1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ProfileSummary.h" 57 #include "llvm/ProfileData/InstrProfReader.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/ConvertUTF.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MD5.h" 63 #include "llvm/Support/TimeProfiler.h" 64 65 using namespace clang; 66 using namespace CodeGen; 67 68 static llvm::cl::opt<bool> LimitedCoverage( 69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 71 llvm::cl::init(false)); 72 73 static const char AnnotationSection[] = "llvm.metadata"; 74 75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 76 switch (CGM.getTarget().getCXXABI().getKind()) { 77 case TargetCXXABI::Fuchsia: 78 case TargetCXXABI::GenericAArch64: 79 case TargetCXXABI::GenericARM: 80 case TargetCXXABI::iOS: 81 case TargetCXXABI::iOS64: 82 case TargetCXXABI::WatchOS: 83 case TargetCXXABI::GenericMIPS: 84 case TargetCXXABI::GenericItanium: 85 case TargetCXXABI::WebAssembly: 86 return CreateItaniumCXXABI(CGM); 87 case TargetCXXABI::Microsoft: 88 return CreateMicrosoftCXXABI(CGM); 89 } 90 91 llvm_unreachable("invalid C++ ABI kind"); 92 } 93 94 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 95 const PreprocessorOptions &PPO, 96 const CodeGenOptions &CGO, llvm::Module &M, 97 DiagnosticsEngine &diags, 98 CoverageSourceInfo *CoverageInfo) 99 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 100 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 101 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 102 VMContext(M.getContext()), Types(*this), VTables(*this), 103 SanitizerMD(new SanitizerMetadata(*this)) { 104 105 // Initialize the type cache. 106 llvm::LLVMContext &LLVMContext = M.getContext(); 107 VoidTy = llvm::Type::getVoidTy(LLVMContext); 108 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 109 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 110 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 111 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 112 HalfTy = llvm::Type::getHalfTy(LLVMContext); 113 FloatTy = llvm::Type::getFloatTy(LLVMContext); 114 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 115 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 116 PointerAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 118 SizeSizeInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 120 IntAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 122 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 123 IntPtrTy = llvm::IntegerType::get(LLVMContext, 124 C.getTargetInfo().getMaxPointerWidth()); 125 Int8PtrTy = Int8Ty->getPointerTo(0); 126 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 127 AllocaInt8PtrTy = Int8Ty->getPointerTo( 128 M.getDataLayout().getAllocaAddrSpace()); 129 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 130 131 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 132 133 if (LangOpts.ObjC) 134 createObjCRuntime(); 135 if (LangOpts.OpenCL) 136 createOpenCLRuntime(); 137 if (LangOpts.OpenMP) 138 createOpenMPRuntime(); 139 if (LangOpts.CUDA) 140 createCUDARuntime(); 141 142 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 143 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 144 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 145 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 146 getCXXABI().getMangleContext())); 147 148 // If debug info or coverage generation is enabled, create the CGDebugInfo 149 // object. 150 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 151 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 152 DebugInfo.reset(new CGDebugInfo(*this)); 153 154 Block.GlobalUniqueCount = 0; 155 156 if (C.getLangOpts().ObjC) 157 ObjCData.reset(new ObjCEntrypoints()); 158 159 if (CodeGenOpts.hasProfileClangUse()) { 160 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 161 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 162 if (auto E = ReaderOrErr.takeError()) { 163 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 164 "Could not read profile %0: %1"); 165 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 166 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 167 << EI.message(); 168 }); 169 } else 170 PGOReader = std::move(ReaderOrErr.get()); 171 } 172 173 // If coverage mapping generation is enabled, create the 174 // CoverageMappingModuleGen object. 175 if (CodeGenOpts.CoverageMapping) 176 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 177 } 178 179 CodeGenModule::~CodeGenModule() {} 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTriple().getArch()) { 209 case llvm::Triple::nvptx: 210 case llvm::Triple::nvptx64: 211 assert(getLangOpts().OpenMPIsDevice && 212 "OpenMP NVPTX is only prepared to deal with device code."); 213 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 214 break; 215 default: 216 if (LangOpts.OpenMPSimd) 217 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 218 else 219 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 220 break; 221 } 222 223 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 224 // but we are not there yet so they both reside in CGModule for now and the 225 // OpenMP-IR-Builder is opt-in only. 226 if (LangOpts.OpenMPIRBuilder) { 227 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 228 OMPBuilder->initialize(); 229 } 230 } 231 232 void CodeGenModule::createCUDARuntime() { 233 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 234 } 235 236 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 237 Replacements[Name] = C; 238 } 239 240 void CodeGenModule::applyReplacements() { 241 for (auto &I : Replacements) { 242 StringRef MangledName = I.first(); 243 llvm::Constant *Replacement = I.second; 244 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 245 if (!Entry) 246 continue; 247 auto *OldF = cast<llvm::Function>(Entry); 248 auto *NewF = dyn_cast<llvm::Function>(Replacement); 249 if (!NewF) { 250 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 251 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 252 } else { 253 auto *CE = cast<llvm::ConstantExpr>(Replacement); 254 assert(CE->getOpcode() == llvm::Instruction::BitCast || 255 CE->getOpcode() == llvm::Instruction::GetElementPtr); 256 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 257 } 258 } 259 260 // Replace old with new, but keep the old order. 261 OldF->replaceAllUsesWith(Replacement); 262 if (NewF) { 263 NewF->removeFromParent(); 264 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 265 NewF); 266 } 267 OldF->eraseFromParent(); 268 } 269 } 270 271 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 272 GlobalValReplacements.push_back(std::make_pair(GV, C)); 273 } 274 275 void CodeGenModule::applyGlobalValReplacements() { 276 for (auto &I : GlobalValReplacements) { 277 llvm::GlobalValue *GV = I.first; 278 llvm::Constant *C = I.second; 279 280 GV->replaceAllUsesWith(C); 281 GV->eraseFromParent(); 282 } 283 } 284 285 // This is only used in aliases that we created and we know they have a 286 // linear structure. 287 static const llvm::GlobalObject *getAliasedGlobal( 288 const llvm::GlobalIndirectSymbol &GIS) { 289 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 290 const llvm::Constant *C = &GIS; 291 for (;;) { 292 C = C->stripPointerCasts(); 293 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 294 return GO; 295 // stripPointerCasts will not walk over weak aliases. 296 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 297 if (!GIS2) 298 return nullptr; 299 if (!Visited.insert(GIS2).second) 300 return nullptr; 301 C = GIS2->getIndirectSymbol(); 302 } 303 } 304 305 void CodeGenModule::checkAliases() { 306 // Check if the constructed aliases are well formed. It is really unfortunate 307 // that we have to do this in CodeGen, but we only construct mangled names 308 // and aliases during codegen. 309 bool Error = false; 310 DiagnosticsEngine &Diags = getDiags(); 311 for (const GlobalDecl &GD : Aliases) { 312 const auto *D = cast<ValueDecl>(GD.getDecl()); 313 SourceLocation Location; 314 bool IsIFunc = D->hasAttr<IFuncAttr>(); 315 if (const Attr *A = D->getDefiningAttr()) 316 Location = A->getLocation(); 317 else 318 llvm_unreachable("Not an alias or ifunc?"); 319 StringRef MangledName = getMangledName(GD); 320 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 321 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 322 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 323 if (!GV) { 324 Error = true; 325 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 326 } else if (GV->isDeclaration()) { 327 Error = true; 328 Diags.Report(Location, diag::err_alias_to_undefined) 329 << IsIFunc << IsIFunc; 330 } else if (IsIFunc) { 331 // Check resolver function type. 332 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 333 GV->getType()->getPointerElementType()); 334 assert(FTy); 335 if (!FTy->getReturnType()->isPointerTy()) 336 Diags.Report(Location, diag::err_ifunc_resolver_return); 337 } 338 339 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 340 llvm::GlobalValue *AliaseeGV; 341 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 342 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 343 else 344 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 345 346 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 347 StringRef AliasSection = SA->getName(); 348 if (AliasSection != AliaseeGV->getSection()) 349 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 350 << AliasSection << IsIFunc << IsIFunc; 351 } 352 353 // We have to handle alias to weak aliases in here. LLVM itself disallows 354 // this since the object semantics would not match the IL one. For 355 // compatibility with gcc we implement it by just pointing the alias 356 // to its aliasee's aliasee. We also warn, since the user is probably 357 // expecting the link to be weak. 358 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 359 if (GA->isInterposable()) { 360 Diags.Report(Location, diag::warn_alias_to_weak_alias) 361 << GV->getName() << GA->getName() << IsIFunc; 362 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 363 GA->getIndirectSymbol(), Alias->getType()); 364 Alias->setIndirectSymbol(Aliasee); 365 } 366 } 367 } 368 if (!Error) 369 return; 370 371 for (const GlobalDecl &GD : Aliases) { 372 StringRef MangledName = getMangledName(GD); 373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 374 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 375 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 376 Alias->eraseFromParent(); 377 } 378 } 379 380 void CodeGenModule::clear() { 381 DeferredDeclsToEmit.clear(); 382 if (OpenMPRuntime) 383 OpenMPRuntime->clear(); 384 } 385 386 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 387 StringRef MainFile) { 388 if (!hasDiagnostics()) 389 return; 390 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 391 if (MainFile.empty()) 392 MainFile = "<stdin>"; 393 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 394 } else { 395 if (Mismatched > 0) 396 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 397 398 if (Missing > 0) 399 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 400 } 401 } 402 403 void CodeGenModule::Release() { 404 EmitDeferred(); 405 EmitVTablesOpportunistically(); 406 applyGlobalValReplacements(); 407 applyReplacements(); 408 checkAliases(); 409 emitMultiVersionFunctions(); 410 EmitCXXGlobalInitFunc(); 411 EmitCXXGlobalDtorFunc(); 412 registerGlobalDtorsWithAtExit(); 413 EmitCXXThreadLocalInitFunc(); 414 if (ObjCRuntime) 415 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 416 AddGlobalCtor(ObjCInitFunction); 417 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 418 CUDARuntime) { 419 if (llvm::Function *CudaCtorFunction = 420 CUDARuntime->makeModuleCtorFunction()) 421 AddGlobalCtor(CudaCtorFunction); 422 } 423 if (OpenMPRuntime) { 424 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 425 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 426 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 427 } 428 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 429 OpenMPRuntime->clear(); 430 } 431 if (PGOReader) { 432 getModule().setProfileSummary( 433 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 434 llvm::ProfileSummary::PSK_Instr); 435 if (PGOStats.hasDiagnostics()) 436 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 437 } 438 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 439 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 440 EmitGlobalAnnotations(); 441 EmitStaticExternCAliases(); 442 EmitDeferredUnusedCoverageMappings(); 443 if (CoverageMapping) 444 CoverageMapping->emit(); 445 if (CodeGenOpts.SanitizeCfiCrossDso) { 446 CodeGenFunction(*this).EmitCfiCheckFail(); 447 CodeGenFunction(*this).EmitCfiCheckStub(); 448 } 449 emitAtAvailableLinkGuard(); 450 emitLLVMUsed(); 451 if (SanStats) 452 SanStats->finish(); 453 454 if (CodeGenOpts.Autolink && 455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 456 EmitModuleLinkOptions(); 457 } 458 459 // On ELF we pass the dependent library specifiers directly to the linker 460 // without manipulating them. This is in contrast to other platforms where 461 // they are mapped to a specific linker option by the compiler. This 462 // difference is a result of the greater variety of ELF linkers and the fact 463 // that ELF linkers tend to handle libraries in a more complicated fashion 464 // than on other platforms. This forces us to defer handling the dependent 465 // libs to the linker. 466 // 467 // CUDA/HIP device and host libraries are different. Currently there is no 468 // way to differentiate dependent libraries for host or device. Existing 469 // usage of #pragma comment(lib, *) is intended for host libraries on 470 // Windows. Therefore emit llvm.dependent-libraries only for host. 471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 473 for (auto *MD : ELFDependentLibraries) 474 NMD->addOperand(MD); 475 } 476 477 // Record mregparm value now so it is visible through rest of codegen. 478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 480 CodeGenOpts.NumRegisterParameters); 481 482 if (CodeGenOpts.DwarfVersion) { 483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 484 CodeGenOpts.DwarfVersion); 485 } 486 487 if (Context.getLangOpts().SemanticInterposition) 488 // Require various optimization to respect semantic interposition. 489 getModule().setSemanticInterposition(1); 490 491 if (CodeGenOpts.EmitCodeView) { 492 // Indicate that we want CodeView in the metadata. 493 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 494 } 495 if (CodeGenOpts.CodeViewGHash) { 496 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 497 } 498 if (CodeGenOpts.ControlFlowGuard) { 499 // Function ID tables and checks for Control Flow Guard (cfguard=2). 500 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 501 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 502 // Function ID tables for Control Flow Guard (cfguard=1). 503 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 504 } 505 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 506 // We don't support LTO with 2 with different StrictVTablePointers 507 // FIXME: we could support it by stripping all the information introduced 508 // by StrictVTablePointers. 509 510 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 511 512 llvm::Metadata *Ops[2] = { 513 llvm::MDString::get(VMContext, "StrictVTablePointers"), 514 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 515 llvm::Type::getInt32Ty(VMContext), 1))}; 516 517 getModule().addModuleFlag(llvm::Module::Require, 518 "StrictVTablePointersRequirement", 519 llvm::MDNode::get(VMContext, Ops)); 520 } 521 if (DebugInfo) 522 // We support a single version in the linked module. The LLVM 523 // parser will drop debug info with a different version number 524 // (and warn about it, too). 525 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 526 llvm::DEBUG_METADATA_VERSION); 527 528 // We need to record the widths of enums and wchar_t, so that we can generate 529 // the correct build attributes in the ARM backend. wchar_size is also used by 530 // TargetLibraryInfo. 531 uint64_t WCharWidth = 532 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 533 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 534 535 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 536 if ( Arch == llvm::Triple::arm 537 || Arch == llvm::Triple::armeb 538 || Arch == llvm::Triple::thumb 539 || Arch == llvm::Triple::thumbeb) { 540 // The minimum width of an enum in bytes 541 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 542 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 543 } 544 545 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 546 StringRef ABIStr = Target.getABI(); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 549 llvm::MDString::get(Ctx, ABIStr)); 550 } 551 552 if (CodeGenOpts.SanitizeCfiCrossDso) { 553 // Indicate that we want cross-DSO control flow integrity checks. 554 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 555 } 556 557 if (CodeGenOpts.WholeProgramVTables) { 558 // Indicate whether VFE was enabled for this module, so that the 559 // vcall_visibility metadata added under whole program vtables is handled 560 // appropriately in the optimizer. 561 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 562 CodeGenOpts.VirtualFunctionElimination); 563 } 564 565 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 566 getModule().addModuleFlag(llvm::Module::Override, 567 "CFI Canonical Jump Tables", 568 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 569 } 570 571 if (CodeGenOpts.CFProtectionReturn && 572 Target.checkCFProtectionReturnSupported(getDiags())) { 573 // Indicate that we want to instrument return control flow protection. 574 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 575 1); 576 } 577 578 if (CodeGenOpts.CFProtectionBranch && 579 Target.checkCFProtectionBranchSupported(getDiags())) { 580 // Indicate that we want to instrument branch control flow protection. 581 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 582 1); 583 } 584 585 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 586 // Indicate whether __nvvm_reflect should be configured to flush denormal 587 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 588 // property.) 589 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 590 CodeGenOpts.FP32DenormalMode != 591 llvm::DenormalMode::IEEE); 592 } 593 594 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 595 if (LangOpts.OpenCL) { 596 EmitOpenCLMetadata(); 597 // Emit SPIR version. 598 if (getTriple().isSPIR()) { 599 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 600 // opencl.spir.version named metadata. 601 // C++ is backwards compatible with OpenCL v2.0. 602 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 603 llvm::Metadata *SPIRVerElts[] = { 604 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 605 Int32Ty, Version / 100)), 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 608 llvm::NamedMDNode *SPIRVerMD = 609 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 610 llvm::LLVMContext &Ctx = TheModule.getContext(); 611 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 612 } 613 } 614 615 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 616 assert(PLevel < 3 && "Invalid PIC Level"); 617 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 618 if (Context.getLangOpts().PIE) 619 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 620 } 621 622 if (getCodeGenOpts().CodeModel.size() > 0) { 623 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 624 .Case("tiny", llvm::CodeModel::Tiny) 625 .Case("small", llvm::CodeModel::Small) 626 .Case("kernel", llvm::CodeModel::Kernel) 627 .Case("medium", llvm::CodeModel::Medium) 628 .Case("large", llvm::CodeModel::Large) 629 .Default(~0u); 630 if (CM != ~0u) { 631 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 632 getModule().setCodeModel(codeModel); 633 } 634 } 635 636 if (CodeGenOpts.NoPLT) 637 getModule().setRtLibUseGOT(); 638 639 SimplifyPersonality(); 640 641 if (getCodeGenOpts().EmitDeclMetadata) 642 EmitDeclMetadata(); 643 644 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 645 EmitCoverageFile(); 646 647 if (DebugInfo) 648 DebugInfo->finalize(); 649 650 if (getCodeGenOpts().EmitVersionIdentMetadata) 651 EmitVersionIdentMetadata(); 652 653 if (!getCodeGenOpts().RecordCommandLine.empty()) 654 EmitCommandLineMetadata(); 655 656 EmitTargetMetadata(); 657 } 658 659 void CodeGenModule::EmitOpenCLMetadata() { 660 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 661 // opencl.ocl.version named metadata node. 662 // C++ is backwards compatible with OpenCL v2.0. 663 // FIXME: We might need to add CXX version at some point too? 664 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 665 llvm::Metadata *OCLVerElts[] = { 666 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 667 Int32Ty, Version / 100)), 668 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 669 Int32Ty, (Version % 100) / 10))}; 670 llvm::NamedMDNode *OCLVerMD = 671 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 672 llvm::LLVMContext &Ctx = TheModule.getContext(); 673 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 674 } 675 676 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 677 // Make sure that this type is translated. 678 Types.UpdateCompletedType(TD); 679 } 680 681 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 682 // Make sure that this type is translated. 683 Types.RefreshTypeCacheForClass(RD); 684 } 685 686 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 687 if (!TBAA) 688 return nullptr; 689 return TBAA->getTypeInfo(QTy); 690 } 691 692 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 693 if (!TBAA) 694 return TBAAAccessInfo(); 695 return TBAA->getAccessInfo(AccessType); 696 } 697 698 TBAAAccessInfo 699 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 700 if (!TBAA) 701 return TBAAAccessInfo(); 702 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 703 } 704 705 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 706 if (!TBAA) 707 return nullptr; 708 return TBAA->getTBAAStructInfo(QTy); 709 } 710 711 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 712 if (!TBAA) 713 return nullptr; 714 return TBAA->getBaseTypeInfo(QTy); 715 } 716 717 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 718 if (!TBAA) 719 return nullptr; 720 return TBAA->getAccessTagInfo(Info); 721 } 722 723 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 724 TBAAAccessInfo TargetInfo) { 725 if (!TBAA) 726 return TBAAAccessInfo(); 727 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 728 } 729 730 TBAAAccessInfo 731 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 732 TBAAAccessInfo InfoB) { 733 if (!TBAA) 734 return TBAAAccessInfo(); 735 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 736 } 737 738 TBAAAccessInfo 739 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 740 TBAAAccessInfo SrcInfo) { 741 if (!TBAA) 742 return TBAAAccessInfo(); 743 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 744 } 745 746 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 747 TBAAAccessInfo TBAAInfo) { 748 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 749 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 750 } 751 752 void CodeGenModule::DecorateInstructionWithInvariantGroup( 753 llvm::Instruction *I, const CXXRecordDecl *RD) { 754 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 755 llvm::MDNode::get(getLLVMContext(), {})); 756 } 757 758 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 759 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 760 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 761 } 762 763 /// ErrorUnsupported - Print out an error that codegen doesn't support the 764 /// specified stmt yet. 765 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 766 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 767 "cannot compile this %0 yet"); 768 std::string Msg = Type; 769 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 770 << Msg << S->getSourceRange(); 771 } 772 773 /// ErrorUnsupported - Print out an error that codegen doesn't support the 774 /// specified decl yet. 775 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 776 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 777 "cannot compile this %0 yet"); 778 std::string Msg = Type; 779 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 780 } 781 782 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 783 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 784 } 785 786 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 787 const NamedDecl *D) const { 788 if (GV->hasDLLImportStorageClass()) 789 return; 790 // Internal definitions always have default visibility. 791 if (GV->hasLocalLinkage()) { 792 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 793 return; 794 } 795 if (!D) 796 return; 797 // Set visibility for definitions, and for declarations if requested globally 798 // or set explicitly. 799 LinkageInfo LV = D->getLinkageAndVisibility(); 800 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 801 !GV->isDeclarationForLinker()) 802 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 803 } 804 805 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 806 llvm::GlobalValue *GV) { 807 if (GV->hasLocalLinkage()) 808 return true; 809 810 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 811 return true; 812 813 // DLLImport explicitly marks the GV as external. 814 if (GV->hasDLLImportStorageClass()) 815 return false; 816 817 const llvm::Triple &TT = CGM.getTriple(); 818 if (TT.isWindowsGNUEnvironment()) { 819 // In MinGW, variables without DLLImport can still be automatically 820 // imported from a DLL by the linker; don't mark variables that 821 // potentially could come from another DLL as DSO local. 822 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 823 !GV->isThreadLocal()) 824 return false; 825 } 826 827 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 828 // remain unresolved in the link, they can be resolved to zero, which is 829 // outside the current DSO. 830 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 831 return false; 832 833 // Every other GV is local on COFF. 834 // Make an exception for windows OS in the triple: Some firmware builds use 835 // *-win32-macho triples. This (accidentally?) produced windows relocations 836 // without GOT tables in older clang versions; Keep this behaviour. 837 // FIXME: even thread local variables? 838 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 839 return true; 840 841 // Only handle COFF and ELF for now. 842 if (!TT.isOSBinFormatELF()) 843 return false; 844 845 // If this is not an executable, don't assume anything is local. 