252 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 253 ConvertRecordDeclType(RT->getDecl()); 254 255 SkippedLayout = true; 256 257 // Return a placeholder type. 258 return llvm::StructType::get(getLLVMContext()); 259 } 260 261 // The function type can be built; call the appropriate routines to 262 // build it. 263 const CGFunctionInfo *FI; 264 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 265 FI = &arrangeFreeFunctionType( 266 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); 267 } else { 268 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 269 FI = &arrangeFreeFunctionType( 270 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 271 } 272 273 llvm::Type *ResultType = nullptr; 274 // If there is something higher level prodding our CGFunctionInfo, then 275 // don't recurse into it again. 276 if (FunctionsBeingProcessed.count(FI)) { 277 278 ResultType = llvm::StructType::get(getLLVMContext()); 279 SkippedLayout = true; 280 } else { 281 282 // Otherwise, we're good to go, go ahead and convert it. 283 ResultType = GetFunctionType(*FI); 284 } 285 286 return ResultType; 287 } 288 289 /// ConvertType - Convert the specified type to its LLVM form. 290 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 291 T = Context.getCanonicalType(T); 292 293 const Type *Ty = T.getTypePtr(); 294 295 // For the device-side compilation, CUDA device builtin surface/texture types 296 // may be represented in different types. 297 if (Context.getLangOpts().CUDAIsDevice) { 298 if (T->isCUDADeviceBuiltinSurfaceType()) { 299 if (auto *Ty = CGM.getTargetCodeGenInfo() 300 .getCUDADeviceBuiltinSurfaceDeviceType()) 301 return Ty; 302 } else if (T->isCUDADeviceBuiltinTextureType()) { 303 if (auto *Ty = CGM.getTargetCodeGenInfo() 304 .getCUDADeviceBuiltinTextureDeviceType()) 305 return Ty; 306 } 307 } 308 309 // RecordTypes are cached and processed specially. 310 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 311 return ConvertRecordDeclType(RT->getDecl()); 312 313 llvm::Type *CachedType = nullptr; 314 auto TCI = TypeCache.find(Ty); 315 if (TCI != TypeCache.end()) 316 CachedType = TCI->second; 317 // With expensive checks, check that the type we compute matches the 318 // cached type. 319 #ifndef EXPENSIVE_CHECKS 320 if (CachedType) 321 return CachedType; 322 #endif 323 324 // If we don't have it in the cache, convert it now. 325 llvm::Type *ResultType = nullptr; 326 switch (Ty->getTypeClass()) { 327 case Type::Record: // Handled above. 328 #define TYPE(Class, Base) 329 #define ABSTRACT_TYPE(Class, Base) 330 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 331 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 332 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 333 #include "clang/AST/TypeNodes.inc" 334 llvm_unreachable("Non-canonical or dependent types aren't possible."); 335 336 case Type::Builtin: { 337 switch (cast<BuiltinType>(Ty)->getKind()) { 338 case BuiltinType::Void: 339 case BuiltinType::ObjCId: 340 case BuiltinType::ObjCClass: 341 case BuiltinType::ObjCSel: 342 // LLVM void type can only be used as the result of a function call. Just 343 // map to the same as char. 344 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 345 break; 346 347 case BuiltinType::Bool: 348 // Note that we always return bool as i1 for use as a scalar type. 349 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 350 break; 351 352 case BuiltinType::Char_S: 353 case BuiltinType::Char_U: 354 case BuiltinType::SChar: 355 case BuiltinType::UChar: 356 case BuiltinType::Short: 357 case BuiltinType::UShort: 358 case BuiltinType::Int: 359 case BuiltinType::UInt: 360 case BuiltinType::Long: 361 case BuiltinType::ULong: 362 case BuiltinType::LongLong: 363 case BuiltinType::ULongLong: 364 case BuiltinType::WChar_S: 365 case BuiltinType::WChar_U: 366 case BuiltinType::Char8: 367 case BuiltinType::Char16: 368 case BuiltinType::Char32: 369 case BuiltinType::ShortAccum: 370 case BuiltinType::Accum: 371 case BuiltinType::LongAccum: 372 case BuiltinType::UShortAccum: 373 case BuiltinType::UAccum: 374 case BuiltinType::ULongAccum: 