xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision fc018ebb608ee0c1239b405460e49f1835ab6175)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
213 CodeGenModule::~CodeGenModule() {}
214 
215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   CodeGenPGO(*this).setValueProfilingFlag(getModule());
515   if (CoverageMapping)
516     CoverageMapping->emit();
517   if (CodeGenOpts.SanitizeCfiCrossDso) {
518     CodeGenFunction(*this).EmitCfiCheckFail();
519     CodeGenFunction(*this).EmitCfiCheckStub();
520   }
521   emitAtAvailableLinkGuard();
522   if (Context.getTargetInfo().getTriple().isWasm() &&
523       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
524     EmitMainVoidAlias();
525   }
526   emitLLVMUsed();
527   if (SanStats)
528     SanStats->finish();
529 
530   if (CodeGenOpts.Autolink &&
531       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
532     EmitModuleLinkOptions();
533   }
534 
535   // On ELF we pass the dependent library specifiers directly to the linker
536   // without manipulating them. This is in contrast to other platforms where
537   // they are mapped to a specific linker option by the compiler. This
538   // difference is a result of the greater variety of ELF linkers and the fact
539   // that ELF linkers tend to handle libraries in a more complicated fashion
540   // than on other platforms. This forces us to defer handling the dependent
541   // libs to the linker.
542   //
543   // CUDA/HIP device and host libraries are different. Currently there is no
544   // way to differentiate dependent libraries for host or device. Existing
545   // usage of #pragma comment(lib, *) is intended for host libraries on
546   // Windows. Therefore emit llvm.dependent-libraries only for host.
547   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
548     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
549     for (auto *MD : ELFDependentLibraries)
550       NMD->addOperand(MD);
551   }
552 
553   // Record mregparm value now so it is visible through rest of codegen.
554   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
555     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
556                               CodeGenOpts.NumRegisterParameters);
557 
558   if (CodeGenOpts.DwarfVersion) {
559     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
560                               CodeGenOpts.DwarfVersion);
561   }
562 
563   if (CodeGenOpts.Dwarf64)
564     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
565 
566   if (Context.getLangOpts().SemanticInterposition)
567     // Require various optimization to respect semantic interposition.
568     getModule().setSemanticInterposition(1);
569 
570   if (CodeGenOpts.EmitCodeView) {
571     // Indicate that we want CodeView in the metadata.
572     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
573   }
574   if (CodeGenOpts.CodeViewGHash) {
575     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
576   }
577   if (CodeGenOpts.ControlFlowGuard) {
578     // Function ID tables and checks for Control Flow Guard (cfguard=2).
579     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
580   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
581     // Function ID tables for Control Flow Guard (cfguard=1).
582     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
583   }
584   if (CodeGenOpts.EHContGuard) {
585     // Function ID tables for EH Continuation Guard.
586     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
587   }
588   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
589     // We don't support LTO with 2 with different StrictVTablePointers
590     // FIXME: we could support it by stripping all the information introduced
591     // by StrictVTablePointers.
592 
593     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
594 
595     llvm::Metadata *Ops[2] = {
596               llvm::MDString::get(VMContext, "StrictVTablePointers"),
597               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598                   llvm::Type::getInt32Ty(VMContext), 1))};
599 
600     getModule().addModuleFlag(llvm::Module::Require,
601                               "StrictVTablePointersRequirement",
602                               llvm::MDNode::get(VMContext, Ops));
603   }
604   if (getModuleDebugInfo())
605     // We support a single version in the linked module. The LLVM
606     // parser will drop debug info with a different version number
607     // (and warn about it, too).
608     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
609                               llvm::DEBUG_METADATA_VERSION);
610 
611   // We need to record the widths of enums and wchar_t, so that we can generate
612   // the correct build attributes in the ARM backend. wchar_size is also used by
613   // TargetLibraryInfo.
614   uint64_t WCharWidth =
615       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
616   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
617 
618   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
619   if (   Arch == llvm::Triple::arm
620       || Arch == llvm::Triple::armeb
621       || Arch == llvm::Triple::thumb
622       || Arch == llvm::Triple::thumbeb) {
623     // The minimum width of an enum in bytes
624     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
625     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
626   }
627 
628   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
629     StringRef ABIStr = Target.getABI();
630     llvm::LLVMContext &Ctx = TheModule.getContext();
631     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
632                               llvm::MDString::get(Ctx, ABIStr));
633   }
634 
635   if (CodeGenOpts.SanitizeCfiCrossDso) {
636     // Indicate that we want cross-DSO control flow integrity checks.
637     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
638   }
639 
640   if (CodeGenOpts.WholeProgramVTables) {
641     // Indicate whether VFE was enabled for this module, so that the
642     // vcall_visibility metadata added under whole program vtables is handled
643     // appropriately in the optimizer.
644     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
645                               CodeGenOpts.VirtualFunctionElimination);
646   }
647 
648   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
649     getModule().addModuleFlag(llvm::Module::Override,
650                               "CFI Canonical Jump Tables",
651                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
652   }
653 
654   if (CodeGenOpts.CFProtectionReturn &&
655       Target.checkCFProtectionReturnSupported(getDiags())) {
656     // Indicate that we want to instrument return control flow protection.
657     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
658                               1);
659   }
660 
661   if (CodeGenOpts.CFProtectionBranch &&
662       Target.checkCFProtectionBranchSupported(getDiags())) {
663     // Indicate that we want to instrument branch control flow protection.
664     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
665                               1);
666   }
667 
668   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
669       Arch == llvm::Triple::aarch64_be) {
670     getModule().addModuleFlag(llvm::Module::Error,
671                               "branch-target-enforcement",
672                               LangOpts.BranchTargetEnforcement);
673 
674     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
675                               LangOpts.hasSignReturnAddress());
676 
677     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
678                               LangOpts.isSignReturnAddressScopeAll());
679 
680     getModule().addModuleFlag(llvm::Module::Error,
681                               "sign-return-address-with-bkey",
682                               !LangOpts.isSignReturnAddressWithAKey());
683   }
684 
685   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
686     llvm::LLVMContext &Ctx = TheModule.getContext();
687     getModule().addModuleFlag(
688         llvm::Module::Error, "MemProfProfileFilename",
689         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
690   }
691 
692   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
693     // Indicate whether __nvvm_reflect should be configured to flush denormal
694     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
695     // property.)
696     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
697                               CodeGenOpts.FP32DenormalMode.Output !=
698                                   llvm::DenormalMode::IEEE);
699   }
700 
701   if (LangOpts.EHAsynch)
702     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
703 
704   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
705   if (LangOpts.OpenCL) {
706     EmitOpenCLMetadata();
707     // Emit SPIR version.
708     if (getTriple().isSPIR()) {
709       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
710       // opencl.spir.version named metadata.
711       // C++ is backwards compatible with OpenCL v2.0.
712       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
713       llvm::Metadata *SPIRVerElts[] = {
714           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
715               Int32Ty, Version / 100)),
716           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
717               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
718       llvm::NamedMDNode *SPIRVerMD =
719           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
720       llvm::LLVMContext &Ctx = TheModule.getContext();
721       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
722     }
723   }
724 
725   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
726     assert(PLevel < 3 && "Invalid PIC Level");
727     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
728     if (Context.getLangOpts().PIE)
729       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
730   }
731 
732   if (getCodeGenOpts().CodeModel.size() > 0) {
733     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
734                   .Case("tiny", llvm::CodeModel::Tiny)
735                   .Case("small", llvm::CodeModel::Small)
736                   .Case("kernel", llvm::CodeModel::Kernel)
737                   .Case("medium", llvm::CodeModel::Medium)
738                   .Case("large", llvm::CodeModel::Large)
739                   .Default(~0u);
740     if (CM != ~0u) {
741       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
742       getModule().setCodeModel(codeModel);
743     }
744   }
745 
746   if (CodeGenOpts.NoPLT)
747     getModule().setRtLibUseGOT();
748   if (CodeGenOpts.UnwindTables)
749     getModule().setUwtable();
750 
751   switch (CodeGenOpts.getFramePointer()) {
752   case CodeGenOptions::FramePointerKind::None:
753     // 0 ("none") is the default.
