1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Frontend/CodeGenOptions.h" 38 #include "llvm/ADT/APSInt.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/IR/CallingConv.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/Support/CallSite.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Target/Mangler.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::DataLayout &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.SanitizeThread || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNUstep: 142 case ObjCRuntime::GCC: 143 case ObjCRuntime::ObjFW: 144 ObjCRuntime = CreateGNUObjCRuntime(*this); 145 return; 146 147 case ObjCRuntime::FragileMacOSX: 148 case ObjCRuntime::MacOSX: 149 case ObjCRuntime::iOS: 150 ObjCRuntime = CreateMacObjCRuntime(*this); 151 return; 152 } 153 llvm_unreachable("bad runtime kind"); 154 } 155 156 void CodeGenModule::createOpenCLRuntime() { 157 OpenCLRuntime = new CGOpenCLRuntime(*this); 158 } 159 160 void CodeGenModule::createCUDARuntime() { 161 CUDARuntime = CreateNVCUDARuntime(*this); 162 } 163 164 void CodeGenModule::Release() { 165 EmitDeferred(); 166 EmitCXXGlobalInitFunc(); 167 EmitCXXGlobalDtorFunc(); 168 if (ObjCRuntime) 169 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 170 AddGlobalCtor(ObjCInitFunction); 171 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 172 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 173 EmitGlobalAnnotations(); 174 EmitLLVMUsed(); 175 176 SimplifyPersonality(); 177 178 if (getCodeGenOpts().EmitDeclMetadata) 179 EmitDeclMetadata(); 180 181 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 182 EmitCoverageFile(); 183 184 if (DebugInfo) 185 DebugInfo->finalize(); 186 } 187 188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 189 // Make sure that this type is translated. 190 Types.UpdateCompletedType(TD); 191 } 192 193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 194 if (!TBAA) 195 return 0; 196 return TBAA->getTBAAInfo(QTy); 197 } 198 199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 200 if (!TBAA) 201 return 0; 202 return TBAA->getTBAAInfoForVTablePtr(); 203 } 204 205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 206 if (!TBAA) 207 return 0; 208 return TBAA->getTBAAStructInfo(QTy); 209 } 210 211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 212 llvm::MDNode *TBAAInfo) { 213 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 214 } 215 216 bool CodeGenModule::isTargetDarwin() const { 217 return getContext().getTargetInfo().getTriple().isOSDarwin(); 218 } 219 220 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 221 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 222 getDiags().Report(Context.getFullLoc(loc), diagID); 223 } 224 225 /// ErrorUnsupported - Print out an error that codegen doesn't support the 226 /// specified stmt yet. 227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 228 bool OmitOnError) { 229 if (OmitOnError && getDiags().hasErrorOccurred()) 230 return; 231 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 232 "cannot compile this %0 yet"); 233 std::string Msg = Type; 234 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 235 << Msg << S->getSourceRange(); 236 } 237 238 /// ErrorUnsupported - Print out an error that codegen doesn't support the 239 /// specified decl yet. 240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 241 bool OmitOnError) { 242 if (OmitOnError && getDiags().hasErrorOccurred()) 243 return; 244 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 245 "cannot compile this %0 yet"); 246 std::string Msg = Type; 247 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 248 } 249 250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 251 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 252 } 253 254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 255 const NamedDecl *D) const { 256 // Internal definitions always have default visibility. 257 if (GV->hasLocalLinkage()) { 258 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 259 return; 260 } 261 262 // Set visibility for definitions. 263 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 264 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 265 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 266 } 267 268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 269 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 270 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 271 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 272 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 273 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 274 } 275 276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 277 CodeGenOptions::TLSModel M) { 278 switch (M) { 279 case CodeGenOptions::GeneralDynamicTLSModel: 280 return llvm::GlobalVariable::GeneralDynamicTLSModel; 281 case CodeGenOptions::LocalDynamicTLSModel: 282 return llvm::GlobalVariable::LocalDynamicTLSModel; 283 case CodeGenOptions::InitialExecTLSModel: 284 return llvm::GlobalVariable::InitialExecTLSModel; 285 case CodeGenOptions::LocalExecTLSModel: 286 return llvm::GlobalVariable::LocalExecTLSModel; 287 } 288 llvm_unreachable("Invalid TLS model!"); 289 } 290 291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 292 const VarDecl &D) const { 293 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 294 295 llvm::GlobalVariable::ThreadLocalMode TLM; 296 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 297 298 // Override the TLS model if it is explicitly specified. 299 if (D.hasAttr<TLSModelAttr>()) { 300 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 301 TLM = GetLLVMTLSModel(Attr->getModel()); 302 } 303 304 GV->setThreadLocalMode(TLM); 305 } 306 307 /// Set the symbol visibility of type information (vtable and RTTI) 308 /// associated with the given type. 309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 310 const CXXRecordDecl *RD, 311 TypeVisibilityKind TVK) const { 312 setGlobalVisibility(GV, RD); 313 314 if (!CodeGenOpts.HiddenWeakVTables) 315 return; 316 317 // We never want to drop the visibility for RTTI names. 318 if (TVK == TVK_ForRTTIName) 319 return; 320 321 // We want to drop the visibility to hidden for weak type symbols. 322 // This isn't possible if there might be unresolved references 323 // elsewhere that rely on this symbol being visible. 324 325 // This should be kept roughly in sync with setThunkVisibility 326 // in CGVTables.cpp. 327 328 // Preconditions. 329 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 330 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 331 return; 332 333 // Don't override an explicit visibility attribute. 334 if (RD->getExplicitVisibility()) 335 return; 336 337 switch (RD->getTemplateSpecializationKind()) { 338 // We have to disable the optimization if this is an EI definition 339 // because there might be EI declarations in other shared objects. 340 case TSK_ExplicitInstantiationDefinition: 341 case TSK_ExplicitInstantiationDeclaration: 342 return; 343 344 // Every use of a non-template class's type information has to emit it. 345 case TSK_Undeclared: 346 break; 347 348 // In theory, implicit instantiations can ignore the possibility of 349 // an explicit instantiation declaration because there necessarily 350 // must be an EI definition somewhere with default visibility. In 351 // practice, it's possible to have an explicit instantiation for 352 // an arbitrary template class, and linkers aren't necessarily able 353 // to deal with mixed-visibility symbols. 354 case TSK_ExplicitSpecialization: 355 case TSK_ImplicitInstantiation: 356 return; 357 } 358 359 // If there's a key function, there may be translation units 360 // that don't have the key function's definition. But ignore 361 // this if we're emitting RTTI under -fno-rtti. 362 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 363 if (Context.getKeyFunction(RD)) 364 return; 365 } 366 367 // Otherwise, drop the visibility to hidden. 368 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 369 GV->setUnnamedAddr(true); 370 } 371 372 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 373 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 374 375 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 376 if (!Str.empty()) 377 return Str; 378 379 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 380 IdentifierInfo *II = ND->getIdentifier(); 381 assert(II && "Attempt to mangle unnamed decl."); 382 383 Str = II->getName(); 384 return Str; 385 } 386 387 SmallString<256> Buffer; 388 llvm::raw_svector_ostream Out(Buffer); 389 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 390 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 391 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 392 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 393 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 394 getCXXABI().getMangleContext().mangleBlock(BD, Out, 395 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 396 else 397 getCXXABI().getMangleContext().mangleName(ND, Out); 398 399 // Allocate space for the mangled name. 400 Out.flush(); 401 size_t Length = Buffer.size(); 402 char *Name = MangledNamesAllocator.Allocate<char>(Length); 403 std::copy(Buffer.begin(), Buffer.end(), Name); 404 405 Str = StringRef(Name, Length); 406 407 return Str; 408 } 409 410 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 411 const BlockDecl *BD) { 412 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 413 const Decl *D = GD.getDecl(); 414 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 415 if (D == 0) 416 MangleCtx.mangleGlobalBlock(BD, 417 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 418 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 419 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 420 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 421 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 422 else 423 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 424 } 425 426 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 427 return getModule().getNamedValue(Name); 428 } 429 430 /// AddGlobalCtor - Add a function to the list that will be called before 431 /// main() runs. 432 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 433 // FIXME: Type coercion of void()* types. 434 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 435 } 436 437 /// AddGlobalDtor - Add a function to the list that will be called 438 /// when the module is unloaded. 439 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 440 // FIXME: Type coercion of void()* types. 441 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 442 } 443 444 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 445 // Ctor function type is void()*. 446 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 447 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 448 449 // Get the type of a ctor entry, { i32, void ()* }. 450 llvm::StructType *CtorStructTy = 451 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 452 453 // Construct the constructor and destructor arrays. 454 SmallVector<llvm::Constant*, 8> Ctors; 455 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 456 llvm::Constant *S[] = { 457 llvm::ConstantInt::get(Int32Ty, I->second, false), 458 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 459 }; 460 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 461 } 462 463 if (!Ctors.empty()) { 464 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 465 new llvm::GlobalVariable(TheModule, AT, false, 466 llvm::GlobalValue::AppendingLinkage, 467 llvm::ConstantArray::get(AT, Ctors), 468 GlobalName); 469 } 470 } 471 472 llvm::GlobalValue::LinkageTypes 473 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 474 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 475 476 if (Linkage == GVA_Internal) 477 return llvm::Function::InternalLinkage; 478 479 if (D->hasAttr<DLLExportAttr>()) 480 return llvm::Function::DLLExportLinkage; 481 482 if (D->hasAttr<WeakAttr>()) 483 return llvm::Function::WeakAnyLinkage; 484 485 // In C99 mode, 'inline' functions are guaranteed to have a strong 486 // definition somewhere else, so we can use available_externally linkage. 487 if (Linkage == GVA_C99Inline) 488 return llvm::Function::AvailableExternallyLinkage; 489 490 // Note that Apple's kernel linker doesn't support symbol 491 // coalescing, so we need to avoid linkonce and weak linkages there. 