xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ff9a0582673a6f1e73d5ac60d03e43fb7038ea50)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/CallingConv.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/Profile/ProfileDataReader.h"
51 #include "llvm/Support/ConvertUTF.h"
52 #include "llvm/Support/ErrorHandling.h"
53 
54 using namespace clang;
55 using namespace CodeGen;
56 
57 static const char AnnotationSection[] = "llvm.metadata";
58 
59 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
60   switch (CGM.getTarget().getCXXABI().getKind()) {
61   case TargetCXXABI::GenericAArch64:
62   case TargetCXXABI::GenericARM:
63   case TargetCXXABI::iOS:
64   case TargetCXXABI::GenericItanium:
65     return CreateItaniumCXXABI(CGM);
66   case TargetCXXABI::Microsoft:
67     return CreateMicrosoftCXXABI(CGM);
68   }
69 
70   llvm_unreachable("invalid C++ ABI kind");
71 }
72 
73 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
74                              llvm::Module &M, const llvm::DataLayout &TD,
75                              DiagnosticsEngine &diags)
76     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
77       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
78       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
79       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
80       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
81       NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr),
82       CFConstantStringClassRef(0),
83       ConstantStringClassRef(0), NSConstantStringType(0),
84       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
85       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
86       LifetimeStartFn(0), LifetimeEndFn(0),
87       SanitizerBlacklist(
88           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
89       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
90                                           : LangOpts.Sanitize) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
105   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106   Int8PtrTy = Int8Ty->getPointerTo(0);
107   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 
109   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
110 
111   if (LangOpts.ObjC1)
112     createObjCRuntime();
113   if (LangOpts.OpenCL)
114     createOpenCLRuntime();
115   if (LangOpts.CUDA)
116     createCUDARuntime();
117 
118   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
119   if (SanOpts.Thread ||
120       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
121     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
122                            getCXXABI().getMangleContext());
123 
124   // If debug info or coverage generation is enabled, create the CGDebugInfo
125   // object.
126   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
127       CodeGenOpts.EmitGcovArcs ||
128       CodeGenOpts.EmitGcovNotes)
129     DebugInfo = new CGDebugInfo(*this);
130 
131   Block.GlobalUniqueCount = 0;
132 
133   if (C.getLangOpts().ObjCAutoRefCount)
134     ARCData = new ARCEntrypoints();
135   RRData = new RREntrypoints();
136 
137   if (!CodeGenOpts.InstrProfileInput.empty()) {
138     if (llvm::error_code EC = llvm::ProfileDataReader::create(
139             CodeGenOpts.InstrProfileInput, PGOReader)) {
140       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
141                                               "Could not read profile: %0");
142       getDiags().Report(DiagID) << EC.message();
143     }
144   }
145 }
146 
147 CodeGenModule::~CodeGenModule() {
148   delete ObjCRuntime;
149   delete OpenCLRuntime;
150   delete CUDARuntime;
151   delete TheTargetCodeGenInfo;
152   delete TBAA;
153   delete DebugInfo;
154   delete ARCData;
155   delete RRData;
156 }
157 
158 void CodeGenModule::createObjCRuntime() {
159   // This is just isGNUFamily(), but we want to force implementors of
160   // new ABIs to decide how best to do this.
161   switch (LangOpts.ObjCRuntime.getKind()) {
162   case ObjCRuntime::GNUstep:
163   case ObjCRuntime::GCC:
164   case ObjCRuntime::ObjFW:
165     ObjCRuntime = CreateGNUObjCRuntime(*this);
166     return;
167 
168   case ObjCRuntime::FragileMacOSX:
169   case ObjCRuntime::MacOSX:
170   case ObjCRuntime::iOS:
171     ObjCRuntime = CreateMacObjCRuntime(*this);
172     return;
173   }
174   llvm_unreachable("bad runtime kind");
175 }
176 
177 void CodeGenModule::createOpenCLRuntime() {
178   OpenCLRuntime = new CGOpenCLRuntime(*this);
179 }
180 
181 void CodeGenModule::createCUDARuntime() {
182   CUDARuntime = CreateNVCUDARuntime(*this);
183 }
184 
185 void CodeGenModule::applyReplacements() {
186   for (ReplacementsTy::iterator I = Replacements.begin(),
187                                 E = Replacements.end();
188        I != E; ++I) {
189     StringRef MangledName = I->first();
190     llvm::Constant *Replacement = I->second;
191     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
192     if (!Entry)
193       continue;
194     llvm::Function *OldF = cast<llvm::Function>(Entry);
195     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
196     if (!NewF) {
197       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
198         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
199       } else {
200         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
201         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
202                CE->getOpcode() == llvm::Instruction::GetElementPtr);
203         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
204       }
205     }
206 
207     // Replace old with new, but keep the old order.
208     OldF->replaceAllUsesWith(Replacement);
209     if (NewF) {
210       NewF->removeFromParent();
211       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
212     }
213     OldF->eraseFromParent();
214   }
215 }
216 
217 void CodeGenModule::checkAliases() {
218   bool Error = false;
219   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
220          E = Aliases.end(); I != E; ++I) {
221     const GlobalDecl &GD = *I;
222     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
223     const AliasAttr *AA = D->getAttr<AliasAttr>();
224     StringRef MangledName = getMangledName(GD);
225     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
226     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
227     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
228     if (GV->isDeclaration()) {
229       Error = true;
230       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
231     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
232       Error = true;
233       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
234     }
235   }
236   if (!Error)
237     return;
238 
239   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
240          E = Aliases.end(); I != E; ++I) {
241     const GlobalDecl &GD = *I;
242     StringRef MangledName = getMangledName(GD);
243     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
244     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
245     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
246     Alias->eraseFromParent();
247   }
248 }
249 
250 void CodeGenModule::clear() {
251   DeferredDeclsToEmit.clear();
252 }
253 
254 void CodeGenModule::Release() {
255   EmitDeferred();
256   applyReplacements();
257   checkAliases();
258   EmitCXXGlobalInitFunc();
259   EmitCXXGlobalDtorFunc();
260   EmitCXXThreadLocalInitFunc();
261   if (ObjCRuntime)
262     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
263       AddGlobalCtor(ObjCInitFunction);
264   EmitCtorList(GlobalCtors, "llvm.global_ctors");
265   EmitCtorList(GlobalDtors, "llvm.global_dtors");
266   EmitGlobalAnnotations();
267   EmitStaticExternCAliases();
268   emitLLVMUsed();
269 
270   if (CodeGenOpts.Autolink &&
271       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
272     EmitModuleLinkOptions();
273   }
274   if (CodeGenOpts.DwarfVersion)
275     // We actually want the latest version when there are conflicts.
276     // We can change from Warning to Latest if such mode is supported.
277     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
278                               CodeGenOpts.DwarfVersion);
279   if (DebugInfo)
280     // We support a single version in the linked module: error out when
281     // modules do not have the same version. We are going to implement dropping
282     // debug info when the version number is not up-to-date. Once that is
283     // done, the bitcode linker is not going to see modules with different
284     // version numbers.
285     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
286                               llvm::DEBUG_METADATA_VERSION);
287 
288   SimplifyPersonality();
289 
290   if (getCodeGenOpts().EmitDeclMetadata)
291     EmitDeclMetadata();
292 
293   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
294     EmitCoverageFile();
295 
296   if (DebugInfo)
297     DebugInfo->finalize();
298 
299   EmitVersionIdentMetadata();
300 }
301 
302 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
303   // Make sure that this type is translated.
304   Types.UpdateCompletedType(TD);
305 }
306 
307 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
308   if (!TBAA)
309     return 0;
310   return TBAA->getTBAAInfo(QTy);
311 }
312 
313 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
314   if (!TBAA)
315     return 0;
316   return TBAA->getTBAAInfoForVTablePtr();
317 }
318 
319 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
320   if (!TBAA)
321     return 0;
322   return TBAA->getTBAAStructInfo(QTy);
323 }
324 
325 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
326   if (!TBAA)
327     return 0;
328   return TBAA->getTBAAStructTypeInfo(QTy);
329 }
330 
331 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
332                                                   llvm::MDNode *AccessN,
333                                                   uint64_t O) {
334   if (!TBAA)
335     return 0;
336   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
337 }
338 
339 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
340 /// and struct-path aware TBAA, the tag has the same format:
341 /// base type, access type and offset.
342 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
343 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
344                                         llvm::MDNode *TBAAInfo,
345                                         bool ConvertTypeToTag) {
346   if (ConvertTypeToTag && TBAA)
347     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
348                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
349   else
350     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
351 }
352 
353 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
354   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
355   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
356 }
357 
358 /// ErrorUnsupported - Print out an error that codegen doesn't support the
359 /// specified stmt yet.
360 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
361   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
362                                                "cannot compile this %0 yet");
363   std::string Msg = Type;
364   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
365     << Msg << S->getSourceRange();
366 }
367 
368 /// ErrorUnsupported - Print out an error that codegen doesn't support the
369 /// specified decl yet.
370 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
371   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
372                                                "cannot compile this %0 yet");
373   std::string Msg = Type;
374   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
375 }
376 
377 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
378   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
379 }
380 
381 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
382                                         const NamedDecl *D) const {
383   // Internal definitions always have default visibility.
384   if (GV->hasLocalLinkage()) {
385     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
386     return;
387   }
388 
389   // Set visibility for definitions.
390   LinkageInfo LV = D->getLinkageAndVisibility();
391   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
392     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
393 }
394 
395 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
396   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
397       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
398       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
399       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
400       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
401 }
402 
403 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
404     CodeGenOptions::TLSModel M) {
405   switch (M) {
406   case CodeGenOptions::GeneralDynamicTLSModel:
407     return llvm::GlobalVariable::GeneralDynamicTLSModel;
408   case CodeGenOptions::LocalDynamicTLSModel:
409     return llvm::GlobalVariable::LocalDynamicTLSModel;
410   case CodeGenOptions::InitialExecTLSModel:
411     return llvm::GlobalVariable::InitialExecTLSModel;
412   case CodeGenOptions::LocalExecTLSModel:
413     return llvm::GlobalVariable::LocalExecTLSModel;
414   }
415   llvm_unreachable("Invalid TLS model!");
416 }
417 
418 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
419                                const VarDecl &D) const {
420   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
421 
422   llvm::GlobalVariable::ThreadLocalMode TLM;
423   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
424 
425   // Override the TLS model if it is explicitly specified.
426   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
427     TLM = GetLLVMTLSModel(Attr->getModel());
428   }
429 
430   GV->setThreadLocalMode(TLM);
431 }
432 
433 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
434   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
435 
436   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
437   if (!Str.empty())
438     return Str;
439 
440   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
441     IdentifierInfo *II = ND->getIdentifier();
442     assert(II && "Attempt to mangle unnamed decl.");
443 
444     Str = II->getName();
445     return Str;
446   }
447 
448   SmallString<256> Buffer;
449   llvm::raw_svector_ostream Out(Buffer);
450   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
451     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
452   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
453     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
454   else
455     getCXXABI().getMangleContext().mangleName(ND, Out);
456 
457   // Allocate space for the mangled name.
458   Out.flush();
459   size_t Length = Buffer.size();
460   char *Name = MangledNamesAllocator.Allocate<char>(Length);
461   std::copy(Buffer.begin(), Buffer.end(), Name);
462 
463   Str = StringRef(Name, Length);
464 
465   return Str;
466 }
467 
468 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
469                                         const BlockDecl *BD) {
470   MangleContext &MangleCtx = getCXXABI().getMangleContext();
471   const Decl *D = GD.getDecl();
472   llvm::raw_svector_ostream Out(Buffer.getBuffer());
473   if (D == 0)
474     MangleCtx.mangleGlobalBlock(BD,
475       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
476   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
477     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
478   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
479     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
480   else
481     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
482 }
483 
484 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
485   return getModule().getNamedValue(Name);
486 }
487 
488 /// AddGlobalCtor - Add a function to the list that will be called before
489 /// main() runs.
490 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
491   // FIXME: Type coercion of void()* types.
492   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
493 }
494 
495 /// AddGlobalDtor - Add a function to the list that will be called
496 /// when the module is unloaded.
497 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
498   // FIXME: Type coercion of void()* types.
499   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
500 }
501 
502 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
503   // Ctor function type is void()*.