846 const auto &CGOpts = CGM.getCodeGenOpts(); 847 llvm::Reloc::Model RM = CGOpts.RelocationModel; 848 const auto &LOpts = CGM.getLangOpts(); 849 if (RM != llvm::Reloc::Static && !LOpts.PIE) 850 return false; 851 852 // A definition cannot be preempted from an executable. 853 if (!GV->isDeclarationForLinker()) 854 return true; 855 856 // Most PIC code sequences that assume that a symbol is local cannot produce a 857 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 858 // depended, it seems worth it to handle it here. 859 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 860 return false; 861 862 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 863 llvm::Triple::ArchType Arch = TT.getArch(); 864 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 865 Arch == llvm::Triple::ppc64le) 866 return false; 867 868 // If we can use copy relocations we can assume it is local. 869 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 870 if (!Var->isThreadLocal() && 871 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 872 return true; 873 874 // If we can use a plt entry as the symbol address we can assume it 875 // is local. 876 // FIXME: This should work for PIE, but the gold linker doesn't support it. 877 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 878 return true; 879 880 // Otherwise don't assume it is local. 881 return false; 882 } 883 884 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 885 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 886 } 887 888 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 889 GlobalDecl GD) const { 890 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 891 // C++ destructors have a few C++ ABI specific special cases. 892 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 893 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 894 return; 895 } 896 setDLLImportDLLExport(GV, D); 897 } 898 899 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 900 const NamedDecl *D) const { 901 if (D && D->isExternallyVisible()) { 902 if (D->hasAttr<DLLImportAttr>()) 903 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 904 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 905 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 906 } 907 } 908 909 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 910 GlobalDecl GD) const { 911 setDLLImportDLLExport(GV, GD); 912 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 913 } 914 915 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 916 const NamedDecl *D) const { 917 setDLLImportDLLExport(GV, D); 918 setGVPropertiesAux(GV, D); 919 } 920 921 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 922 const NamedDecl *D) const { 923 setGlobalVisibility(GV, D); 924 setDSOLocal(GV); 925 GV->setPartition(CodeGenOpts.SymbolPartition); 926 } 927 928 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 929 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 930 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 931 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 932 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 933 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 934 } 935 936 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 937 CodeGenOptions::TLSModel M) { 938 switch (M) { 939 case CodeGenOptions::GeneralDynamicTLSModel: 940 return llvm::GlobalVariable::GeneralDynamicTLSModel; 941 case CodeGenOptions::LocalDynamicTLSModel: 942 return llvm::GlobalVariable::LocalDynamicTLSModel; 943 case CodeGenOptions::InitialExecTLSModel: 944 return llvm::GlobalVariable::InitialExecTLSModel; 945 case CodeGenOptions::LocalExecTLSModel: 946 return llvm::GlobalVariable::LocalExecTLSModel; 947 } 948 llvm_unreachable("Invalid TLS model!"); 949 } 950 951 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 952 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 953 954 llvm::GlobalValue::ThreadLocalMode TLM; 955 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 956 957 // Override the TLS model if it is explicitly specified. 958 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 959 TLM = GetLLVMTLSModel(Attr->getModel()); 960 } 961 962 GV->setThreadLocalMode(TLM); 963 } 964 965 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 966 StringRef Name) { 967 const TargetInfo &Target = CGM.getTarget(); 968 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 969 } 970 971 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 972 const CPUSpecificAttr *Attr, 973 unsigned CPUIndex, 974 raw_ostream &Out) { 975 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 976 // supported. 977 if (Attr) 978 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 979 else if (CGM.getTarget().supportsIFunc()) 980 Out << ".resolver"; 981 } 982 983 static void AppendTargetMangling(const CodeGenModule &CGM, 984 const TargetAttr *Attr, raw_ostream &Out) { 985 if (Attr->isDefaultVersion()) 986 return; 987 988 Out << '.'; 989 const TargetInfo &Target = CGM.getTarget(); 990 ParsedTargetAttr Info = 991 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 992 // Multiversioning doesn't allow "no-${feature}", so we can 993 // only have "+" prefixes here. 994 assert(LHS.startswith("+") && RHS.startswith("+") && 995 "Features should always have a prefix."); 996 return Target.multiVersionSortPriority(LHS.substr(1)) > 997 Target.multiVersionSortPriority(RHS.substr(1)); 998 }); 999 1000 bool IsFirst = true; 1001 1002 if (!Info.Architecture.empty()) { 1003 IsFirst = false; 1004 Out << "arch_" << Info.Architecture; 1005 } 1006 1007 for (StringRef Feat : Info.Features) { 1008 if (!IsFirst) 1009 Out << '_'; 1010 IsFirst = false; 1011 Out << Feat.substr(1); 1012 } 1013 } 1014 1015 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1016 const NamedDecl *ND, 1017 bool OmitMultiVersionMangling = false) { 1018 SmallString<256> Buffer; 1019 llvm::raw_svector_ostream Out(Buffer); 1020 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1021 if (MC.shouldMangleDeclName(ND)) { 1022 llvm::raw_svector_ostream Out(Buffer); 1023 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 1024 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 1025 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 1026 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 1027 else 1028 MC.mangleName(ND, Out); 1029 } else { 1030 IdentifierInfo *II = ND->getIdentifier(); 1031 assert(II && "Attempt to mangle unnamed decl."); 1032 const auto *FD = dyn_cast<FunctionDecl>(ND); 1033 1034 if (FD && 1035 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1036 llvm::raw_svector_ostream Out(Buffer); 1037 Out << "__regcall3__" << II->getName(); 1038 } else { 1039 Out << II->getName(); 1040 } 1041 } 1042 1043 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1044 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1045 switch (FD->getMultiVersionKind()) { 1046 case MultiVersionKind::CPUDispatch: 1047 case MultiVersionKind::CPUSpecific: 1048 AppendCPUSpecificCPUDispatchMangling(CGM, 1049 FD->getAttr<CPUSpecificAttr>(), 1050 GD.getMultiVersionIndex(), Out); 1051 break; 1052 case MultiVersionKind::Target: 1053 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1054 break; 1055 case MultiVersionKind::None: 1056 llvm_unreachable("None multiversion type isn't valid here"); 1057 } 1058 } 1059 1060 return std::string(Out.str()); 1061 } 1062 1063 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1064 const FunctionDecl *FD) { 1065 if (!FD->isMultiVersion()) 1066 return; 1067 1068 // Get the name of what this would be without the 'target' attribute. This 1069 // allows us to lookup the version that was emitted when this wasn't a 1070 // multiversion function. 1071 std::string NonTargetName = 1072 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1073 GlobalDecl OtherGD; 1074 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1075 assert(OtherGD.getCanonicalDecl() 1076 .getDecl() 1077 ->getAsFunction() 1078 ->isMultiVersion() && 1079 "Other GD should now be a multiversioned function"); 1080 // OtherFD is the version of this function that was mangled BEFORE 1081 // becoming a MultiVersion function. It potentially needs to be updated. 1082 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1083 .getDecl() 1084 ->getAsFunction() 1085 ->getMostRecentDecl(); 1086 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1087 // This is so that if the initial version was already the 'default' 1088 // version, we don't try to update it. 1089 if (OtherName != NonTargetName) { 1090 // Remove instead of erase, since others may have stored the StringRef 1091 // to this. 1092 const auto ExistingRecord = Manglings.find(NonTargetName); 1093 if (ExistingRecord != std::end(Manglings)) 1094 Manglings.remove(&(*ExistingRecord)); 1095 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1096 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1097 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1098 Entry->setName(OtherName); 1099 } 1100 } 1101 } 1102 1103 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1104 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1105 1106 // Some ABIs don't have constructor variants. Make sure that base and 1107 // complete constructors get mangled the same. 1108 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1109 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1110 CXXCtorType OrigCtorType = GD.getCtorType(); 1111 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1112 if (OrigCtorType == Ctor_Base) 1113 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1114 } 1115 } 1116 1117 auto FoundName = MangledDeclNames.find(CanonicalGD); 1118 if (FoundName != MangledDeclNames.end()) 1119 return FoundName->second; 1120 1121 // Keep the first result in the case of a mangling collision. 1122 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1123 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1124 1125 // Adjust kernel stub mangling as we may need to be able to differentiate 1126 // them from the kernel itself (e.g., for HIP). 1127 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1128 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1129 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1130 1131 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1132 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1133 } 1134 1135 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1136 const BlockDecl *BD) { 1137 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1138 const Decl *D = GD.getDecl(); 1139 1140 SmallString<256> Buffer; 1141 llvm::raw_svector_ostream Out(Buffer); 1142 if (!D) 1143 MangleCtx.mangleGlobalBlock(BD, 1144 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1145 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1146 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1147 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1148 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1149 else 1150 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1151 1152 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1153 return Result.first->first(); 1154 } 1155 1156 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1157 return getModule().getNamedValue(Name); 1158 } 1159 1160 /// AddGlobalCtor - Add a function to the list that will be called before 1161 /// main() runs. 1162 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1163 llvm::Constant *AssociatedData) { 1164 // FIXME: Type coercion of void()* types. 1165 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1166 } 1167 1168 /// AddGlobalDtor - Add a function to the list that will be called 1169 /// when the module is unloaded. 1170 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1171 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1172 DtorsUsingAtExit[Priority].push_back(Dtor); 1173 return; 1174 } 1175 1176 // FIXME: Type coercion of void()* types. 1177 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1178 } 1179 1180 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1181 if (Fns.empty()) return; 1182 1183 // Ctor function type is void()*. 1184 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1185 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1186 TheModule.getDataLayout().getProgramAddressSpace()); 1187 1188 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1189 llvm::StructType *CtorStructTy = llvm::StructType::get( 1190 Int32Ty, CtorPFTy, VoidPtrTy); 1191 1192 // Construct the constructor and destructor arrays. 1193 ConstantInitBuilder builder(*this); 1194 auto ctors = builder.beginArray(CtorStructTy); 1195 for (const auto &I : Fns) { 1196 auto ctor = ctors.beginStruct(CtorStructTy); 1197 ctor.addInt(Int32Ty, I.Priority); 1198 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1199 if (I.AssociatedData) 1200 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1201 else 1202 ctor.addNullPointer(VoidPtrTy); 1203 ctor.finishAndAddTo(ctors); 1204 } 1205 1206 auto list = 1207 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1208 /*constant*/ false, 1209 llvm::GlobalValue::AppendingLinkage); 1210 1211 // The LTO linker doesn't seem to like it when we set an alignment 1212 // on appending variables. Take it off as a workaround. 1213 list->setAlignment(llvm::None); 1214 1215 Fns.clear(); 1216 } 1217 1218 llvm::GlobalValue::LinkageTypes 1219 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1220 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1221 1222 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1223 1224 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1225 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1226 1227 if (isa<CXXConstructorDecl>(D) && 1228 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1229 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1230 // Our approach to inheriting constructors is fundamentally different from 1231 // that used by the MS ABI, so keep our inheriting constructor thunks 1232 // internal rather than trying to pick an unambiguous mangling for them. 1233 return llvm::GlobalValue::InternalLinkage; 1234 } 1235 1236 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1237 } 1238 1239 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1240 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1241 if (!MDS) return nullptr; 1242 1243 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1244 } 1245 1246 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1247 const CGFunctionInfo &Info, 1248 llvm::Function *F) { 1249 unsigned CallingConv; 1250 llvm::AttributeList PAL; 1251 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1252 F->setAttributes(PAL); 1253 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1254 } 1255 1256 static void removeImageAccessQualifier(std::string& TyName) { 1257 std::string ReadOnlyQual("__read_only"); 1258 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1259 if (ReadOnlyPos != std::string::npos) 1260 // "+ 1" for the space after access qualifier. 1261 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1262 else { 1263 std::string WriteOnlyQual("__write_only"); 1264 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1265 if (WriteOnlyPos != std::string::npos) 1266 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1267 else { 1268 std::string ReadWriteQual("__read_write"); 1269 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1270 if (ReadWritePos != std::string::npos) 1271 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1272 } 1273 } 1274 } 1275 1276 // Returns the address space id that should be produced to the 1277 // kernel_arg_addr_space metadata. This is always fixed to the ids 1278 // as specified in the SPIR 2.0 specification in order to differentiate 1279 // for example in clGetKernelArgInfo() implementation between the address 1280 // spaces with targets without unique mapping to the OpenCL address spaces 1281 // (basically all single AS CPUs). 1282 static unsigned ArgInfoAddressSpace(LangAS AS) { 1283 switch (AS) { 1284 case LangAS::opencl_global: return 1; 1285 case LangAS::opencl_constant: return 2; 1286 case LangAS::opencl_local: return 3; 1287 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1288 default: 1289 return 0; // Assume private. 1290 } 1291 } 1292 1293 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1294 const FunctionDecl *FD, 1295 CodeGenFunction *CGF) { 1296 assert(((FD && CGF) || (!FD && !CGF)) && 1297 "Incorrect use - FD and CGF should either be both null or not!"); 1298 // Create MDNodes that represent the kernel arg metadata. 1299 // Each MDNode is a list in the form of "key", N number of values which is 1300 // the same number of values as their are kernel arguments. 1301 1302 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1303 1304 // MDNode for the kernel argument address space qualifiers. 1305 SmallVector<llvm::Metadata *, 8> addressQuals; 1306 1307 // MDNode for the kernel argument access qualifiers (images only). 1308 SmallVector<llvm::Metadata *, 8> accessQuals; 1309 1310 // MDNode for the kernel argument type names. 1311 SmallVector<llvm::Metadata *, 8> argTypeNames; 1312 1313 // MDNode for the kernel argument base type names. 1314 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1315 1316 // MDNode for the kernel argument type qualifiers. 1317 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1318 1319 // MDNode for the kernel argument names. 1320 SmallVector<llvm::Metadata *, 8> argNames; 1321 1322 if (FD && CGF) 1323 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1324 const ParmVarDecl *parm = FD->getParamDecl(i); 1325 QualType ty = parm->getType(); 1326 std::string typeQuals; 1327 1328 if (ty->isPointerType()) { 1329 QualType pointeeTy = ty->getPointeeType(); 1330 1331 // Get address qualifier. 1332 addressQuals.push_back( 1333 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1334 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1335 1336 // Get argument type name. 1337 std::string typeName = 1338 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1339 1340 // Turn "unsigned type" to "utype" 1341 std::string::size_type pos = typeName.find("unsigned"); 1342 if (pointeeTy.isCanonical() && pos != std::string::npos) 1343 typeName.erase(pos + 1, 8); 1344 1345 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1346 1347 std::string baseTypeName = 1348 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1349 Policy) + 1350 "*"; 1351 1352 // Turn "unsigned type" to "utype" 1353 pos = baseTypeName.find("unsigned"); 1354 if (pos != std::string::npos) 1355 baseTypeName.erase(pos + 1, 8); 1356 1357 argBaseTypeNames.push_back( 1358 llvm::MDString::get(VMContext, baseTypeName)); 1359 1360 // Get argument type qualifiers: 1361 if (ty.isRestrictQualified()) 1362 typeQuals = "restrict"; 1363 if (pointeeTy.isConstQualified() || 1364 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1365 typeQuals += typeQuals.empty() ? "const" : " const"; 1366 if (pointeeTy.isVolatileQualified()) 1367 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1368 } else { 1369 uint32_t AddrSpc = 0; 1370 bool isPipe = ty->isPipeType(); 1371 if (ty->isImageType() || isPipe) 1372 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1373 1374 addressQuals.push_back( 1375 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1376 1377 // Get argument type name. 1378 std::string typeName; 1379 if (isPipe) 1380 typeName = ty.getCanonicalType() 1381 ->castAs<PipeType>() 1382 ->getElementType() 1383 .getAsString(Policy); 1384 else 1385 typeName = ty.getUnqualifiedType().getAsString(Policy); 1386 1387 // Turn "unsigned type" to "utype" 1388 std::string::size_type pos = typeName.find("unsigned"); 1389 if (ty.isCanonical() && pos != std::string::npos) 1390 typeName.erase(pos + 1, 8); 1391 1392 std::string baseTypeName; 1393 if (isPipe) 1394 baseTypeName = ty.getCanonicalType() 1395 ->castAs<PipeType>() 1396 ->getElementType() 1397 .getCanonicalType() 1398 .getAsString(Policy); 1399 else 1400 baseTypeName = 1401 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1402 1403 // Remove access qualifiers on images 1404 // (as they are inseparable from type in clang implementation, 1405 // but OpenCL spec provides a special query to get access qualifier 1406 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1407 if (ty->isImageType()) { 1408 removeImageAccessQualifier(typeName); 1409 removeImageAccessQualifier(baseTypeName); 1410 } 1411 1412 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1413 1414 // Turn "unsigned type" to "utype" 1415 pos = baseTypeName.find("unsigned"); 1416 if (pos != std::string::npos) 1417 baseTypeName.erase(pos + 1, 8); 1418 1419 argBaseTypeNames.push_back( 1420 llvm::MDString::get(VMContext, baseTypeName)); 1421 1422 if (isPipe) 1423 typeQuals = "pipe"; 1424 } 1425 1426 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1427 1428 // Get image and pipe access qualifier: 1429 if (ty->isImageType() || ty->isPipeType()) { 1430 const Decl *PDecl = parm; 1431 if (auto *TD = dyn_cast<TypedefType>(ty)) 1432 PDecl = TD->getDecl(); 1433 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1434 if (A && A->isWriteOnly()) 1435 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1436 else if (A && A->isReadWrite()) 1437 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1438 else 1439 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1440 } else 1441 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1442 1443 // Get argument name. 1444 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1445 } 1446 1447 Fn->setMetadata("kernel_arg_addr_space", 1448 llvm::MDNode::get(VMContext, addressQuals)); 1449 Fn->setMetadata("kernel_arg_access_qual", 1450 llvm::MDNode::get(VMContext, accessQuals)); 1451 Fn->setMetadata("kernel_arg_type", 1452 llvm::MDNode::get(VMContext, argTypeNames)); 1453 Fn->setMetadata("kernel_arg_base_type", 1454 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1455 Fn->setMetadata("kernel_arg_type_qual", 1456 llvm::MDNode::get(VMContext, argTypeQuals)); 1457 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1458 Fn->setMetadata("kernel_arg_name", 1459 llvm::MDNode::get(VMContext, argNames)); 1460 } 1461 1462 /// Determines whether the language options require us to model 1463 /// unwind exceptions. We treat -fexceptions as mandating this 1464 /// except under the fragile ObjC ABI with only ObjC exceptions 1465 /// enabled. This means, for example, that C with -fexceptions 1466 /// enables this. 1467 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1468 // If exceptions are completely disabled, obviously this is false. 1469 if (!LangOpts.Exceptions) return false; 1470 1471 // If C++ exceptions are enabled, this is true. 1472 if (LangOpts.CXXExceptions) return true; 1473 1474 // If ObjC exceptions are enabled, this depends on the ABI. 1475 if (LangOpts.ObjCExceptions) { 1476 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1477 } 1478 1479 return true; 1480 } 1481 1482 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1483 const CXXMethodDecl *MD) { 1484 // Check that the type metadata can ever actually be used by a call. 1485 if (!CGM.getCodeGenOpts().LTOUnit || 1486 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1487 return false; 1488 1489 // Only functions whose address can be taken with a member function pointer 1490 // need this sort of type metadata. 1491 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1492 !isa<CXXDestructorDecl>(MD); 1493 } 1494 1495 std::vector<const CXXRecordDecl *> 1496 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1497 llvm::SetVector<const CXXRecordDecl *> MostBases; 1498 1499 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1500 CollectMostBases = [&](const CXXRecordDecl *RD) { 1501 if (RD->getNumBases() == 0) 1502 MostBases.insert(RD); 1503 for (const CXXBaseSpecifier &B : RD->bases()) 1504 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1505 }; 1506 CollectMostBases(RD); 1507 return MostBases.takeVector(); 1508 } 1509 1510 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1511 llvm::Function *F) { 1512 llvm::AttrBuilder B; 1513 1514 if (CodeGenOpts.UnwindTables) 1515 B.addAttribute(llvm::Attribute::UWTable); 1516 1517 if (!hasUnwindExceptions(LangOpts)) 1518 B.addAttribute(llvm::Attribute::NoUnwind); 1519 1520 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1521 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1522 B.addAttribute(llvm::Attribute::StackProtect); 1523 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1524 B.addAttribute(llvm::Attribute::StackProtectStrong); 1525 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1526 B.addAttribute(llvm::Attribute::StackProtectReq); 1527 } 1528 1529 if (!D) { 1530 // If we don't have a declaration to control inlining, the function isn't 1531 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1532 // disabled, mark the function as noinline. 1533 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1534 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1535 B.addAttribute(llvm::Attribute::NoInline); 1536 1537 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1538 return; 1539 } 1540 1541 // Track whether we need to add the optnone LLVM attribute, 1542 // starting with the default for this optimization level. 1543 bool ShouldAddOptNone = 1544 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1545 // We can't add optnone in the following cases, it won't pass the verifier. 1546 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1547 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1548 1549 // Add optnone, but do so only if the function isn't always_inline. 1550 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1551 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1552 B.addAttribute(llvm::Attribute::OptimizeNone); 1553 1554 // OptimizeNone implies noinline; we should not be inlining such functions. 1555 B.addAttribute(llvm::Attribute::NoInline); 1556 1557 // We still need to handle naked functions even though optnone subsumes 1558 // much of their semantics. 1559 if (D->hasAttr<NakedAttr>()) 1560 B.addAttribute(llvm::Attribute::Naked); 1561 1562 // OptimizeNone wins over OptimizeForSize and MinSize. 1563 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1564 F->removeFnAttr(llvm::Attribute::MinSize); 1565 } else if (D->hasAttr<NakedAttr>()) { 1566 // Naked implies noinline: we should not be inlining such functions. 1567 B.addAttribute(llvm::Attribute::Naked); 1568 B.addAttribute(llvm::Attribute::NoInline); 1569 } else if (D->hasAttr<NoDuplicateAttr>()) { 1570 B.addAttribute(llvm::Attribute::NoDuplicate); 1571 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1572 // Add noinline if the function isn't always_inline. 