754     break;
755   case CodeGenOptions::FramePointerKind::NonLeaf:
756     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
757     break;
758   case CodeGenOptions::FramePointerKind::All:
759     getModule().setFramePointer(llvm::FramePointerKind::All);
760     break;
761   }
762 
763   SimplifyPersonality();
764 
765   if (getCodeGenOpts().EmitDeclMetadata)
766     EmitDeclMetadata();
767 
768   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
769     EmitCoverageFile();
770 
771   if (CGDebugInfo *DI = getModuleDebugInfo())
772     DI->finalize();
773 
774   if (getCodeGenOpts().EmitVersionIdentMetadata)
775     EmitVersionIdentMetadata();
776 
777   if (!getCodeGenOpts().RecordCommandLine.empty())
778     EmitCommandLineMetadata();
779 
780   if (!getCodeGenOpts().StackProtectorGuard.empty())
781     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
782   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
783     getModule().setStackProtectorGuardReg(
784         getCodeGenOpts().StackProtectorGuardReg);
785   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
786     getModule().setStackProtectorGuardOffset(
787         getCodeGenOpts().StackProtectorGuardOffset);
788   if (getCodeGenOpts().StackAlignment)
789     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
790   if (getCodeGenOpts().WarnStackSize != UINT_MAX)
791     getModule().setWarnStackSize(getCodeGenOpts().WarnStackSize);
792 
793   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
794 
795   EmitBackendOptionsMetadata(getCodeGenOpts());
796 
797   // Set visibility from DLL storage class
798   // We do this at the end of LLVM IR generation; after any operation
799   // that might affect the DLL storage class or the visibility, and
800   // before anything that might act on these.
801   setVisibilityFromDLLStorageClass(LangOpts, getModule());
802 }
803 
804 void CodeGenModule::EmitOpenCLMetadata() {
805   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
806   // opencl.ocl.version named metadata node.
807   // C++ is backwards compatible with OpenCL v2.0.
808   // FIXME: We might need to add CXX version at some point too?
809   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
810   llvm::Metadata *OCLVerElts[] = {
811       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
812           Int32Ty, Version / 100)),
813       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
814           Int32Ty, (Version % 100) / 10))};
815   llvm::NamedMDNode *OCLVerMD =
816       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
817   llvm::LLVMContext &Ctx = TheModule.getContext();
818   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
819 }
820 
821 void CodeGenModule::EmitBackendOptionsMetadata(
822     const CodeGenOptions CodeGenOpts) {
823   switch (getTriple().getArch()) {
824   default:
825     break;
826   case llvm::Triple::riscv32:
827   case llvm::Triple::riscv64:
828     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
829                               CodeGenOpts.SmallDataLimit);
830     break;
831   }
832 }
833 
834 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
835   // Make sure that this type is translated.
836   Types.UpdateCompletedType(TD);
837 }
838 
839 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
840   // Make sure that this type is translated.
841   Types.RefreshTypeCacheForClass(RD);
842 }
843 
844 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
845   if (!TBAA)
846     return nullptr;
847   return TBAA->getTypeInfo(QTy);
848 }
849 
850 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
851   if (!TBAA)
852     return TBAAAccessInfo();
853   if (getLangOpts().CUDAIsDevice) {
854     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
855     // access info.
856     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
857       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
858           nullptr)
859         return TBAAAccessInfo();
860     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
861       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
862           nullptr)
863         return TBAAAccessInfo();
864     }
865   }
866   return TBAA->getAccessInfo(AccessType);
867 }
868 
869 TBAAAccessInfo
870 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
871   if (!TBAA)
872     return TBAAAccessInfo();
873   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
874 }
875 
876 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
877   if (!TBAA)
878     return nullptr;
879   return TBAA->getTBAAStructInfo(QTy);
880 }
881 
882 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
883   if (!TBAA)
884     return nullptr;
885   return TBAA->getBaseTypeInfo(QTy);
886 }
887 
888 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
889   if (!TBAA)
890     return nullptr;
891   return TBAA->getAccessTagInfo(Info);
892 }
893 
894 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
895                                                    TBAAAccessInfo TargetInfo) {
896   if (!TBAA)
897     return TBAAAccessInfo();
898   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
899 }
900 
901 TBAAAccessInfo
902 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
903                                                    TBAAAccessInfo InfoB) {
904   if (!TBAA)
905     return TBAAAccessInfo();
906   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
907 }
908 
909 TBAAAccessInfo
910 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
911                                               TBAAAccessInfo SrcInfo) {
912   if (!TBAA)
913     return TBAAAccessInfo();
914   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
915 }
916 
917 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
918                                                 TBAAAccessInfo TBAAInfo) {
919   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
920     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
921 }
922 
923 void CodeGenModule::DecorateInstructionWithInvariantGroup(
924     llvm::Instruction *I, const CXXRecordDecl *RD) {
925   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
926                  llvm::MDNode::get(getLLVMContext(), {}));
927 }
928 
929 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
930   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
931   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
932 }
933 
934 /// ErrorUnsupported - Print out an error that codegen doesn't support the
935 /// specified stmt yet.
936 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
937   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
938                                                "cannot compile this %0 yet");
939   std::string Msg = Type;
940   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
941       << Msg << S->getSourceRange();
942 }
943 
944 /// ErrorUnsupported - Print out an error that codegen doesn't support the
945 /// specified decl yet.
946 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
947   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
948                                                "cannot compile this %0 yet");
949   std::string Msg = Type;
950   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
951 }
952 
953 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
954   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
955 }
956 
957 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
958                                         const NamedDecl *D) const {
959   if (GV->hasDLLImportStorageClass())
960     return;
961   // Internal definitions always have default visibility.
962   if (GV->hasLocalLinkage()) {
963     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
964     return;
965   }
966   if (!D)
967     return;
968   // Set visibility for definitions, and for declarations if requested globally
969   // or set explicitly.
970   LinkageInfo LV = D->getLinkageAndVisibility();
971   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
972       !GV->isDeclarationForLinker())
973     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
974 }
975 
976 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
977                                  llvm::GlobalValue *GV) {
978   if (GV->hasLocalLinkage())
979     return true;
980 
981   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
982     return true;
983 
984   // DLLImport explicitly marks the GV as external.
985   if (GV->hasDLLImportStorageClass())
986     return false;
987 
988   const llvm::Triple &TT = CGM.getTriple();
989   if (TT.isWindowsGNUEnvironment()) {
990     // In MinGW, variables without DLLImport can still be automatically
991     // imported from a DLL by the linker; don't mark variables that
992     // potentially could come from another DLL as DSO local.
993 
994     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
995     // (and this actually happens in the public interface of libstdc++), so
996     // such variables can't be marked as DSO local. (Native TLS variables
997     // can't be dllimported at all, though.)
998     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
999         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1000       return false;
1001   }
1002 
1003   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1004   // remain unresolved in the link, they can be resolved to zero, which is
1005   // outside the current DSO.
1006   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1007     return false;
1008 
1009   // Every other GV is local on COFF.
1010   // Make an exception for windows OS in the triple: Some firmware builds use
1011   // *-win32-macho triples. This (accidentally?) produced windows relocations
1012   // without GOT tables in older clang versions; Keep this behaviour.
1013   // FIXME: even thread local variables?
1014   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1015     return true;
1016 
1017   // Only handle COFF and ELF for now.
1018   if (!TT.isOSBinFormatELF())
1019     return false;
1020 
1021   // If this is not an executable, don't assume anything is local.
1022   const auto &CGOpts = CGM.getCodeGenOpts();
1023   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1024   const auto &LOpts = CGM.getLangOpts();
1025   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1026     // On ELF, if -fno-semantic-interposition is specified and the target
1027     // supports local aliases, there will be neither CC1
1028     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1029     // dso_local on the function if using a local alias is preferable (can avoid
1030     // PLT indirection).