504   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
505   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
506 
507   // Get the type of a ctor entry, { i32, void ()* }.
508   llvm::StructType *CtorStructTy =
509     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
510 
511   // Construct the constructor and destructor arrays.
512   SmallVector<llvm::Constant*, 8> Ctors;
513   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
514     llvm::Constant *S[] = {
515       llvm::ConstantInt::get(Int32Ty, I->second, false),
516       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
517     };
518     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
519   }
520 
521   if (!Ctors.empty()) {
522     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
523     new llvm::GlobalVariable(TheModule, AT, false,
524                              llvm::GlobalValue::AppendingLinkage,
525                              llvm::ConstantArray::get(AT, Ctors),
526                              GlobalName);
527   }
528 }
529 
530 llvm::GlobalValue::LinkageTypes
531 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
532   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
533 
534   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
535 
536   if (Linkage == GVA_Internal)
537     return llvm::Function::InternalLinkage;
538 
539   if (D->hasAttr<DLLExportAttr>())
540     return llvm::Function::ExternalLinkage;
541 
542   if (D->hasAttr<WeakAttr>())
543     return llvm::Function::WeakAnyLinkage;
544 
545   // In C99 mode, 'inline' functions are guaranteed to have a strong
546   // definition somewhere else, so we can use available_externally linkage.
547   if (Linkage == GVA_C99Inline)
548     return llvm::Function::AvailableExternallyLinkage;
549 
550   // Note that Apple's kernel linker doesn't support symbol
551   // coalescing, so we need to avoid linkonce and weak linkages there.
552   // Normally, this means we just map to internal, but for explicit
553   // instantiations we'll map to external.
554 
555   // In C++, the compiler has to emit a definition in every translation unit
556   // that references the function.  We should use linkonce_odr because
557   // a) if all references in this translation unit are optimized away, we
558   // don't need to codegen it.  b) if the function persists, it needs to be
559   // merged with other definitions. c) C++ has the ODR, so we know the
560   // definition is dependable.
561   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
562     return !Context.getLangOpts().AppleKext
563              ? llvm::Function::LinkOnceODRLinkage
564              : llvm::Function::InternalLinkage;
565 
566   // An explicit instantiation of a template has weak linkage, since
567   // explicit instantiations can occur in multiple translation units
568   // and must all be equivalent. However, we are not allowed to
569   // throw away these explicit instantiations.
570   if (Linkage == GVA_ExplicitTemplateInstantiation)
571     return !Context.getLangOpts().AppleKext
572              ? llvm::Function::WeakODRLinkage
573              : llvm::Function::ExternalLinkage;
574 
575   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
576   // emitted on an as-needed basis.
577   if (isa<CXXDestructorDecl>(D) &&
578       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
579                                          GD.getDtorType()))
580     return llvm::Function::LinkOnceODRLinkage;
581 
582   // Otherwise, we have strong external linkage.
583   assert(Linkage == GVA_StrongExternal);
584   return llvm::Function::ExternalLinkage;
585 }
586 
587 
588 /// SetFunctionDefinitionAttributes - Set attributes for a global.
589 ///
590 /// FIXME: This is currently only done for aliases and functions, but not for
591 /// variables (these details are set in EmitGlobalVarDefinition for variables).
592 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
593                                                     llvm::GlobalValue *GV) {
594   SetCommonAttributes(D, GV);
595 }
596 
597 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
598                                               const CGFunctionInfo &Info,
599                                               llvm::Function *F) {
600   unsigned CallingConv;
601   AttributeListType AttributeList;
602   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
603   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
604   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
605 }
606 
607 /// Determines whether the language options require us to model
608 /// unwind exceptions.  We treat -fexceptions as mandating this
609 /// except under the fragile ObjC ABI with only ObjC exceptions
610 /// enabled.  This means, for example, that C with -fexceptions
611 /// enables this.
612 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
613   // If exceptions are completely disabled, obviously this is false.
614   if (!LangOpts.Exceptions) return false;
615 
616   // If C++ exceptions are enabled, this is true.
617   if (LangOpts.CXXExceptions) return true;
618 
619   // If ObjC exceptions are enabled, this depends on the ABI.
620   if (LangOpts.ObjCExceptions) {
621     return LangOpts.ObjCRuntime.hasUnwindExceptions();
622   }
623 
624   return true;
625 }
626 
627 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
628                                                            llvm::Function *F) {
629   llvm::AttrBuilder B;
630 
631   if (CodeGenOpts.UnwindTables)
632     B.addAttribute(llvm::Attribute::UWTable);
633 
634   if (!hasUnwindExceptions(LangOpts))
635     B.addAttribute(llvm::Attribute::NoUnwind);
636 
637   if (D->hasAttr<NakedAttr>()) {
638     // Naked implies noinline: we should not be inlining such functions.
639     B.addAttribute(llvm::Attribute::Naked);
640     B.addAttribute(llvm::Attribute::NoInline);
641   } else if (D->hasAttr<NoDuplicateAttr>()) {
642     B.addAttribute(llvm::Attribute::NoDuplicate);
643   } else if (D->hasAttr<NoInlineAttr>()) {
644     B.addAttribute(llvm::Attribute::NoInline);
645   } else if (D->hasAttr<AlwaysInlineAttr>() &&
646              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
647                                               llvm::Attribute::NoInline)) {
648     // (noinline wins over always_inline, and we can't specify both in IR)
649     B.addAttribute(llvm::Attribute::AlwaysInline);
650   }
651 
652   if (D->hasAttr<ColdAttr>()) {
653     B.addAttribute(llvm::Attribute::OptimizeForSize);
654     B.addAttribute(llvm::Attribute::Cold);
655   }
656 
657   if (D->hasAttr<MinSizeAttr>())
658     B.addAttribute(llvm::Attribute::MinSize);
659 
660   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
661     B.addAttribute(llvm::Attribute::StackProtect);
662   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
663     B.addAttribute(llvm::Attribute::StackProtectStrong);
664   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
665     B.addAttribute(llvm::Attribute::StackProtectReq);
666 
667   // Add sanitizer attributes if function is not blacklisted.
668   if (!SanitizerBlacklist->isIn(*F)) {
669     // When AddressSanitizer is enabled, set SanitizeAddress attribute
670     // unless __attribute__((no_sanitize_address)) is used.
671     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
672       B.addAttribute(llvm::Attribute::SanitizeAddress);
673     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
674     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
675       B.addAttribute(llvm::Attribute::SanitizeThread);
676     }
677     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
678     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
679       B.addAttribute(llvm::Attribute::SanitizeMemory);
680   }
681 
682   F->addAttributes(llvm::AttributeSet::FunctionIndex,
683                    llvm::AttributeSet::get(
684                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
685 
686   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
687     F->setUnnamedAddr(true);
688   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
689     if (MD->isVirtual())
690       F->setUnnamedAddr(true);
691 
692   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
693   if (alignment)
694     F->setAlignment(alignment);
695 
696   // C++ ABI requires 2-byte alignment for member functions.
697   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
698     F->setAlignment(2);
699 }
700 
701 void CodeGenModule::SetCommonAttributes(const Decl *D,
702                                         llvm::GlobalValue *GV) {
703   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
704     setGlobalVisibility(GV, ND);
705   else
706     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
707 
708   if (D->hasAttr<UsedAttr>())
709     addUsedGlobal(GV);
710 
711   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
712     GV->setSection(SA->getName());
713 
714   // Alias cannot have attributes. Filter them here.
715   if (!isa<llvm::GlobalAlias>(GV))
716     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
717 }
718 
719 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
720                                                   llvm::Function *F,
721                                                   const CGFunctionInfo &FI) {
722   SetLLVMFunctionAttributes(D, FI, F);
723   SetLLVMFunctionAttributesForDefinition(D, F);
724 
725   F->setLinkage(llvm::Function::InternalLinkage);
726 
727   SetCommonAttributes(D, F);
728 }
729 
730 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
731                                           llvm::Function *F,
732                                           bool IsIncompleteFunction) {
733   if (unsigned IID = F->getIntrinsicID()) {
734     // If this is an intrinsic function, set the function's attributes
735     // to the intrinsic's attributes.
736     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
737                                                     (llvm::Intrinsic::ID)IID));
738     return;
739   }
740 
741   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
742 
743   if (!IsIncompleteFunction)
744     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
745 
746   if (getCXXABI().HasThisReturn(GD)) {
747     assert(!F->arg_empty() &&
748            F->arg_begin()->getType()
749              ->canLosslesslyBitCastTo(F->getReturnType()) &&
750            "unexpected this return");
751     F->addAttribute(1, llvm::Attribute::Returned);
752   }
753 
754   // Only a few attributes are set on declarations; these may later be
755   // overridden by a definition.
756 
757   if (FD->hasAttr<DLLImportAttr>()) {
758     F->setLinkage(llvm::Function::ExternalLinkage);
759     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
760   } else if (FD->hasAttr<WeakAttr>() ||
761              FD->isWeakImported()) {
762     // "extern_weak" is overloaded in LLVM; we probably should have
763     // separate linkage types for this.
764     F->setLinkage(llvm::Function::ExternalWeakLinkage);
765   } else {
766     F->setLinkage(llvm::Function::ExternalLinkage);
767     if (FD->hasAttr<DLLExportAttr>())
768       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
769 
770     LinkageInfo LV = FD->getLinkageAndVisibility();
771     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
772       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
773     }
774   }
775 
776   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
777     F->setSection(SA->getName());
778 
779   // A replaceable global allocation function does not act like a builtin by
780   // default, only if it is invoked by a new-expression or delete-expression.
781   if (FD->isReplaceableGlobalAllocationFunction())
782     F->addAttribute(llvm::AttributeSet::FunctionIndex,
783                     llvm::Attribute::NoBuiltin);
784 }
785 
786 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
787   assert(!GV->isDeclaration() &&
788          "Only globals with definition can force usage.");
789   LLVMUsed.push_back(GV);
790 }
791 
792 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
793   assert(!GV->isDeclaration() &&
794          "Only globals with definition can force usage.");
795   LLVMCompilerUsed.push_back(GV);
796 }
797 
798 static void emitUsed(CodeGenModule &CGM, StringRef Name,
799                      std::vector<llvm::WeakVH> &List) {
800   // Don't create llvm.used if there is no need.
801   if (List.empty())
802     return;
803 
804   // Convert List to what ConstantArray needs.
805   SmallVector<llvm::Constant*, 8> UsedArray;
806   UsedArray.resize(List.size());
807   for (unsigned i = 0, e = List.size(); i != e; ++i) {
808     UsedArray[i] =
809      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
810                                     CGM.Int8PtrTy);
811   }
812 
813   if (UsedArray.empty())
814     return;
815   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
816 
817   llvm::GlobalVariable *GV =
818     new llvm::GlobalVariable(CGM.getModule(), ATy, false,
819                              llvm::GlobalValue::AppendingLinkage,
820                              llvm::ConstantArray::get(ATy, UsedArray),
821                              Name);
822 
823   GV->setSection("llvm.metadata");
824 }
825 
826 void CodeGenModule::emitLLVMUsed() {
827   emitUsed(*this, "llvm.used", LLVMUsed);
828   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
829 }
830 
831 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
832   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
833   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
834 }
835 
836 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
837   llvm::SmallString<32> Opt;
838   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
839   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
840   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
841 }
842 
843 void CodeGenModule::AddDependentLib(StringRef Lib) {
844   llvm::SmallString<24> Opt;
845   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
846   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
847   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
848 }
849 
850 /// \brief Add link options implied by the given module, including modules
851 /// it depends on, using a postorder walk.
852 static void addLinkOptionsPostorder(CodeGenModule &CGM,
853                                     Module *Mod,
854                                     SmallVectorImpl<llvm::Value *> &Metadata,
855                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
856   // Import this module's parent.
857   if (Mod->Parent && Visited.insert(Mod->Parent)) {
858     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
859   }
860 
861   // Import this module's dependencies.
862   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
863     if (Visited.insert(Mod->Imports[I-1]))
864       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
865   }
866 
867   // Add linker options to link against the libraries/frameworks
868   // described by this module.