492 // Normally, this means we just map to internal, but for explicit 493 // instantiations we'll map to external. 494 495 // In C++, the compiler has to emit a definition in every translation unit 496 // that references the function. We should use linkonce_odr because 497 // a) if all references in this translation unit are optimized away, we 498 // don't need to codegen it. b) if the function persists, it needs to be 499 // merged with other definitions. c) C++ has the ODR, so we know the 500 // definition is dependable. 501 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 502 return !Context.getLangOpts().AppleKext 503 ? llvm::Function::LinkOnceODRLinkage 504 : llvm::Function::InternalLinkage; 505 506 // An explicit instantiation of a template has weak linkage, since 507 // explicit instantiations can occur in multiple translation units 508 // and must all be equivalent. However, we are not allowed to 509 // throw away these explicit instantiations. 510 if (Linkage == GVA_ExplicitTemplateInstantiation) 511 return !Context.getLangOpts().AppleKext 512 ? llvm::Function::WeakODRLinkage 513 : llvm::Function::ExternalLinkage; 514 515 // Otherwise, we have strong external linkage. 516 assert(Linkage == GVA_StrongExternal); 517 return llvm::Function::ExternalLinkage; 518 } 519 520 521 /// SetFunctionDefinitionAttributes - Set attributes for a global. 522 /// 523 /// FIXME: This is currently only done for aliases and functions, but not for 524 /// variables (these details are set in EmitGlobalVarDefinition for variables). 525 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 526 llvm::GlobalValue *GV) { 527 SetCommonAttributes(D, GV); 528 } 529 530 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 531 const CGFunctionInfo &Info, 532 llvm::Function *F) { 533 unsigned CallingConv; 534 AttributeListType AttributeList; 535 ConstructAttributeList(Info, D, AttributeList, CallingConv); 536 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 537 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 538 } 539 540 /// Determines whether the language options require us to model 541 /// unwind exceptions. We treat -fexceptions as mandating this 542 /// except under the fragile ObjC ABI with only ObjC exceptions 543 /// enabled. This means, for example, that C with -fexceptions 544 /// enables this. 545 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 546 // If exceptions are completely disabled, obviously this is false. 547 if (!LangOpts.Exceptions) return false; 548 549 // If C++ exceptions are enabled, this is true. 550 if (LangOpts.CXXExceptions) return true; 551 552 // If ObjC exceptions are enabled, this depends on the ABI. 553 if (LangOpts.ObjCExceptions) { 554 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 555 } 556 557 return true; 558 } 559 560 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 561 llvm::Function *F) { 562 if (CodeGenOpts.UnwindTables) 563 F->setHasUWTable(); 564 565 if (!hasUnwindExceptions(LangOpts)) 566 F->addFnAttr(llvm::Attribute::NoUnwind); 567 568 if (D->hasAttr<NakedAttr>()) { 569 // Naked implies noinline: we should not be inlining such functions. 570 F->addFnAttr(llvm::Attribute::Naked); 571 F->addFnAttr(llvm::Attribute::NoInline); 572 } 573 574 if (D->hasAttr<NoInlineAttr>()) 575 F->addFnAttr(llvm::Attribute::NoInline); 576 577 // (noinline wins over always_inline, and we can't specify both in IR) 578 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 579 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 580 llvm::Attribute::NoInline)) 581 F->addFnAttr(llvm::Attribute::AlwaysInline); 582 583 // FIXME: Communicate hot and cold attributes to LLVM more directly. 584 if (D->hasAttr<ColdAttr>()) 585 F->addFnAttr(llvm::Attribute::OptimizeForSize); 586 587 if (D->hasAttr<MinSizeAttr>()) 588 F->addFnAttr(llvm::Attribute::MinSize); 589 590 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 591 F->setUnnamedAddr(true); 592 593 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 594 if (MD->isVirtual()) 595 F->setUnnamedAddr(true); 596 597 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 598 F->addFnAttr(llvm::Attribute::StackProtect); 599 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 600 F->addFnAttr(llvm::Attribute::StackProtectReq); 601 602 if (LangOpts.SanitizeAddress) { 603 // When AddressSanitizer is enabled, set AddressSafety attribute 604 // unless __attribute__((no_address_safety_analysis)) is used. 605 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 606 F->addFnAttr(llvm::Attribute::AddressSafety); 607 } 608 609 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 610 if (alignment) 611 F->setAlignment(alignment); 612 613 // C++ ABI requires 2-byte alignment for member functions. 614 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 615 F->setAlignment(2); 616 } 617 618 void CodeGenModule::SetCommonAttributes(const Decl *D, 619 llvm::GlobalValue *GV) { 620 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 621 setGlobalVisibility(GV, ND); 622 else 623 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 624 625 if (D->hasAttr<UsedAttr>()) 626 AddUsedGlobal(GV); 627 628 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 629 GV->setSection(SA->getName()); 630 631 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 632 } 633 634 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 635 llvm::Function *F, 636 const CGFunctionInfo &FI) { 637 SetLLVMFunctionAttributes(D, FI, F); 638 SetLLVMFunctionAttributesForDefinition(D, F); 639 640 F->setLinkage(llvm::Function::InternalLinkage); 641 642 SetCommonAttributes(D, F); 643 } 644 645 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 646 llvm::Function *F, 647 bool IsIncompleteFunction) { 648 if (unsigned IID = F->getIntrinsicID()) { 649 // If this is an intrinsic function, set the function's attributes 650 // to the intrinsic's attributes. 651 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 652 (llvm::Intrinsic::ID)IID)); 653 return; 654 } 655 656 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 657 658 if (!IsIncompleteFunction) 659 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 660 661 // Only a few attributes are set on declarations; these may later be 662 // overridden by a definition. 663 664 if (FD->hasAttr<DLLImportAttr>()) { 665 F->setLinkage(llvm::Function::DLLImportLinkage); 666 } else if (FD->hasAttr<WeakAttr>() || 667 FD->isWeakImported()) { 668 // "extern_weak" is overloaded in LLVM; we probably should have 669 // separate linkage types for this. 670 F->setLinkage(llvm::Function::ExternalWeakLinkage); 671 } else { 672 F->setLinkage(llvm::Function::ExternalLinkage); 673 674 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 675 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 676 F->setVisibility(GetLLVMVisibility(LV.visibility())); 677 } 678 } 679 680 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 681 F->setSection(SA->getName()); 682 } 683 684 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 685 assert(!GV->isDeclaration() && 686 "Only globals with definition can force usage."); 687 LLVMUsed.push_back(GV); 688 } 689 690 void CodeGenModule::EmitLLVMUsed() { 691 // Don't create llvm.used if there is no need. 692 if (LLVMUsed.empty()) 693 return; 694 695 // Convert LLVMUsed to what ConstantArray needs. 696 SmallVector<llvm::Constant*, 8> UsedArray; 697 UsedArray.resize(LLVMUsed.size()); 698 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 699 UsedArray[i] = 700 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 701 Int8PtrTy); 702 } 703 704 if (UsedArray.empty()) 705 return; 706 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 707 708 llvm::GlobalVariable *GV = 709 new llvm::GlobalVariable(getModule(), ATy, false, 710 llvm::GlobalValue::AppendingLinkage, 711 llvm::ConstantArray::get(ATy, UsedArray), 712 "llvm.used"); 713 714 GV->setSection("llvm.metadata"); 715 } 716 717 void CodeGenModule::EmitDeferred() { 718 // Emit code for any potentially referenced deferred decls. Since a 719 // previously unused static decl may become used during the generation of code 720 // for a static function, iterate until no changes are made. 721 722 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 723 if (!DeferredVTables.empty()) { 724 const CXXRecordDecl *RD = DeferredVTables.back(); 725 DeferredVTables.pop_back(); 726 getCXXABI().EmitVTables(RD); 727 continue; 728 } 729 730 GlobalDecl D = DeferredDeclsToEmit.back(); 731 DeferredDeclsToEmit.pop_back(); 732 733 // Check to see if we've already emitted this. This is necessary 734 // for a couple of reasons: first, decls can end up in the 735 // deferred-decls queue multiple times, and second, decls can end 736 // up with definitions in unusual ways (e.g. by an extern inline 737 // function acquiring a strong function redefinition). Just 738 // ignore these cases. 739 // 740 // TODO: That said, looking this up multiple times is very wasteful. 741 StringRef Name = getMangledName(D); 742 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 743 assert(CGRef && "Deferred decl wasn't referenced?"); 744 745 if (!CGRef->isDeclaration()) 746 continue; 747 748 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 749 // purposes an alias counts as a definition. 750 if (isa<llvm::GlobalAlias>(CGRef)) 751 continue; 752 753 // Otherwise, emit the definition and move on to the next one. 754 EmitGlobalDefinition(D); 755 } 756 } 757 758 void CodeGenModule::EmitGlobalAnnotations() { 759 if (Annotations.empty()) 760 return; 761 762 // Create a new global variable for the ConstantStruct in the Module. 763 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 764 Annotations[0]->getType(), Annotations.size()), Annotations); 765 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 766 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 767 "llvm.global.annotations"); 768 gv->setSection(AnnotationSection); 769 } 770 771 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 772 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 773 if (i != AnnotationStrings.end()) 774 return i->second; 775 776 // Not found yet, create a new global. 777 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 778 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 779 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 780 gv->setSection(AnnotationSection); 781 gv->setUnnamedAddr(true); 782 AnnotationStrings[Str] = gv; 783 return gv; 784 } 785 786 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 787 SourceManager &SM = getContext().getSourceManager(); 788 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 789 if (PLoc.isValid()) 790 return EmitAnnotationString(PLoc.getFilename()); 791 return EmitAnnotationString(SM.getBufferName(Loc)); 792 } 793 794 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 795 SourceManager &SM = getContext().getSourceManager(); 796 PresumedLoc PLoc = SM.getPresumedLoc(L); 797 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 798 SM.getExpansionLineNumber(L); 799 return llvm::ConstantInt::get(Int32Ty, LineNo); 800 } 801 802 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 803 const AnnotateAttr *AA, 804 SourceLocation L) { 805 // Get the globals for file name, annotation, and the line number. 806 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 807 *UnitGV = EmitAnnotationUnit(L), 808 *LineNoCst = EmitAnnotationLineNo(L); 809 810 // Create the ConstantStruct for the global annotation. 811 llvm::Constant *Fields[4] = { 812 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 813 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 814 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 815 LineNoCst 816 }; 817 return llvm::ConstantStruct::getAnon(Fields); 818 } 819 820 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 821 llvm::GlobalValue *GV) { 822 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 823 // Get the struct elements for these annotations. 824 for (specific_attr_iterator<AnnotateAttr> 825 ai = D->specific_attr_begin<AnnotateAttr>(), 826 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 827 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 828 } 829 830 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 831 // Never defer when EmitAllDecls is specified. 