1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 SimplifyPersonality(); 559 560 if (getCodeGenOpts().EmitDeclMetadata) 561 EmitDeclMetadata(); 562 563 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 564 EmitCoverageFile(); 565 566 if (DebugInfo) 567 DebugInfo->finalize(); 568 569 EmitVersionIdentMetadata(); 570 571 EmitTargetMetadata(); 572 } 573 574 void CodeGenModule::EmitOpenCLMetadata() { 575 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 576 // opencl.ocl.version named metadata node. 577 llvm::Metadata *OCLVerElts[] = { 578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 579 Int32Ty, LangOpts.OpenCLVersion / 100)), 580 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 581 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 582 llvm::NamedMDNode *OCLVerMD = 583 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 584 llvm::LLVMContext &Ctx = TheModule.getContext(); 585 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 586 } 587 588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 589 // Make sure that this type is translated. 590 Types.UpdateCompletedType(TD); 591 } 592 593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 594 // Make sure that this type is translated. 595 Types.RefreshTypeCacheForClass(RD); 596 } 597 598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 599 if (!TBAA) 600 return nullptr; 601 return TBAA->getTypeInfo(QTy); 602 } 603 604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 605 // Pointee values may have incomplete types, but they shall never be 606 // dereferenced. 607 if (AccessType->isIncompleteType()) 608 return TBAAAccessInfo::getIncompleteInfo(); 609 610 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 611 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 612 } 613 614 TBAAAccessInfo 615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 616 if (!TBAA) 617 return TBAAAccessInfo(); 618 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 619 } 620 621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 622 if (!TBAA) 623 return nullptr; 624 return TBAA->getTBAAStructInfo(QTy); 625 } 626 627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 628 if (!TBAA) 629 return nullptr; 630 return TBAA->getBaseTypeInfo(QTy); 631 } 632 633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 634 if (!TBAA) 635 return nullptr; 636 return TBAA->getAccessTagInfo(Info); 637 } 638 639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 640 TBAAAccessInfo TargetInfo) { 641 if (!TBAA) 642 return TBAAAccessInfo(); 643 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 644 } 645 646 TBAAAccessInfo 647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 648 TBAAAccessInfo InfoB) { 649 if (!TBAA) 650 return TBAAAccessInfo(); 651 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 652 } 653 654 TBAAAccessInfo 655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 656 TBAAAccessInfo SrcInfo) { 657 if (!TBAA) 658 return TBAAAccessInfo(); 659 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 660 } 661 662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 663 TBAAAccessInfo TBAAInfo) { 664 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 665 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 666 } 667 668 void CodeGenModule::DecorateInstructionWithInvariantGroup( 669 llvm::Instruction *I, const CXXRecordDecl *RD) { 670 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 671 llvm::MDNode::get(getLLVMContext(), {})); 672 } 673 674 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 675 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 676 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 677 } 678 679 /// ErrorUnsupported - Print out an error that codegen doesn't support the 680 /// specified stmt yet. 681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 682 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 683 "cannot compile this %0 yet"); 684 std::string Msg = Type; 685 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 686 << Msg << S->getSourceRange(); 687 } 688 689 /// ErrorUnsupported - Print out an error that codegen doesn't support the 690 /// specified decl yet. 691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 692 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 693 "cannot compile this %0 yet"); 694 std::string Msg = Type; 695 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 696 } 697 698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 699 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 700 } 701 702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 703 const NamedDecl *D, 704 ForDefinition_t IsForDefinition) const { 705 if (GV->hasDLLImportStorageClass()) 706 return; 707 // Internal definitions always have default visibility. 708 if (GV->hasLocalLinkage()) { 709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 710 return; 711 } 712 713 // Set visibility for definitions. 714 LinkageInfo LV = D->getLinkageAndVisibility(); 715 if (LV.isVisibilityExplicit() || 716 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 718 } 719 720 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 721 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 722 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 723 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 724 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 725 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 726 } 727 728 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 729 CodeGenOptions::TLSModel M) { 730 switch (M) { 731 case CodeGenOptions::GeneralDynamicTLSModel: 732 return llvm::GlobalVariable::GeneralDynamicTLSModel; 733 case CodeGenOptions::LocalDynamicTLSModel: 734 return llvm::GlobalVariable::LocalDynamicTLSModel; 735 case CodeGenOptions::InitialExecTLSModel: 736 return llvm::GlobalVariable::InitialExecTLSModel; 737 case CodeGenOptions::LocalExecTLSModel: 738 return llvm::GlobalVariable::LocalExecTLSModel; 739 } 740 llvm_unreachable("Invalid TLS model!"); 741 } 742 743 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 744 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 745 746 llvm::GlobalValue::ThreadLocalMode TLM; 747 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 748 749 // Override the TLS model if it is explicitly specified. 750 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 751 TLM = GetLLVMTLSModel(Attr->getModel()); 752 } 753 754 GV->setThreadLocalMode(TLM); 755 } 756 757 static void AppendTargetMangling(const CodeGenModule &CGM, 758 const TargetAttr *Attr, raw_ostream &Out) { 759 if (Attr->isDefaultVersion()) 760 return; 761 762 Out << '.'; 763 const auto &Target = CGM.getTarget(); 764 TargetAttr::ParsedTargetAttr Info = 765 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 766 // Multiversioning doesn't allow "no-${feature}", so we can 767 // only have "+" prefixes here. 768 assert(LHS.startswith("+") && RHS.startswith("+") && 769 "Features should always have a prefix."); 770 return Target.multiVersionSortPriority(LHS.substr(1)) > 771 Target.multiVersionSortPriority(RHS.substr(1)); 772 }); 773 774 bool IsFirst = true; 775 776 if (!Info.Architecture.empty()) { 777 IsFirst = false; 778 Out << "arch_" << Info.Architecture; 779 } 780 781 for (StringRef Feat : Info.Features) { 782 if (!IsFirst) 783 Out << '_'; 784 IsFirst = false; 785 Out << Feat.substr(1); 786 } 787 } 788 789 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 790 const NamedDecl *ND, 791 bool OmitTargetMangling = false) { 792 SmallString<256> Buffer; 793 llvm::raw_svector_ostream Out(Buffer); 794 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 795 if (MC.shouldMangleDeclName(ND)) { 796 llvm::raw_svector_ostream Out(Buffer); 797 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 798 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 799 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 800 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 801 else 802 MC.mangleName(ND, Out); 803 } else { 804 IdentifierInfo *II = ND->getIdentifier(); 805 assert(II && "Attempt to mangle unnamed decl."); 806 const auto *FD = dyn_cast<FunctionDecl>(ND); 807 808 if (FD && 809 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 810 llvm::raw_svector_ostream Out(Buffer); 811 Out << "__regcall3__" << II->getName(); 812 } else { 813 Out << II->getName(); 814 } 815 } 816 817 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 818 if (FD->isMultiVersion() && !OmitTargetMangling) 819 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 820 return Out.str(); 821 } 822 823 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 824 const FunctionDecl *FD) { 825 if (!FD->isMultiVersion()) 826 return; 827 828 // Get the name of what this would be without the 'target' attribute. This 829 // allows us to lookup the version that was emitted when this wasn't a 830 // multiversion function. 831 std::string NonTargetName = 832 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 833 GlobalDecl OtherGD; 834 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 835 assert(OtherGD.getCanonicalDecl() 836 .getDecl() 837 ->getAsFunction() 838 ->isMultiVersion() && 839 "Other GD should now be a multiversioned function"); 840 // OtherFD is the version of this function that was mangled BEFORE 841 // becoming a MultiVersion function. It potentially needs to be updated. 842 const FunctionDecl *OtherFD = 843 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 844 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 845 // This is so that if the initial version was already the 'default' 846 // version, we don't try to update it. 847 if (OtherName != NonTargetName) { 848 // Remove instead of erase, since others may have stored the StringRef 849 // to this. 850 const auto ExistingRecord = Manglings.find(NonTargetName); 851 if (ExistingRecord != std::end(Manglings)) 852 Manglings.remove(&(*ExistingRecord)); 853 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 854 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 855 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 856 Entry->setName(OtherName); 857 } 858 } 859 } 860 861 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 862 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 863 864 // Some ABIs don't have constructor variants. Make sure that base and 865 // complete constructors get mangled the same. 866 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 867 if (!getTarget().getCXXABI().hasConstructorVariants()) { 868 CXXCtorType OrigCtorType = GD.getCtorType(); 869 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 870 if (OrigCtorType == Ctor_Base) 871 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 872 } 873 } 874 875 auto FoundName = MangledDeclNames.find(CanonicalGD); 876 if (FoundName != MangledDeclNames.end()) 877 return FoundName->second; 878 879 880 // Keep the first result in the case of a mangling collision. 881 const auto *ND = cast<NamedDecl>(GD.getDecl()); 882 auto Result = 883 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 884 return MangledDeclNames[CanonicalGD] = Result.first->first(); 885 } 886 887 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 888 const BlockDecl *BD) { 889 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 890 const Decl *D = GD.getDecl(); 891 892 SmallString<256> Buffer; 893 llvm::raw_svector_ostream Out(Buffer); 894 if (!D) 895 MangleCtx.mangleGlobalBlock(BD, 896 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 897 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 898 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 899 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 900 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 901 else 902 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 903 904 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 905 return Result.first->first(); 906 } 907 908 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 909 return getModule().getNamedValue(Name); 910 } 911 912 /// AddGlobalCtor - Add a function to the list that will be called before 913 /// main() runs. 914 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 915 llvm::Constant *AssociatedData) { 916 // FIXME: Type coercion of void()* types. 917 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 918 } 919 920 /// AddGlobalDtor - Add a function to the list that will be called 921 /// when the module is unloaded. 922 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 923 // FIXME: Type coercion of void()* types. 924 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 925 } 926 927 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 928 if (Fns.empty()) return; 929 930 // Ctor function type is void()*. 931 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 932 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 933 934 // Get the type of a ctor entry, { i32, void ()*, i8* }. 935 llvm::StructType *CtorStructTy = llvm::StructType::get( 936 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 937 938 // Construct the constructor and destructor arrays. 939 ConstantInitBuilder builder(*this); 940 auto ctors = builder.beginArray(CtorStructTy); 941 for (const auto &I : Fns) { 942 auto ctor = ctors.beginStruct(CtorStructTy); 943 ctor.addInt(Int32Ty, I.Priority); 944 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 945 if (I.AssociatedData) 946 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 947 else 948 ctor.addNullPointer(VoidPtrTy); 949 ctor.finishAndAddTo(ctors); 950 } 951 952 auto list = 953 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 954 /*constant*/ false, 955 llvm::GlobalValue::AppendingLinkage); 956 957 // The LTO linker doesn't seem to like it when we set an alignment 958 // on appending variables. Take it off as a workaround. 959 list->setAlignment(0); 960 961 Fns.clear(); 962 } 963 964 llvm::GlobalValue::LinkageTypes 965 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 966 const auto *D = cast<FunctionDecl>(GD.getDecl()); 967 968 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 969 970 if (isa<CXXDestructorDecl>(D) && 971 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 972 GD.getDtorType())) { 973 // Destructor variants in the Microsoft C++ ABI are always internal or 974 // linkonce_odr thunks emitted on an as-needed basis. 975 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 976 : llvm::GlobalValue::LinkOnceODRLinkage; 977 } 978 979 if (isa<CXXConstructorDecl>(D) && 980 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 981 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 982 // Our approach to inheriting constructors is fundamentally different from 983 // that used by the MS ABI, so keep our inheriting constructor thunks 984 // internal rather than trying to pick an unambiguous mangling for them. 985 return llvm::GlobalValue::InternalLinkage; 986 } 987 988 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 989 } 990 991 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 992 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 993 994 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 995 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 996 // Don't dllexport/import destructor thunks. 997 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 998 return; 999 } 1000 } 1001 1002 if (FD->hasAttr<DLLImportAttr>()) 1003 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1004 else if (FD->hasAttr<DLLExportAttr>()) 1005 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1006 else 1007 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 1008 } 1009 1010 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1011 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1012 if (!MDS) return nullptr; 1013 1014 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1015 } 1016 1017 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 1018 llvm::Function *F) { 1019 setNonAliasAttributes(D, F); 1020 } 1021 1022 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1023 const CGFunctionInfo &Info, 1024 llvm::Function *F) { 1025 unsigned CallingConv; 1026 llvm::AttributeList PAL; 1027 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1028 F->setAttributes(PAL); 1029 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1030 } 1031 1032 /// Determines whether the language options require us to model 1033 /// unwind exceptions. We treat -fexceptions as mandating this 1034 /// except under the fragile ObjC ABI with only ObjC exceptions 1035 /// enabled. This means, for example, that C with -fexceptions 1036 /// enables this. 1037 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1038 // If exceptions are completely disabled, obviously this is false. 1039 if (!LangOpts.Exceptions) return false; 1040 1041 // If C++ exceptions are enabled, this is true. 1042 if (LangOpts.CXXExceptions) return true; 1043 1044 // If ObjC exceptions are enabled, this depends on the ABI. 1045 if (LangOpts.ObjCExceptions) { 1046 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1047 } 1048 1049 return true; 1050 } 1051 1052 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1053 llvm::Function *F) { 1054 llvm::AttrBuilder B; 1055 1056 if (CodeGenOpts.UnwindTables) 1057 B.addAttribute(llvm::Attribute::UWTable); 1058 1059 if (!hasUnwindExceptions(LangOpts)) 1060 B.addAttribute(llvm::Attribute::NoUnwind); 1061 1062 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1063 B.addAttribute(llvm::Attribute::StackProtect); 1064 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1065 B.addAttribute(llvm::Attribute::StackProtectStrong); 1066 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1067 B.addAttribute(llvm::Attribute::StackProtectReq); 1068 1069 if (!D) { 1070 // If we don't have a declaration to control inlining, the function isn't 1071 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1072 // disabled, mark the function as noinline. 1073 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1074 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1075 B.addAttribute(llvm::Attribute::NoInline); 1076 1077 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1078 return; 1079 } 1080 1081 // Track whether we need to add the optnone LLVM attribute, 1082 // starting with the default for this optimization level. 1083 bool ShouldAddOptNone = 1084 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1085 // We can't add optnone in the following cases, it won't pass the verifier. 1086 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1087 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1088 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1089 1090 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1091 B.addAttribute(llvm::Attribute::OptimizeNone); 1092 1093 // OptimizeNone implies noinline; we should not be inlining such functions. 1094 B.addAttribute(llvm::Attribute::NoInline); 1095 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1096 "OptimizeNone and AlwaysInline on same function!"); 1097 1098 // We still need to handle naked functions even though optnone subsumes 1099 // much of their semantics. 1100 if (D->hasAttr<NakedAttr>()) 1101 B.addAttribute(llvm::Attribute::Naked); 1102 1103 // OptimizeNone wins over OptimizeForSize and MinSize. 1104 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1105 F->removeFnAttr(llvm::Attribute::MinSize); 1106 } else if (D->hasAttr<NakedAttr>()) { 1107 // Naked implies noinline: we should not be inlining such functions. 1108 B.addAttribute(llvm::Attribute::Naked); 1109 B.addAttribute(llvm::Attribute::NoInline); 1110 } else if (D->hasAttr<NoDuplicateAttr>()) { 1111 B.addAttribute(llvm::Attribute::NoDuplicate); 1112 } else if (D->hasAttr<NoInlineAttr>()) { 1113 B.addAttribute(llvm::Attribute::NoInline); 1114 } else if (D->hasAttr<AlwaysInlineAttr>() && 1115 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1116 // (noinline wins over always_inline, and we can't specify both in IR) 1117 B.addAttribute(llvm::Attribute::AlwaysInline); 1118 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1119 // If we're not inlining, then force everything that isn't always_inline to 1120 // carry an explicit noinline attribute. 