1573 B.addAttribute(llvm::Attribute::NoInline); 1574 } else if (D->hasAttr<AlwaysInlineAttr>() && 1575 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1576 // (noinline wins over always_inline, and we can't specify both in IR) 1577 B.addAttribute(llvm::Attribute::AlwaysInline); 1578 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1579 // If we're not inlining, then force everything that isn't always_inline to 1580 // carry an explicit noinline attribute. 1581 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1582 B.addAttribute(llvm::Attribute::NoInline); 1583 } else { 1584 // Otherwise, propagate the inline hint attribute and potentially use its 1585 // absence to mark things as noinline. 1586 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1587 // Search function and template pattern redeclarations for inline. 1588 auto CheckForInline = [](const FunctionDecl *FD) { 1589 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1590 return Redecl->isInlineSpecified(); 1591 }; 1592 if (any_of(FD->redecls(), CheckRedeclForInline)) 1593 return true; 1594 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1595 if (!Pattern) 1596 return false; 1597 return any_of(Pattern->redecls(), CheckRedeclForInline); 1598 }; 1599 if (CheckForInline(FD)) { 1600 B.addAttribute(llvm::Attribute::InlineHint); 1601 } else if (CodeGenOpts.getInlining() == 1602 CodeGenOptions::OnlyHintInlining && 1603 !FD->isInlined() && 1604 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1605 B.addAttribute(llvm::Attribute::NoInline); 1606 } 1607 } 1608 } 1609 1610 // Add other optimization related attributes if we are optimizing this 1611 // function. 1612 if (!D->hasAttr<OptimizeNoneAttr>()) { 1613 if (D->hasAttr<ColdAttr>()) { 1614 if (!ShouldAddOptNone) 1615 B.addAttribute(llvm::Attribute::OptimizeForSize); 1616 B.addAttribute(llvm::Attribute::Cold); 1617 } 1618 1619 if (D->hasAttr<MinSizeAttr>()) 1620 B.addAttribute(llvm::Attribute::MinSize); 1621 } 1622 1623 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1624 1625 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1626 if (alignment) 1627 F->setAlignment(llvm::Align(alignment)); 1628 1629 if (!D->hasAttr<AlignedAttr>()) 1630 if (LangOpts.FunctionAlignment) 1631 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1632 1633 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1634 // reserve a bit for differentiating between virtual and non-virtual member 1635 // functions. If the current target's C++ ABI requires this and this is a 1636 // member function, set its alignment accordingly. 1637 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1638 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1639 F->setAlignment(llvm::Align(2)); 1640 } 1641 1642 // In the cross-dso CFI mode with canonical jump tables, we want !type 1643 // attributes on definitions only. 1644 if (CodeGenOpts.SanitizeCfiCrossDso && 1645 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1646 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1647 // Skip available_externally functions. They won't be codegen'ed in the 1648 // current module anyway. 1649 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1650 CreateFunctionTypeMetadataForIcall(FD, F); 1651 } 1652 } 1653 1654 // Emit type metadata on member functions for member function pointer checks. 1655 // These are only ever necessary on definitions; we're guaranteed that the 1656 // definition will be present in the LTO unit as a result of LTO visibility. 1657 auto *MD = dyn_cast<CXXMethodDecl>(D); 1658 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1659 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1660 llvm::Metadata *Id = 1661 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1662 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1663 F->addTypeMetadata(0, Id); 1664 } 1665 } 1666 } 1667 1668 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1669 const Decl *D = GD.getDecl(); 1670 if (dyn_cast_or_null<NamedDecl>(D)) 1671 setGVProperties(GV, GD); 1672 else 1673 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1674 1675 if (D && D->hasAttr<UsedAttr>()) 1676 addUsedGlobal(GV); 1677 1678 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1679 const auto *VD = cast<VarDecl>(D); 1680 if (VD->getType().isConstQualified() && 1681 VD->getStorageDuration() == SD_Static) 1682 addUsedGlobal(GV); 1683 } 1684 } 1685 1686 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1687 llvm::AttrBuilder &Attrs) { 1688 // Add target-cpu and target-features attributes to functions. If 1689 // we have a decl for the function and it has a target attribute then 1690 // parse that and add it to the feature set. 1691 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1692 std::vector<std::string> Features; 1693 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1694 FD = FD ? FD->getMostRecentDecl() : FD; 1695 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1696 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1697 bool AddedAttr = false; 1698 if (TD || SD) { 1699 llvm::StringMap<bool> FeatureMap; 1700 getContext().getFunctionFeatureMap(FeatureMap, GD); 1701 1702 // Produce the canonical string for this set of features. 1703 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1704 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1705 1706 // Now add the target-cpu and target-features to the function. 1707 // While we populated the feature map above, we still need to 1708 // get and parse the target attribute so we can get the cpu for 1709 // the function. 1710 if (TD) { 1711 ParsedTargetAttr ParsedAttr = TD->parse(); 1712 if (ParsedAttr.Architecture != "" && 1713 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1714 TargetCPU = ParsedAttr.Architecture; 1715 } 1716 } else { 1717 // Otherwise just add the existing target cpu and target features to the 1718 // function. 1719 Features = getTarget().getTargetOpts().Features; 1720 } 1721 1722 if (TargetCPU != "") { 1723 Attrs.addAttribute("target-cpu", TargetCPU); 1724 AddedAttr = true; 1725 } 1726 if (!Features.empty()) { 1727 llvm::sort(Features); 1728 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1729 AddedAttr = true; 1730 } 1731 1732 return AddedAttr; 1733 } 1734 1735 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1736 llvm::GlobalObject *GO) { 1737 const Decl *D = GD.getDecl(); 1738 SetCommonAttributes(GD, GO); 1739 1740 if (D) { 1741 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1742 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1743 GV->addAttribute("bss-section", SA->getName()); 1744 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1745 GV->addAttribute("data-section", SA->getName()); 1746 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1747 GV->addAttribute("rodata-section", SA->getName()); 1748 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1749 GV->addAttribute("relro-section", SA->getName()); 1750 } 1751 1752 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1753 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1754 if (!D->getAttr<SectionAttr>()) 1755 F->addFnAttr("implicit-section-name", SA->getName()); 1756 1757 llvm::AttrBuilder Attrs; 1758 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1759 // We know that GetCPUAndFeaturesAttributes will always have the 1760 // newest set, since it has the newest possible FunctionDecl, so the 1761 // new ones should replace the old. 1762 F->removeFnAttr("target-cpu"); 1763 F->removeFnAttr("target-features"); 1764 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1765 } 1766 } 1767 1768 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1769 GO->setSection(CSA->getName()); 1770 else if (const auto *SA = D->getAttr<SectionAttr>()) 1771 GO->setSection(SA->getName()); 1772 } 1773 1774 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1775 } 1776 1777 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1778 llvm::Function *F, 1779 const CGFunctionInfo &FI) { 1780 const Decl *D = GD.getDecl(); 1781 SetLLVMFunctionAttributes(GD, FI, F); 1782 SetLLVMFunctionAttributesForDefinition(D, F); 1783 1784 F->setLinkage(llvm::Function::InternalLinkage); 1785 1786 setNonAliasAttributes(GD, F); 1787 } 1788 1789 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1790 // Set linkage and visibility in case we never see a definition. 1791 LinkageInfo LV = ND->getLinkageAndVisibility(); 1792 // Don't set internal linkage on declarations. 1793 // "extern_weak" is overloaded in LLVM; we probably should have 1794 // separate linkage types for this. 1795 if (isExternallyVisible(LV.getLinkage()) && 1796 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1797 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1798 } 1799 1800 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1801 llvm::Function *F) { 1802 // Only if we are checking indirect calls. 1803 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1804 return; 1805 1806 // Non-static class methods are handled via vtable or member function pointer 1807 // checks elsewhere. 1808 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1809 return; 1810 1811 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1812 F->addTypeMetadata(0, MD); 1813 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1814 1815 // Emit a hash-based bit set entry for cross-DSO calls. 1816 if (CodeGenOpts.SanitizeCfiCrossDso) 1817 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1818 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1819 } 1820 1821 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1822 bool IsIncompleteFunction, 1823 bool IsThunk) { 1824 1825 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1826 // If this is an intrinsic function, set the function's attributes 1827 // to the intrinsic's attributes. 1828 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1829 return; 1830 } 1831 1832 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1833 1834 if (!IsIncompleteFunction) 1835 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1836 1837 // Add the Returned attribute for "this", except for iOS 5 and earlier 1838 // where substantial code, including the libstdc++ dylib, was compiled with 1839 // GCC and does not actually return "this". 1840 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1841 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1842 assert(!F->arg_empty() && 1843 F->arg_begin()->getType() 1844 ->canLosslesslyBitCastTo(F->getReturnType()) && 1845 "unexpected this return"); 1846 F->addAttribute(1, llvm::Attribute::Returned); 1847 } 1848 1849 // Only a few attributes are set on declarations; these may later be 1850 // overridden by a definition. 1851 1852 setLinkageForGV(F, FD); 1853 setGVProperties(F, FD); 1854 1855 // Setup target-specific attributes. 1856 if (!IsIncompleteFunction && F->isDeclaration()) 1857 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1858 1859 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1860 F->setSection(CSA->getName()); 1861 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1862 F->setSection(SA->getName()); 1863 1864 if (FD->isInlineBuiltinDeclaration()) { 1865 F->addAttribute(llvm::AttributeList::FunctionIndex, 1866 llvm::Attribute::NoBuiltin); 1867 } 1868 1869 if (FD->isReplaceableGlobalAllocationFunction()) { 1870 // A replaceable global allocation function does not act like a builtin by 1871 // default, only if it is invoked by a new-expression or delete-expression. 1872 F->addAttribute(llvm::AttributeList::FunctionIndex, 1873 llvm::Attribute::NoBuiltin); 1874 1875 // A sane operator new returns a non-aliasing pointer. 1876 // FIXME: Also add NonNull attribute to the return value 1877 // for the non-nothrow forms? 1878 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1879 if (getCodeGenOpts().AssumeSaneOperatorNew && 1880 (Kind == OO_New || Kind == OO_Array_New)) 1881 F->addAttribute(llvm::AttributeList::ReturnIndex, 1882 llvm::Attribute::NoAlias); 1883 } 1884 1885 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1886 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1887 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1888 if (MD->isVirtual()) 1889 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1890 1891 // Don't emit entries for function declarations in the cross-DSO mode. This 1892 // is handled with better precision by the receiving DSO. But if jump tables 1893 // are non-canonical then we need type metadata in order to produce the local 1894 // jump table. 1895 if (!CodeGenOpts.SanitizeCfiCrossDso || 1896 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1897 CreateFunctionTypeMetadataForIcall(FD, F); 1898 1899 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1900 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1901 1902 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1903 // Annotate the callback behavior as metadata: 1904 // - The callback callee (as argument number). 1905 // - The callback payloads (as argument numbers). 1906 llvm::LLVMContext &Ctx = F->getContext(); 1907 llvm::MDBuilder MDB(Ctx); 1908 1909 // The payload indices are all but the first one in the encoding. The first 1910 // identifies the callback callee. 1911 int CalleeIdx = *CB->encoding_begin(); 1912 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1913 F->addMetadata(llvm::LLVMContext::MD_callback, 1914 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1915 CalleeIdx, PayloadIndices, 1916 /* VarArgsArePassed */ false)})); 1917 } 1918 } 1919 1920 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1921 assert(!GV->isDeclaration() && 1922 "Only globals with definition can force usage."); 1923 LLVMUsed.emplace_back(GV); 1924 } 1925 1926 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1927 assert(!GV->isDeclaration() && 1928 "Only globals with definition can force usage."); 1929 LLVMCompilerUsed.emplace_back(GV); 1930 } 1931 1932 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1933 std::vector<llvm::WeakTrackingVH> &List) { 1934 // Don't create llvm.used if there is no need. 1935 if (List.empty()) 1936 return; 1937 1938 // Convert List to what ConstantArray needs. 1939 SmallVector<llvm::Constant*, 8> UsedArray; 1940 UsedArray.resize(List.size()); 1941 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1942 UsedArray[i] = 1943 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1944 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1945 } 1946 1947 if (UsedArray.empty()) 1948 return; 1949 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1950 1951 auto *GV = new llvm::GlobalVariable( 1952 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1953 llvm::ConstantArray::get(ATy, UsedArray), Name); 1954 1955 GV->setSection("llvm.metadata"); 1956 } 1957 1958 void CodeGenModule::emitLLVMUsed() { 1959 emitUsed(*this, "llvm.used", LLVMUsed); 1960 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1961 } 1962 1963 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1964 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1965 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1966 } 1967 1968 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1969 llvm::SmallString<32> Opt; 1970 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1971 if (Opt.empty()) 1972 return; 1973 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1974 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1975 } 1976 1977 void CodeGenModule::AddDependentLib(StringRef Lib) { 1978 auto &C = getLLVMContext(); 1979 if (getTarget().getTriple().isOSBinFormatELF()) { 1980 ELFDependentLibraries.push_back( 1981 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1982 return; 1983 } 1984 1985 llvm::SmallString<24> Opt; 1986 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1987 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1988 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1989 } 1990 1991 /// Add link options implied by the given module, including modules 1992 /// it depends on, using a postorder walk. 1993 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1994 SmallVectorImpl<llvm::MDNode *> &Metadata, 1995 llvm::SmallPtrSet<Module *, 16> &Visited) { 1996 // Import this module's parent. 1997 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1998 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1999 } 2000 2001 // Import this module's dependencies. 2002 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2003 if (Visited.insert(Mod->Imports[I - 1]).second) 2004 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2005 } 2006 2007 // Add linker options to link against the libraries/frameworks 2008 // described by this module. 2009 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2010 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2011 2012 // For modules that use export_as for linking, use that module 2013 // name instead. 2014 if (Mod->UseExportAsModuleLinkName) 2015 return; 2016 2017 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2018 // Link against a framework. Frameworks are currently Darwin only, so we 2019 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2020 if (Mod->LinkLibraries[I-1].IsFramework) { 2021 llvm::Metadata *Args[2] = { 2022 llvm::MDString::get(Context, "-framework"), 2023 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2024 2025 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2026 continue; 2027 } 2028 2029 // Link against a library. 2030 if (IsELF) { 2031 llvm::Metadata *Args[2] = { 2032 llvm::MDString::get(Context, "lib"), 2033 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2034 }; 2035 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2036 } else { 2037 llvm::SmallString<24> Opt; 2038 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2039 Mod->LinkLibraries[I - 1].Library, Opt); 2040 auto *OptString = llvm::MDString::get(Context, Opt); 2041 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2042 } 2043 } 2044 } 2045 2046 void CodeGenModule::EmitModuleLinkOptions() { 2047 // Collect the set of all of the modules we want to visit to emit link 2048 // options, which is essentially the imported modules and all of their 2049 // non-explicit child modules. 2050 llvm::SetVector<clang::Module *> LinkModules; 2051 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2052 SmallVector<clang::Module *, 16> Stack; 2053 2054 // Seed the stack with imported modules. 2055 for (Module *M : ImportedModules) { 2056 // Do not add any link flags when an implementation TU of a module imports 2057 // a header of that same module. 2058 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2059 !getLangOpts().isCompilingModule()) 2060 continue; 2061 if (Visited.insert(M).second) 2062 Stack.push_back(M); 2063 } 2064 2065 // Find all of the modules to import, making a little effort to prune 2066 // non-leaf modules. 2067 while (!Stack.empty()) { 2068 clang::Module *Mod = Stack.pop_back_val(); 2069 2070 bool AnyChildren = false; 2071 2072 // Visit the submodules of this module. 2073 for (const auto &SM : Mod->submodules()) { 2074 // Skip explicit children; they need to be explicitly imported to be 2075 // linked against. 2076 if (SM->IsExplicit) 2077 continue; 2078 2079 if (Visited.insert(SM).second) { 2080 Stack.push_back(SM); 2081 AnyChildren = true; 2082 } 2083 } 2084 2085 // We didn't find any children, so add this module to the list of 2086 // modules to link against. 2087 if (!AnyChildren) { 2088 LinkModules.insert(Mod); 2089 } 2090 } 2091 2092 // Add link options for all of the imported modules in reverse topological 2093 // order. We don't do anything to try to order import link flags with respect 2094 // to linker options inserted by things like #pragma comment(). 2095 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2096 Visited.clear(); 2097 for (Module *M : LinkModules) 2098 if (Visited.insert(M).second) 2099 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2100 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2101 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2102 2103 // Add the linker options metadata flag. 2104 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2105 for (auto *MD : LinkerOptionsMetadata) 2106 NMD->addOperand(MD); 2107 } 2108 2109 void CodeGenModule::EmitDeferred() { 2110 // Emit deferred declare target declarations. 2111 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2112 getOpenMPRuntime().emitDeferredTargetDecls(); 2113 2114 // Emit code for any potentially referenced deferred decls. Since a 2115 // previously unused static decl may become used during the generation of code 2116 // for a static function, iterate until no changes are made. 2117 2118 if (!DeferredVTables.empty()) { 2119 EmitDeferredVTables(); 2120 2121 // Emitting a vtable doesn't directly cause more vtables to 2122 // become deferred, although it can cause functions to be 2123 // emitted that then need those vtables. 2124 assert(DeferredVTables.empty()); 2125 } 2126 2127 // Stop if we're out of both deferred vtables and deferred declarations. 2128 if (DeferredDeclsToEmit.empty()) 2129 return; 2130 2131 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2132 // work, it will not interfere with this. 2133 std::vector<GlobalDecl> CurDeclsToEmit; 2134 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2135 2136 for (GlobalDecl &D : CurDeclsToEmit) { 2137 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2138 // to get GlobalValue with exactly the type we need, not something that 2139 // might had been created for another decl with the same mangled name but 2140 // different type. 2141 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2142 GetAddrOfGlobal(D, ForDefinition)); 2143 2144 // In case of different address spaces, we may still get a cast, even with 2145 // IsForDefinition equal to true. Query mangled names table to get 2146 // GlobalValue. 2147 if (!GV) 2148 GV = GetGlobalValue(getMangledName(D)); 2149 2150 // Make sure GetGlobalValue returned non-null. 2151 assert(GV); 2152 2153 // Check to see if we've already emitted this. This is necessary 2154 // for a couple of reasons: first, decls can end up in the 2155 // deferred-decls queue multiple times, and second, decls can end 2156 // up with definitions in unusual ways (e.g. by an extern inline 2157 // function acquiring a strong function redefinition). Just 2158 // ignore these cases. 2159 if (!GV->isDeclaration()) 2160 continue; 2161 2162 // If this is OpenMP, check if it is legal to emit this global normally. 2163 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2164 continue; 2165 2166 // Otherwise, emit the definition and move on to the next one. 2167 EmitGlobalDefinition(D, GV); 2168 2169 // If we found out that we need to emit more decls, do that recursively. 2170 // This has the advantage that the decls are emitted in a DFS and related 2171 // ones are close together, which is convenient for testing. 2172 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2173 EmitDeferred(); 2174 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2175 } 2176 } 2177 } 2178 2179 void CodeGenModule::EmitVTablesOpportunistically() { 2180 // Try to emit external vtables as available_externally if they have emitted 2181 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2182 // is not allowed to create new references to things that need to be emitted 2183 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2184 2185 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2186 && "Only emit opportunistic vtables with optimizations"); 2187 2188 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2189 assert(getVTables().isVTableExternal(RD) && 2190 "This queue should only contain external vtables"); 2191 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2192 VTables.GenerateClassData(RD); 2193 } 2194 OpportunisticVTables.clear(); 2195 } 2196 2197 void CodeGenModule::EmitGlobalAnnotations() { 2198 if (Annotations.empty()) 2199 return; 2200 2201 // Create a new global variable for the ConstantStruct in the Module. 2202 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2203 Annotations[0]->getType(), Annotations.size()), Annotations); 2204 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2205 llvm::GlobalValue::AppendingLinkage, 2206 Array, "llvm.global.annotations"); 2207 gv->setSection(AnnotationSection); 2208 } 2209 2210 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2211 llvm::Constant *&AStr = AnnotationStrings[Str]; 2212 if (AStr) 2213 return AStr; 2214 2215 // Not found yet, create a new global. 2216 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2217 auto *gv = 2218 new llvm::GlobalVariable(getModule(), s->getType(), true, 2219 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2220 gv->setSection(AnnotationSection); 2221 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2222 AStr = gv; 2223 return gv; 2224 } 2225 2226 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2227 SourceManager &SM = getContext().getSourceManager(); 2228 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2229 if (PLoc.isValid()) 2230 return EmitAnnotationString(PLoc.getFilename()); 2231 return EmitAnnotationString(SM.getBufferName(Loc)); 2232 } 2233 2234 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2235 SourceManager &SM = getContext().getSourceManager(); 2236 PresumedLoc PLoc = SM.getPresumedLoc(L); 2237 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2238 SM.getExpansionLineNumber(L); 2239 return llvm::ConstantInt::get(Int32Ty, LineNo); 2240 } 2241 2242 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2243 const AnnotateAttr *AA, 2244 SourceLocation L) { 2245 // Get the globals for file name, annotation, and the line number. 2246 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2247 *UnitGV = EmitAnnotationUnit(L), 2248 *LineNoCst = EmitAnnotationLineNo(L); 2249 2250 llvm::Constant *ASZeroGV = GV; 2251 if (GV->getAddressSpace() != 0) { 2252 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2253 GV, GV->getValueType()->getPointerTo(0)); 2254 } 2255 2256 // Create the ConstantStruct for the global annotation. 2257 llvm::Constant *Fields[4] = { 2258 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2259 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2260 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2261 LineNoCst 2262 }; 2263 return llvm::ConstantStruct::getAnon(Fields); 2264 } 2265 2266 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2267 llvm::GlobalValue *GV) { 2268 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2269 // Get the struct elements for these annotations. 2270 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2271 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2272 } 2273 2274 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2275 llvm::Function *Fn, 2276 SourceLocation Loc) const { 2277 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2278 // Blacklist by function name. 2279 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2280 return true; 2281 // Blacklist by location. 