375 case BuiltinType::ShortFract: 376 case BuiltinType::Fract: 377 case BuiltinType::LongFract: 378 case BuiltinType::UShortFract: 379 case BuiltinType::UFract: 380 case BuiltinType::ULongFract: 381 case BuiltinType::SatShortAccum: 382 case BuiltinType::SatAccum: 383 case BuiltinType::SatLongAccum: 384 case BuiltinType::SatUShortAccum: 385 case BuiltinType::SatUAccum: 386 case BuiltinType::SatULongAccum: 387 case BuiltinType::SatShortFract: 388 case BuiltinType::SatFract: 389 case BuiltinType::SatLongFract: 390 case BuiltinType::SatUShortFract: 391 case BuiltinType::SatUFract: 392 case BuiltinType::SatULongFract: 393 ResultType = llvm::IntegerType::get(getLLVMContext(), 394 static_cast<unsigned>(Context.getTypeSize(T))); 395 break; 396 397 case BuiltinType::Float16: 398 ResultType = 399 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), 400 /* UseNativeHalf = */ true); 401 break; 402 403 case BuiltinType::Half: 404 // Half FP can either be storage-only (lowered to i16) or native. 405 ResultType = getTypeForFormat( 406 getLLVMContext(), Context.getFloatTypeSemantics(T), 407 Context.getLangOpts().NativeHalfType || 408 !Context.getTargetInfo().useFP16ConversionIntrinsics()); 409 break; 410 case BuiltinType::LongDouble: 411 LongDoubleReferenced = true; 412 [[fallthrough]]; 413 case BuiltinType::BFloat16: 414 case BuiltinType::Float: 415 case BuiltinType::Double: 416 case BuiltinType::Float128: 417 case BuiltinType::Ibm128: 418 ResultType = getTypeForFormat(getLLVMContext(), 419 Context.getFloatTypeSemantics(T), 420 /* UseNativeHalf = */ false); 421 break; 422 423 case BuiltinType::NullPtr: 424 // Model std::nullptr_t as i8* 425 ResultType = llvm::PointerType::getUnqual(getLLVMContext()); 426 break; 427 428 case BuiltinType::UInt128: 429 case BuiltinType::Int128: 430 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 431 break; 432 433 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 434 case BuiltinType::Id: 435 #include "clang/Basic/OpenCLImageTypes.def" 436 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 437 case BuiltinType::Id: 438 #include "clang/Basic/OpenCLExtensionTypes.def" 439 case BuiltinType::OCLSampler: 440 case BuiltinType::OCLEvent: 441 case BuiltinType::OCLClkEvent: 442 case BuiltinType::OCLQueue: 443 case BuiltinType::OCLReserveID: 444 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 445 break; 446 case BuiltinType::SveInt8: 447 case BuiltinType::SveUint8: 448 case BuiltinType::SveInt8x2: 449 case BuiltinType::SveUint8x2: 450 case BuiltinType::SveInt8x3: 451 case BuiltinType::SveUint8x3: 452 case BuiltinType::SveInt8x4: 453 case BuiltinType::SveUint8x4: 454 case BuiltinType::SveInt16: 455 case BuiltinType::SveUint16: 456 case BuiltinType::SveInt16x2: 457 case BuiltinType::SveUint16x2: 458 case BuiltinType::SveInt16x3: 459 case BuiltinType::SveUint16x3: 460 case BuiltinType::SveInt16x4: 461 case BuiltinType::SveUint16x4: 462 case BuiltinType::SveInt32: 463 case BuiltinType::SveUint32: 464 case BuiltinType::SveInt32x2: 465 case BuiltinType::SveUint32x2: 466 case BuiltinType::SveInt32x3: 467 case BuiltinType::SveUint32x3: 468 case BuiltinType::SveInt32x4: 469 case BuiltinType::SveUint32x4: 470 case BuiltinType::SveInt64: 471 case BuiltinType::SveUint64: 472 case BuiltinType::SveInt64x2: 473 case BuiltinType::SveUint64x2: 474 case BuiltinType::SveInt64x3: 475 case BuiltinType::SveUint64x3: 476 case BuiltinType::SveInt64x4: 477 case BuiltinType::SveUint64x4: 478 case BuiltinType::SveBool: 479 case BuiltinType::SveBoolx2: 480 case BuiltinType::SveBoolx4: 481 case BuiltinType::SveFloat16: 482 case BuiltinType::SveFloat16x2: 483 case BuiltinType::SveFloat16x3: 484 case BuiltinType::SveFloat16x4: 485 case BuiltinType::SveFloat32: 486 case BuiltinType::SveFloat32x2: 487 case BuiltinType::SveFloat32x3: 488 case BuiltinType::SveFloat32x4: 489 case BuiltinType::SveFloat64: 490 case BuiltinType::SveFloat64x2: 491 case BuiltinType::SveFloat64x3: 492 case BuiltinType::SveFloat64x4: 493 case BuiltinType::SveBFloat16: 494 case BuiltinType::SveBFloat16x2: 495 case BuiltinType::SveBFloat16x3: 496 case