1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the code that handles AST -> LLVM type lowering. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenTypes.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGHLSLRuntime.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGRecordLayout.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Module.h" 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 34 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 35 Target(cgm.getTarget()) { 36 SkippedLayout = false; 37 LongDoubleReferenced = false; 38 } 39 40 CodeGenTypes::~CodeGenTypes() { 41 for (llvm::FoldingSet<CGFunctionInfo>::iterator 42 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 43 delete &*I++; 44 } 45 46 CGCXXABI &CodeGenTypes::getCXXABI() const { return getCGM().getCXXABI(); } 47 48 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const { 49 return CGM.getCodeGenOpts(); 50 } 51 52 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 53 llvm::StructType *Ty, 54 StringRef suffix) { 55 SmallString<256> TypeName; 56 llvm::raw_svector_ostream OS(TypeName); 57 OS << RD->getKindName() << '.'; 58 59 // FIXME: We probably want to make more tweaks to the printing policy. For 60 // example, we should probably enable PrintCanonicalTypes and 61 // FullyQualifiedNames. 62 PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy(); 63 Policy.SuppressInlineNamespace = 64 PrintingPolicy::SuppressInlineNamespaceMode::None; 65 66 // Name the codegen type after the typedef name 67 // if there is no tag type name available 68 if (RD->getIdentifier()) { 69 // FIXME: We should not have to check for a null decl context here. 70 // Right now we do it because the implicit Obj-C decls don't have one. 71 if (RD->getDeclContext()) 72 RD->printQualifiedName(OS, Policy); 73 else 74 RD->printName(OS, Policy); 75 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 76 // FIXME: We should not have to check for a null decl context here. 77 // Right now we do it because the implicit Obj-C decls don't have one. 78 if (TDD->getDeclContext()) 79 TDD->printQualifiedName(OS, Policy); 80 else 81 TDD->printName(OS); 82 } else 83 OS << "anon"; 84 85 if (!suffix.empty()) 86 OS << suffix; 87 88 Ty->setName(OS.str()); 89 } 90 91 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 92 /// ConvertType in that it is used to convert to the memory representation for 93 /// a type. For example, the scalar representation for _Bool is i1, but the 94 /// memory representation is usually i8 or i32, depending on the target. 95 /// 96 /// We generally assume that the alloc size of this type under the LLVM 97 /// data layout is the same as the size of the AST type. The alignment 98 /// does not have to match: Clang should always use explicit alignments 99 /// and packed structs as necessary to produce the layout it needs. 100 /// But the size does need to be exactly right or else things like struct 101 /// layout will break. 102 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) { 103 if (T->isConstantMatrixType()) { 104 const Type *Ty = Context.getCanonicalType(T).getTypePtr(); 105 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty); 106 return llvm::ArrayType::get(ConvertType(MT->getElementType()), 107 MT->getNumRows() * MT->getNumColumns()); 108 } 109 110 llvm::Type *R = ConvertType(T); 111 112 // Check for the boolean vector case. 113 if (T->isExtVectorBoolType()) { 114 auto *FixedVT = cast<llvm::FixedVectorType>(R); 115 // Pad to at least one byte. 116 uint64_t BytePadded = std::max<uint64_t>(FixedVT->getNumElements(), 8); 117 return llvm::IntegerType::get(FixedVT->getContext(), BytePadded); 118 } 119 120 // If T is _Bool or a _BitInt type, ConvertType will produce an IR type 121 // with the exact semantic bit-width of the AST type; for example, 122 // _BitInt(17) will turn into i17. In memory, however, we need to store 123 // such values extended to their full storage size as decided by AST 124 // layout; this is an ABI requirement. Ideally, we would always use an 125 // integer type that's just the bit-size of the AST type; for example, if 126 // sizeof(_BitInt(17)) == 4, _BitInt(17) would turn into i32. That is what's 127 // returned by convertTypeForLoadStore. However, that type does not 128 // always satisfy the size requirement on memory representation types 129 // describe above. For example, a 32-bit platform might reasonably set 130 // sizeof(_BitInt(65)) == 12, but i96 is likely