2282 if (Loc.isValid()) 2283 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2284 // If location is unknown, this may be a compiler-generated function. Assume 2285 // it's located in the main file. 2286 auto &SM = Context.getSourceManager(); 2287 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2288 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2289 } 2290 return false; 2291 } 2292 2293 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2294 SourceLocation Loc, QualType Ty, 2295 StringRef Category) const { 2296 // For now globals can be blacklisted only in ASan and KASan. 2297 const SanitizerMask EnabledAsanMask = 2298 LangOpts.Sanitize.Mask & 2299 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2300 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2301 SanitizerKind::MemTag); 2302 if (!EnabledAsanMask) 2303 return false; 2304 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2305 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2306 return true; 2307 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2308 return true; 2309 // Check global type. 2310 if (!Ty.isNull()) { 2311 // Drill down the array types: if global variable of a fixed type is 2312 // blacklisted, we also don't instrument arrays of them. 2313 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2314 Ty = AT->getElementType(); 2315 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2316 // We allow to blacklist only record types (classes, structs etc.) 2317 if (Ty->isRecordType()) { 2318 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2319 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2320 return true; 2321 } 2322 } 2323 return false; 2324 } 2325 2326 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2327 StringRef Category) const { 2328 const auto &XRayFilter = getContext().getXRayFilter(); 2329 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2330 auto Attr = ImbueAttr::NONE; 2331 if (Loc.isValid()) 2332 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2333 if (Attr == ImbueAttr::NONE) 2334 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2335 switch (Attr) { 2336 case ImbueAttr::NONE: 2337 return false; 2338 case ImbueAttr::ALWAYS: 2339 Fn->addFnAttr("function-instrument", "xray-always"); 2340 break; 2341 case ImbueAttr::ALWAYS_ARG1: 2342 Fn->addFnAttr("function-instrument", "xray-always"); 2343 Fn->addFnAttr("xray-log-args", "1"); 2344 break; 2345 case ImbueAttr::NEVER: 2346 Fn->addFnAttr("function-instrument", "xray-never"); 2347 break; 2348 } 2349 return true; 2350 } 2351 2352 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2353 // Never defer when EmitAllDecls is specified. 2354 if (LangOpts.EmitAllDecls) 2355 return true; 2356 2357 if (CodeGenOpts.KeepStaticConsts) { 2358 const auto *VD = dyn_cast<VarDecl>(Global); 2359 if (VD && VD->getType().isConstQualified() && 2360 VD->getStorageDuration() == SD_Static) 2361 return true; 2362 } 2363 2364 return getContext().DeclMustBeEmitted(Global); 2365 } 2366 2367 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2368 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2369 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2370 // Implicit template instantiations may change linkage if they are later 2371 // explicitly instantiated, so they should not be emitted eagerly. 2372 return false; 2373 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2374 // not emit them eagerly unless we sure that the function must be emitted on 2375 // the host. 2376 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2377 !LangOpts.OpenMPIsDevice && 2378 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2379 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2380 return false; 2381 } 2382 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2383 if (Context.getInlineVariableDefinitionKind(VD) == 2384 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2385 // A definition of an inline constexpr static data member may change 2386 // linkage later if it's redeclared outside the class. 2387 return false; 2388 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2389 // codegen for global variables, because they may be marked as threadprivate. 2390 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2391 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2392 !isTypeConstant(Global->getType(), false) && 2393 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2394 return false; 2395 2396 return true; 2397 } 2398 2399 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2400 const CXXUuidofExpr* E) { 2401 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2402 // well-formed. 2403 StringRef Uuid = E->getUuidStr(); 2404 std::string Name = "_GUID_" + Uuid.lower(); 2405 std::replace(Name.begin(), Name.end(), '-', '_'); 2406 2407 // The UUID descriptor should be pointer aligned. 2408 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2409 2410 // Look for an existing global. 2411 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2412 return ConstantAddress(GV, Alignment); 2413 2414 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2415 assert(Init && "failed to initialize as constant"); 2416 2417 auto *GV = new llvm::GlobalVariable( 2418 getModule(), Init->getType(), 2419 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2420 if (supportsCOMDAT()) 2421 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2422 setDSOLocal(GV); 2423 return ConstantAddress(GV, Alignment); 2424 } 2425 2426 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2427 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2428 assert(AA && "No alias?"); 2429 2430 CharUnits Alignment = getContext().getDeclAlign(VD); 2431 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2432 2433 // See if there is already something with the target's name in the module. 2434 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2435 if (Entry) { 2436 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2437 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2438 return ConstantAddress(Ptr, Alignment); 2439 } 2440 2441 llvm::Constant *Aliasee; 2442 if (isa<llvm::FunctionType>(DeclTy)) 2443 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2444 GlobalDecl(cast<FunctionDecl>(VD)), 2445 /*ForVTable=*/false); 2446 else 2447 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2448 llvm::PointerType::getUnqual(DeclTy), 2449 nullptr); 2450 2451 auto *F = cast<llvm::GlobalValue>(Aliasee); 2452 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2453 WeakRefReferences.insert(F); 2454 2455 return ConstantAddress(Aliasee, Alignment); 2456 } 2457 2458 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2459 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2460 2461 // Weak references don't produce any output by themselves. 2462 if (Global->hasAttr<WeakRefAttr>()) 2463 return; 2464 2465 // If this is an alias definition (which otherwise looks like a declaration) 2466 // emit it now. 2467 if (Global->hasAttr<AliasAttr>()) 2468 return EmitAliasDefinition(GD); 2469 2470 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2471 if (Global->hasAttr<IFuncAttr>()) 2472 return emitIFuncDefinition(GD); 2473 2474 // If this is a cpu_dispatch multiversion function, emit the resolver. 2475 if (Global->hasAttr<CPUDispatchAttr>()) 2476 return emitCPUDispatchDefinition(GD); 2477 2478 // If this is CUDA, be selective about which declarations we emit. 2479 if (LangOpts.CUDA) { 2480 if (LangOpts.CUDAIsDevice) { 2481 if (!Global->hasAttr<CUDADeviceAttr>() && 2482 !Global->hasAttr<CUDAGlobalAttr>() && 2483 !Global->hasAttr<CUDAConstantAttr>() && 2484 !Global->hasAttr<CUDASharedAttr>() && 2485 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2486 return; 2487 } else { 2488 // We need to emit host-side 'shadows' for all global 2489 // device-side variables because the CUDA runtime needs their 2490 // size and host-side address in order to provide access to 2491 // their device-side incarnations. 2492 2493 // So device-only functions are the only things we skip. 2494 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2495 Global->hasAttr<CUDADeviceAttr>()) 2496 return; 2497 2498 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2499 "Expected Variable or Function"); 2500 } 2501 } 2502 2503 if (LangOpts.OpenMP) { 2504 // If this is OpenMP, check if it is legal to emit this global normally. 2505 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2506 return; 2507 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2508 if (MustBeEmitted(Global)) 2509 EmitOMPDeclareReduction(DRD); 2510 return; 2511 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2512 if (MustBeEmitted(Global)) 2513 EmitOMPDeclareMapper(DMD); 2514 return; 2515 } 2516 } 2517 2518 // Ignore declarations, they will be emitted on their first use. 2519 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2520 // Forward declarations are emitted lazily on first use. 2521 if (!FD->doesThisDeclarationHaveABody()) { 2522 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2523 return; 2524 2525 StringRef MangledName = getMangledName(GD); 2526 2527 // Compute the function info and LLVM type. 2528 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2529 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2530 2531 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2532 /*DontDefer=*/false); 2533 return; 2534 } 2535 } else { 2536 const auto *VD = cast<VarDecl>(Global); 2537 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2538 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2539 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2540 if (LangOpts.OpenMP) { 2541 // Emit declaration of the must-be-emitted declare target variable. 2542 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2543 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2544 bool UnifiedMemoryEnabled = 2545 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2546 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2547 !UnifiedMemoryEnabled) { 2548 (void)GetAddrOfGlobalVar(VD); 2549 } else { 2550 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2551 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2552 UnifiedMemoryEnabled)) && 2553 "Link clause or to clause with unified memory expected."); 2554 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2555 } 2556 2557 return; 2558 } 2559 } 2560 // If this declaration may have caused an inline variable definition to 2561 // change linkage, make sure that it's emitted. 2562 if (Context.getInlineVariableDefinitionKind(VD) == 2563 ASTContext::InlineVariableDefinitionKind::Strong) 2564 GetAddrOfGlobalVar(VD); 2565 return; 2566 } 2567 } 2568 2569 // Defer code generation to first use when possible, e.g. if this is an inline 2570 // function. If the global must always be emitted, do it eagerly if possible 2571 // to benefit from cache locality. 2572 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2573 // Emit the definition if it can't be deferred. 2574 EmitGlobalDefinition(GD); 2575 return; 2576 } 2577 2578 // Check if this must be emitted as declare variant. 2579 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2580 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2581 return; 2582 2583 // If we're deferring emission of a C++ variable with an 2584 // initializer, remember the order in which it appeared in the file. 2585 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2586 cast<VarDecl>(Global)->hasInit()) { 2587 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2588 CXXGlobalInits.push_back(nullptr); 2589 } 2590 2591 StringRef MangledName = getMangledName(GD); 2592 if (GetGlobalValue(MangledName) != nullptr) { 2593 // The value has already been used and should therefore be emitted. 2594 addDeferredDeclToEmit(GD); 2595 } else if (MustBeEmitted(Global)) { 2596 // The value must be emitted, but cannot be emitted eagerly. 2597 assert(!MayBeEmittedEagerly(Global)); 2598 addDeferredDeclToEmit(GD); 2599 } else { 2600 // Otherwise, remember that we saw a deferred decl with this name. The 2601 // first use of the mangled name will cause it to move into 2602 // DeferredDeclsToEmit. 2603 DeferredDecls[MangledName] = GD; 2604 } 2605 } 2606 2607 // Check if T is a class type with a destructor that's not dllimport. 2608 static bool HasNonDllImportDtor(QualType T) { 2609 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2610 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2611 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2612 return true; 2613 2614 return false; 2615 } 2616 2617 namespace { 2618 struct FunctionIsDirectlyRecursive 2619 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2620 const StringRef Name; 2621 const Builtin::Context &BI; 2622 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2623 : Name(N), BI(C) {} 2624 2625 bool VisitCallExpr(const CallExpr *E) { 2626 const FunctionDecl *FD = E->getDirectCallee(); 2627 if (!FD) 2628 return false; 2629 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2630 if (Attr && Name == Attr->getLabel()) 2631 return true; 2632 unsigned BuiltinID = FD->getBuiltinID(); 2633 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2634 return false; 2635 StringRef BuiltinName = BI.getName(BuiltinID); 2636 if (BuiltinName.startswith("__builtin_") && 2637 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2638 return true; 2639 } 2640 return false; 2641 } 2642 2643 bool VisitStmt(const Stmt *S) { 2644 for (const Stmt *Child : S->children()) 2645 if (Child && this->Visit(Child)) 2646 return true; 2647 return false; 2648 } 2649 }; 2650 2651 // Make sure we're not referencing non-imported vars or functions. 2652 struct DLLImportFunctionVisitor 2653 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2654 bool SafeToInline = true; 2655 2656 bool shouldVisitImplicitCode() const { return true; } 2657 2658 bool VisitVarDecl(VarDecl *VD) { 2659 if (VD->getTLSKind()) { 2660 // A thread-local variable cannot be imported. 2661 SafeToInline = false; 2662 return SafeToInline; 2663 } 2664 2665 // A variable definition might imply a destructor call. 2666 if (VD->isThisDeclarationADefinition()) 2667 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2668 2669 return SafeToInline; 2670 } 2671 2672 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2673 if (const auto *D = E->getTemporary()->getDestructor()) 2674 SafeToInline = D->hasAttr<DLLImportAttr>(); 2675 return SafeToInline; 2676 } 2677 2678 bool VisitDeclRefExpr(DeclRefExpr *E) { 2679 ValueDecl *VD = E->getDecl(); 2680 if (isa<FunctionDecl>(VD)) 2681 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2682 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2683 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2684 return SafeToInline; 2685 } 2686 2687 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2688 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2689 return SafeToInline; 2690 } 2691 2692 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2693 CXXMethodDecl *M = E->getMethodDecl(); 2694 if (!M) { 2695 // Call through a pointer to member function. This is safe to inline. 2696 SafeToInline = true; 2697 } else { 2698 SafeToInline = M->hasAttr<DLLImportAttr>(); 2699 } 2700 return SafeToInline; 2701 } 2702 2703 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2704 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2705 return SafeToInline; 2706 } 2707 2708 bool VisitCXXNewExpr(CXXNewExpr *E) { 2709 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2710 return SafeToInline; 2711 } 2712 }; 2713 } 2714 2715 // isTriviallyRecursive - Check if this function calls another 2716 // decl that, because of the asm attribute or the other decl being a builtin, 2717 // ends up pointing to itself. 2718 bool 2719 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2720 StringRef Name; 2721 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2722 // asm labels are a special kind of mangling we have to support. 2723 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2724 if (!Attr) 2725 return false; 2726 Name = Attr->getLabel(); 2727 } else { 2728 Name = FD->getName(); 2729 } 2730 2731 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2732 const Stmt *Body = FD->getBody(); 2733 return Body ? Walker.Visit(Body) : false; 2734 } 2735 2736 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2737 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2738 return true; 2739 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2740 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2741 return false; 2742 2743 if (F->hasAttr<DLLImportAttr>()) { 2744 // Check whether it would be safe to inline this dllimport function. 2745 DLLImportFunctionVisitor Visitor; 2746 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2747 if (!Visitor.SafeToInline) 2748 return false; 2749 2750 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2751 // Implicit destructor invocations aren't captured in the AST, so the 2752 // check above can't see them. Check for them manually here. 2753 for (const Decl *Member : Dtor->getParent()->decls()) 2754 if (isa<FieldDecl>(Member)) 2755 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2756 return false; 2757 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2758 if (HasNonDllImportDtor(B.getType())) 2759 return false; 2760 } 2761 } 2762 2763 // PR9614. Avoid cases where the source code is lying to us. An available 2764 // externally function should have an equivalent function somewhere else, 2765 // but a function that calls itself is clearly not equivalent to the real 2766 // implementation. 2767 // This happens in glibc's btowc and in some configure checks. 2768 return !isTriviallyRecursive(F); 2769 } 2770 2771 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2772 return CodeGenOpts.OptimizationLevel > 0; 2773 } 2774 2775 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2776 llvm::GlobalValue *GV) { 2777 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2778 2779 if (FD->isCPUSpecificMultiVersion()) { 2780 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2781 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2782 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2783 // Requires multiple emits. 2784 } else 2785 EmitGlobalFunctionDefinition(GD, GV); 2786 } 2787 2788 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2789 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2790 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2791 OpenMPRuntime && "Expected OpenMP device mode."); 2792 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2793 2794 // Compute the function info and LLVM type. 2795 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2796 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2797 2798 // Get or create the prototype for the function. 2799 if (!GV || (GV->getType()->getElementType() != Ty)) { 2800 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2801 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2802 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2803 ForDefinition)); 2804 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2805 /*IsIncompleteFunction=*/false, 2806 /*IsThunk=*/false); 2807 } 2808 // We need to set linkage and visibility on the function before 2809 // generating code for it because various parts of IR generation 2810 // want to propagate this information down (e.g. to local static 2811 // declarations). 2812 auto *Fn = cast<llvm::Function>(GV); 2813 setFunctionLinkage(OldGD, Fn); 2814 2815 // FIXME: this is redundant with part of 2816 // setFunctionDefinitionAttributes 2817 setGVProperties(Fn, OldGD); 2818 2819 MaybeHandleStaticInExternC(D, Fn); 2820 2821 maybeSetTrivialComdat(*D, *Fn); 2822 2823 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2824 2825 setNonAliasAttributes(OldGD, Fn); 2826 SetLLVMFunctionAttributesForDefinition(D, Fn); 2827 2828 if (D->hasAttr<AnnotateAttr>()) 2829 AddGlobalAnnotations(D, Fn); 2830 } 2831 2832 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2833 const auto *D = cast<ValueDecl>(GD.getDecl()); 2834 2835 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2836 Context.getSourceManager(), 2837 "Generating code for declaration"); 2838 2839 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2840 // At -O0, don't generate IR for functions with available_externally 2841 // linkage. 2842 if (!shouldEmitFunction(GD)) 2843 return; 2844 2845 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2846 std::string Name; 2847 llvm::raw_string_ostream OS(Name); 2848 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2849 /*Qualified=*/true); 2850 return Name; 2851 }); 2852 2853 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2854 // Make sure to emit the definition(s) before we emit the thunks. 2855 // This is necessary for the generation of certain thunks. 2856 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2857 ABI->emitCXXStructor(GD); 2858 else if (FD->isMultiVersion()) 2859 EmitMultiVersionFunctionDefinition(GD, GV); 2860 else 2861 EmitGlobalFunctionDefinition(GD, GV); 2862 2863 if (Method->isVirtual()) 2864 getVTables().EmitThunks(GD); 2865 2866 return; 2867 } 2868 2869 if (FD->isMultiVersion()) 2870 return EmitMultiVersionFunctionDefinition(GD, GV); 2871 return EmitGlobalFunctionDefinition(GD, GV); 2872 } 2873 2874 if (const auto *VD = dyn_cast<VarDecl>(D)) 2875 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2876 2877 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2878 } 2879 2880 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2881 llvm::Function *NewFn); 2882 2883 static unsigned 2884 TargetMVPriority(const TargetInfo &TI, 2885 const CodeGenFunction::MultiVersionResolverOption &RO) { 2886 unsigned Priority = 0; 2887 for (StringRef Feat : RO.Conditions.Features) 2888 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2889 2890 if (!RO.Conditions.Architecture.empty()) 2891 Priority = std::max( 2892 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2893 return Priority; 2894 } 2895 2896 void CodeGenModule::emitMultiVersionFunctions() { 2897 for (GlobalDecl GD : MultiVersionFuncs) { 2898 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2899 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2900 getContext().forEachMultiversionedFunctionVersion( 2901 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2902 GlobalDecl CurGD{ 2903 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2904 StringRef MangledName = getMangledName(CurGD); 2905 llvm::Constant *Func = GetGlobalValue(MangledName); 2906 if (!Func) { 2907 if (CurFD->isDefined()) { 2908 EmitGlobalFunctionDefinition(CurGD, nullptr); 2909 Func = GetGlobalValue(MangledName); 2910 } else { 2911 const CGFunctionInfo &FI = 2912 getTypes().arrangeGlobalDeclaration(GD); 2913 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2914 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2915 /*DontDefer=*/false, ForDefinition); 2916 } 2917 assert(Func && "This should have just been created"); 2918 } 2919 2920 const auto *TA = CurFD->getAttr<TargetAttr>(); 2921 llvm::SmallVector<StringRef, 8> Feats; 2922 TA->getAddedFeatures(Feats); 2923 2924 Options.emplace_back(cast<llvm::Function>(Func), 2925 TA->getArchitecture(), Feats); 2926 }); 2927 2928 llvm::Function *ResolverFunc; 2929 const TargetInfo &TI = getTarget(); 2930 2931 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2932 ResolverFunc = cast<llvm::Function>( 2933 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2934 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2935 } else { 2936 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2937 } 2938 2939 if (supportsCOMDAT()) 2940 ResolverFunc->setComdat( 2941 getModule().getOrInsertComdat(ResolverFunc->getName())); 2942 2943 llvm::stable_sort( 2944 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2945 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2946 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2947 }); 2948 CodeGenFunction CGF(*this); 2949 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2950 } 2951 } 2952 2953 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2954 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2955 assert(FD && "Not a FunctionDecl?"); 2956 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2957 assert(DD && "Not a cpu_dispatch Function?"); 2958 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2959 2960 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2961 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2962 DeclTy = getTypes().GetFunctionType(FInfo); 2963 } 2964 2965 StringRef ResolverName = getMangledName(GD); 2966 2967 llvm::Type *ResolverType; 2968 GlobalDecl ResolverGD; 2969 if (getTarget().supportsIFunc()) 2970 ResolverType = llvm::FunctionType::get( 2971 llvm::PointerType::get(DeclTy, 2972 Context.getTargetAddressSpace(FD->getType())), 2973 false); 2974 else { 2975 ResolverType = DeclTy; 2976 ResolverGD = GD; 2977 } 2978 2979 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2980 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2981 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2982 if (supportsCOMDAT()) 2983 ResolverFunc->setComdat( 2984 getModule().getOrInsertComdat(ResolverFunc->getName())); 2985 2986 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2987 const TargetInfo &Target = getTarget(); 2988 unsigned Index = 0; 2989 for (const IdentifierInfo *II : DD->cpus()) { 2990 // Get the name of the target function so we can look it up/create it. 2991 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2992 getCPUSpecificMangling(*this, II->getName()); 2993 2994 llvm::Constant *Func = GetGlobalValue(MangledName); 2995 2996 if (!Func) { 2997 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2998 if (ExistingDecl.getDecl() && 2999 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3000 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3001 Func = GetGlobalValue(MangledName); 3002 } else { 3003 if (!ExistingDecl.getDecl()) 3004 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3005 3006 Func = GetOrCreateLLVMFunction( 3007 MangledName, DeclTy, ExistingDecl, 3008 /*ForVTable=*/false, /*DontDefer=*/true, 3009 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3010 } 3011 } 3012 3013 llvm::SmallVector<StringRef, 32> Features; 3014 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3015 llvm::transform(Features, Features.begin(), 3016 [](StringRef Str) { return Str.substr(1); }); 3017 Features.erase(std::remove_if( 3018 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3019 return !Target.validateCpuSupports(Feat); 3020 }), Features.end()); 3021 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3022 ++Index; 3023 } 3024 3025 llvm::sort( 3026 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3027 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3028 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3029 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3030 }); 3031 3032 // If the list contains multiple 'default' versions, such as when it contains 3033 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3034 // always run on at least a 'pentium'). We do this by deleting the 'least 3035 // advanced' (read, lowest mangling letter). 