BuiltinType::SveBFloat16x4: { 497 ASTContext::BuiltinVectorTypeInfo Info = 498 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty)); 499 return llvm::ScalableVectorType::get(ConvertType(Info.ElementType), 500 Info.EC.getKnownMinValue() * 501 Info.NumVectors); 502 } 503 case BuiltinType::SveCount: 504 return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount"); 505 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 506 case BuiltinType::Id: \ 507 ResultType = \ 508 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \ 509 break; 510 #include "clang/Basic/PPCTypes.def" 511 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 512 #include "clang/Basic/RISCVVTypes.def" 513 { 514 ASTContext::BuiltinVectorTypeInfo Info = 515 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty)); 516 // Tuple types are expressed as aggregregate types of the same scalable 517 // vector type (e.g. vint32m1x2_t is two vint32m1_t, which is {<vscale x 518 // 2 x i32>, <vscale x 2 x i32>}). 519 if (Info.NumVectors != 1) { 520 llvm::Type *EltTy = llvm::ScalableVectorType::get( 521 ConvertType(Info.ElementType), Info.EC.getKnownMinValue()); 522 llvm::SmallVector<llvm::Type *, 4> EltTys(Info.NumVectors, EltTy); 523 return llvm::StructType::get(getLLVMContext(), EltTys); 524 } 525 return llvm::ScalableVectorType::get(ConvertType(Info.ElementType), 526 Info.EC.getKnownMinValue() * 527 Info.NumVectors); 528 } 529 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ 530 case BuiltinType::Id: { \ 531 if (BuiltinType::Id == BuiltinType::WasmExternRef) \ 532 ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \ 533 else \ 534 llvm_unreachable("Unexpected wasm reference builtin type!"); \ 535 } break; 536 #include "clang/Basic/WebAssemblyReferenceTypes.def" 537 case BuiltinType::Dependent: 538 #define BUILTIN_TYPE(Id, SingletonId) 539 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 540 case BuiltinType::Id: 541 #include "clang/AST/BuiltinTypes.def" 542 llvm_unreachable("Unexpected placeholder builtin type!"); 543 } 544 break; 545 } 546 case Type::Auto: 547 case Type::DeducedTemplateSpecialization: 548 llvm_unreachable("Unexpected undeduced type!"); 549 case Type::Complex: { 550 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 551 ResultType = llvm::StructType::get(EltTy, EltTy); 552 break; 553 } 554 case Type::LValueReference: 555 case Type::RValueReference: { 556 const ReferenceType *RTy = cast<ReferenceType>(Ty); 557 QualType ETy = RTy->getPointeeType(); 558 unsigned AS = getTargetAddressSpace(ETy); 559 ResultType = llvm::PointerType::get(getLLVMContext(), AS); 560 break; 561 } 562 case Type::Pointer: { 563 const PointerType *PTy = cast<PointerType>(Ty); 564 QualType ETy = PTy->getPointeeType(); 565 unsigned AS = getTargetAddressSpace(ETy); 566 ResultType = llvm::PointerType::get(getLLVMContext(), AS); 567 break; 568 } 569 570 case Type::VariableArray: { 571 const VariableArrayType *A = cast<VariableArrayType>(Ty); 572 assert(A->getIndexTypeCVRQualifiers() == 0 && 573 "FIXME: We only handle trivial array types so far!"); 574 // VLAs resolve to the innermost element type; this matches 575 // the return of alloca, and there isn't any obviously better choice. 576 ResultType = ConvertTypeForMem(A->getElementType()); 577 break; 578 } 579 case Type::IncompleteArray: { 580 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 581 assert(A->getIndexTypeCVRQualifiers() == 0 && 582 "FIXME: We only handle trivial array types so far!"); 583 // int X[] -> [0 x int], unless the element type is not sized. If it is 584 // unsized (e.g. an incomplete struct) just use [0 x i8]. 