to have to have an alloc size 131 // of 16 bytes in the LLVM data layout. In these cases, we simply return 132 // a byte array of the appropriate size. 133 if (T->isBitIntType()) { 134 if (typeRequiresSplitIntoByteArray(T, R)) 135 return llvm::ArrayType::get(CGM.Int8Ty, 136 Context.getTypeSizeInChars(T).getQuantity()); 137 return llvm::IntegerType::get(getLLVMContext(), 138 (unsigned)Context.getTypeSize(T)); 139 } 140 141 if (R->isIntegerTy(1)) 142 return llvm::IntegerType::get(getLLVMContext(), 143 (unsigned)Context.getTypeSize(T)); 144 145 // Else, don't map it. 146 return R; 147 } 148 149 bool CodeGenTypes::typeRequiresSplitIntoByteArray(QualType ASTTy, 150 llvm::Type *LLVMTy) { 151 if (!LLVMTy) 152 LLVMTy = ConvertType(ASTTy); 153 154 CharUnits ASTSize = Context.getTypeSizeInChars(ASTTy); 155 CharUnits LLVMSize = 156 CharUnits::fromQuantity(getDataLayout().getTypeAllocSize(LLVMTy)); 157 return ASTSize != LLVMSize; 158 } 159 160 llvm::Type *CodeGenTypes::convertTypeForLoadStore(QualType T, 161 llvm::Type *LLVMTy) { 162 if (!LLVMTy) 163 LLVMTy = ConvertType(T); 164 165 if (T->isBitIntType()) 166 return llvm::Type::getIntNTy( 167 getLLVMContext(), Context.getTypeSizeInChars(T).getQuantity() * 8); 168 169 if (LLVMTy->isIntegerTy(1)) 170 return llvm::IntegerType::get(getLLVMContext(), 171 (unsigned)Context.getTypeSize(T)); 172 173 if (T->isExtVectorBoolType()) 174 return ConvertTypeForMem(T); 175 176 return LLVMTy; 177 } 178 179 /// isRecordLayoutComplete - Return true if the specified type is already 180 /// completely laid out. 181 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 182 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 183 RecordDeclTypes.find(Ty); 184 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 185 } 186 187 /// isFuncParamTypeConvertible - Return true if the specified type in a 188 /// function parameter or result position can be converted to an IR type at this 189 /// point. This boils down to being whether it is complete. 190 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 191 // Some ABIs cannot have their member pointers represented in IR unless 192 // certain circumstances have been reached. 193 if (const auto *MPT = Ty->getAs<MemberPointerType>()) 194 return getCXXABI().isMemberPointerConvertible(MPT); 195 196 // If this isn't a tagged type, we can convert it! 197 const TagType *TT = Ty->getAs<TagType>(); 198 if (!TT) return true; 199 200 // Incomplete types cannot be converted. 201 return !TT->isIncompleteType(); 202 } 203 204 205 /// Code to verify a given function type is complete, i.e. the return type 206 /// and all of the parameter types are complete. Also check to see if we are in 207 /// a RS_StructPointer context, and if so whether any struct types have been 208 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 209 /// that cannot be converted to an IR type. 210 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 211 if (!isFuncParamTypeConvertible(FT->getReturnType())) 212 return false; 213 214 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 215 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 216 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 217 return false; 218 219 return true; 220 } 221 222 /// UpdateCompletedType - When we find the full definition for a TagDecl, 223 /// replace the 'opaque' type we previously made for it if applicable. 224 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 225 // If this is an enum being completed, then we flush all non-struct types from 226 // the cache. This allows function types and other things that may be derived 227 // from the enum to be recomputed. 228 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 229 // Only flush the cache if we've actually already converted this type. 230 if (TypeCache.count(ED->getTypeForDecl())) { 231 // Okay, we formed some types based on this. We speculated that the enum 232 // would be lowered to i32, so we only need to flush the cache if this 233 // didn't happen. 234 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 235 TypeCache.clear(); 236 } 237 // If necessary, provide the full definition of a type only used with a 238 // declaration so far. 239 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 240 DI->completeType(ED); 241 return; 242 } 243 244 // If we completed a RecordDecl that we previously used and converted to an 245 // anonymous type, then go ahead and complete it now. 246 const RecordDecl *RD = cast<RecordDecl>(TD); 247 if (RD->isDependentType()) return; 248 249 // Only complete it if we converted it already. If we haven't converted it 250 // yet, we'll just do it lazily. 