1121 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1122 B.addAttribute(llvm::Attribute::NoInline); 1123 } else { 1124 // Otherwise, propagate the inline hint attribute and potentially use its 1125 // absence to mark things as noinline. 1126 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1127 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1128 return Redecl->isInlineSpecified(); 1129 })) { 1130 B.addAttribute(llvm::Attribute::InlineHint); 1131 } else if (CodeGenOpts.getInlining() == 1132 CodeGenOptions::OnlyHintInlining && 1133 !FD->isInlined() && 1134 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1135 B.addAttribute(llvm::Attribute::NoInline); 1136 } 1137 } 1138 } 1139 1140 // Add other optimization related attributes if we are optimizing this 1141 // function. 1142 if (!D->hasAttr<OptimizeNoneAttr>()) { 1143 if (D->hasAttr<ColdAttr>()) { 1144 if (!ShouldAddOptNone) 1145 B.addAttribute(llvm::Attribute::OptimizeForSize); 1146 B.addAttribute(llvm::Attribute::Cold); 1147 } 1148 1149 if (D->hasAttr<MinSizeAttr>()) 1150 B.addAttribute(llvm::Attribute::MinSize); 1151 } 1152 1153 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1154 1155 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1156 if (alignment) 1157 F->setAlignment(alignment); 1158 1159 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1160 // reserve a bit for differentiating between virtual and non-virtual member 1161 // functions. If the current target's C++ ABI requires this and this is a 1162 // member function, set its alignment accordingly. 1163 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1164 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1165 F->setAlignment(2); 1166 } 1167 1168 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1169 if (CodeGenOpts.SanitizeCfiCrossDso) 1170 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1171 CreateFunctionTypeMetadata(FD, F); 1172 } 1173 1174 void CodeGenModule::SetCommonAttributes(const Decl *D, 1175 llvm::GlobalValue *GV) { 1176 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1177 setGlobalVisibility(GV, ND, ForDefinition); 1178 else 1179 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1180 1181 if (D && D->hasAttr<UsedAttr>()) 1182 addUsedGlobal(GV); 1183 } 1184 1185 void CodeGenModule::setAliasAttributes(const Decl *D, 1186 llvm::GlobalValue *GV) { 1187 SetCommonAttributes(D, GV); 1188 1189 // Process the dllexport attribute based on whether the original definition 1190 // (not necessarily the aliasee) was exported. 1191 if (D->hasAttr<DLLExportAttr>()) 1192 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1193 } 1194 1195 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1196 llvm::GlobalObject *GO) { 1197 SetCommonAttributes(D, GO); 1198 1199 if (D) { 1200 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1201 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1202 GV->addAttribute("bss-section", SA->getName()); 1203 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1204 GV->addAttribute("data-section", SA->getName()); 1205 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1206 GV->addAttribute("rodata-section", SA->getName()); 1207 } 1208 1209 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1210 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1211 if (!D->getAttr<SectionAttr>()) 1212 F->addFnAttr("implicit-section-name", SA->getName()); 1213 } 1214 1215 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1216 GO->setSection(SA->getName()); 1217 } 1218 1219 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1220 } 1221 1222 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1223 llvm::Function *F, 1224 const CGFunctionInfo &FI) { 1225 SetLLVMFunctionAttributes(D, FI, F); 1226 SetLLVMFunctionAttributesForDefinition(D, F); 1227 1228 F->setLinkage(llvm::Function::InternalLinkage); 1229 1230 setNonAliasAttributes(D, F); 1231 } 1232 1233 static void setLinkageForGV(llvm::GlobalValue *GV, 1234 const NamedDecl *ND) { 1235 // Set linkage and visibility in case we never see a definition. 1236 LinkageInfo LV = ND->getLinkageAndVisibility(); 1237 if (!isExternallyVisible(LV.getLinkage())) { 1238 // Don't set internal linkage on declarations. 1239 } else { 1240 if (ND->hasAttr<DLLImportAttr>()) { 1241 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1242 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1243 } else if (ND->hasAttr<DLLExportAttr>()) { 1244 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1245 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1246 // "extern_weak" is overloaded in LLVM; we probably should have 1247 // separate linkage types for this. 1248 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1249 } 1250 } 1251 } 1252 1253 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1254 llvm::Function *F) { 1255 // Only if we are checking indirect calls. 1256 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1257 return; 1258 1259 // Non-static class methods are handled via vtable pointer checks elsewhere. 1260 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1261 return; 1262 1263 // Additionally, if building with cross-DSO support... 1264 if (CodeGenOpts.SanitizeCfiCrossDso) { 1265 // Skip available_externally functions. They won't be codegen'ed in the 1266 // current module anyway. 1267 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1268 return; 1269 } 1270 1271 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1272 F->addTypeMetadata(0, MD); 1273 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1274 1275 // Emit a hash-based bit set entry for cross-DSO calls. 1276 if (CodeGenOpts.SanitizeCfiCrossDso) 1277 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1278 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1279 } 1280 1281 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1282 bool IsIncompleteFunction, 1283 bool IsThunk, 1284 ForDefinition_t IsForDefinition) { 1285 1286 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1287 // If this is an intrinsic function, set the function's attributes 1288 // to the intrinsic's attributes. 1289 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1290 return; 1291 } 1292 1293 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1294 1295 if (!IsIncompleteFunction) { 1296 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1297 // Setup target-specific attributes. 1298 if (!IsForDefinition) 1299 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1300 NotForDefinition); 1301 } 1302 1303 // Add the Returned attribute for "this", except for iOS 5 and earlier 1304 // where substantial code, including the libstdc++ dylib, was compiled with 1305 // GCC and does not actually return "this". 1306 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1307 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1308 assert(!F->arg_empty() && 1309 F->arg_begin()->getType() 1310 ->canLosslesslyBitCastTo(F->getReturnType()) && 1311 "unexpected this return"); 1312 F->addAttribute(1, llvm::Attribute::Returned); 1313 } 1314 1315 // Only a few attributes are set on declarations; these may later be 1316 // overridden by a definition. 1317 1318 setLinkageForGV(F, FD); 1319 setGlobalVisibility(F, FD, NotForDefinition); 1320 1321 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1322 F->addFnAttr("implicit-section-name"); 1323 } 1324 1325 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1326 F->setSection(SA->getName()); 1327 1328 if (FD->isReplaceableGlobalAllocationFunction()) { 1329 // A replaceable global allocation function does not act like a builtin by 1330 // default, only if it is invoked by a new-expression or delete-expression. 1331 F->addAttribute(llvm::AttributeList::FunctionIndex, 1332 llvm::Attribute::NoBuiltin); 1333 1334 // A sane operator new returns a non-aliasing pointer. 1335 // FIXME: Also add NonNull attribute to the return value 1336 // for the non-nothrow forms? 1337 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1338 if (getCodeGenOpts().AssumeSaneOperatorNew && 1339 (Kind == OO_New || Kind == OO_Array_New)) 1340 F->addAttribute(llvm::AttributeList::ReturnIndex, 1341 llvm::Attribute::NoAlias); 1342 } 1343 1344 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1345 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1346 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1347 if (MD->isVirtual()) 1348 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1349 1350 // Don't emit entries for function declarations in the cross-DSO mode. This 1351 // is handled with better precision by the receiving DSO. 1352 if (!CodeGenOpts.SanitizeCfiCrossDso) 1353 CreateFunctionTypeMetadata(FD, F); 1354 1355 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1356 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1357 } 1358 1359 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1360 assert(!GV->isDeclaration() && 1361 "Only globals with definition can force usage."); 1362 LLVMUsed.emplace_back(GV); 1363 } 1364 1365 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1366 assert(!GV->isDeclaration() && 1367 "Only globals with definition can force usage."); 1368 LLVMCompilerUsed.emplace_back(GV); 1369 } 1370 1371 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1372 std::vector<llvm::WeakTrackingVH> &List) { 1373 // Don't create llvm.used if there is no need. 1374 if (List.empty()) 1375 return; 1376 1377 // Convert List to what ConstantArray needs. 1378 SmallVector<llvm::Constant*, 8> UsedArray; 1379 UsedArray.resize(List.size()); 1380 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1381 UsedArray[i] = 1382 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1383 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1384 } 1385 1386 if (UsedArray.empty()) 1387 return; 1388 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1389 1390 auto *GV = new llvm::GlobalVariable( 1391 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1392 llvm::ConstantArray::get(ATy, UsedArray), Name); 1393 1394 GV->setSection("llvm.metadata"); 1395 } 1396 1397 void CodeGenModule::emitLLVMUsed() { 1398 emitUsed(*this, "llvm.used", LLVMUsed); 1399 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1400 } 1401 1402 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1403 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1404 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1405 } 1406 1407 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1408 llvm::SmallString<32> Opt; 1409 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1410 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1411 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1412 } 1413 1414 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1415 auto &C = getLLVMContext(); 1416 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1417 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1418 } 1419 1420 void CodeGenModule::AddDependentLib(StringRef Lib) { 1421 llvm::SmallString<24> Opt; 1422 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1423 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1424 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1425 } 1426 1427 /// \brief Add link options implied by the given module, including modules 1428 /// it depends on, using a postorder walk. 1429 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1430 SmallVectorImpl<llvm::MDNode *> &Metadata, 1431 llvm::SmallPtrSet<Module *, 16> &Visited) { 1432 // Import this module's parent. 1433 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1434 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1435 } 1436 1437 // Import this module's dependencies. 1438 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1439 if (Visited.insert(Mod->Imports[I - 1]).second) 1440 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1441 } 1442 1443 // Add linker options to link against the libraries/frameworks 1444 // described by this module. 1445 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1446 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1447 // Link against a framework. Frameworks are currently Darwin only, so we 1448 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1449 if (Mod->LinkLibraries[I-1].IsFramework) { 1450 llvm::Metadata *Args[2] = { 1451 llvm::MDString::get(Context, "-framework"), 1452 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1453 1454 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1455 continue; 1456 } 1457 1458 // Link against a library. 1459 llvm::SmallString<24> Opt; 1460 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1461 Mod->LinkLibraries[I-1].Library, Opt); 1462 auto *OptString = llvm::MDString::get(Context, Opt); 1463 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1464 } 1465 } 1466 1467 void CodeGenModule::EmitModuleLinkOptions() { 1468 // Collect the set of all of the modules we want to visit to emit link 1469 // options, which is essentially the imported modules and all of their 1470 // non-explicit child modules. 1471 llvm::SetVector<clang::Module *> LinkModules; 1472 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1473 SmallVector<clang::Module *, 16> Stack; 1474 1475 // Seed the stack with imported modules. 1476 for (Module *M : ImportedModules) { 1477 // Do not add any link flags when an implementation TU of a module imports 1478 // a header of that same module. 1479 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1480 !getLangOpts().isCompilingModule()) 1481 continue; 1482 if (Visited.insert(M).second) 1483 Stack.push_back(M); 1484 } 1485 1486 // Find all of the modules to import, making a little effort to prune 1487 // non-leaf modules. 1488 while (!Stack.empty()) { 1489 clang::Module *Mod = Stack.pop_back_val(); 1490 1491 bool AnyChildren = false; 1492 1493 // Visit the submodules of this module. 1494 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1495 SubEnd = Mod->submodule_end(); 1496 Sub != SubEnd; ++Sub) { 1497 // Skip explicit children; they need to be explicitly imported to be 1498 // linked against. 1499 if ((*Sub)->IsExplicit) 1500 continue; 1501 1502 if (Visited.insert(*Sub).second) { 1503 Stack.push_back(*Sub); 1504 AnyChildren = true; 1505 } 1506 } 1507 1508 // We didn't find any children, so add this module to the list of 1509 // modules to link against. 1510 if (!AnyChildren) { 1511 LinkModules.insert(Mod); 1512 } 1513 } 1514 1515 // Add link options for all of the imported modules in reverse topological 1516 // order. We don't do anything to try to order import link flags with respect 1517 // to linker options inserted by things like #pragma comment(). 1518 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1519 Visited.clear(); 1520 for (Module *M : LinkModules) 1521 if (Visited.insert(M).second) 1522 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1523 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1524 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1525 1526 // Add the linker options metadata flag. 1527 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1528 for (auto *MD : LinkerOptionsMetadata) 1529 NMD->addOperand(MD); 1530 } 1531 1532 void CodeGenModule::EmitDeferred() { 1533 // Emit code for any potentially referenced deferred decls. Since a 1534 // previously unused static decl may become used during the generation of code 1535 // for a static function, iterate until no changes are made. 1536 1537 if (!DeferredVTables.empty()) { 1538 EmitDeferredVTables(); 1539 1540 // Emitting a vtable doesn't directly cause more vtables to 1541 // become deferred, although it can cause functions to be 1542 // emitted that then need those vtables. 1543 assert(DeferredVTables.empty()); 1544 } 1545 1546 // Stop if we're out of both deferred vtables and deferred declarations. 1547 if (DeferredDeclsToEmit.empty()) 1548 return; 1549 1550 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1551 // work, it will not interfere with this. 1552 std::vector<GlobalDecl> CurDeclsToEmit; 1553 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1554 1555 for (GlobalDecl &D : CurDeclsToEmit) { 1556 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1557 // to get GlobalValue with exactly the type we need, not something that 1558 // might had been created for another decl with the same mangled name but 1559 // different type. 1560 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1561 GetAddrOfGlobal(D, ForDefinition)); 1562 1563 // In case of different address spaces, we may still get a cast, even with 1564 // IsForDefinition equal to true. Query mangled names table to get 1565 // GlobalValue. 1566 if (!GV) 1567 GV = GetGlobalValue(getMangledName(D)); 1568 1569 // Make sure GetGlobalValue returned non-null. 1570 assert(GV); 1571 1572 // Check to see if we've already emitted this. This is necessary 1573 // for a couple of reasons: first, decls can end up in the 1574 // deferred-decls queue multiple times, and second, decls can end 1575 // up with definitions in unusual ways (e.g. by an extern inline 1576 // function acquiring a strong function redefinition). Just 1577 // ignore these cases. 1578 if (!GV->isDeclaration()) 1579 continue; 1580 1581 // Otherwise, emit the definition and move on to the next one. 1582 EmitGlobalDefinition(D, GV); 1583 1584 // If we found out that we need to emit more decls, do that recursively. 1585 // This has the advantage that the decls are emitted in a DFS and related 1586 // ones are close together, which is convenient for testing. 1587 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1588 EmitDeferred(); 1589 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1590 } 1591 } 1592 } 1593 1594 void CodeGenModule::EmitVTablesOpportunistically() { 1595 // Try to emit external vtables as available_externally if they have emitted 1596 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1597 // is not allowed to create new references to things that need to be emitted 1598 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1599 1600 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1601 && "Only emit opportunistic vtables with optimizations"); 1602 1603 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1604 assert(getVTables().isVTableExternal(RD) && 1605 "This queue should only contain external vtables"); 1606 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1607 VTables.GenerateClassData(RD); 1608 } 1609 OpportunisticVTables.clear(); 1610 } 1611 1612 void CodeGenModule::EmitGlobalAnnotations() { 1613 if (Annotations.empty()) 1614 return; 1615 1616 // Create a new global variable for the ConstantStruct in the Module. 1617 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1618 Annotations[0]->getType(), Annotations.size()), Annotations); 1619 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1620 llvm::GlobalValue::AppendingLinkage, 1621 Array, "llvm.global.annotations"); 1622 gv->setSection(AnnotationSection); 1623 } 1624 1625 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1626 llvm::Constant *&AStr = AnnotationStrings[Str]; 1627 if (AStr) 1628 return AStr; 1629 1630 // Not found yet, create a new global. 