1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/Basic/Diagnostic.h" 33 #include "clang/Basic/SourceManager.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "clang/Basic/ConvertUTF.h" 36 #include "llvm/CallingConv.h" 37 #include "llvm/Module.h" 38 #include "llvm/Intrinsics.h" 39 #include "llvm/LLVMContext.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/Target/Mangler.h" 42 #include "llvm/Target/TargetData.h" 43 #include "llvm/Support/CallSite.h" 44 #include "llvm/Support/ErrorHandling.h" 45 using namespace clang; 46 using namespace CodeGen; 47 48 static const char AnnotationSection[] = "llvm.metadata"; 49 50 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 51 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 52 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 53 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 54 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 55 } 56 57 llvm_unreachable("invalid C++ ABI kind"); 58 return *CreateItaniumCXXABI(CGM); 59 } 60 61 62 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 63 llvm::Module &M, const llvm::TargetData &TD, 64 DiagnosticsEngine &diags) 65 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 66 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 67 ABI(createCXXABI(*this)), 68 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 69 TBAA(0), 70 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 71 DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0), 72 ConstantStringClassRef(0), NSConstantStringType(0), 73 VMContext(M.getContext()), 74 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 75 BlockObjectAssign(0), BlockObjectDispose(0), 76 BlockDescriptorType(0), GenericBlockLiteralType(0) { 77 if (Features.ObjC1) 78 createObjCRuntime(); 79 if (Features.OpenCL) 80 createOpenCLRuntime(); 81 if (Features.CUDA) 82 createCUDARuntime(); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info or coverage generation is enabled, create the CGDebugInfo 90 // object. 91 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 92 CodeGenOpts.EmitGcovNotes) 93 DebugInfo = new CGDebugInfo(*this); 94 95 Block.GlobalUniqueCount = 0; 96 97 if (C.getLangOptions().ObjCAutoRefCount) 98 ARCData = new ARCEntrypoints(); 99 RRData = new RREntrypoints(); 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 106 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 107 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 108 PointerAlignInBytes = 109 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 110 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 111 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 } 115 116 CodeGenModule::~CodeGenModule() { 117 delete ObjCRuntime; 118 delete OpenCLRuntime; 119 delete CUDARuntime; 120 delete &ABI; 121 delete TBAA; 122 delete DebugInfo; 123 delete ARCData; 124 delete RRData; 125 } 126 127 void CodeGenModule::createObjCRuntime() { 128 if (!Features.NeXTRuntime) 129 ObjCRuntime = CreateGNUObjCRuntime(*this); 130 else 131 ObjCRuntime = CreateMacObjCRuntime(*this); 132 } 133 134 void CodeGenModule::createOpenCLRuntime() { 135 OpenCLRuntime = new CGOpenCLRuntime(*this); 136 } 137 138 void CodeGenModule::createCUDARuntime() { 139 CUDARuntime = CreateNVCUDARuntime(*this); 140 } 141 142 void CodeGenModule::Release() { 143 EmitDeferred(); 144 EmitCXXGlobalInitFunc(); 145 EmitCXXGlobalDtorFunc(); 146 if (ObjCRuntime) 147 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 148 AddGlobalCtor(ObjCInitFunction); 149 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 150 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 151 EmitGlobalAnnotations(); 152 EmitLLVMUsed(); 153 154 SimplifyPersonality(); 155 156 if (getCodeGenOpts().EmitDeclMetadata) 157 EmitDeclMetadata(); 158 159 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 160 EmitCoverageFile(); 161 162 if (DebugInfo) 163 DebugInfo->finalize(); 164 } 165 166 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 167 // Make sure that this type is translated. 168 Types.UpdateCompletedType(TD); 169 if (DebugInfo) 170 DebugInfo->UpdateCompletedType(TD); 171 } 172 173 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 174 if (!TBAA) 175 return 0; 176 return TBAA->getTBAAInfo(QTy); 177 } 178 179 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 180 llvm::MDNode *TBAAInfo) { 181 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 182 } 183 184 bool CodeGenModule::isTargetDarwin() const { 185 return getContext().getTargetInfo().getTriple().isOSDarwin(); 186 } 187 188 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 189 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 190 getDiags().Report(Context.getFullLoc(loc), diagID); 191 } 192 193 /// ErrorUnsupported - Print out an error that codegen doesn't support the 194 /// specified stmt yet. 195 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 196 bool OmitOnError) { 197 if (OmitOnError && getDiags().hasErrorOccurred()) 198 return; 199 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 200 "cannot compile this %0 yet"); 201 std::string Msg = Type; 202 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 203 << Msg << S->getSourceRange(); 204 } 205 206 /// ErrorUnsupported - Print out an error that codegen doesn't support the 207 /// specified decl yet. 208 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 209 bool OmitOnError) { 210 if (OmitOnError && getDiags().hasErrorOccurred()) 211 return; 212 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 213 "cannot compile this %0 yet"); 214 std::string Msg = Type; 215 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 216 } 217 218 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 219 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 220 } 221 222 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 223 const NamedDecl *D) const { 224 // Internal definitions always have default visibility. 225 if (GV->hasLocalLinkage()) { 226 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 227 return; 228 } 229 230 // Set visibility for definitions. 231 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 232 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 233 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 234 } 235 236 /// Set the symbol visibility of type information (vtable and RTTI) 237 /// associated with the given type. 238 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 239 const CXXRecordDecl *RD, 240 TypeVisibilityKind TVK) const { 241 setGlobalVisibility(GV, RD); 242 243 if (!CodeGenOpts.HiddenWeakVTables) 244 return; 245 246 // We never want to drop the visibility for RTTI names. 247 if (TVK == TVK_ForRTTIName) 248 return; 249 250 // We want to drop the visibility to hidden for weak type symbols. 251 // This isn't possible if there might be unresolved references 252 // elsewhere that rely on this symbol being visible. 253 254 // This should be kept roughly in sync with setThunkVisibility 255 // in CGVTables.cpp. 256 257 // Preconditions. 258 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 259 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 260 return; 261 262 // Don't override an explicit visibility attribute. 263 if (RD->getExplicitVisibility()) 264 return; 265 266 switch (RD->getTemplateSpecializationKind()) { 267 // We have to disable the optimization if this is an EI definition 268 // because there might be EI declarations in other shared objects. 269 case TSK_ExplicitInstantiationDefinition: 270 case TSK_ExplicitInstantiationDeclaration: 271 return; 272 273 // Every use of a non-template class's type information has to emit it. 274 case TSK_Undeclared: 275 break; 276 277 // In theory, implicit instantiations can ignore the possibility of 278 // an explicit instantiation declaration because there necessarily 279 // must be an EI definition somewhere with default visibility. In 280 // practice, it's possible to have an explicit instantiation for 281 // an arbitrary template class, and linkers aren't necessarily able 282 // to deal with mixed-visibility symbols. 283 case TSK_ExplicitSpecialization: 284 case TSK_ImplicitInstantiation: 285 if (!CodeGenOpts.HiddenWeakTemplateVTables) 286 return; 287 break; 288 } 289 290 // If there's a key function, there may be translation units 291 // that don't have the key function's definition. But ignore 292 // this if we're emitting RTTI under -fno-rtti. 293 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 294 if (Context.getKeyFunction(RD)) 295 return; 296 } 297 298 // Otherwise, drop the visibility to hidden. 299 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 300 GV->setUnnamedAddr(true); 301 } 302 303 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 304 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 305 306 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 307 if (!Str.empty()) 308 return Str; 309 310 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 311 IdentifierInfo *II = ND->getIdentifier(); 312 assert(II && "Attempt to mangle unnamed decl."); 313 314 Str = II->getName(); 315 return Str; 316 } 317 318 llvm::SmallString<256> Buffer; 319 llvm::raw_svector_ostream Out(Buffer); 320 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 321 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 322 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 323 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 324 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 325 getCXXABI().getMangleContext().mangleBlock(BD, Out); 326 else 327 getCXXABI().getMangleContext().mangleName(ND, Out); 328 329 // Allocate space for the mangled name. 330 Out.flush(); 331 size_t Length = Buffer.size(); 332 char *Name = MangledNamesAllocator.Allocate<char>(Length); 333 std::copy(Buffer.begin(), Buffer.end(), Name); 334 335 Str = StringRef(Name, Length); 336 337 return Str; 338 } 339 340 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 341 const BlockDecl *BD) { 342 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 343 const Decl *D = GD.getDecl(); 344 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 345 if (D == 0) 346 MangleCtx.mangleGlobalBlock(BD, Out); 347 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 348 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 349 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 350 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 351 else 352 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 353 } 354 355 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 356 return getModule().getNamedValue(Name); 357 } 358 359 /// AddGlobalCtor - Add a function to the list that will be called before 360 /// main() runs. 361 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 362 // FIXME: Type coercion of void()* types. 