1031     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1032       return false;
1033     return !(CGM.getLangOpts().SemanticInterposition ||
1034              CGM.getLangOpts().HalfNoSemanticInterposition);
1035   }
1036 
1037   // A definition cannot be preempted from an executable.
1038   if (!GV->isDeclarationForLinker())
1039     return true;
1040 
1041   // Most PIC code sequences that assume that a symbol is local cannot produce a
1042   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1043   // depended, it seems worth it to handle it here.
1044   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1045     return false;
1046 
1047   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1048   if (TT.isPPC64())
1049     return false;
1050 
1051   if (CGOpts.DirectAccessExternalData) {
1052     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1053     // for non-thread-local variables. If the symbol is not defined in the
1054     // executable, a copy relocation will be needed at link time. dso_local is
1055     // excluded for thread-local variables because they generally don't support
1056     // copy relocations.
1057     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1058       if (!Var->isThreadLocal())
1059         return true;
1060 
1061     // -fno-pic sets dso_local on a function declaration to allow direct
1062     // accesses when taking its address (similar to a data symbol). If the
1063     // function is not defined in the executable, a canonical PLT entry will be
1064     // needed at link time. -fno-direct-access-external-data can avoid the
1065     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1066     // it could just cause trouble without providing perceptible benefits.
1067     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1068       return true;
1069   }
1070 
1071   // If we can use copy relocations we can assume it is local.
1072 
1073   // Otherwise don't assume it is local.
1074   return false;
1075 }
1076 
1077 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1078   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1079 }
1080 
1081 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1082                                           GlobalDecl GD) const {
1083   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1084   // C++ destructors have a few C++ ABI specific special cases.
1085   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1086     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1087     return;
1088   }
1089   setDLLImportDLLExport(GV, D);
1090 }
1091 
1092 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1093                                           const NamedDecl *D) const {
1094   if (D && D->isExternallyVisible()) {
1095     if (D->hasAttr<DLLImportAttr>())
1096       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1097     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1098       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1099   }
1100 }
1101 
1102 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1103                                     GlobalDecl GD) const {
1104   setDLLImportDLLExport(GV, GD);
1105   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1106 }
1107 
1108 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1109                                     const NamedDecl *D) const {
1110   setDLLImportDLLExport(GV, D);
1111   setGVPropertiesAux(GV, D);
1112 }
1113 
1114 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1115                                        const NamedDecl *D) const {
1116   setGlobalVisibility(GV, D);
1117   setDSOLocal(GV);
1118   GV->setPartition(CodeGenOpts.SymbolPartition);
1119 }
1120 
1121 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1122   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1123       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1124       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1125       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1126       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1127 }
1128 
1129 llvm::GlobalVariable::ThreadLocalMode
1130 CodeGenModule::GetDefaultLLVMTLSModel() const {
1131   switch (CodeGenOpts.getDefaultTLSModel()) {
1132   case CodeGenOptions::GeneralDynamicTLSModel:
1133     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1134   case CodeGenOptions::LocalDynamicTLSModel:
1135     return llvm::GlobalVariable::LocalDynamicTLSModel;
1136   case CodeGenOptions::InitialExecTLSModel:
1137     return llvm::GlobalVariable::InitialExecTLSModel;
1138   case CodeGenOptions::LocalExecTLSModel:
1139     return llvm::GlobalVariable::LocalExecTLSModel;
1140   }
1141   llvm_unreachable("Invalid TLS model!");
1142 }
1143 
1144 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1145   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1146 
1147   llvm::GlobalValue::ThreadLocalMode TLM;
1148   TLM = GetDefaultLLVMTLSModel();
1149 
1150   // Override the TLS model if it is explicitly specified.
1151   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1152     TLM = GetLLVMTLSModel(Attr->getModel());
1153   }
1154 
1155   GV->setThreadLocalMode(TLM);
1156 }
1157 
1158 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1159                                           StringRef Name) {
1160   const TargetInfo &Target = CGM.getTarget();
1161   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1162 }
1163 
1164 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1165                                                  const CPUSpecificAttr *Attr,
1166                                                  unsigned CPUIndex,
1167                                                  raw_ostream &Out) {
1168   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1169   // supported.
1170   if (Attr)
1171     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1172   else if (CGM.getTarget().supportsIFunc())
1173     Out << ".resolver";
1174 }
1175 
1176 static void AppendTargetMangling(const CodeGenModule &CGM,
1177                                  const TargetAttr *Attr, raw_ostream &Out) {
1178   if (Attr->isDefaultVersion())
1179     return;
1180 
1181   Out << '.';
1182   const TargetInfo &Target = CGM.getTarget();
1183   ParsedTargetAttr Info =
1184       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1185         // Multiversioning doesn't allow "no-${feature}", so we can
1186         // only have "+" prefixes here.
1187         assert(LHS.startswith("+") && RHS.startswith("+") &&
1188                "Features should always have a prefix.");
1189         return Target.multiVersionSortPriority(LHS.substr(1)) >
1190                Target.multiVersionSortPriority(RHS.substr(1));
1191       });
1192 
1193   bool IsFirst = true;
1194 
1195   if (!Info.Architecture.empty()) {
1196     IsFirst = false;
1197     Out << "arch_" << Info.Architecture;
1198   }
1199 
1200   for (StringRef Feat : Info.Features) {
1201     if (!IsFirst)
1202       Out << '_';
1203     IsFirst = false;
1204     Out << Feat.substr(1);
1205   }
1206 }
1207 
1208 // Returns true if GD is a function decl with internal linkage and
1209 // needs a unique suffix after the mangled name.
1210 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1211                                         CodeGenModule &CGM) {
1212   const Decl *D = GD.getDecl();
1213   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1214          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1215 }
1216 
1217 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1218                                       const NamedDecl *ND,
1219                                       bool OmitMultiVersionMangling = false) {
1220   SmallString<256> Buffer;
1221   llvm::raw_svector_ostream Out(Buffer);
1222   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1223   if (!CGM.getModuleNameHash().empty())
1224     MC.needsUniqueInternalLinkageNames();
1225   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1226   if (ShouldMangle)
1227     MC.mangleName(GD.getWithDecl(ND), Out);
1228   else {
1229     IdentifierInfo *II = ND->getIdentifier();
1230     assert(II && "Attempt to mangle unnamed decl.");
1231     const auto *FD = dyn_cast<FunctionDecl>(ND);
1232 
1233     if (FD &&
1234         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1235       Out << "__regcall3__" << II->getName();
1236     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1237                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1238       Out << "__device_stub__" << II->getName();
1239     } else {
1240       Out << II->getName();
1241     }
1242   }
1243 
1244   // Check if the module name hash should be appended for internal linkage
1245   // symbols.   This should come before multi-version target suffixes are
1246   // appended. This is to keep the name and module hash suffix of the
1247   // internal linkage function together.  The unique suffix should only be
1248   // added when name mangling is done to make sure that the final name can
1249   // be properly demangled.  For example, for C functions without prototypes,
1250   // name mangling is not done and the unique suffix should not be appeneded
1251   // then.
1252   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1253     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1254            "Hash computed when not explicitly requested");
1255     Out << CGM.getModuleNameHash();
1256   }
1257 
1258   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1259     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1260       switch (FD->getMultiVersionKind()) {
1261       case MultiVersionKind::CPUDispatch:
1262       case MultiVersionKind::CPUSpecific:
1263         AppendCPUSpecificCPUDispatchMangling(CGM,
1264                                              FD->getAttr<CPUSpecificAttr>(),
1265                                              GD.getMultiVersionIndex(), Out);
1266         break;
1267       case MultiVersionKind::Target:
1268         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1269         break;
1270       case MultiVersionKind::None:
1271         llvm_unreachable("None multiversion type isn't valid here");
1272       }
1273     }
1274 
1275   // Make unique name for device side static file-scope variable for HIP.
1276   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1277       CGM.getLangOpts().GPURelocatableDeviceCode &&
1278       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1279     CGM.printPostfixForExternalizedStaticVar(Out);
1280   return std::string(Out.str());
1281 }
1282 
1283 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1284                                             const FunctionDecl *FD) {
1285   if (!FD->isMultiVersion())
1286     return;
1287 
1288   // Get the name of what this would be without the 'target' attribute.  This
1289   // allows us to lookup the version that was emitted when this wasn't a
1290   // multiversion function.