832 if (LangOpts.EmitAllDecls) 833 return false; 834 835 return !getContext().DeclMustBeEmitted(Global); 836 } 837 838 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 839 const CXXUuidofExpr* E) { 840 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 841 // well-formed. 842 StringRef Uuid; 843 if (E->isTypeOperand()) 844 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 845 else { 846 // Special case: __uuidof(0) means an all-zero GUID. 847 Expr *Op = E->getExprOperand(); 848 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 849 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 850 else 851 Uuid = "00000000-0000-0000-0000-000000000000"; 852 } 853 std::string Name = "__uuid_" + Uuid.str(); 854 855 // Look for an existing global. 856 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 857 return GV; 858 859 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 860 assert(Init && "failed to initialize as constant"); 861 862 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 863 // first field is declared as "long", which for many targets is 8 bytes. 864 // Those architectures are not supported. (With the MS abi, long is always 4 865 // bytes.) 866 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 867 if (Init->getType() != GuidType) { 868 DiagnosticsEngine &Diags = getDiags(); 869 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 870 "__uuidof codegen is not supported on this architecture"); 871 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 872 Init = llvm::UndefValue::get(GuidType); 873 } 874 875 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 876 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 877 GV->setUnnamedAddr(true); 878 return GV; 879 } 880 881 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 882 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 883 assert(AA && "No alias?"); 884 885 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 886 887 // See if there is already something with the target's name in the module. 888 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 889 if (Entry) { 890 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 891 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 892 } 893 894 llvm::Constant *Aliasee; 895 if (isa<llvm::FunctionType>(DeclTy)) 896 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 897 GlobalDecl(cast<FunctionDecl>(VD)), 898 /*ForVTable=*/false); 899 else 900 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 901 llvm::PointerType::getUnqual(DeclTy), 0); 902 903 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 904 F->setLinkage(llvm::Function::ExternalWeakLinkage); 905 WeakRefReferences.insert(F); 906 907 return Aliasee; 908 } 909 910 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 911 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 912 913 // Weak references don't produce any output by themselves. 914 if (Global->hasAttr<WeakRefAttr>()) 915 return; 916 917 // If this is an alias definition (which otherwise looks like a declaration) 918 // emit it now. 919 if (Global->hasAttr<AliasAttr>()) 920 return EmitAliasDefinition(GD); 921 922 // If this is CUDA, be selective about which declarations we emit. 923 if (LangOpts.CUDA) { 924 if (CodeGenOpts.CUDAIsDevice) { 925 if (!Global->hasAttr<CUDADeviceAttr>() && 926 !Global->hasAttr<CUDAGlobalAttr>() && 927 !Global->hasAttr<CUDAConstantAttr>() && 928 !Global->hasAttr<CUDASharedAttr>()) 929 return; 930 } else { 931 if (!Global->hasAttr<CUDAHostAttr>() && ( 932 Global->hasAttr<CUDADeviceAttr>() || 933 Global->hasAttr<CUDAConstantAttr>() || 934 Global->hasAttr<CUDASharedAttr>())) 935 return; 936 } 937 } 938 939 // Ignore declarations, they will be emitted on their first use. 940 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 941 // Forward declarations are emitted lazily on first use. 942 if (!FD->doesThisDeclarationHaveABody()) { 943 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 944 return; 945 946 const FunctionDecl *InlineDefinition = 0; 947 FD->getBody(InlineDefinition); 948 949 StringRef MangledName = getMangledName(GD); 950 DeferredDecls.erase(MangledName); 951 EmitGlobalDefinition(InlineDefinition); 952 return; 953 } 954 } else { 955 const VarDecl *VD = cast<VarDecl>(Global); 956 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 957 958 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 959 return; 960 } 961 962 // Defer code generation when possible if this is a static definition, inline 963 // function etc. These we only want to emit if they are used. 964 if (!MayDeferGeneration(Global)) { 965 // Emit the definition if it can't be deferred. 966 EmitGlobalDefinition(GD); 967 return; 968 } 969 970 // If we're deferring emission of a C++ variable with an 971 // initializer, remember the order in which it appeared in the file. 972 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 973 cast<VarDecl>(Global)->hasInit()) { 974 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 975 CXXGlobalInits.push_back(0); 976 } 977 978 // If the value has already been used, add it directly to the 979 // DeferredDeclsToEmit list. 980 StringRef MangledName = getMangledName(GD); 981 if (GetGlobalValue(MangledName)) 982 DeferredDeclsToEmit.push_back(GD); 983 else { 984 // Otherwise, remember that we saw a deferred decl with this name. The 985 // first use of the mangled name will cause it to move into 986 // DeferredDeclsToEmit. 987 DeferredDecls[MangledName] = GD; 988 } 989 } 990 991 namespace { 992 struct FunctionIsDirectlyRecursive : 993 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 994 const StringRef Name; 995 const Builtin::Context &BI; 996 bool Result; 997 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 998 Name(N), BI(C), Result(false) { 999 } 1000 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1001 1002 bool TraverseCallExpr(CallExpr *E) { 1003 const FunctionDecl *FD = E->getDirectCallee(); 1004 if (!FD) 1005 return true; 1006 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1007 if (Attr && Name == Attr->getLabel()) { 1008 Result = true; 1009 return false; 1010 } 1011 unsigned BuiltinID = FD->getBuiltinID(); 1012 if (!BuiltinID) 1013 return true; 1014 StringRef BuiltinName = BI.GetName(BuiltinID); 1015 if (BuiltinName.startswith("__builtin_") && 1016 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1017 Result = true; 1018 return false; 1019 } 1020 return true; 1021 } 1022 }; 1023 } 1024 1025 // isTriviallyRecursive - Check if this function calls another 1026 // decl that, because of the asm attribute or the other decl being a builtin, 1027 // ends up pointing to itself. 1028 bool 1029 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1030 StringRef Name; 1031 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1032 // asm labels are a special kind of mangling we have to support. 1033 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1034 if (!Attr) 1035 return false; 1036 Name = Attr->getLabel(); 1037 } else { 1038 Name = FD->getName(); 1039 } 1040 1041 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1042 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1043 return Walker.Result; 1044 } 1045 1046 bool 1047 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 1048 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 1049 return true; 1050 if (CodeGenOpts.OptimizationLevel == 0 && 1051 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1052 return false; 1053 // PR9614. Avoid cases where the source code is lying to us. An available 1054 // externally function should have an equivalent function somewhere else, 1055 // but a function that calls itself is clearly not equivalent to the real 1056 // implementation. 1057 // This happens in glibc's btowc and in some configure checks. 1058 return !isTriviallyRecursive(F); 1059 } 1060 1061 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1062 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1063 1064 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1065 Context.getSourceManager(), 1066 "Generating code for declaration"); 1067 1068 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1069 // At -O0, don't generate IR for functions with available_externally 1070 // linkage. 1071 if (!shouldEmitFunction(Function)) 1072 return; 1073 1074 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1075 // Make sure to emit the definition(s) before we emit the thunks. 1076 // This is necessary for the generation of certain thunks. 1077 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1078 EmitCXXConstructor(CD, GD.getCtorType()); 1079 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1080 EmitCXXDestructor(DD, GD.getDtorType()); 1081 else 1082 EmitGlobalFunctionDefinition(GD); 1083 1084 if (Method->isVirtual()) 1085 getVTables().EmitThunks(GD); 1086 1087 return; 1088 } 1089 1090 return EmitGlobalFunctionDefinition(GD); 1091 } 1092 1093 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1094 return EmitGlobalVarDefinition(VD); 1095 1096 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1097 } 1098 1099 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1100 /// module, create and return an llvm Function with the specified type. If there 1101 /// is something in the module with the specified name, return it potentially 1102 /// bitcasted to the right type. 1103 /// 1104 /// If D is non-null, it specifies a decl that correspond to this. This is used 1105 /// to set the attributes on the function when it is first created. 1106 llvm::Constant * 1107 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1108 llvm::Type *Ty, 1109 GlobalDecl D, bool ForVTable, 1110 llvm::Attribute ExtraAttrs) { 1111 // Lookup the entry, lazily creating it if necessary. 1112 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1113 if (Entry) { 1114 if (WeakRefReferences.erase(Entry)) { 1115 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1116 if (FD && !FD->hasAttr<WeakAttr>()) 1117 Entry->setLinkage(llvm::Function::ExternalLinkage); 1118 } 1119 1120 if (Entry->getType()->getElementType() == Ty) 1121 return Entry; 1122 1123 // Make sure the result is of the correct type. 1124 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1125 } 1126 1127 // This function doesn't have a complete type (for example, the return 1128 // type is an incomplete struct). Use a fake type instead, and make 1129 // sure not to try to set attributes. 1130 bool IsIncompleteFunction = false; 1131 1132 llvm::FunctionType *FTy; 1133 if (isa<llvm::FunctionType>(Ty)) { 1134 FTy = cast<llvm::FunctionType>(Ty); 1135 } else { 1136 FTy = llvm::FunctionType::get(VoidTy, false); 1137 IsIncompleteFunction = true; 1138 } 1139 1140 llvm::Function *F = llvm::Function::Create(FTy, 1141 llvm::Function::ExternalLinkage, 1142 MangledName, &getModule()); 1143 assert(F->getName() == MangledName && "name was uniqued!"); 1144 if (D.getDecl()) 1145 SetFunctionAttributes(D, F, IsIncompleteFunction); 1146 if (ExtraAttrs.hasAttributes()) 1147 F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs); 1148 1149 // This is the first use or definition of a mangled name. If there is a 1150 // deferred decl with this name, remember that we need to emit it at the end 1151 // of the file. 1152 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1153 if (DDI != DeferredDecls.end()) { 1154 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1155 // list, and remove it from DeferredDecls (since we don't need it anymore). 1156 DeferredDeclsToEmit.push_back(DDI->second); 1157 DeferredDecls.erase(DDI); 1158 1159 // Otherwise, there are cases we have to worry about where we're 1160 // using a declaration for which we must emit a definition but where 1161 // we might not find a top-level definition: 1162 // - member functions defined inline in their classes 1163 // - friend functions defined inline in some class 1164 // - special member functions with implicit definitions 1165 // If we ever change our AST traversal to walk into class methods, 1166 // this will be unnecessary. 1167 // 1168 // We also don't emit a definition for a function if it's going to be an entry 1169 // in a vtable, unless it's already marked as used. 1170 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1171 // Look for a declaration that's lexically in a record. 