363 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 364 } 365 366 /// AddGlobalDtor - Add a function to the list that will be called 367 /// when the module is unloaded. 368 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 369 // FIXME: Type coercion of void()* types. 370 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 371 } 372 373 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 374 // Ctor function type is void()*. 375 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 376 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 377 378 // Get the type of a ctor entry, { i32, void ()* }. 379 llvm::StructType *CtorStructTy = 380 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 381 llvm::PointerType::getUnqual(CtorFTy), NULL); 382 383 // Construct the constructor and destructor arrays. 384 std::vector<llvm::Constant*> Ctors; 385 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 386 std::vector<llvm::Constant*> S; 387 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 388 I->second, false)); 389 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 390 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 391 } 392 393 if (!Ctors.empty()) { 394 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 395 new llvm::GlobalVariable(TheModule, AT, false, 396 llvm::GlobalValue::AppendingLinkage, 397 llvm::ConstantArray::get(AT, Ctors), 398 GlobalName); 399 } 400 } 401 402 llvm::GlobalValue::LinkageTypes 403 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 404 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 405 406 if (Linkage == GVA_Internal) 407 return llvm::Function::InternalLinkage; 408 409 if (D->hasAttr<DLLExportAttr>()) 410 return llvm::Function::DLLExportLinkage; 411 412 if (D->hasAttr<WeakAttr>()) 413 return llvm::Function::WeakAnyLinkage; 414 415 // In C99 mode, 'inline' functions are guaranteed to have a strong 416 // definition somewhere else, so we can use available_externally linkage. 417 if (Linkage == GVA_C99Inline) 418 return llvm::Function::AvailableExternallyLinkage; 419 420 // Note that Apple's kernel linker doesn't support symbol 421 // coalescing, so we need to avoid linkonce and weak linkages there. 422 // Normally, this means we just map to internal, but for explicit 423 // instantiations we'll map to external. 424 425 // In C++, the compiler has to emit a definition in every translation unit 426 // that references the function. We should use linkonce_odr because 427 // a) if all references in this translation unit are optimized away, we 428 // don't need to codegen it. b) if the function persists, it needs to be 429 // merged with other definitions. c) C++ has the ODR, so we know the 430 // definition is dependable. 431 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 432 return !Context.getLangOptions().AppleKext 433 ? llvm::Function::LinkOnceODRLinkage 434 : llvm::Function::InternalLinkage; 435 436 // An explicit instantiation of a template has weak linkage, since 437 // explicit instantiations can occur in multiple translation units 438 // and must all be equivalent. However, we are not allowed to 439 // throw away these explicit instantiations. 440 if (Linkage == GVA_ExplicitTemplateInstantiation) 441 return !Context.getLangOptions().AppleKext 442 ? llvm::Function::WeakODRLinkage 443 : llvm::Function::ExternalLinkage; 444 445 // Otherwise, we have strong external linkage. 446 assert(Linkage == GVA_StrongExternal); 447 return llvm::Function::ExternalLinkage; 448 } 449 450 451 /// SetFunctionDefinitionAttributes - Set attributes for a global. 452 /// 453 /// FIXME: This is currently only done for aliases and functions, but not for 454 /// variables (these details are set in EmitGlobalVarDefinition for variables). 455 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 456 llvm::GlobalValue *GV) { 457 SetCommonAttributes(D, GV); 458 } 459 460 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 461 const CGFunctionInfo &Info, 462 llvm::Function *F) { 463 unsigned CallingConv; 464 AttributeListType AttributeList; 465 ConstructAttributeList(Info, D, AttributeList, CallingConv); 466 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 467 AttributeList.size())); 468 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 469 } 470 471 /// Determines whether the language options require us to model 472 /// unwind exceptions. We treat -fexceptions as mandating this 473 /// except under the fragile ObjC ABI with only ObjC exceptions 474 /// enabled. This means, for example, that C with -fexceptions 475 /// enables this. 476 static bool hasUnwindExceptions(const LangOptions &Features) { 477 // If exceptions are completely disabled, obviously this is false. 478 if (!Features.Exceptions) return false; 479 480 // If C++ exceptions are enabled, this is true. 481 if (Features.CXXExceptions) return true; 482 483 // If ObjC exceptions are enabled, this depends on the ABI. 484 if (Features.ObjCExceptions) { 485 if (!Features.ObjCNonFragileABI) return false; 486 } 487 488 return true; 489 } 490 491 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 492 llvm::Function *F) { 493 if (CodeGenOpts.UnwindTables) 494 F->setHasUWTable(); 495 496 if (!hasUnwindExceptions(Features)) 497 F->addFnAttr(llvm::Attribute::NoUnwind); 498 499 if (D->hasAttr<NakedAttr>()) { 500 // Naked implies noinline: we should not be inlining such functions. 501 F->addFnAttr(llvm::Attribute::Naked); 502 F->addFnAttr(llvm::Attribute::NoInline); 503 } 504 505 if (D->hasAttr<NoInlineAttr>()) 506 F->addFnAttr(llvm::Attribute::NoInline); 507 508 // (noinline wins over always_inline, and we can't specify both in IR) 509 if (D->hasAttr<AlwaysInlineAttr>() && 510 !F->hasFnAttr(llvm::Attribute::NoInline)) 511 F->addFnAttr(llvm::Attribute::AlwaysInline); 512 513 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 514 F->setUnnamedAddr(true); 515 516 if (Features.getStackProtector() == LangOptions::SSPOn) 517 F->addFnAttr(llvm::Attribute::StackProtect); 518 else if (Features.getStackProtector() == LangOptions::SSPReq) 519 F->addFnAttr(llvm::Attribute::StackProtectReq); 520 521 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 522 if (alignment) 523 F->setAlignment(alignment); 524 525 // C++ ABI requires 2-byte alignment for member functions. 526 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 527 F->setAlignment(2); 528 } 529 530 void CodeGenModule::SetCommonAttributes(const Decl *D, 531 llvm::GlobalValue *GV) { 532 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 533 setGlobalVisibility(GV, ND); 534 else 535 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 536 537 if (D->hasAttr<UsedAttr>()) 538 AddUsedGlobal(GV); 539 540 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 541 GV->setSection(SA->getName()); 542 543 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 544 } 545 546 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 547 llvm::Function *F, 548 const CGFunctionInfo &FI) { 549 SetLLVMFunctionAttributes(D, FI, F); 550 SetLLVMFunctionAttributesForDefinition(D, F); 551 552 F->setLinkage(llvm::Function::InternalLinkage); 553 554 SetCommonAttributes(D, F); 555 } 556 557 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 558 llvm::Function *F, 559 bool IsIncompleteFunction) { 560 if (unsigned IID = F->getIntrinsicID()) { 561 // If this is an intrinsic function, set the function's attributes 562 // to the intrinsic's attributes. 563 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 564 return; 565 } 566 567 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 568 569 if (!IsIncompleteFunction) 570 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 571 572 // Only a few attributes are set on declarations; these may later be 573 // overridden by a definition. 574 575 if (FD->hasAttr<DLLImportAttr>()) { 576 F->setLinkage(llvm::Function::DLLImportLinkage); 577 } else if (FD->hasAttr<WeakAttr>() || 578 FD->isWeakImported()) { 579 // "extern_weak" is overloaded in LLVM; we probably should have 580 // separate linkage types for this. 581 F->setLinkage(llvm::Function::ExternalWeakLinkage); 582 } else { 583 F->setLinkage(llvm::Function::ExternalLinkage); 584 585 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 586 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 587 F->setVisibility(GetLLVMVisibility(LV.visibility())); 588 } 589 } 590 591 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 592 F->setSection(SA->getName()); 593 } 594 595 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 596 assert(!GV->isDeclaration() && 597 "Only globals with definition can force usage."); 598 LLVMUsed.push_back(GV); 599 } 600 601 void CodeGenModule::EmitLLVMUsed() { 602 // Don't create llvm.used if there is no need. 603 if (LLVMUsed.empty()) 604 return; 605 606 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 607 608 // Convert LLVMUsed to what ConstantArray needs. 609 std::vector<llvm::Constant*> UsedArray; 610 UsedArray.resize(LLVMUsed.size()); 611 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 612 UsedArray[i] = 613 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 614 i8PTy); 615 } 616 617 if (UsedArray.empty()) 618 return; 619 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 620 621 llvm::GlobalVariable *GV = 622 new llvm::GlobalVariable(getModule(), ATy, false, 623 llvm::GlobalValue::AppendingLinkage, 624 llvm::ConstantArray::get(ATy, UsedArray), 625 "llvm.used"); 626 627 GV->setSection("llvm.metadata"); 628 } 629 630 void CodeGenModule::EmitDeferred() { 631 // Emit code for any potentially referenced deferred decls. Since a 632 // previously unused static decl may become used during the generation of code 633 // for a static function, iterate until no changes are made. 634 635 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 636 if (!DeferredVTables.empty()) { 637 const CXXRecordDecl *RD = DeferredVTables.back(); 638 DeferredVTables.pop_back(); 639 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 640 continue; 641 } 642 643 GlobalDecl D = DeferredDeclsToEmit.back(); 644 DeferredDeclsToEmit.pop_back(); 645 646 // Check to see if we've already emitted this. This is necessary 647 // for a couple of reasons: first, decls can end up in the 648 // deferred-decls queue multiple times, and second, decls can end 649 // up with definitions in unusual ways (e.g. by an extern inline 650 // function acquiring a strong function redefinition). Just 651 // ignore these cases. 