1291   std::string NonTargetName =
1292       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1293   GlobalDecl OtherGD;
1294   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1295     assert(OtherGD.getCanonicalDecl()
1296                .getDecl()
1297                ->getAsFunction()
1298                ->isMultiVersion() &&
1299            "Other GD should now be a multiversioned function");
1300     // OtherFD is the version of this function that was mangled BEFORE
1301     // becoming a MultiVersion function.  It potentially needs to be updated.
1302     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1303                                       .getDecl()
1304                                       ->getAsFunction()
1305                                       ->getMostRecentDecl();
1306     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1307     // This is so that if the initial version was already the 'default'
1308     // version, we don't try to update it.
1309     if (OtherName != NonTargetName) {
1310       // Remove instead of erase, since others may have stored the StringRef
1311       // to this.
1312       const auto ExistingRecord = Manglings.find(NonTargetName);
1313       if (ExistingRecord != std::end(Manglings))
1314         Manglings.remove(&(*ExistingRecord));
1315       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1316       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1317       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1318         Entry->setName(OtherName);
1319     }
1320   }
1321 }
1322 
1323 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1324   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1325 
1326   // Some ABIs don't have constructor variants.  Make sure that base and
1327   // complete constructors get mangled the same.
1328   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1329     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1330       CXXCtorType OrigCtorType = GD.getCtorType();
1331       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1332       if (OrigCtorType == Ctor_Base)
1333         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1334     }
1335   }
1336 
1337   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1338   // static device variable depends on whether the variable is referenced by
1339   // a host or device host function. Therefore the mangled name cannot be
1340   // cached.
1341   if (!LangOpts.CUDAIsDevice ||
1342       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1343     auto FoundName = MangledDeclNames.find(CanonicalGD);
1344     if (FoundName != MangledDeclNames.end())
1345       return FoundName->second;
1346   }
1347 
1348   // Keep the first result in the case of a mangling collision.
1349   const auto *ND = cast<NamedDecl>(GD.getDecl());
1350   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1351 
1352   // Ensure either we have different ABIs between host and device compilations,
1353   // says host compilation following MSVC ABI but device compilation follows
1354   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1355   // mangling should be the same after name stubbing. The later checking is
1356   // very important as the device kernel name being mangled in host-compilation
1357   // is used to resolve the device binaries to be executed. Inconsistent naming
1358   // result in undefined behavior. Even though we cannot check that naming
1359   // directly between host- and device-compilations, the host- and
1360   // device-mangling in host compilation could help catching certain ones.
1361   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1362          getLangOpts().CUDAIsDevice ||
1363          (getContext().getAuxTargetInfo() &&
1364           (getContext().getAuxTargetInfo()->getCXXABI() !=
1365            getContext().getTargetInfo().getCXXABI())) ||
1366          getCUDARuntime().getDeviceSideName(ND) ==
1367              getMangledNameImpl(
1368                  *this,
1369                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1370                  ND));
1371 
1372   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1373   return MangledDeclNames[CanonicalGD] = Result.first->first();
1374 }
1375 
1376 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1377                                              const BlockDecl *BD) {
1378   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1379   const Decl *D = GD.getDecl();
1380 
1381   SmallString<256> Buffer;
1382   llvm::raw_svector_ostream Out(Buffer);
1383   if (!D)
1384     MangleCtx.mangleGlobalBlock(BD,
1385       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1386   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1387     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1388   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1389     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1390   else
1391     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1392 
1393   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1394   return Result.first->first();
1395 }
1396 
1397 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1398   return getModule().getNamedValue(Name);
1399 }
1400 
1401 /// AddGlobalCtor - Add a function to the list that will be called before
1402 /// main() runs.
1403 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1404                                   llvm::Constant *AssociatedData) {
1405   // FIXME: Type coercion of void()* types.
1406   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1407 }
1408 
1409 /// AddGlobalDtor - Add a function to the list that will be called
1410 /// when the module is unloaded.
1411 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1412                                   bool IsDtorAttrFunc) {
1413   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1414       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1415     DtorsUsingAtExit[Priority].push_back(Dtor);
1416     return;
1417   }
1418 
1419   // FIXME: Type coercion of void()* types.
1420   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1421 }
1422 
1423 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1424   if (Fns.empty()) return;
1425 
1426   // Ctor function type is void()*.
1427   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1428   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1429       TheModule.getDataLayout().getProgramAddressSpace());
1430 
1431   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1432   llvm::StructType *CtorStructTy = llvm::StructType::get(
1433       Int32Ty, CtorPFTy, VoidPtrTy);
1434 
1435   // Construct the constructor and destructor arrays.
1436   ConstantInitBuilder builder(*this);
1437   auto ctors = builder.beginArray(CtorStructTy);
1438   for (const auto &I : Fns) {
1439     auto ctor = ctors.beginStruct(CtorStructTy);
1440     ctor.addInt(Int32Ty, I.Priority);
1441     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1442     if (I.AssociatedData)
1443       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1444     else
1445       ctor.addNullPointer(VoidPtrTy);
1446     ctor.finishAndAddTo(ctors);
1447   }
1448 
1449   auto list =
1450     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1451                                 /*constant*/ false,
1452                                 llvm::GlobalValue::AppendingLinkage);
1453 
1454   // The LTO linker doesn't seem to like it when we set an alignment
1455   // on appending variables.  Take it off as a workaround.
1456   list->setAlignment(llvm::None);
1457 
1458   Fns.clear();
1459 }
1460 
1461 llvm::GlobalValue::LinkageTypes
1462 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1463   const auto *D = cast<FunctionDecl>(GD.getDecl());
1464 
1465   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1466 
1467   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1468     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1469 
1470   if (isa<CXXConstructorDecl>(D) &&
1471       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1472       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1473     // Our approach to inheriting constructors is fundamentally different from
1474     // that used by the MS ABI, so keep our inheriting constructor thunks
1475     // internal rather than trying to pick an unambiguous mangling for them.
1476     return llvm::GlobalValue::InternalLinkage;
1477   }
1478 
1479   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1480 }
1481 
1482 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1483   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1484   if (!MDS) return nullptr;
1485 
1486   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1487 }
1488 
1489 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1490                                               const CGFunctionInfo &Info,
1491                                               llvm::Function *F, bool IsThunk) {
1492   unsigned CallingConv;
1493   llvm::AttributeList PAL;
1494   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1495                          /*AttrOnCallSite=*/false, IsThunk);
1496   F->setAttributes(PAL);
1497   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1498 }
1499 
1500 static void removeImageAccessQualifier(std::string& TyName) {
1501   std::string ReadOnlyQual("__read_only");
1502   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1503   if (ReadOnlyPos != std::string::npos)
1504     // "+ 1" for the space after access qualifier.
1505     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1506   else {
1507     std::string WriteOnlyQual("__write_only");
1508     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1509     if (WriteOnlyPos != std::string::npos)
1510       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1511     else {
1512       std::string ReadWriteQual("__read_write");
1513       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1514       if (ReadWritePos != std::string::npos)
1515         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1516     }
1517   }
1518 }
1519 
1520 // Returns the address space id that should be produced to the
1521 // kernel_arg_addr_space metadata. This is always fixed to the ids
1522 // as specified in the SPIR 2.0 specification in order to differentiate
1523 // for example in clGetKernelArgInfo() implementation between the address
1524 // spaces with targets without unique mapping to the OpenCL address spaces
1525 // (basically all single AS CPUs).
1526 static unsigned ArgInfoAddressSpace(LangAS AS) {
1527   switch (AS) {
1528   case LangAS::opencl_global:
1529     return 1;
1530   case LangAS::opencl_constant:
1531     return 2;
1532   case LangAS::opencl_local:
1533     return 3;
1534   case LangAS::opencl_generic:
1535     return 4; // Not in SPIR 2.0 specs.