869   llvm::LLVMContext &Context = CGM.getLLVMContext();
870   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
871     // Link against a framework.  Frameworks are currently Darwin only, so we
872     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
873     if (Mod->LinkLibraries[I-1].IsFramework) {
874       llvm::Value *Args[2] = {
875         llvm::MDString::get(Context, "-framework"),
876         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
877       };
878 
879       Metadata.push_back(llvm::MDNode::get(Context, Args));
880       continue;
881     }
882 
883     // Link against a library.
884     llvm::SmallString<24> Opt;
885     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
886       Mod->LinkLibraries[I-1].Library, Opt);
887     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
888     Metadata.push_back(llvm::MDNode::get(Context, OptString));
889   }
890 }
891 
892 void CodeGenModule::EmitModuleLinkOptions() {
893   // Collect the set of all of the modules we want to visit to emit link
894   // options, which is essentially the imported modules and all of their
895   // non-explicit child modules.
896   llvm::SetVector<clang::Module *> LinkModules;
897   llvm::SmallPtrSet<clang::Module *, 16> Visited;
898   SmallVector<clang::Module *, 16> Stack;
899 
900   // Seed the stack with imported modules.
901   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
902                                                MEnd = ImportedModules.end();
903        M != MEnd; ++M) {
904     if (Visited.insert(*M))
905       Stack.push_back(*M);
906   }
907 
908   // Find all of the modules to import, making a little effort to prune
909   // non-leaf modules.
910   while (!Stack.empty()) {
911     clang::Module *Mod = Stack.pop_back_val();
912 
913     bool AnyChildren = false;
914 
915     // Visit the submodules of this module.
916     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
917                                         SubEnd = Mod->submodule_end();
918          Sub != SubEnd; ++Sub) {
919       // Skip explicit children; they need to be explicitly imported to be
920       // linked against.
921       if ((*Sub)->IsExplicit)
922         continue;
923 
924       if (Visited.insert(*Sub)) {
925         Stack.push_back(*Sub);
926         AnyChildren = true;
927       }
928     }
929 
930     // We didn't find any children, so add this module to the list of
931     // modules to link against.
932     if (!AnyChildren) {
933       LinkModules.insert(Mod);
934     }
935   }
936 
937   // Add link options for all of the imported modules in reverse topological
938   // order.  We don't do anything to try to order import link flags with respect
939   // to linker options inserted by things like #pragma comment().
940   SmallVector<llvm::Value *, 16> MetadataArgs;
941   Visited.clear();
942   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
943                                                MEnd = LinkModules.end();
944        M != MEnd; ++M) {
945     if (Visited.insert(*M))
946       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
947   }
948   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
949   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
950 
951   // Add the linker options metadata flag.
952   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
953                             llvm::MDNode::get(getLLVMContext(),
954                                               LinkerOptionsMetadata));
955 }
956 
957 void CodeGenModule::EmitDeferred() {
958   // Emit code for any potentially referenced deferred decls.  Since a
959   // previously unused static decl may become used during the generation of code
960   // for a static function, iterate until no changes are made.
961 
962   while (true) {
963     if (!DeferredVTables.empty()) {
964       EmitDeferredVTables();
965 
966       // Emitting a v-table doesn't directly cause more v-tables to
967       // become deferred, although it can cause functions to be
968       // emitted that then need those v-tables.
969       assert(DeferredVTables.empty());
970     }
971 
972     // Stop if we're out of both deferred v-tables and deferred declarations.
973     if (DeferredDeclsToEmit.empty()) break;
974 
975     DeferredGlobal &G = DeferredDeclsToEmit.back();
976     GlobalDecl D = G.GD;
977     llvm::GlobalValue *GV = G.GV;
978     DeferredDeclsToEmit.pop_back();
979 
980     assert(GV == GetGlobalValue(getMangledName(D)));
981     // Check to see if we've already emitted this.  This is necessary
982     // for a couple of reasons: first, decls can end up in the
983     // deferred-decls queue multiple times, and second, decls can end
984     // up with definitions in unusual ways (e.g. by an extern inline
985     // function acquiring a strong function redefinition).  Just
986     // ignore these cases.
987     if(!GV->isDeclaration())
988       continue;
989 
990     // Otherwise, emit the definition and move on to the next one.
991     EmitGlobalDefinition(D, GV);
992   }
993 }
994 
995 void CodeGenModule::EmitGlobalAnnotations() {
996   if (Annotations.empty())
997     return;
998 
999   // Create a new global variable for the ConstantStruct in the Module.
1000   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1001     Annotations[0]->getType(), Annotations.size()), Annotations);
1002   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1003     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1004     "llvm.global.annotations");
1005   gv->setSection(AnnotationSection);
1006 }
1007 
1008 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1009   llvm::Constant *&AStr = AnnotationStrings[Str];
1010   if (AStr)
1011     return AStr;
1012 
1013   // Not found yet, create a new global.
1014   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1015   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1016     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1017   gv->setSection(AnnotationSection);
1018   gv->setUnnamedAddr(true);
1019   AStr = gv;
1020   return gv;
1021 }
1022 
1023 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1024   SourceManager &SM = getContext().getSourceManager();
1025   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1026   if (PLoc.isValid())
1027     return EmitAnnotationString(PLoc.getFilename());
1028   return EmitAnnotationString(SM.getBufferName(Loc));
1029 }
1030 
1031 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1032   SourceManager &SM = getContext().getSourceManager();
1033   PresumedLoc PLoc = SM.getPresumedLoc(L);
1034   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1035     SM.getExpansionLineNumber(L);
1036   return llvm::ConstantInt::get(Int32Ty, LineNo);
1037 }
1038 
1039 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1040                                                 const AnnotateAttr *AA,
1041                                                 SourceLocation L) {
1042   // Get the globals for file name, annotation, and the line number.
1043   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1044                  *UnitGV = EmitAnnotationUnit(L),
1045                  *LineNoCst = EmitAnnotationLineNo(L);
1046 
1047   // Create the ConstantStruct for the global annotation.
1048   llvm::Constant *Fields[4] = {
1049     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1050     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1051     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1052     LineNoCst
1053   };
1054   return llvm::ConstantStruct::getAnon(Fields);
1055 }
1056 
1057 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1058                                          llvm::GlobalValue *GV) {
1059   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1060   // Get the struct elements for these annotations.
1061   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1062     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1063 }
1064 
1065 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1066   // Never defer when EmitAllDecls is specified.
1067   if (LangOpts.EmitAllDecls)
1068     return false;
1069 
1070   return !getContext().DeclMustBeEmitted(Global);
1071 }
1072 
1073 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1074     const CXXUuidofExpr* E) {
1075   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1076   // well-formed.
1077   StringRef Uuid = E->getUuidAsStringRef(Context);
1078   std::string Name = "_GUID_" + Uuid.lower();
1079   std::replace(Name.begin(), Name.end(), '-', '_');
1080 
1081   // Look for an existing global.
1082   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1083     return GV;
1084 
1085   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1086   assert(Init && "failed to initialize as constant");
1087 
1088   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1089       getModule(), Init->getType(),
1090       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1091   return GV;
1092 }
1093 
1094 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1095   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1096   assert(AA && "No alias?");
1097 
1098   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1099 
1100   // See if there is already something with the target's name in the module.
1101   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1102   if (Entry) {
1103     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1104     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1105   }
1106 
1107   llvm::Constant *Aliasee;
1108   if (isa<llvm::FunctionType>(DeclTy))
1109     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1110                                       GlobalDecl(cast<FunctionDecl>(VD)),
1111                                       /*ForVTable=*/false);
1112   else
1113     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1114                                     llvm::PointerType::getUnqual(DeclTy), 0);
1115 
1116   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1117   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1118   WeakRefReferences.insert(F);
1119 
1120   return Aliasee;
1121 }
1122 
1123 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1124   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1125 
1126   // Weak references don't produce any output by themselves.
1127   if (Global->hasAttr<WeakRefAttr>())
1128     return;
1129 
1130   // If this is an alias definition (which otherwise looks like a declaration)
1131   // emit it now.
1132   if (Global->hasAttr<AliasAttr>())
1133     return EmitAliasDefinition(GD);
1134 
1135   // If this is CUDA, be selective about which declarations we emit.
1136   if (LangOpts.CUDA) {
1137     if (CodeGenOpts.CUDAIsDevice) {
1138       if (!Global->hasAttr<CUDADeviceAttr>() &&
1139           !Global->hasAttr<CUDAGlobalAttr>() &&
1140           !Global->hasAttr<CUDAConstantAttr>() &&
1141           !Global->hasAttr<CUDASharedAttr>())
1142         return;
1143     } else {
1144       if (!Global->hasAttr<CUDAHostAttr>() && (
1145             Global->hasAttr<CUDADeviceAttr>() ||
1146             Global->hasAttr<CUDAConstantAttr>() ||
1147             Global->hasAttr<CUDASharedAttr>()))
1148         return;
1149     }
1150   }
1151 
1152   // Ignore declarations, they will be emitted on their first use.
1153   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1154     // Forward declarations are emitted lazily on first use.
1155     if (!FD->doesThisDeclarationHaveABody()) {
1156       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1157         return;
1158 
1159       const FunctionDecl *InlineDefinition = 0;
1160       FD->getBody(InlineDefinition);
1161 
1162       StringRef MangledName = getMangledName(GD);
1163       DeferredDecls.erase(MangledName);
1164       EmitGlobalDefinition(InlineDefinition);
1165       return;
1166     }
1167   } else {
1168     const VarDecl *VD = cast<VarDecl>(Global);
1169     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1170 
1171     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1172       return;
1173   }
1174 
1175   // Defer code generation when possible if this is a static definition, inline
1176   // function etc.  These we only want to emit if they are used.
1177   if (!MayDeferGeneration(Global)) {
1178     // Emit the definition if it can't be deferred.
1179     EmitGlobalDefinition(GD);
1180     return;
1181   }
1182 
1183   // If we're deferring emission of a C++ variable with an
1184   // initializer, remember the order in which it appeared in the file.
1185   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1186       cast<VarDecl>(Global)->hasInit()) {
1187     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1188     CXXGlobalInits.push_back(0);
1189   }
1190 
1191   // If the value has already been used, add it directly to the
1192   // DeferredDeclsToEmit list.
1193   StringRef MangledName = getMangledName(GD);
1194   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1195     addDeferredDeclToEmit(GV, GD);
1196   else {
1197     // Otherwise, remember that we saw a deferred decl with this name.  The
1198     // first use of the mangled name will cause it to move into
1199     // DeferredDeclsToEmit.
1200     DeferredDecls[MangledName] = GD;
1201   }
1202 }
1203 
1204 namespace {
1205   struct FunctionIsDirectlyRecursive :
1206     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1207     const StringRef Name;
1208     const Builtin::Context &BI;
1209     bool Result;
1210     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1211       Name(N), BI(C), Result(false) {
1212     }
1213     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1214 
1215     bool TraverseCallExpr(CallExpr *E) {
1216       const FunctionDecl *FD = E->getDirectCallee();
1217       if (!FD)
1218         return true;
1219       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1220       if (Attr && Name == Attr->getLabel()) {
1221         Result = true;
1222         return false;
1223       }
1224       unsigned BuiltinID = FD->getBuiltinID();
1225       if (!BuiltinID)
1226         return true;
1227       StringRef BuiltinName = BI.GetName(BuiltinID);
1228       if (BuiltinName.startswith("__builtin_") &&
1229           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1230         Result = true;
1231         return false;
1232       }
1233       return true;
1234     }
1235   };
1236 }
1237 
1238 // isTriviallyRecursive - Check if this function calls another
1239 // decl that, because of the asm attribute or the other decl being a builtin,
1240 // ends up pointing to itself.
1241 bool
1242 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1243   StringRef Name;
1244   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1245     // asm labels are a special kind of mangling we have to support.
1246     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1247     if (!Attr)
1248       return false;
1249     Name = Attr->getLabel();
1250   } else {
1251     Name = FD->getName();
1252   }
1253 
1254   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1255   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1256   return Walker.Result;
1257 }
1258 
1259 bool
1260 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1261   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1262     return true;
1263   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1264   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1265     return false;
1266   // PR9614. Avoid cases where the source code is lying to us. An available
1267   // externally function should have an equivalent function somewhere else,
1268   // but a function that calls itself is clearly not equivalent to the real
1269   // implementation.
1270   // This happens in glibc's btowc and in some configure checks.