652 // 653 // TODO: That said, looking this up multiple times is very wasteful. 654 StringRef Name = getMangledName(D); 655 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 656 assert(CGRef && "Deferred decl wasn't referenced?"); 657 658 if (!CGRef->isDeclaration()) 659 continue; 660 661 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 662 // purposes an alias counts as a definition. 663 if (isa<llvm::GlobalAlias>(CGRef)) 664 continue; 665 666 // Otherwise, emit the definition and move on to the next one. 667 EmitGlobalDefinition(D); 668 } 669 } 670 671 void CodeGenModule::EmitGlobalAnnotations() { 672 if (Annotations.empty()) 673 return; 674 675 // Create a new global variable for the ConstantStruct in the Module. 676 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 677 Annotations[0]->getType(), Annotations.size()), Annotations); 678 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 679 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 680 "llvm.global.annotations"); 681 gv->setSection(AnnotationSection); 682 } 683 684 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 685 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 686 if (i != AnnotationStrings.end()) 687 return i->second; 688 689 // Not found yet, create a new global. 690 llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true); 691 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 692 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 693 gv->setSection(AnnotationSection); 694 gv->setUnnamedAddr(true); 695 AnnotationStrings[Str] = gv; 696 return gv; 697 } 698 699 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 700 SourceManager &SM = getContext().getSourceManager(); 701 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 702 if (PLoc.isValid()) 703 return EmitAnnotationString(PLoc.getFilename()); 704 return EmitAnnotationString(SM.getBufferName(Loc)); 705 } 706 707 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 708 SourceManager &SM = getContext().getSourceManager(); 709 PresumedLoc PLoc = SM.getPresumedLoc(L); 710 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 711 SM.getExpansionLineNumber(L); 712 return llvm::ConstantInt::get(Int32Ty, LineNo); 713 } 714 715 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 716 const AnnotateAttr *AA, 717 SourceLocation L) { 718 // Get the globals for file name, annotation, and the line number. 719 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 720 *UnitGV = EmitAnnotationUnit(L), 721 *LineNoCst = EmitAnnotationLineNo(L); 722 723 // Create the ConstantStruct for the global annotation. 724 llvm::Constant *Fields[4] = { 725 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 726 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 727 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 728 LineNoCst 729 }; 730 return llvm::ConstantStruct::getAnon(Fields); 731 } 732 733 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 734 llvm::GlobalValue *GV) { 735 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 736 // Get the struct elements for these annotations. 737 for (specific_attr_iterator<AnnotateAttr> 738 ai = D->specific_attr_begin<AnnotateAttr>(), 739 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 740 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 741 } 742 743 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 744 // Never defer when EmitAllDecls is specified. 745 if (Features.EmitAllDecls) 746 return false; 747 748 return !getContext().DeclMustBeEmitted(Global); 749 } 750 751 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 752 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 753 assert(AA && "No alias?"); 754 755 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 756 757 // See if there is already something with the target's name in the module. 758 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 759 760 llvm::Constant *Aliasee; 761 if (isa<llvm::FunctionType>(DeclTy)) 762 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 763 /*ForVTable=*/false); 764 else 765 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 766 llvm::PointerType::getUnqual(DeclTy), 0); 767 if (!Entry) { 768 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 769 F->setLinkage(llvm::Function::ExternalWeakLinkage); 770 WeakRefReferences.insert(F); 771 } 772 773 return Aliasee; 774 } 775 776 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 777 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 778 779 // Weak references don't produce any output by themselves. 780 if (Global->hasAttr<WeakRefAttr>()) 781 return; 782 783 // If this is an alias definition (which otherwise looks like a declaration) 784 // emit it now. 785 if (Global->hasAttr<AliasAttr>()) 786 return EmitAliasDefinition(GD); 787 788 // Ignore declarations, they will be emitted on their first use. 789 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 790 // Forward declarations are emitted lazily on first use. 791 if (!FD->doesThisDeclarationHaveABody()) { 792 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 793 return; 794 795 const FunctionDecl *InlineDefinition = 0; 796 FD->getBody(InlineDefinition); 797 798 StringRef MangledName = getMangledName(GD); 799 llvm::StringMap<GlobalDecl>::iterator DDI = 800 DeferredDecls.find(MangledName); 801 if (DDI != DeferredDecls.end()) 802 DeferredDecls.erase(DDI); 803 EmitGlobalDefinition(InlineDefinition); 804 return; 805 } 806 } else { 807 const VarDecl *VD = cast<VarDecl>(Global); 808 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 809 810 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 811 return; 812 } 813 814 // Defer code generation when possible if this is a static definition, inline 815 // function etc. These we only want to emit if they are used. 816 if (!MayDeferGeneration(Global)) { 817 // Emit the definition if it can't be deferred. 818 EmitGlobalDefinition(GD); 819 return; 820 } 821 822 // If we're deferring emission of a C++ variable with an 823 // initializer, remember the order in which it appeared in the file. 824 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 825 cast<VarDecl>(Global)->hasInit()) { 826 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 827 CXXGlobalInits.push_back(0); 828 } 829 830 // If the value has already been used, add it directly to the 831 // DeferredDeclsToEmit list. 832 StringRef MangledName = getMangledName(GD); 833 if (GetGlobalValue(MangledName)) 834 DeferredDeclsToEmit.push_back(GD); 835 else { 836 // Otherwise, remember that we saw a deferred decl with this name. The 837 // first use of the mangled name will cause it to move into 838 // DeferredDeclsToEmit. 839 DeferredDecls[MangledName] = GD; 840 } 841 } 842 843 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 844 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 845 846 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 847 Context.getSourceManager(), 848 "Generating code for declaration"); 849 850 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 851 // At -O0, don't generate IR for functions with available_externally 852 // linkage. 853 if (CodeGenOpts.OptimizationLevel == 0 && 854 !Function->hasAttr<AlwaysInlineAttr>() && 855 getFunctionLinkage(Function) 856 == llvm::Function::AvailableExternallyLinkage) 857 return; 858 859 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 860 // Make sure to emit the definition(s) before we emit the thunks. 861 // This is necessary for the generation of certain thunks. 862 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 863 EmitCXXConstructor(CD, GD.getCtorType()); 864 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 865 EmitCXXDestructor(DD, GD.getDtorType()); 866 else 867 EmitGlobalFunctionDefinition(GD); 868 869 if (Method->isVirtual()) 870 getVTables().EmitThunks(GD); 871 872 return; 873 } 874 875 return EmitGlobalFunctionDefinition(GD); 876 } 877 878 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 879 return EmitGlobalVarDefinition(VD); 880 881 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 882 } 883 884 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 885 /// module, create and return an llvm Function with the specified type. If there 886 /// is something in the module with the specified name, return it potentially 887 /// bitcasted to the right type. 888 /// 889 /// If D is non-null, it specifies a decl that correspond to this. This is used 890 /// to set the attributes on the function when it is first created. 891 llvm::Constant * 892 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 893 llvm::Type *Ty, 894 GlobalDecl D, bool ForVTable, 895 llvm::Attributes ExtraAttrs) { 896 // Lookup the entry, lazily creating it if necessary. 897 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 898 if (Entry) { 899 if (WeakRefReferences.count(Entry)) { 900 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 901 if (FD && !FD->hasAttr<WeakAttr>()) 902 Entry->setLinkage(llvm::Function::ExternalLinkage); 903 904 WeakRefReferences.erase(Entry); 905 } 906 907 if (Entry->getType()->getElementType() == Ty) 908 return Entry; 909 910 // Make sure the result is of the correct type. 911 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 912 } 913 914 // This function doesn't have a complete type (for example, the return 915 // type is an incomplete struct). Use a fake type instead, and make 916 // sure not to try to set attributes. 917 bool IsIncompleteFunction = false; 918 919 llvm::FunctionType *FTy; 920 if (isa<llvm::FunctionType>(Ty)) { 921 FTy = cast<llvm::FunctionType>(Ty); 922 } else { 923 FTy = llvm::FunctionType::get(VoidTy, false); 924 IsIncompleteFunction = true; 925 } 926 927 llvm::Function *F = llvm::Function::Create(FTy, 928 llvm::Function::ExternalLinkage, 929 MangledName, &getModule()); 930 assert(F->getName() == MangledName && "name was uniqued!"); 931 if (D.getDecl()) 932 SetFunctionAttributes(D, F, IsIncompleteFunction); 933 if (ExtraAttrs != llvm::Attribute::None) 934 F->addFnAttr(ExtraAttrs); 935 936 // This is the first use or definition of a mangled name. If there is a 937 // deferred decl with this name, remember that we need to emit it at the end 938 // of the file. 939 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 940 if (DDI != DeferredDecls.end()) { 941 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 942 // list, and remove it from DeferredDecls (since we don't need it anymore). 