1536   case LangAS::opencl_global_device:
1537     return 5;
1538   case LangAS::opencl_global_host:
1539     return 6;
1540   default:
1541     return 0; // Assume private.
1542   }
1543 }
1544 
1545 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1546                                          const FunctionDecl *FD,
1547                                          CodeGenFunction *CGF) {
1548   assert(((FD && CGF) || (!FD && !CGF)) &&
1549          "Incorrect use - FD and CGF should either be both null or not!");
1550   // Create MDNodes that represent the kernel arg metadata.
1551   // Each MDNode is a list in the form of "key", N number of values which is
1552   // the same number of values as their are kernel arguments.
1553 
1554   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1555 
1556   // MDNode for the kernel argument address space qualifiers.
1557   SmallVector<llvm::Metadata *, 8> addressQuals;
1558 
1559   // MDNode for the kernel argument access qualifiers (images only).
1560   SmallVector<llvm::Metadata *, 8> accessQuals;
1561 
1562   // MDNode for the kernel argument type names.
1563   SmallVector<llvm::Metadata *, 8> argTypeNames;
1564 
1565   // MDNode for the kernel argument base type names.
1566   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1567 
1568   // MDNode for the kernel argument type qualifiers.
1569   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1570 
1571   // MDNode for the kernel argument names.
1572   SmallVector<llvm::Metadata *, 8> argNames;
1573 
1574   if (FD && CGF)
1575     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1576       const ParmVarDecl *parm = FD->getParamDecl(i);
1577       QualType ty = parm->getType();
1578       std::string typeQuals;
1579 
1580       // Get image and pipe access qualifier:
1581       if (ty->isImageType() || ty->isPipeType()) {
1582         const Decl *PDecl = parm;
1583         if (auto *TD = dyn_cast<TypedefType>(ty))
1584           PDecl = TD->getDecl();
1585         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1586         if (A && A->isWriteOnly())
1587           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1588         else if (A && A->isReadWrite())
1589           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1590         else
1591           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1592       } else
1593         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1594 
1595       // Get argument name.
1596       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1597 
1598       auto getTypeSpelling = [&](QualType Ty) {
1599         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1600 
1601         if (Ty.isCanonical()) {
1602           StringRef typeNameRef = typeName;
1603           // Turn "unsigned type" to "utype"
1604           if (typeNameRef.consume_front("unsigned "))
1605             return std::string("u") + typeNameRef.str();
1606           if (typeNameRef.consume_front("signed "))
1607             return typeNameRef.str();
1608         }
1609 
1610         return typeName;
1611       };
1612 
1613       if (ty->isPointerType()) {
1614         QualType pointeeTy = ty->getPointeeType();
1615 
1616         // Get address qualifier.
1617         addressQuals.push_back(
1618             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1619                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1620 
1621         // Get argument type name.
1622         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1623         std::string baseTypeName =
1624             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1625         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1626         argBaseTypeNames.push_back(
1627             llvm::MDString::get(VMContext, baseTypeName));
1628 
1629         // Get argument type qualifiers:
1630         if (ty.isRestrictQualified())
1631           typeQuals = "restrict";
1632         if (pointeeTy.isConstQualified() ||
1633             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1634           typeQuals += typeQuals.empty() ? "const" : " const";
1635         if (pointeeTy.isVolatileQualified())
1636           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1637       } else {
1638         uint32_t AddrSpc = 0;
1639         bool isPipe = ty->isPipeType();
1640         if (ty->isImageType() || isPipe)
1641           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1642 
1643         addressQuals.push_back(
1644             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1645 
1646         // Get argument type name.
1647         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1648         std::string typeName = getTypeSpelling(ty);
1649         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1650 
1651         // Remove access qualifiers on images
1652         // (as they are inseparable from type in clang implementation,
1653         // but OpenCL spec provides a special query to get access qualifier
1654         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1655         if (ty->isImageType()) {
1656           removeImageAccessQualifier(typeName);
1657           removeImageAccessQualifier(baseTypeName);
1658         }
1659 
1660         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1661         argBaseTypeNames.push_back(
1662             llvm::MDString::get(VMContext, baseTypeName));
1663 
1664         if (isPipe)
1665           typeQuals = "pipe";
1666       }
1667       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1668     }
1669 
1670   Fn->setMetadata("kernel_arg_addr_space",
1671                   llvm::MDNode::get(VMContext, addressQuals));
1672   Fn->setMetadata("kernel_arg_access_qual",
1673                   llvm::MDNode::get(VMContext, accessQuals));
1674   Fn->setMetadata("kernel_arg_type",
1675                   llvm::MDNode::get(VMContext, argTypeNames));
1676   Fn->setMetadata("kernel_arg_base_type",
1677                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1678   Fn->setMetadata("kernel_arg_type_qual",
1679                   llvm::MDNode::get(VMContext, argTypeQuals));
1680   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1681     Fn->setMetadata("kernel_arg_name",
1682                     llvm::MDNode::get(VMContext, argNames));
1683 }
1684 
1685 /// Determines whether the language options require us to model
1686 /// unwind exceptions.  We treat -fexceptions as mandating this
1687 /// except under the fragile ObjC ABI with only ObjC exceptions
1688 /// enabled.  This means, for example, that C with -fexceptions
1689 /// enables this.
1690 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1691   // If exceptions are completely disabled, obviously this is false.
1692   if (!LangOpts.Exceptions) return false;
1693 
1694   // If C++ exceptions are enabled, this is true.
1695   if (LangOpts.CXXExceptions) return true;
1696 
1697   // If ObjC exceptions are enabled, this depends on the ABI.
1698   if (LangOpts.ObjCExceptions) {
1699     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1700   }
1701 
1702   return true;
1703 }
1704 
1705 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1706                                                       const CXXMethodDecl *MD) {
1707   // Check that the type metadata can ever actually be used by a call.
1708   if (!CGM.getCodeGenOpts().LTOUnit ||
1709       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1710     return false;
1711 
1712   // Only functions whose address can be taken with a member function pointer
1713   // need this sort of type metadata.
1714   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1715          !isa<CXXDestructorDecl>(MD);
1716 }
1717 
1718 std::vector<const CXXRecordDecl *>
1719 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1720   llvm::SetVector<const CXXRecordDecl *> MostBases;
1721 
1722   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1723   CollectMostBases = [&](const CXXRecordDecl *RD) {
1724     if (RD->getNumBases() == 0)
1725       MostBases.insert(RD);
1726     for (const CXXBaseSpecifier &B : RD->bases())
1727       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1728   };
1729   CollectMostBases(RD);
1730   return MostBases.takeVector();
1731 }
1732 
1733 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1734                                                            llvm::Function *F) {
1735   llvm::AttrBuilder B;
1736 
1737   if (CodeGenOpts.UnwindTables)
1738     B.addAttribute(llvm::Attribute::UWTable);
1739 
1740   if (CodeGenOpts.StackClashProtector)
1741     B.addAttribute("probe-stack", "inline-asm");
1742 
1743   if (!hasUnwindExceptions(LangOpts))
1744     B.addAttribute(llvm::Attribute::NoUnwind);
1745 
1746   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1747     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1748       B.addAttribute(llvm::Attribute::StackProtect);
1749     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1750       B.addAttribute(llvm::Attribute::StackProtectStrong);
1751     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1752       B.addAttribute(llvm::Attribute::StackProtectReq);
1753   }
1754 
1755   if (!D) {
1756     // If we don't have a declaration to control inlining, the function isn't
1757     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1758     // disabled, mark the function as noinline.
1759     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1760         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1761       B.addAttribute(llvm::Attribute::NoInline);
1762 
1763     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1764     return;
1765   }
1766 
1767   // Track whether we need to add the optnone LLVM attribute,
1768   // starting with the default for this optimization level.
1769   bool ShouldAddOptNone =
1770       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1771   // We can't add optnone in the following cases, it won't pass the verifier.
1772   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1773   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1774 
1775   // Add optnone, but do so only if the function isn't always_inline.
1776   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1777       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1778     B.addAttribute(llvm::Attribute::OptimizeNone);
1779 
1780     // OptimizeNone implies noinline; we should not be inlining such functions.