1271   return !isTriviallyRecursive(F);
1272 }
1273 
1274 /// If the type for the method's class was generated by
1275 /// CGDebugInfo::createContextChain(), the cache contains only a
1276 /// limited DIType without any declarations. Since EmitFunctionStart()
1277 /// needs to find the canonical declaration for each method, we need
1278 /// to construct the complete type prior to emitting the method.
1279 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1280   if (!D->isInstance())
1281     return;
1282 
1283   if (CGDebugInfo *DI = getModuleDebugInfo())
1284     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1285       const PointerType *ThisPtr =
1286         cast<PointerType>(D->getThisType(getContext()));
1287       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1288     }
1289 }
1290 
1291 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1292   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1293 
1294   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1295                                  Context.getSourceManager(),
1296                                  "Generating code for declaration");
1297 
1298   if (isa<FunctionDecl>(D)) {
1299     // At -O0, don't generate IR for functions with available_externally
1300     // linkage.
1301     if (!shouldEmitFunction(GD))
1302       return;
1303 
1304     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1305       CompleteDIClassType(Method);
1306       // Make sure to emit the definition(s) before we emit the thunks.
1307       // This is necessary for the generation of certain thunks.
1308       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1309         EmitCXXConstructor(CD, GD.getCtorType());
1310       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1311         EmitCXXDestructor(DD, GD.getDtorType());
1312       else
1313         EmitGlobalFunctionDefinition(GD, GV);
1314 
1315       if (Method->isVirtual())
1316         getVTables().EmitThunks(GD);
1317 
1318       return;
1319     }
1320 
1321     return EmitGlobalFunctionDefinition(GD, GV);
1322   }
1323 
1324   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1325     return EmitGlobalVarDefinition(VD);
1326 
1327   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1328 }
1329 
1330 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1331 /// module, create and return an llvm Function with the specified type. If there
1332 /// is something in the module with the specified name, return it potentially
1333 /// bitcasted to the right type.
1334 ///
1335 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1336 /// to set the attributes on the function when it is first created.
1337 llvm::Constant *
1338 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1339                                        llvm::Type *Ty,
1340                                        GlobalDecl GD, bool ForVTable,
1341                                        bool DontDefer,
1342                                        llvm::AttributeSet ExtraAttrs) {
1343   const Decl *D = GD.getDecl();
1344 
1345   // Lookup the entry, lazily creating it if necessary.
1346   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1347   if (Entry) {
1348     if (WeakRefReferences.erase(Entry)) {
1349       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1350       if (FD && !FD->hasAttr<WeakAttr>())
1351         Entry->setLinkage(llvm::Function::ExternalLinkage);
1352     }
1353 
1354     if (Entry->getType()->getElementType() == Ty)
1355       return Entry;
1356 
1357     // Make sure the result is of the correct type.
1358     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1359   }
1360 
1361   // This function doesn't have a complete type (for example, the return
1362   // type is an incomplete struct). Use a fake type instead, and make
1363   // sure not to try to set attributes.
1364   bool IsIncompleteFunction = false;
1365 
1366   llvm::FunctionType *FTy;
1367   if (isa<llvm::FunctionType>(Ty)) {
1368     FTy = cast<llvm::FunctionType>(Ty);
1369   } else {
1370     FTy = llvm::FunctionType::get(VoidTy, false);
1371     IsIncompleteFunction = true;
1372   }
1373 
1374   llvm::Function *F = llvm::Function::Create(FTy,
1375                                              llvm::Function::ExternalLinkage,
1376                                              MangledName, &getModule());
1377   assert(F->getName() == MangledName && "name was uniqued!");
1378   if (D)
1379     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1380   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1381     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1382     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1383                      llvm::AttributeSet::get(VMContext,
1384                                              llvm::AttributeSet::FunctionIndex,
1385                                              B));
1386   }
1387 
1388   if (!DontDefer) {
1389     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1390     // each other bottoming out with the base dtor.  Therefore we emit non-base
1391     // dtors on usage, even if there is no dtor definition in the TU.
1392     if (D && isa<CXXDestructorDecl>(D) &&
1393         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1394                                            GD.getDtorType()))
1395       addDeferredDeclToEmit(F, GD);
1396 
1397     // This is the first use or definition of a mangled name.  If there is a
1398     // deferred decl with this name, remember that we need to emit it at the end
1399     // of the file.
1400     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1401     if (DDI != DeferredDecls.end()) {
1402       // Move the potentially referenced deferred decl to the
1403       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1404       // don't need it anymore).
1405       addDeferredDeclToEmit(F, DDI->second);
1406       DeferredDecls.erase(DDI);
1407 
1408       // Otherwise, if this is a sized deallocation function, emit a weak
1409       // definition
1410       // for it at the end of the translation unit.
1411     } else if (D && cast<FunctionDecl>(D)
1412                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1413       addDeferredDeclToEmit(F, GD);
1414 
1415       // Otherwise, there are cases we have to worry about where we're
1416       // using a declaration for which we must emit a definition but where
1417       // we might not find a top-level definition:
1418       //   - member functions defined inline in their classes
1419       //   - friend functions defined inline in some class
1420       //   - special member functions with implicit definitions
1421       // If we ever change our AST traversal to walk into class methods,
1422       // this will be unnecessary.
1423       //
1424       // We also don't emit a definition for a function if it's going to be an
1425       // entry
1426       // in a vtable, unless it's already marked as used.
1427     } else if (getLangOpts().CPlusPlus && D) {
1428       // Look for a declaration that's lexically in a record.
1429       const FunctionDecl *FD = cast<FunctionDecl>(D);
1430       FD = FD->getMostRecentDecl();
1431       do {
1432         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1433           if (FD->isImplicit() && !ForVTable) {
1434             assert(FD->isUsed() &&
1435                    "Sema didn't mark implicit function as used!");
1436             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1437             break;
1438           } else if (FD->doesThisDeclarationHaveABody()) {
1439             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1440             break;
1441           }
1442         }
1443         FD = FD->getPreviousDecl();
1444       } while (FD);
1445     }
1446   }
1447 
1448   // Make sure the result is of the requested type.
1449   if (!IsIncompleteFunction) {
1450     assert(F->getType()->getElementType() == Ty);
1451     return F;
1452   }
1453 
1454   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1455   return llvm::ConstantExpr::getBitCast(F, PTy);
1456 }
1457 
1458 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1459 /// non-null, then this function will use the specified type if it has to
1460 /// create it (this occurs when we see a definition of the function).
1461 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1462                                                  llvm::Type *Ty,
1463                                                  bool ForVTable,
1464                                                  bool DontDefer) {
1465   // If there was no specific requested type, just convert it now.
1466   if (!Ty)
1467     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1468 
1469   StringRef MangledName = getMangledName(GD);
1470   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1471 }
1472 
1473 /// CreateRuntimeFunction - Create a new runtime function with the specified
1474 /// type and name.
1475 llvm::Constant *
1476 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1477                                      StringRef Name,
1478                                      llvm::AttributeSet ExtraAttrs) {
1479   llvm::Constant *C =
1480       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1481                               /*DontDefer=*/false, ExtraAttrs);
1482   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1483     if (F->empty())
1484       F->setCallingConv(getRuntimeCC());
1485   return C;
1486 }
1487 
1488 /// isTypeConstant - Determine whether an object of this type can be emitted
1489 /// as a constant.
1490 ///
1491 /// If ExcludeCtor is true, the duration when the object's constructor runs
1492 /// will not be considered. The caller will need to verify that the object is
1493 /// not written to during its construction.
1494 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1495   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1496     return false;
1497 
1498   if (Context.getLangOpts().CPlusPlus) {
1499     if (const CXXRecordDecl *Record
1500           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1501       return ExcludeCtor && !Record->hasMutableFields() &&
1502              Record->hasTrivialDestructor();
1503   }
1504 
1505   return true;
1506 }
1507 
1508 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1509 /// create and return an llvm GlobalVariable with the specified type.  If there
1510 /// is something in the module with the specified name, return it potentially
1511 /// bitcasted to the right type.
1512 ///
1513 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1514 /// to set the attributes on the global when it is first created.
1515 llvm::Constant *
1516 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1517                                      llvm::PointerType *Ty,
1518                                      const VarDecl *D,
1519                                      bool UnnamedAddr) {
1520   // Lookup the entry, lazily creating it if necessary.
1521   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1522   if (Entry) {
1523     if (WeakRefReferences.erase(Entry)) {
1524       if (D && !D->hasAttr<WeakAttr>())
1525         Entry->setLinkage(llvm::Function::ExternalLinkage);
1526     }
1527 
1528     if (UnnamedAddr)
1529       Entry->setUnnamedAddr(true);
1530 
1531     if (Entry->getType() == Ty)
1532       return Entry;
1533 
1534     // Make sure the result is of the correct type.
1535     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1536       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1537 
1538     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1539   }
1540 
1541   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1542   llvm::GlobalVariable *GV =
1543     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1544                              llvm::GlobalValue::ExternalLinkage,
1545                              0, MangledName, 0,
1546                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1547 
1548   // This is the first use or definition of a mangled name.  If there is a
1549   // deferred decl with this name, remember that we need to emit it at the end
1550   // of the file.
1551   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1552   if (DDI != DeferredDecls.end()) {
1553     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1554     // list, and remove it from DeferredDecls (since we don't need it anymore).
1555     addDeferredDeclToEmit(GV, DDI->second);
1556     DeferredDecls.erase(DDI);
1557   }
1558 
1559   // Handle things which are present even on external declarations.
1560   if (D) {
1561     // FIXME: This code is overly simple and should be merged with other global
1562     // handling.
1563     GV->setConstant(isTypeConstant(D->getType(), false));
1564 
1565     // Set linkage and visibility in case we never see a definition.
1566     LinkageInfo LV = D->getLinkageAndVisibility();
1567     if (LV.getLinkage() != ExternalLinkage) {
1568       // Don't set internal linkage on declarations.
1569     } else {
1570       if (D->hasAttr<DLLImportAttr>()) {
1571         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1572         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1573       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1574         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1575 
1576       // Set visibility on a declaration only if it's explicit.
1577       if (LV.isVisibilityExplicit())
1578         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1579     }
1580 
1581     if (D->getTLSKind()) {
1582       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1583         CXXThreadLocals.push_back(std::make_pair(D, GV));
1584       setTLSMode(GV, *D);
1585     }
1586 
1587     // If required by the ABI, treat declarations of static data members with
1588     // inline initializers as definitions.
1589     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1590         D->isStaticDataMember() && D->hasInit() &&
1591         !D->isThisDeclarationADefinition())
1592       EmitGlobalVarDefinition(D);
1593   }
1594 
1595   if (AddrSpace != Ty->getAddressSpace())
1596     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1597 
1598   if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1599       D->getLanguageLinkage() == CLanguageLinkage &&
1600       D->getType().isConstant(Context) &&
1601       isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1602     GV->setSection(".cp.rodata");
1603 
1604   return GV;
1605 }
1606 
1607 
1608 llvm::GlobalVariable *
1609 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1610                                       llvm::Type *Ty,
1611                                       llvm::GlobalValue::LinkageTypes Linkage) {
1612   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1613   llvm::GlobalVariable *OldGV = 0;
1614 
1615 
1616   if (GV) {
1617     // Check if the variable has the right type.
1618     if (GV->getType()->getElementType() == Ty)
1619       return GV;
1620 
1621     // Because C++ name mangling, the only way we can end up with an already
1622     // existing global with the same name is if it has been declared extern "C".
1623     assert(GV->isDeclaration() && "Declaration has wrong type!");
1624     OldGV = GV;
1625   }
1626 
1627   // Create a new variable.
1628   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1629                                 Linkage, 0, Name);
1630 
1631   if (OldGV) {
1632     // Replace occurrences of the old variable if needed.
1633     GV->takeName(OldGV);
1634 
1635     if (!OldGV->use_empty()) {
1636       llvm::Constant *NewPtrForOldDecl =
1637       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1638       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1639     }
1640 
1641     OldGV->eraseFromParent();
1642   }
1643 
1644   return GV;
1645 }
1646 
1647 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1648 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1649 /// then it will be created with the specified type instead of whatever the
1650 /// normal requested type would be.