943 DeferredDeclsToEmit.push_back(DDI->second); 944 DeferredDecls.erase(DDI); 945 946 // Otherwise, there are cases we have to worry about where we're 947 // using a declaration for which we must emit a definition but where 948 // we might not find a top-level definition: 949 // - member functions defined inline in their classes 950 // - friend functions defined inline in some class 951 // - special member functions with implicit definitions 952 // If we ever change our AST traversal to walk into class methods, 953 // this will be unnecessary. 954 // 955 // We also don't emit a definition for a function if it's going to be an entry 956 // in a vtable, unless it's already marked as used. 957 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 958 // Look for a declaration that's lexically in a record. 959 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 960 do { 961 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 962 if (FD->isImplicit() && !ForVTable) { 963 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 964 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 965 break; 966 } else if (FD->doesThisDeclarationHaveABody()) { 967 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 968 break; 969 } 970 } 971 FD = FD->getPreviousDeclaration(); 972 } while (FD); 973 } 974 975 // Make sure the result is of the requested type. 976 if (!IsIncompleteFunction) { 977 assert(F->getType()->getElementType() == Ty); 978 return F; 979 } 980 981 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 982 return llvm::ConstantExpr::getBitCast(F, PTy); 983 } 984 985 /// GetAddrOfFunction - Return the address of the given function. If Ty is 986 /// non-null, then this function will use the specified type if it has to 987 /// create it (this occurs when we see a definition of the function). 988 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 989 llvm::Type *Ty, 990 bool ForVTable) { 991 // If there was no specific requested type, just convert it now. 992 if (!Ty) 993 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 994 995 StringRef MangledName = getMangledName(GD); 996 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 997 } 998 999 /// CreateRuntimeFunction - Create a new runtime function with the specified 1000 /// type and name. 1001 llvm::Constant * 1002 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1003 StringRef Name, 1004 llvm::Attributes ExtraAttrs) { 1005 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1006 ExtraAttrs); 1007 } 1008 1009 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 1010 bool ConstantInit) { 1011 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 1012 return false; 1013 1014 if (Context.getLangOptions().CPlusPlus) { 1015 if (const RecordType *Record 1016 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 1017 return ConstantInit && 1018 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 1019 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 1020 } 1021 1022 return true; 1023 } 1024 1025 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1026 /// create and return an llvm GlobalVariable with the specified type. If there 1027 /// is something in the module with the specified name, return it potentially 1028 /// bitcasted to the right type. 1029 /// 1030 /// If D is non-null, it specifies a decl that correspond to this. This is used 1031 /// to set the attributes on the global when it is first created. 1032 llvm::Constant * 1033 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1034 llvm::PointerType *Ty, 1035 const VarDecl *D, 1036 bool UnnamedAddr) { 1037 // Lookup the entry, lazily creating it if necessary. 1038 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1039 if (Entry) { 1040 if (WeakRefReferences.count(Entry)) { 1041 if (D && !D->hasAttr<WeakAttr>()) 1042 Entry->setLinkage(llvm::Function::ExternalLinkage); 1043 1044 WeakRefReferences.erase(Entry); 1045 } 1046 1047 if (UnnamedAddr) 1048 Entry->setUnnamedAddr(true); 1049 1050 if (Entry->getType() == Ty) 1051 return Entry; 1052 1053 // Make sure the result is of the correct type. 1054 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1055 } 1056 1057 // This is the first use or definition of a mangled name. If there is a 1058 // deferred decl with this name, remember that we need to emit it at the end 1059 // of the file. 1060 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1061 if (DDI != DeferredDecls.end()) { 1062 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1063 // list, and remove it from DeferredDecls (since we don't need it anymore). 1064 DeferredDeclsToEmit.push_back(DDI->second); 1065 DeferredDecls.erase(DDI); 1066 } 1067 1068 llvm::GlobalVariable *GV = 1069 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1070 llvm::GlobalValue::ExternalLinkage, 1071 0, MangledName, 0, 1072 false, Ty->getAddressSpace()); 1073 1074 // Handle things which are present even on external declarations. 1075 if (D) { 1076 // FIXME: This code is overly simple and should be merged with other global 1077 // handling. 1078 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1079 1080 // Set linkage and visibility in case we never see a definition. 1081 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1082 if (LV.linkage() != ExternalLinkage) { 1083 // Don't set internal linkage on declarations. 1084 } else { 1085 if (D->hasAttr<DLLImportAttr>()) 1086 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1087 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1088 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1089 1090 // Set visibility on a declaration only if it's explicit. 1091 if (LV.visibilityExplicit()) 1092 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1093 } 1094 1095 GV->setThreadLocal(D->isThreadSpecified()); 1096 } 1097 1098 return GV; 1099 } 1100 1101 1102 llvm::GlobalVariable * 1103 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1104 llvm::Type *Ty, 1105 llvm::GlobalValue::LinkageTypes Linkage) { 1106 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1107 llvm::GlobalVariable *OldGV = 0; 1108 1109 1110 if (GV) { 1111 // Check if the variable has the right type. 1112 if (GV->getType()->getElementType() == Ty) 1113 return GV; 1114 1115 // Because C++ name mangling, the only way we can end up with an already 1116 // existing global with the same name is if it has been declared extern "C". 1117 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1118 OldGV = GV; 1119 } 1120 1121 // Create a new variable. 1122 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1123 Linkage, 0, Name); 1124 1125 if (OldGV) { 1126 // Replace occurrences of the old variable if needed. 1127 GV->takeName(OldGV); 1128 1129 if (!OldGV->use_empty()) { 1130 llvm::Constant *NewPtrForOldDecl = 1131 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1132 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1133 } 1134 1135 OldGV->eraseFromParent(); 1136 } 1137 1138 return GV; 1139 } 1140 1141 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1142 /// given global variable. If Ty is non-null and if the global doesn't exist, 1143 /// then it will be greated with the specified type instead of whatever the 1144 /// normal requested type would be. 1145 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1146 llvm::Type *Ty) { 1147 assert(D->hasGlobalStorage() && "Not a global variable"); 1148 QualType ASTTy = D->getType(); 1149 if (Ty == 0) 1150 Ty = getTypes().ConvertTypeForMem(ASTTy); 1151 1152 llvm::PointerType *PTy = 1153 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1154 1155 StringRef MangledName = getMangledName(D); 1156 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1157 } 1158 1159 /// CreateRuntimeVariable - Create a new runtime global variable with the 1160 /// specified type and name. 1161 llvm::Constant * 1162 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1163 StringRef Name) { 1164 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1165 true); 1166 } 1167 1168 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1169 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1170 1171 if (MayDeferGeneration(D)) { 1172 // If we have not seen a reference to this variable yet, place it 1173 // into the deferred declarations table to be emitted if needed 1174 // later. 1175 StringRef MangledName = getMangledName(D); 1176 if (!GetGlobalValue(MangledName)) { 1177 DeferredDecls[MangledName] = D; 1178 return; 1179 } 1180 } 1181 1182 // The tentative definition is the only definition. 1183 EmitGlobalVarDefinition(D); 1184 } 1185 1186 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1187 if (DefinitionRequired) 1188 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1189 } 1190 1191 llvm::GlobalVariable::LinkageTypes 1192 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1193 if (RD->getLinkage() != ExternalLinkage) 1194 return llvm::GlobalVariable::InternalLinkage; 1195 1196 if (const CXXMethodDecl *KeyFunction 1197 = RD->getASTContext().getKeyFunction(RD)) { 1198 // If this class has a key function, use that to determine the linkage of 1199 // the vtable. 1200 const FunctionDecl *Def = 0; 1201 if (KeyFunction->hasBody(Def)) 1202 KeyFunction = cast<CXXMethodDecl>(Def); 1203 1204 switch (KeyFunction->getTemplateSpecializationKind()) { 1205 case TSK_Undeclared: 1206 case TSK_ExplicitSpecialization: 1207 // When compiling with optimizations turned on, we emit all vtables, 1208 // even if the key function is not defined in the current translation 1209 // unit. If this is the case, use available_externally linkage. 1210 if (!Def && CodeGenOpts.OptimizationLevel) 1211 return llvm::GlobalVariable::AvailableExternallyLinkage; 1212 1213 if (KeyFunction->isInlined()) 1214 return !Context.getLangOptions().AppleKext ? 1215 llvm::GlobalVariable::LinkOnceODRLinkage : 1216 llvm::Function::InternalLinkage; 1217 1218 return llvm::GlobalVariable::ExternalLinkage; 1219 1220 case TSK_ImplicitInstantiation: 1221 return !Context.getLangOptions().AppleKext ? 1222 llvm::GlobalVariable::LinkOnceODRLinkage : 1223 llvm::Function::InternalLinkage; 1224 1225 case TSK_ExplicitInstantiationDefinition: 1226 return !Context.getLangOptions().AppleKext ? 1227 llvm::GlobalVariable::WeakODRLinkage : 1228 llvm::Function::InternalLinkage; 1229 1230 case TSK_ExplicitInstantiationDeclaration: 1231 // FIXME: Use available_externally linkage. However, this currently 1232 // breaks LLVM's build due to undefined symbols. 