585 ResultType = ConvertTypeForMem(A->getElementType()); 586 if (!ResultType->isSized()) { 587 SkippedLayout = true; 588 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 589 } 590 ResultType = llvm::ArrayType::get(ResultType, 0); 591 break; 592 } 593 case Type::ArrayParameter: 594 case Type::ConstantArray: { 595 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 596 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 597 598 // Lower arrays of undefined struct type to arrays of i8 just to have a 599 // concrete type. 600 if (!EltTy->isSized()) { 601 SkippedLayout = true; 602 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 603 } 604 605 ResultType = llvm::ArrayType::get(EltTy, A->getZExtSize()); 606 break; 607 } 608 case Type::ExtVector: 609 case Type::Vector: { 610 const auto *VT = cast<VectorType>(Ty); 611 // An ext_vector_type of Bool is really a vector of bits. 612 llvm::Type *IRElemTy = VT->isExtVectorBoolType() 613 ? llvm::Type::getInt1Ty(getLLVMContext()) 614 : ConvertType(VT->getElementType()); 615 ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements()); 616 break; 617 } 618 case Type::ConstantMatrix: { 619 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty); 620 ResultType = 621 llvm::FixedVectorType::get(ConvertType(MT->getElementType()), 622 MT->getNumRows() * MT->getNumColumns()); 623 break; 624 } 625 case Type::FunctionNoProto: 626 case Type::FunctionProto: 627 ResultType = ConvertFunctionTypeInternal(T); 628 break; 629 case Type::ObjCObject: 630 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 631 break; 632 633 case Type::ObjCInterface: { 634 // Objective-C interfaces are always opaque (outside of the 635 // runtime, which can do whatever it likes); we never refine 636 // these. 637 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 638 if (!T) 639 T = llvm::StructType::create(getLLVMContext()); 640 ResultType = T; 641 break; 642 } 643 644 case Type::ObjCObjectPointer: 645 ResultType = llvm::PointerType::getUnqual(getLLVMContext()); 646 break; 647 648 case Type::Enum: { 649 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 650 if (ED->isCompleteDefinition() || ED->isFixed()) 651 return ConvertType(ED->getIntegerType()); 652 // Return a placeholder 'i32' type. This can be changed later when the 653 // type is defined (see UpdateCompletedType), but is likely to be the 654 // "right" answer. 655 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 656 break; 657 } 658 659 case Type::BlockPointer: { 660 // Block pointers lower to function type. For function type, 661 // getTargetAddressSpace() returns default address space for 662 // function pointer i.e. program address space. Therefore, for block 663 // pointers, it is important to pass the pointee AST address space when 664 // calling getTargetAddressSpace(), to ensure that we get the LLVM IR 665 // address space for data pointers and not function pointers. 666 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 667 unsigned AS = Context.getTargetAddressSpace(FTy.getAddressSpace()); 668 ResultType = llvm::PointerType::get(getLLVMContext(), AS); 669 break; 670 } 671 672 case Type::MemberPointer: { 673 auto *MPTy = cast<MemberPointerType>(Ty); 674 if (!getCXXABI().isMemberPointerConvertible(MPTy)) { 675 auto *C = MPTy->getClass(); 676 auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr}); 677 if (Insertion.second) 678 Insertion.first->second = llvm::StructType::create(getLLVMContext()); 679 ResultType = Insertion.first->second; 680 } else { 681 ResultType = getCXXABI().ConvertMemberPointerType(MPTy); 682 } 683 break; 684 } 685 686 case Type::Atomic: { 687 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 688 ResultType = ConvertTypeForMem(valueType); 689 690 // Pad out to the inflated size if necessary. 691 uint64_t valueSize = Context.getTypeSize(valueType); 692 uint64_t atomicSize = Context.getTypeSize(Ty); 693 if (valueSize != atomicSize) { 694 assert(valueSize < atomicSize); 695 llvm::Type *elts[] = { 696 ResultType, 697 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 698 }; 699 ResultType = 700 llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts)); 701 } 702 break; 703 } 704 case Type::Pipe: { 705 ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty)); 706 break; 707 } 708 case Type::BitInt: { 709 const auto &EIT = cast<BitIntType>(Ty); 710 ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits()); 711 break; 712 } 713 } 714 715 assert(ResultType && "Didn't convert a type?"); 716 assert((!CachedType || CachedType == ResultType) && 717 "Cached type doesn't