1651 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1652                                                   llvm::Type *Ty) {
1653   assert(D->hasGlobalStorage() && "Not a global variable");
1654   QualType ASTTy = D->getType();
1655   if (Ty == 0)
1656     Ty = getTypes().ConvertTypeForMem(ASTTy);
1657 
1658   llvm::PointerType *PTy =
1659     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1660 
1661   StringRef MangledName = getMangledName(D);
1662   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1663 }
1664 
1665 /// CreateRuntimeVariable - Create a new runtime global variable with the
1666 /// specified type and name.
1667 llvm::Constant *
1668 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1669                                      StringRef Name) {
1670   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1671                                true);
1672 }
1673 
1674 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1675   assert(!D->getInit() && "Cannot emit definite definitions here!");
1676 
1677   if (MayDeferGeneration(D)) {
1678     // If we have not seen a reference to this variable yet, place it
1679     // into the deferred declarations table to be emitted if needed
1680     // later.
1681     StringRef MangledName = getMangledName(D);
1682     if (!GetGlobalValue(MangledName)) {
1683       DeferredDecls[MangledName] = D;
1684       return;
1685     }
1686   }
1687 
1688   // The tentative definition is the only definition.
1689   EmitGlobalVarDefinition(D);
1690 }
1691 
1692 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1693     return Context.toCharUnitsFromBits(
1694       TheDataLayout.getTypeStoreSizeInBits(Ty));
1695 }
1696 
1697 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1698                                                  unsigned AddrSpace) {
1699   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1700     if (D->hasAttr<CUDAConstantAttr>())
1701       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1702     else if (D->hasAttr<CUDASharedAttr>())
1703       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1704     else
1705       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1706   }
1707 
1708   return AddrSpace;
1709 }
1710 
1711 template<typename SomeDecl>
1712 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1713                                                llvm::GlobalValue *GV) {
1714   if (!getLangOpts().CPlusPlus)
1715     return;
1716 
1717   // Must have 'used' attribute, or else inline assembly can't rely on
1718   // the name existing.
1719   if (!D->template hasAttr<UsedAttr>())
1720     return;
1721 
1722   // Must have internal linkage and an ordinary name.
1723   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1724     return;
1725 
1726   // Must be in an extern "C" context. Entities declared directly within
1727   // a record are not extern "C" even if the record is in such a context.
1728   const SomeDecl *First = D->getFirstDecl();
1729   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1730     return;
1731 
1732   // OK, this is an internal linkage entity inside an extern "C" linkage
1733   // specification. Make a note of that so we can give it the "expected"
1734   // mangled name if nothing else is using that name.
1735   std::pair<StaticExternCMap::iterator, bool> R =
1736       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1737 
1738   // If we have multiple internal linkage entities with the same name
1739   // in extern "C" regions, none of them gets that name.
1740   if (!R.second)
1741     R.first->second = 0;
1742 }
1743 
1744 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1745   llvm::Constant *Init = 0;
1746   QualType ASTTy = D->getType();
1747   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1748   bool NeedsGlobalCtor = false;
1749   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1750 
1751   const VarDecl *InitDecl;
1752   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1753 
1754   if (!InitExpr) {
1755     // This is a tentative definition; tentative definitions are
1756     // implicitly initialized with { 0 }.
1757     //
1758     // Note that tentative definitions are only emitted at the end of
1759     // a translation unit, so they should never have incomplete
1760     // type. In addition, EmitTentativeDefinition makes sure that we
1761     // never attempt to emit a tentative definition if a real one
1762     // exists. A use may still exists, however, so we still may need
1763     // to do a RAUW.
1764     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1765     Init = EmitNullConstant(D->getType());
1766   } else {
1767     initializedGlobalDecl = GlobalDecl(D);
1768     Init = EmitConstantInit(*InitDecl);
1769 
1770     if (!Init) {
1771       QualType T = InitExpr->getType();
1772       if (D->getType()->isReferenceType())
1773         T = D->getType();
1774 
1775       if (getLangOpts().CPlusPlus) {
1776         Init = EmitNullConstant(T);
1777         NeedsGlobalCtor = true;
1778       } else {
1779         ErrorUnsupported(D, "static initializer");
1780         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1781       }
1782     } else {
1783       // We don't need an initializer, so remove the entry for the delayed
1784       // initializer position (just in case this entry was delayed) if we
1785       // also don't need to register a destructor.
1786       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1787         DelayedCXXInitPosition.erase(D);
1788     }
1789   }
1790 
1791   llvm::Type* InitType = Init->getType();
1792   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1793 
1794   // Strip off a bitcast if we got one back.
1795   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1796     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1797            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1798            // All zero index gep.
1799            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1800     Entry = CE->getOperand(0);
1801   }
1802 
1803   // Entry is now either a Function or GlobalVariable.
1804   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1805 
1806   // We have a definition after a declaration with the wrong type.
1807   // We must make a new GlobalVariable* and update everything that used OldGV
1808   // (a declaration or tentative definition) with the new GlobalVariable*
1809   // (which will be a definition).
1810   //
1811   // This happens if there is a prototype for a global (e.g.
1812   // "extern int x[];") and then a definition of a different type (e.g.
1813   // "int x[10];"). This also happens when an initializer has a different type
1814   // from the type of the global (this happens with unions).
1815   if (GV == 0 ||
1816       GV->getType()->getElementType() != InitType ||
1817       GV->getType()->getAddressSpace() !=
1818        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1819 
1820     // Move the old entry aside so that we'll create a new one.
1821     Entry->setName(StringRef());
1822 
1823     // Make a new global with the correct type, this is now guaranteed to work.
1824     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1825 
1826     // Replace all uses of the old global with the new global
1827     llvm::Constant *NewPtrForOldDecl =
1828         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1829     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1830 
1831     // Erase the old global, since it is no longer used.
1832     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1833   }
1834 
1835   MaybeHandleStaticInExternC(D, GV);
1836 
1837   if (D->hasAttr<AnnotateAttr>())
1838     AddGlobalAnnotations(D, GV);
1839 
1840   GV->setInitializer(Init);
1841 
1842   // If it is safe to mark the global 'constant', do so now.
1843   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1844                   isTypeConstant(D->getType(), true));
1845 
1846   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1847 
1848   // Set the llvm linkage type as appropriate.
1849   llvm::GlobalValue::LinkageTypes Linkage =
1850     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1851   GV->setLinkage(Linkage);
1852   if (D->hasAttr<DLLImportAttr>())
1853     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1854   else if (D->hasAttr<DLLExportAttr>())
1855     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1856 
1857   // If required by the ABI, give definitions of static data members with inline
1858   // initializers linkonce_odr linkage.
1859   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1860       D->isStaticDataMember() && InitExpr &&
1861       !InitDecl->isThisDeclarationADefinition())
1862     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1863 
1864   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1865     // common vars aren't constant even if declared const.
1866     GV->setConstant(false);
1867 
1868   SetCommonAttributes(D, GV);
1869 
1870   // Emit the initializer function if necessary.
1871   if (NeedsGlobalCtor || NeedsGlobalDtor)
1872     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1873 
1874   // If we are compiling with ASan, add metadata indicating dynamically
1875   // initialized globals.
1876   if (SanOpts.Address && NeedsGlobalCtor) {
1877     llvm::Module &M = getModule();
1878 
1879     llvm::NamedMDNode *DynamicInitializers =
1880         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1881     llvm::Value *GlobalToAdd[] = { GV };
1882     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1883     DynamicInitializers->addOperand(ThisGlobal);
1884   }
1885 
1886   // Emit global variable debug information.
1887   if (CGDebugInfo *DI = getModuleDebugInfo())
1888     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1889       DI->EmitGlobalVariable(GV, D);
1890 }
1891 
1892 llvm::GlobalValue::LinkageTypes
1893 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1894   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1895   if (Linkage == GVA_Internal)
1896     return llvm::Function::InternalLinkage;
1897   else if (D->hasAttr<DLLImportAttr>())
1898     return llvm::Function::ExternalLinkage;
1899   else if (D->hasAttr<DLLExportAttr>())
1900     return llvm::Function::ExternalLinkage;
1901   else if (D->hasAttr<SelectAnyAttr>()) {
1902     // selectany symbols are externally visible, so use weak instead of
1903     // linkonce.  MSVC optimizes away references to const selectany globals, so
1904     // all definitions should be the same and ODR linkage should be used.
1905     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1906     return llvm::GlobalVariable::WeakODRLinkage;
1907   } else if (D->hasAttr<WeakAttr>()) {
1908     if (isConstant)
1909       return llvm::GlobalVariable::WeakODRLinkage;
1910     else
1911       return llvm::GlobalVariable::WeakAnyLinkage;
1912   } else if (Linkage == GVA_TemplateInstantiation ||
1913              Linkage == GVA_ExplicitTemplateInstantiation)
1914     return llvm::GlobalVariable::WeakODRLinkage;
1915   else if (!getLangOpts().CPlusPlus &&
1916            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1917              D->hasAttr<CommonAttr>()) &&
1918            !D->hasExternalStorage() && !D->getInit() &&
1919            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1920            !D->hasAttr<WeakImportAttr>()) {
1921     // Thread local vars aren't considered common linkage.
1922     return llvm::GlobalVariable::CommonLinkage;
1923   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1924              getTarget().getTriple().isMacOSX())
1925     // On Darwin, the backing variable for a C++11 thread_local variable always
1926     // has internal linkage; all accesses should just be calls to the
1927     // Itanium-specified entry point, which has the normal linkage of the
1928     // variable.
1929     return llvm::GlobalValue::InternalLinkage;
1930   return llvm::GlobalVariable::ExternalLinkage;
1931 }
1932 
1933 /// Replace the uses of a function that was declared with a non-proto type.
1934 /// We want to silently drop extra arguments from call sites
1935 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1936                                           llvm::Function *newFn) {
1937   // Fast path.
1938   if (old->use_empty()) return;
1939 
1940   llvm::Type *newRetTy = newFn->getReturnType();
1941   SmallVector<llvm::Value*, 4> newArgs;
1942 
1943   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1944          ui != ue; ) {
1945     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1946     llvm::User *user = use->getUser();
1947 
1948     // Recognize and replace uses of bitcasts.  Most calls to
1949     // unprototyped functions will use bitcasts.
1950     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1951       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1952         replaceUsesOfNonProtoConstant(bitcast, newFn);
1953       continue;
1954     }
1955 
1956     // Recognize calls to the function.
1957     llvm::CallSite callSite(user);
1958     if (!callSite) continue;
1959     if (!callSite.isCallee(&*use)) continue;
1960 
1961     // If the return types don't match exactly, then we can't
1962     // transform this call unless it's dead.
1963     if (callSite->getType() != newRetTy && !callSite->use_empty())
1964       continue;
1965 
1966     // Get the call site's attribute list.
1967     SmallVector<llvm::AttributeSet, 8> newAttrs;
1968     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1969 
1970     // Collect any return attributes from the call.
1971     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1972       newAttrs.push_back(
1973         llvm::AttributeSet::get(newFn->getContext(),
1974                                 oldAttrs.getRetAttributes()));
1975 
1976     // If the function was passed too few arguments, don't transform.
1977     unsigned newNumArgs = newFn->arg_size();
1978     if (callSite.arg_size() < newNumArgs) continue;
1979 
1980     // If extra arguments were passed, we silently drop them.
1981     // If any of the types mismatch, we don't transform.
1982     unsigned argNo = 0;
1983     bool dontTransform = false;
1984     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1985            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1986       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1987         dontTransform = true;
1988         break;
1989       }
1990 
1991       // Add any parameter attributes.
1992       if (oldAttrs.hasAttributes(argNo + 1))
1993         newAttrs.
1994           push_back(llvm::
1995                     AttributeSet::get(newFn->getContext(),
1996                                       oldAttrs.getParamAttributes(argNo + 1)));
1997     }
1998     if (dontTransform)
1999       continue;
2000 
2001     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2002       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2003                                                  oldAttrs.getFnAttributes()));
2004 
2005     // Okay, we can transform this.  Create the new call instruction and copy
2006     // over the required information.