1233 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1234 return !Context.getLangOptions().AppleKext ? 1235 llvm::GlobalVariable::LinkOnceODRLinkage : 1236 llvm::Function::InternalLinkage; 1237 } 1238 } 1239 1240 if (Context.getLangOptions().AppleKext) 1241 return llvm::Function::InternalLinkage; 1242 1243 switch (RD->getTemplateSpecializationKind()) { 1244 case TSK_Undeclared: 1245 case TSK_ExplicitSpecialization: 1246 case TSK_ImplicitInstantiation: 1247 // FIXME: Use available_externally linkage. However, this currently 1248 // breaks LLVM's build due to undefined symbols. 1249 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1250 case TSK_ExplicitInstantiationDeclaration: 1251 return llvm::GlobalVariable::LinkOnceODRLinkage; 1252 1253 case TSK_ExplicitInstantiationDefinition: 1254 return llvm::GlobalVariable::WeakODRLinkage; 1255 } 1256 1257 // Silence GCC warning. 1258 return llvm::GlobalVariable::LinkOnceODRLinkage; 1259 } 1260 1261 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1262 return Context.toCharUnitsFromBits( 1263 TheTargetData.getTypeStoreSizeInBits(Ty)); 1264 } 1265 1266 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1267 llvm::Constant *Init = 0; 1268 QualType ASTTy = D->getType(); 1269 bool NonConstInit = false; 1270 1271 const Expr *InitExpr = D->getAnyInitializer(); 1272 1273 if (!InitExpr) { 1274 // This is a tentative definition; tentative definitions are 1275 // implicitly initialized with { 0 }. 1276 // 1277 // Note that tentative definitions are only emitted at the end of 1278 // a translation unit, so they should never have incomplete 1279 // type. In addition, EmitTentativeDefinition makes sure that we 1280 // never attempt to emit a tentative definition if a real one 1281 // exists. A use may still exists, however, so we still may need 1282 // to do a RAUW. 1283 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1284 Init = EmitNullConstant(D->getType()); 1285 } else { 1286 Init = EmitConstantExpr(InitExpr, D->getType()); 1287 if (!Init) { 1288 QualType T = InitExpr->getType(); 1289 if (D->getType()->isReferenceType()) 1290 T = D->getType(); 1291 1292 if (getLangOptions().CPlusPlus) { 1293 Init = EmitNullConstant(T); 1294 NonConstInit = true; 1295 } else { 1296 ErrorUnsupported(D, "static initializer"); 1297 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1298 } 1299 } else { 1300 // We don't need an initializer, so remove the entry for the delayed 1301 // initializer position (just in case this entry was delayed). 1302 if (getLangOptions().CPlusPlus) 1303 DelayedCXXInitPosition.erase(D); 1304 } 1305 } 1306 1307 llvm::Type* InitType = Init->getType(); 1308 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1309 1310 // Strip off a bitcast if we got one back. 1311 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1312 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1313 // all zero index gep. 1314 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1315 Entry = CE->getOperand(0); 1316 } 1317 1318 // Entry is now either a Function or GlobalVariable. 1319 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1320 1321 // We have a definition after a declaration with the wrong type. 1322 // We must make a new GlobalVariable* and update everything that used OldGV 1323 // (a declaration or tentative definition) with the new GlobalVariable* 1324 // (which will be a definition). 1325 // 1326 // This happens if there is a prototype for a global (e.g. 1327 // "extern int x[];") and then a definition of a different type (e.g. 1328 // "int x[10];"). This also happens when an initializer has a different type 1329 // from the type of the global (this happens with unions). 1330 if (GV == 0 || 1331 GV->getType()->getElementType() != InitType || 1332 GV->getType()->getAddressSpace() != 1333 getContext().getTargetAddressSpace(ASTTy)) { 1334 1335 // Move the old entry aside so that we'll create a new one. 1336 Entry->setName(StringRef()); 1337 1338 // Make a new global with the correct type, this is now guaranteed to work. 1339 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1340 1341 // Replace all uses of the old global with the new global 1342 llvm::Constant *NewPtrForOldDecl = 1343 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1344 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1345 1346 // Erase the old global, since it is no longer used. 1347 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1348 } 1349 1350 if (D->hasAttr<AnnotateAttr>()) 1351 AddGlobalAnnotations(D, GV); 1352 1353 GV->setInitializer(Init); 1354 1355 // If it is safe to mark the global 'constant', do so now. 1356 GV->setConstant(false); 1357 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1358 GV->setConstant(true); 1359 1360 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1361 1362 // Set the llvm linkage type as appropriate. 1363 llvm::GlobalValue::LinkageTypes Linkage = 1364 GetLLVMLinkageVarDefinition(D, GV); 1365 GV->setLinkage(Linkage); 1366 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1367 // common vars aren't constant even if declared const. 1368 GV->setConstant(false); 1369 1370 SetCommonAttributes(D, GV); 1371 1372 // Emit the initializer function if necessary. 1373 if (NonConstInit) 1374 EmitCXXGlobalVarDeclInitFunc(D, GV); 1375 1376 // Emit global variable debug information. 1377 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1378 DI->setLocation(D->getLocation()); 1379 DI->EmitGlobalVariable(GV, D); 1380 } 1381 } 1382 1383 llvm::GlobalValue::LinkageTypes 1384 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1385 llvm::GlobalVariable *GV) { 1386 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1387 if (Linkage == GVA_Internal) 1388 return llvm::Function::InternalLinkage; 1389 else if (D->hasAttr<DLLImportAttr>()) 1390 return llvm::Function::DLLImportLinkage; 1391 else if (D->hasAttr<DLLExportAttr>()) 1392 return llvm::Function::DLLExportLinkage; 1393 else if (D->hasAttr<WeakAttr>()) { 1394 if (GV->isConstant()) 1395 return llvm::GlobalVariable::WeakODRLinkage; 1396 else 1397 return llvm::GlobalVariable::WeakAnyLinkage; 1398 } else if (Linkage == GVA_TemplateInstantiation || 1399 Linkage == GVA_ExplicitTemplateInstantiation) 1400 return llvm::GlobalVariable::WeakODRLinkage; 1401 else if (!getLangOptions().CPlusPlus && 1402 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1403 D->getAttr<CommonAttr>()) && 1404 !D->hasExternalStorage() && !D->getInit() && 1405 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1406 !D->getAttr<WeakImportAttr>()) { 1407 // Thread local vars aren't considered common linkage. 1408 return llvm::GlobalVariable::CommonLinkage; 1409 } 1410 return llvm::GlobalVariable::ExternalLinkage; 1411 } 1412 1413 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1414 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1415 /// existing call uses of the old function in the module, this adjusts them to 1416 /// call the new function directly. 1417 /// 1418 /// This is not just a cleanup: the always_inline pass requires direct calls to 1419 /// functions to be able to inline them. If there is a bitcast in the way, it 1420 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1421 /// run at -O0. 1422 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1423 llvm::Function *NewFn) { 1424 // If we're redefining a global as a function, don't transform it. 1425 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1426 if (OldFn == 0) return; 1427 1428 llvm::Type *NewRetTy = NewFn->getReturnType(); 1429 SmallVector<llvm::Value*, 4> ArgList; 1430 1431 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1432 UI != E; ) { 1433 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1434 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1435 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1436 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1437 llvm::CallSite CS(CI); 1438 if (!CI || !CS.isCallee(I)) continue; 1439 1440 // If the return types don't match exactly, and if the call isn't dead, then 1441 // we can't transform this call. 1442 if (CI->getType() != NewRetTy && !CI->use_empty()) 1443 continue; 1444 1445 // Get the attribute list. 1446 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1447 llvm::AttrListPtr AttrList = CI->getAttributes(); 1448 1449 // Get any return attributes. 1450 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1451 1452 // Add the return attributes. 1453 if (RAttrs) 1454 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1455 1456 // If the function was passed too few arguments, don't transform. If extra 1457 // arguments were passed, we silently drop them. If any of the types 1458 // mismatch, we don't transform. 1459 unsigned ArgNo = 0; 1460 bool DontTransform = false; 1461 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1462 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1463 if (CS.arg_size() == ArgNo || 1464 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1465 DontTransform = true; 1466 break; 1467 } 1468 1469 // Add any parameter attributes. 1470 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1471 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1472 } 1473 if (DontTransform) 1474 continue; 1475 1476 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1477 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1478 1479 // Okay, we can transform this. Create the new call instruction and copy 1480 // over the required information. 1481 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1482 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1483 ArgList.clear(); 1484 if (!NewCall->getType()->isVoidTy()) 1485 NewCall->takeName(CI); 1486 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1487 AttrVec.end())); 1488 NewCall->setCallingConv(CI->getCallingConv()); 1489 1490 // Finally, remove the old call, replacing any uses with the new one. 1491 if (!CI->use_empty()) 1492 CI->replaceAllUsesWith(NewCall); 1493 1494 // Copy debug location attached to CI. 1495 if (!CI->getDebugLoc().isUnknown()) 1496 NewCall->setDebugLoc(CI->getDebugLoc()); 1497 CI->eraseFromParent(); 1498 } 1499 } 1500 1501 1502 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1503 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1504 1505 // Compute the function info and LLVM type. 1506 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1507 bool variadic = false; 1508 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1509 variadic = fpt->isVariadic(); 1510 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1511 1512 // Get or create the prototype for the function. 