1631 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1632 auto *gv = 1633 new llvm::GlobalVariable(getModule(), s->getType(), true, 1634 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1635 gv->setSection(AnnotationSection); 1636 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1637 AStr = gv; 1638 return gv; 1639 } 1640 1641 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1642 SourceManager &SM = getContext().getSourceManager(); 1643 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1644 if (PLoc.isValid()) 1645 return EmitAnnotationString(PLoc.getFilename()); 1646 return EmitAnnotationString(SM.getBufferName(Loc)); 1647 } 1648 1649 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1650 SourceManager &SM = getContext().getSourceManager(); 1651 PresumedLoc PLoc = SM.getPresumedLoc(L); 1652 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1653 SM.getExpansionLineNumber(L); 1654 return llvm::ConstantInt::get(Int32Ty, LineNo); 1655 } 1656 1657 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1658 const AnnotateAttr *AA, 1659 SourceLocation L) { 1660 // Get the globals for file name, annotation, and the line number. 1661 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1662 *UnitGV = EmitAnnotationUnit(L), 1663 *LineNoCst = EmitAnnotationLineNo(L); 1664 1665 // Create the ConstantStruct for the global annotation. 1666 llvm::Constant *Fields[4] = { 1667 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1668 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1669 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1670 LineNoCst 1671 }; 1672 return llvm::ConstantStruct::getAnon(Fields); 1673 } 1674 1675 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1676 llvm::GlobalValue *GV) { 1677 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1678 // Get the struct elements for these annotations. 1679 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1680 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1681 } 1682 1683 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1684 llvm::Function *Fn, 1685 SourceLocation Loc) const { 1686 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1687 // Blacklist by function name. 1688 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1689 return true; 1690 // Blacklist by location. 1691 if (Loc.isValid()) 1692 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1693 // If location is unknown, this may be a compiler-generated function. Assume 1694 // it's located in the main file. 1695 auto &SM = Context.getSourceManager(); 1696 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1697 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1698 } 1699 return false; 1700 } 1701 1702 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1703 SourceLocation Loc, QualType Ty, 1704 StringRef Category) const { 1705 // For now globals can be blacklisted only in ASan and KASan. 1706 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1707 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1708 if (!EnabledAsanMask) 1709 return false; 1710 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1711 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1712 return true; 1713 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1714 return true; 1715 // Check global type. 1716 if (!Ty.isNull()) { 1717 // Drill down the array types: if global variable of a fixed type is 1718 // blacklisted, we also don't instrument arrays of them. 1719 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1720 Ty = AT->getElementType(); 1721 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1722 // We allow to blacklist only record types (classes, structs etc.) 1723 if (Ty->isRecordType()) { 1724 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1725 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1726 return true; 1727 } 1728 } 1729 return false; 1730 } 1731 1732 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1733 StringRef Category) const { 1734 if (!LangOpts.XRayInstrument) 1735 return false; 1736 const auto &XRayFilter = getContext().getXRayFilter(); 1737 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1738 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1739 if (Loc.isValid()) 1740 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1741 if (Attr == ImbueAttr::NONE) 1742 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1743 switch (Attr) { 1744 case ImbueAttr::NONE: 1745 return false; 1746 case ImbueAttr::ALWAYS: 1747 Fn->addFnAttr("function-instrument", "xray-always"); 1748 break; 1749 case ImbueAttr::ALWAYS_ARG1: 1750 Fn->addFnAttr("function-instrument", "xray-always"); 1751 Fn->addFnAttr("xray-log-args", "1"); 1752 break; 1753 case ImbueAttr::NEVER: 1754 Fn->addFnAttr("function-instrument", "xray-never"); 1755 break; 1756 } 1757 return true; 1758 } 1759 1760 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1761 // Never defer when EmitAllDecls is specified. 1762 if (LangOpts.EmitAllDecls) 1763 return true; 1764 1765 return getContext().DeclMustBeEmitted(Global); 1766 } 1767 1768 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1769 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1770 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1771 // Implicit template instantiations may change linkage if they are later 1772 // explicitly instantiated, so they should not be emitted eagerly. 1773 return false; 1774 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1775 if (Context.getInlineVariableDefinitionKind(VD) == 1776 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1777 // A definition of an inline constexpr static data member may change 1778 // linkage later if it's redeclared outside the class. 1779 return false; 1780 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1781 // codegen for global variables, because they may be marked as threadprivate. 1782 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1783 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1784 return false; 1785 1786 return true; 1787 } 1788 1789 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1790 const CXXUuidofExpr* E) { 1791 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1792 // well-formed. 1793 StringRef Uuid = E->getUuidStr(); 1794 std::string Name = "_GUID_" + Uuid.lower(); 1795 std::replace(Name.begin(), Name.end(), '-', '_'); 1796 1797 // The UUID descriptor should be pointer aligned. 1798 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1799 1800 // Look for an existing global. 1801 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1802 return ConstantAddress(GV, Alignment); 1803 1804 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1805 assert(Init && "failed to initialize as constant"); 1806 1807 auto *GV = new llvm::GlobalVariable( 1808 getModule(), Init->getType(), 1809 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1810 if (supportsCOMDAT()) 1811 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1812 return ConstantAddress(GV, Alignment); 1813 } 1814 1815 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1816 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1817 assert(AA && "No alias?"); 1818 1819 CharUnits Alignment = getContext().getDeclAlign(VD); 1820 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1821 1822 // See if there is already something with the target's name in the module. 1823 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1824 if (Entry) { 1825 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1826 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1827 return ConstantAddress(Ptr, Alignment); 1828 } 1829 1830 llvm::Constant *Aliasee; 1831 if (isa<llvm::FunctionType>(DeclTy)) 1832 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1833 GlobalDecl(cast<FunctionDecl>(VD)), 1834 /*ForVTable=*/false); 1835 else 1836 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1837 llvm::PointerType::getUnqual(DeclTy), 1838 nullptr); 1839 1840 auto *F = cast<llvm::GlobalValue>(Aliasee); 1841 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1842 WeakRefReferences.insert(F); 1843 1844 return ConstantAddress(Aliasee, Alignment); 1845 } 1846 1847 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1848 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1849 1850 // Weak references don't produce any output by themselves. 1851 if (Global->hasAttr<WeakRefAttr>()) 1852 return; 1853 1854 // If this is an alias definition (which otherwise looks like a declaration) 1855 // emit it now. 1856 if (Global->hasAttr<AliasAttr>()) 1857 return EmitAliasDefinition(GD); 1858 1859 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1860 if (Global->hasAttr<IFuncAttr>()) 1861 return emitIFuncDefinition(GD); 1862 1863 // If this is CUDA, be selective about which declarations we emit. 1864 if (LangOpts.CUDA) { 1865 if (LangOpts.CUDAIsDevice) { 1866 if (!Global->hasAttr<CUDADeviceAttr>() && 1867 !Global->hasAttr<CUDAGlobalAttr>() && 1868 !Global->hasAttr<CUDAConstantAttr>() && 1869 !Global->hasAttr<CUDASharedAttr>()) 1870 return; 1871 } else { 1872 // We need to emit host-side 'shadows' for all global 1873 // device-side variables because the CUDA runtime needs their 1874 // size and host-side address in order to provide access to 1875 // their device-side incarnations. 1876 1877 // So device-only functions are the only things we skip. 1878 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1879 Global->hasAttr<CUDADeviceAttr>()) 1880 return; 1881 1882 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1883 "Expected Variable or Function"); 1884 } 1885 } 1886 1887 if (LangOpts.OpenMP) { 1888 // If this is OpenMP device, check if it is legal to emit this global 1889 // normally. 1890 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1891 return; 1892 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1893 if (MustBeEmitted(Global)) 1894 EmitOMPDeclareReduction(DRD); 1895 return; 1896 } 1897 } 1898 1899 // Ignore declarations, they will be emitted on their first use. 1900 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1901 // Forward declarations are emitted lazily on first use. 1902 if (!FD->doesThisDeclarationHaveABody()) { 1903 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1904 return; 1905 1906 StringRef MangledName = getMangledName(GD); 1907 1908 // Compute the function info and LLVM type. 1909 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1910 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1911 1912 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1913 /*DontDefer=*/false); 1914 return; 1915 } 1916 } else { 1917 const auto *VD = cast<VarDecl>(Global); 1918 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1919 // We need to emit device-side global CUDA variables even if a 1920 // variable does not have a definition -- we still need to define 1921 // host-side shadow for it. 1922 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1923 !VD->hasDefinition() && 1924 (VD->hasAttr<CUDAConstantAttr>() || 1925 VD->hasAttr<CUDADeviceAttr>()); 1926 if (!MustEmitForCuda && 1927 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1928 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1929 // If this declaration may have caused an inline variable definition to 1930 // change linkage, make sure that it's emitted. 1931 if (Context.getInlineVariableDefinitionKind(VD) == 1932 ASTContext::InlineVariableDefinitionKind::Strong) 1933 GetAddrOfGlobalVar(VD); 1934 return; 1935 } 1936 } 1937 1938 // Defer code generation to first use when possible, e.g. if this is an inline 1939 // function. If the global must always be emitted, do it eagerly if possible 1940 // to benefit from cache locality. 1941 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1942 // Emit the definition if it can't be deferred. 1943 EmitGlobalDefinition(GD); 1944 return; 1945 } 1946 1947 // If we're deferring emission of a C++ variable with an 1948 // initializer, remember the order in which it appeared in the file. 1949 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1950 cast<VarDecl>(Global)->hasInit()) { 1951 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1952 CXXGlobalInits.push_back(nullptr); 1953 } 1954 1955 StringRef MangledName = getMangledName(GD); 1956 if (GetGlobalValue(MangledName) != nullptr) { 1957 // The value has already been used and should therefore be emitted. 1958 addDeferredDeclToEmit(GD); 1959 } else if (MustBeEmitted(Global)) { 1960 // The value must be emitted, but cannot be emitted eagerly. 1961 assert(!MayBeEmittedEagerly(Global)); 1962 addDeferredDeclToEmit(GD); 1963 } else { 1964 // Otherwise, remember that we saw a deferred decl with this name. The 1965 // first use of the mangled name will cause it to move into 1966 // DeferredDeclsToEmit. 1967 DeferredDecls[MangledName] = GD; 1968 } 1969 } 1970 1971 // Check if T is a class type with a destructor that's not dllimport. 1972 static bool HasNonDllImportDtor(QualType T) { 1973 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1974 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1975 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1976 return true; 1977 1978 return false; 1979 } 1980 1981 namespace { 1982 struct FunctionIsDirectlyRecursive : 1983 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1984 const StringRef Name; 1985 const Builtin::Context &BI; 1986 bool Result; 1987 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1988 Name(N), BI(C), Result(false) { 1989 } 1990 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1991 1992 bool TraverseCallExpr(CallExpr *E) { 1993 const FunctionDecl *FD = E->getDirectCallee(); 1994 if (!FD) 1995 return true; 1996 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1997 if (Attr && Name == Attr->getLabel()) { 1998 Result = true; 1999 return false; 2000 } 2001 unsigned BuiltinID = FD->getBuiltinID(); 2002 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2003 return true; 2004 StringRef BuiltinName = BI.getName(BuiltinID); 2005 if (BuiltinName.startswith("__builtin_") && 2006 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2007 Result = true; 2008 return false; 2009 } 2010 return true; 2011 } 2012 }; 2013 2014 // Make sure we're not referencing non-imported vars or functions. 2015 struct DLLImportFunctionVisitor 2016 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2017 bool SafeToInline = true; 2018 2019 bool shouldVisitImplicitCode() const { return true; } 2020 2021 bool VisitVarDecl(VarDecl *VD) { 2022 if (VD->getTLSKind()) { 2023 // A thread-local variable cannot be imported. 2024 SafeToInline = false; 2025 return SafeToInline; 2026 } 2027 2028 // A variable definition might imply a destructor call. 2029 if (VD->isThisDeclarationADefinition()) 2030 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2031 2032 return SafeToInline; 2033 } 2034 2035 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2036 if (const auto *D = E->getTemporary()->getDestructor()) 2037 SafeToInline = D->hasAttr<DLLImportAttr>(); 2038 return SafeToInline; 2039 } 2040 2041 bool VisitDeclRefExpr(DeclRefExpr *E) { 2042 ValueDecl *VD = E->getDecl(); 2043 if (isa<FunctionDecl>(VD)) 2044 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2045 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2046 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2047 return SafeToInline; 2048 } 2049 2050 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2051 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2052 return SafeToInline; 2053 } 2054 2055 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2056 CXXMethodDecl *M = E->getMethodDecl(); 2057 if (!M) { 2058 // Call through a pointer to member function. This is safe to inline. 2059 SafeToInline = true; 2060 } else { 2061 SafeToInline = M->hasAttr<DLLImportAttr>(); 2062 } 2063 return SafeToInline; 2064 } 2065 2066 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2067 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2068 return SafeToInline; 2069 } 2070 2071 bool VisitCXXNewExpr(CXXNewExpr *E) { 2072 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2073 return SafeToInline; 2074 } 2075 }; 2076 } 2077 2078 // isTriviallyRecursive - Check if this function calls another 2079 // decl that, because of the asm attribute or the other decl being a builtin, 2080 // ends up pointing to itself. 2081 bool 2082 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2083 StringRef Name; 2084 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2085 // asm labels are a special kind of mangling we have to support. 2086 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2087 if (!Attr) 2088 return false; 2089 Name = Attr->getLabel(); 2090 } else { 2091 Name = FD->getName(); 2092 } 2093 2094 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2095 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2096 return Walker.Result; 2097 } 2098 2099 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2100 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2101 return true; 2102 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2103 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2104 return false; 2105 2106 if (F->hasAttr<DLLImportAttr>()) { 2107 // Check whether it would be safe to inline this dllimport function. 2108 DLLImportFunctionVisitor Visitor; 2109 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2110 if (!Visitor.SafeToInline) 2111 return false; 2112 2113 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2114 // Implicit destructor invocations aren't captured in the AST, so the 2115 // check above can't see them. Check for them manually here. 2116 for (const Decl *Member : Dtor->getParent()->decls()) 2117 if (isa<FieldDecl>(Member)) 2118 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2119 return false; 2120 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2121 if (HasNonDllImportDtor(B.getType())) 2122 return false; 2123 } 2124 } 2125 2126 // PR9614. Avoid cases where the source code is lying to us. An available 2127 // externally function should have an equivalent function somewhere else, 2128 // but a function that calls itself is clearly not equivalent to the real 2129 // implementation. 2130 // This happens in glibc's btowc and in some configure checks. 2131 return !isTriviallyRecursive(F); 2132 } 2133 2134 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2135 return CodeGenOpts.OptimizationLevel > 0; 2136 } 2137 2138 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2139 const auto *D = cast<ValueDecl>(GD.getDecl()); 2140 2141 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2142 Context.getSourceManager(), 2143 "Generating code for declaration"); 2144 2145 if (isa<FunctionDecl>(D)) { 2146 // At -O0, don't generate IR for functions with available_externally 2147 // linkage. 2148 if (!shouldEmitFunction(GD)) 2149 return; 2150 2151 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2152 // Make sure to emit the definition(s) before we emit the thunks. 2153 // This is necessary for the generation of certain thunks. 