3036 while (Options.size() > 1 && 3037 CodeGenFunction::GetX86CpuSupportsMask( 3038 (Options.end() - 2)->Conditions.Features) == 0) { 3039 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3040 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3041 if (LHSName.compare(RHSName) < 0) 3042 Options.erase(Options.end() - 2); 3043 else 3044 Options.erase(Options.end() - 1); 3045 } 3046 3047 CodeGenFunction CGF(*this); 3048 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3049 3050 if (getTarget().supportsIFunc()) { 3051 std::string AliasName = getMangledNameImpl( 3052 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3053 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3054 if (!AliasFunc) { 3055 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3056 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3057 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3058 auto *GA = llvm::GlobalAlias::create( 3059 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3060 GA->setLinkage(llvm::Function::WeakODRLinkage); 3061 SetCommonAttributes(GD, GA); 3062 } 3063 } 3064 } 3065 3066 /// If a dispatcher for the specified mangled name is not in the module, create 3067 /// and return an llvm Function with the specified type. 3068 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3069 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3070 std::string MangledName = 3071 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3072 3073 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3074 // a separate resolver). 3075 std::string ResolverName = MangledName; 3076 if (getTarget().supportsIFunc()) 3077 ResolverName += ".ifunc"; 3078 else if (FD->isTargetMultiVersion()) 3079 ResolverName += ".resolver"; 3080 3081 // If this already exists, just return that one. 3082 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3083 return ResolverGV; 3084 3085 // Since this is the first time we've created this IFunc, make sure 3086 // that we put this multiversioned function into the list to be 3087 // replaced later if necessary (target multiversioning only). 3088 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3089 MultiVersionFuncs.push_back(GD); 3090 3091 if (getTarget().supportsIFunc()) { 3092 llvm::Type *ResolverType = llvm::FunctionType::get( 3093 llvm::PointerType::get( 3094 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3095 false); 3096 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3097 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3098 /*ForVTable=*/false); 3099 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3100 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3101 GIF->setName(ResolverName); 3102 SetCommonAttributes(FD, GIF); 3103 3104 return GIF; 3105 } 3106 3107 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3108 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3109 assert(isa<llvm::GlobalValue>(Resolver) && 3110 "Resolver should be created for the first time"); 3111 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3112 return Resolver; 3113 } 3114 3115 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3116 /// module, create and return an llvm Function with the specified type. If there 3117 /// is something in the module with the specified name, return it potentially 3118 /// bitcasted to the right type. 3119 /// 3120 /// If D is non-null, it specifies a decl that correspond to this. This is used 3121 /// to set the attributes on the function when it is first created. 3122 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3123 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3124 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3125 ForDefinition_t IsForDefinition) { 3126 const Decl *D = GD.getDecl(); 3127 3128 // Any attempts to use a MultiVersion function should result in retrieving 3129 // the iFunc instead. Name Mangling will handle the rest of the changes. 3130 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3131 // For the device mark the function as one that should be emitted. 3132 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3133 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3134 !DontDefer && !IsForDefinition) { 3135 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3136 GlobalDecl GDDef; 3137 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3138 GDDef = GlobalDecl(CD, GD.getCtorType()); 3139 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3140 GDDef = GlobalDecl(DD, GD.getDtorType()); 3141 else 3142 GDDef = GlobalDecl(FDDef); 3143 EmitGlobal(GDDef); 3144 } 3145 } 3146 // Check if this must be emitted as declare variant and emit reference to 3147 // the the declare variant function. 3148 if (LangOpts.OpenMP && OpenMPRuntime) 3149 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3150 3151 if (FD->isMultiVersion()) { 3152 const auto *TA = FD->getAttr<TargetAttr>(); 3153 if (TA && TA->isDefaultVersion()) 3154 UpdateMultiVersionNames(GD, FD); 3155 if (!IsForDefinition) 3156 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3157 } 3158 } 3159 3160 // Lookup the entry, lazily creating it if necessary. 3161 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3162 if (Entry) { 3163 if (WeakRefReferences.erase(Entry)) { 3164 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3165 if (FD && !FD->hasAttr<WeakAttr>()) 3166 Entry->setLinkage(llvm::Function::ExternalLinkage); 3167 } 3168 3169 // Handle dropped DLL attributes. 3170 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3171 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3172 setDSOLocal(Entry); 3173 } 3174 3175 // If there are two attempts to define the same mangled name, issue an 3176 // error. 3177 if (IsForDefinition && !Entry->isDeclaration()) { 3178 GlobalDecl OtherGD; 3179 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3180 // to make sure that we issue an error only once. 3181 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3182 (GD.getCanonicalDecl().getDecl() != 3183 OtherGD.getCanonicalDecl().getDecl()) && 3184 DiagnosedConflictingDefinitions.insert(GD).second) { 3185 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3186 << MangledName; 3187 getDiags().Report(OtherGD.getDecl()->getLocation(), 3188 diag::note_previous_definition); 3189 } 3190 } 3191 3192 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3193 (Entry->getType()->getElementType() == Ty)) { 3194 return Entry; 3195 } 3196 3197 // Make sure the result is of the correct type. 3198 // (If function is requested for a definition, we always need to create a new 3199 // function, not just return a bitcast.) 3200 if (!IsForDefinition) 3201 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3202 } 3203 3204 // This function doesn't have a complete type (for example, the return 3205 // type is an incomplete struct). Use a fake type instead, and make 3206 // sure not to try to set attributes. 3207 bool IsIncompleteFunction = false; 3208 3209 llvm::FunctionType *FTy; 3210 if (isa<llvm::FunctionType>(Ty)) { 3211 FTy = cast<llvm::FunctionType>(Ty); 3212 } else { 3213 FTy = llvm::FunctionType::get(VoidTy, false); 3214 IsIncompleteFunction = true; 3215 } 3216 3217 llvm::Function *F = 3218 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3219 Entry ? StringRef() : MangledName, &getModule()); 3220 3221 // If we already created a function with the same mangled name (but different 3222 // type) before, take its name and add it to the list of functions to be 3223 // replaced with F at the end of CodeGen. 3224 // 3225 // This happens if there is a prototype for a function (e.g. "int f()") and 3226 // then a definition of a different type (e.g. "int f(int x)"). 3227 if (Entry) { 3228 F->takeName(Entry); 3229 3230 // This might be an implementation of a function without a prototype, in 3231 // which case, try to do special replacement of calls which match the new 3232 // prototype. The really key thing here is that we also potentially drop 3233 // arguments from the call site so as to make a direct call, which makes the 3234 // inliner happier and suppresses a number of optimizer warnings (!) about 3235 // dropping arguments. 3236 if (!Entry->use_empty()) { 3237 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3238 Entry->removeDeadConstantUsers(); 3239 } 3240 3241 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3242 F, Entry->getType()->getElementType()->getPointerTo()); 3243 addGlobalValReplacement(Entry, BC); 3244 } 3245 3246 assert(F->getName() == MangledName && "name was uniqued!"); 3247 if (D) 3248 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3249 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3250 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3251 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3252 } 3253 3254 if (!DontDefer) { 3255 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3256 // each other bottoming out with the base dtor. Therefore we emit non-base 3257 // dtors on usage, even if there is no dtor definition in the TU. 3258 if (D && isa<CXXDestructorDecl>(D) && 3259 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3260 GD.getDtorType())) 3261 addDeferredDeclToEmit(GD); 3262 3263 // This is the first use or definition of a mangled name. If there is a 3264 // deferred decl with this name, remember that we need to emit it at the end 3265 // of the file. 3266 auto DDI = DeferredDecls.find(MangledName); 3267 if (DDI != DeferredDecls.end()) { 3268 // Move the potentially referenced deferred decl to the 3269 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3270 // don't need it anymore). 3271 addDeferredDeclToEmit(DDI->second); 3272 DeferredDecls.erase(DDI); 3273 3274 // Otherwise, there are cases we have to worry about where we're 3275 // using a declaration for which we must emit a definition but where 3276 // we might not find a top-level definition: 3277 // - member functions defined inline in their classes 3278 // - friend functions defined inline in some class 3279 // - special member functions with implicit definitions 3280 // If we ever change our AST traversal to walk into class methods, 3281 // this will be unnecessary. 3282 // 3283 // We also don't emit a definition for a function if it's going to be an 3284 // entry in a vtable, unless it's already marked as used. 3285 } else if (getLangOpts().CPlusPlus && D) { 3286 // Look for a declaration that's lexically in a record. 3287 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3288 FD = FD->getPreviousDecl()) { 3289 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3290 if (FD->doesThisDeclarationHaveABody()) { 3291 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3292 break; 3293 } 3294 } 3295 } 3296 } 3297 } 3298 3299 // Make sure the result is of the requested type. 3300 if (!IsIncompleteFunction) { 3301 assert(F->getType()->getElementType() == Ty); 3302 return F; 3303 } 3304 3305 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3306 return llvm::ConstantExpr::getBitCast(F, PTy); 3307 } 3308 3309 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3310 /// non-null, then this function will use the specified type if it has to 3311 /// create it (this occurs when we see a definition of the function). 3312 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3313 llvm::Type *Ty, 3314 bool ForVTable, 3315 bool DontDefer, 3316 ForDefinition_t IsForDefinition) { 3317 // If there was no specific requested type, just convert it now. 3318 if (!Ty) { 3319 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3320 Ty = getTypes().ConvertType(FD->getType()); 3321 } 3322 3323 // Devirtualized destructor calls may come through here instead of via 3324 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3325 // of the complete destructor when necessary. 3326 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3327 if (getTarget().getCXXABI().isMicrosoft() && 3328 GD.getDtorType() == Dtor_Complete && 3329 DD->getParent()->getNumVBases() == 0) 3330 GD = GlobalDecl(DD, Dtor_Base); 3331 } 3332 3333 StringRef MangledName = getMangledName(GD); 3334 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3335 /*IsThunk=*/false, llvm::AttributeList(), 3336 IsForDefinition); 3337 } 3338 3339 static const FunctionDecl * 3340 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3341 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3342 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3343 3344 IdentifierInfo &CII = C.Idents.get(Name); 3345 for (const auto &Result : DC->lookup(&CII)) 3346 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3347 return FD; 3348 3349 if (!C.getLangOpts().CPlusPlus) 3350 return nullptr; 3351 3352 // Demangle the premangled name from getTerminateFn() 3353 IdentifierInfo &CXXII = 3354 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3355 ? C.Idents.get("terminate") 3356 : C.Idents.get(Name); 3357 3358 for (const auto &N : {"__cxxabiv1", "std"}) { 3359 IdentifierInfo &NS = C.Idents.get(N); 3360 for (const auto &Result : DC->lookup(&NS)) { 3361 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3362 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3363 for (const auto &Result : LSD->lookup(&NS)) 3364 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3365 break; 3366 3367 if (ND) 3368 for (const auto &Result : ND->lookup(&CXXII)) 3369 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3370 return FD; 3371 } 3372 } 3373 3374 return nullptr; 3375 } 3376 3377 /// CreateRuntimeFunction - Create a new runtime function with the specified 3378 /// type and name. 3379 llvm::FunctionCallee 3380 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3381 llvm::AttributeList ExtraAttrs, bool Local, 3382 bool AssumeConvergent) { 3383 if (AssumeConvergent) { 3384 ExtraAttrs = 3385 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3386 llvm::Attribute::Convergent); 3387 } 3388 3389 llvm::Constant *C = 3390 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3391 /*DontDefer=*/false, /*IsThunk=*/false, 3392 ExtraAttrs); 3393 3394 if (auto *F = dyn_cast<llvm::Function>(C)) { 3395 if (F->empty()) { 3396 F->setCallingConv(getRuntimeCC()); 3397 3398 // In Windows Itanium environments, try to mark runtime functions 3399 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3400 // will link their standard library statically or dynamically. Marking 3401 // functions imported when they are not imported can cause linker errors 3402 // and warnings. 3403 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3404 !getCodeGenOpts().LTOVisibilityPublicStd) { 3405 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3406 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3407 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3408 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3409 } 3410 } 3411 setDSOLocal(F); 3412 } 3413 } 3414 3415 return {FTy, C}; 3416 } 3417 3418 /// isTypeConstant - Determine whether an object of this type can be emitted 3419 /// as a constant. 3420 /// 3421 /// If ExcludeCtor is true, the duration when the object's constructor runs 3422 /// will not be considered. The caller will need to verify that the object is 3423 /// not written to during its construction. 3424 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3425 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3426 return false; 3427 3428 if (Context.getLangOpts().CPlusPlus) { 3429 if (const CXXRecordDecl *Record 3430 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3431 return ExcludeCtor && !Record->hasMutableFields() && 3432 Record->hasTrivialDestructor(); 3433 } 3434 3435 return true; 3436 } 3437 3438 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3439 /// create and return an llvm GlobalVariable with the specified type. If there 3440 /// is something in the module with the specified name, return it potentially 3441 /// bitcasted to the right type. 3442 /// 3443 /// If D is non-null, it specifies a decl that correspond to this. This is used 3444 /// to set the attributes on the global when it is first created. 3445 /// 3446 /// If IsForDefinition is true, it is guaranteed that an actual global with 3447 /// type Ty will be returned, not conversion of a variable with the same 3448 /// mangled name but some other type. 3449 llvm::Constant * 3450 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3451 llvm::PointerType *Ty, 3452 const VarDecl *D, 3453 ForDefinition_t IsForDefinition) { 3454 // Lookup the entry, lazily creating it if necessary. 3455 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3456 if (Entry) { 3457 if (WeakRefReferences.erase(Entry)) { 3458 if (D && !D->hasAttr<WeakAttr>()) 3459 Entry->setLinkage(llvm::Function::ExternalLinkage); 3460 } 3461 3462 // Handle dropped DLL attributes. 3463 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3464 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3465 3466 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3467 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3468 3469 if (Entry->getType() == Ty) 3470 return Entry; 3471 3472 // If there are two attempts to define the same mangled name, issue an 3473 // error. 3474 if (IsForDefinition && !Entry->isDeclaration()) { 3475 GlobalDecl OtherGD; 3476 const VarDecl *OtherD; 3477 3478 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3479 // to make sure that we issue an error only once. 3480 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3481 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3482 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3483 OtherD->hasInit() && 3484 DiagnosedConflictingDefinitions.insert(D).second) { 3485 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3486 << MangledName; 3487 getDiags().Report(OtherGD.getDecl()->getLocation(), 3488 diag::note_previous_definition); 3489 } 3490 } 3491 3492 // Make sure the result is of the correct type. 3493 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3494 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3495 3496 // (If global is requested for a definition, we always need to create a new 3497 // global, not just return a bitcast.) 3498 if (!IsForDefinition) 3499 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3500 } 3501 3502 auto AddrSpace = GetGlobalVarAddressSpace(D); 3503 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3504 3505 auto *GV = new llvm::GlobalVariable( 3506 getModule(), Ty->getElementType(), false, 3507 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3508 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3509 3510 // If we already created a global with the same mangled name (but different 3511 // type) before, take its name and remove it from its parent. 3512 if (Entry) { 3513 GV->takeName(Entry); 3514 3515 if (!Entry->use_empty()) { 3516 llvm::Constant *NewPtrForOldDecl = 3517 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3518 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3519 } 3520 3521 Entry->eraseFromParent(); 3522 } 3523 3524 // This is the first use or definition of a mangled name. If there is a 3525 // deferred decl with this name, remember that we need to emit it at the end 3526 // of the file. 3527 auto DDI = DeferredDecls.find(MangledName); 3528 if (DDI != DeferredDecls.end()) { 3529 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3530 // list, and remove it from DeferredDecls (since we don't need it anymore). 3531 addDeferredDeclToEmit(DDI->second); 3532 DeferredDecls.erase(DDI); 3533 } 3534 3535 // Handle things which are present even on external declarations. 3536 if (D) { 3537 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3538 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3539 3540 // FIXME: This code is overly simple and should be merged with other global 3541 // handling. 3542 GV->setConstant(isTypeConstant(D->getType(), false)); 3543 3544 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3545 3546 setLinkageForGV(GV, D); 3547 3548 if (D->getTLSKind()) { 3549 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3550 CXXThreadLocals.push_back(D); 3551 setTLSMode(GV, *D); 3552 } 3553 3554 setGVProperties(GV, D); 3555 3556 // If required by the ABI, treat declarations of static data members with 3557 // inline initializers as definitions. 3558 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3559 EmitGlobalVarDefinition(D); 3560 } 3561 3562 // Emit section information for extern variables. 3563 if (D->hasExternalStorage()) { 3564 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3565 GV->setSection(SA->getName()); 3566 } 3567 3568 // Handle XCore specific ABI requirements. 3569 if (getTriple().getArch() == llvm::Triple::xcore && 3570 D->getLanguageLinkage() == CLanguageLinkage && 3571 D->getType().isConstant(Context) && 3572 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3573 GV->setSection(".cp.rodata"); 3574 3575 // Check if we a have a const declaration with an initializer, we may be 3576 // able to emit it as available_externally to expose it's value to the 3577 // optimizer. 3578 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3579 D->getType().isConstQualified() && !GV->hasInitializer() && 3580 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3581 const auto *Record = 3582 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3583 bool HasMutableFields = Record && Record->hasMutableFields(); 3584 if (!HasMutableFields) { 3585 const VarDecl *InitDecl; 3586 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3587 if (InitExpr) { 3588 ConstantEmitter emitter(*this); 3589 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3590 if (Init) { 3591 auto *InitType = Init->getType(); 3592 if (GV->getType()->getElementType() != InitType) { 3593 // The type of the initializer does not match the definition. 3594 // This happens when an initializer has a different type from 3595 // the type of the global (because of padding at the end of a 3596 // structure for instance). 3597 GV->setName(StringRef()); 3598 // Make a new global with the correct type, this is now guaranteed 3599 // to work. 3600 auto *NewGV = cast<llvm::GlobalVariable>( 3601 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3602 ->stripPointerCasts()); 3603 3604 // Erase the old global, since it is no longer used. 3605 GV->eraseFromParent(); 3606 GV = NewGV; 3607 } else { 3608 GV->setInitializer(Init); 3609 GV->setConstant(true); 3610 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3611 } 3612 emitter.finalize(GV); 3613 } 3614 } 3615 } 3616 } 3617 } 3618 3619 if (GV->isDeclaration()) 3620 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3621 3622 LangAS ExpectedAS = 3623 D ? D->getType().getAddressSpace() 3624 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3625 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3626 Ty->getPointerAddressSpace()); 3627 if (AddrSpace != ExpectedAS) 3628 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3629 ExpectedAS, Ty); 3630 3631 return GV; 3632 } 3633 3634 llvm::Constant * 3635 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3636 ForDefinition_t IsForDefinition) { 3637 const Decl *D = GD.getDecl(); 3638 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3639 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3640 /*DontDefer=*/false, IsForDefinition); 3641 else if (isa<CXXMethodDecl>(D)) { 3642 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3643 cast<CXXMethodDecl>(D)); 3644 auto Ty = getTypes().GetFunctionType(*FInfo); 3645 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3646 IsForDefinition); 3647 } else if (isa<FunctionDecl>(D)) { 3648 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3649 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3650 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3651 IsForDefinition); 3652 } else 3653 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3654 IsForDefinition); 3655 } 3656 3657 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3658 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3659 unsigned Alignment) { 3660 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3661 llvm::GlobalVariable *OldGV = nullptr; 3662 3663 if (GV) { 3664 // Check if the variable has the right type. 3665 if (GV->getType()->getElementType() == Ty) 3666 return GV; 3667 3668 // Because C++ name mangling, the only way we can end up with an already 3669 // existing global with the same name is if it has been declared extern "C". 3670 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3671 OldGV = GV; 3672 } 3673 3674 // Create a new variable. 3675 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3676 Linkage, nullptr, Name); 3677 3678 if (OldGV) { 3679 // Replace occurrences of the old variable if needed. 3680 GV->takeName(OldGV); 3681 3682 if (!OldGV->use_empty()) { 3683 llvm::Constant *NewPtrForOldDecl = 3684 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3685 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3686 } 3687 3688 OldGV->eraseFromParent(); 3689 } 3690 3691 if (supportsCOMDAT() && GV->isWeakForLinker() && 3692 !GV->hasAvailableExternallyLinkage()) 3693 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3694 3695 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3696 3697 return GV; 3698 } 3699 3700 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3701 /// given global variable. If Ty is non-null and if the global doesn't exist, 3702 /// then it will be created with the specified type instead of whatever the 3703 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3704 /// that an actual global with type Ty will be returned, not conversion of a 3705 /// variable with the same mangled name but some other type. 3706 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3707 llvm::Type *Ty, 3708 ForDefinition_t IsForDefinition) { 3709 assert(D->hasGlobalStorage() && "Not a global variable"); 3710 QualType ASTTy = D->getType(); 3711 if (!Ty) 3712 Ty = getTypes().ConvertTypeForMem(ASTTy); 3713 3714 llvm::PointerType *PTy = 3715 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3716 3717 StringRef MangledName = getMangledName(D); 3718 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3719 } 3720 3721 /// CreateRuntimeVariable - Create a new runtime global variable with the 3722 /// specified type and name. 3723 llvm::Constant * 3724 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3725 StringRef Name) { 3726 auto PtrTy = 3727 getContext().getLangOpts().OpenCL 3728 ? llvm::PointerType::get( 3729 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3730 : llvm::PointerType::getUnqual(Ty); 3731 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3732 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3733 return Ret; 3734 } 3735 3736 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3737 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3738 3739 StringRef MangledName = getMangledName(D); 3740 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3741 3742 // We already have a definition, not declaration, with the same mangled name. 3743 // Emitting of declaration is not required (and actually overwrites emitted 3744 // definition). 