match computed type"); 718 719 TypeCache[Ty] = ResultType; 720 return ResultType; 721 } 722 723 bool CodeGenModule::isPaddedAtomicType(QualType type) { 724 return isPaddedAtomicType(type->castAs<AtomicType>()); 725 } 726 727 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 728 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 729 } 730 731 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 732 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 733 // TagDecl's are not necessarily unique, instead use the (clang) 734 // type connected to the decl. 735 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 736 737 llvm::StructType *&Entry = RecordDeclTypes[Key]; 738 739 // If we don't have a StructType at all yet, create the forward declaration. 740 if (!Entry) { 741 Entry = llvm::StructType::create(getLLVMContext()); 742 addRecordTypeName(RD, Entry, ""); 743 } 744 llvm::StructType *Ty = Entry; 745 746 // If this is still a forward declaration, or the LLVM type is already 747 // complete, there's nothing more to do. 748 RD = RD->getDefinition(); 749 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) 750 return Ty; 751 752 // Force conversion of non-virtual base classes recursively. 753 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 754 for (const auto &I : CRD->bases()) { 755 if (I.isVirtual()) continue; 756 ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl()); 757 } 758 } 759 760 // Layout fields. 761 std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty); 762 CGRecordLayouts[Key] = std::move(Layout); 763 764 // If this struct blocked a FunctionType conversion, then recompute whatever 765 // was derived from that. 766 // FIXME: This is hugely overconservative. 767 if (SkippedLayout) 768 TypeCache.clear(); 769 770 return Ty; 771 } 772 773 /// getCGRecordLayout - Return record layout info for the given record decl. 774 const CGRecordLayout & 775 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 776 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 777 778 auto I = CGRecordLayouts.find(Key); 779 if (I != CGRecordLayouts.end()) 780 return *I->second; 781 // Compute the type information. 782 ConvertRecordDeclType(RD); 783 784 // Now try again. 785 I = CGRecordLayouts.find(Key); 786 787 assert(I != CGRecordLayouts.end() && 788 "Unable to find record layout information for type"); 789 return *I->second; 790 } 791 792 bool CodeGenTypes::isPointerZeroInitializable(QualType T) { 793 assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type"); 794 return isZeroInitializable(T); 795 } 796 797 bool CodeGenTypes::isZeroInitializable(QualType T) { 798 if (T->getAs<PointerType>()) 799 return Context.getTargetNullPointerValue(T) == 0; 800 801 if (const auto *AT = Context.getAsArrayType(T)) { 802 if (isa<IncompleteArrayType>(AT)) 803 return true; 804 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 805 if (Context.getConstantArrayElementCount(CAT) == 0) 806 return true; 807 T = Context.getBaseElementType(T); 808 } 809 810 // Records are non-zero-initializable if they contain any 811 // non-zero-initializable subobjects. 812 if (const RecordType *RT = T->getAs<RecordType>()) { 813 const RecordDecl *RD = RT->getDecl(); 814 return isZeroInitializable(RD); 815 } 816 817 // We have to ask the ABI about member pointers. 818 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 819 return getCXXABI().isZeroInitializable(MPT); 820 821 // Everything else is okay. 822 return true; 823 } 824 825 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { 826 return getCGRecordLayout(RD).isZeroInitializable(); 827 } 828 829 unsigned CodeGenTypes::getTargetAddressSpace(QualType T) const { 830 // Return the address space for the type. If the type is a 831 // function type without an address space qualifier, the 832 // program address space is used. Otherwise, the target picks 833 // the best address space based on the type information 834 return T->isFunctionType() && !T.hasAddressSpace() 835 ? getDataLayout().getProgramAddressSpace() 836 : getContext().getTargetAddressSpace(T.getAddressSpace()); 837 } 838