1781     B.addAttribute(llvm::Attribute::NoInline);
1782 
1783     // We still need to handle naked functions even though optnone subsumes
1784     // much of their semantics.
1785     if (D->hasAttr<NakedAttr>())
1786       B.addAttribute(llvm::Attribute::Naked);
1787 
1788     // OptimizeNone wins over OptimizeForSize and MinSize.
1789     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1790     F->removeFnAttr(llvm::Attribute::MinSize);
1791   } else if (D->hasAttr<NakedAttr>()) {
1792     // Naked implies noinline: we should not be inlining such functions.
1793     B.addAttribute(llvm::Attribute::Naked);
1794     B.addAttribute(llvm::Attribute::NoInline);
1795   } else if (D->hasAttr<NoDuplicateAttr>()) {
1796     B.addAttribute(llvm::Attribute::NoDuplicate);
1797   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1798     // Add noinline if the function isn't always_inline.
1799     B.addAttribute(llvm::Attribute::NoInline);
1800   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1801              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1802     // (noinline wins over always_inline, and we can't specify both in IR)
1803     B.addAttribute(llvm::Attribute::AlwaysInline);
1804   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1805     // If we're not inlining, then force everything that isn't always_inline to
1806     // carry an explicit noinline attribute.
1807     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1808       B.addAttribute(llvm::Attribute::NoInline);
1809   } else {
1810     // Otherwise, propagate the inline hint attribute and potentially use its
1811     // absence to mark things as noinline.
1812     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1813       // Search function and template pattern redeclarations for inline.
1814       auto CheckForInline = [](const FunctionDecl *FD) {
1815         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1816           return Redecl->isInlineSpecified();
1817         };
1818         if (any_of(FD->redecls(), CheckRedeclForInline))
1819           return true;
1820         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1821         if (!Pattern)
1822           return false;
1823         return any_of(Pattern->redecls(), CheckRedeclForInline);
1824       };
1825       if (CheckForInline(FD)) {
1826         B.addAttribute(llvm::Attribute::InlineHint);
1827       } else if (CodeGenOpts.getInlining() ==
1828                      CodeGenOptions::OnlyHintInlining &&
1829                  !FD->isInlined() &&
1830                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1831         B.addAttribute(llvm::Attribute::NoInline);
1832       }
1833     }
1834   }
1835 
1836   // Add other optimization related attributes if we are optimizing this
1837   // function.
1838   if (!D->hasAttr<OptimizeNoneAttr>()) {
1839     if (D->hasAttr<ColdAttr>()) {
1840       if (!ShouldAddOptNone)
1841         B.addAttribute(llvm::Attribute::OptimizeForSize);
1842       B.addAttribute(llvm::Attribute::Cold);
1843     }
1844     if (D->hasAttr<HotAttr>())
1845       B.addAttribute(llvm::Attribute::Hot);
1846     if (D->hasAttr<MinSizeAttr>())
1847       B.addAttribute(llvm::Attribute::MinSize);
1848   }
1849 
1850   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1851 
1852   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1853   if (alignment)
1854     F->setAlignment(llvm::Align(alignment));
1855 
1856   if (!D->hasAttr<AlignedAttr>())
1857     if (LangOpts.FunctionAlignment)
1858       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1859 
1860   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1861   // reserve a bit for differentiating between virtual and non-virtual member
1862   // functions. If the current target's C++ ABI requires this and this is a
1863   // member function, set its alignment accordingly.
1864   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1865     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1866       F->setAlignment(llvm::Align(2));
1867   }
1868 
1869   // In the cross-dso CFI mode with canonical jump tables, we want !type
1870   // attributes on definitions only.
1871   if (CodeGenOpts.SanitizeCfiCrossDso &&
1872       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1873     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1874       // Skip available_externally functions. They won't be codegen'ed in the
1875       // current module anyway.
1876       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1877         CreateFunctionTypeMetadataForIcall(FD, F);
1878     }
1879   }
1880 
1881   // Emit type metadata on member functions for member function pointer checks.
1882   // These are only ever necessary on definitions; we're guaranteed that the
1883   // definition will be present in the LTO unit as a result of LTO visibility.
1884   auto *MD = dyn_cast<CXXMethodDecl>(D);
1885   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1886     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1887       llvm::Metadata *Id =
1888           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1889               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1890       F->addTypeMetadata(0, Id);
1891     }
1892   }
1893 }
1894 
1895 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1896                                                   llvm::Function *F) {
1897   if (D->hasAttr<StrictFPAttr>()) {
1898     llvm::AttrBuilder FuncAttrs;
1899     FuncAttrs.addAttribute("strictfp");
1900     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1901   }
1902 }
1903 
1904 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1905   const Decl *D = GD.getDecl();
1906   if (dyn_cast_or_null<NamedDecl>(D))
1907     setGVProperties(GV, GD);
1908   else
1909     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1910 
1911   if (D && D->hasAttr<UsedAttr>())
1912     addUsedOrCompilerUsedGlobal(GV);
1913 
1914   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1915     const auto *VD = cast<VarDecl>(D);
1916     if (VD->getType().isConstQualified() &&
1917         VD->getStorageDuration() == SD_Static)
1918       addUsedOrCompilerUsedGlobal(GV);
1919   }
1920 }
1921 
1922 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1923                                                 llvm::AttrBuilder &Attrs) {
1924   // Add target-cpu and target-features attributes to functions. If
1925   // we have a decl for the function and it has a target attribute then
1926   // parse that and add it to the feature set.
1927   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1928   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1929   std::vector<std::string> Features;
1930   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1931   FD = FD ? FD->getMostRecentDecl() : FD;
1932   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1933   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1934   bool AddedAttr = false;
1935   if (TD || SD) {
1936     llvm::StringMap<bool> FeatureMap;
1937     getContext().getFunctionFeatureMap(FeatureMap, GD);
1938 
1939     // Produce the canonical string for this set of features.
1940     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1941       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1942 
1943     // Now add the target-cpu and target-features to the function.
1944     // While we populated the feature map above, we still need to
1945     // get and parse the target attribute so we can get the cpu for
1946     // the function.
1947     if (TD) {
1948       ParsedTargetAttr ParsedAttr = TD->parse();
1949       if (!ParsedAttr.Architecture.empty() &&
1950           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1951         TargetCPU = ParsedAttr.Architecture;
1952         TuneCPU = ""; // Clear the tune CPU.
1953       }
1954       if (!ParsedAttr.Tune.empty() &&
1955           getTarget().isValidCPUName(ParsedAttr.Tune))
1956         TuneCPU = ParsedAttr.Tune;
1957     }
1958   } else {
1959     // Otherwise just add the existing target cpu and target features to the
1960     // function.
1961     Features = getTarget().getTargetOpts().Features;
1962   }
1963 
1964   if (!TargetCPU.empty()) {
1965     Attrs.addAttribute("target-cpu", TargetCPU);
1966     AddedAttr = true;
1967   }
1968   if (!TuneCPU.empty()) {
1969     Attrs.addAttribute("tune-cpu", TuneCPU);
1970     AddedAttr = true;
1971   }
1972   if (!Features.empty()) {
1973     llvm::sort(Features);
1974     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1975     AddedAttr = true;
1976   }
1977 
1978   return AddedAttr;
1979 }
1980 
1981 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1982                                           llvm::GlobalObject *GO) {
1983   const Decl *D = GD.getDecl();
1984   SetCommonAttributes(GD, GO);
1985 
1986   if (D) {
1987     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1988       if (D->hasAttr<RetainAttr>())
1989         addUsedGlobal(GV);
1990       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1991         GV->addAttribute("bss-section", SA->getName());
1992       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1993         GV->addAttribute("data-section", SA->getName());
1994       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1995         GV->addAttribute("rodata-section", SA->getName());
1996       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1997         GV->addAttribute("relro-section", SA->getName());
1998     }
1999 
2000     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2001       if (D->hasAttr<RetainAttr>())
2002         addUsedGlobal(F);
2003       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2004         if (!D->getAttr<SectionAttr>())
2005           F->addFnAttr("implicit-section-name", SA->getName());
2006 
2007       llvm::AttrBuilder Attrs;
2008       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2009         // We know that GetCPUAndFeaturesAttributes will always have the
2010         // newest set, since it has the newest possible FunctionDecl, so the
2011         // new ones should replace the old.