2007     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2008 
2009     llvm::CallSite newCall;
2010     if (callSite.isCall()) {
2011       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2012                                        callSite.getInstruction());
2013     } else {
2014       llvm::InvokeInst *oldInvoke =
2015         cast<llvm::InvokeInst>(callSite.getInstruction());
2016       newCall = llvm::InvokeInst::Create(newFn,
2017                                          oldInvoke->getNormalDest(),
2018                                          oldInvoke->getUnwindDest(),
2019                                          newArgs, "",
2020                                          callSite.getInstruction());
2021     }
2022     newArgs.clear(); // for the next iteration
2023 
2024     if (!newCall->getType()->isVoidTy())
2025       newCall->takeName(callSite.getInstruction());
2026     newCall.setAttributes(
2027                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2028     newCall.setCallingConv(callSite.getCallingConv());
2029 
2030     // Finally, remove the old call, replacing any uses with the new one.
2031     if (!callSite->use_empty())
2032       callSite->replaceAllUsesWith(newCall.getInstruction());
2033 
2034     // Copy debug location attached to CI.
2035     if (!callSite->getDebugLoc().isUnknown())
2036       newCall->setDebugLoc(callSite->getDebugLoc());
2037     callSite->eraseFromParent();
2038   }
2039 }
2040 
2041 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2042 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2043 /// existing call uses of the old function in the module, this adjusts them to
2044 /// call the new function directly.
2045 ///
2046 /// This is not just a cleanup: the always_inline pass requires direct calls to
2047 /// functions to be able to inline them.  If there is a bitcast in the way, it
2048 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2049 /// run at -O0.
2050 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2051                                                       llvm::Function *NewFn) {
2052   // If we're redefining a global as a function, don't transform it.
2053   if (!isa<llvm::Function>(Old)) return;
2054 
2055   replaceUsesOfNonProtoConstant(Old, NewFn);
2056 }
2057 
2058 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2059   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2060   // If we have a definition, this might be a deferred decl. If the
2061   // instantiation is explicit, make sure we emit it at the end.
2062   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2063     GetAddrOfGlobalVar(VD);
2064 
2065   EmitTopLevelDecl(VD);
2066 }
2067 
2068 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2069                                                  llvm::GlobalValue *GV) {
2070   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2071 
2072   // Compute the function info and LLVM type.
2073   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2074   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2075 
2076   // Get or create the prototype for the function.
2077   llvm::Constant *Entry =
2078       GV ? GV
2079          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2080 
2081   // Strip off a bitcast if we got one back.
2082   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2083     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2084     Entry = CE->getOperand(0);
2085   }
2086 
2087   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2088     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2089     return;
2090   }
2091 
2092   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2093     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2094 
2095     // If the types mismatch then we have to rewrite the definition.
2096     assert(OldFn->isDeclaration() &&
2097            "Shouldn't replace non-declaration");
2098 
2099     // F is the Function* for the one with the wrong type, we must make a new
2100     // Function* and update everything that used F (a declaration) with the new
2101     // Function* (which will be a definition).
2102     //
2103     // This happens if there is a prototype for a function
2104     // (e.g. "int f()") and then a definition of a different type
2105     // (e.g. "int f(int x)").  Move the old function aside so that it
2106     // doesn't interfere with GetAddrOfFunction.
2107     OldFn->setName(StringRef());
2108     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2109 
2110     // This might be an implementation of a function without a
2111     // prototype, in which case, try to do special replacement of
2112     // calls which match the new prototype.  The really key thing here
2113     // is that we also potentially drop arguments from the call site
2114     // so as to make a direct call, which makes the inliner happier
2115     // and suppresses a number of optimizer warnings (!) about
2116     // dropping arguments.
2117     if (!OldFn->use_empty()) {
2118       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2119       OldFn->removeDeadConstantUsers();
2120     }
2121 
2122     // Replace uses of F with the Function we will endow with a body.
2123     if (!Entry->use_empty()) {
2124       llvm::Constant *NewPtrForOldDecl =
2125         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2126       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2127     }
2128 
2129     // Ok, delete the old function now, which is dead.
2130     OldFn->eraseFromParent();
2131 
2132     Entry = NewFn;
2133   }
2134 
2135   // We need to set linkage and visibility on the function before
2136   // generating code for it because various parts of IR generation
2137   // want to propagate this information down (e.g. to local static
2138   // declarations).
2139   llvm::Function *Fn = cast<llvm::Function>(Entry);
2140   setFunctionLinkage(GD, Fn);
2141 
2142   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2143   setGlobalVisibility(Fn, D);
2144 
2145   MaybeHandleStaticInExternC(D, Fn);
2146 
2147   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2148 
2149   SetFunctionDefinitionAttributes(D, Fn);
2150   SetLLVMFunctionAttributesForDefinition(D, Fn);
2151 
2152   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2153     AddGlobalCtor(Fn, CA->getPriority());
2154   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2155     AddGlobalDtor(Fn, DA->getPriority());
2156   if (D->hasAttr<AnnotateAttr>())
2157     AddGlobalAnnotations(D, Fn);
2158 
2159   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2160   if (PGOInit)
2161     AddGlobalCtor(PGOInit, 0);
2162 }
2163 
2164 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2165   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2166   const AliasAttr *AA = D->getAttr<AliasAttr>();
2167   assert(AA && "Not an alias?");
2168 
2169   StringRef MangledName = getMangledName(GD);
2170 
2171   // If there is a definition in the module, then it wins over the alias.
2172   // This is dubious, but allow it to be safe.  Just ignore the alias.
2173   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2174   if (Entry && !Entry->isDeclaration())
2175     return;
2176 
2177   Aliases.push_back(GD);
2178 
2179   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2180 
2181   // Create a reference to the named value.  This ensures that it is emitted
2182   // if a deferred decl.
2183   llvm::Constant *Aliasee;
2184   if (isa<llvm::FunctionType>(DeclTy))
2185     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2186                                       /*ForVTable=*/false);
2187   else
2188     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2189                                     llvm::PointerType::getUnqual(DeclTy), 0);
2190 
2191   // Create the new alias itself, but don't set a name yet.
2192   llvm::GlobalValue *GA =
2193     new llvm::GlobalAlias(Aliasee->getType(),
2194                           llvm::Function::ExternalLinkage,
2195                           "", Aliasee, &getModule());
2196 
2197   if (Entry) {
2198     assert(Entry->isDeclaration());
2199 
2200     // If there is a declaration in the module, then we had an extern followed
2201     // by the alias, as in:
2202     //   extern int test6();
2203     //   ...
2204     //   int test6() __attribute__((alias("test7")));
2205     //
2206     // Remove it and replace uses of it with the alias.
2207     GA->takeName(Entry);
2208 
2209     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2210                                                           Entry->getType()));
2211     Entry->eraseFromParent();
2212   } else {
2213     GA->setName(MangledName);
2214   }
2215 
2216   // Set attributes which are particular to an alias; this is a
2217   // specialization of the attributes which may be set on a global
2218   // variable/function.
2219   if (D->hasAttr<DLLExportAttr>()) {
2220     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2221       // The dllexport attribute is ignored for undefined symbols.
2222       if (FD->hasBody())
2223         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2224     } else {
2225       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2226     }
2227   } else if (D->hasAttr<WeakAttr>() ||
2228              D->hasAttr<WeakRefAttr>() ||
2229              D->isWeakImported()) {
2230     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2231   }
2232 
2233   SetCommonAttributes(D, GA);
2234 }
2235 
2236 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2237                                             ArrayRef<llvm::Type*> Tys) {
2238   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2239                                          Tys);
2240 }
2241 
2242 static llvm::StringMapEntry<llvm::Constant*> &
2243 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2244                          const StringLiteral *Literal,
2245                          bool TargetIsLSB,
2246                          bool &IsUTF16,
2247                          unsigned &StringLength) {
2248   StringRef String = Literal->getString();
2249   unsigned NumBytes = String.size();
2250 
2251   // Check for simple case.
2252   if (!Literal->containsNonAsciiOrNull()) {
2253     StringLength = NumBytes;
2254     return Map.GetOrCreateValue(String);
2255   }
2256 
2257   // Otherwise, convert the UTF8 literals into a string of shorts.
2258   IsUTF16 = true;
2259 
2260   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2261   const UTF8 *FromPtr = (const UTF8 *)String.data();
2262   UTF16 *ToPtr = &ToBuf[0];
2263 
2264   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2265                            &ToPtr, ToPtr + NumBytes,
2266                            strictConversion);
2267 
2268   // ConvertUTF8toUTF16 returns the length in ToPtr.
2269   StringLength = ToPtr - &ToBuf[0];
2270 
2271   // Add an explicit null.
2272   *ToPtr = 0;
2273   return Map.
2274     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2275                                (StringLength + 1) * 2));
2276 }
2277 
2278 static llvm::StringMapEntry<llvm::Constant*> &
2279 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2280                        const StringLiteral *Literal,
2281                        unsigned &StringLength) {
2282   StringRef String = Literal->getString();
2283   StringLength = String.size();
2284   return Map.GetOrCreateValue(String);
2285 }
2286 
2287 llvm::Constant *
2288 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2289   unsigned StringLength = 0;
2290   bool isUTF16 = false;
2291   llvm::StringMapEntry<llvm::Constant*> &Entry =
2292     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2293                              getDataLayout().isLittleEndian(),
2294                              isUTF16, StringLength);
2295 
2296   if (llvm::Constant *C = Entry.getValue())
2297     return C;
2298 
2299   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2300   llvm::Constant *Zeros[] = { Zero, Zero };
2301   llvm::Value *V;
2302 
2303   // If we don't already have it, get __CFConstantStringClassReference.
2304   if (!CFConstantStringClassRef) {
2305     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2306     Ty = llvm::ArrayType::get(Ty, 0);
2307     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2308                                            "__CFConstantStringClassReference");
2309     // Decay array -> ptr
2310     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2311     CFConstantStringClassRef = V;
2312   }
2313   else
2314     V = CFConstantStringClassRef;
2315 
2316   QualType CFTy = getContext().getCFConstantStringType();
2317 
2318   llvm::StructType *STy =
2319     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2320 
2321   llvm::Constant *Fields[4];
2322 
2323   // Class pointer.
2324   Fields[0] = cast<llvm::ConstantExpr>(V);
2325 
2326   // Flags.
2327   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2328   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2329     llvm::ConstantInt::get(Ty, 0x07C8);
2330 
2331   // String pointer.
2332   llvm::Constant *C = 0;
2333   if (isUTF16) {
2334     ArrayRef<uint16_t> Arr =
2335       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2336                                      const_cast<char *>(Entry.getKey().data())),
2337                                    Entry.getKey().size() / 2);
2338     C = llvm::ConstantDataArray::get(VMContext, Arr);
2339   } else {
2340     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2341   }
2342 
2343   // Note: -fwritable-strings doesn't make the backing store strings of
2344   // CFStrings writable. (See <rdar://problem/10657500>)
2345   llvm::GlobalVariable *GV =
2346       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2347                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2348   GV->setUnnamedAddr(true);
2349   // Don't enforce the target's minimum global alignment, since the only use
2350   // of the string is via this class initializer.
2351   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2352   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2353   // that changes the section it ends in, which surprises ld64.
2354   if (isUTF16) {
2355     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2356     GV->setAlignment(Align.getQuantity());
2357     GV->setSection("__TEXT,__ustring");
2358   } else {
2359     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2360     GV->setAlignment(Align.getQuantity());
2361     GV->setSection("__TEXT,__cstring,cstring_literals");
2362   }
2363 
2364   // String.
2365   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2366 
2367   if (isUTF16)
2368     // Cast the UTF16 string to the correct type.
2369     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2370 
2371   // String length.
2372   Ty = getTypes().ConvertType(getContext().LongTy);
2373   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2374 
2375   // The struct.
2376   C = llvm::ConstantStruct::get(STy, Fields);
2377   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2378                                 llvm::GlobalVariable::PrivateLinkage, C,
2379                                 "_unnamed_cfstring_");
2380   GV->setSection("__DATA,__cfstring");
2381   Entry.setValue(GV);
2382 
2383   return GV;
2384 }
2385 
2386 llvm::Constant *
2387 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2388   unsigned StringLength = 0;
2389   llvm::StringMapEntry<llvm::Constant*> &Entry =
2390     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2391 
2392   if (llvm::Constant *C = Entry.getValue())
2393     return C;
2394 
2395   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2396   llvm::Constant *Zeros[] = { Zero, Zero };
2397   llvm::Value *V;
2398   // If we don't already have it, get _NSConstantStringClassReference.