3745 if (GV && !GV->isDeclaration()) 3746 return; 3747 3748 // If we have not seen a reference to this variable yet, place it into the 3749 // deferred declarations table to be emitted if needed later. 3750 if (!MustBeEmitted(D) && !GV) { 3751 DeferredDecls[MangledName] = D; 3752 return; 3753 } 3754 3755 // The tentative definition is the only definition. 3756 EmitGlobalVarDefinition(D); 3757 } 3758 3759 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3760 EmitExternalVarDeclaration(D); 3761 } 3762 3763 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3764 return Context.toCharUnitsFromBits( 3765 getDataLayout().getTypeStoreSizeInBits(Ty)); 3766 } 3767 3768 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3769 LangAS AddrSpace = LangAS::Default; 3770 if (LangOpts.OpenCL) { 3771 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3772 assert(AddrSpace == LangAS::opencl_global || 3773 AddrSpace == LangAS::opencl_constant || 3774 AddrSpace == LangAS::opencl_local || 3775 AddrSpace >= LangAS::FirstTargetAddressSpace); 3776 return AddrSpace; 3777 } 3778 3779 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3780 if (D && D->hasAttr<CUDAConstantAttr>()) 3781 return LangAS::cuda_constant; 3782 else if (D && D->hasAttr<CUDASharedAttr>()) 3783 return LangAS::cuda_shared; 3784 else if (D && D->hasAttr<CUDADeviceAttr>()) 3785 return LangAS::cuda_device; 3786 else if (D && D->getType().isConstQualified()) 3787 return LangAS::cuda_constant; 3788 else 3789 return LangAS::cuda_device; 3790 } 3791 3792 if (LangOpts.OpenMP) { 3793 LangAS AS; 3794 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3795 return AS; 3796 } 3797 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3798 } 3799 3800 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3801 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3802 if (LangOpts.OpenCL) 3803 return LangAS::opencl_constant; 3804 if (auto AS = getTarget().getConstantAddressSpace()) 3805 return AS.getValue(); 3806 return LangAS::Default; 3807 } 3808 3809 // In address space agnostic languages, string literals are in default address 3810 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3811 // emitted in constant address space in LLVM IR. To be consistent with other 3812 // parts of AST, string literal global variables in constant address space 3813 // need to be casted to default address space before being put into address 3814 // map and referenced by other part of CodeGen. 3815 // In OpenCL, string literals are in constant address space in AST, therefore 3816 // they should not be casted to default address space. 3817 static llvm::Constant * 3818 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3819 llvm::GlobalVariable *GV) { 3820 llvm::Constant *Cast = GV; 3821 if (!CGM.getLangOpts().OpenCL) { 3822 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3823 if (AS != LangAS::Default) 3824 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3825 CGM, GV, AS.getValue(), LangAS::Default, 3826 GV->getValueType()->getPointerTo( 3827 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3828 } 3829 } 3830 return Cast; 3831 } 3832 3833 template<typename SomeDecl> 3834 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3835 llvm::GlobalValue *GV) { 3836 if (!getLangOpts().CPlusPlus) 3837 return; 3838 3839 // Must have 'used' attribute, or else inline assembly can't rely on 3840 // the name existing. 3841 if (!D->template hasAttr<UsedAttr>()) 3842 return; 3843 3844 // Must have internal linkage and an ordinary name. 3845 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3846 return; 3847 3848 // Must be in an extern "C" context. Entities declared directly within 3849 // a record are not extern "C" even if the record is in such a context. 3850 const SomeDecl *First = D->getFirstDecl(); 3851 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3852 return; 3853 3854 // OK, this is an internal linkage entity inside an extern "C" linkage 3855 // specification. Make a note of that so we can give it the "expected" 3856 // mangled name if nothing else is using that name. 3857 std::pair<StaticExternCMap::iterator, bool> R = 3858 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3859 3860 // If we have multiple internal linkage entities with the same name 3861 // in extern "C" regions, none of them gets that name. 3862 if (!R.second) 3863 R.first->second = nullptr; 3864 } 3865 3866 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3867 if (!CGM.supportsCOMDAT()) 3868 return false; 3869 3870 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3871 // them being "merged" by the COMDAT Folding linker optimization. 3872 if (D.hasAttr<CUDAGlobalAttr>()) 3873 return false; 3874 3875 if (D.hasAttr<SelectAnyAttr>()) 3876 return true; 3877 3878 GVALinkage Linkage; 3879 if (auto *VD = dyn_cast<VarDecl>(&D)) 3880 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3881 else 3882 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3883 3884 switch (Linkage) { 3885 case GVA_Internal: 3886 case GVA_AvailableExternally: 3887 case GVA_StrongExternal: 3888 return false; 3889 case GVA_DiscardableODR: 3890 case GVA_StrongODR: 3891 return true; 3892 } 3893 llvm_unreachable("No such linkage"); 3894 } 3895 3896 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3897 llvm::GlobalObject &GO) { 3898 if (!shouldBeInCOMDAT(*this, D)) 3899 return; 3900 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3901 } 3902 3903 /// Pass IsTentative as true if you want to create a tentative definition. 3904 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3905 bool IsTentative) { 3906 // OpenCL global variables of sampler type are translated to function calls, 3907 // therefore no need to be translated. 3908 QualType ASTTy = D->getType(); 3909 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3910 return; 3911 3912 // If this is OpenMP device, check if it is legal to emit this global 3913 // normally. 3914 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3915 OpenMPRuntime->emitTargetGlobalVariable(D)) 3916 return; 3917 3918 llvm::Constant *Init = nullptr; 3919 bool NeedsGlobalCtor = false; 3920 bool NeedsGlobalDtor = 3921 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3922 3923 const VarDecl *InitDecl; 3924 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3925 3926 Optional<ConstantEmitter> emitter; 3927 3928 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3929 // as part of their declaration." Sema has already checked for 3930 // error cases, so we just need to set Init to UndefValue. 3931 bool IsCUDASharedVar = 3932 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3933 // Shadows of initialized device-side global variables are also left 3934 // undefined. 3935 bool IsCUDAShadowVar = 3936 !getLangOpts().CUDAIsDevice && 3937 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3938 D->hasAttr<CUDASharedAttr>()); 3939 // HIP pinned shadow of initialized host-side global variables are also 3940 // left undefined. 3941 bool IsHIPPinnedShadowVar = 3942 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3943 if (getLangOpts().CUDA && 3944 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3945 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3946 else if (!InitExpr) { 3947 // This is a tentative definition; tentative definitions are 3948 // implicitly initialized with { 0 }. 3949 // 3950 // Note that tentative definitions are only emitted at the end of 3951 // a translation unit, so they should never have incomplete 3952 // type. In addition, EmitTentativeDefinition makes sure that we 3953 // never attempt to emit a tentative definition if a real one 3954 // exists. A use may still exists, however, so we still may need 3955 // to do a RAUW. 3956 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3957 Init = EmitNullConstant(D->getType()); 3958 } else { 3959 initializedGlobalDecl = GlobalDecl(D); 3960 emitter.emplace(*this); 3961 Init = emitter->tryEmitForInitializer(*InitDecl); 3962 3963 if (!Init) { 3964 QualType T = InitExpr->getType(); 3965 if (D->getType()->isReferenceType()) 3966 T = D->getType(); 3967 3968 if (getLangOpts().CPlusPlus) { 3969 Init = EmitNullConstant(T); 3970 NeedsGlobalCtor = true; 3971 } else { 3972 ErrorUnsupported(D, "static initializer"); 3973 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3974 } 3975 } else { 3976 // We don't need an initializer, so remove the entry for the delayed 3977 // initializer position (just in case this entry was delayed) if we 3978 // also don't need to register a destructor. 3979 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3980 DelayedCXXInitPosition.erase(D); 3981 } 3982 } 3983 3984 llvm::Type* InitType = Init->getType(); 3985 llvm::Constant *Entry = 3986 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3987 3988 // Strip off pointer casts if we got them. 3989 Entry = Entry->stripPointerCasts(); 3990 3991 // Entry is now either a Function or GlobalVariable. 3992 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3993 3994 // We have a definition after a declaration with the wrong type. 3995 // We must make a new GlobalVariable* and update everything that used OldGV 3996 // (a declaration or tentative definition) with the new GlobalVariable* 3997 // (which will be a definition). 3998 // 3999 // This happens if there is a prototype for a global (e.g. 4000 // "extern int x[];") and then a definition of a different type (e.g. 4001 // "int x[10];"). This also happens when an initializer has a different type 4002 // from the type of the global (this happens with unions). 4003 if (!GV || GV->getType()->getElementType() != InitType || 4004 GV->getType()->getAddressSpace() != 4005 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4006 4007 // Move the old entry aside so that we'll create a new one. 4008 Entry->setName(StringRef()); 4009 4010 // Make a new global with the correct type, this is now guaranteed to work. 4011 GV = cast<llvm::GlobalVariable>( 4012 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4013 ->stripPointerCasts()); 4014 4015 // Replace all uses of the old global with the new global 4016 llvm::Constant *NewPtrForOldDecl = 4017 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4018 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4019 4020 // Erase the old global, since it is no longer used. 4021 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4022 } 4023 4024 MaybeHandleStaticInExternC(D, GV); 4025 4026 if (D->hasAttr<AnnotateAttr>()) 4027 AddGlobalAnnotations(D, GV); 4028 4029 // Set the llvm linkage type as appropriate. 4030 llvm::GlobalValue::LinkageTypes Linkage = 4031 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4032 4033 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4034 // the device. [...]" 4035 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4036 // __device__, declares a variable that: [...] 4037 // Is accessible from all the threads within the grid and from the host 4038 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4039 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4040 if (GV && LangOpts.CUDA) { 4041 if (LangOpts.CUDAIsDevice) { 4042 if (Linkage != llvm::GlobalValue::InternalLinkage && 4043 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4044 GV->setExternallyInitialized(true); 4045 } else { 4046 // Host-side shadows of external declarations of device-side 4047 // global variables become internal definitions. These have to 4048 // be internal in order to prevent name conflicts with global 4049 // host variables with the same name in a different TUs. 4050 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4051 D->hasAttr<HIPPinnedShadowAttr>()) { 4052 Linkage = llvm::GlobalValue::InternalLinkage; 4053 4054 // Shadow variables and their properties must be registered 4055 // with CUDA runtime. 4056 unsigned Flags = 0; 4057 if (!D->hasDefinition()) 4058 Flags |= CGCUDARuntime::ExternDeviceVar; 4059 if (D->hasAttr<CUDAConstantAttr>()) 4060 Flags |= CGCUDARuntime::ConstantDeviceVar; 4061 // Extern global variables will be registered in the TU where they are 4062 // defined. 4063 if (!D->hasExternalStorage()) 4064 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4065 } else if (D->hasAttr<CUDASharedAttr>()) 4066 // __shared__ variables are odd. Shadows do get created, but 4067 // they are not registered with the CUDA runtime, so they 4068 // can't really be used to access their device-side 4069 // counterparts. It's not clear yet whether it's nvcc's bug or 4070 // a feature, but we've got to do the same for compatibility. 4071 Linkage = llvm::GlobalValue::InternalLinkage; 4072 } 4073 } 4074 4075 if (!IsHIPPinnedShadowVar) 4076 GV->setInitializer(Init); 4077 if (emitter) emitter->finalize(GV); 4078 4079 // If it is safe to mark the global 'constant', do so now. 4080 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4081 isTypeConstant(D->getType(), true)); 4082 4083 // If it is in a read-only section, mark it 'constant'. 4084 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4085 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4086 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4087 GV->setConstant(true); 4088 } 4089 4090 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4091 4092 // On Darwin, if the normal linkage of a C++ thread_local variable is 4093 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4094 // copies within a linkage unit; otherwise, the backing variable has 4095 // internal linkage and all accesses should just be calls to the 4096 // Itanium-specified entry point, which has the normal linkage of the 4097 // variable. This is to preserve the ability to change the implementation 4098 // behind the scenes. 4099 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4100 Context.getTargetInfo().getTriple().isOSDarwin() && 4101 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4102 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4103 Linkage = llvm::GlobalValue::InternalLinkage; 4104 4105 GV->setLinkage(Linkage); 4106 if (D->hasAttr<DLLImportAttr>()) 4107 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4108 else if (D->hasAttr<DLLExportAttr>()) 4109 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4110 else 4111 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4112 4113 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4114 // common vars aren't constant even if declared const. 4115 GV->setConstant(false); 4116 // Tentative definition of global variables may be initialized with 4117 // non-zero null pointers. In this case they should have weak linkage 4118 // since common linkage must have zero initializer and must not have 4119 // explicit section therefore cannot have non-zero initial value. 4120 if (!GV->getInitializer()->isNullValue()) 4121 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4122 } 4123 4124 setNonAliasAttributes(D, GV); 4125 4126 if (D->getTLSKind() && !GV->isThreadLocal()) { 4127 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4128 CXXThreadLocals.push_back(D); 4129 setTLSMode(GV, *D); 4130 } 4131 4132 maybeSetTrivialComdat(*D, *GV); 4133 4134 // Emit the initializer function if necessary. 4135 if (NeedsGlobalCtor || NeedsGlobalDtor) 4136 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4137 4138 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4139 4140 // Emit global variable debug information. 4141 if (CGDebugInfo *DI = getModuleDebugInfo()) 4142 if (getCodeGenOpts().hasReducedDebugInfo()) 4143 DI->EmitGlobalVariable(GV, D); 4144 } 4145 4146 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4147 if (CGDebugInfo *DI = getModuleDebugInfo()) 4148 if (getCodeGenOpts().hasReducedDebugInfo()) { 4149 QualType ASTTy = D->getType(); 4150 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4151 llvm::PointerType *PTy = 4152 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4153 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4154 DI->EmitExternalVariable( 4155 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4156 } 4157 } 4158 4159 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4160 CodeGenModule &CGM, const VarDecl *D, 4161 bool NoCommon) { 4162 // Don't give variables common linkage if -fno-common was specified unless it 4163 // was overridden by a NoCommon attribute. 4164 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4165 return true; 4166 4167 // C11 6.9.2/2: 4168 // A declaration of an identifier for an object that has file scope without 4169 // an initializer, and without a storage-class specifier or with the 4170 // storage-class specifier static, constitutes a tentative definition. 4171 if (D->getInit() || D->hasExternalStorage()) 4172 return true; 4173 4174 // A variable cannot be both common and exist in a section. 4175 if (D->hasAttr<SectionAttr>()) 4176 return true; 4177 4178 // A variable cannot be both common and exist in a section. 4179 // We don't try to determine which is the right section in the front-end. 4180 // If no specialized section name is applicable, it will resort to default. 4181 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4182 D->hasAttr<PragmaClangDataSectionAttr>() || 4183 D->hasAttr<PragmaClangRelroSectionAttr>() || 4184 D->hasAttr<PragmaClangRodataSectionAttr>()) 4185 return true; 4186 4187 // Thread local vars aren't considered common linkage. 4188 if (D->getTLSKind()) 4189 return true; 4190 4191 // Tentative definitions marked with WeakImportAttr are true definitions. 4192 if (D->hasAttr<WeakImportAttr>()) 4193 return true; 4194 4195 // A variable cannot be both common and exist in a comdat. 4196 if (shouldBeInCOMDAT(CGM, *D)) 4197 return true; 4198 4199 // Declarations with a required alignment do not have common linkage in MSVC 4200 // mode. 4201 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4202 if (D->hasAttr<AlignedAttr>()) 4203 return true; 4204 QualType VarType = D->getType(); 4205 if (Context.isAlignmentRequired(VarType)) 4206 return true; 4207 4208 if (const auto *RT = VarType->getAs<RecordType>()) { 4209 const RecordDecl *RD = RT->getDecl(); 4210 for (const FieldDecl *FD : RD->fields()) { 4211 if (FD->isBitField()) 4212 continue; 4213 if (FD->hasAttr<AlignedAttr>()) 4214 return true; 4215 if (Context.isAlignmentRequired(FD->getType())) 4216 return true; 4217 } 4218 } 4219 } 4220 4221 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4222 // common symbols, so symbols with greater alignment requirements cannot be 4223 // common. 4224 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4225 // alignments for common symbols via the aligncomm directive, so this 4226 // restriction only applies to MSVC environments. 4227 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4228 Context.getTypeAlignIfKnown(D->getType()) > 4229 Context.toBits(CharUnits::fromQuantity(32))) 4230 return true; 4231 4232 return false; 4233 } 4234 4235 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4236 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4237 if (Linkage == GVA_Internal) 4238 return llvm::Function::InternalLinkage; 4239 4240 if (D->hasAttr<WeakAttr>()) { 4241 if (IsConstantVariable) 4242 return llvm::GlobalVariable::WeakODRLinkage; 4243 else 4244 return llvm::GlobalVariable::WeakAnyLinkage; 4245 } 4246 4247 if (const auto *FD = D->getAsFunction()) 4248 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4249 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4250 4251 // We are guaranteed to have a strong definition somewhere else, 4252 // so we can use available_externally linkage. 4253 if (Linkage == GVA_AvailableExternally) 4254 return llvm::GlobalValue::AvailableExternallyLinkage; 4255 4256 // Note that Apple's kernel linker doesn't support symbol 4257 // coalescing, so we need to avoid linkonce and weak linkages there. 4258 // Normally, this means we just map to internal, but for explicit 4259 // instantiations we'll map to external. 4260 4261 // In C++, the compiler has to emit a definition in every translation unit 4262 // that references the function. We should use linkonce_odr because 4263 // a) if all references in this translation unit are optimized away, we 4264 // don't need to codegen it. b) if the function persists, it needs to be 4265 // merged with other definitions. c) C++ has the ODR, so we know the 4266 // definition is dependable. 4267 if (Linkage == GVA_DiscardableODR) 4268 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4269 : llvm::Function::InternalLinkage; 4270 4271 // An explicit instantiation of a template has weak linkage, since 4272 // explicit instantiations can occur in multiple translation units 4273 // and must all be equivalent. However, we are not allowed to 4274 // throw away these explicit instantiations. 4275 // 4276 // We don't currently support CUDA device code spread out across multiple TUs, 4277 // so say that CUDA templates are either external (for kernels) or internal. 4278 // This lets llvm perform aggressive inter-procedural optimizations. 4279 if (Linkage == GVA_StrongODR) { 4280 if (Context.getLangOpts().AppleKext) 4281 return llvm::Function::ExternalLinkage; 4282 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4283 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4284 : llvm::Function::InternalLinkage; 4285 return llvm::Function::WeakODRLinkage; 4286 } 4287 4288 // C++ doesn't have tentative definitions and thus cannot have common 4289 // linkage. 4290 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4291 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4292 CodeGenOpts.NoCommon)) 4293 return llvm::GlobalVariable::CommonLinkage; 4294 4295 // selectany symbols are externally visible, so use weak instead of 4296 // linkonce. MSVC optimizes away references to const selectany globals, so 4297 // all definitions should be the same and ODR linkage should be used. 4298 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4299 if (D->hasAttr<SelectAnyAttr>()) 4300 return llvm::GlobalVariable::WeakODRLinkage; 4301 4302 // Otherwise, we have strong external linkage. 4303 assert(Linkage == GVA_StrongExternal); 4304 return llvm::GlobalVariable::ExternalLinkage; 4305 } 4306 4307 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4308 const VarDecl *VD, bool IsConstant) { 4309 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4310 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4311 } 4312 4313 /// Replace the uses of a function that was declared with a non-proto type. 4314 /// We want to silently drop extra arguments from call sites 4315 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4316 llvm::Function *newFn) { 4317 // Fast path. 4318 if (old->use_empty()) return; 4319 4320 llvm::Type *newRetTy = newFn->getReturnType(); 4321 SmallVector<llvm::Value*, 4> newArgs; 4322 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4323 4324 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4325 ui != ue; ) { 4326 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4327 llvm::User *user = use->getUser(); 4328 4329 // Recognize and replace uses of bitcasts. Most calls to 4330 // unprototyped functions will use bitcasts. 4331 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4332 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4333 replaceUsesOfNonProtoConstant(bitcast, newFn); 4334 continue; 4335 } 4336 4337 // Recognize calls to the function. 4338 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4339 if (!callSite) continue; 4340 if (!callSite->isCallee(&*use)) 4341 continue; 4342 4343 // If the return types don't match exactly, then we can't 4344 // transform this call unless it's dead. 4345 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4346 continue; 4347 4348 // Get the call site's attribute list. 4349 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4350 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4351 4352 // If the function was passed too few arguments, don't transform. 4353 unsigned newNumArgs = newFn->arg_size(); 4354 if (callSite->arg_size() < newNumArgs) 4355 continue; 4356 4357 // If extra arguments were passed, we silently drop them. 4358 // If any of the types mismatch, we don't transform. 4359 unsigned argNo = 0; 4360 bool dontTransform = false; 4361 for (llvm::Argument &A : newFn->args()) { 4362 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4363 dontTransform = true; 4364 break; 4365 } 4366 4367 // Add any parameter attributes. 4368 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4369 argNo++; 4370 } 4371 if (dontTransform) 4372 continue; 4373 4374 // Okay, we can transform this. Create the new call instruction and copy 4375 // over the required information. 4376 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4377 4378 // Copy over any operand bundles. 4379 callSite->getOperandBundlesAsDefs(newBundles); 4380 4381 llvm::CallBase *newCall; 4382 if (dyn_cast<llvm::CallInst>(callSite)) { 4383 newCall = 4384 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4385 } else { 4386 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4387 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4388 oldInvoke->getUnwindDest(), newArgs, 4389 newBundles, "", callSite); 4390 } 4391 newArgs.clear(); // for the next iteration 4392 4393 if (!newCall->getType()->isVoidTy()) 4394 newCall->takeName(callSite); 4395 newCall->setAttributes(llvm::AttributeList::get( 4396 newFn->getContext(), oldAttrs.getFnAttributes(), 4397 oldAttrs.getRetAttributes(), newArgAttrs)); 4398 newCall->setCallingConv(callSite->getCallingConv()); 4399 4400 // Finally, remove the old call, replacing any uses with the new one. 4401 if (!callSite->use_empty()) 4402 callSite->replaceAllUsesWith(newCall); 4403 4404 // Copy debug location attached to CI. 4405 if (callSite->getDebugLoc()) 4406 newCall->setDebugLoc(callSite->getDebugLoc()); 4407 4408 callSite->eraseFromParent(); 4409 } 4410 } 4411 4412 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4413 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4414 /// existing call uses of the old function in the module, this adjusts them to 4415 /// call the new function directly. 