1513 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1514 1515 // Strip off a bitcast if we got one back. 1516 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1517 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1518 Entry = CE->getOperand(0); 1519 } 1520 1521 1522 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1523 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1524 1525 // If the types mismatch then we have to rewrite the definition. 1526 assert(OldFn->isDeclaration() && 1527 "Shouldn't replace non-declaration"); 1528 1529 // F is the Function* for the one with the wrong type, we must make a new 1530 // Function* and update everything that used F (a declaration) with the new 1531 // Function* (which will be a definition). 1532 // 1533 // This happens if there is a prototype for a function 1534 // (e.g. "int f()") and then a definition of a different type 1535 // (e.g. "int f(int x)"). Move the old function aside so that it 1536 // doesn't interfere with GetAddrOfFunction. 1537 OldFn->setName(StringRef()); 1538 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1539 1540 // If this is an implementation of a function without a prototype, try to 1541 // replace any existing uses of the function (which may be calls) with uses 1542 // of the new function 1543 if (D->getType()->isFunctionNoProtoType()) { 1544 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1545 OldFn->removeDeadConstantUsers(); 1546 } 1547 1548 // Replace uses of F with the Function we will endow with a body. 1549 if (!Entry->use_empty()) { 1550 llvm::Constant *NewPtrForOldDecl = 1551 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1552 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1553 } 1554 1555 // Ok, delete the old function now, which is dead. 1556 OldFn->eraseFromParent(); 1557 1558 Entry = NewFn; 1559 } 1560 1561 // We need to set linkage and visibility on the function before 1562 // generating code for it because various parts of IR generation 1563 // want to propagate this information down (e.g. to local static 1564 // declarations). 1565 llvm::Function *Fn = cast<llvm::Function>(Entry); 1566 setFunctionLinkage(D, Fn); 1567 1568 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1569 setGlobalVisibility(Fn, D); 1570 1571 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1572 1573 SetFunctionDefinitionAttributes(D, Fn); 1574 SetLLVMFunctionAttributesForDefinition(D, Fn); 1575 1576 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1577 AddGlobalCtor(Fn, CA->getPriority()); 1578 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1579 AddGlobalDtor(Fn, DA->getPriority()); 1580 if (D->hasAttr<AnnotateAttr>()) 1581 AddGlobalAnnotations(D, Fn); 1582 } 1583 1584 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1585 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1586 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1587 assert(AA && "Not an alias?"); 1588 1589 StringRef MangledName = getMangledName(GD); 1590 1591 // If there is a definition in the module, then it wins over the alias. 1592 // This is dubious, but allow it to be safe. Just ignore the alias. 1593 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1594 if (Entry && !Entry->isDeclaration()) 1595 return; 1596 1597 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1598 1599 // Create a reference to the named value. This ensures that it is emitted 1600 // if a deferred decl. 1601 llvm::Constant *Aliasee; 1602 if (isa<llvm::FunctionType>(DeclTy)) 1603 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1604 /*ForVTable=*/false); 1605 else 1606 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1607 llvm::PointerType::getUnqual(DeclTy), 0); 1608 1609 // Create the new alias itself, but don't set a name yet. 1610 llvm::GlobalValue *GA = 1611 new llvm::GlobalAlias(Aliasee->getType(), 1612 llvm::Function::ExternalLinkage, 1613 "", Aliasee, &getModule()); 1614 1615 if (Entry) { 1616 assert(Entry->isDeclaration()); 1617 1618 // If there is a declaration in the module, then we had an extern followed 1619 // by the alias, as in: 1620 // extern int test6(); 1621 // ... 1622 // int test6() __attribute__((alias("test7"))); 1623 // 1624 // Remove it and replace uses of it with the alias. 1625 GA->takeName(Entry); 1626 1627 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1628 Entry->getType())); 1629 Entry->eraseFromParent(); 1630 } else { 1631 GA->setName(MangledName); 1632 } 1633 1634 // Set attributes which are particular to an alias; this is a 1635 // specialization of the attributes which may be set on a global 1636 // variable/function. 1637 if (D->hasAttr<DLLExportAttr>()) { 1638 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1639 // The dllexport attribute is ignored for undefined symbols. 1640 if (FD->hasBody()) 1641 GA->setLinkage(llvm::Function::DLLExportLinkage); 1642 } else { 1643 GA->setLinkage(llvm::Function::DLLExportLinkage); 1644 } 1645 } else if (D->hasAttr<WeakAttr>() || 1646 D->hasAttr<WeakRefAttr>() || 1647 D->isWeakImported()) { 1648 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1649 } 1650 1651 SetCommonAttributes(D, GA); 1652 } 1653 1654 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1655 ArrayRef<llvm::Type*> Tys) { 1656 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1657 Tys); 1658 } 1659 1660 static llvm::StringMapEntry<llvm::Constant*> & 1661 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1662 const StringLiteral *Literal, 1663 bool TargetIsLSB, 1664 bool &IsUTF16, 1665 unsigned &StringLength) { 1666 StringRef String = Literal->getString(); 1667 unsigned NumBytes = String.size(); 1668 1669 // Check for simple case. 1670 if (!Literal->containsNonAsciiOrNull()) { 1671 StringLength = NumBytes; 1672 return Map.GetOrCreateValue(String); 1673 } 1674 1675 // Otherwise, convert the UTF8 literals into a byte string. 1676 SmallVector<UTF16, 128> ToBuf(NumBytes); 1677 const UTF8 *FromPtr = (UTF8 *)String.data(); 1678 UTF16 *ToPtr = &ToBuf[0]; 1679 1680 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1681 &ToPtr, ToPtr + NumBytes, 1682 strictConversion); 1683 1684 // ConvertUTF8toUTF16 returns the length in ToPtr. 1685 StringLength = ToPtr - &ToBuf[0]; 1686 1687 // Render the UTF-16 string into a byte array and convert to the target byte 1688 // order. 1689 // 1690 // FIXME: This isn't something we should need to do here. 1691 llvm::SmallString<128> AsBytes; 1692 AsBytes.reserve(StringLength * 2); 1693 for (unsigned i = 0; i != StringLength; ++i) { 1694 unsigned short Val = ToBuf[i]; 1695 if (TargetIsLSB) { 1696 AsBytes.push_back(Val & 0xFF); 1697 AsBytes.push_back(Val >> 8); 1698 } else { 1699 AsBytes.push_back(Val >> 8); 1700 AsBytes.push_back(Val & 0xFF); 1701 } 1702 } 1703 // Append one extra null character, the second is automatically added by our 1704 // caller. 1705 AsBytes.push_back(0); 1706 1707 IsUTF16 = true; 1708 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1709 } 1710 1711 static llvm::StringMapEntry<llvm::Constant*> & 1712 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1713 const StringLiteral *Literal, 1714 unsigned &StringLength) 1715 { 1716 StringRef String = Literal->getString(); 1717 StringLength = String.size(); 1718 return Map.GetOrCreateValue(String); 1719 } 1720 1721 llvm::Constant * 1722 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1723 unsigned StringLength = 0; 1724 bool isUTF16 = false; 1725 llvm::StringMapEntry<llvm::Constant*> &Entry = 1726 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1727 getTargetData().isLittleEndian(), 1728 isUTF16, StringLength); 1729 1730 if (llvm::Constant *C = Entry.getValue()) 1731 return C; 1732 1733 llvm::Constant *Zero = 1734 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1735 llvm::Constant *Zeros[] = { Zero, Zero }; 1736 1737 // If we don't already have it, get __CFConstantStringClassReference. 1738 if (!CFConstantStringClassRef) { 1739 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1740 Ty = llvm::ArrayType::get(Ty, 0); 1741 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1742 "__CFConstantStringClassReference"); 1743 // Decay array -> ptr 1744 CFConstantStringClassRef = 1745 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1746 } 1747 1748 QualType CFTy = getContext().getCFConstantStringType(); 1749 1750 llvm::StructType *STy = 1751 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1752 1753 std::vector<llvm::Constant*> Fields(4); 1754 1755 // Class pointer. 1756 Fields[0] = CFConstantStringClassRef; 1757 1758 // Flags. 1759 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1760 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1761 llvm::ConstantInt::get(Ty, 0x07C8); 1762 1763 // String pointer. 1764 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1765 1766 llvm::GlobalValue::LinkageTypes Linkage; 1767 bool isConstant; 1768 if (isUTF16) { 1769 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1770 Linkage = llvm::GlobalValue::InternalLinkage; 1771 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1772 // does make plain ascii ones writable. 1773 isConstant = true; 1774 } else { 1775 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1776 // when using private linkage. It is not clear if this is a bug in ld 1777 // or a reasonable new restriction. 1778 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1779 isConstant = !Features.WritableStrings; 1780 } 1781 1782 llvm::GlobalVariable *GV = 1783 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1784 ".str"); 1785 GV->setUnnamedAddr(true); 1786 if (isUTF16) { 1787 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1788 GV->setAlignment(Align.getQuantity()); 1789 } else { 1790 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1791 GV->setAlignment(Align.getQuantity()); 1792 } 1793 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1794 1795 // String length. 1796 Ty = getTypes().ConvertType(getContext().LongTy); 1797 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1798 1799 // The struct. 