2399   if (!ConstantStringClassRef) {
2400     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2401     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2402     llvm::Constant *GV;
2403     if (LangOpts.ObjCRuntime.isNonFragile()) {
2404       std::string str =
2405         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2406                             : "OBJC_CLASS_$_" + StringClass;
2407       GV = getObjCRuntime().GetClassGlobal(str);
2408       // Make sure the result is of the correct type.
2409       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2410       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2411       ConstantStringClassRef = V;
2412     } else {
2413       std::string str =
2414         StringClass.empty() ? "_NSConstantStringClassReference"
2415                             : "_" + StringClass + "ClassReference";
2416       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2417       GV = CreateRuntimeVariable(PTy, str);
2418       // Decay array -> ptr
2419       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2420       ConstantStringClassRef = V;
2421     }
2422   }
2423   else
2424     V = ConstantStringClassRef;
2425 
2426   if (!NSConstantStringType) {
2427     // Construct the type for a constant NSString.
2428     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2429     D->startDefinition();
2430 
2431     QualType FieldTypes[3];
2432 
2433     // const int *isa;
2434     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2435     // const char *str;
2436     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2437     // unsigned int length;
2438     FieldTypes[2] = Context.UnsignedIntTy;
2439 
2440     // Create fields
2441     for (unsigned i = 0; i < 3; ++i) {
2442       FieldDecl *Field = FieldDecl::Create(Context, D,
2443                                            SourceLocation(),
2444                                            SourceLocation(), 0,
2445                                            FieldTypes[i], /*TInfo=*/0,
2446                                            /*BitWidth=*/0,
2447                                            /*Mutable=*/false,
2448                                            ICIS_NoInit);
2449       Field->setAccess(AS_public);
2450       D->addDecl(Field);
2451     }
2452 
2453     D->completeDefinition();
2454     QualType NSTy = Context.getTagDeclType(D);
2455     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2456   }
2457 
2458   llvm::Constant *Fields[3];
2459 
2460   // Class pointer.
2461   Fields[0] = cast<llvm::ConstantExpr>(V);
2462 
2463   // String pointer.
2464   llvm::Constant *C =
2465     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2466 
2467   llvm::GlobalValue::LinkageTypes Linkage;
2468   bool isConstant;
2469   Linkage = llvm::GlobalValue::PrivateLinkage;
2470   isConstant = !LangOpts.WritableStrings;
2471 
2472   llvm::GlobalVariable *GV =
2473   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2474                            ".str");
2475   GV->setUnnamedAddr(true);
2476   // Don't enforce the target's minimum global alignment, since the only use
2477   // of the string is via this class initializer.
2478   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2479   GV->setAlignment(Align.getQuantity());
2480   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2481 
2482   // String length.
2483   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2484   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2485 
2486   // The struct.
2487   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2488   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2489                                 llvm::GlobalVariable::PrivateLinkage, C,
2490                                 "_unnamed_nsstring_");
2491   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2492   const char *NSStringNonFragileABISection =
2493       "__DATA,__objc_stringobj,regular,no_dead_strip";
2494   // FIXME. Fix section.
2495   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2496                      ? NSStringNonFragileABISection
2497                      : NSStringSection);
2498   Entry.setValue(GV);
2499 
2500   return GV;
2501 }
2502 
2503 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2504   if (ObjCFastEnumerationStateType.isNull()) {
2505     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2506     D->startDefinition();
2507 
2508     QualType FieldTypes[] = {
2509       Context.UnsignedLongTy,
2510       Context.getPointerType(Context.getObjCIdType()),
2511       Context.getPointerType(Context.UnsignedLongTy),
2512       Context.getConstantArrayType(Context.UnsignedLongTy,
2513                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2514     };
2515 
2516     for (size_t i = 0; i < 4; ++i) {
2517       FieldDecl *Field = FieldDecl::Create(Context,
2518                                            D,
2519                                            SourceLocation(),
2520                                            SourceLocation(), 0,
2521                                            FieldTypes[i], /*TInfo=*/0,
2522                                            /*BitWidth=*/0,
2523                                            /*Mutable=*/false,
2524                                            ICIS_NoInit);
2525       Field->setAccess(AS_public);
2526       D->addDecl(Field);
2527     }
2528 
2529     D->completeDefinition();
2530     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2531   }
2532 
2533   return ObjCFastEnumerationStateType;
2534 }
2535 
2536 llvm::Constant *
2537 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2538   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2539 
2540   // Don't emit it as the address of the string, emit the string data itself
2541   // as an inline array.
2542   if (E->getCharByteWidth() == 1) {
2543     SmallString<64> Str(E->getString());
2544 
2545     // Resize the string to the right size, which is indicated by its type.
2546     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2547     Str.resize(CAT->getSize().getZExtValue());
2548     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2549   }
2550 
2551   llvm::ArrayType *AType =
2552     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2553   llvm::Type *ElemTy = AType->getElementType();
2554   unsigned NumElements = AType->getNumElements();
2555 
2556   // Wide strings have either 2-byte or 4-byte elements.
2557   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2558     SmallVector<uint16_t, 32> Elements;
2559     Elements.reserve(NumElements);
2560 
2561     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2562       Elements.push_back(E->getCodeUnit(i));
2563     Elements.resize(NumElements);
2564     return llvm::ConstantDataArray::get(VMContext, Elements);
2565   }
2566 
2567   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2568   SmallVector<uint32_t, 32> Elements;
2569   Elements.reserve(NumElements);
2570 
2571   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2572     Elements.push_back(E->getCodeUnit(i));
2573   Elements.resize(NumElements);
2574   return llvm::ConstantDataArray::get(VMContext, Elements);
2575 }
2576 
2577 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2578 /// constant array for the given string literal.
2579 llvm::Constant *
2580 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2581   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2582   if (S->isAscii() || S->isUTF8()) {
2583     SmallString<64> Str(S->getString());
2584 
2585     // Resize the string to the right size, which is indicated by its type.
2586     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2587     Str.resize(CAT->getSize().getZExtValue());
2588     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2589   }
2590 
2591   // FIXME: the following does not memoize wide strings.
2592   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2593   llvm::GlobalVariable *GV =
2594     new llvm::GlobalVariable(getModule(),C->getType(),
2595                              !LangOpts.WritableStrings,
2596                              llvm::GlobalValue::PrivateLinkage,
2597                              C,".str");
2598 
2599   GV->setAlignment(Align.getQuantity());
2600   GV->setUnnamedAddr(true);
2601   return GV;
2602 }
2603 
2604 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2605 /// array for the given ObjCEncodeExpr node.
2606 llvm::Constant *
2607 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2608   std::string Str;
2609   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2610 
2611   return GetAddrOfConstantCString(Str);
2612 }
2613 
2614 
2615 /// GenerateWritableString -- Creates storage for a string literal.
2616 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2617                                              bool constant,
2618                                              CodeGenModule &CGM,
2619                                              const char *GlobalName,
2620                                              unsigned Alignment) {
2621   // Create Constant for this string literal. Don't add a '\0'.
2622   llvm::Constant *C =
2623       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2624 
2625   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2626   unsigned AddrSpace = 0;
2627   if (CGM.getLangOpts().OpenCL)
2628     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2629 
2630   // Create a global variable for this string
2631   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2632       CGM.getModule(), C->getType(), constant,
2633       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2634       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2635   GV->setAlignment(Alignment);
2636   GV->setUnnamedAddr(true);
2637   return GV;
2638 }
2639 
2640 /// GetAddrOfConstantString - Returns a pointer to a character array
2641 /// containing the literal. This contents are exactly that of the
2642 /// given string, i.e. it will not be null terminated automatically;
2643 /// see GetAddrOfConstantCString. Note that whether the result is
2644 /// actually a pointer to an LLVM constant depends on
2645 /// Feature.WriteableStrings.
2646 ///
2647 /// The result has pointer to array type.
2648 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2649                                                        const char *GlobalName,
2650                                                        unsigned Alignment) {
2651   // Get the default prefix if a name wasn't specified.
2652   if (!GlobalName)
2653     GlobalName = ".str";
2654 
2655   if (Alignment == 0)
2656     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2657       .getQuantity();
2658 
2659   // Don't share any string literals if strings aren't constant.
2660   if (LangOpts.WritableStrings)
2661     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2662 
2663   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2664     ConstantStringMap.GetOrCreateValue(Str);
2665 
2666   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2667     if (Alignment > GV->getAlignment()) {
2668       GV->setAlignment(Alignment);
2669     }
2670     return GV;
2671   }
2672 
2673   // Create a global variable for this.
2674   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2675                                                    Alignment);
2676   Entry.setValue(GV);
2677   return GV;
2678 }
2679 
2680 /// GetAddrOfConstantCString - Returns a pointer to a character
2681 /// array containing the literal and a terminating '\0'
2682 /// character. The result has pointer to array type.
2683 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2684                                                         const char *GlobalName,
2685                                                         unsigned Alignment) {
2686   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2687   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2688 }
2689 
2690 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2691     const MaterializeTemporaryExpr *E, const Expr *Init) {
2692   assert((E->getStorageDuration() == SD_Static ||
2693           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2694   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2695 
2696   // If we're not materializing a subobject of the temporary, keep the
2697   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2698   QualType MaterializedType = Init->getType();
2699   if (Init == E->GetTemporaryExpr())
2700     MaterializedType = E->getType();
2701 
2702   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2703   if (Slot)
2704     return Slot;
2705 
2706   // FIXME: If an externally-visible declaration extends multiple temporaries,
2707   // we need to give each temporary the same name in every translation unit (and
2708   // we also need to make the temporaries externally-visible).
2709   SmallString<256> Name;
2710   llvm::raw_svector_ostream Out(Name);
2711   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2712   Out.flush();
2713 
2714   APValue *Value = 0;
2715   if (E->getStorageDuration() == SD_Static) {
2716     // We might have a cached constant initializer for this temporary. Note
2717     // that this might have a different value from the value computed by
2718     // evaluating the initializer if the surrounding constant expression
2719     // modifies the temporary.
2720     Value = getContext().getMaterializedTemporaryValue(E, false);
2721     if (Value && Value->isUninit())
2722       Value = 0;
2723   }
2724 
2725   // Try evaluating it now, it might have a constant initializer.
2726   Expr::EvalResult EvalResult;
2727   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2728       !EvalResult.hasSideEffects())
2729     Value = &EvalResult.Val;
2730 
2731   llvm::Constant *InitialValue = 0;
2732   bool Constant = false;
2733   llvm::Type *Type;
2734   if (Value) {
2735     // The temporary has a constant initializer, use it.
2736     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2737     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2738     Type = InitialValue->getType();
2739   } else {
2740     // No initializer, the initialization will be provided when we
2741     // initialize the declaration which performed lifetime extension.
2742     Type = getTypes().ConvertTypeForMem(MaterializedType);
2743   }
2744 
2745   // Create a global variable for this lifetime-extended temporary.
2746   llvm::GlobalVariable *GV =
2747     new llvm::GlobalVariable(getModule(), Type, Constant,
2748                              llvm::GlobalValue::PrivateLinkage,
2749                              InitialValue, Name.c_str());
2750   GV->setAlignment(
2751       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2752   if (VD->getTLSKind())
2753     setTLSMode(GV, *VD);
2754   Slot = GV;
2755   return GV;
2756 }
2757 
2758 /// EmitObjCPropertyImplementations - Emit information for synthesized
2759 /// properties for an implementation.
2760 void CodeGenModule::EmitObjCPropertyImplementations(const
2761                                                     ObjCImplementationDecl *D) {
2762   for (ObjCImplementationDecl::propimpl_iterator
2763          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2764     ObjCPropertyImplDecl *PID = *i;
2765 
2766     // Dynamic is just for type-checking.
2767     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2768       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2769 
2770       // Determine which methods need to be implemented, some may have
2771       // been overridden. Note that ::isPropertyAccessor is not the method
2772       // we want, that just indicates if the decl came from a
2773       // property. What we want to know is if the method is defined in
2774       // this implementation.