2154 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2155 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2156 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2157 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2158 else 2159 EmitGlobalFunctionDefinition(GD, GV); 2160 2161 if (Method->isVirtual()) 2162 getVTables().EmitThunks(GD); 2163 2164 return; 2165 } 2166 2167 return EmitGlobalFunctionDefinition(GD, GV); 2168 } 2169 2170 if (const auto *VD = dyn_cast<VarDecl>(D)) 2171 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2172 2173 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2174 } 2175 2176 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2177 llvm::Function *NewFn); 2178 2179 void CodeGenModule::emitMultiVersionFunctions() { 2180 for (GlobalDecl GD : MultiVersionFuncs) { 2181 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2182 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2183 getContext().forEachMultiversionedFunctionVersion( 2184 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2185 GlobalDecl CurGD{ 2186 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2187 StringRef MangledName = getMangledName(CurGD); 2188 llvm::Constant *Func = GetGlobalValue(MangledName); 2189 if (!Func) { 2190 if (CurFD->isDefined()) { 2191 EmitGlobalFunctionDefinition(CurGD, nullptr); 2192 Func = GetGlobalValue(MangledName); 2193 } else { 2194 const CGFunctionInfo &FI = 2195 getTypes().arrangeGlobalDeclaration(GD); 2196 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2197 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2198 /*DontDefer=*/false, ForDefinition); 2199 } 2200 assert(Func && "This should have just been created"); 2201 } 2202 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2203 CurFD->getAttr<TargetAttr>()->parse()); 2204 }); 2205 2206 llvm::Function *ResolverFunc = cast<llvm::Function>( 2207 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2208 if (supportsCOMDAT()) 2209 ResolverFunc->setComdat( 2210 getModule().getOrInsertComdat(ResolverFunc->getName())); 2211 std::stable_sort( 2212 Options.begin(), Options.end(), 2213 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2214 CodeGenFunction CGF(*this); 2215 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2216 } 2217 } 2218 2219 /// If an ifunc for the specified mangled name is not in the module, create and 2220 /// return an llvm IFunc Function with the specified type. 2221 llvm::Constant * 2222 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2223 StringRef MangledName, 2224 const FunctionDecl *FD) { 2225 std::string IFuncName = (MangledName + ".ifunc").str(); 2226 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2227 return IFuncGV; 2228 2229 // Since this is the first time we've created this IFunc, make sure 2230 // that we put this multiversioned function into the list to be 2231 // replaced later. 2232 MultiVersionFuncs.push_back(GD); 2233 2234 std::string ResolverName = (MangledName + ".resolver").str(); 2235 llvm::Type *ResolverType = llvm::FunctionType::get( 2236 llvm::PointerType::get(DeclTy, 2237 Context.getTargetAddressSpace(FD->getType())), 2238 false); 2239 llvm::Constant *Resolver = 2240 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2241 /*ForVTable=*/false); 2242 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2243 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2244 GIF->setName(IFuncName); 2245 SetCommonAttributes(FD, GIF); 2246 2247 return GIF; 2248 } 2249 2250 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2251 /// module, create and return an llvm Function with the specified type. If there 2252 /// is something in the module with the specified name, return it potentially 2253 /// bitcasted to the right type. 2254 /// 2255 /// If D is non-null, it specifies a decl that correspond to this. This is used 2256 /// to set the attributes on the function when it is first created. 2257 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2258 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2259 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2260 ForDefinition_t IsForDefinition) { 2261 const Decl *D = GD.getDecl(); 2262 2263 // Any attempts to use a MultiVersion function should result in retrieving 2264 // the iFunc instead. Name Mangling will handle the rest of the changes. 2265 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2266 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2267 UpdateMultiVersionNames(GD, FD); 2268 if (!IsForDefinition) 2269 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2270 } 2271 } 2272 2273 // Lookup the entry, lazily creating it if necessary. 2274 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2275 if (Entry) { 2276 if (WeakRefReferences.erase(Entry)) { 2277 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2278 if (FD && !FD->hasAttr<WeakAttr>()) 2279 Entry->setLinkage(llvm::Function::ExternalLinkage); 2280 } 2281 2282 // Handle dropped DLL attributes. 2283 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2284 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2285 2286 // If there are two attempts to define the same mangled name, issue an 2287 // error. 2288 if (IsForDefinition && !Entry->isDeclaration()) { 2289 GlobalDecl OtherGD; 2290 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2291 // to make sure that we issue an error only once. 2292 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2293 (GD.getCanonicalDecl().getDecl() != 2294 OtherGD.getCanonicalDecl().getDecl()) && 2295 DiagnosedConflictingDefinitions.insert(GD).second) { 2296 getDiags().Report(D->getLocation(), 2297 diag::err_duplicate_mangled_name); 2298 getDiags().Report(OtherGD.getDecl()->getLocation(), 2299 diag::note_previous_definition); 2300 } 2301 } 2302 2303 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2304 (Entry->getType()->getElementType() == Ty)) { 2305 return Entry; 2306 } 2307 2308 // Make sure the result is of the correct type. 2309 // (If function is requested for a definition, we always need to create a new 2310 // function, not just return a bitcast.) 2311 if (!IsForDefinition) 2312 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2313 } 2314 2315 // This function doesn't have a complete type (for example, the return 2316 // type is an incomplete struct). Use a fake type instead, and make 2317 // sure not to try to set attributes. 2318 bool IsIncompleteFunction = false; 2319 2320 llvm::FunctionType *FTy; 2321 if (isa<llvm::FunctionType>(Ty)) { 2322 FTy = cast<llvm::FunctionType>(Ty); 2323 } else { 2324 FTy = llvm::FunctionType::get(VoidTy, false); 2325 IsIncompleteFunction = true; 2326 } 2327 2328 llvm::Function *F = 2329 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2330 Entry ? StringRef() : MangledName, &getModule()); 2331 2332 // If we already created a function with the same mangled name (but different 2333 // type) before, take its name and add it to the list of functions to be 2334 // replaced with F at the end of CodeGen. 2335 // 2336 // This happens if there is a prototype for a function (e.g. "int f()") and 2337 // then a definition of a different type (e.g. "int f(int x)"). 2338 if (Entry) { 2339 F->takeName(Entry); 2340 2341 // This might be an implementation of a function without a prototype, in 2342 // which case, try to do special replacement of calls which match the new 2343 // prototype. The really key thing here is that we also potentially drop 2344 // arguments from the call site so as to make a direct call, which makes the 2345 // inliner happier and suppresses a number of optimizer warnings (!) about 2346 // dropping arguments. 2347 if (!Entry->use_empty()) { 2348 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2349 Entry->removeDeadConstantUsers(); 2350 } 2351 2352 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2353 F, Entry->getType()->getElementType()->getPointerTo()); 2354 addGlobalValReplacement(Entry, BC); 2355 } 2356 2357 assert(F->getName() == MangledName && "name was uniqued!"); 2358 if (D) 2359 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2360 IsForDefinition); 2361 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2362 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2363 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2364 } 2365 2366 if (!DontDefer) { 2367 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2368 // each other bottoming out with the base dtor. Therefore we emit non-base 2369 // dtors on usage, even if there is no dtor definition in the TU. 2370 if (D && isa<CXXDestructorDecl>(D) && 2371 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2372 GD.getDtorType())) 2373 addDeferredDeclToEmit(GD); 2374 2375 // This is the first use or definition of a mangled name. If there is a 2376 // deferred decl with this name, remember that we need to emit it at the end 2377 // of the file. 2378 auto DDI = DeferredDecls.find(MangledName); 2379 if (DDI != DeferredDecls.end()) { 2380 // Move the potentially referenced deferred decl to the 2381 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2382 // don't need it anymore). 2383 addDeferredDeclToEmit(DDI->second); 2384 DeferredDecls.erase(DDI); 2385 2386 // Otherwise, there are cases we have to worry about where we're 2387 // using a declaration for which we must emit a definition but where 2388 // we might not find a top-level definition: 2389 // - member functions defined inline in their classes 2390 // - friend functions defined inline in some class 2391 // - special member functions with implicit definitions 2392 // If we ever change our AST traversal to walk into class methods, 2393 // this will be unnecessary. 2394 // 2395 // We also don't emit a definition for a function if it's going to be an 2396 // entry in a vtable, unless it's already marked as used. 2397 } else if (getLangOpts().CPlusPlus && D) { 2398 // Look for a declaration that's lexically in a record. 2399 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2400 FD = FD->getPreviousDecl()) { 2401 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2402 if (FD->doesThisDeclarationHaveABody()) { 2403 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2404 break; 2405 } 2406 } 2407 } 2408 } 2409 } 2410 2411 // Make sure the result is of the requested type. 2412 if (!IsIncompleteFunction) { 2413 assert(F->getType()->getElementType() == Ty); 2414 return F; 2415 } 2416 2417 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2418 return llvm::ConstantExpr::getBitCast(F, PTy); 2419 } 2420 2421 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2422 /// non-null, then this function will use the specified type if it has to 2423 /// create it (this occurs when we see a definition of the function). 2424 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2425 llvm::Type *Ty, 2426 bool ForVTable, 2427 bool DontDefer, 2428 ForDefinition_t IsForDefinition) { 2429 // If there was no specific requested type, just convert it now. 2430 if (!Ty) { 2431 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2432 auto CanonTy = Context.getCanonicalType(FD->getType()); 2433 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2434 } 2435 2436 StringRef MangledName = getMangledName(GD); 2437 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2438 /*IsThunk=*/false, llvm::AttributeList(), 2439 IsForDefinition); 2440 } 2441 2442 static const FunctionDecl * 2443 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2444 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2445 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2446 2447 IdentifierInfo &CII = C.Idents.get(Name); 2448 for (const auto &Result : DC->lookup(&CII)) 2449 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2450 return FD; 2451 2452 if (!C.getLangOpts().CPlusPlus) 2453 return nullptr; 2454 2455 // Demangle the premangled name from getTerminateFn() 2456 IdentifierInfo &CXXII = 2457 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2458 ? C.Idents.get("terminate") 2459 : C.Idents.get(Name); 2460 2461 for (const auto &N : {"__cxxabiv1", "std"}) { 2462 IdentifierInfo &NS = C.Idents.get(N); 2463 for (const auto &Result : DC->lookup(&NS)) { 2464 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2465 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2466 for (const auto &Result : LSD->lookup(&NS)) 2467 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2468 break; 2469 2470 if (ND) 2471 for (const auto &Result : ND->lookup(&CXXII)) 2472 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2473 return FD; 2474 } 2475 } 2476 2477 return nullptr; 2478 } 2479 2480 /// CreateRuntimeFunction - Create a new runtime function with the specified 2481 /// type and name. 2482 llvm::Constant * 2483 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2484 llvm::AttributeList ExtraAttrs, 2485 bool Local) { 2486 llvm::Constant *C = 2487 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2488 /*DontDefer=*/false, /*IsThunk=*/false, 2489 ExtraAttrs); 2490 2491 if (auto *F = dyn_cast<llvm::Function>(C)) { 2492 if (F->empty()) { 2493 F->setCallingConv(getRuntimeCC()); 2494 2495 if (!Local && getTriple().isOSBinFormatCOFF() && 2496 !getCodeGenOpts().LTOVisibilityPublicStd && 2497 !getTriple().isWindowsGNUEnvironment()) { 2498 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2499 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2500 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2501 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2502 } 2503 } 2504 } 2505 } 2506 2507 return C; 2508 } 2509 2510 /// CreateBuiltinFunction - Create a new builtin function with the specified 2511 /// type and name. 2512 llvm::Constant * 2513 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2514 llvm::AttributeList ExtraAttrs) { 2515 llvm::Constant *C = 2516 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2517 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2518 if (auto *F = dyn_cast<llvm::Function>(C)) 2519 if (F->empty()) 2520 F->setCallingConv(getBuiltinCC()); 2521 return C; 2522 } 2523 2524 /// isTypeConstant - Determine whether an object of this type can be emitted 2525 /// as a constant. 2526 /// 2527 /// If ExcludeCtor is true, the duration when the object's constructor runs 2528 /// will not be considered. The caller will need to verify that the object is 2529 /// not written to during its construction. 2530 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2531 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2532 return false; 2533 2534 if (Context.getLangOpts().CPlusPlus) { 2535 if (const CXXRecordDecl *Record 2536 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2537 return ExcludeCtor && !Record->hasMutableFields() && 2538 Record->hasTrivialDestructor(); 2539 } 2540 2541 return true; 2542 } 2543 2544 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2545 /// create and return an llvm GlobalVariable with the specified type. If there 2546 /// is something in the module with the specified name, return it potentially 2547 /// bitcasted to the right type. 2548 /// 2549 /// If D is non-null, it specifies a decl that correspond to this. This is used 2550 /// to set the attributes on the global when it is first created. 2551 /// 2552 /// If IsForDefinition is true, it is guranteed that an actual global with 2553 /// type Ty will be returned, not conversion of a variable with the same 2554 /// mangled name but some other type. 2555 llvm::Constant * 2556 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2557 llvm::PointerType *Ty, 2558 const VarDecl *D, 2559 ForDefinition_t IsForDefinition) { 2560 // Lookup the entry, lazily creating it if necessary. 2561 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2562 if (Entry) { 2563 if (WeakRefReferences.erase(Entry)) { 2564 if (D && !D->hasAttr<WeakAttr>()) 2565 Entry->setLinkage(llvm::Function::ExternalLinkage); 2566 } 2567 2568 // Handle dropped DLL attributes. 2569 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2570 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2571 2572 if (Entry->getType() == Ty) 2573 return Entry; 2574 2575 // If there are two attempts to define the same mangled name, issue an 2576 // error. 2577 if (IsForDefinition && !Entry->isDeclaration()) { 2578 GlobalDecl OtherGD; 2579 const VarDecl *OtherD; 2580 2581 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2582 // to make sure that we issue an error only once. 2583 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2584 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2585 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2586 OtherD->hasInit() && 2587 DiagnosedConflictingDefinitions.insert(D).second) { 2588 getDiags().Report(D->getLocation(), 2589 diag::err_duplicate_mangled_name); 2590 getDiags().Report(OtherGD.getDecl()->getLocation(), 2591 diag::note_previous_definition); 2592 } 2593 } 2594 2595 // Make sure the result is of the correct type. 2596 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2597 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2598 2599 // (If global is requested for a definition, we always need to create a new 2600 // global, not just return a bitcast.) 2601 if (!IsForDefinition) 2602 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2603 } 2604 2605 auto AddrSpace = GetGlobalVarAddressSpace(D); 2606 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2607 2608 auto *GV = new llvm::GlobalVariable( 2609 getModule(), Ty->getElementType(), false, 2610 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2611 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2612 2613 // If we already created a global with the same mangled name (but different 2614 // type) before, take its name and remove it from its parent. 2615 if (Entry) { 2616 GV->takeName(Entry); 2617 2618 if (!Entry->use_empty()) { 2619 llvm::Constant *NewPtrForOldDecl = 2620 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2621 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2622 } 2623 2624 Entry->eraseFromParent(); 2625 } 2626 2627 // This is the first use or definition of a mangled name. If there is a 2628 // deferred decl with this name, remember that we need to emit it at the end 2629 // of the file. 2630 auto DDI = DeferredDecls.find(MangledName); 2631 if (DDI != DeferredDecls.end()) { 2632 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2633 // list, and remove it from DeferredDecls (since we don't need it anymore). 2634 addDeferredDeclToEmit(DDI->second); 2635 DeferredDecls.erase(DDI); 2636 } 2637 2638 // Handle things which are present even on external declarations. 2639 if (D) { 2640 // FIXME: This code is overly simple and should be merged with other global 2641 // handling. 2642 GV->setConstant(isTypeConstant(D->getType(), false)); 2643 2644 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2645 2646 setLinkageForGV(GV, D); 2647 setGlobalVisibility(GV, D, NotForDefinition); 2648 2649 if (D->getTLSKind()) { 2650 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2651 CXXThreadLocals.push_back(D); 2652 setTLSMode(GV, *D); 2653 } 2654 2655 // If required by the ABI, treat declarations of static data members with 2656 // inline initializers as definitions. 2657 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2658 EmitGlobalVarDefinition(D); 2659 } 2660 2661 // Emit section information for extern variables. 2662 if (D->hasExternalStorage()) { 2663 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2664 GV->setSection(SA->getName()); 2665 } 2666 2667 // Handle XCore specific ABI requirements. 2668 if (getTriple().getArch() == llvm::Triple::xcore && 2669 D->getLanguageLinkage() == CLanguageLinkage && 2670 D->getType().isConstant(Context) && 2671 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2672 GV->setSection(".cp.rodata"); 2673 2674 // Check if we a have a const declaration with an initializer, we may be 2675 // able to emit it as available_externally to expose it's value to the 2676 // optimizer. 2677 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2678 D->getType().isConstQualified() && !GV->hasInitializer() && 2679 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2680 const auto *Record = 2681 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2682 bool HasMutableFields = Record && Record->hasMutableFields(); 2683 if (!HasMutableFields) { 2684 const VarDecl *InitDecl; 2685 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2686 if (InitExpr) { 2687 ConstantEmitter emitter(*this); 2688 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2689 if (Init) { 2690 auto *InitType = Init->getType(); 2691 if (GV->getType()->getElementType() != InitType) { 2692 // The type of the initializer does not match the definition. 2693 // This happens when an initializer has a different type from 2694 // the type of the global (because of padding at the end of a 2695 // structure for instance). 