251 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 252 ConvertRecordDeclType(RD); 253 254 // If necessary, provide the full definition of a type only used with a 255 // declaration so far. 256 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 257 DI->completeType(RD); 258 } 259 260 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 261 QualType T = Context.getRecordType(RD); 262 T = Context.getCanonicalType(T); 263 264 const Type *Ty = T.getTypePtr(); 265 if (RecordsWithOpaqueMemberPointers.count(Ty)) { 266 TypeCache.clear(); 267 RecordsWithOpaqueMemberPointers.clear(); 268 } 269 } 270 271 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 272 const llvm::fltSemantics &format, 273 bool UseNativeHalf = false) { 274 if (&format == &llvm::APFloat::IEEEhalf()) { 275 if (UseNativeHalf) 276 return llvm::Type::getHalfTy(VMContext); 277 else 278 return llvm::Type::getInt16Ty(VMContext); 279 } 280 if (&format == &llvm::APFloat::BFloat()) 281 return llvm::Type::getBFloatTy(VMContext); 282 if (&format == &llvm::APFloat::IEEEsingle()) 283 return llvm::Type::getFloatTy(VMContext); 284 if (&format == &llvm::APFloat::IEEEdouble()) 285 return llvm::Type::getDoubleTy(VMContext); 286 if (&format == &llvm::APFloat::IEEEquad()) 287 return llvm::Type::getFP128Ty(VMContext); 288 if (&format == &llvm::APFloat::PPCDoubleDouble()) 289 return llvm::Type::getPPC_FP128Ty(VMContext); 290 if (&format == &llvm::APFloat::x87DoubleExtended()) 291 return llvm::Type::getX86_FP80Ty(VMContext); 292 llvm_unreachable("Unknown float format!"); 293 } 294 295 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) { 296 assert(QFT.isCanonical()); 297 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr()); 298 // First, check whether we can build the full function type. If the 299 // function type depends on an incomplete type (e.g. a struct or enum), we 300 // cannot lower the function type. 301 if (!isFuncTypeConvertible(FT)) { 302 // This function's type depends on an incomplete tag type. 303 304 // Force conversion of all the relevant record types, to make sure 305 // we re-convert the FunctionType when appropriate. 306 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 307 ConvertRecordDeclType(RT->getDecl()); 308 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 309 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 310 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 311 ConvertRecordDeclType(RT->getDecl()); 312 313 SkippedLayout = true; 314 315 // Return a placeholder type. 316 return llvm::StructType::get(getLLVMContext()); 317 } 318 319 // The function type can be built; call the appropriate routines to 320 // build it. 321 const CGFunctionInfo *FI; 322 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 323 FI = &arrangeFreeFunctionType( 324 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); 325 } else { 326 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 327 FI = &arrangeFreeFunctionType( 328 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 329 } 330 331 llvm::Type *ResultType = nullptr; 332 // If there is something higher level prodding our CGFunctionInfo, then 333 // don't recurse into it again. 334 if (FunctionsBeingProcessed.count(FI)) { 335 336 ResultType = llvm::StructType::get(getLLVMContext()); 337 SkippedLayout = true; 338 } else { 339 340 // Otherwise, we're good to go, go ahead and convert it. 341 ResultType = GetFunctionType(*FI); 342 } 343 344 return ResultType; 345 } 346 347 /// ConvertType - Convert the specified type to its LLVM form. 348 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 349 T = Context.getCanonicalType(T); 350 351 const Type *Ty = T.getTypePtr(); 352 353 // For the device-side compilation, CUDA device builtin surface/texture types 354 // may be represented in different types. 355 if (Context.getLangOpts().CUDAIsDevice) { 356 if (T->isCUDADeviceBuiltinSurfaceType()) { 357 if (auto *Ty = CGM.getTargetCodeGenInfo() 358 .getCUDADeviceBuiltinSurfaceDeviceType()) 359 return Ty; 360 } else if (T->isCUDADeviceBuiltinTextureType()) { 361 if (auto *Ty = CGM.getTargetCodeGenInfo() 362 .getCUDADeviceBuiltinTextureDeviceType()) 363 return Ty; 364 } 365 } 366 367 // RecordTypes are cached and processed specially. 