1172 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1173 FD = FD->getMostRecentDecl(); 1174 do { 1175 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1176 if (FD->isImplicit() && !ForVTable) { 1177 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1178 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1179 break; 1180 } else if (FD->doesThisDeclarationHaveABody()) { 1181 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1182 break; 1183 } 1184 } 1185 FD = FD->getPreviousDecl(); 1186 } while (FD); 1187 } 1188 1189 // Make sure the result is of the requested type. 1190 if (!IsIncompleteFunction) { 1191 assert(F->getType()->getElementType() == Ty); 1192 return F; 1193 } 1194 1195 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1196 return llvm::ConstantExpr::getBitCast(F, PTy); 1197 } 1198 1199 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1200 /// non-null, then this function will use the specified type if it has to 1201 /// create it (this occurs when we see a definition of the function). 1202 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1203 llvm::Type *Ty, 1204 bool ForVTable) { 1205 // If there was no specific requested type, just convert it now. 1206 if (!Ty) 1207 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1208 1209 StringRef MangledName = getMangledName(GD); 1210 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1211 } 1212 1213 /// CreateRuntimeFunction - Create a new runtime function with the specified 1214 /// type and name. 1215 llvm::Constant * 1216 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1217 StringRef Name, 1218 llvm::Attribute ExtraAttrs) { 1219 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1220 ExtraAttrs); 1221 } 1222 1223 /// isTypeConstant - Determine whether an object of this type can be emitted 1224 /// as a constant. 1225 /// 1226 /// If ExcludeCtor is true, the duration when the object's constructor runs 1227 /// will not be considered. The caller will need to verify that the object is 1228 /// not written to during its construction. 1229 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1230 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1231 return false; 1232 1233 if (Context.getLangOpts().CPlusPlus) { 1234 if (const CXXRecordDecl *Record 1235 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1236 return ExcludeCtor && !Record->hasMutableFields() && 1237 Record->hasTrivialDestructor(); 1238 } 1239 1240 return true; 1241 } 1242 1243 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1244 /// create and return an llvm GlobalVariable with the specified type. If there 1245 /// is something in the module with the specified name, return it potentially 1246 /// bitcasted to the right type. 1247 /// 1248 /// If D is non-null, it specifies a decl that correspond to this. This is used 1249 /// to set the attributes on the global when it is first created. 1250 llvm::Constant * 1251 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1252 llvm::PointerType *Ty, 1253 const VarDecl *D, 1254 bool UnnamedAddr) { 1255 // Lookup the entry, lazily creating it if necessary. 1256 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1257 if (Entry) { 1258 if (WeakRefReferences.erase(Entry)) { 1259 if (D && !D->hasAttr<WeakAttr>()) 1260 Entry->setLinkage(llvm::Function::ExternalLinkage); 1261 } 1262 1263 if (UnnamedAddr) 1264 Entry->setUnnamedAddr(true); 1265 1266 if (Entry->getType() == Ty) 1267 return Entry; 1268 1269 // Make sure the result is of the correct type. 1270 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1271 } 1272 1273 // This is the first use or definition of a mangled name. If there is a 1274 // deferred decl with this name, remember that we need to emit it at the end 1275 // of the file. 1276 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1277 if (DDI != DeferredDecls.end()) { 1278 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1279 // list, and remove it from DeferredDecls (since we don't need it anymore). 1280 DeferredDeclsToEmit.push_back(DDI->second); 1281 DeferredDecls.erase(DDI); 1282 } 1283 1284 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1285 llvm::GlobalVariable *GV = 1286 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1287 llvm::GlobalValue::ExternalLinkage, 1288 0, MangledName, 0, 1289 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1290 1291 // Handle things which are present even on external declarations. 1292 if (D) { 1293 // FIXME: This code is overly simple and should be merged with other global 1294 // handling. 1295 GV->setConstant(isTypeConstant(D->getType(), false)); 1296 1297 // Set linkage and visibility in case we never see a definition. 1298 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1299 if (LV.linkage() != ExternalLinkage) { 1300 // Don't set internal linkage on declarations. 1301 } else { 1302 if (D->hasAttr<DLLImportAttr>()) 1303 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1304 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1305 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1306 1307 // Set visibility on a declaration only if it's explicit. 1308 if (LV.visibilityExplicit()) 1309 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1310 } 1311 1312 if (D->isThreadSpecified()) 1313 setTLSMode(GV, *D); 1314 } 1315 1316 if (AddrSpace != Ty->getAddressSpace()) 1317 return llvm::ConstantExpr::getBitCast(GV, Ty); 1318 else 1319 return GV; 1320 } 1321 1322 1323 llvm::GlobalVariable * 1324 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1325 llvm::Type *Ty, 1326 llvm::GlobalValue::LinkageTypes Linkage) { 1327 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1328 llvm::GlobalVariable *OldGV = 0; 1329 1330 1331 if (GV) { 1332 // Check if the variable has the right type. 1333 if (GV->getType()->getElementType() == Ty) 1334 return GV; 1335 1336 // Because C++ name mangling, the only way we can end up with an already 1337 // existing global with the same name is if it has been declared extern "C". 1338 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1339 OldGV = GV; 1340 } 1341 1342 // Create a new variable. 1343 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1344 Linkage, 0, Name); 1345 1346 if (OldGV) { 1347 // Replace occurrences of the old variable if needed. 1348 GV->takeName(OldGV); 1349 1350 if (!OldGV->use_empty()) { 1351 llvm::Constant *NewPtrForOldDecl = 1352 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1353 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1354 } 1355 1356 OldGV->eraseFromParent(); 1357 } 1358 1359 return GV; 1360 } 1361 1362 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1363 /// given global variable. If Ty is non-null and if the global doesn't exist, 1364 /// then it will be created with the specified type instead of whatever the 1365 /// normal requested type would be. 1366 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1367 llvm::Type *Ty) { 1368 assert(D->hasGlobalStorage() && "Not a global variable"); 1369 QualType ASTTy = D->getType(); 1370 if (Ty == 0) 1371 Ty = getTypes().ConvertTypeForMem(ASTTy); 1372 1373 llvm::PointerType *PTy = 1374 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1375 1376 StringRef MangledName = getMangledName(D); 1377 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1378 } 1379 1380 /// CreateRuntimeVariable - Create a new runtime global variable with the 1381 /// specified type and name. 1382 llvm::Constant * 1383 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1384 StringRef Name) { 1385 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1386 true); 1387 } 1388 1389 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1390 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1391 1392 if (MayDeferGeneration(D)) { 1393 // If we have not seen a reference to this variable yet, place it 1394 // into the deferred declarations table to be emitted if needed 1395 // later. 1396 StringRef MangledName = getMangledName(D); 1397 if (!GetGlobalValue(MangledName)) { 1398 DeferredDecls[MangledName] = D; 1399 return; 1400 } 1401 } 1402 1403 // The tentative definition is the only definition. 1404 EmitGlobalVarDefinition(D); 1405 } 1406 1407 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1408 if (DefinitionRequired) 1409 getCXXABI().EmitVTables(Class); 1410 } 1411 1412 llvm::GlobalVariable::LinkageTypes 1413 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1414 if (RD->getLinkage() != ExternalLinkage) 1415 return llvm::GlobalVariable::InternalLinkage; 1416 1417 if (const CXXMethodDecl *KeyFunction 1418 = RD->getASTContext().getKeyFunction(RD)) { 1419 // If this class has a key function, use that to determine the linkage of 1420 // the vtable. 1421 const FunctionDecl *Def = 0; 1422 if (KeyFunction->hasBody(Def)) 1423 KeyFunction = cast<CXXMethodDecl>(Def); 1424 1425 switch (KeyFunction->getTemplateSpecializationKind()) { 1426 case TSK_Undeclared: 1427 case TSK_ExplicitSpecialization: 1428 // When compiling with optimizations turned on, we emit all vtables, 1429 // even if the key function is not defined in the current translation 1430 // unit. If this is the case, use available_externally linkage. 1431 if (!Def && CodeGenOpts.OptimizationLevel) 1432 return llvm::GlobalVariable::AvailableExternallyLinkage; 1433 1434 if (KeyFunction->isInlined()) 1435 return !Context.getLangOpts().AppleKext ? 1436 llvm::GlobalVariable::LinkOnceODRLinkage : 1437 llvm::Function::InternalLinkage; 1438 1439 return llvm::GlobalVariable::ExternalLinkage; 1440 1441 case TSK_ImplicitInstantiation: 1442 return !Context.getLangOpts().AppleKext ? 1443 llvm::GlobalVariable::LinkOnceODRLinkage : 1444 llvm::Function::InternalLinkage; 1445 1446 case TSK_ExplicitInstantiationDefinition: 1447 return !Context.getLangOpts().AppleKext ? 1448 llvm::GlobalVariable::WeakODRLinkage : 1449 llvm::Function::InternalLinkage; 1450 1451 case TSK_ExplicitInstantiationDeclaration: 1452 // FIXME: Use available_externally linkage. However, this currently 1453 // breaks LLVM's build due to undefined symbols. 1454 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1455 return !Context.getLangOpts().AppleKext ? 1456 llvm::GlobalVariable::LinkOnceODRLinkage : 1457 llvm::Function::InternalLinkage; 1458 } 1459 } 1460 1461 if (Context.getLangOpts().AppleKext) 1462 return llvm::Function::InternalLinkage; 1463 1464 switch (RD->getTemplateSpecializationKind()) { 1465 case TSK_Undeclared: 1466 case TSK_ExplicitSpecialization: 1467 case TSK_ImplicitInstantiation: 1468 // FIXME: Use available_externally linkage. However, this currently 1469 // breaks LLVM's build due to undefined symbols. 1470 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1471 case TSK_ExplicitInstantiationDeclaration: 1472 return llvm::GlobalVariable::LinkOnceODRLinkage; 1473 1474 case TSK_ExplicitInstantiationDefinition: 1475 return llvm::GlobalVariable::WeakODRLinkage; 1476 } 1477 1478 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1479 } 1480 1481 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1482 return Context.toCharUnitsFromBits( 1483 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1484 } 1485 1486 llvm::Constant * 1487 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1488 const Expr *rawInit) { 1489 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1490 if (const ExprWithCleanups *withCleanups = 1491 dyn_cast<ExprWithCleanups>(rawInit)) { 1492 cleanups = withCleanups->getObjects(); 1493 rawInit = withCleanups->getSubExpr(); 1494 } 1495 1496 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1497 if (!init || !init->initializesStdInitializerList() || 1498 init->getNumInits() == 0) 1499 return 0; 1500 1501 ASTContext &ctx = getContext(); 1502 unsigned numInits = init->getNumInits(); 1503 // FIXME: This check is here because we would otherwise silently miscompile 1504 // nested global std::initializer_lists. Better would be to have a real 1505 // implementation. 1506 for (unsigned i = 0; i < numInits; ++i) { 1507 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1508 if (inner && inner->initializesStdInitializerList()) { 1509 ErrorUnsupported(inner, "nested global std::initializer_list"); 1510 return 0; 1511 } 1512 } 1513 1514 // Synthesize a fake VarDecl for the array and initialize that. 1515 QualType elementType = init->getInit(0)->getType(); 1516 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1517 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1518 ArrayType::Normal, 0); 1519 1520 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1521 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1522 arrayType, D->getLocation()); 1523 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1524 D->getDeclContext()), 1525 D->getLocStart(), D->getLocation(), 1526 name, arrayType, sourceInfo, 1527 SC_Static, SC_Static); 1528 1529 // Now clone the InitListExpr to initialize the array instead. 