2696 GV->setName(StringRef()); 2697 // Make a new global with the correct type, this is now guaranteed 2698 // to work. 2699 auto *NewGV = cast<llvm::GlobalVariable>( 2700 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2701 2702 // Erase the old global, since it is no longer used. 2703 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2704 GV = NewGV; 2705 } else { 2706 GV->setInitializer(Init); 2707 GV->setConstant(true); 2708 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2709 } 2710 emitter.finalize(GV); 2711 } 2712 } 2713 } 2714 } 2715 } 2716 2717 LangAS ExpectedAS = 2718 D ? D->getType().getAddressSpace() 2719 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2720 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2721 Ty->getPointerAddressSpace()); 2722 if (AddrSpace != ExpectedAS) 2723 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2724 ExpectedAS, Ty); 2725 2726 return GV; 2727 } 2728 2729 llvm::Constant * 2730 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2731 ForDefinition_t IsForDefinition) { 2732 const Decl *D = GD.getDecl(); 2733 if (isa<CXXConstructorDecl>(D)) 2734 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2735 getFromCtorType(GD.getCtorType()), 2736 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2737 /*DontDefer=*/false, IsForDefinition); 2738 else if (isa<CXXDestructorDecl>(D)) 2739 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2740 getFromDtorType(GD.getDtorType()), 2741 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2742 /*DontDefer=*/false, IsForDefinition); 2743 else if (isa<CXXMethodDecl>(D)) { 2744 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2745 cast<CXXMethodDecl>(D)); 2746 auto Ty = getTypes().GetFunctionType(*FInfo); 2747 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2748 IsForDefinition); 2749 } else if (isa<FunctionDecl>(D)) { 2750 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2751 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2752 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2753 IsForDefinition); 2754 } else 2755 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2756 IsForDefinition); 2757 } 2758 2759 llvm::GlobalVariable * 2760 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2761 llvm::Type *Ty, 2762 llvm::GlobalValue::LinkageTypes Linkage) { 2763 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2764 llvm::GlobalVariable *OldGV = nullptr; 2765 2766 if (GV) { 2767 // Check if the variable has the right type. 2768 if (GV->getType()->getElementType() == Ty) 2769 return GV; 2770 2771 // Because C++ name mangling, the only way we can end up with an already 2772 // existing global with the same name is if it has been declared extern "C". 2773 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2774 OldGV = GV; 2775 } 2776 2777 // Create a new variable. 2778 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2779 Linkage, nullptr, Name); 2780 2781 if (OldGV) { 2782 // Replace occurrences of the old variable if needed. 2783 GV->takeName(OldGV); 2784 2785 if (!OldGV->use_empty()) { 2786 llvm::Constant *NewPtrForOldDecl = 2787 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2788 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2789 } 2790 2791 OldGV->eraseFromParent(); 2792 } 2793 2794 if (supportsCOMDAT() && GV->isWeakForLinker() && 2795 !GV->hasAvailableExternallyLinkage()) 2796 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2797 2798 return GV; 2799 } 2800 2801 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2802 /// given global variable. If Ty is non-null and if the global doesn't exist, 2803 /// then it will be created with the specified type instead of whatever the 2804 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2805 /// that an actual global with type Ty will be returned, not conversion of a 2806 /// variable with the same mangled name but some other type. 2807 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2808 llvm::Type *Ty, 2809 ForDefinition_t IsForDefinition) { 2810 assert(D->hasGlobalStorage() && "Not a global variable"); 2811 QualType ASTTy = D->getType(); 2812 if (!Ty) 2813 Ty = getTypes().ConvertTypeForMem(ASTTy); 2814 2815 llvm::PointerType *PTy = 2816 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2817 2818 StringRef MangledName = getMangledName(D); 2819 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2820 } 2821 2822 /// CreateRuntimeVariable - Create a new runtime global variable with the 2823 /// specified type and name. 2824 llvm::Constant * 2825 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2826 StringRef Name) { 2827 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2828 } 2829 2830 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2831 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2832 2833 StringRef MangledName = getMangledName(D); 2834 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2835 2836 // We already have a definition, not declaration, with the same mangled name. 2837 // Emitting of declaration is not required (and actually overwrites emitted 2838 // definition). 2839 if (GV && !GV->isDeclaration()) 2840 return; 2841 2842 // If we have not seen a reference to this variable yet, place it into the 2843 // deferred declarations table to be emitted if needed later. 2844 if (!MustBeEmitted(D) && !GV) { 2845 DeferredDecls[MangledName] = D; 2846 return; 2847 } 2848 2849 // The tentative definition is the only definition. 2850 EmitGlobalVarDefinition(D); 2851 } 2852 2853 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2854 return Context.toCharUnitsFromBits( 2855 getDataLayout().getTypeStoreSizeInBits(Ty)); 2856 } 2857 2858 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2859 LangAS AddrSpace = LangAS::Default; 2860 if (LangOpts.OpenCL) { 2861 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2862 assert(AddrSpace == LangAS::opencl_global || 2863 AddrSpace == LangAS::opencl_constant || 2864 AddrSpace == LangAS::opencl_local || 2865 AddrSpace >= LangAS::FirstTargetAddressSpace); 2866 return AddrSpace; 2867 } 2868 2869 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2870 if (D && D->hasAttr<CUDAConstantAttr>()) 2871 return LangAS::cuda_constant; 2872 else if (D && D->hasAttr<CUDASharedAttr>()) 2873 return LangAS::cuda_shared; 2874 else 2875 return LangAS::cuda_device; 2876 } 2877 2878 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2879 } 2880 2881 template<typename SomeDecl> 2882 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2883 llvm::GlobalValue *GV) { 2884 if (!getLangOpts().CPlusPlus) 2885 return; 2886 2887 // Must have 'used' attribute, or else inline assembly can't rely on 2888 // the name existing. 2889 if (!D->template hasAttr<UsedAttr>()) 2890 return; 2891 2892 // Must have internal linkage and an ordinary name. 2893 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2894 return; 2895 2896 // Must be in an extern "C" context. Entities declared directly within 2897 // a record are not extern "C" even if the record is in such a context. 2898 const SomeDecl *First = D->getFirstDecl(); 2899 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2900 return; 2901 2902 // OK, this is an internal linkage entity inside an extern "C" linkage 2903 // specification. Make a note of that so we can give it the "expected" 2904 // mangled name if nothing else is using that name. 2905 std::pair<StaticExternCMap::iterator, bool> R = 2906 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2907 2908 // If we have multiple internal linkage entities with the same name 2909 // in extern "C" regions, none of them gets that name. 2910 if (!R.second) 2911 R.first->second = nullptr; 2912 } 2913 2914 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2915 if (!CGM.supportsCOMDAT()) 2916 return false; 2917 2918 if (D.hasAttr<SelectAnyAttr>()) 2919 return true; 2920 2921 GVALinkage Linkage; 2922 if (auto *VD = dyn_cast<VarDecl>(&D)) 2923 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2924 else 2925 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2926 2927 switch (Linkage) { 2928 case GVA_Internal: 2929 case GVA_AvailableExternally: 2930 case GVA_StrongExternal: 2931 return false; 2932 case GVA_DiscardableODR: 2933 case GVA_StrongODR: 2934 return true; 2935 } 2936 llvm_unreachable("No such linkage"); 2937 } 2938 2939 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2940 llvm::GlobalObject &GO) { 2941 if (!shouldBeInCOMDAT(*this, D)) 2942 return; 2943 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2944 } 2945 2946 /// Pass IsTentative as true if you want to create a tentative definition. 2947 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2948 bool IsTentative) { 2949 // OpenCL global variables of sampler type are translated to function calls, 2950 // therefore no need to be translated. 2951 QualType ASTTy = D->getType(); 2952 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2953 return; 2954 2955 llvm::Constant *Init = nullptr; 2956 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2957 bool NeedsGlobalCtor = false; 2958 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2959 2960 const VarDecl *InitDecl; 2961 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2962 2963 Optional<ConstantEmitter> emitter; 2964 2965 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2966 // as part of their declaration." Sema has already checked for 2967 // error cases, so we just need to set Init to UndefValue. 2968 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2969 D->hasAttr<CUDASharedAttr>()) 2970 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2971 else if (!InitExpr) { 2972 // This is a tentative definition; tentative definitions are 2973 // implicitly initialized with { 0 }. 2974 // 2975 // Note that tentative definitions are only emitted at the end of 2976 // a translation unit, so they should never have incomplete 2977 // type. In addition, EmitTentativeDefinition makes sure that we 2978 // never attempt to emit a tentative definition if a real one 2979 // exists. A use may still exists, however, so we still may need 2980 // to do a RAUW. 2981 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2982 Init = EmitNullConstant(D->getType()); 2983 } else { 2984 initializedGlobalDecl = GlobalDecl(D); 2985 emitter.emplace(*this); 2986 Init = emitter->tryEmitForInitializer(*InitDecl); 2987 2988 if (!Init) { 2989 QualType T = InitExpr->getType(); 2990 if (D->getType()->isReferenceType()) 2991 T = D->getType(); 2992 2993 if (getLangOpts().CPlusPlus) { 2994 Init = EmitNullConstant(T); 2995 NeedsGlobalCtor = true; 2996 } else { 2997 ErrorUnsupported(D, "static initializer"); 2998 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2999 } 3000 } else { 3001 // We don't need an initializer, so remove the entry for the delayed 3002 // initializer position (just in case this entry was delayed) if we 3003 // also don't need to register a destructor. 3004 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3005 DelayedCXXInitPosition.erase(D); 3006 } 3007 } 3008 3009 llvm::Type* InitType = Init->getType(); 3010 llvm::Constant *Entry = 3011 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3012 3013 // Strip off a bitcast if we got one back. 3014 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3015 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3016 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3017 // All zero index gep. 3018 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3019 Entry = CE->getOperand(0); 3020 } 3021 3022 // Entry is now either a Function or GlobalVariable. 3023 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3024 3025 // We have a definition after a declaration with the wrong type. 3026 // We must make a new GlobalVariable* and update everything that used OldGV 3027 // (a declaration or tentative definition) with the new GlobalVariable* 3028 // (which will be a definition). 3029 // 3030 // This happens if there is a prototype for a global (e.g. 3031 // "extern int x[];") and then a definition of a different type (e.g. 3032 // "int x[10];"). This also happens when an initializer has a different type 3033 // from the type of the global (this happens with unions). 3034 if (!GV || GV->getType()->getElementType() != InitType || 3035 GV->getType()->getAddressSpace() != 3036 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3037 3038 // Move the old entry aside so that we'll create a new one. 3039 Entry->setName(StringRef()); 3040 3041 // Make a new global with the correct type, this is now guaranteed to work. 3042 GV = cast<llvm::GlobalVariable>( 3043 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3044 3045 // Replace all uses of the old global with the new global 3046 llvm::Constant *NewPtrForOldDecl = 3047 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3048 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3049 3050 // Erase the old global, since it is no longer used. 3051 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3052 } 3053 3054 MaybeHandleStaticInExternC(D, GV); 3055 3056 if (D->hasAttr<AnnotateAttr>()) 3057 AddGlobalAnnotations(D, GV); 3058 3059 // Set the llvm linkage type as appropriate. 3060 llvm::GlobalValue::LinkageTypes Linkage = 3061 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3062 3063 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3064 // the device. [...]" 3065 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3066 // __device__, declares a variable that: [...] 3067 // Is accessible from all the threads within the grid and from the host 3068 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3069 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3070 if (GV && LangOpts.CUDA) { 3071 if (LangOpts.CUDAIsDevice) { 3072 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3073 GV->setExternallyInitialized(true); 3074 } else { 3075 // Host-side shadows of external declarations of device-side 3076 // global variables become internal definitions. These have to 3077 // be internal in order to prevent name conflicts with global 3078 // host variables with the same name in a different TUs. 3079 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3080 Linkage = llvm::GlobalValue::InternalLinkage; 3081 3082 // Shadow variables and their properties must be registered 3083 // with CUDA runtime. 3084 unsigned Flags = 0; 3085 if (!D->hasDefinition()) 3086 Flags |= CGCUDARuntime::ExternDeviceVar; 3087 if (D->hasAttr<CUDAConstantAttr>()) 3088 Flags |= CGCUDARuntime::ConstantDeviceVar; 3089 getCUDARuntime().registerDeviceVar(*GV, Flags); 3090 } else if (D->hasAttr<CUDASharedAttr>()) 3091 // __shared__ variables are odd. Shadows do get created, but 3092 // they are not registered with the CUDA runtime, so they 3093 // can't really be used to access their device-side 3094 // counterparts. It's not clear yet whether it's nvcc's bug or 3095 // a feature, but we've got to do the same for compatibility. 3096 Linkage = llvm::GlobalValue::InternalLinkage; 3097 } 3098 } 3099 3100 GV->setInitializer(Init); 3101 if (emitter) emitter->finalize(GV); 3102 3103 // If it is safe to mark the global 'constant', do so now. 3104 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3105 isTypeConstant(D->getType(), true)); 3106 3107 // If it is in a read-only section, mark it 'constant'. 3108 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3109 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3110 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3111 GV->setConstant(true); 3112 } 3113 3114 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3115 3116 3117 // On Darwin, if the normal linkage of a C++ thread_local variable is 3118 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3119 // copies within a linkage unit; otherwise, the backing variable has 3120 // internal linkage and all accesses should just be calls to the 3121 // Itanium-specified entry point, which has the normal linkage of the 3122 // variable. This is to preserve the ability to change the implementation 3123 // behind the scenes. 3124 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3125 Context.getTargetInfo().getTriple().isOSDarwin() && 3126 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3127 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3128 Linkage = llvm::GlobalValue::InternalLinkage; 3129 3130 GV->setLinkage(Linkage); 3131 if (D->hasAttr<DLLImportAttr>()) 3132 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3133 else if (D->hasAttr<DLLExportAttr>()) 3134 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3135 else 3136 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3137 3138 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3139 // common vars aren't constant even if declared const. 3140 GV->setConstant(false); 3141 // Tentative definition of global variables may be initialized with 3142 // non-zero null pointers. In this case they should have weak linkage 3143 // since common linkage must have zero initializer and must not have 3144 // explicit section therefore cannot have non-zero initial value. 3145 if (!GV->getInitializer()->isNullValue()) 3146 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3147 } 3148 3149 setNonAliasAttributes(D, GV); 3150 3151 if (D->getTLSKind() && !GV->isThreadLocal()) { 3152 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3153 CXXThreadLocals.push_back(D); 3154 setTLSMode(GV, *D); 3155 } 3156 3157 maybeSetTrivialComdat(*D, *GV); 3158 3159 // Emit the initializer function if necessary. 3160 if (NeedsGlobalCtor || NeedsGlobalDtor) 3161 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3162 3163 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3164 3165 // Emit global variable debug information. 3166 if (CGDebugInfo *DI = getModuleDebugInfo()) 3167 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3168 DI->EmitGlobalVariable(GV, D); 3169 } 3170 3171 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3172 CodeGenModule &CGM, const VarDecl *D, 3173 bool NoCommon) { 3174 // Don't give variables common linkage if -fno-common was specified unless it 3175 // was overridden by a NoCommon attribute. 3176 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3177 return true; 3178 3179 // C11 6.9.2/2: 3180 // A declaration of an identifier for an object that has file scope without 3181 // an initializer, and without a storage-class specifier or with the 3182 // storage-class specifier static, constitutes a tentative definition. 3183 if (D->getInit() || D->hasExternalStorage()) 3184 return true; 3185 3186 // A variable cannot be both common and exist in a section. 3187 if (D->hasAttr<SectionAttr>()) 3188 return true; 3189 3190 // A variable cannot be both common and exist in a section. 3191 // We dont try to determine which is the right section in the front-end. 3192 // If no specialized section name is applicable, it will resort to default. 3193 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3194 D->hasAttr<PragmaClangDataSectionAttr>() || 3195 D->hasAttr<PragmaClangRodataSectionAttr>()) 3196 return true; 3197 3198 // Thread local vars aren't considered common linkage. 3199 if (D->getTLSKind()) 3200 return true; 3201 3202 // Tentative definitions marked with WeakImportAttr are true definitions. 3203 if (D->hasAttr<WeakImportAttr>()) 3204 return true; 3205 3206 // A variable cannot be both common and exist in a comdat. 3207 if (shouldBeInCOMDAT(CGM, *D)) 3208 return true; 3209 3210 // Declarations with a required alignment do not have common linkage in MSVC 3211 // mode. 3212 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3213 if (D->hasAttr<AlignedAttr>()) 3214 return true; 3215 QualType VarType = D->getType(); 3216 if (Context.isAlignmentRequired(VarType)) 3217 return true; 3218 3219 if (const auto *RT = VarType->getAs<RecordType>()) { 3220 const RecordDecl *RD = RT->getDecl(); 3221 for (const FieldDecl *FD : RD->fields()) { 3222 if (FD->isBitField()) 3223 continue; 3224 if (FD->hasAttr<AlignedAttr>()) 3225 return true; 3226 if (Context.isAlignmentRequired(FD->getType())) 3227 return true; 3228 } 3229 } 3230 } 3231 3232 return false; 3233 } 3234 3235 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3236 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3237 if (Linkage == GVA_Internal) 3238 return llvm::Function::InternalLinkage; 3239 3240 if (D->hasAttr<WeakAttr>()) { 3241 if (IsConstantVariable) 3242 return llvm::GlobalVariable::WeakODRLinkage; 3243 else 3244 return llvm::GlobalVariable::WeakAnyLinkage; 3245 } 3246 3247 // We are guaranteed to have a strong definition somewhere else, 3248 // so we can use available_externally linkage. 