2012         llvm::AttrBuilder RemoveAttrs;
2013         RemoveAttrs.addAttribute("target-cpu");
2014         RemoveAttrs.addAttribute("target-features");
2015         RemoveAttrs.addAttribute("tune-cpu");
2016         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
2017         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
2018       }
2019     }
2020 
2021     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2022       GO->setSection(CSA->getName());
2023     else if (const auto *SA = D->getAttr<SectionAttr>())
2024       GO->setSection(SA->getName());
2025   }
2026 
2027   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2028 }
2029 
2030 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2031                                                   llvm::Function *F,
2032                                                   const CGFunctionInfo &FI) {
2033   const Decl *D = GD.getDecl();
2034   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2035   SetLLVMFunctionAttributesForDefinition(D, F);
2036 
2037   F->setLinkage(llvm::Function::InternalLinkage);
2038 
2039   setNonAliasAttributes(GD, F);
2040 }
2041 
2042 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2043   // Set linkage and visibility in case we never see a definition.
2044   LinkageInfo LV = ND->getLinkageAndVisibility();
2045   // Don't set internal linkage on declarations.
2046   // "extern_weak" is overloaded in LLVM; we probably should have
2047   // separate linkage types for this.
2048   if (isExternallyVisible(LV.getLinkage()) &&
2049       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2050     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2051 }
2052 
2053 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2054                                                        llvm::Function *F) {
2055   // Only if we are checking indirect calls.
2056   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2057     return;
2058 
2059   // Non-static class methods are handled via vtable or member function pointer
2060   // checks elsewhere.
2061   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2062     return;
2063 
2064   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2065   F->addTypeMetadata(0, MD);
2066   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2067 
2068   // Emit a hash-based bit set entry for cross-DSO calls.
2069   if (CodeGenOpts.SanitizeCfiCrossDso)
2070     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2071       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2072 }
2073 
2074 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2075                                           bool IsIncompleteFunction,
2076                                           bool IsThunk) {
2077 
2078   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2079     // If this is an intrinsic function, set the function's attributes
2080     // to the intrinsic's attributes.
2081     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2082     return;
2083   }
2084 
2085   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2086 
2087   if (!IsIncompleteFunction)
2088     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2089                               IsThunk);
2090 
2091   // Add the Returned attribute for "this", except for iOS 5 and earlier
2092   // where substantial code, including the libstdc++ dylib, was compiled with
2093   // GCC and does not actually return "this".
2094   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2095       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2096     assert(!F->arg_empty() &&
2097            F->arg_begin()->getType()
2098              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2099            "unexpected this return");
2100     F->addAttribute(1, llvm::Attribute::Returned);
2101   }
2102 
2103   // Only a few attributes are set on declarations; these may later be
2104   // overridden by a definition.
2105 
2106   setLinkageForGV(F, FD);
2107   setGVProperties(F, FD);
2108 
2109   // Setup target-specific attributes.
2110   if (!IsIncompleteFunction && F->isDeclaration())
2111     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2112 
2113   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2114     F->setSection(CSA->getName());
2115   else if (const auto *SA = FD->getAttr<SectionAttr>())
2116      F->setSection(SA->getName());
2117 
2118   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2119   if (FD->isInlineBuiltinDeclaration()) {
2120     const FunctionDecl *FDBody;
2121     bool HasBody = FD->hasBody(FDBody);
2122     (void)HasBody;
2123     assert(HasBody && "Inline builtin declarations should always have an "
2124                       "available body!");
2125     if (shouldEmitFunction(FDBody))
2126       F->addAttribute(llvm::AttributeList::FunctionIndex,
2127                       llvm::Attribute::NoBuiltin);
2128   }
2129 
2130   if (FD->isReplaceableGlobalAllocationFunction()) {
2131     // A replaceable global allocation function does not act like a builtin by
2132     // default, only if it is invoked by a new-expression or delete-expression.
2133     F->addAttribute(llvm::AttributeList::FunctionIndex,
2134                     llvm::Attribute::NoBuiltin);
2135   }
2136 
2137   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2138     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2139   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2140     if (MD->isVirtual())
2141       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2142 
2143   // Don't emit entries for function declarations in the cross-DSO mode. This
2144   // is handled with better precision by the receiving DSO. But if jump tables
2145   // are non-canonical then we need type metadata in order to produce the local
2146   // jump table.
2147   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2148       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2149     CreateFunctionTypeMetadataForIcall(FD, F);
2150 
2151   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2152     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2153 
2154   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2155     // Annotate the callback behavior as metadata:
2156     //  - The callback callee (as argument number).
2157     //  - The callback payloads (as argument numbers).
2158     llvm::LLVMContext &Ctx = F->getContext();
2159     llvm::MDBuilder MDB(Ctx);
2160 
2161     // The payload indices are all but the first one in the encoding. The first
2162     // identifies the callback callee.
2163     int CalleeIdx = *CB->encoding_begin();
2164     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2165     F->addMetadata(llvm::LLVMContext::MD_callback,
2166                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2167                                                CalleeIdx, PayloadIndices,
2168                                                /* VarArgsArePassed */ false)}));
2169   }
2170 }
2171 
2172 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2173   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2174          "Only globals with definition can force usage.");
2175   LLVMUsed.emplace_back(GV);
2176 }
2177 
2178 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2179   assert(!GV->isDeclaration() &&
2180          "Only globals with definition can force usage.");
2181   LLVMCompilerUsed.emplace_back(GV);
2182 }
2183 
2184 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2185   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2186          "Only globals with definition can force usage.");
2187   if (getTriple().isOSBinFormatELF())
2188     LLVMCompilerUsed.emplace_back(GV);
2189   else
2190     LLVMUsed.emplace_back(GV);
2191 }
2192 
2193 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2194                      std::vector<llvm::WeakTrackingVH> &List) {
2195   // Don't create llvm.used if there is no need.
2196   if (List.empty())
2197     return;
2198 
2199   // Convert List to what ConstantArray needs.
2200   SmallVector<llvm::Constant*, 8> UsedArray;
2201   UsedArray.resize(List.size());
2202   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2203     UsedArray[i] =
2204         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2205             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2206   }
2207 
2208   if (UsedArray.empty())
2209     return;
2210   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2211 
2212   auto *GV = new llvm::GlobalVariable(
2213       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2214       llvm::ConstantArray::get(ATy, UsedArray), Name);
2215 
2216   GV->setSection("llvm.metadata");
2217 }
2218 
2219 void CodeGenModule::emitLLVMUsed() {
2220   emitUsed(*this, "llvm.used", LLVMUsed);
2221   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2222 }
2223 
2224 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2225   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2226   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2227 }
2228 
2229 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2230   llvm::SmallString<32> Opt;
2231   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2232   if (Opt.empty())
2233     return;
2234   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2235   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2236 }
2237 
2238 void CodeGenModule::AddDependentLib(StringRef Lib) {
2239   auto &C = getLLVMContext();
2240   if (getTarget().getTriple().isOSBinFormatELF()) {
2241       ELFDependentLibraries.push_back(
2242         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2243     return;
2244   }
2245 
2246   llvm::SmallString<24> Opt;
2247   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2248   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2249   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2250 }
2251 
2252 /// Add link options implied by the given module, including modules
2253 /// it depends on, using a postorder walk.
2254 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2255                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2256                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2257   // Import this module's parent.
2258   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2259     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2260   }
2261 
2262   // Import this module's dependencies.
2263   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2264     if (Visited.insert(Mod->Imports[I - 1]).second)
2265       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2266   }
2267 
2268   // Add linker options to link against the libraries/frameworks
2269   // described by this module.
2270   llvm::LLVMContext &Context = CGM.getLLVMContext();
2271   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2272 
2273   // For modules that use export_as for linking, use that module
2274   // name instead.