1530 // Incredible hack: we want to use the existing InitListExpr here, so we need 1531 // to tell it that it no longer initializes a std::initializer_list. 1532 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(), 1533 init->getNumInits()); 1534 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits, 1535 init->getRBraceLoc()); 1536 arrayInit->setType(arrayType); 1537 1538 if (!cleanups.empty()) 1539 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1540 1541 backingArray->setInit(arrayInit); 1542 1543 // Emit the definition of the array. 1544 EmitGlobalVarDefinition(backingArray); 1545 1546 // Inspect the initializer list to validate it and determine its type. 1547 // FIXME: doing this every time is probably inefficient; caching would be nice 1548 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1549 RecordDecl::field_iterator field = record->field_begin(); 1550 if (field == record->field_end()) { 1551 ErrorUnsupported(D, "weird std::initializer_list"); 1552 return 0; 1553 } 1554 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1555 // Start pointer. 1556 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1557 ErrorUnsupported(D, "weird std::initializer_list"); 1558 return 0; 1559 } 1560 ++field; 1561 if (field == record->field_end()) { 1562 ErrorUnsupported(D, "weird std::initializer_list"); 1563 return 0; 1564 } 1565 bool isStartEnd = false; 1566 if (ctx.hasSameType(field->getType(), elementPtr)) { 1567 // End pointer. 1568 isStartEnd = true; 1569 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1570 ErrorUnsupported(D, "weird std::initializer_list"); 1571 return 0; 1572 } 1573 1574 // Now build an APValue representing the std::initializer_list. 1575 APValue initListValue(APValue::UninitStruct(), 0, 2); 1576 APValue &startField = initListValue.getStructField(0); 1577 APValue::LValuePathEntry startOffsetPathEntry; 1578 startOffsetPathEntry.ArrayIndex = 0; 1579 startField = APValue(APValue::LValueBase(backingArray), 1580 CharUnits::fromQuantity(0), 1581 llvm::makeArrayRef(startOffsetPathEntry), 1582 /*IsOnePastTheEnd=*/false, 0); 1583 1584 if (isStartEnd) { 1585 APValue &endField = initListValue.getStructField(1); 1586 APValue::LValuePathEntry endOffsetPathEntry; 1587 endOffsetPathEntry.ArrayIndex = numInits; 1588 endField = APValue(APValue::LValueBase(backingArray), 1589 ctx.getTypeSizeInChars(elementType) * numInits, 1590 llvm::makeArrayRef(endOffsetPathEntry), 1591 /*IsOnePastTheEnd=*/true, 0); 1592 } else { 1593 APValue &sizeField = initListValue.getStructField(1); 1594 sizeField = APValue(llvm::APSInt(numElements)); 1595 } 1596 1597 // Emit the constant for the initializer_list. 1598 llvm::Constant *llvmInit = 1599 EmitConstantValueForMemory(initListValue, D->getType()); 1600 assert(llvmInit && "failed to initialize as constant"); 1601 return llvmInit; 1602 } 1603 1604 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1605 unsigned AddrSpace) { 1606 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1607 if (D->hasAttr<CUDAConstantAttr>()) 1608 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1609 else if (D->hasAttr<CUDASharedAttr>()) 1610 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1611 else 1612 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1613 } 1614 1615 return AddrSpace; 1616 } 1617 1618 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1619 llvm::Constant *Init = 0; 1620 QualType ASTTy = D->getType(); 1621 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1622 bool NeedsGlobalCtor = false; 1623 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1624 1625 const VarDecl *InitDecl; 1626 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1627 1628 if (!InitExpr) { 1629 // This is a tentative definition; tentative definitions are 1630 // implicitly initialized with { 0 }. 1631 // 1632 // Note that tentative definitions are only emitted at the end of 1633 // a translation unit, so they should never have incomplete 1634 // type. In addition, EmitTentativeDefinition makes sure that we 1635 // never attempt to emit a tentative definition if a real one 1636 // exists. A use may still exists, however, so we still may need 1637 // to do a RAUW. 1638 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1639 Init = EmitNullConstant(D->getType()); 1640 } else { 1641 // If this is a std::initializer_list, emit the special initializer. 1642 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1643 // An empty init list will perform zero-initialization, which happens 1644 // to be exactly what we want. 1645 // FIXME: It does so in a global constructor, which is *not* what we 1646 // want. 1647 1648 if (!Init) { 1649 initializedGlobalDecl = GlobalDecl(D); 1650 Init = EmitConstantInit(*InitDecl); 1651 } 1652 if (!Init) { 1653 QualType T = InitExpr->getType(); 1654 if (D->getType()->isReferenceType()) 1655 T = D->getType(); 1656 1657 if (getLangOpts().CPlusPlus) { 1658 Init = EmitNullConstant(T); 1659 NeedsGlobalCtor = true; 1660 } else { 1661 ErrorUnsupported(D, "static initializer"); 1662 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1663 } 1664 } else { 1665 // We don't need an initializer, so remove the entry for the delayed 1666 // initializer position (just in case this entry was delayed) if we 1667 // also don't need to register a destructor. 1668 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1669 DelayedCXXInitPosition.erase(D); 1670 } 1671 } 1672 1673 llvm::Type* InitType = Init->getType(); 1674 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1675 1676 // Strip off a bitcast if we got one back. 1677 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1678 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1679 // all zero index gep. 1680 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1681 Entry = CE->getOperand(0); 1682 } 1683 1684 // Entry is now either a Function or GlobalVariable. 1685 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1686 1687 // We have a definition after a declaration with the wrong type. 1688 // We must make a new GlobalVariable* and update everything that used OldGV 1689 // (a declaration or tentative definition) with the new GlobalVariable* 1690 // (which will be a definition). 1691 // 1692 // This happens if there is a prototype for a global (e.g. 1693 // "extern int x[];") and then a definition of a different type (e.g. 1694 // "int x[10];"). This also happens when an initializer has a different type 1695 // from the type of the global (this happens with unions). 1696 if (GV == 0 || 1697 GV->getType()->getElementType() != InitType || 1698 GV->getType()->getAddressSpace() != 1699 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1700 1701 // Move the old entry aside so that we'll create a new one. 1702 Entry->setName(StringRef()); 1703 1704 // Make a new global with the correct type, this is now guaranteed to work. 1705 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1706 1707 // Replace all uses of the old global with the new global 1708 llvm::Constant *NewPtrForOldDecl = 1709 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1710 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1711 1712 // Erase the old global, since it is no longer used. 1713 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1714 } 1715 1716 if (D->hasAttr<AnnotateAttr>()) 1717 AddGlobalAnnotations(D, GV); 1718 1719 GV->setInitializer(Init); 1720 1721 // If it is safe to mark the global 'constant', do so now. 1722 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1723 isTypeConstant(D->getType(), true)); 1724 1725 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1726 1727 // Set the llvm linkage type as appropriate. 1728 llvm::GlobalValue::LinkageTypes Linkage = 1729 GetLLVMLinkageVarDefinition(D, GV); 1730 GV->setLinkage(Linkage); 1731 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1732 // common vars aren't constant even if declared const. 1733 GV->setConstant(false); 1734 1735 SetCommonAttributes(D, GV); 1736 1737 // Emit the initializer function if necessary. 1738 if (NeedsGlobalCtor || NeedsGlobalDtor) 1739 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1740 1741 // If we are compiling with ASan, add metadata indicating dynamically 1742 // initialized globals. 1743 if (LangOpts.SanitizeAddress && NeedsGlobalCtor) { 1744 llvm::Module &M = getModule(); 1745 1746 llvm::NamedMDNode *DynamicInitializers = 1747 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1748 llvm::Value *GlobalToAdd[] = { GV }; 1749 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1750 DynamicInitializers->addOperand(ThisGlobal); 1751 } 1752 1753 // Emit global variable debug information. 1754 if (CGDebugInfo *DI = getModuleDebugInfo()) 1755 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1756 DI->EmitGlobalVariable(GV, D); 1757 } 1758 1759 llvm::GlobalValue::LinkageTypes 1760 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1761 llvm::GlobalVariable *GV) { 1762 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1763 if (Linkage == GVA_Internal) 1764 return llvm::Function::InternalLinkage; 1765 else if (D->hasAttr<DLLImportAttr>()) 1766 return llvm::Function::DLLImportLinkage; 1767 else if (D->hasAttr<DLLExportAttr>()) 1768 return llvm::Function::DLLExportLinkage; 1769 else if (D->hasAttr<WeakAttr>()) { 1770 if (GV->isConstant()) 1771 return llvm::GlobalVariable::WeakODRLinkage; 1772 else 1773 return llvm::GlobalVariable::WeakAnyLinkage; 1774 } else if (Linkage == GVA_TemplateInstantiation || 1775 Linkage == GVA_ExplicitTemplateInstantiation) 1776 return llvm::GlobalVariable::WeakODRLinkage; 1777 else if (!getLangOpts().CPlusPlus && 1778 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1779 D->getAttr<CommonAttr>()) && 1780 !D->hasExternalStorage() && !D->getInit() && 1781 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1782 !D->getAttr<WeakImportAttr>()) { 1783 // Thread local vars aren't considered common linkage. 1784 return llvm::GlobalVariable::CommonLinkage; 1785 } 1786 return llvm::GlobalVariable::ExternalLinkage; 1787 } 1788 1789 /// Replace the uses of a function that was declared with a non-proto type. 1790 /// We want to silently drop extra arguments from call sites 1791 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1792 llvm::Function *newFn) { 1793 // Fast path. 1794 if (old->use_empty()) return; 1795 1796 llvm::Type *newRetTy = newFn->getReturnType(); 1797 SmallVector<llvm::Value*, 4> newArgs; 1798 1799 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1800 ui != ue; ) { 1801 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1802 llvm::User *user = *use; 1803 1804 // Recognize and replace uses of bitcasts. Most calls to 1805 // unprototyped functions will use bitcasts. 1806 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1807 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1808 replaceUsesOfNonProtoConstant(bitcast, newFn); 1809 continue; 1810 } 1811 1812 // Recognize calls to the function. 1813 llvm::CallSite callSite(user); 1814 if (!callSite) continue; 1815 if (!callSite.isCallee(use)) continue; 1816 1817 // If the return types don't match exactly, then we can't 1818 // transform this call unless it's dead. 1819 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1820 continue; 1821 1822 // Get the call site's attribute list. 1823 llvm::SmallVector<llvm::AttributeWithIndex, 8> newAttrs; 1824 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1825 1826 // Collect any return attributes from the call. 1827 llvm::Attribute returnAttrs = oldAttrs.getRetAttributes(); 1828 if (returnAttrs.hasAttributes()) 1829 newAttrs.push_back(llvm::AttributeWithIndex::get( 1830 llvm::AttributeSet::ReturnIndex, returnAttrs)); 1831 1832 // If the function was passed too few arguments, don't transform. 1833 unsigned newNumArgs = newFn->arg_size(); 1834 if (callSite.arg_size() < newNumArgs) continue; 1835 1836 // If extra arguments were passed, we silently drop them. 1837 // If any of the types mismatch, we don't transform. 