368 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 369 return ConvertRecordDeclType(RT->getDecl()); 370 371 llvm::Type *CachedType = nullptr; 372 auto TCI = TypeCache.find(Ty); 373 if (TCI != TypeCache.end()) 374 CachedType = TCI->second; 375 // With expensive checks, check that the type we compute matches the 376 // cached type. 377 #ifndef EXPENSIVE_CHECKS 378 if (CachedType) 379 return CachedType; 380 #endif 381 382 // If we don't have it in the cache, convert it now. 383 llvm::Type *ResultType = nullptr; 384 switch (Ty->getTypeClass()) { 385 case Type::Record: // Handled above. 386 #define TYPE(Class, Base) 387 #define ABSTRACT_TYPE(Class, Base) 388 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 389 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 390 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 391 #include "clang/AST/TypeNodes.inc" 392 llvm_unreachable("Non-canonical or dependent types aren't possible."); 393 394 case Type::Builtin: { 395 switch (cast<BuiltinType>(Ty)->getKind()) { 396 case BuiltinType::Void: 397 case BuiltinType::ObjCId: 398 case BuiltinType::ObjCClass: 399 case BuiltinType::ObjCSel: 400 // LLVM void type can only be used as the result of a function call. Just 401 // map to the same as char. 402 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 403 break; 404 405 case BuiltinType::Bool: 406 // Note that we always return bool as i1 for use as a scalar type. 407 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 408 break; 409 410 case BuiltinType::Char_S: 411 case BuiltinType::Char_U: 412 case BuiltinType::SChar: 413 case BuiltinType::UChar: 414 case BuiltinType::Short: 415 case BuiltinType::UShort: 416 case BuiltinType::Int: 417 case BuiltinType::UInt: 418 case BuiltinType::Long: 419 case BuiltinType::ULong: 420 case BuiltinType::LongLong: 421 case BuiltinType::ULongLong: 422 case BuiltinType::WChar_S: 423 case BuiltinType::WChar_U: 424 case BuiltinType::Char8: 425 case BuiltinType::Char16: 426 case BuiltinType::Char32: 427 case BuiltinType::ShortAccum: 428 case BuiltinType::Accum: 429 case BuiltinType::LongAccum: 430 case BuiltinType::UShortAccum: 431 case BuiltinType::UAccum: 432 case BuiltinType::ULongAccum: 433 case BuiltinType::ShortFract: 434 case BuiltinType::Fract: 435 case BuiltinType::LongFract: 436 case BuiltinType::UShortFract: 437 case BuiltinType::UFract: 438 case BuiltinType::ULongFract: 439 case BuiltinType::SatShortAccum: 440 case BuiltinType::SatAccum: 441 case BuiltinType::SatLongAccum: 442 case BuiltinType::SatUShortAccum: 443 case BuiltinType::SatUAccum: 444 case BuiltinType::SatULongAccum: 445 case BuiltinType::SatShortFract: 446 case BuiltinType::SatFract: 447 case BuiltinType::SatLongFract: 448 case BuiltinType::SatUShortFract: 449 case BuiltinType::SatUFract: 450 case BuiltinType::SatULongFract: 451 ResultType = llvm::IntegerType::get(getLLVMContext(), 452 static_cast<unsigned>(Context.getTypeSize(T))); 453 break; 454 455 case BuiltinType::Float16: 456 ResultType = 457 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), 458 /* UseNativeHalf = */ true); 459 break; 460 461 case BuiltinType::Half: 462 // Half FP can either be storage-only (lowered to i16) or native. 463 ResultType = getTypeForFormat( 464 getLLVMContext(), Context.getFloatTypeSemantics(T), 465 Context.getLangOpts().NativeHalfType || 466 !Context.getTargetInfo().useFP16ConversionIntrinsics()); 467 break; 468 case BuiltinType::LongDouble: 469 LongDoubleReferenced = true; 470 [[fallthrough]]; 471 case BuiltinType::BFloat16: 472 case BuiltinType::Float: 473 case BuiltinType::Double: 474 case BuiltinType::Float128: 475 case BuiltinType::Ibm128: 476 ResultType = getTypeForFormat(getLLVMContext(), 477 Context.getFloatTypeSemantics(T), 478 /* UseNativeHalf = */ false); 479 break; 480 481 case BuiltinType::NullPtr: 482 // Model std::nullptr_t as i8* 483 ResultType = llvm::PointerType::getUnqual(getLLVMContext()); 484 break; 485 486 case BuiltinType::UInt128: 487 case BuiltinType::Int128: 488 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 489 break; 490 491 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 492 case BuiltinType::Id: 493 #include "clang/Basic/OpenCLImageTypes.def" 494 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 495 case BuiltinType::Id: 496 #include "clang/Basic/OpenCLExtensionTypes.def" 497 case BuiltinType::OCLSampler: 498 case BuiltinType::OCLEvent: 499 case BuiltinType::OCLClkEvent: 500 case BuiltinType::OCLQueue: 501 case