3249 if (Linkage == GVA_AvailableExternally) 3250 return llvm::GlobalValue::AvailableExternallyLinkage; 3251 3252 // Note that Apple's kernel linker doesn't support symbol 3253 // coalescing, so we need to avoid linkonce and weak linkages there. 3254 // Normally, this means we just map to internal, but for explicit 3255 // instantiations we'll map to external. 3256 3257 // In C++, the compiler has to emit a definition in every translation unit 3258 // that references the function. We should use linkonce_odr because 3259 // a) if all references in this translation unit are optimized away, we 3260 // don't need to codegen it. b) if the function persists, it needs to be 3261 // merged with other definitions. c) C++ has the ODR, so we know the 3262 // definition is dependable. 3263 if (Linkage == GVA_DiscardableODR) 3264 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3265 : llvm::Function::InternalLinkage; 3266 3267 // An explicit instantiation of a template has weak linkage, since 3268 // explicit instantiations can occur in multiple translation units 3269 // and must all be equivalent. However, we are not allowed to 3270 // throw away these explicit instantiations. 3271 // 3272 // We don't currently support CUDA device code spread out across multiple TUs, 3273 // so say that CUDA templates are either external (for kernels) or internal. 3274 // This lets llvm perform aggressive inter-procedural optimizations. 3275 if (Linkage == GVA_StrongODR) { 3276 if (Context.getLangOpts().AppleKext) 3277 return llvm::Function::ExternalLinkage; 3278 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3279 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3280 : llvm::Function::InternalLinkage; 3281 return llvm::Function::WeakODRLinkage; 3282 } 3283 3284 // C++ doesn't have tentative definitions and thus cannot have common 3285 // linkage. 3286 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3287 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3288 CodeGenOpts.NoCommon)) 3289 return llvm::GlobalVariable::CommonLinkage; 3290 3291 // selectany symbols are externally visible, so use weak instead of 3292 // linkonce. MSVC optimizes away references to const selectany globals, so 3293 // all definitions should be the same and ODR linkage should be used. 3294 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3295 if (D->hasAttr<SelectAnyAttr>()) 3296 return llvm::GlobalVariable::WeakODRLinkage; 3297 3298 // Otherwise, we have strong external linkage. 3299 assert(Linkage == GVA_StrongExternal); 3300 return llvm::GlobalVariable::ExternalLinkage; 3301 } 3302 3303 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3304 const VarDecl *VD, bool IsConstant) { 3305 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3306 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3307 } 3308 3309 /// Replace the uses of a function that was declared with a non-proto type. 3310 /// We want to silently drop extra arguments from call sites 3311 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3312 llvm::Function *newFn) { 3313 // Fast path. 3314 if (old->use_empty()) return; 3315 3316 llvm::Type *newRetTy = newFn->getReturnType(); 3317 SmallVector<llvm::Value*, 4> newArgs; 3318 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3319 3320 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3321 ui != ue; ) { 3322 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3323 llvm::User *user = use->getUser(); 3324 3325 // Recognize and replace uses of bitcasts. Most calls to 3326 // unprototyped functions will use bitcasts. 3327 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3328 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3329 replaceUsesOfNonProtoConstant(bitcast, newFn); 3330 continue; 3331 } 3332 3333 // Recognize calls to the function. 3334 llvm::CallSite callSite(user); 3335 if (!callSite) continue; 3336 if (!callSite.isCallee(&*use)) continue; 3337 3338 // If the return types don't match exactly, then we can't 3339 // transform this call unless it's dead. 3340 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3341 continue; 3342 3343 // Get the call site's attribute list. 3344 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3345 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3346 3347 // If the function was passed too few arguments, don't transform. 3348 unsigned newNumArgs = newFn->arg_size(); 3349 if (callSite.arg_size() < newNumArgs) continue; 3350 3351 // If extra arguments were passed, we silently drop them. 3352 // If any of the types mismatch, we don't transform. 3353 unsigned argNo = 0; 3354 bool dontTransform = false; 3355 for (llvm::Argument &A : newFn->args()) { 3356 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3357 dontTransform = true; 3358 break; 3359 } 3360 3361 // Add any parameter attributes. 3362 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3363 argNo++; 3364 } 3365 if (dontTransform) 3366 continue; 3367 3368 // Okay, we can transform this. Create the new call instruction and copy 3369 // over the required information. 3370 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3371 3372 // Copy over any operand bundles. 3373 callSite.getOperandBundlesAsDefs(newBundles); 3374 3375 llvm::CallSite newCall; 3376 if (callSite.isCall()) { 3377 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3378 callSite.getInstruction()); 3379 } else { 3380 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3381 newCall = llvm::InvokeInst::Create(newFn, 3382 oldInvoke->getNormalDest(), 3383 oldInvoke->getUnwindDest(), 3384 newArgs, newBundles, "", 3385 callSite.getInstruction()); 3386 } 3387 newArgs.clear(); // for the next iteration 3388 3389 if (!newCall->getType()->isVoidTy()) 3390 newCall->takeName(callSite.getInstruction()); 3391 newCall.setAttributes(llvm::AttributeList::get( 3392 newFn->getContext(), oldAttrs.getFnAttributes(), 3393 oldAttrs.getRetAttributes(), newArgAttrs)); 3394 newCall.setCallingConv(callSite.getCallingConv()); 3395 3396 // Finally, remove the old call, replacing any uses with the new one. 3397 if (!callSite->use_empty()) 3398 callSite->replaceAllUsesWith(newCall.getInstruction()); 3399 3400 // Copy debug location attached to CI. 3401 if (callSite->getDebugLoc()) 3402 newCall->setDebugLoc(callSite->getDebugLoc()); 3403 3404 callSite->eraseFromParent(); 3405 } 3406 } 3407 3408 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3409 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3410 /// existing call uses of the old function in the module, this adjusts them to 3411 /// call the new function directly. 3412 /// 3413 /// This is not just a cleanup: the always_inline pass requires direct calls to 3414 /// functions to be able to inline them. If there is a bitcast in the way, it 3415 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3416 /// run at -O0. 3417 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3418 llvm::Function *NewFn) { 3419 // If we're redefining a global as a function, don't transform it. 3420 if (!isa<llvm::Function>(Old)) return; 3421 3422 replaceUsesOfNonProtoConstant(Old, NewFn); 3423 } 3424 3425 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3426 auto DK = VD->isThisDeclarationADefinition(); 3427 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3428 return; 3429 3430 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3431 // If we have a definition, this might be a deferred decl. If the 3432 // instantiation is explicit, make sure we emit it at the end. 3433 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3434 GetAddrOfGlobalVar(VD); 3435 3436 EmitTopLevelDecl(VD); 3437 } 3438 3439 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3440 llvm::GlobalValue *GV) { 3441 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3442 3443 // Compute the function info and LLVM type. 3444 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3445 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3446 3447 // Get or create the prototype for the function. 3448 if (!GV || (GV->getType()->getElementType() != Ty)) 3449 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3450 /*DontDefer=*/true, 3451 ForDefinition)); 3452 3453 // Already emitted. 3454 if (!GV->isDeclaration()) 3455 return; 3456 3457 // We need to set linkage and visibility on the function before 3458 // generating code for it because various parts of IR generation 3459 // want to propagate this information down (e.g. to local static 3460 // declarations). 3461 auto *Fn = cast<llvm::Function>(GV); 3462 setFunctionLinkage(GD, Fn); 3463 setFunctionDLLStorageClass(GD, Fn); 3464 3465 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3466 setGlobalVisibility(Fn, D, ForDefinition); 3467 3468 MaybeHandleStaticInExternC(D, Fn); 3469 3470 maybeSetTrivialComdat(*D, *Fn); 3471 3472 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3473 3474 setFunctionDefinitionAttributes(D, Fn); 3475 SetLLVMFunctionAttributesForDefinition(D, Fn); 3476 3477 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3478 AddGlobalCtor(Fn, CA->getPriority()); 3479 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3480 AddGlobalDtor(Fn, DA->getPriority()); 3481 if (D->hasAttr<AnnotateAttr>()) 3482 AddGlobalAnnotations(D, Fn); 3483 } 3484 3485 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3486 const auto *D = cast<ValueDecl>(GD.getDecl()); 3487 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3488 assert(AA && "Not an alias?"); 3489 3490 StringRef MangledName = getMangledName(GD); 3491 3492 if (AA->getAliasee() == MangledName) { 3493 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3494 return; 3495 } 3496 3497 // If there is a definition in the module, then it wins over the alias. 3498 // This is dubious, but allow it to be safe. Just ignore the alias. 3499 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3500 if (Entry && !Entry->isDeclaration()) 3501 return; 3502 3503 Aliases.push_back(GD); 3504 3505 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3506 3507 // Create a reference to the named value. This ensures that it is emitted 3508 // if a deferred decl. 3509 llvm::Constant *Aliasee; 3510 if (isa<llvm::FunctionType>(DeclTy)) 3511 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3512 /*ForVTable=*/false); 3513 else 3514 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3515 llvm::PointerType::getUnqual(DeclTy), 3516 /*D=*/nullptr); 3517 3518 // Create the new alias itself, but don't set a name yet. 3519 auto *GA = llvm::GlobalAlias::create( 3520 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3521 3522 if (Entry) { 3523 if (GA->getAliasee() == Entry) { 3524 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3525 return; 3526 } 3527 3528 assert(Entry->isDeclaration()); 3529 3530 // If there is a declaration in the module, then we had an extern followed 3531 // by the alias, as in: 3532 // extern int test6(); 3533 // ... 3534 // int test6() __attribute__((alias("test7"))); 3535 // 3536 // Remove it and replace uses of it with the alias. 3537 GA->takeName(Entry); 3538 3539 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3540 Entry->getType())); 3541 Entry->eraseFromParent(); 3542 } else { 3543 GA->setName(MangledName); 3544 } 3545 3546 // Set attributes which are particular to an alias; this is a 3547 // specialization of the attributes which may be set on a global 3548 // variable/function. 3549 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3550 D->isWeakImported()) { 3551 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3552 } 3553 3554 if (const auto *VD = dyn_cast<VarDecl>(D)) 3555 if (VD->getTLSKind()) 3556 setTLSMode(GA, *VD); 3557 3558 setAliasAttributes(D, GA); 3559 } 3560 3561 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3562 const auto *D = cast<ValueDecl>(GD.getDecl()); 3563 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3564 assert(IFA && "Not an ifunc?"); 3565 3566 StringRef MangledName = getMangledName(GD); 3567 3568 if (IFA->getResolver() == MangledName) { 3569 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3570 return; 3571 } 3572 3573 // Report an error if some definition overrides ifunc. 3574 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3575 if (Entry && !Entry->isDeclaration()) { 3576 GlobalDecl OtherGD; 3577 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3578 DiagnosedConflictingDefinitions.insert(GD).second) { 3579 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3580 Diags.Report(OtherGD.getDecl()->getLocation(), 3581 diag::note_previous_definition); 3582 } 3583 return; 3584 } 3585 3586 Aliases.push_back(GD); 3587 3588 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3589 llvm::Constant *Resolver = 3590 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3591 /*ForVTable=*/false); 3592 llvm::GlobalIFunc *GIF = 3593 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3594 "", Resolver, &getModule()); 3595 if (Entry) { 3596 if (GIF->getResolver() == Entry) { 3597 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3598 return; 3599 } 3600 assert(Entry->isDeclaration()); 3601 3602 // If there is a declaration in the module, then we had an extern followed 3603 // by the ifunc, as in: 3604 // extern int test(); 3605 // ... 3606 // int test() __attribute__((ifunc("resolver"))); 3607 // 3608 // Remove it and replace uses of it with the ifunc. 3609 GIF->takeName(Entry); 3610 3611 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3612 Entry->getType())); 3613 Entry->eraseFromParent(); 3614 } else 3615 GIF->setName(MangledName); 3616 3617 SetCommonAttributes(D, GIF); 3618 } 3619 3620 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3621 ArrayRef<llvm::Type*> Tys) { 3622 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3623 Tys); 3624 } 3625 3626 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3627 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3628 const StringLiteral *Literal, bool TargetIsLSB, 3629 bool &IsUTF16, unsigned &StringLength) { 3630 StringRef String = Literal->getString(); 3631 unsigned NumBytes = String.size(); 3632 3633 // Check for simple case. 3634 if (!Literal->containsNonAsciiOrNull()) { 3635 StringLength = NumBytes; 3636 return *Map.insert(std::make_pair(String, nullptr)).first; 3637 } 3638 3639 // Otherwise, convert the UTF8 literals into a string of shorts. 3640 IsUTF16 = true; 3641 3642 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3643 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3644 llvm::UTF16 *ToPtr = &ToBuf[0]; 3645 3646 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3647 ToPtr + NumBytes, llvm::strictConversion); 3648 3649 // ConvertUTF8toUTF16 returns the length in ToPtr. 3650 StringLength = ToPtr - &ToBuf[0]; 3651 3652 // Add an explicit null. 3653 *ToPtr = 0; 3654 return *Map.insert(std::make_pair( 3655 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3656 (StringLength + 1) * 2), 3657 nullptr)).first; 3658 } 3659 3660 ConstantAddress 3661 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3662 unsigned StringLength = 0; 3663 bool isUTF16 = false; 3664 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3665 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3666 getDataLayout().isLittleEndian(), isUTF16, 3667 StringLength); 3668 3669 if (auto *C = Entry.second) 3670 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3671 3672 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3673 llvm::Constant *Zeros[] = { Zero, Zero }; 3674 3675 // If we don't already have it, get __CFConstantStringClassReference. 3676 if (!CFConstantStringClassRef) { 3677 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3678 Ty = llvm::ArrayType::get(Ty, 0); 3679 llvm::Constant *GV = 3680 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3681 3682 if (getTriple().isOSBinFormatCOFF()) { 3683 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3684 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3685 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3686 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3687 3688 const VarDecl *VD = nullptr; 3689 for (const auto &Result : DC->lookup(&II)) 3690 if ((VD = dyn_cast<VarDecl>(Result))) 3691 break; 3692 3693 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3694 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3695 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3696 } else { 3697 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3698 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3699 } 3700 } 3701 3702 // Decay array -> ptr 3703 CFConstantStringClassRef = 3704 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3705 } 3706 3707 QualType CFTy = getContext().getCFConstantStringType(); 3708 3709 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3710 3711 ConstantInitBuilder Builder(*this); 3712 auto Fields = Builder.beginStruct(STy); 3713 3714 // Class pointer. 3715 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3716 3717 // Flags. 3718 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3719 3720 // String pointer. 3721 llvm::Constant *C = nullptr; 3722 if (isUTF16) { 3723 auto Arr = llvm::makeArrayRef( 3724 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3725 Entry.first().size() / 2); 3726 C = llvm::ConstantDataArray::get(VMContext, Arr); 3727 } else { 3728 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3729 } 3730 3731 // Note: -fwritable-strings doesn't make the backing store strings of 3732 // CFStrings writable. (See <rdar://problem/10657500>) 3733 auto *GV = 3734 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3735 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3736 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3737 // Don't enforce the target's minimum global alignment, since the only use 3738 // of the string is via this class initializer. 3739 CharUnits Align = isUTF16 3740 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3741 : getContext().getTypeAlignInChars(getContext().CharTy); 3742 GV->setAlignment(Align.getQuantity()); 3743 3744 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3745 // Without it LLVM can merge the string with a non unnamed_addr one during 3746 // LTO. Doing that changes the section it ends in, which surprises ld64. 3747 if (getTriple().isOSBinFormatMachO()) 3748 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3749 : "__TEXT,__cstring,cstring_literals"); 3750 3751 // String. 3752 llvm::Constant *Str = 3753 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3754 3755 if (isUTF16) 3756 // Cast the UTF16 string to the correct type. 3757 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3758 Fields.add(Str); 3759 3760 // String length. 3761 auto Ty = getTypes().ConvertType(getContext().LongTy); 3762 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3763 3764 CharUnits Alignment = getPointerAlign(); 3765 3766 // The struct. 