1838 unsigned argNo = 0; 1839 bool dontTransform = false; 1840 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1841 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1842 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1843 dontTransform = true; 1844 break; 1845 } 1846 1847 // Add any parameter attributes. 1848 llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1); 1849 if (pAttrs.hasAttributes()) 1850 newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs)); 1851 } 1852 if (dontTransform) 1853 continue; 1854 1855 llvm::Attribute fnAttrs = oldAttrs.getFnAttributes(); 1856 if (fnAttrs.hasAttributes()) 1857 newAttrs.push_back(llvm:: 1858 AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex, 1859 fnAttrs)); 1860 1861 // Okay, we can transform this. Create the new call instruction and copy 1862 // over the required information. 1863 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1864 1865 llvm::CallSite newCall; 1866 if (callSite.isCall()) { 1867 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1868 callSite.getInstruction()); 1869 } else { 1870 llvm::InvokeInst *oldInvoke = 1871 cast<llvm::InvokeInst>(callSite.getInstruction()); 1872 newCall = llvm::InvokeInst::Create(newFn, 1873 oldInvoke->getNormalDest(), 1874 oldInvoke->getUnwindDest(), 1875 newArgs, "", 1876 callSite.getInstruction()); 1877 } 1878 newArgs.clear(); // for the next iteration 1879 1880 if (!newCall->getType()->isVoidTy()) 1881 newCall->takeName(callSite.getInstruction()); 1882 newCall.setAttributes( 1883 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1884 newCall.setCallingConv(callSite.getCallingConv()); 1885 1886 // Finally, remove the old call, replacing any uses with the new one. 1887 if (!callSite->use_empty()) 1888 callSite->replaceAllUsesWith(newCall.getInstruction()); 1889 1890 // Copy debug location attached to CI. 1891 if (!callSite->getDebugLoc().isUnknown()) 1892 newCall->setDebugLoc(callSite->getDebugLoc()); 1893 callSite->eraseFromParent(); 1894 } 1895 } 1896 1897 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1898 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1899 /// existing call uses of the old function in the module, this adjusts them to 1900 /// call the new function directly. 1901 /// 1902 /// This is not just a cleanup: the always_inline pass requires direct calls to 1903 /// functions to be able to inline them. If there is a bitcast in the way, it 1904 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1905 /// run at -O0. 1906 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1907 llvm::Function *NewFn) { 1908 // If we're redefining a global as a function, don't transform it. 1909 if (!isa<llvm::Function>(Old)) return; 1910 1911 replaceUsesOfNonProtoConstant(Old, NewFn); 1912 } 1913 1914 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1915 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1916 // If we have a definition, this might be a deferred decl. If the 1917 // instantiation is explicit, make sure we emit it at the end. 1918 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1919 GetAddrOfGlobalVar(VD); 1920 } 1921 1922 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1923 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1924 1925 // Compute the function info and LLVM type. 1926 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1927 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1928 1929 // Get or create the prototype for the function. 1930 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1931 1932 // Strip off a bitcast if we got one back. 1933 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1934 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1935 Entry = CE->getOperand(0); 1936 } 1937 1938 1939 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1940 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1941 1942 // If the types mismatch then we have to rewrite the definition. 1943 assert(OldFn->isDeclaration() && 1944 "Shouldn't replace non-declaration"); 1945 1946 // F is the Function* for the one with the wrong type, we must make a new 1947 // Function* and update everything that used F (a declaration) with the new 1948 // Function* (which will be a definition). 1949 // 1950 // This happens if there is a prototype for a function 1951 // (e.g. "int f()") and then a definition of a different type 1952 // (e.g. "int f(int x)"). Move the old function aside so that it 1953 // doesn't interfere with GetAddrOfFunction. 1954 OldFn->setName(StringRef()); 1955 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1956 1957 // This might be an implementation of a function without a 1958 // prototype, in which case, try to do special replacement of 1959 // calls which match the new prototype. The really key thing here 1960 // is that we also potentially drop arguments from the call site 1961 // so as to make a direct call, which makes the inliner happier 1962 // and suppresses a number of optimizer warnings (!) about 1963 // dropping arguments. 1964 if (!OldFn->use_empty()) { 1965 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1966 OldFn->removeDeadConstantUsers(); 1967 } 1968 1969 // Replace uses of F with the Function we will endow with a body. 1970 if (!Entry->use_empty()) { 1971 llvm::Constant *NewPtrForOldDecl = 1972 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1973 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1974 } 1975 1976 // Ok, delete the old function now, which is dead. 1977 OldFn->eraseFromParent(); 1978 1979 Entry = NewFn; 1980 } 1981 1982 // We need to set linkage and visibility on the function before 1983 // generating code for it because various parts of IR generation 1984 // want to propagate this information down (e.g. to local static 1985 // declarations). 1986 llvm::Function *Fn = cast<llvm::Function>(Entry); 1987 setFunctionLinkage(D, Fn); 1988 1989 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1990 setGlobalVisibility(Fn, D); 1991 1992 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1993 1994 SetFunctionDefinitionAttributes(D, Fn); 1995 SetLLVMFunctionAttributesForDefinition(D, Fn); 1996 1997 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1998 AddGlobalCtor(Fn, CA->getPriority()); 1999 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2000 AddGlobalDtor(Fn, DA->getPriority()); 2001 if (D->hasAttr<AnnotateAttr>()) 2002 AddGlobalAnnotations(D, Fn); 2003 } 2004 2005 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2006 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2007 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2008 assert(AA && "Not an alias?"); 2009 2010 StringRef MangledName = getMangledName(GD); 2011 2012 // If there is a definition in the module, then it wins over the alias. 2013 // This is dubious, but allow it to be safe. Just ignore the alias. 2014 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2015 if (Entry && !Entry->isDeclaration()) 2016 return; 2017 2018 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2019 2020 // Create a reference to the named value. This ensures that it is emitted 2021 // if a deferred decl. 2022 llvm::Constant *Aliasee; 2023 if (isa<llvm::FunctionType>(DeclTy)) 2024 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2025 /*ForVTable=*/false); 2026 else 2027 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2028 llvm::PointerType::getUnqual(DeclTy), 0); 2029 2030 // Create the new alias itself, but don't set a name yet. 2031 llvm::GlobalValue *GA = 2032 new llvm::GlobalAlias(Aliasee->getType(), 2033 llvm::Function::ExternalLinkage, 2034 "", Aliasee, &getModule()); 2035 2036 if (Entry) { 2037 assert(Entry->isDeclaration()); 2038 2039 // If there is a declaration in the module, then we had an extern followed 2040 // by the alias, as in: 2041 // extern int test6(); 2042 // ... 2043 // int test6() __attribute__((alias("test7"))); 2044 // 2045 // Remove it and replace uses of it with the alias. 2046 GA->takeName(Entry); 2047 2048 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2049 Entry->getType())); 2050 Entry->eraseFromParent(); 2051 } else { 2052 GA->setName(MangledName); 2053 } 2054 2055 // Set attributes which are particular to an alias; this is a 2056 // specialization of the attributes which may be set on a global 2057 // variable/function. 2058 if (D->hasAttr<DLLExportAttr>()) { 2059 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2060 // The dllexport attribute is ignored for undefined symbols. 2061 if (FD->hasBody()) 2062 GA->setLinkage(llvm::Function::DLLExportLinkage); 2063 } else { 2064 GA->setLinkage(llvm::Function::DLLExportLinkage); 2065 } 2066 } else if (D->hasAttr<WeakAttr>() || 2067 D->hasAttr<WeakRefAttr>() || 2068 D->isWeakImported()) { 2069 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2070 } 2071 2072 SetCommonAttributes(D, GA); 2073 } 2074 2075 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2076 ArrayRef<llvm::Type*> Tys) { 2077 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2078 Tys); 2079 } 2080 2081 static llvm::StringMapEntry<llvm::Constant*> & 2082 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2083 const StringLiteral *Literal, 2084 bool TargetIsLSB, 2085 bool &IsUTF16, 2086 unsigned &StringLength) { 2087 StringRef String = Literal->getString(); 2088 unsigned NumBytes = String.size(); 2089 2090 // Check for simple case. 2091 if (!Literal->containsNonAsciiOrNull()) { 2092 StringLength = NumBytes; 2093 return Map.GetOrCreateValue(String); 2094 } 2095 2096 // Otherwise, convert the UTF8 literals into a string of shorts. 2097 IsUTF16 = true; 2098 2099 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2100 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2101 UTF16 *ToPtr = &ToBuf[0]; 2102 2103 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2104 &ToPtr, ToPtr + NumBytes, 2105 strictConversion); 2106 2107 // ConvertUTF8toUTF16 returns the length in ToPtr. 2108 StringLength = ToPtr - &ToBuf[0]; 2109 2110 // Add an explicit null. 2111 *ToPtr = 0; 2112 return Map. 2113 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2114 (StringLength + 1) * 2)); 2115 } 2116 2117 static llvm::StringMapEntry<llvm::Constant*> & 2118 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2119 const StringLiteral *Literal, 2120 unsigned &StringLength) { 2121 StringRef String = Literal->getString(); 2122 StringLength = String.size(); 2123 return Map.GetOrCreateValue(String); 2124 } 2125 2126 llvm::Constant * 2127 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2128 unsigned StringLength = 0; 2129 bool isUTF16 = false; 2130 llvm::StringMapEntry<llvm::Constant*> &Entry = 2131 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2132 getDataLayout().isLittleEndian(), 2133 isUTF16, StringLength); 2134 2135 if (llvm::Constant *C = Entry.getValue()) 2136 return C; 2137 2138 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2139 llvm::Constant *Zeros[] = { Zero, Zero }; 2140 2141 // If we don't already have it, get __CFConstantStringClassReference. 2142 if (!CFConstantStringClassRef) { 2143 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2144 Ty = llvm::ArrayType::get(Ty, 0); 2145 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2146 "__CFConstantStringClassReference"); 2147 // Decay array -> ptr 2148 CFConstantStringClassRef = 2149 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2150 } 2151 2152 QualType CFTy = getContext().getCFConstantStringType(); 2153 2154 llvm::StructType *STy = 2155 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2156 2157 llvm::Constant *Fields[4]; 2158 2159 // Class pointer. 2160 Fields[0] = CFConstantStringClassRef; 2161 2162 // Flags. 2163 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2164 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2165 llvm::ConstantInt::get(Ty, 0x07C8); 2166 2167 // String pointer. 2168 llvm::Constant *C = 0; 2169 if (isUTF16) { 2170 ArrayRef<uint16_t> Arr = 2171 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2172 Entry.getKey().size() / 2); 2173 C = llvm::ConstantDataArray::get(VMContext, Arr); 2174 } else { 2175 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2176 } 2177 2178 llvm::GlobalValue::LinkageTypes Linkage; 2179 if (isUTF16) 2180 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2181 Linkage = llvm::GlobalValue::InternalLinkage; 2182 else 2183 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2184 // when using private linkage. It is not clear if this is a bug in ld 2185 // or a reasonable new restriction. 