2775       if (!D->getInstanceMethod(PD->getGetterName()))
2776         CodeGenFunction(*this).GenerateObjCGetter(
2777                                  const_cast<ObjCImplementationDecl *>(D), PID);
2778       if (!PD->isReadOnly() &&
2779           !D->getInstanceMethod(PD->getSetterName()))
2780         CodeGenFunction(*this).GenerateObjCSetter(
2781                                  const_cast<ObjCImplementationDecl *>(D), PID);
2782     }
2783   }
2784 }
2785 
2786 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2787   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2788   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2789        ivar; ivar = ivar->getNextIvar())
2790     if (ivar->getType().isDestructedType())
2791       return true;
2792 
2793   return false;
2794 }
2795 
2796 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2797 /// for an implementation.
2798 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2799   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2800   if (needsDestructMethod(D)) {
2801     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2802     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2803     ObjCMethodDecl *DTORMethod =
2804       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2805                              cxxSelector, getContext().VoidTy, 0, D,
2806                              /*isInstance=*/true, /*isVariadic=*/false,
2807                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2808                              /*isDefined=*/false, ObjCMethodDecl::Required);
2809     D->addInstanceMethod(DTORMethod);
2810     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2811     D->setHasDestructors(true);
2812   }
2813 
2814   // If the implementation doesn't have any ivar initializers, we don't need
2815   // a .cxx_construct.
2816   if (D->getNumIvarInitializers() == 0)
2817     return;
2818 
2819   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2820   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2821   // The constructor returns 'self'.
2822   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2823                                                 D->getLocation(),
2824                                                 D->getLocation(),
2825                                                 cxxSelector,
2826                                                 getContext().getObjCIdType(), 0,
2827                                                 D, /*isInstance=*/true,
2828                                                 /*isVariadic=*/false,
2829                                                 /*isPropertyAccessor=*/true,
2830                                                 /*isImplicitlyDeclared=*/true,
2831                                                 /*isDefined=*/false,
2832                                                 ObjCMethodDecl::Required);
2833   D->addInstanceMethod(CTORMethod);
2834   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2835   D->setHasNonZeroConstructors(true);
2836 }
2837 
2838 /// EmitNamespace - Emit all declarations in a namespace.
2839 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2840   for (auto *I : ND->decls()) {
2841     if (const auto *VD = dyn_cast<VarDecl>(I))
2842       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2843           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2844         continue;
2845     EmitTopLevelDecl(I);
2846   }
2847 }
2848 
2849 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2850 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2851   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2852       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2853     ErrorUnsupported(LSD, "linkage spec");
2854     return;
2855   }
2856 
2857   for (auto *I : LSD->decls()) {
2858     // Meta-data for ObjC class includes references to implemented methods.
2859     // Generate class's method definitions first.
2860     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2861       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2862            MEnd = OID->meth_end();
2863            M != MEnd; ++M)
2864         EmitTopLevelDecl(*M);
2865     }
2866     EmitTopLevelDecl(I);
2867   }
2868 }
2869 
2870 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2871 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2872   // Ignore dependent declarations.
2873   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2874     return;
2875 
2876   switch (D->getKind()) {
2877   case Decl::CXXConversion:
2878   case Decl::CXXMethod:
2879   case Decl::Function:
2880     // Skip function templates
2881     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2882         cast<FunctionDecl>(D)->isLateTemplateParsed())
2883       return;
2884 
2885     EmitGlobal(cast<FunctionDecl>(D));
2886     break;
2887 
2888   case Decl::Var:
2889     // Skip variable templates
2890     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2891       return;
2892   case Decl::VarTemplateSpecialization:
2893     EmitGlobal(cast<VarDecl>(D));
2894     break;
2895 
2896   // Indirect fields from global anonymous structs and unions can be
2897   // ignored; only the actual variable requires IR gen support.
2898   case Decl::IndirectField:
2899     break;
2900 
2901   // C++ Decls
2902   case Decl::Namespace:
2903     EmitNamespace(cast<NamespaceDecl>(D));
2904     break;
2905     // No code generation needed.
2906   case Decl::UsingShadow:
2907   case Decl::ClassTemplate:
2908   case Decl::VarTemplate:
2909   case Decl::VarTemplatePartialSpecialization:
2910   case Decl::FunctionTemplate:
2911   case Decl::TypeAliasTemplate:
2912   case Decl::Block:
2913   case Decl::Empty:
2914     break;
2915   case Decl::Using:          // using X; [C++]
2916     if (CGDebugInfo *DI = getModuleDebugInfo())
2917         DI->EmitUsingDecl(cast<UsingDecl>(*D));
2918     return;
2919   case Decl::NamespaceAlias:
2920     if (CGDebugInfo *DI = getModuleDebugInfo())
2921         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2922     return;
2923   case Decl::UsingDirective: // using namespace X; [C++]
2924     if (CGDebugInfo *DI = getModuleDebugInfo())
2925       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2926     return;
2927   case Decl::CXXConstructor:
2928     // Skip function templates
2929     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2930         cast<FunctionDecl>(D)->isLateTemplateParsed())
2931       return;
2932 
2933     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2934     break;
2935   case Decl::CXXDestructor:
2936     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2937       return;
2938     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2939     break;
2940 
2941   case Decl::StaticAssert:
2942     // Nothing to do.
2943     break;
2944 
2945   // Objective-C Decls
2946 
2947   // Forward declarations, no (immediate) code generation.
2948   case Decl::ObjCInterface:
2949   case Decl::ObjCCategory:
2950     break;
2951 
2952   case Decl::ObjCProtocol: {
2953     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2954     if (Proto->isThisDeclarationADefinition())
2955       ObjCRuntime->GenerateProtocol(Proto);
2956     break;
2957   }
2958 
2959   case Decl::ObjCCategoryImpl:
2960     // Categories have properties but don't support synthesize so we
2961     // can ignore them here.
2962     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2963     break;
2964 
2965   case Decl::ObjCImplementation: {
2966     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2967     EmitObjCPropertyImplementations(OMD);
2968     EmitObjCIvarInitializations(OMD);
2969     ObjCRuntime->GenerateClass(OMD);
2970     // Emit global variable debug information.
2971     if (CGDebugInfo *DI = getModuleDebugInfo())
2972       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2973         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2974             OMD->getClassInterface()), OMD->getLocation());
2975     break;
2976   }
2977   case Decl::ObjCMethod: {
2978     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2979     // If this is not a prototype, emit the body.
2980     if (OMD->getBody())
2981       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2982     break;
2983   }
2984   case Decl::ObjCCompatibleAlias:
2985     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2986     break;
2987 
2988   case Decl::LinkageSpec:
2989     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2990     break;
2991 
2992   case Decl::FileScopeAsm: {
2993     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2994     StringRef AsmString = AD->getAsmString()->getString();
2995 
2996     const std::string &S = getModule().getModuleInlineAsm();
2997     if (S.empty())
2998       getModule().setModuleInlineAsm(AsmString);
2999     else if (S.end()[-1] == '\n')
3000       getModule().setModuleInlineAsm(S + AsmString.str());
3001     else
3002       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3003     break;
3004   }
3005 
3006   case Decl::Import: {
3007     ImportDecl *Import = cast<ImportDecl>(D);
3008 
3009     // Ignore import declarations that come from imported modules.
3010     if (clang::Module *Owner = Import->getOwningModule()) {
3011       if (getLangOpts().CurrentModule.empty() ||
3012           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3013         break;
3014     }
3015 
3016     ImportedModules.insert(Import->getImportedModule());
3017     break;
3018   }
3019 
3020   case Decl::ClassTemplateSpecialization: {
3021     const ClassTemplateSpecializationDecl *Spec =
3022         cast<ClassTemplateSpecializationDecl>(D);
3023     if (DebugInfo &&
3024         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3025       DebugInfo->completeTemplateDefinition(*Spec);
3026   }
3027 
3028   default:
3029     // Make sure we handled everything we should, every other kind is a
3030     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3031     // function. Need to recode Decl::Kind to do that easily.
3032     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3033   }
3034 }
3035 
3036 /// Turns the given pointer into a constant.
3037 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3038                                           const void *Ptr) {
3039   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3040   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3041   return llvm::ConstantInt::get(i64, PtrInt);
3042 }
3043 
3044 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3045                                    llvm::NamedMDNode *&GlobalMetadata,
3046                                    GlobalDecl D,
3047                                    llvm::GlobalValue *Addr) {
3048   if (!GlobalMetadata)
3049     GlobalMetadata =
3050       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3051 
3052   // TODO: should we report variant information for ctors/dtors?
3053   llvm::Value *Ops[] = {
3054     Addr,
3055     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3056   };
3057   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3058 }
3059 
3060 /// For each function which is declared within an extern "C" region and marked
3061 /// as 'used', but has internal linkage, create an alias from the unmangled
3062 /// name to the mangled name if possible. People expect to be able to refer
3063 /// to such functions with an unmangled name from inline assembly within the
3064 /// same translation unit.
3065 void CodeGenModule::EmitStaticExternCAliases() {
3066   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3067                                   E = StaticExternCValues.end();
3068        I != E; ++I) {
3069     IdentifierInfo *Name = I->first;
3070     llvm::GlobalValue *Val = I->second;
3071     if (Val && !getModule().getNamedValue(Name->getName()))
3072       addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3073                                           Name->getName(), Val, &getModule()));
3074   }
3075 }
3076 
3077 /// Emits metadata nodes associating all the global values in the
3078 /// current module with the Decls they came from.  This is useful for
3079 /// projects using IR gen as a subroutine.
3080 ///
3081 /// Since there's currently no way to associate an MDNode directly
3082 /// with an llvm::GlobalValue, we create a global named metadata
3083 /// with the name 'clang.global.decl.ptrs'.
3084 void CodeGenModule::EmitDeclMetadata() {
3085   llvm::NamedMDNode *GlobalMetadata = 0;
3086 
3087   // StaticLocalDeclMap
3088   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3089          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3090        I != E; ++I) {
3091     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3092     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3093   }
3094 }
3095 
3096 /// Emits metadata nodes for all the local variables in the current
3097 /// function.
3098 void CodeGenFunction::EmitDeclMetadata() {
3099   if (LocalDeclMap.empty()) return;
3100 
3101   llvm::LLVMContext &Context = getLLVMContext();
3102 
3103   // Find the unique metadata ID for this name.
3104   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3105 
3106   llvm::NamedMDNode *GlobalMetadata = 0;
3107 
3108   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3109          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3110     const Decl *D = I->first;
3111     llvm::Value *Addr = I->second;
3112 
3113     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3114       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3115       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3116     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3117       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3118       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3119     }
3120   }
3121 }
3122 
3123 void CodeGenModule::EmitVersionIdentMetadata() {
3124   llvm::NamedMDNode *IdentMetadata =
3125     TheModule.getOrInsertNamedMetadata("llvm.ident");
3126   std::string Version = getClangFullVersion();
3127   llvm::LLVMContext &Ctx = TheModule.getContext();
3128 
3129   llvm::Value *IdentNode[] = {
3130     llvm::MDString::get(Ctx, Version)
3131   };
3132   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3133 }
3134 
3135 void CodeGenModule::EmitCoverageFile() {
3136   if (!getCodeGenOpts().CoverageFile.empty()) {
3137     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3138       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3139       llvm::LLVMContext &Ctx = TheModule.getContext();
3140       llvm::MDString *CoverageFile =
3141           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3142       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3143         llvm::MDNode *CU = CUNode->getOperand(i);
3144         llvm::Value *node[] = { CoverageFile, CU };
3145         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3146         GCov->addOperand(N);
3147       }
3148     }
3149   }
3150 }
3151 
3152 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3153                                                      QualType GuidType) {
3154   // Sema has checked that all uuid strings are of the form
3155   // "12345678-1234-1234-1234-1234567890ab".
3156   assert(Uuid.size() == 36);
3157   for (unsigned i = 0; i < 36; ++i) {
3158     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3159     else                                         assert(isHexDigit(Uuid[i]));
3160   }
3161 
3162   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3163 
3164   llvm::Constant *Field3[8];
3165   for (unsigned Idx = 0; Idx < 8; ++Idx)
3166     Field3[Idx] = llvm::ConstantInt::get(
3167         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3168 
3169   llvm::Constant *Fields[4] = {
3170     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3171     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3172     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3173     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3174   };
3175 
3176   return llvm::ConstantStruct::getAnon(Fields);
3177 }
3178