3767 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3768 /*isConstant=*/false, 3769 llvm::GlobalVariable::PrivateLinkage); 3770 switch (getTriple().getObjectFormat()) { 3771 case llvm::Triple::UnknownObjectFormat: 3772 llvm_unreachable("unknown file format"); 3773 case llvm::Triple::COFF: 3774 case llvm::Triple::ELF: 3775 case llvm::Triple::Wasm: 3776 GV->setSection("cfstring"); 3777 break; 3778 case llvm::Triple::MachO: 3779 GV->setSection("__DATA,__cfstring"); 3780 break; 3781 } 3782 Entry.second = GV; 3783 3784 return ConstantAddress(GV, Alignment); 3785 } 3786 3787 bool CodeGenModule::getExpressionLocationsEnabled() const { 3788 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3789 } 3790 3791 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3792 if (ObjCFastEnumerationStateType.isNull()) { 3793 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3794 D->startDefinition(); 3795 3796 QualType FieldTypes[] = { 3797 Context.UnsignedLongTy, 3798 Context.getPointerType(Context.getObjCIdType()), 3799 Context.getPointerType(Context.UnsignedLongTy), 3800 Context.getConstantArrayType(Context.UnsignedLongTy, 3801 llvm::APInt(32, 5), ArrayType::Normal, 0) 3802 }; 3803 3804 for (size_t i = 0; i < 4; ++i) { 3805 FieldDecl *Field = FieldDecl::Create(Context, 3806 D, 3807 SourceLocation(), 3808 SourceLocation(), nullptr, 3809 FieldTypes[i], /*TInfo=*/nullptr, 3810 /*BitWidth=*/nullptr, 3811 /*Mutable=*/false, 3812 ICIS_NoInit); 3813 Field->setAccess(AS_public); 3814 D->addDecl(Field); 3815 } 3816 3817 D->completeDefinition(); 3818 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3819 } 3820 3821 return ObjCFastEnumerationStateType; 3822 } 3823 3824 llvm::Constant * 3825 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3826 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3827 3828 // Don't emit it as the address of the string, emit the string data itself 3829 // as an inline array. 3830 if (E->getCharByteWidth() == 1) { 3831 SmallString<64> Str(E->getString()); 3832 3833 // Resize the string to the right size, which is indicated by its type. 3834 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3835 Str.resize(CAT->getSize().getZExtValue()); 3836 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3837 } 3838 3839 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3840 llvm::Type *ElemTy = AType->getElementType(); 3841 unsigned NumElements = AType->getNumElements(); 3842 3843 // Wide strings have either 2-byte or 4-byte elements. 3844 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3845 SmallVector<uint16_t, 32> Elements; 3846 Elements.reserve(NumElements); 3847 3848 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3849 Elements.push_back(E->getCodeUnit(i)); 3850 Elements.resize(NumElements); 3851 return llvm::ConstantDataArray::get(VMContext, Elements); 3852 } 3853 3854 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3855 SmallVector<uint32_t, 32> Elements; 3856 Elements.reserve(NumElements); 3857 3858 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3859 Elements.push_back(E->getCodeUnit(i)); 3860 Elements.resize(NumElements); 3861 return llvm::ConstantDataArray::get(VMContext, Elements); 3862 } 3863 3864 static llvm::GlobalVariable * 3865 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3866 CodeGenModule &CGM, StringRef GlobalName, 3867 CharUnits Alignment) { 3868 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3869 unsigned AddrSpace = 0; 3870 if (CGM.getLangOpts().OpenCL) 3871 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3872 3873 llvm::Module &M = CGM.getModule(); 3874 // Create a global variable for this string 3875 auto *GV = new llvm::GlobalVariable( 3876 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3877 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3878 GV->setAlignment(Alignment.getQuantity()); 3879 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3880 if (GV->isWeakForLinker()) { 3881 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3882 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3883 } 3884 3885 return GV; 3886 } 3887 3888 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3889 /// constant array for the given string literal. 3890 ConstantAddress 3891 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3892 StringRef Name) { 3893 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3894 3895 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3896 llvm::GlobalVariable **Entry = nullptr; 3897 if (!LangOpts.WritableStrings) { 3898 Entry = &ConstantStringMap[C]; 3899 if (auto GV = *Entry) { 3900 if (Alignment.getQuantity() > GV->getAlignment()) 3901 GV->setAlignment(Alignment.getQuantity()); 3902 return ConstantAddress(GV, Alignment); 3903 } 3904 } 3905 3906 SmallString<256> MangledNameBuffer; 3907 StringRef GlobalVariableName; 3908 llvm::GlobalValue::LinkageTypes LT; 3909 3910 // Mangle the string literal if the ABI allows for it. However, we cannot 3911 // do this if we are compiling with ASan or -fwritable-strings because they 3912 // rely on strings having normal linkage. 3913 if (!LangOpts.WritableStrings && 3914 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3915 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3916 llvm::raw_svector_ostream Out(MangledNameBuffer); 3917 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3918 3919 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3920 GlobalVariableName = MangledNameBuffer; 3921 } else { 3922 LT = llvm::GlobalValue::PrivateLinkage; 3923 GlobalVariableName = Name; 3924 } 3925 3926 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3927 if (Entry) 3928 *Entry = GV; 3929 3930 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3931 QualType()); 3932 return ConstantAddress(GV, Alignment); 3933 } 3934 3935 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3936 /// array for the given ObjCEncodeExpr node. 3937 ConstantAddress 3938 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3939 std::string Str; 3940 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3941 3942 return GetAddrOfConstantCString(Str); 3943 } 3944 3945 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3946 /// the literal and a terminating '\0' character. 3947 /// The result has pointer to array type. 3948 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3949 const std::string &Str, const char *GlobalName) { 3950 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3951 CharUnits Alignment = 3952 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3953 3954 llvm::Constant *C = 3955 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3956 3957 // Don't share any string literals if strings aren't constant. 3958 llvm::GlobalVariable **Entry = nullptr; 3959 if (!LangOpts.WritableStrings) { 3960 Entry = &ConstantStringMap[C]; 3961 if (auto GV = *Entry) { 3962 if (Alignment.getQuantity() > GV->getAlignment()) 3963 GV->setAlignment(Alignment.getQuantity()); 3964 return ConstantAddress(GV, Alignment); 3965 } 3966 } 3967 3968 // Get the default prefix if a name wasn't specified. 3969 if (!GlobalName) 3970 GlobalName = ".str"; 3971 // Create a global variable for this. 3972 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3973 GlobalName, Alignment); 3974 if (Entry) 3975 *Entry = GV; 3976 return ConstantAddress(GV, Alignment); 3977 } 3978 3979 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3980 const MaterializeTemporaryExpr *E, const Expr *Init) { 3981 assert((E->getStorageDuration() == SD_Static || 3982 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3983 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3984 3985 // If we're not materializing a subobject of the temporary, keep the 3986 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3987 QualType MaterializedType = Init->getType(); 3988 if (Init == E->GetTemporaryExpr()) 3989 MaterializedType = E->getType(); 3990 3991 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3992 3993 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3994 return ConstantAddress(Slot, Align); 3995 3996 // FIXME: If an externally-visible declaration extends multiple temporaries, 3997 // we need to give each temporary the same name in every translation unit (and 3998 // we also need to make the temporaries externally-visible). 3999 SmallString<256> Name; 4000 llvm::raw_svector_ostream Out(Name); 4001 getCXXABI().getMangleContext().mangleReferenceTemporary( 4002 VD, E->getManglingNumber(), Out); 4003 4004 APValue *Value = nullptr; 4005 if (E->getStorageDuration() == SD_Static) { 4006 // We might have a cached constant initializer for this temporary. Note 4007 // that this might have a different value from the value computed by 4008 // evaluating the initializer if the surrounding constant expression 4009 // modifies the temporary. 4010 Value = getContext().getMaterializedTemporaryValue(E, false); 4011 if (Value && Value->isUninit()) 4012 Value = nullptr; 4013 } 4014 4015 // Try evaluating it now, it might have a constant initializer. 4016 Expr::EvalResult EvalResult; 4017 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4018 !EvalResult.hasSideEffects()) 4019 Value = &EvalResult.Val; 4020 4021 LangAS AddrSpace = 4022 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4023 4024 Optional<ConstantEmitter> emitter; 4025 llvm::Constant *InitialValue = nullptr; 4026 bool Constant = false; 4027 llvm::Type *Type; 4028 if (Value) { 4029 // The temporary has a constant initializer, use it. 4030 emitter.emplace(*this); 4031 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4032 MaterializedType); 4033 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4034 Type = InitialValue->getType(); 4035 } else { 4036 // No initializer, the initialization will be provided when we 4037 // initialize the declaration which performed lifetime extension. 4038 Type = getTypes().ConvertTypeForMem(MaterializedType); 4039 } 4040 4041 // Create a global variable for this lifetime-extended temporary. 4042 llvm::GlobalValue::LinkageTypes Linkage = 4043 getLLVMLinkageVarDefinition(VD, Constant); 4044 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4045 const VarDecl *InitVD; 4046 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4047 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4048 // Temporaries defined inside a class get linkonce_odr linkage because the 4049 // class can be defined in multipe translation units. 4050 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4051 } else { 4052 // There is no need for this temporary to have external linkage if the 4053 // VarDecl has external linkage. 4054 Linkage = llvm::GlobalVariable::InternalLinkage; 4055 } 4056 } 4057 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4058 auto *GV = new llvm::GlobalVariable( 4059 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4060 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4061 if (emitter) emitter->finalize(GV); 4062 setGlobalVisibility(GV, VD, ForDefinition); 4063 GV->setAlignment(Align.getQuantity()); 4064 if (supportsCOMDAT() && GV->isWeakForLinker()) 4065 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4066 if (VD->getTLSKind()) 4067 setTLSMode(GV, *VD); 4068 llvm::Constant *CV = GV; 4069 if (AddrSpace != LangAS::Default) 4070 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4071 *this, GV, AddrSpace, LangAS::Default, 4072 Type->getPointerTo( 4073 getContext().getTargetAddressSpace(LangAS::Default))); 4074 MaterializedGlobalTemporaryMap[E] = CV; 4075 return ConstantAddress(CV, Align); 4076 } 4077 4078 /// EmitObjCPropertyImplementations - Emit information for synthesized 4079 /// properties for an implementation. 4080 void CodeGenModule::EmitObjCPropertyImplementations(const 4081 ObjCImplementationDecl *D) { 4082 for (const auto *PID : D->property_impls()) { 4083 // Dynamic is just for type-checking. 4084 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4085 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4086 4087 // Determine which methods need to be implemented, some may have 4088 // been overridden. Note that ::isPropertyAccessor is not the method 4089 // we want, that just indicates if the decl came from a 4090 // property. What we want to know is if the method is defined in 4091 // this implementation. 4092 if (!D->getInstanceMethod(PD->getGetterName())) 4093 CodeGenFunction(*this).GenerateObjCGetter( 4094 const_cast<ObjCImplementationDecl *>(D), PID); 4095 if (!PD->isReadOnly() && 4096 !D->getInstanceMethod(PD->getSetterName())) 4097 CodeGenFunction(*this).GenerateObjCSetter( 4098 const_cast<ObjCImplementationDecl *>(D), PID); 4099 } 4100 } 4101 } 4102 4103 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4104 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4105 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4106 ivar; ivar = ivar->getNextIvar()) 4107 if (ivar->getType().isDestructedType()) 4108 return true; 4109 4110 return false; 4111 } 4112 4113 static bool AllTrivialInitializers(CodeGenModule &CGM, 4114 ObjCImplementationDecl *D) { 4115 CodeGenFunction CGF(CGM); 4116 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4117 E = D->init_end(); B != E; ++B) { 4118 CXXCtorInitializer *CtorInitExp = *B; 4119 Expr *Init = CtorInitExp->getInit(); 4120 if (!CGF.isTrivialInitializer(Init)) 4121 return false; 4122 } 4123 return true; 4124 } 4125 4126 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4127 /// for an implementation. 4128 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4129 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4130 if (needsDestructMethod(D)) { 4131 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4132 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4133 ObjCMethodDecl *DTORMethod = 4134 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4135 cxxSelector, getContext().VoidTy, nullptr, D, 4136 /*isInstance=*/true, /*isVariadic=*/false, 4137 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4138 /*isDefined=*/false, ObjCMethodDecl::Required); 4139 D->addInstanceMethod(DTORMethod); 4140 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4141 D->setHasDestructors(true); 4142 } 4143 4144 // If the implementation doesn't have any ivar initializers, we don't need 4145 // a .cxx_construct. 4146 if (D->getNumIvarInitializers() == 0 || 4147 AllTrivialInitializers(*this, D)) 4148 return; 4149 4150 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4151 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4152 // The constructor returns 'self'. 4153 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4154 D->getLocation(), 4155 D->getLocation(), 4156 cxxSelector, 4157 getContext().getObjCIdType(), 4158 nullptr, D, /*isInstance=*/true, 4159 /*isVariadic=*/false, 4160 /*isPropertyAccessor=*/true, 4161 /*isImplicitlyDeclared=*/true, 4162 /*isDefined=*/false, 4163 ObjCMethodDecl::Required); 4164 D->addInstanceMethod(CTORMethod); 4165 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4166 D->setHasNonZeroConstructors(true); 4167 } 4168 4169 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4170 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4171 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4172 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4173 ErrorUnsupported(LSD, "linkage spec"); 4174 return; 4175 } 4176 4177 EmitDeclContext(LSD); 4178 } 4179 4180 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4181 for (auto *I : DC->decls()) { 4182 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4183 // are themselves considered "top-level", so EmitTopLevelDecl on an 4184 // ObjCImplDecl does not recursively visit them. We need to do that in 4185 // case they're nested inside another construct (LinkageSpecDecl / 4186 // ExportDecl) that does stop them from being considered "top-level". 4187 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4188 for (auto *M : OID->methods()) 4189 EmitTopLevelDecl(M); 4190 } 4191 4192 EmitTopLevelDecl(I); 4193 } 4194 } 4195 4196 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4197 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4198 // Ignore dependent declarations. 4199 if (D->isTemplated()) 4200 return; 4201 4202 switch (D->getKind()) { 4203 case Decl::CXXConversion: 4204 case Decl::CXXMethod: 4205 case Decl::Function: 4206 EmitGlobal(cast<FunctionDecl>(D)); 4207 // Always provide some coverage mapping 4208 // even for the functions that aren't emitted. 4209 AddDeferredUnusedCoverageMapping(D); 4210 break; 4211 4212 case Decl::CXXDeductionGuide: 4213 // Function-like, but does not result in code emission. 4214 break; 4215 4216 case Decl::Var: 4217 case Decl::Decomposition: 4218 case Decl::VarTemplateSpecialization: 4219 EmitGlobal(cast<VarDecl>(D)); 4220 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4221 for (auto *B : DD->bindings()) 4222 if (auto *HD = B->getHoldingVar()) 4223 EmitGlobal(HD); 4224 break; 4225 4226 // Indirect fields from global anonymous structs and unions can be 4227 // ignored; only the actual variable requires IR gen support. 4228 case Decl::IndirectField: 4229 break; 4230 4231 // C++ Decls 4232 case Decl::Namespace: 4233 EmitDeclContext(cast<NamespaceDecl>(D)); 4234 break; 4235 case Decl::ClassTemplateSpecialization: { 4236 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4237 if (DebugInfo && 4238 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4239 Spec->hasDefinition()) 4240 DebugInfo->completeTemplateDefinition(*Spec); 4241 } LLVM_FALLTHROUGH; 4242 case Decl::CXXRecord: 4243 if (DebugInfo) { 4244 if (auto *ES = D->getASTContext().getExternalSource()) 4245 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4246 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4247 } 4248 // Emit any static data members, they may be definitions. 4249 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4250 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4251 EmitTopLevelDecl(I); 4252 break; 4253 // No code generation needed. 4254 case Decl::UsingShadow: 4255 case Decl::ClassTemplate: 4256 case Decl::VarTemplate: 4257 case Decl::VarTemplatePartialSpecialization: 4258 case Decl::FunctionTemplate: 4259 case Decl::TypeAliasTemplate: 4260 case Decl::Block: 4261 case Decl::Empty: 4262 break; 4263 case Decl::Using: // using X; [C++] 4264 if (CGDebugInfo *DI = getModuleDebugInfo()) 4265 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4266 return; 4267 case Decl::NamespaceAlias: 4268 if (CGDebugInfo *DI = getModuleDebugInfo()) 4269 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4270 return; 4271 case Decl::UsingDirective: // using namespace X; [C++] 4272 if (CGDebugInfo *DI = getModuleDebugInfo()) 4273 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4274 return; 4275 case Decl::CXXConstructor: 4276 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4277 break; 4278 case Decl::CXXDestructor: 4279 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4280 break; 4281 4282 case Decl::StaticAssert: 4283 // Nothing to do. 4284 break; 4285 4286 // Objective-C Decls 4287 4288 // Forward declarations, no (immediate) code generation. 4289 case Decl::ObjCInterface: 4290 case Decl::ObjCCategory: 4291 break; 4292 4293 case Decl::ObjCProtocol: { 4294 auto *Proto = cast<ObjCProtocolDecl>(D); 4295 if (Proto->isThisDeclarationADefinition()) 4296 ObjCRuntime->GenerateProtocol(Proto); 4297 break; 4298 } 4299 4300 case Decl::ObjCCategoryImpl: 4301 // Categories have properties but don't support synthesize so we 4302 // can ignore them here. 4303 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4304 break; 4305 4306 case Decl::ObjCImplementation: { 4307 auto *OMD = cast<ObjCImplementationDecl>(D); 4308 EmitObjCPropertyImplementations(OMD); 4309 EmitObjCIvarInitializations(OMD); 4310 ObjCRuntime->GenerateClass(OMD); 4311 // Emit global variable debug information. 