4416 /// 4417 /// This is not just a cleanup: the always_inline pass requires direct calls to 4418 /// functions to be able to inline them. If there is a bitcast in the way, it 4419 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4420 /// run at -O0. 4421 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4422 llvm::Function *NewFn) { 4423 // If we're redefining a global as a function, don't transform it. 4424 if (!isa<llvm::Function>(Old)) return; 4425 4426 replaceUsesOfNonProtoConstant(Old, NewFn); 4427 } 4428 4429 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4430 auto DK = VD->isThisDeclarationADefinition(); 4431 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4432 return; 4433 4434 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4435 // If we have a definition, this might be a deferred decl. If the 4436 // instantiation is explicit, make sure we emit it at the end. 4437 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4438 GetAddrOfGlobalVar(VD); 4439 4440 EmitTopLevelDecl(VD); 4441 } 4442 4443 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4444 llvm::GlobalValue *GV) { 4445 // Check if this must be emitted as declare variant. 4446 if (LangOpts.OpenMP && OpenMPRuntime && 4447 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4448 return; 4449 4450 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4451 4452 // Compute the function info and LLVM type. 4453 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4454 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4455 4456 // Get or create the prototype for the function. 4457 if (!GV || (GV->getType()->getElementType() != Ty)) 4458 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4459 /*DontDefer=*/true, 4460 ForDefinition)); 4461 4462 // Already emitted. 4463 if (!GV->isDeclaration()) 4464 return; 4465 4466 // We need to set linkage and visibility on the function before 4467 // generating code for it because various parts of IR generation 4468 // want to propagate this information down (e.g. to local static 4469 // declarations). 4470 auto *Fn = cast<llvm::Function>(GV); 4471 setFunctionLinkage(GD, Fn); 4472 4473 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4474 setGVProperties(Fn, GD); 4475 4476 MaybeHandleStaticInExternC(D, Fn); 4477 4478 4479 maybeSetTrivialComdat(*D, *Fn); 4480 4481 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4482 4483 setNonAliasAttributes(GD, Fn); 4484 SetLLVMFunctionAttributesForDefinition(D, Fn); 4485 4486 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4487 AddGlobalCtor(Fn, CA->getPriority()); 4488 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4489 AddGlobalDtor(Fn, DA->getPriority()); 4490 if (D->hasAttr<AnnotateAttr>()) 4491 AddGlobalAnnotations(D, Fn); 4492 } 4493 4494 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4495 const auto *D = cast<ValueDecl>(GD.getDecl()); 4496 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4497 assert(AA && "Not an alias?"); 4498 4499 StringRef MangledName = getMangledName(GD); 4500 4501 if (AA->getAliasee() == MangledName) { 4502 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4503 return; 4504 } 4505 4506 // If there is a definition in the module, then it wins over the alias. 4507 // This is dubious, but allow it to be safe. Just ignore the alias. 4508 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4509 if (Entry && !Entry->isDeclaration()) 4510 return; 4511 4512 Aliases.push_back(GD); 4513 4514 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4515 4516 // Create a reference to the named value. This ensures that it is emitted 4517 // if a deferred decl. 4518 llvm::Constant *Aliasee; 4519 llvm::GlobalValue::LinkageTypes LT; 4520 if (isa<llvm::FunctionType>(DeclTy)) { 4521 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4522 /*ForVTable=*/false); 4523 LT = getFunctionLinkage(GD); 4524 } else { 4525 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4526 llvm::PointerType::getUnqual(DeclTy), 4527 /*D=*/nullptr); 4528 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4529 D->getType().isConstQualified()); 4530 } 4531 4532 // Create the new alias itself, but don't set a name yet. 4533 auto *GA = 4534 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4535 4536 if (Entry) { 4537 if (GA->getAliasee() == Entry) { 4538 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4539 return; 4540 } 4541 4542 assert(Entry->isDeclaration()); 4543 4544 // If there is a declaration in the module, then we had an extern followed 4545 // by the alias, as in: 4546 // extern int test6(); 4547 // ... 4548 // int test6() __attribute__((alias("test7"))); 4549 // 4550 // Remove it and replace uses of it with the alias. 4551 GA->takeName(Entry); 4552 4553 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4554 Entry->getType())); 4555 Entry->eraseFromParent(); 4556 } else { 4557 GA->setName(MangledName); 4558 } 4559 4560 // Set attributes which are particular to an alias; this is a 4561 // specialization of the attributes which may be set on a global 4562 // variable/function. 4563 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4564 D->isWeakImported()) { 4565 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4566 } 4567 4568 if (const auto *VD = dyn_cast<VarDecl>(D)) 4569 if (VD->getTLSKind()) 4570 setTLSMode(GA, *VD); 4571 4572 SetCommonAttributes(GD, GA); 4573 } 4574 4575 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4576 const auto *D = cast<ValueDecl>(GD.getDecl()); 4577 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4578 assert(IFA && "Not an ifunc?"); 4579 4580 StringRef MangledName = getMangledName(GD); 4581 4582 if (IFA->getResolver() == MangledName) { 4583 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4584 return; 4585 } 4586 4587 // Report an error if some definition overrides ifunc. 4588 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4589 if (Entry && !Entry->isDeclaration()) { 4590 GlobalDecl OtherGD; 4591 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4592 DiagnosedConflictingDefinitions.insert(GD).second) { 4593 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4594 << MangledName; 4595 Diags.Report(OtherGD.getDecl()->getLocation(), 4596 diag::note_previous_definition); 4597 } 4598 return; 4599 } 4600 4601 Aliases.push_back(GD); 4602 4603 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4604 llvm::Constant *Resolver = 4605 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4606 /*ForVTable=*/false); 4607 llvm::GlobalIFunc *GIF = 4608 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4609 "", Resolver, &getModule()); 4610 if (Entry) { 4611 if (GIF->getResolver() == Entry) { 4612 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4613 return; 4614 } 4615 assert(Entry->isDeclaration()); 4616 4617 // If there is a declaration in the module, then we had an extern followed 4618 // by the ifunc, as in: 4619 // extern int test(); 4620 // ... 4621 // int test() __attribute__((ifunc("resolver"))); 4622 // 4623 // Remove it and replace uses of it with the ifunc. 4624 GIF->takeName(Entry); 4625 4626 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4627 Entry->getType())); 4628 Entry->eraseFromParent(); 4629 } else 4630 GIF->setName(MangledName); 4631 4632 SetCommonAttributes(GD, GIF); 4633 } 4634 4635 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4636 ArrayRef<llvm::Type*> Tys) { 4637 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4638 Tys); 4639 } 4640 4641 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4642 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4643 const StringLiteral *Literal, bool TargetIsLSB, 4644 bool &IsUTF16, unsigned &StringLength) { 4645 StringRef String = Literal->getString(); 4646 unsigned NumBytes = String.size(); 4647 4648 // Check for simple case. 4649 if (!Literal->containsNonAsciiOrNull()) { 4650 StringLength = NumBytes; 4651 return *Map.insert(std::make_pair(String, nullptr)).first; 4652 } 4653 4654 // Otherwise, convert the UTF8 literals into a string of shorts. 4655 IsUTF16 = true; 4656 4657 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4658 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4659 llvm::UTF16 *ToPtr = &ToBuf[0]; 4660 4661 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4662 ToPtr + NumBytes, llvm::strictConversion); 4663 4664 // ConvertUTF8toUTF16 returns the length in ToPtr. 4665 StringLength = ToPtr - &ToBuf[0]; 4666 4667 // Add an explicit null. 4668 *ToPtr = 0; 4669 return *Map.insert(std::make_pair( 4670 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4671 (StringLength + 1) * 2), 4672 nullptr)).first; 4673 } 4674 4675 ConstantAddress 4676 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4677 unsigned StringLength = 0; 4678 bool isUTF16 = false; 4679 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4680 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4681 getDataLayout().isLittleEndian(), isUTF16, 4682 StringLength); 4683 4684 if (auto *C = Entry.second) 4685 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4686 4687 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4688 llvm::Constant *Zeros[] = { Zero, Zero }; 4689 4690 const ASTContext &Context = getContext(); 4691 const llvm::Triple &Triple = getTriple(); 4692 4693 const auto CFRuntime = getLangOpts().CFRuntime; 4694 const bool IsSwiftABI = 4695 static_cast<unsigned>(CFRuntime) >= 4696 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4697 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4698 4699 // If we don't already have it, get __CFConstantStringClassReference. 4700 if (!CFConstantStringClassRef) { 4701 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4702 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4703 Ty = llvm::ArrayType::get(Ty, 0); 4704 4705 switch (CFRuntime) { 4706 default: break; 4707 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4708 case LangOptions::CoreFoundationABI::Swift5_0: 4709 CFConstantStringClassName = 4710 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4711 : "$s10Foundation19_NSCFConstantStringCN"; 4712 Ty = IntPtrTy; 4713 break; 4714 case LangOptions::CoreFoundationABI::Swift4_2: 4715 CFConstantStringClassName = 4716 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4717 : "$S10Foundation19_NSCFConstantStringCN"; 4718 Ty = IntPtrTy; 4719 break; 4720 case LangOptions::CoreFoundationABI::Swift4_1: 4721 CFConstantStringClassName = 4722 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4723 : "__T010Foundation19_NSCFConstantStringCN"; 4724 Ty = IntPtrTy; 4725 break; 4726 } 4727 4728 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4729 4730 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4731 llvm::GlobalValue *GV = nullptr; 4732 4733 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4734 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4735 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4736 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4737 4738 const VarDecl *VD = nullptr; 4739 for (const auto &Result : DC->lookup(&II)) 4740 if ((VD = dyn_cast<VarDecl>(Result))) 4741 break; 4742 4743 if (Triple.isOSBinFormatELF()) { 4744 if (!VD) 4745 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4746 } else { 4747 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4748 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4749 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4750 else 4751 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4752 } 4753 4754 setDSOLocal(GV); 4755 } 4756 } 4757 4758 // Decay array -> ptr 4759 CFConstantStringClassRef = 4760 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4761 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4762 } 4763 4764 QualType CFTy = Context.getCFConstantStringType(); 4765 4766 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4767 4768 ConstantInitBuilder Builder(*this); 4769 auto Fields = Builder.beginStruct(STy); 4770 4771 // Class pointer. 4772 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4773 4774 // Flags. 4775 if (IsSwiftABI) { 4776 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4777 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4778 } else { 4779 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4780 } 4781 4782 // String pointer. 4783 llvm::Constant *C = nullptr; 4784 if (isUTF16) { 4785 auto Arr = llvm::makeArrayRef( 4786 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4787 Entry.first().size() / 2); 4788 C = llvm::ConstantDataArray::get(VMContext, Arr); 4789 } else { 4790 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4791 } 4792 4793 // Note: -fwritable-strings doesn't make the backing store strings of 4794 // CFStrings writable. (See <rdar://problem/10657500>) 4795 auto *GV = 4796 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4797 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4798 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4799 // Don't enforce the target's minimum global alignment, since the only use 4800 // of the string is via this class initializer. 4801 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4802 : Context.getTypeAlignInChars(Context.CharTy); 4803 GV->setAlignment(Align.getAsAlign()); 4804 4805 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4806 // Without it LLVM can merge the string with a non unnamed_addr one during 4807 // LTO. Doing that changes the section it ends in, which surprises ld64. 4808 if (Triple.isOSBinFormatMachO()) 4809 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4810 : "__TEXT,__cstring,cstring_literals"); 4811 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4812 // the static linker to adjust permissions to read-only later on. 4813 else if (Triple.isOSBinFormatELF()) 4814 GV->setSection(".rodata"); 4815 4816 // String. 4817 llvm::Constant *Str = 4818 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4819 4820 if (isUTF16) 4821 // Cast the UTF16 string to the correct type. 4822 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4823 Fields.add(Str); 4824 4825 // String length. 4826 llvm::IntegerType *LengthTy = 4827 llvm::IntegerType::get(getModule().getContext(), 4828 Context.getTargetInfo().getLongWidth()); 4829 if (IsSwiftABI) { 4830 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4831 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4832 LengthTy = Int32Ty; 4833 else 4834 LengthTy = IntPtrTy; 4835 } 4836 Fields.addInt(LengthTy, StringLength); 4837 4838 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4839 // properly aligned on 32-bit platforms. 4840 CharUnits Alignment = 4841 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4842 4843 // The struct. 4844 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4845 /*isConstant=*/false, 4846 llvm::GlobalVariable::PrivateLinkage); 4847 GV->addAttribute("objc_arc_inert"); 4848 switch (Triple.getObjectFormat()) { 4849 case llvm::Triple::UnknownObjectFormat: 4850 llvm_unreachable("unknown file format"); 4851 case llvm::Triple::XCOFF: 4852 llvm_unreachable("XCOFF is not yet implemented"); 4853 case llvm::Triple::COFF: 4854 case llvm::Triple::ELF: 4855 case llvm::Triple::Wasm: 4856 GV->setSection("cfstring"); 4857 break; 4858 case llvm::Triple::MachO: 4859 GV->setSection("__DATA,__cfstring"); 4860 break; 4861 } 4862 Entry.second = GV; 4863 4864 return ConstantAddress(GV, Alignment); 4865 } 4866 4867 bool CodeGenModule::getExpressionLocationsEnabled() const { 4868 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4869 } 4870 4871 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4872 if (ObjCFastEnumerationStateType.isNull()) { 4873 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4874 D->startDefinition(); 4875 4876 QualType FieldTypes[] = { 4877 Context.UnsignedLongTy, 4878 Context.getPointerType(Context.getObjCIdType()), 4879 Context.getPointerType(Context.UnsignedLongTy), 4880 Context.getConstantArrayType(Context.UnsignedLongTy, 4881 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4882 }; 4883 4884 for (size_t i = 0; i < 4; ++i) { 4885 FieldDecl *Field = FieldDecl::Create(Context, 4886 D, 4887 SourceLocation(), 4888 SourceLocation(), nullptr, 4889 FieldTypes[i], /*TInfo=*/nullptr, 4890 /*BitWidth=*/nullptr, 4891 /*Mutable=*/false, 4892 ICIS_NoInit); 4893 Field->setAccess(AS_public); 4894 D->addDecl(Field); 4895 } 4896 4897 D->completeDefinition(); 4898 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4899 } 4900 4901 return ObjCFastEnumerationStateType; 4902 } 4903 4904 llvm::Constant * 4905 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4906 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4907 4908 // Don't emit it as the address of the string, emit the string data itself 4909 // as an inline array. 4910 if (E->getCharByteWidth() == 1) { 4911 SmallString<64> Str(E->getString()); 4912 4913 // Resize the string to the right size, which is indicated by its type. 4914 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4915 Str.resize(CAT->getSize().getZExtValue()); 4916 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4917 } 4918 4919 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4920 llvm::Type *ElemTy = AType->getElementType(); 4921 unsigned NumElements = AType->getNumElements(); 4922 4923 // Wide strings have either 2-byte or 4-byte elements. 4924 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4925 SmallVector<uint16_t, 32> Elements; 4926 Elements.reserve(NumElements); 4927 4928 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4929 Elements.push_back(E->getCodeUnit(i)); 4930 Elements.resize(NumElements); 4931 return llvm::ConstantDataArray::get(VMContext, Elements); 4932 } 4933 4934 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4935 SmallVector<uint32_t, 32> Elements; 4936 Elements.reserve(NumElements); 4937 4938 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4939 Elements.push_back(E->getCodeUnit(i)); 4940 Elements.resize(NumElements); 4941 return llvm::ConstantDataArray::get(VMContext, Elements); 4942 } 4943 4944 static llvm::GlobalVariable * 4945 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4946 CodeGenModule &CGM, StringRef GlobalName, 4947 CharUnits Alignment) { 4948 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4949 CGM.getStringLiteralAddressSpace()); 4950 4951 llvm::Module &M = CGM.getModule(); 4952 // Create a global variable for this string 4953 auto *GV = new llvm::GlobalVariable( 4954 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4955 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4956 GV->setAlignment(Alignment.getAsAlign()); 4957 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4958 if (GV->isWeakForLinker()) { 4959 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4960 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4961 } 4962 CGM.setDSOLocal(GV); 4963 4964 return GV; 4965 } 4966 4967 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4968 /// constant array for the given string literal. 4969 ConstantAddress 4970 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4971 StringRef Name) { 4972 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4973 4974 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4975 llvm::GlobalVariable **Entry = nullptr; 4976 if (!LangOpts.WritableStrings) { 4977 Entry = &ConstantStringMap[C]; 4978 if (auto GV = *Entry) { 4979 if (Alignment.getQuantity() > GV->getAlignment()) 4980 GV->setAlignment(Alignment.getAsAlign()); 4981 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4982 Alignment); 4983 } 4984 } 4985 4986 SmallString<256> MangledNameBuffer; 4987 StringRef GlobalVariableName; 4988 llvm::GlobalValue::LinkageTypes LT; 4989 4990 // Mangle the string literal if that's how the ABI merges duplicate strings. 4991 // Don't do it if they are writable, since we don't want writes in one TU to 4992 // affect strings in another. 4993 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4994 !LangOpts.WritableStrings) { 4995 llvm::raw_svector_ostream Out(MangledNameBuffer); 4996 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4997 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4998 GlobalVariableName = MangledNameBuffer; 4999 } else { 5000 LT = llvm::GlobalValue::PrivateLinkage; 5001 GlobalVariableName = Name; 5002 } 5003 5004 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5005 if (Entry) 5006 *Entry = GV; 5007 5008 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5009 QualType()); 5010 5011 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5012 Alignment); 5013 } 5014 5015 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5016 /// array for the given ObjCEncodeExpr node. 5017 ConstantAddress 5018 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5019 std::string Str; 5020 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5021 5022 return GetAddrOfConstantCString(Str); 5023 } 5024 5025 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5026 /// the literal and a terminating '\0' character. 5027 /// The result has pointer to array type. 5028 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5029 const std::string &Str, const char *GlobalName) { 5030 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5031 CharUnits Alignment = 5032 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5033 5034 llvm::Constant *C = 5035 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5036 5037 // Don't share any string literals if strings aren't constant. 5038 llvm::GlobalVariable **Entry = nullptr; 5039 if (!LangOpts.WritableStrings) { 5040 Entry = &ConstantStringMap[C]; 5041 if (auto GV = *Entry) { 5042 if (Alignment.getQuantity() > GV->getAlignment()) 5043 GV->setAlignment(Alignment.getAsAlign()); 5044 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5045 Alignment); 5046 } 5047 } 5048 5049 // Get the default prefix if a name wasn't specified. 5050 if (!GlobalName) 5051 GlobalName = ".str"; 5052 // Create a global variable for this. 5053 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5054 GlobalName, Alignment); 5055 if (Entry) 5056 *Entry = GV; 5057 5058 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5059 Alignment); 5060 } 5061 5062 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5063 const MaterializeTemporaryExpr *E, const Expr *Init) { 5064 assert((E->getStorageDuration() == SD_Static || 5065 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5066 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5067 5068 // If we're not materializing a subobject of the temporary, keep the 5069 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5070 QualType MaterializedType = Init->getType(); 5071 if (Init == E->getSubExpr()) 5072 MaterializedType = E->getType(); 5073 5074 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5075 5076 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5077 return ConstantAddress(Slot, Align); 5078 5079 // FIXME: If an externally-visible declaration extends multiple temporaries, 5080 // we need to give each temporary the same name in every translation unit (and 5081 // we also need to make the temporaries externally-visible). 5082 SmallString<256> Name; 5083 llvm::raw_svector_ostream Out(Name); 5084 getCXXABI().getMangleContext().mangleReferenceTemporary( 5085 VD, E->getManglingNumber(), Out); 5086 5087 APValue *Value = nullptr; 5088 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5089 // If the initializer of the extending declaration is a constant 5090 // initializer, we should have a cached constant initializer for this 5091 // temporary. Note that this might have a different value from the value 5092 // computed by evaluating the initializer if the surrounding constant 5093 // expression modifies the temporary. 5094 Value = E->getOrCreateValue(false); 5095 } 5096 5097 // Try evaluating it now, it might have a constant initializer. 5098 Expr::EvalResult EvalResult; 5099 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5100 !EvalResult.hasSideEffects()) 5101 Value = &EvalResult.Val; 5102 5103 LangAS AddrSpace = 5104 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5105 5106 Optional<ConstantEmitter> emitter; 5107 llvm::Constant *InitialValue = nullptr; 5108 bool Constant = false; 5109 llvm::Type *Type; 5110 if (Value) { 5111 // The temporary has a constant initializer, use it. 5112 emitter.emplace(*this); 5113 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5114 MaterializedType); 5115 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5116 Type = InitialValue->getType(); 5117 } else { 5118 // No initializer, the initialization will be provided when we 5119 // initialize the declaration which performed lifetime extension. 5120 Type = getTypes().ConvertTypeForMem(MaterializedType); 5121 } 5122 5123 // Create a global variable for this lifetime-extended temporary. 5124 llvm::GlobalValue::LinkageTypes Linkage = 5125 getLLVMLinkageVarDefinition(VD, Constant); 5126 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5127 const VarDecl *InitVD; 5128 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5129 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5130 // Temporaries defined inside a class get linkonce_odr linkage because the 5131 // class can be defined in multiple translation units. 5132 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5133 } else { 5134 // There is no need for this temporary to have external linkage if the 5135 // VarDecl has external linkage. 5136 Linkage = llvm::GlobalVariable::InternalLinkage; 5137 } 5138 } 5139 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5140 auto *GV = new llvm::GlobalVariable( 5141 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5142 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5143 if (emitter) emitter->finalize(GV); 5144 setGVProperties(GV, VD); 5145 GV->setAlignment(Align.getAsAlign()); 5146 if (supportsCOMDAT() && GV->isWeakForLinker()) 5147 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5148 if (VD->getTLSKind()) 5149 setTLSMode(GV, *VD); 5150 llvm::Constant *CV = GV; 5151 if (AddrSpace != LangAS::Default) 5152 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5153 *this, GV, AddrSpace, LangAS::Default, 5154 Type->getPointerTo( 5155 getContext().getTargetAddressSpace(LangAS::Default))); 5156 MaterializedGlobalTemporaryMap[E] = CV; 5157 return ConstantAddress(CV, Align); 5158 } 5159 5160 /// EmitObjCPropertyImplementations - Emit information for synthesized 5161 /// properties for an implementation. 5162 void CodeGenModule::EmitObjCPropertyImplementations(const 5163 ObjCImplementationDecl *D) { 5164 for (const auto *PID : D->property_impls()) { 5165 // Dynamic is just for type-checking. 5166 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5167 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5168 5169 // Determine which methods need to be implemented, some may have 5170 // been overridden. Note that ::isPropertyAccessor is not the method 5171 // we want, that just indicates if the decl came from a 5172 // property. What we want to know is if the method is defined in 5173 // this implementation. 