2186 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2187 2188 // Note: -fwritable-strings doesn't make the backing store strings of 2189 // CFStrings writable. (See <rdar://problem/10657500>) 2190 llvm::GlobalVariable *GV = 2191 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2192 Linkage, C, ".str"); 2193 GV->setUnnamedAddr(true); 2194 if (isUTF16) { 2195 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2196 GV->setAlignment(Align.getQuantity()); 2197 } else { 2198 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2199 GV->setAlignment(Align.getQuantity()); 2200 } 2201 2202 // String. 2203 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2204 2205 if (isUTF16) 2206 // Cast the UTF16 string to the correct type. 2207 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2208 2209 // String length. 2210 Ty = getTypes().ConvertType(getContext().LongTy); 2211 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2212 2213 // The struct. 2214 C = llvm::ConstantStruct::get(STy, Fields); 2215 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2216 llvm::GlobalVariable::PrivateLinkage, C, 2217 "_unnamed_cfstring_"); 2218 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2219 GV->setSection(Sect); 2220 Entry.setValue(GV); 2221 2222 return GV; 2223 } 2224 2225 static RecordDecl * 2226 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2227 DeclContext *DC, IdentifierInfo *Id) { 2228 SourceLocation Loc; 2229 if (Ctx.getLangOpts().CPlusPlus) 2230 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2231 else 2232 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2233 } 2234 2235 llvm::Constant * 2236 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2237 unsigned StringLength = 0; 2238 llvm::StringMapEntry<llvm::Constant*> &Entry = 2239 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2240 2241 if (llvm::Constant *C = Entry.getValue()) 2242 return C; 2243 2244 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2245 llvm::Constant *Zeros[] = { Zero, Zero }; 2246 2247 // If we don't already have it, get _NSConstantStringClassReference. 2248 if (!ConstantStringClassRef) { 2249 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2250 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2251 llvm::Constant *GV; 2252 if (LangOpts.ObjCRuntime.isNonFragile()) { 2253 std::string str = 2254 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2255 : "OBJC_CLASS_$_" + StringClass; 2256 GV = getObjCRuntime().GetClassGlobal(str); 2257 // Make sure the result is of the correct type. 2258 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2259 ConstantStringClassRef = 2260 llvm::ConstantExpr::getBitCast(GV, PTy); 2261 } else { 2262 std::string str = 2263 StringClass.empty() ? "_NSConstantStringClassReference" 2264 : "_" + StringClass + "ClassReference"; 2265 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2266 GV = CreateRuntimeVariable(PTy, str); 2267 // Decay array -> ptr 2268 ConstantStringClassRef = 2269 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2270 } 2271 } 2272 2273 if (!NSConstantStringType) { 2274 // Construct the type for a constant NSString. 2275 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2276 Context.getTranslationUnitDecl(), 2277 &Context.Idents.get("__builtin_NSString")); 2278 D->startDefinition(); 2279 2280 QualType FieldTypes[3]; 2281 2282 // const int *isa; 2283 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2284 // const char *str; 2285 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2286 // unsigned int length; 2287 FieldTypes[2] = Context.UnsignedIntTy; 2288 2289 // Create fields 2290 for (unsigned i = 0; i < 3; ++i) { 2291 FieldDecl *Field = FieldDecl::Create(Context, D, 2292 SourceLocation(), 2293 SourceLocation(), 0, 2294 FieldTypes[i], /*TInfo=*/0, 2295 /*BitWidth=*/0, 2296 /*Mutable=*/false, 2297 ICIS_NoInit); 2298 Field->setAccess(AS_public); 2299 D->addDecl(Field); 2300 } 2301 2302 D->completeDefinition(); 2303 QualType NSTy = Context.getTagDeclType(D); 2304 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2305 } 2306 2307 llvm::Constant *Fields[3]; 2308 2309 // Class pointer. 2310 Fields[0] = ConstantStringClassRef; 2311 2312 // String pointer. 2313 llvm::Constant *C = 2314 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2315 2316 llvm::GlobalValue::LinkageTypes Linkage; 2317 bool isConstant; 2318 Linkage = llvm::GlobalValue::PrivateLinkage; 2319 isConstant = !LangOpts.WritableStrings; 2320 2321 llvm::GlobalVariable *GV = 2322 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2323 ".str"); 2324 GV->setUnnamedAddr(true); 2325 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2326 GV->setAlignment(Align.getQuantity()); 2327 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2328 2329 // String length. 2330 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2331 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2332 2333 // The struct. 2334 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2335 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2336 llvm::GlobalVariable::PrivateLinkage, C, 2337 "_unnamed_nsstring_"); 2338 // FIXME. Fix section. 2339 if (const char *Sect = 2340 LangOpts.ObjCRuntime.isNonFragile() 2341 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2342 : getContext().getTargetInfo().getNSStringSection()) 2343 GV->setSection(Sect); 2344 Entry.setValue(GV); 2345 2346 return GV; 2347 } 2348 2349 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2350 if (ObjCFastEnumerationStateType.isNull()) { 2351 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2352 Context.getTranslationUnitDecl(), 2353 &Context.Idents.get("__objcFastEnumerationState")); 2354 D->startDefinition(); 2355 2356 QualType FieldTypes[] = { 2357 Context.UnsignedLongTy, 2358 Context.getPointerType(Context.getObjCIdType()), 2359 Context.getPointerType(Context.UnsignedLongTy), 2360 Context.getConstantArrayType(Context.UnsignedLongTy, 2361 llvm::APInt(32, 5), ArrayType::Normal, 0) 2362 }; 2363 2364 for (size_t i = 0; i < 4; ++i) { 2365 FieldDecl *Field = FieldDecl::Create(Context, 2366 D, 2367 SourceLocation(), 2368 SourceLocation(), 0, 2369 FieldTypes[i], /*TInfo=*/0, 2370 /*BitWidth=*/0, 2371 /*Mutable=*/false, 2372 ICIS_NoInit); 2373 Field->setAccess(AS_public); 2374 D->addDecl(Field); 2375 } 2376 2377 D->completeDefinition(); 2378 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2379 } 2380 2381 return ObjCFastEnumerationStateType; 2382 } 2383 2384 llvm::Constant * 2385 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2386 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2387 2388 // Don't emit it as the address of the string, emit the string data itself 2389 // as an inline array. 2390 if (E->getCharByteWidth() == 1) { 2391 SmallString<64> Str(E->getString()); 2392 2393 // Resize the string to the right size, which is indicated by its type. 2394 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2395 Str.resize(CAT->getSize().getZExtValue()); 2396 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2397 } 2398 2399 llvm::ArrayType *AType = 2400 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2401 llvm::Type *ElemTy = AType->getElementType(); 2402 unsigned NumElements = AType->getNumElements(); 2403 2404 // Wide strings have either 2-byte or 4-byte elements. 2405 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2406 SmallVector<uint16_t, 32> Elements; 2407 Elements.reserve(NumElements); 2408 2409 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2410 Elements.push_back(E->getCodeUnit(i)); 2411 Elements.resize(NumElements); 2412 return llvm::ConstantDataArray::get(VMContext, Elements); 2413 } 2414 2415 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2416 SmallVector<uint32_t, 32> Elements; 2417 Elements.reserve(NumElements); 2418 2419 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2420 Elements.push_back(E->getCodeUnit(i)); 2421 Elements.resize(NumElements); 2422 return llvm::ConstantDataArray::get(VMContext, Elements); 2423 } 2424 2425 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2426 /// constant array for the given string literal. 2427 llvm::Constant * 2428 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2429 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2430 if (S->isAscii() || S->isUTF8()) { 2431 SmallString<64> Str(S->getString()); 2432 2433 // Resize the string to the right size, which is indicated by its type. 2434 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2435 Str.resize(CAT->getSize().getZExtValue()); 2436 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2437 } 2438 2439 // FIXME: the following does not memoize wide strings. 2440 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2441 llvm::GlobalVariable *GV = 2442 new llvm::GlobalVariable(getModule(),C->getType(), 2443 !LangOpts.WritableStrings, 2444 llvm::GlobalValue::PrivateLinkage, 2445 C,".str"); 2446 2447 GV->setAlignment(Align.getQuantity()); 2448 GV->setUnnamedAddr(true); 2449 return GV; 2450 } 2451 2452 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2453 /// array for the given ObjCEncodeExpr node. 2454 llvm::Constant * 2455 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2456 std::string Str; 2457 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2458 2459 return GetAddrOfConstantCString(Str); 2460 } 2461 2462 2463 /// GenerateWritableString -- Creates storage for a string literal. 2464 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2465 bool constant, 2466 CodeGenModule &CGM, 2467 const char *GlobalName, 2468 unsigned Alignment) { 2469 // Create Constant for this string literal. Don't add a '\0'. 2470 llvm::Constant *C = 2471 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2472 2473 // Create a global variable for this string 2474 llvm::GlobalVariable *GV = 2475 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2476 llvm::GlobalValue::PrivateLinkage, 2477 C, GlobalName); 2478 GV->setAlignment(Alignment); 2479 GV->setUnnamedAddr(true); 2480 return GV; 2481 } 2482 2483 /// GetAddrOfConstantString - Returns a pointer to a character array 2484 /// containing the literal. This contents are exactly that of the 2485 /// given string, i.e. it will not be null terminated automatically; 2486 /// see GetAddrOfConstantCString. Note that whether the result is 2487 /// actually a pointer to an LLVM constant depends on 2488 /// Feature.WriteableStrings. 2489 /// 2490 /// The result has pointer to array type. 2491 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2492 const char *GlobalName, 2493 unsigned Alignment) { 2494 // Get the default prefix if a name wasn't specified. 2495 if (!GlobalName) 2496 GlobalName = ".str"; 2497 2498 // Don't share any string literals if strings aren't constant. 2499 if (LangOpts.WritableStrings) 2500 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2501 2502 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2503 ConstantStringMap.GetOrCreateValue(Str); 2504 2505 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2506 if (Alignment > GV->getAlignment()) { 2507 GV->setAlignment(Alignment); 2508 } 2509 return GV; 2510 } 2511 2512 // Create a global variable for this. 2513 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2514 Alignment); 2515 Entry.setValue(GV); 2516 return GV; 2517 } 2518 2519 /// GetAddrOfConstantCString - Returns a pointer to a character 2520 /// array containing the literal and a terminating '\0' 2521 /// character. The result has pointer to array type. 2522 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2523 const char *GlobalName, 2524 unsigned Alignment) { 2525 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2526 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2527 } 2528 2529 /// EmitObjCPropertyImplementations - Emit information for synthesized 2530 /// properties for an implementation. 2531 void CodeGenModule::EmitObjCPropertyImplementations(const 2532 ObjCImplementationDecl *D) { 2533 for (ObjCImplementationDecl::propimpl_iterator 2534 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2535 ObjCPropertyImplDecl *PID = *i; 2536 2537 // Dynamic is just for type-checking. 