4312 if (CGDebugInfo *DI = getModuleDebugInfo()) 4313 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4314 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4315 OMD->getClassInterface()), OMD->getLocation()); 4316 break; 4317 } 4318 case Decl::ObjCMethod: { 4319 auto *OMD = cast<ObjCMethodDecl>(D); 4320 // If this is not a prototype, emit the body. 4321 if (OMD->getBody()) 4322 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4323 break; 4324 } 4325 case Decl::ObjCCompatibleAlias: 4326 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4327 break; 4328 4329 case Decl::PragmaComment: { 4330 const auto *PCD = cast<PragmaCommentDecl>(D); 4331 switch (PCD->getCommentKind()) { 4332 case PCK_Unknown: 4333 llvm_unreachable("unexpected pragma comment kind"); 4334 case PCK_Linker: 4335 AppendLinkerOptions(PCD->getArg()); 4336 break; 4337 case PCK_Lib: 4338 if (getTarget().getTriple().isOSBinFormatELF() && 4339 !getTarget().getTriple().isPS4()) 4340 AddELFLibDirective(PCD->getArg()); 4341 else 4342 AddDependentLib(PCD->getArg()); 4343 break; 4344 case PCK_Compiler: 4345 case PCK_ExeStr: 4346 case PCK_User: 4347 break; // We ignore all of these. 4348 } 4349 break; 4350 } 4351 4352 case Decl::PragmaDetectMismatch: { 4353 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4354 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4355 break; 4356 } 4357 4358 case Decl::LinkageSpec: 4359 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4360 break; 4361 4362 case Decl::FileScopeAsm: { 4363 // File-scope asm is ignored during device-side CUDA compilation. 4364 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4365 break; 4366 // File-scope asm is ignored during device-side OpenMP compilation. 4367 if (LangOpts.OpenMPIsDevice) 4368 break; 4369 auto *AD = cast<FileScopeAsmDecl>(D); 4370 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4371 break; 4372 } 4373 4374 case Decl::Import: { 4375 auto *Import = cast<ImportDecl>(D); 4376 4377 // If we've already imported this module, we're done. 4378 if (!ImportedModules.insert(Import->getImportedModule())) 4379 break; 4380 4381 // Emit debug information for direct imports. 4382 if (!Import->getImportedOwningModule()) { 4383 if (CGDebugInfo *DI = getModuleDebugInfo()) 4384 DI->EmitImportDecl(*Import); 4385 } 4386 4387 // Find all of the submodules and emit the module initializers. 4388 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4389 SmallVector<clang::Module *, 16> Stack; 4390 Visited.insert(Import->getImportedModule()); 4391 Stack.push_back(Import->getImportedModule()); 4392 4393 while (!Stack.empty()) { 4394 clang::Module *Mod = Stack.pop_back_val(); 4395 if (!EmittedModuleInitializers.insert(Mod).second) 4396 continue; 4397 4398 for (auto *D : Context.getModuleInitializers(Mod)) 4399 EmitTopLevelDecl(D); 4400 4401 // Visit the submodules of this module. 4402 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4403 SubEnd = Mod->submodule_end(); 4404 Sub != SubEnd; ++Sub) { 4405 // Skip explicit children; they need to be explicitly imported to emit 4406 // the initializers. 4407 if ((*Sub)->IsExplicit) 4408 continue; 4409 4410 if (Visited.insert(*Sub).second) 4411 Stack.push_back(*Sub); 4412 } 4413 } 4414 break; 4415 } 4416 4417 case Decl::Export: 4418 EmitDeclContext(cast<ExportDecl>(D)); 4419 break; 4420 4421 case Decl::OMPThreadPrivate: 4422 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4423 break; 4424 4425 case Decl::OMPDeclareReduction: 4426 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4427 break; 4428 4429 default: 4430 // Make sure we handled everything we should, every other kind is a 4431 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4432 // function. Need to recode Decl::Kind to do that easily. 4433 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4434 break; 4435 } 4436 } 4437 4438 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4439 // Do we need to generate coverage mapping? 4440 if (!CodeGenOpts.CoverageMapping) 4441 return; 4442 switch (D->getKind()) { 4443 case Decl::CXXConversion: 4444 case Decl::CXXMethod: 4445 case Decl::Function: 4446 case Decl::ObjCMethod: 4447 case Decl::CXXConstructor: 4448 case Decl::CXXDestructor: { 4449 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4450 return; 4451 SourceManager &SM = getContext().getSourceManager(); 4452 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4453 return; 4454 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4455 if (I == DeferredEmptyCoverageMappingDecls.end()) 4456 DeferredEmptyCoverageMappingDecls[D] = true; 4457 break; 4458 } 4459 default: 4460 break; 4461 }; 4462 } 4463 4464 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4465 // Do we need to generate coverage mapping? 4466 if (!CodeGenOpts.CoverageMapping) 4467 return; 4468 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4469 if (Fn->isTemplateInstantiation()) 4470 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4471 } 4472 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4473 if (I == DeferredEmptyCoverageMappingDecls.end()) 4474 DeferredEmptyCoverageMappingDecls[D] = false; 4475 else 4476 I->second = false; 4477 } 4478 4479 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4480 // We call takeVector() here to avoid use-after-free. 4481 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4482 // we deserialize function bodies to emit coverage info for them, and that 4483 // deserializes more declarations. How should we handle that case? 4484 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4485 if (!Entry.second) 4486 continue; 4487 const Decl *D = Entry.first; 4488 switch (D->getKind()) { 4489 case Decl::CXXConversion: 4490 case Decl::CXXMethod: 4491 case Decl::Function: 4492 case Decl::ObjCMethod: { 4493 CodeGenPGO PGO(*this); 4494 GlobalDecl GD(cast<FunctionDecl>(D)); 4495 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4496 getFunctionLinkage(GD)); 4497 break; 4498 } 4499 case Decl::CXXConstructor: { 4500 CodeGenPGO PGO(*this); 4501 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4502 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4503 getFunctionLinkage(GD)); 4504 break; 4505 } 4506 case Decl::CXXDestructor: { 4507 CodeGenPGO PGO(*this); 4508 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4509 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4510 getFunctionLinkage(GD)); 4511 break; 4512 } 4513 default: 4514 break; 4515 }; 4516 } 4517 } 4518 4519 /// Turns the given pointer into a constant. 4520 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4521 const void *Ptr) { 4522 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4523 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4524 return llvm::ConstantInt::get(i64, PtrInt); 4525 } 4526 4527 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4528 llvm::NamedMDNode *&GlobalMetadata, 4529 GlobalDecl D, 4530 llvm::GlobalValue *Addr) { 4531 if (!GlobalMetadata) 4532 GlobalMetadata = 4533 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4534 4535 // TODO: should we report variant information for ctors/dtors? 4536 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4537 llvm::ConstantAsMetadata::get(GetPointerConstant( 4538 CGM.getLLVMContext(), D.getDecl()))}; 4539 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4540 } 4541 4542 /// For each function which is declared within an extern "C" region and marked 4543 /// as 'used', but has internal linkage, create an alias from the unmangled 4544 /// name to the mangled name if possible. People expect to be able to refer 4545 /// to such functions with an unmangled name from inline assembly within the 4546 /// same translation unit. 4547 void CodeGenModule::EmitStaticExternCAliases() { 4548 // Don't do anything if we're generating CUDA device code -- the NVPTX 4549 // assembly target doesn't support aliases. 4550 if (Context.getTargetInfo().getTriple().isNVPTX()) 4551 return; 4552 for (auto &I : StaticExternCValues) { 4553 IdentifierInfo *Name = I.first; 4554 llvm::GlobalValue *Val = I.second; 4555 if (Val && !getModule().getNamedValue(Name->getName())) 4556 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4557 } 4558 } 4559 4560 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4561 GlobalDecl &Result) const { 4562 auto Res = Manglings.find(MangledName); 4563 if (Res == Manglings.end()) 4564 return false; 4565 Result = Res->getValue(); 4566 return true; 4567 } 4568 4569 /// Emits metadata nodes associating all the global values in the 4570 /// current module with the Decls they came from. This is useful for 4571 /// projects using IR gen as a subroutine. 4572 /// 4573 /// Since there's currently no way to associate an MDNode directly 4574 /// with an llvm::GlobalValue, we create a global named metadata 4575 /// with the name 'clang.global.decl.ptrs'. 4576 void CodeGenModule::EmitDeclMetadata() { 4577 llvm::NamedMDNode *GlobalMetadata = nullptr; 4578 4579 for (auto &I : MangledDeclNames) { 4580 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4581 // Some mangled names don't necessarily have an associated GlobalValue 4582 // in this module, e.g. if we mangled it for DebugInfo. 4583 if (Addr) 4584 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4585 } 4586 } 4587 4588 /// Emits metadata nodes for all the local variables in the current 4589 /// function. 4590 void CodeGenFunction::EmitDeclMetadata() { 4591 if (LocalDeclMap.empty()) return; 4592 4593 llvm::LLVMContext &Context = getLLVMContext(); 4594 4595 // Find the unique metadata ID for this name. 4596 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4597 4598 llvm::NamedMDNode *GlobalMetadata = nullptr; 4599 4600 for (auto &I : LocalDeclMap) { 4601 const Decl *D = I.first; 4602 llvm::Value *Addr = I.second.getPointer(); 4603 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4604 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4605 Alloca->setMetadata( 4606 DeclPtrKind, llvm::MDNode::get( 4607 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4608 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4609 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4610 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4611 } 4612 } 4613 } 4614 4615 void CodeGenModule::EmitVersionIdentMetadata() { 4616 llvm::NamedMDNode *IdentMetadata = 4617 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4618 std::string Version = getClangFullVersion(); 4619 llvm::LLVMContext &Ctx = TheModule.getContext(); 4620 4621 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4622 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4623 } 4624 4625 void CodeGenModule::EmitTargetMetadata() { 4626 // Warning, new MangledDeclNames may be appended within this loop. 4627 // We rely on MapVector insertions adding new elements to the end 4628 // of the container. 4629 // FIXME: Move this loop into the one target that needs it, and only 4630 // loop over those declarations for which we couldn't emit the target 4631 // metadata when we emitted the declaration. 4632 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4633 auto Val = *(MangledDeclNames.begin() + I); 4634 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4635 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4636 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4637 } 4638 } 4639 4640 void CodeGenModule::EmitCoverageFile() { 4641 if (getCodeGenOpts().CoverageDataFile.empty() && 4642 getCodeGenOpts().CoverageNotesFile.empty()) 4643 return; 4644 4645 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4646 if (!CUNode) 4647 return; 4648 4649 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4650 llvm::LLVMContext &Ctx = TheModule.getContext(); 4651 auto *CoverageDataFile = 4652 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4653 auto *CoverageNotesFile = 4654 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4655 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4656 llvm::MDNode *CU = CUNode->getOperand(i); 4657 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4658 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4659 } 4660 } 4661 4662 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4663 // Sema has checked that all uuid strings are of the form 4664 // "12345678-1234-1234-1234-1234567890ab". 4665 assert(Uuid.size() == 36); 4666 for (unsigned i = 0; i < 36; ++i) { 4667 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4668 else assert(isHexDigit(Uuid[i])); 4669 } 4670 4671 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4672 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4673 4674 llvm::Constant *Field3[8]; 4675 for (unsigned Idx = 0; Idx < 8; ++Idx) 4676 Field3[Idx] = llvm::ConstantInt::get( 4677 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4678 4679 llvm::Constant *Fields[4] = { 4680 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4681 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4682 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4683 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4684 }; 4685 4686 return llvm::ConstantStruct::getAnon(Fields); 4687 } 4688 4689 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4690 bool ForEH) { 4691 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4692 // FIXME: should we even be calling this method if RTTI is disabled 4693 // and it's not for EH? 4694 if (!ForEH && !getLangOpts().RTTI) 4695 return llvm::Constant::getNullValue(Int8PtrTy); 4696 4697 if (ForEH && Ty->isObjCObjectPointerType() && 4698 LangOpts.ObjCRuntime.isGNUFamily()) 4699 return ObjCRuntime->GetEHType(Ty); 4700 4701 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4702 } 4703 4704 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4705 // Do not emit threadprivates in simd-only mode. 4706 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4707 return; 4708 for (auto RefExpr : D->varlists()) { 4709 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4710 bool PerformInit = 4711 VD->getAnyInitializer() && 4712 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4713 /*ForRef=*/false); 4714 4715 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4716 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4717 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4718 CXXGlobalInits.push_back(InitFunction); 4719 } 4720 } 4721 4722 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4723 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4724 if (InternalId) 4725 return InternalId; 4726 4727 if (isExternallyVisible(T->getLinkage())) { 4728 std::string OutName; 4729 llvm::raw_string_ostream Out(OutName); 4730 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4731 4732 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4733 } else { 4734 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4735 llvm::ArrayRef<llvm::Metadata *>()); 4736 } 4737 4738 return InternalId; 4739 } 4740 4741 // Generalize pointer types to a void pointer with the qualifiers of the 4742 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4743 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4744 // 'void *'. 4745 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4746 if (!Ty->isPointerType()) 4747 return Ty; 4748 4749 return Ctx.getPointerType( 4750 QualType(Ctx.VoidTy).withCVRQualifiers( 4751 Ty->getPointeeType().getCVRQualifiers())); 4752 } 4753 4754 // Apply type generalization to a FunctionType's return and argument types 4755 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4756 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4757 SmallVector<QualType, 8> GeneralizedParams; 4758 for (auto &Param : FnType->param_types()) 4759 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4760 4761 return Ctx.getFunctionType( 4762 GeneralizeType(Ctx, FnType->getReturnType()), 4763 GeneralizedParams, FnType->getExtProtoInfo()); 4764 } 4765 4766 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4767 return Ctx.getFunctionNoProtoType( 4768 GeneralizeType(Ctx, FnType->getReturnType())); 4769 4770 llvm_unreachable("Encountered unknown FunctionType"); 4771 } 4772 4773 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4774 T = GeneralizeFunctionType(getContext(), T); 4775 4776 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4777 if (InternalId) 4778 return InternalId; 4779 4780 if (isExternallyVisible(T->getLinkage())) { 4781 std::string OutName; 4782 llvm::raw_string_ostream Out(OutName); 4783 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4784 Out << ".generalized"; 4785 4786 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4787 } else { 4788 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4789 llvm::ArrayRef<llvm::Metadata *>()); 4790 } 4791 4792 return InternalId; 4793 } 4794 4795 /// Returns whether this module needs the "all-vtables" type identifier. 4796 bool CodeGenModule::NeedAllVtablesTypeId() const { 4797 // Returns true if at least one of vtable-based CFI checkers is enabled and 4798 // is not in the trapping mode. 4799 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4800 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4801 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4802 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4803 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4804 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4805 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4806 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4807 } 4808 4809 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4810 CharUnits Offset, 4811 const CXXRecordDecl *RD) { 4812 llvm::Metadata *MD = 4813 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4814 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4815 4816 if (CodeGenOpts.SanitizeCfiCrossDso) 4817 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4818 VTable->addTypeMetadata(Offset.getQuantity(), 4819 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4820 4821 if (NeedAllVtablesTypeId()) { 4822 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4823 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4824 } 4825 } 4826 4827 // Fills in the supplied string map with the set of target features for the 4828 // passed in function. 4829 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4830 const FunctionDecl *FD) { 4831 StringRef TargetCPU = Target.getTargetOpts().CPU; 4832 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4833 // If we have a TargetAttr build up the feature map based on that. 4834 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4835 4836 ParsedAttr.Features.erase( 4837 llvm::remove_if(ParsedAttr.Features, 4838 [&](const std::string &Feat) { 4839 return !Target.isValidFeatureName( 4840 StringRef{Feat}.substr(1)); 4841 }), 4842 ParsedAttr.Features.end()); 4843 4844 // Make a copy of the features as passed on the command line into the 4845 // beginning of the additional features from the function to override. 4846 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4847 Target.getTargetOpts().FeaturesAsWritten.begin(), 4848 Target.getTargetOpts().FeaturesAsWritten.end()); 4849 4850 if (ParsedAttr.Architecture != "" && 4851 Target.isValidCPUName(ParsedAttr.Architecture)) 4852 TargetCPU = ParsedAttr.Architecture; 4853 4854 // Now populate the feature map, first with the TargetCPU which is either 4855 // the default or a new one from the target attribute string. Then we'll use 4856 // the passed in features (FeaturesAsWritten) along with the new ones from 4857 // the attribute. 4858 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4859 ParsedAttr.Features); 4860 } else { 4861 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4862 Target.getTargetOpts().Features); 4863 } 4864 } 4865 4866 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4867 if (!SanStats) 4868 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4869 4870 return *SanStats; 4871 } 4872 llvm::Value * 4873 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4874 CodeGenFunction &CGF) { 4875 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4876 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4877 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4878 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4879 "__translate_sampler_initializer"), 4880 {C}); 4881 } 4882