5174 auto *Getter = PID->getGetterMethodDecl(); 5175 if (!Getter || Getter->isSynthesizedAccessorStub()) 5176 CodeGenFunction(*this).GenerateObjCGetter( 5177 const_cast<ObjCImplementationDecl *>(D), PID); 5178 auto *Setter = PID->getSetterMethodDecl(); 5179 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5180 CodeGenFunction(*this).GenerateObjCSetter( 5181 const_cast<ObjCImplementationDecl *>(D), PID); 5182 } 5183 } 5184 } 5185 5186 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5187 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5188 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5189 ivar; ivar = ivar->getNextIvar()) 5190 if (ivar->getType().isDestructedType()) 5191 return true; 5192 5193 return false; 5194 } 5195 5196 static bool AllTrivialInitializers(CodeGenModule &CGM, 5197 ObjCImplementationDecl *D) { 5198 CodeGenFunction CGF(CGM); 5199 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5200 E = D->init_end(); B != E; ++B) { 5201 CXXCtorInitializer *CtorInitExp = *B; 5202 Expr *Init = CtorInitExp->getInit(); 5203 if (!CGF.isTrivialInitializer(Init)) 5204 return false; 5205 } 5206 return true; 5207 } 5208 5209 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5210 /// for an implementation. 5211 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5212 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5213 if (needsDestructMethod(D)) { 5214 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5215 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5216 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5217 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5218 getContext().VoidTy, nullptr, D, 5219 /*isInstance=*/true, /*isVariadic=*/false, 5220 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5221 /*isImplicitlyDeclared=*/true, 5222 /*isDefined=*/false, ObjCMethodDecl::Required); 5223 D->addInstanceMethod(DTORMethod); 5224 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5225 D->setHasDestructors(true); 5226 } 5227 5228 // If the implementation doesn't have any ivar initializers, we don't need 5229 // a .cxx_construct. 5230 if (D->getNumIvarInitializers() == 0 || 5231 AllTrivialInitializers(*this, D)) 5232 return; 5233 5234 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5235 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5236 // The constructor returns 'self'. 5237 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5238 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5239 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5240 /*isVariadic=*/false, 5241 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5242 /*isImplicitlyDeclared=*/true, 5243 /*isDefined=*/false, ObjCMethodDecl::Required); 5244 D->addInstanceMethod(CTORMethod); 5245 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5246 D->setHasNonZeroConstructors(true); 5247 } 5248 5249 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5250 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5251 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5252 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5253 ErrorUnsupported(LSD, "linkage spec"); 5254 return; 5255 } 5256 5257 EmitDeclContext(LSD); 5258 } 5259 5260 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5261 for (auto *I : DC->decls()) { 5262 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5263 // are themselves considered "top-level", so EmitTopLevelDecl on an 5264 // ObjCImplDecl does not recursively visit them. We need to do that in 5265 // case they're nested inside another construct (LinkageSpecDecl / 5266 // ExportDecl) that does stop them from being considered "top-level". 5267 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5268 for (auto *M : OID->methods()) 5269 EmitTopLevelDecl(M); 5270 } 5271 5272 EmitTopLevelDecl(I); 5273 } 5274 } 5275 5276 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5277 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5278 // Ignore dependent declarations. 5279 if (D->isTemplated()) 5280 return; 5281 5282 switch (D->getKind()) { 5283 case Decl::CXXConversion: 5284 case Decl::CXXMethod: 5285 case Decl::Function: 5286 EmitGlobal(cast<FunctionDecl>(D)); 5287 // Always provide some coverage mapping 5288 // even for the functions that aren't emitted. 5289 AddDeferredUnusedCoverageMapping(D); 5290 break; 5291 5292 case Decl::CXXDeductionGuide: 5293 // Function-like, but does not result in code emission. 5294 break; 5295 5296 case Decl::Var: 5297 case Decl::Decomposition: 5298 case Decl::VarTemplateSpecialization: 5299 EmitGlobal(cast<VarDecl>(D)); 5300 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5301 for (auto *B : DD->bindings()) 5302 if (auto *HD = B->getHoldingVar()) 5303 EmitGlobal(HD); 5304 break; 5305 5306 // Indirect fields from global anonymous structs and unions can be 5307 // ignored; only the actual variable requires IR gen support. 5308 case Decl::IndirectField: 5309 break; 5310 5311 // C++ Decls 5312 case Decl::Namespace: 5313 EmitDeclContext(cast<NamespaceDecl>(D)); 5314 break; 5315 case Decl::ClassTemplateSpecialization: { 5316 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5317 if (DebugInfo && 5318 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5319 Spec->hasDefinition()) 5320 DebugInfo->completeTemplateDefinition(*Spec); 5321 } LLVM_FALLTHROUGH; 5322 case Decl::CXXRecord: 5323 if (DebugInfo) { 5324 if (auto *ES = D->getASTContext().getExternalSource()) 5325 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5326 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5327 } 5328 // Emit any static data members, they may be definitions. 5329 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5330 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5331 EmitTopLevelDecl(I); 5332 break; 5333 // No code generation needed. 5334 case Decl::UsingShadow: 5335 case Decl::ClassTemplate: 5336 case Decl::VarTemplate: 5337 case Decl::Concept: 5338 case Decl::VarTemplatePartialSpecialization: 5339 case Decl::FunctionTemplate: 5340 case Decl::TypeAliasTemplate: 5341 case Decl::Block: 5342 case Decl::Empty: 5343 case Decl::Binding: 5344 break; 5345 case Decl::Using: // using X; [C++] 5346 if (CGDebugInfo *DI = getModuleDebugInfo()) 5347 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5348 return; 5349 case Decl::NamespaceAlias: 5350 if (CGDebugInfo *DI = getModuleDebugInfo()) 5351 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5352 return; 5353 case Decl::UsingDirective: // using namespace X; [C++] 5354 if (CGDebugInfo *DI = getModuleDebugInfo()) 5355 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5356 return; 5357 case Decl::CXXConstructor: 5358 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5359 break; 5360 case Decl::CXXDestructor: 5361 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5362 break; 5363 5364 case Decl::StaticAssert: 5365 // Nothing to do. 5366 break; 5367 5368 // Objective-C Decls 5369 5370 // Forward declarations, no (immediate) code generation. 5371 case Decl::ObjCInterface: 5372 case Decl::ObjCCategory: 5373 break; 5374 5375 case Decl::ObjCProtocol: { 5376 auto *Proto = cast<ObjCProtocolDecl>(D); 5377 if (Proto->isThisDeclarationADefinition()) 5378 ObjCRuntime->GenerateProtocol(Proto); 5379 break; 5380 } 5381 5382 case Decl::ObjCCategoryImpl: 5383 // Categories have properties but don't support synthesize so we 5384 // can ignore them here. 5385 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5386 break; 5387 5388 case Decl::ObjCImplementation: { 5389 auto *OMD = cast<ObjCImplementationDecl>(D); 5390 EmitObjCPropertyImplementations(OMD); 5391 EmitObjCIvarInitializations(OMD); 5392 ObjCRuntime->GenerateClass(OMD); 5393 // Emit global variable debug information. 5394 if (CGDebugInfo *DI = getModuleDebugInfo()) 5395 if (getCodeGenOpts().hasReducedDebugInfo()) 5396 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5397 OMD->getClassInterface()), OMD->getLocation()); 5398 break; 5399 } 5400 case Decl::ObjCMethod: { 5401 auto *OMD = cast<ObjCMethodDecl>(D); 5402 // If this is not a prototype, emit the body. 5403 if (OMD->getBody()) 5404 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5405 break; 5406 } 5407 case Decl::ObjCCompatibleAlias: 5408 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5409 break; 5410 5411 case Decl::PragmaComment: { 5412 const auto *PCD = cast<PragmaCommentDecl>(D); 5413 switch (PCD->getCommentKind()) { 5414 case PCK_Unknown: 5415 llvm_unreachable("unexpected pragma comment kind"); 5416 case PCK_Linker: 5417 AppendLinkerOptions(PCD->getArg()); 5418 break; 5419 case PCK_Lib: 5420 AddDependentLib(PCD->getArg()); 5421 break; 5422 case PCK_Compiler: 5423 case PCK_ExeStr: 5424 case PCK_User: 5425 break; // We ignore all of these. 5426 } 5427 break; 5428 } 5429 5430 case Decl::PragmaDetectMismatch: { 5431 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5432 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5433 break; 5434 } 5435 5436 case Decl::LinkageSpec: 5437 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5438 break; 5439 5440 case Decl::FileScopeAsm: { 5441 // File-scope asm is ignored during device-side CUDA compilation. 5442 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5443 break; 5444 // File-scope asm is ignored during device-side OpenMP compilation. 5445 if (LangOpts.OpenMPIsDevice) 5446 break; 5447 auto *AD = cast<FileScopeAsmDecl>(D); 5448 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5449 break; 5450 } 5451 5452 case Decl::Import: { 5453 auto *Import = cast<ImportDecl>(D); 5454 5455 // If we've already imported this module, we're done. 5456 if (!ImportedModules.insert(Import->getImportedModule())) 5457 break; 5458 5459 // Emit debug information for direct imports. 5460 if (!Import->getImportedOwningModule()) { 5461 if (CGDebugInfo *DI = getModuleDebugInfo()) 5462 DI->EmitImportDecl(*Import); 5463 } 5464 5465 // Find all of the submodules and emit the module initializers. 5466 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5467 SmallVector<clang::Module *, 16> Stack; 5468 Visited.insert(Import->getImportedModule()); 5469 Stack.push_back(Import->getImportedModule()); 5470 5471 while (!Stack.empty()) { 5472 clang::Module *Mod = Stack.pop_back_val(); 5473 if (!EmittedModuleInitializers.insert(Mod).second) 5474 continue; 5475 5476 for (auto *D : Context.getModuleInitializers(Mod)) 5477 EmitTopLevelDecl(D); 5478 5479 // Visit the submodules of this module. 5480 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5481 SubEnd = Mod->submodule_end(); 5482 Sub != SubEnd; ++Sub) { 5483 // Skip explicit children; they need to be explicitly imported to emit 5484 // the initializers. 5485 if ((*Sub)->IsExplicit) 5486 continue; 5487 5488 if (Visited.insert(*Sub).second) 5489 Stack.push_back(*Sub); 5490 } 5491 } 5492 break; 5493 } 5494 5495 case Decl::Export: 5496 EmitDeclContext(cast<ExportDecl>(D)); 5497 break; 5498 5499 case Decl::OMPThreadPrivate: 5500 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5501 break; 5502 5503 case Decl::OMPAllocate: 5504 break; 5505 5506 case Decl::OMPDeclareReduction: 5507 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5508 break; 5509 5510 case Decl::OMPDeclareMapper: 5511 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5512 break; 5513 5514 case Decl::OMPRequires: 5515 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5516 break; 5517 5518 default: 5519 // Make sure we handled everything we should, every other kind is a 5520 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5521 // function. Need to recode Decl::Kind to do that easily. 5522 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5523 break; 5524 } 5525 } 5526 5527 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5528 // Do we need to generate coverage mapping? 5529 if (!CodeGenOpts.CoverageMapping) 5530 return; 5531 switch (D->getKind()) { 5532 case Decl::CXXConversion: 5533 case Decl::CXXMethod: 5534 case Decl::Function: 5535 case Decl::ObjCMethod: 5536 case Decl::CXXConstructor: 5537 case Decl::CXXDestructor: { 5538 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5539 return; 5540 SourceManager &SM = getContext().getSourceManager(); 5541 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5542 return; 5543 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5544 if (I == DeferredEmptyCoverageMappingDecls.end()) 5545 DeferredEmptyCoverageMappingDecls[D] = true; 5546 break; 5547 } 5548 default: 5549 break; 5550 }; 5551 } 5552 5553 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5554 // Do we need to generate coverage mapping? 5555 if (!CodeGenOpts.CoverageMapping) 5556 return; 5557 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5558 if (Fn->isTemplateInstantiation()) 5559 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5560 } 5561 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5562 if (I == DeferredEmptyCoverageMappingDecls.end()) 5563 DeferredEmptyCoverageMappingDecls[D] = false; 5564 else 5565 I->second = false; 5566 } 5567 5568 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5569 // We call takeVector() here to avoid use-after-free. 5570 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5571 // we deserialize function bodies to emit coverage info for them, and that 5572 // deserializes more declarations. How should we handle that case? 5573 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5574 if (!Entry.second) 5575 continue; 5576 const Decl *D = Entry.first; 5577 switch (D->getKind()) { 5578 case Decl::CXXConversion: 5579 case Decl::CXXMethod: 5580 case Decl::Function: 5581 case Decl::ObjCMethod: { 5582 CodeGenPGO PGO(*this); 5583 GlobalDecl GD(cast<FunctionDecl>(D)); 5584 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5585 getFunctionLinkage(GD)); 5586 break; 5587 } 5588 case Decl::CXXConstructor: { 5589 CodeGenPGO PGO(*this); 5590 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5591 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5592 getFunctionLinkage(GD)); 5593 break; 5594 } 5595 case Decl::CXXDestructor: { 5596 CodeGenPGO PGO(*this); 5597 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5598 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5599 getFunctionLinkage(GD)); 5600 break; 5601 } 5602 default: 5603 break; 5604 }; 5605 } 5606 } 5607 5608 /// Turns the given pointer into a constant. 5609 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5610 const void *Ptr) { 5611 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5612 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5613 return llvm::ConstantInt::get(i64, PtrInt); 5614 } 5615 5616 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5617 llvm::NamedMDNode *&GlobalMetadata, 5618 GlobalDecl D, 5619 llvm::GlobalValue *Addr) { 5620 if (!GlobalMetadata) 5621 GlobalMetadata = 5622 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5623 5624 // TODO: should we report variant information for ctors/dtors? 5625 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5626 llvm::ConstantAsMetadata::get(GetPointerConstant( 5627 CGM.getLLVMContext(), D.getDecl()))}; 5628 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5629 } 5630 5631 /// For each function which is declared within an extern "C" region and marked 5632 /// as 'used', but has internal linkage, create an alias from the unmangled 5633 /// name to the mangled name if possible. People expect to be able to refer 5634 /// to such functions with an unmangled name from inline assembly within the 5635 /// same translation unit. 5636 void CodeGenModule::EmitStaticExternCAliases() { 5637 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5638 return; 5639 for (auto &I : StaticExternCValues) { 5640 IdentifierInfo *Name = I.first; 5641 llvm::GlobalValue *Val = I.second; 5642 if (Val && !getModule().getNamedValue(Name->getName())) 5643 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5644 } 5645 } 5646 5647 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5648 GlobalDecl &Result) const { 5649 auto Res = Manglings.find(MangledName); 5650 if (Res == Manglings.end()) 5651 return false; 5652 Result = Res->getValue(); 5653 return true; 5654 } 5655 5656 /// Emits metadata nodes associating all the global values in the 5657 /// current module with the Decls they came from. This is useful for 5658 /// projects using IR gen as a subroutine. 5659 /// 5660 /// Since there's currently no way to associate an MDNode directly 5661 /// with an llvm::GlobalValue, we create a global named metadata 5662 /// with the name 'clang.global.decl.ptrs'. 5663 void CodeGenModule::EmitDeclMetadata() { 5664 llvm::NamedMDNode *GlobalMetadata = nullptr; 5665 5666 for (auto &I : MangledDeclNames) { 5667 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5668 // Some mangled names don't necessarily have an associated GlobalValue 5669 // in this module, e.g. if we mangled it for DebugInfo. 5670 if (Addr) 5671 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5672 } 5673 } 5674 5675 /// Emits metadata nodes for all the local variables in the current 5676 /// function. 5677 void CodeGenFunction::EmitDeclMetadata() { 5678 if (LocalDeclMap.empty()) return; 5679 5680 llvm::LLVMContext &Context = getLLVMContext(); 5681 5682 // Find the unique metadata ID for this name. 5683 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5684 5685 llvm::NamedMDNode *GlobalMetadata = nullptr; 5686 5687 for (auto &I : LocalDeclMap) { 5688 const Decl *D = I.first; 5689 llvm::Value *Addr = I.second.getPointer(); 5690 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5691 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5692 Alloca->setMetadata( 5693 DeclPtrKind, llvm::MDNode::get( 5694 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5695 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5696 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5697 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5698 } 5699 } 5700 } 5701 5702 void CodeGenModule::EmitVersionIdentMetadata() { 5703 llvm::NamedMDNode *IdentMetadata = 5704 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5705 std::string Version = getClangFullVersion(); 5706 llvm::LLVMContext &Ctx = TheModule.getContext(); 5707 5708 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5709 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5710 } 5711 5712 void CodeGenModule::EmitCommandLineMetadata() { 5713 llvm::NamedMDNode *CommandLineMetadata = 5714 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5715 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5716 llvm::LLVMContext &Ctx = TheModule.getContext(); 5717 5718 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5719 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5720 } 5721 5722 void CodeGenModule::EmitTargetMetadata() { 5723 // Warning, new MangledDeclNames may be appended within this loop. 5724 // We rely on MapVector insertions adding new elements to the end 5725 // of the container. 5726 // FIXME: Move this loop into the one target that needs it, and only 5727 // loop over those declarations for which we couldn't emit the target 5728 // metadata when we emitted the declaration. 5729 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5730 auto Val = *(MangledDeclNames.begin() + I); 5731 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5732 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5733 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5734 } 5735 } 5736 5737 void CodeGenModule::EmitCoverageFile() { 5738 if (getCodeGenOpts().CoverageDataFile.empty() && 5739 getCodeGenOpts().CoverageNotesFile.empty()) 5740 return; 5741 5742 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5743 if (!CUNode) 5744 return; 5745 5746 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5747 llvm::LLVMContext &Ctx = TheModule.getContext(); 5748 auto *CoverageDataFile = 5749 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5750 auto *CoverageNotesFile = 5751 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5752 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5753 llvm::MDNode *CU = CUNode->getOperand(i); 5754 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5755 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5756 } 5757 } 5758 5759 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5760 // Sema has checked that all uuid strings are of the form 5761 // "12345678-1234-1234-1234-1234567890ab". 5762 assert(Uuid.size() == 36); 5763 for (unsigned i = 0; i < 36; ++i) { 5764 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5765 else assert(isHexDigit(Uuid[i])); 5766 } 5767 5768 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5769 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5770 5771 llvm::Constant *Field3[8]; 5772 for (unsigned Idx = 0; Idx < 8; ++Idx) 5773 Field3[Idx] = llvm::ConstantInt::get( 5774 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5775 5776 llvm::Constant *Fields[4] = { 5777 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5778 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5779 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5780 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5781 }; 5782 5783 return llvm::ConstantStruct::getAnon(Fields); 5784 } 5785 5786 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5787 bool ForEH) { 5788 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5789 // FIXME: should we even be calling this method if RTTI is disabled 5790 // and it's not for EH? 5791 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5792 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5793 getTriple().isNVPTX())) 5794 return llvm::Constant::getNullValue(Int8PtrTy); 5795 5796 if (ForEH && Ty->isObjCObjectPointerType() && 5797 LangOpts.ObjCRuntime.isGNUFamily()) 5798 return ObjCRuntime->GetEHType(Ty); 5799 5800 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5801 } 5802 5803 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5804 // Do not emit threadprivates in simd-only mode. 5805 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5806 return; 5807 for (auto RefExpr : D->varlists()) { 5808 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5809 bool PerformInit = 5810 VD->getAnyInitializer() && 5811 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5812 /*ForRef=*/false); 5813 5814 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5815 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5816 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5817 CXXGlobalInits.push_back(InitFunction); 5818 } 5819 } 5820 5821 llvm::Metadata * 5822 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5823 StringRef Suffix) { 5824 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5825 if (InternalId) 5826 return InternalId; 5827 5828 if (isExternallyVisible(T->getLinkage())) { 5829 std::string OutName; 5830 llvm::raw_string_ostream Out(OutName); 5831 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5832 Out << Suffix; 5833 5834 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5835 } else { 5836 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5837 llvm::ArrayRef<llvm::Metadata *>()); 5838 } 5839 5840 return InternalId; 5841 } 5842 5843 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5844 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5845 } 5846 5847 llvm::Metadata * 5848 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5849 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5850 } 5851 5852 // Generalize pointer types to a void pointer with the qualifiers of the 5853 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5854 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5855 // 'void *'. 5856 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5857 if (!Ty->isPointerType()) 5858 return Ty; 5859 5860 return Ctx.getPointerType( 5861 QualType(Ctx.VoidTy).withCVRQualifiers( 5862 Ty->getPointeeType().getCVRQualifiers())); 5863 } 5864 5865 // Apply type generalization to a FunctionType's return and argument types 5866 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5867 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5868 SmallVector<QualType, 8> GeneralizedParams; 5869 for (auto &Param : FnType->param_types()) 5870 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5871 5872 return Ctx.getFunctionType( 5873 GeneralizeType(Ctx, FnType->getReturnType()), 5874 GeneralizedParams, FnType->getExtProtoInfo()); 5875 } 5876 5877 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5878 return Ctx.getFunctionNoProtoType( 5879 GeneralizeType(Ctx, FnType->getReturnType())); 5880 5881 llvm_unreachable("Encountered unknown FunctionType"); 5882 } 5883 5884 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5885 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5886 GeneralizedMetadataIdMap, ".generalized"); 5887 } 5888 5889 /// Returns whether this module needs the "all-vtables" type identifier. 5890 bool CodeGenModule::NeedAllVtablesTypeId() const { 5891 // Returns true if at least one of vtable-based CFI checkers is enabled and 5892 // is not in the trapping mode. 5893 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5894 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5895 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5896 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5897 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5898 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5899 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5900 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5901 } 5902 5903 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5904 CharUnits Offset, 5905 const CXXRecordDecl *RD) { 5906 llvm::Metadata *MD = 5907 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5908 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5909 5910 if (CodeGenOpts.SanitizeCfiCrossDso) 5911 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5912 VTable->addTypeMetadata(Offset.getQuantity(), 5913 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5914 5915 if (NeedAllVtablesTypeId()) { 5916 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5917 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5918 } 5919 } 5920 5921 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5922 if (!SanStats) 5923 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5924 5925 return *SanStats; 5926 } 5927 llvm::Value * 5928 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5929 CodeGenFunction &CGF) { 5930 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5931 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5932 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5933 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5934 "__translate_sampler_initializer"), 5935 {C}); 5936 } 5937