1800 C = llvm::ConstantStruct::get(STy, Fields); 1801 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1802 llvm::GlobalVariable::PrivateLinkage, C, 1803 "_unnamed_cfstring_"); 1804 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1805 GV->setSection(Sect); 1806 Entry.setValue(GV); 1807 1808 return GV; 1809 } 1810 1811 static RecordDecl * 1812 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1813 DeclContext *DC, IdentifierInfo *Id) { 1814 SourceLocation Loc; 1815 if (Ctx.getLangOptions().CPlusPlus) 1816 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1817 else 1818 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1819 } 1820 1821 llvm::Constant * 1822 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1823 unsigned StringLength = 0; 1824 llvm::StringMapEntry<llvm::Constant*> &Entry = 1825 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1826 1827 if (llvm::Constant *C = Entry.getValue()) 1828 return C; 1829 1830 llvm::Constant *Zero = 1831 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1832 llvm::Constant *Zeros[] = { Zero, Zero }; 1833 1834 // If we don't already have it, get _NSConstantStringClassReference. 1835 if (!ConstantStringClassRef) { 1836 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1837 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1838 llvm::Constant *GV; 1839 if (Features.ObjCNonFragileABI) { 1840 std::string str = 1841 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1842 : "OBJC_CLASS_$_" + StringClass; 1843 GV = getObjCRuntime().GetClassGlobal(str); 1844 // Make sure the result is of the correct type. 1845 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1846 ConstantStringClassRef = 1847 llvm::ConstantExpr::getBitCast(GV, PTy); 1848 } else { 1849 std::string str = 1850 StringClass.empty() ? "_NSConstantStringClassReference" 1851 : "_" + StringClass + "ClassReference"; 1852 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1853 GV = CreateRuntimeVariable(PTy, str); 1854 // Decay array -> ptr 1855 ConstantStringClassRef = 1856 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1857 } 1858 } 1859 1860 if (!NSConstantStringType) { 1861 // Construct the type for a constant NSString. 1862 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1863 Context.getTranslationUnitDecl(), 1864 &Context.Idents.get("__builtin_NSString")); 1865 D->startDefinition(); 1866 1867 QualType FieldTypes[3]; 1868 1869 // const int *isa; 1870 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1871 // const char *str; 1872 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1873 // unsigned int length; 1874 FieldTypes[2] = Context.UnsignedIntTy; 1875 1876 // Create fields 1877 for (unsigned i = 0; i < 3; ++i) { 1878 FieldDecl *Field = FieldDecl::Create(Context, D, 1879 SourceLocation(), 1880 SourceLocation(), 0, 1881 FieldTypes[i], /*TInfo=*/0, 1882 /*BitWidth=*/0, 1883 /*Mutable=*/false, 1884 /*HasInit=*/false); 1885 Field->setAccess(AS_public); 1886 D->addDecl(Field); 1887 } 1888 1889 D->completeDefinition(); 1890 QualType NSTy = Context.getTagDeclType(D); 1891 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1892 } 1893 1894 std::vector<llvm::Constant*> Fields(3); 1895 1896 // Class pointer. 1897 Fields[0] = ConstantStringClassRef; 1898 1899 // String pointer. 1900 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1901 1902 llvm::GlobalValue::LinkageTypes Linkage; 1903 bool isConstant; 1904 Linkage = llvm::GlobalValue::PrivateLinkage; 1905 isConstant = !Features.WritableStrings; 1906 1907 llvm::GlobalVariable *GV = 1908 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1909 ".str"); 1910 GV->setUnnamedAddr(true); 1911 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1912 GV->setAlignment(Align.getQuantity()); 1913 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1914 1915 // String length. 1916 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1917 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1918 1919 // The struct. 1920 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1921 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1922 llvm::GlobalVariable::PrivateLinkage, C, 1923 "_unnamed_nsstring_"); 1924 // FIXME. Fix section. 1925 if (const char *Sect = 1926 Features.ObjCNonFragileABI 1927 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 1928 : getContext().getTargetInfo().getNSStringSection()) 1929 GV->setSection(Sect); 1930 Entry.setValue(GV); 1931 1932 return GV; 1933 } 1934 1935 QualType CodeGenModule::getObjCFastEnumerationStateType() { 1936 if (ObjCFastEnumerationStateType.isNull()) { 1937 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1938 Context.getTranslationUnitDecl(), 1939 &Context.Idents.get("__objcFastEnumerationState")); 1940 D->startDefinition(); 1941 1942 QualType FieldTypes[] = { 1943 Context.UnsignedLongTy, 1944 Context.getPointerType(Context.getObjCIdType()), 1945 Context.getPointerType(Context.UnsignedLongTy), 1946 Context.getConstantArrayType(Context.UnsignedLongTy, 1947 llvm::APInt(32, 5), ArrayType::Normal, 0) 1948 }; 1949 1950 for (size_t i = 0; i < 4; ++i) { 1951 FieldDecl *Field = FieldDecl::Create(Context, 1952 D, 1953 SourceLocation(), 1954 SourceLocation(), 0, 1955 FieldTypes[i], /*TInfo=*/0, 1956 /*BitWidth=*/0, 1957 /*Mutable=*/false, 1958 /*HasInit=*/false); 1959 Field->setAccess(AS_public); 1960 D->addDecl(Field); 1961 } 1962 1963 D->completeDefinition(); 1964 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 1965 } 1966 1967 return ObjCFastEnumerationStateType; 1968 } 1969 1970 /// GetStringForStringLiteral - Return the appropriate bytes for a 1971 /// string literal, properly padded to match the literal type. 1972 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1973 const ASTContext &Context = getContext(); 1974 const ConstantArrayType *CAT = 1975 Context.getAsConstantArrayType(E->getType()); 1976 assert(CAT && "String isn't pointer or array!"); 1977 1978 // Resize the string to the right size. 1979 uint64_t RealLen = CAT->getSize().getZExtValue(); 1980 1981 switch (E->getKind()) { 1982 case StringLiteral::Ascii: 1983 case StringLiteral::UTF8: 1984 break; 1985 case StringLiteral::Wide: 1986 RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth(); 1987 break; 1988 case StringLiteral::UTF16: 1989 RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth(); 1990 break; 1991 case StringLiteral::UTF32: 1992 RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth(); 1993 break; 1994 } 1995 1996 std::string Str = E->getString().str(); 1997 Str.resize(RealLen, '\0'); 1998 1999 return Str; 2000 } 2001 2002 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2003 /// constant array for the given string literal. 2004 llvm::Constant * 2005 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2006 // FIXME: This can be more efficient. 2007 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 2008 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2009 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 2010 /* GlobalName */ 0, 2011 Align.getQuantity()); 2012 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 2013 llvm::Type *DestTy = 2014 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 2015 C = llvm::ConstantExpr::getBitCast(C, DestTy); 2016 } 2017 return C; 2018 } 2019 2020 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2021 /// array for the given ObjCEncodeExpr node. 2022 llvm::Constant * 2023 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2024 std::string Str; 2025 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2026 2027 return GetAddrOfConstantCString(Str); 2028 } 2029 2030 2031 /// GenerateWritableString -- Creates storage for a string literal. 2032 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2033 bool constant, 2034 CodeGenModule &CGM, 2035 const char *GlobalName, 2036 unsigned Alignment) { 2037 // Create Constant for this string literal. Don't add a '\0'. 2038 llvm::Constant *C = 2039 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2040 2041 // Create a global variable for this string 2042 llvm::GlobalVariable *GV = 2043 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2044 llvm::GlobalValue::PrivateLinkage, 2045 C, GlobalName); 2046 GV->setAlignment(Alignment); 2047 GV->setUnnamedAddr(true); 2048 return GV; 2049 } 2050 2051 /// GetAddrOfConstantString - Returns a pointer to a character array 2052 /// containing the literal. This contents are exactly that of the 2053 /// given string, i.e. it will not be null terminated automatically; 2054 /// see GetAddrOfConstantCString. Note that whether the result is 2055 /// actually a pointer to an LLVM constant depends on 2056 /// Feature.WriteableStrings. 2057 /// 2058 /// The result has pointer to array type. 2059 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2060 const char *GlobalName, 2061 unsigned Alignment) { 2062 bool IsConstant = !Features.WritableStrings; 2063 2064 // Get the default prefix if a name wasn't specified. 2065 if (!GlobalName) 2066 GlobalName = ".str"; 2067 2068 // Don't share any string literals if strings aren't constant. 2069 if (!IsConstant) 2070 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2071 2072 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2073 ConstantStringMap.GetOrCreateValue(Str); 2074 2075 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2076 if (Alignment > GV->getAlignment()) { 2077 GV->setAlignment(Alignment); 2078 } 2079 return GV; 2080 } 2081 2082 // Create a global variable for this. 2083 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2084 Entry.setValue(GV); 2085 return GV; 2086 } 2087 2088 /// GetAddrOfConstantCString - Returns a pointer to a character 2089 /// array containing the literal and a terminating '\0' 2090 /// character. The result has pointer to array type. 2091 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2092 const char *GlobalName, 2093 unsigned Alignment) { 2094 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2095 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2096 } 2097 2098 /// EmitObjCPropertyImplementations - Emit information for synthesized 2099 /// properties for an implementation. 2100 void CodeGenModule::EmitObjCPropertyImplementations(const 2101 ObjCImplementationDecl *D) { 2102 for (ObjCImplementationDecl::propimpl_iterator 2103 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2104 ObjCPropertyImplDecl *PID = *i; 2105 2106 // Dynamic is just for type-checking. 2107 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2108 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2109 2110 // Determine which methods need to be implemented, some may have 2111 // been overridden. Note that ::isSynthesized is not the method 2112 // we want, that just indicates if the decl came from a 2113 // property. What we want to know is if the method is defined in 2114 // this implementation. 