BuiltinType::OCLReserveID: 502 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 503 break; 504 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \ 505 case BuiltinType::Id: 506 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId) \ 507 case BuiltinType::Id: 508 #define AARCH64_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \ 509 case BuiltinType::Id: 510 #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) 511 #include "clang/Basic/AArch64SVEACLETypes.def" 512 { 513 ASTContext::BuiltinVectorTypeInfo Info = 514 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty)); 515 auto VTy = 516 llvm::VectorType::get(ConvertType(Info.ElementType), Info.EC); 517 switch (Info.NumVectors) { 518 default: 519 llvm_unreachable("Expected 1, 2, 3 or 4 vectors!"); 520 case 1: 521 return VTy; 522 case 2: 523 return llvm::StructType::get(VTy, VTy); 524 case 3: 525 return llvm::StructType::get(VTy, VTy, VTy); 526 case 4: 527 return llvm::StructType::get(VTy, VTy, VTy, VTy); 528 } 529 } 530 case BuiltinType::SveCount: 531 return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount"); 532 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 533 case BuiltinType::Id: \ 534 ResultType = \ 535 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \ 536 break; 537 #include "clang/Basic/PPCTypes.def" 538 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 539 #include "clang/Basic/RISCVVTypes.def" 540 { 541 ASTContext::BuiltinVectorTypeInfo Info = 542 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty)); 543 if (Info.NumVectors != 1) { 544 unsigned I8EltCount = 545 Info.EC.getKnownMinValue() * 546 ConvertType(Info.ElementType)->getScalarSizeInBits() / 8; 547 return llvm::TargetExtType::get( 548 getLLVMContext(), "riscv.vector.tuple", 549 llvm::ScalableVectorType::get( 550 llvm::Type::getInt8Ty(getLLVMContext()), I8EltCount), 551 Info.NumVectors); 552 } 553 return llvm::ScalableVectorType::get(ConvertType(Info.ElementType), 554 Info.EC.getKnownMinValue()); 555 } 556 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ 557 case BuiltinType::Id: { \ 558 if (BuiltinType::Id == BuiltinType::WasmExternRef) \ 559 ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \ 560 else \ 561 llvm_unreachable("Unexpected wasm reference builtin type!"); \ 562 } break; 563 #include "clang/Basic/WebAssemblyReferenceTypes.def" 564 #define AMDGPU_OPAQUE_PTR_TYPE(Name, Id, SingletonId, Width, Align, AS) \ 565 case BuiltinType::Id: \ 566 return llvm::PointerType::get(getLLVMContext(), AS); 567 #include "clang/Basic/AMDGPUTypes.def" 568 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 569 #include "clang/Basic/HLSLIntangibleTypes.def" 570 ResultType = CGM.getHLSLRuntime().convertHLSLSpecificType(Ty); 571 break; 572 case BuiltinType::Dependent: 573 #define BUILTIN_TYPE(Id, SingletonId) 574 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 575 case BuiltinType::Id: 576 #include "clang/AST/BuiltinTypes.def" 577 llvm_unreachable("Unexpected placeholder builtin type!"); 578 } 579 break; 580 } 581 case Type::Auto: 582 case Type::DeducedTemplateSpecialization: 583 llvm_unreachable("Unexpected undeduced type!"); 584 case Type::Complex: { 585 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 586 ResultType = llvm::StructType::get(EltTy, EltTy); 587 break; 588 } 589 case Type::LValueReference: 590 case Type::RValueReference: { 591 const ReferenceType *RTy = cast<ReferenceType>(Ty); 592 QualType ETy = RTy->getPointeeType(); 593 unsigned AS = getTargetAddressSpace(ETy); 594 ResultType = llvm::PointerType::get(getLLVMContext(), AS); 595 break; 596 } 597 case Type::Pointer: { 598 const PointerType *PTy = cast<PointerType>(Ty); 599 QualType ETy = PTy->getPointeeType(); 600 unsigned AS = getTargetAddressSpace(ETy); 601 ResultType = llvm::PointerType::get(getLLVMContext(), AS); 602 break; 603 } 604 605 case Type::VariableArray: { 606 const VariableArrayType *A = cast<VariableArrayType>(Ty); 607 assert(A->getIndexTypeCVRQualifiers() == 0 && 608 "FIXME: We only handle trivial array types so far!"); 609 // VLAs resolve to the innermost element type; this matches 610 // the return of alloca, and there isn't any obviously better choice. 611 ResultType = ConvertTypeForMem(A->getElementType()); 612 break; 613 } 614 case Type::IncompleteArray: { 615 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 616 assert(A->getIndexTypeCVRQualifiers() == 0 && 617 "FIXME: We only handle trivial array types so far!"); 618 // int X[] -> [0 x int], unless the element type is not sized. If it is 619 // unsized (e.g. an incomplete struct) just use [0 x i8]. 