2538 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2539 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2540 2541 // Determine which methods need to be implemented, some may have 2542 // been overridden. Note that ::isPropertyAccessor is not the method 2543 // we want, that just indicates if the decl came from a 2544 // property. What we want to know is if the method is defined in 2545 // this implementation. 2546 if (!D->getInstanceMethod(PD->getGetterName())) 2547 CodeGenFunction(*this).GenerateObjCGetter( 2548 const_cast<ObjCImplementationDecl *>(D), PID); 2549 if (!PD->isReadOnly() && 2550 !D->getInstanceMethod(PD->getSetterName())) 2551 CodeGenFunction(*this).GenerateObjCSetter( 2552 const_cast<ObjCImplementationDecl *>(D), PID); 2553 } 2554 } 2555 } 2556 2557 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2558 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2559 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2560 ivar; ivar = ivar->getNextIvar()) 2561 if (ivar->getType().isDestructedType()) 2562 return true; 2563 2564 return false; 2565 } 2566 2567 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2568 /// for an implementation. 2569 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2570 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2571 if (needsDestructMethod(D)) { 2572 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2573 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2574 ObjCMethodDecl *DTORMethod = 2575 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2576 cxxSelector, getContext().VoidTy, 0, D, 2577 /*isInstance=*/true, /*isVariadic=*/false, 2578 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2579 /*isDefined=*/false, ObjCMethodDecl::Required); 2580 D->addInstanceMethod(DTORMethod); 2581 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2582 D->setHasDestructors(true); 2583 } 2584 2585 // If the implementation doesn't have any ivar initializers, we don't need 2586 // a .cxx_construct. 2587 if (D->getNumIvarInitializers() == 0) 2588 return; 2589 2590 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2591 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2592 // The constructor returns 'self'. 2593 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2594 D->getLocation(), 2595 D->getLocation(), 2596 cxxSelector, 2597 getContext().getObjCIdType(), 0, 2598 D, /*isInstance=*/true, 2599 /*isVariadic=*/false, 2600 /*isPropertyAccessor=*/true, 2601 /*isImplicitlyDeclared=*/true, 2602 /*isDefined=*/false, 2603 ObjCMethodDecl::Required); 2604 D->addInstanceMethod(CTORMethod); 2605 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2606 D->setHasNonZeroConstructors(true); 2607 } 2608 2609 /// EmitNamespace - Emit all declarations in a namespace. 2610 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2611 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2612 I != E; ++I) 2613 EmitTopLevelDecl(*I); 2614 } 2615 2616 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2617 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2618 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2619 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2620 ErrorUnsupported(LSD, "linkage spec"); 2621 return; 2622 } 2623 2624 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2625 I != E; ++I) { 2626 // Meta-data for ObjC class includes references to implemented methods. 2627 // Generate class's method definitions first. 2628 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2629 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2630 MEnd = OID->meth_end(); 2631 M != MEnd; ++M) 2632 EmitTopLevelDecl(*M); 2633 } 2634 EmitTopLevelDecl(*I); 2635 } 2636 } 2637 2638 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2639 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2640 // If an error has occurred, stop code generation, but continue 2641 // parsing and semantic analysis (to ensure all warnings and errors 2642 // are emitted). 2643 if (Diags.hasErrorOccurred()) 2644 return; 2645 2646 // Ignore dependent declarations. 2647 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2648 return; 2649 2650 switch (D->getKind()) { 2651 case Decl::CXXConversion: 2652 case Decl::CXXMethod: 2653 case Decl::Function: 2654 // Skip function templates 2655 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2656 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2657 return; 2658 2659 EmitGlobal(cast<FunctionDecl>(D)); 2660 break; 2661 2662 case Decl::Var: 2663 EmitGlobal(cast<VarDecl>(D)); 2664 break; 2665 2666 // Indirect fields from global anonymous structs and unions can be 2667 // ignored; only the actual variable requires IR gen support. 2668 case Decl::IndirectField: 2669 break; 2670 2671 // C++ Decls 2672 case Decl::Namespace: 2673 EmitNamespace(cast<NamespaceDecl>(D)); 2674 break; 2675 // No code generation needed. 2676 case Decl::UsingShadow: 2677 case Decl::Using: 2678 case Decl::UsingDirective: 2679 case Decl::ClassTemplate: 2680 case Decl::FunctionTemplate: 2681 case Decl::TypeAliasTemplate: 2682 case Decl::NamespaceAlias: 2683 case Decl::Block: 2684 case Decl::Import: 2685 break; 2686 case Decl::CXXConstructor: 2687 // Skip function templates 2688 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2689 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2690 return; 2691 2692 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2693 break; 2694 case Decl::CXXDestructor: 2695 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2696 return; 2697 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2698 break; 2699 2700 case Decl::StaticAssert: 2701 // Nothing to do. 2702 break; 2703 2704 // Objective-C Decls 2705 2706 // Forward declarations, no (immediate) code generation. 2707 case Decl::ObjCInterface: 2708 case Decl::ObjCCategory: 2709 break; 2710 2711 case Decl::ObjCProtocol: { 2712 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2713 if (Proto->isThisDeclarationADefinition()) 2714 ObjCRuntime->GenerateProtocol(Proto); 2715 break; 2716 } 2717 2718 case Decl::ObjCCategoryImpl: 2719 // Categories have properties but don't support synthesize so we 2720 // can ignore them here. 2721 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2722 break; 2723 2724 case Decl::ObjCImplementation: { 2725 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2726 EmitObjCPropertyImplementations(OMD); 2727 EmitObjCIvarInitializations(OMD); 2728 ObjCRuntime->GenerateClass(OMD); 2729 // Emit global variable debug information. 2730 if (CGDebugInfo *DI = getModuleDebugInfo()) 2731 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2732 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2733 OMD->getClassInterface()), OMD->getLocation()); 2734 break; 2735 } 2736 case Decl::ObjCMethod: { 2737 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2738 // If this is not a prototype, emit the body. 2739 if (OMD->getBody()) 2740 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2741 break; 2742 } 2743 case Decl::ObjCCompatibleAlias: 2744 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2745 break; 2746 2747 case Decl::LinkageSpec: 2748 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2749 break; 2750 2751 case Decl::FileScopeAsm: { 2752 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2753 StringRef AsmString = AD->getAsmString()->getString(); 2754 2755 const std::string &S = getModule().getModuleInlineAsm(); 2756 if (S.empty()) 2757 getModule().setModuleInlineAsm(AsmString); 2758 else if (S.end()[-1] == '\n') 2759 getModule().setModuleInlineAsm(S + AsmString.str()); 2760 else 2761 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2762 break; 2763 } 2764 2765 default: 2766 // Make sure we handled everything we should, every other kind is a 2767 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2768 // function. Need to recode Decl::Kind to do that easily. 2769 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2770 } 2771 } 2772 2773 /// Turns the given pointer into a constant. 2774 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2775 const void *Ptr) { 2776 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2777 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2778 return llvm::ConstantInt::get(i64, PtrInt); 2779 } 2780 2781 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2782 llvm::NamedMDNode *&GlobalMetadata, 2783 GlobalDecl D, 2784 llvm::GlobalValue *Addr) { 2785 if (!GlobalMetadata) 2786 GlobalMetadata = 2787 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2788 2789 // TODO: should we report variant information for ctors/dtors? 2790 llvm::Value *Ops[] = { 2791 Addr, 2792 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2793 }; 2794 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2795 } 2796 2797 /// Emits metadata nodes associating all the global values in the 2798 /// current module with the Decls they came from. This is useful for 2799 /// projects using IR gen as a subroutine. 2800 /// 2801 /// Since there's currently no way to associate an MDNode directly 2802 /// with an llvm::GlobalValue, we create a global named metadata 2803 /// with the name 'clang.global.decl.ptrs'. 2804 void CodeGenModule::EmitDeclMetadata() { 2805 llvm::NamedMDNode *GlobalMetadata = 0; 2806 2807 // StaticLocalDeclMap 2808 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2809 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2810 I != E; ++I) { 2811 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2812 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2813 } 2814 } 2815 2816 /// Emits metadata nodes for all the local variables in the current 2817 /// function. 2818 void CodeGenFunction::EmitDeclMetadata() { 2819 if (LocalDeclMap.empty()) return; 2820 2821 llvm::LLVMContext &Context = getLLVMContext(); 2822 2823 // Find the unique metadata ID for this name. 2824 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2825 2826 llvm::NamedMDNode *GlobalMetadata = 0; 2827 2828 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2829 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2830 const Decl *D = I->first; 2831 llvm::Value *Addr = I->second; 2832 2833 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2834 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2835 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2836 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2837 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2838 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2839 } 2840 } 2841 } 2842 2843 void CodeGenModule::EmitCoverageFile() { 2844 if (!getCodeGenOpts().CoverageFile.empty()) { 2845 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2846 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2847 llvm::LLVMContext &Ctx = TheModule.getContext(); 2848 llvm::MDString *CoverageFile = 2849 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2850 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2851 llvm::MDNode *CU = CUNode->getOperand(i); 2852 llvm::Value *node[] = { CoverageFile, CU }; 2853 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2854 GCov->addOperand(N); 2855 } 2856 } 2857 } 2858 } 2859 2860 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 2861 QualType GuidType) { 2862 // Sema has checked that all uuid strings are of the form 2863 // "12345678-1234-1234-1234-1234567890ab". 2864 assert(Uuid.size() == 36); 2865 const char *Uuidstr = Uuid.data(); 2866 for (int i = 0; i < 36; ++i) { 2867 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 2868 else assert(isxdigit(Uuidstr[i])); 2869 } 2870 2871 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 2872 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 2873 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 2874 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 2875 2876 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 2877 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 2878 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 2879 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 2880 APValue& Arr = InitStruct.getStructField(3); 2881 Arr = APValue(APValue::UninitArray(), 8, 8); 2882 for (int t = 0; t < 8; ++t) 2883 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 2884 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 2885 2886 return EmitConstantValue(InitStruct, GuidType); 2887 } 2888