2115 if (!D->getInstanceMethod(PD->getGetterName())) 2116 CodeGenFunction(*this).GenerateObjCGetter( 2117 const_cast<ObjCImplementationDecl *>(D), PID); 2118 if (!PD->isReadOnly() && 2119 !D->getInstanceMethod(PD->getSetterName())) 2120 CodeGenFunction(*this).GenerateObjCSetter( 2121 const_cast<ObjCImplementationDecl *>(D), PID); 2122 } 2123 } 2124 } 2125 2126 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2127 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2128 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2129 ivar; ivar = ivar->getNextIvar()) 2130 if (ivar->getType().isDestructedType()) 2131 return true; 2132 2133 return false; 2134 } 2135 2136 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2137 /// for an implementation. 2138 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2139 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2140 if (needsDestructMethod(D)) { 2141 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2142 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2143 ObjCMethodDecl *DTORMethod = 2144 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2145 cxxSelector, getContext().VoidTy, 0, D, 2146 /*isInstance=*/true, /*isVariadic=*/false, 2147 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2148 /*isDefined=*/false, ObjCMethodDecl::Required); 2149 D->addInstanceMethod(DTORMethod); 2150 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2151 D->setHasCXXStructors(true); 2152 } 2153 2154 // If the implementation doesn't have any ivar initializers, we don't need 2155 // a .cxx_construct. 2156 if (D->getNumIvarInitializers() == 0) 2157 return; 2158 2159 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2160 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2161 // The constructor returns 'self'. 2162 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2163 D->getLocation(), 2164 D->getLocation(), 2165 cxxSelector, 2166 getContext().getObjCIdType(), 0, 2167 D, /*isInstance=*/true, 2168 /*isVariadic=*/false, 2169 /*isSynthesized=*/true, 2170 /*isImplicitlyDeclared=*/true, 2171 /*isDefined=*/false, 2172 ObjCMethodDecl::Required); 2173 D->addInstanceMethod(CTORMethod); 2174 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2175 D->setHasCXXStructors(true); 2176 } 2177 2178 /// EmitNamespace - Emit all declarations in a namespace. 2179 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2180 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2181 I != E; ++I) 2182 EmitTopLevelDecl(*I); 2183 } 2184 2185 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2186 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2187 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2188 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2189 ErrorUnsupported(LSD, "linkage spec"); 2190 return; 2191 } 2192 2193 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2194 I != E; ++I) 2195 EmitTopLevelDecl(*I); 2196 } 2197 2198 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2199 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2200 // If an error has occurred, stop code generation, but continue 2201 // parsing and semantic analysis (to ensure all warnings and errors 2202 // are emitted). 2203 if (Diags.hasErrorOccurred()) 2204 return; 2205 2206 // Ignore dependent declarations. 2207 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2208 return; 2209 2210 switch (D->getKind()) { 2211 case Decl::CXXConversion: 2212 case Decl::CXXMethod: 2213 case Decl::Function: 2214 // Skip function templates 2215 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2216 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2217 return; 2218 2219 EmitGlobal(cast<FunctionDecl>(D)); 2220 break; 2221 2222 case Decl::Var: 2223 EmitGlobal(cast<VarDecl>(D)); 2224 break; 2225 2226 // Indirect fields from global anonymous structs and unions can be 2227 // ignored; only the actual variable requires IR gen support. 2228 case Decl::IndirectField: 2229 break; 2230 2231 // C++ Decls 2232 case Decl::Namespace: 2233 EmitNamespace(cast<NamespaceDecl>(D)); 2234 break; 2235 // No code generation needed. 2236 case Decl::UsingShadow: 2237 case Decl::Using: 2238 case Decl::UsingDirective: 2239 case Decl::ClassTemplate: 2240 case Decl::FunctionTemplate: 2241 case Decl::TypeAliasTemplate: 2242 case Decl::NamespaceAlias: 2243 case Decl::Block: 2244 break; 2245 case Decl::CXXConstructor: 2246 // Skip function templates 2247 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2248 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2249 return; 2250 2251 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2252 break; 2253 case Decl::CXXDestructor: 2254 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2255 return; 2256 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2257 break; 2258 2259 case Decl::StaticAssert: 2260 // Nothing to do. 2261 break; 2262 2263 // Objective-C Decls 2264 2265 // Forward declarations, no (immediate) code generation. 2266 case Decl::ObjCClass: 2267 case Decl::ObjCForwardProtocol: 2268 case Decl::ObjCInterface: 2269 break; 2270 2271 case Decl::ObjCCategory: { 2272 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2273 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2274 Context.ResetObjCLayout(CD->getClassInterface()); 2275 break; 2276 } 2277 2278 case Decl::ObjCProtocol: 2279 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2280 break; 2281 2282 case Decl::ObjCCategoryImpl: 2283 // Categories have properties but don't support synthesize so we 2284 // can ignore them here. 2285 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2286 break; 2287 2288 case Decl::ObjCImplementation: { 2289 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2290 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2291 Context.ResetObjCLayout(OMD->getClassInterface()); 2292 EmitObjCPropertyImplementations(OMD); 2293 EmitObjCIvarInitializations(OMD); 2294 ObjCRuntime->GenerateClass(OMD); 2295 break; 2296 } 2297 case Decl::ObjCMethod: { 2298 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2299 // If this is not a prototype, emit the body. 2300 if (OMD->getBody()) 2301 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2302 break; 2303 } 2304 case Decl::ObjCCompatibleAlias: 2305 // compatibility-alias is a directive and has no code gen. 2306 break; 2307 2308 case Decl::LinkageSpec: 2309 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2310 break; 2311 2312 case Decl::FileScopeAsm: { 2313 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2314 StringRef AsmString = AD->getAsmString()->getString(); 2315 2316 const std::string &S = getModule().getModuleInlineAsm(); 2317 if (S.empty()) 2318 getModule().setModuleInlineAsm(AsmString); 2319 else if (*--S.end() == '\n') 2320 getModule().setModuleInlineAsm(S + AsmString.str()); 2321 else 2322 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2323 break; 2324 } 2325 2326 default: 2327 // Make sure we handled everything we should, every other kind is a 2328 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2329 // function. Need to recode Decl::Kind to do that easily. 2330 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2331 } 2332 } 2333 2334 /// Turns the given pointer into a constant. 2335 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2336 const void *Ptr) { 2337 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2338 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2339 return llvm::ConstantInt::get(i64, PtrInt); 2340 } 2341 2342 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2343 llvm::NamedMDNode *&GlobalMetadata, 2344 GlobalDecl D, 2345 llvm::GlobalValue *Addr) { 2346 if (!GlobalMetadata) 2347 GlobalMetadata = 2348 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2349 2350 // TODO: should we report variant information for ctors/dtors? 2351 llvm::Value *Ops[] = { 2352 Addr, 2353 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2354 }; 2355 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2356 } 2357 2358 /// Emits metadata nodes associating all the global values in the 2359 /// current module with the Decls they came from. This is useful for 2360 /// projects using IR gen as a subroutine. 2361 /// 2362 /// Since there's currently no way to associate an MDNode directly 2363 /// with an llvm::GlobalValue, we create a global named metadata 2364 /// with the name 'clang.global.decl.ptrs'. 2365 void CodeGenModule::EmitDeclMetadata() { 2366 llvm::NamedMDNode *GlobalMetadata = 0; 2367 2368 // StaticLocalDeclMap 2369 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2370 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2371 I != E; ++I) { 2372 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2373 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2374 } 2375 } 2376 2377 /// Emits metadata nodes for all the local variables in the current 2378 /// function. 2379 void CodeGenFunction::EmitDeclMetadata() { 2380 if (LocalDeclMap.empty()) return; 2381 2382 llvm::LLVMContext &Context = getLLVMContext(); 2383 2384 // Find the unique metadata ID for this name. 2385 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2386 2387 llvm::NamedMDNode *GlobalMetadata = 0; 2388 2389 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2390 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2391 const Decl *D = I->first; 2392 llvm::Value *Addr = I->second; 2393 2394 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2395 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2396 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2397 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2398 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2399 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2400 } 2401 } 2402 } 2403 2404 void CodeGenModule::EmitCoverageFile() { 2405 if (!getCodeGenOpts().CoverageFile.empty()) { 2406 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2407 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2408 llvm::LLVMContext &Ctx = TheModule.getContext(); 2409 llvm::MDString *CoverageFile = 2410 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2411 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2412 llvm::MDNode *CU = CUNode->getOperand(i); 2413 llvm::Value *node[] = { CoverageFile, CU }; 2414 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2415 GCov->addOperand(N); 2416 } 2417 } 2418 } 2419 } 2420