620 ResultType = ConvertTypeForMem(A->getElementType()); 621 if (!ResultType->isSized()) { 622 SkippedLayout = true; 623 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 624 } 625 ResultType = llvm::ArrayType::get(ResultType, 0); 626 break; 627 } 628 case Type::ArrayParameter: 629 case Type::ConstantArray: { 630 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 631 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 632 633 // Lower arrays of undefined struct type to arrays of i8 just to have a 634 // concrete type. 635 if (!EltTy->isSized()) { 636 SkippedLayout = true; 637 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 638 } 639 640 ResultType = llvm::ArrayType::get(EltTy, A->getZExtSize()); 641 break; 642 } 643 case Type::ExtVector: 644 case Type::Vector: { 645 const auto *VT = cast<VectorType>(Ty); 646 // An ext_vector_type of Bool is really a vector of bits. 647 llvm::Type *IRElemTy = VT->isExtVectorBoolType() 648 ? llvm::Type::getInt1Ty(getLLVMContext()) 649 : ConvertType(VT->getElementType()); 650 ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements()); 651 break; 652 } 653 case Type::ConstantMatrix: { 654 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty); 655 ResultType = 656 llvm::FixedVectorType::get(ConvertType(MT->getElementType()), 657 MT->getNumRows() * MT->getNumColumns()); 658 break; 659 } 660 case Type::FunctionNoProto: 661 case Type::FunctionProto: 662 ResultType = ConvertFunctionTypeInternal(T); 663 break; 664 case Type::ObjCObject: 665 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 666 break; 667 668 case Type::ObjCInterface: { 669 // Objective-C interfaces are always opaque (outside of the 670 // runtime, which can do whatever it likes); we never refine 671 // these. 672 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 673 if (!T) 674 T = llvm::StructType::create(getLLVMContext()); 675 ResultType = T; 676 break; 677 } 678 679 case Type::ObjCObjectPointer: 680 ResultType = llvm::PointerType::getUnqual(getLLVMContext()); 681 break; 682 683 case Type::Enum: { 684 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 685 if (ED->isCompleteDefinition() || ED->isFixed()) 686 return ConvertType(ED->getIntegerType()); 687 // Return a placeholder 'i32' type. This can be changed later when the 688 // type is defined (see UpdateCompletedType), but is likely to be the 689 // "right" answer. 690 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 691 break; 692 } 693 694 case Type::BlockPointer: { 695 // Block pointers lower to function type. For function type, 696 // getTargetAddressSpace() returns default address space for 697 // function pointer i.e. program address space. Therefore, for block 698 // pointers, it is important to pass the pointee AST address space when 699 // calling getTargetAddressSpace(), to ensure that we get the LLVM IR 700 // address space for data pointers and not function pointers. 701 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 702 unsigned AS = Context.getTargetAddressSpace(FTy.getAddressSpace()); 703 ResultType = llvm::PointerType::get(getLLVMContext(), AS); 704 break; 705 } 706 707 case Type::MemberPointer: { 708 auto *MPTy = cast<MemberPointerType>(Ty); 709 if (!getCXXABI().isMemberPointerConvertible(MPTy)) { 710 auto *C = MPTy->getClass(); 711 auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr}); 712 if (Insertion.second) 713 Insertion.first->second = llvm::StructType::create(getLLVMContext()); 714 ResultType = Insertion.first->second; 715 } else { 716 ResultType = getCXXABI().ConvertMemberPointerType(MPTy); 717 } 718 break; 719 } 720 721 case Type::Atomic: { 722 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 723 ResultType = ConvertTypeForMem(valueType); 724 725 // Pad out to the inflated size if necessary. 726 uint64_t valueSize = Context.getTypeSize(valueType); 727 uint64_t atomicSize = Context.getTypeSize(Ty); 728 if (valueSize != atomicSize) { 729 assert(valueSize < atomicSize); 730 llvm::Type *elts[] = { 731 ResultType, 732 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 733 }; 734 ResultType = 735 llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts)); 736 } 737 break; 738 } 739 case Type::Pipe: { 740 ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty)); 741 break; 742 } 743 case Type::BitInt: { 744 const auto &EIT = cast<BitIntType>(Ty); 745 ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits()); 746 break; 747 } 748 case Type::HLSLAttributedResource: 749 ResultType = CGM.getHLSLRuntime().convertHLSLSpecificType(Ty); 750 break; 751 } 752 753 assert(ResultType && "Didn't convert a type?"); 754 assert((!CachedType || CachedType == ResultType) && 755 "Cached type doesn't match computed type"); 756 757 TypeCache[Ty] = ResultType; 758 return ResultType; 759 } 760 761 bool CodeGenModule::isPaddedAtomicType(QualType type) { 762 return isPaddedAtomicType(type->castAs<AtomicType>()); 763 } 764 765 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 766 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 767 } 768 769 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 770 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 771 // TagDecl's are not necessarily unique, instead use the (clang) 772 // type connected to the decl. 773 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 774 775 llvm::StructType *&Entry = RecordDeclTypes[Key]; 776 777 // If we don't have a StructType at all yet, create the forward declaration. 778 if (!Entry) { 779 Entry = llvm::StructType::create(getLLVMContext()); 780 addRecordTypeName(RD, Entry, ""); 781 } 782 llvm::StructType *Ty = Entry; 783 784 // If this is still a forward declaration, or the LLVM type is already 785 // complete, there's nothing more to do. 786 RD = RD->getDefinition(); 787 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) 788 return Ty; 789 790 // Force conversion of non-virtual base classes recursively. 791 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 792 for (const auto &I : CRD->bases()) { 793 if (I.isVirtual()) continue; 794 ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl()); 795 } 796 } 797 798 // Layout fields. 799 std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty); 800 CGRecordLayouts[Key] = std::move(Layout); 801 802 // If this struct blocked a FunctionType conversion, then recompute whatever 803 // was derived from that. 804 // FIXME: This is hugely overconservative. 805 if (SkippedLayout) 806 TypeCache.clear(); 807 808 return Ty; 809 } 810 811 /// getCGRecordLayout - Return record layout info for the given record decl. 812 const CGRecordLayout & 813 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 814 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 815 816 auto I = CGRecordLayouts.find(Key); 817 if (I != CGRecordLayouts.end()) 818 return *I->second; 819 // Compute the type information. 820 ConvertRecordDeclType(RD); 821 822 // Now try again. 823 I = CGRecordLayouts.find(Key); 824 825 assert(I != CGRecordLayouts.end() && 826 "Unable to find record layout information for type"); 827 return *I->second; 828 } 829 830 bool CodeGenTypes::isPointerZeroInitializable(QualType T) { 831 assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type"); 832 return isZeroInitializable(T); 833 } 834 835 bool CodeGenTypes::isZeroInitializable(QualType T) { 836 if (T->getAs<PointerType>()) 837 return Context.getTargetNullPointerValue(T) == 0; 838 839 if (const auto *AT = Context.getAsArrayType(T)) { 840 if (isa<IncompleteArrayType>(AT)) 841 return true; 842 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 843 if (Context.getConstantArrayElementCount(CAT) == 0) 844 return true; 845 T = Context.getBaseElementType(T); 846 } 847 848 // Records are non-zero-initializable if they contain any 849 // non-zero-initializable subobjects. 850 if (const RecordType *RT = T->getAs<RecordType>()) { 851 const RecordDecl *RD = RT->getDecl(); 852 return isZeroInitializable(RD); 853 } 854 855 // We have to ask the ABI about member pointers. 856 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 857 return getCXXABI().isZeroInitializable(MPT); 858 859 // Everything else is okay. 860 return true; 861 } 862 863 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { 864 return getCGRecordLayout(RD).isZeroInitializable(); 865 } 866 867 unsigned CodeGenTypes::getTargetAddressSpace(QualType T) const { 868 // Return the address space for the type. If the type is a 869 // function type without an address space qualifier, the 870 // program address space is used. Otherwise, the target picks 871 // the best address space based on the type information 872 return T->isFunctionType() && !T.hasAddressSpace() 873 ? getDataLayout().getProgramAddressSpace() 874 : getContext().getTargetAddressSpace(T.getAddressSpace()); 875 } 876