2275   if (Mod->UseExportAsModuleLinkName)
2276     return;
2277 
2278   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2279     // Link against a framework.  Frameworks are currently Darwin only, so we
2280     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2281     if (Mod->LinkLibraries[I-1].IsFramework) {
2282       llvm::Metadata *Args[2] = {
2283           llvm::MDString::get(Context, "-framework"),
2284           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2285 
2286       Metadata.push_back(llvm::MDNode::get(Context, Args));
2287       continue;
2288     }
2289 
2290     // Link against a library.
2291     if (IsELF) {
2292       llvm::Metadata *Args[2] = {
2293           llvm::MDString::get(Context, "lib"),
2294           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2295       };
2296       Metadata.push_back(llvm::MDNode::get(Context, Args));
2297     } else {
2298       llvm::SmallString<24> Opt;
2299       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2300           Mod->LinkLibraries[I - 1].Library, Opt);
2301       auto *OptString = llvm::MDString::get(Context, Opt);
2302       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2303     }
2304   }
2305 }
2306 
2307 void CodeGenModule::EmitModuleLinkOptions() {
2308   // Collect the set of all of the modules we want to visit to emit link
2309   // options, which is essentially the imported modules and all of their
2310   // non-explicit child modules.
2311   llvm::SetVector<clang::Module *> LinkModules;
2312   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2313   SmallVector<clang::Module *, 16> Stack;
2314 
2315   // Seed the stack with imported modules.
2316   for (Module *M : ImportedModules) {
2317     // Do not add any link flags when an implementation TU of a module imports
2318     // a header of that same module.
2319     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2320         !getLangOpts().isCompilingModule())
2321       continue;
2322     if (Visited.insert(M).second)
2323       Stack.push_back(M);
2324   }
2325 
2326   // Find all of the modules to import, making a little effort to prune
2327   // non-leaf modules.
2328   while (!Stack.empty()) {
2329     clang::Module *Mod = Stack.pop_back_val();
2330 
2331     bool AnyChildren = false;
2332 
2333     // Visit the submodules of this module.
2334     for (const auto &SM : Mod->submodules()) {
2335       // Skip explicit children; they need to be explicitly imported to be
2336       // linked against.
2337       if (SM->IsExplicit)
2338         continue;
2339 
2340       if (Visited.insert(SM).second) {
2341         Stack.push_back(SM);
2342         AnyChildren = true;
2343       }
2344     }
2345 
2346     // We didn't find any children, so add this module to the list of
2347     // modules to link against.
2348     if (!AnyChildren) {
2349       LinkModules.insert(Mod);
2350     }
2351   }
2352 
2353   // Add link options for all of the imported modules in reverse topological
2354   // order.  We don't do anything to try to order import link flags with respect
2355   // to linker options inserted by things like #pragma comment().
2356   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2357   Visited.clear();
2358   for (Module *M : LinkModules)
2359     if (Visited.insert(M).second)
2360       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2361   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2362   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2363 
2364   // Add the linker options metadata flag.
2365   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2366   for (auto *MD : LinkerOptionsMetadata)
2367     NMD->addOperand(MD);
2368 }
2369 
2370 void CodeGenModule::EmitDeferred() {
2371   // Emit deferred declare target declarations.
2372   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2373     getOpenMPRuntime().emitDeferredTargetDecls();
2374 
2375   // Emit code for any potentially referenced deferred decls.  Since a
2376   // previously unused static decl may become used during the generation of code
2377   // for a static function, iterate until no changes are made.
2378 
2379   if (!DeferredVTables.empty()) {
2380     EmitDeferredVTables();
2381 
2382     // Emitting a vtable doesn't directly cause more vtables to
2383     // become deferred, although it can cause functions to be
2384     // emitted that then need those vtables.
2385     assert(DeferredVTables.empty());
2386   }
2387 
2388   // Emit CUDA/HIP static device variables referenced by host code only.
2389   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2390   // needed for further handling.
2391   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2392     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2393       DeferredDeclsToEmit.push_back(V);
2394 
2395   // Stop if we're out of both deferred vtables and deferred declarations.
2396   if (DeferredDeclsToEmit.empty())
2397     return;
2398 
2399   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2400   // work, it will not interfere with this.
2401   std::vector<GlobalDecl> CurDeclsToEmit;
2402   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2403 
2404   for (GlobalDecl &D : CurDeclsToEmit) {
2405     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2406     // to get GlobalValue with exactly the type we need, not something that
2407     // might had been created for another decl with the same mangled name but
2408     // different type.
2409     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2410         GetAddrOfGlobal(D, ForDefinition));
2411 
2412     // In case of different address spaces, we may still get a cast, even with
2413     // IsForDefinition equal to true. Query mangled names table to get
2414     // GlobalValue.
2415     if (!GV)
2416       GV = GetGlobalValue(getMangledName(D));
2417 
2418     // Make sure GetGlobalValue returned non-null.
2419     assert(GV);
2420 
2421     // Check to see if we've already emitted this.  This is necessary
2422     // for a couple of reasons: first, decls can end up in the
2423     // deferred-decls queue multiple times, and second, decls can end
2424     // up with definitions in unusual ways (e.g. by an extern inline
2425     // function acquiring a strong function redefinition).  Just
2426     // ignore these cases.
2427     if (!GV->isDeclaration())
2428       continue;
2429 
2430     // If this is OpenMP, check if it is legal to emit this global normally.
2431     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2432       continue;
2433 
2434     // Otherwise, emit the definition and move on to the next one.
2435     EmitGlobalDefinition(D, GV);
2436 
2437     // If we found out that we need to emit more decls, do that recursively.
2438     // This has the advantage that the decls are emitted in a DFS and related
2439     // ones are close together, which is convenient for testing.
2440     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2441       EmitDeferred();
2442       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2443     }
2444   }
2445 }
2446 
2447 void CodeGenModule::EmitVTablesOpportunistically() {
2448   // Try to emit external vtables as available_externally if they have emitted
2449   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2450   // is not allowed to create new references to things that need to be emitted
2451   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2452 
2453   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2454          && "Only emit opportunistic vtables with optimizations");
2455 
2456   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2457     assert(getVTables().isVTableExternal(RD) &&
2458            "This queue should only contain external vtables");
2459     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2460       VTables.GenerateClassData(RD);
2461   }
2462   OpportunisticVTables.clear();
2463 }
2464 
2465 void CodeGenModule::EmitGlobalAnnotations() {
2466   if (Annotations.empty())
2467     return;
2468 
2469   // Create a new global variable for the ConstantStruct in the Module.
2470   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2471     Annotations[0]->getType(), Annotations.size()), Annotations);
2472   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2473                                       llvm::GlobalValue::AppendingLinkage,
2474                                       Array, "llvm.global.annotations");
2475   gv->setSection(AnnotationSection);
2476 }
2477 
2478 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2479   llvm::Constant *&AStr = AnnotationStrings[Str];
2480   if (AStr)
2481     return AStr;
2482 
2483   // Not found yet, create a new global.
2484   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2485   auto *gv =
2486       new llvm::GlobalVariable(getModule(), s->getType(), true,
2487                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2488   gv->setSection(AnnotationSection);
2489   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2490   AStr = gv;
2491   return gv;
2492 }
2493 
2494 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2495   SourceManager &SM = getContext().getSourceManager();
2496   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2497   if (PLoc.isValid())
2498     return EmitAnnotationString(PLoc.getFilename());
2499   return EmitAnnotationString(SM.getBufferName(Loc));
2500 }
2501 
2502 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2503   SourceManager &SM = getContext().getSourceManager();
2504   PresumedLoc PLoc = SM.getPresumedLoc(L);
2505   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2506     SM.getExpansionLineNumber(L);
2507   return llvm::ConstantInt::get(Int32Ty, LineNo);
2508 }
2509 
2510 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2511   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2512   if (Exprs.empty())
2513     return llvm::ConstantPointerNull::get(Int8PtrTy);
2514 
2515   llvm::FoldingSetNodeID ID;
2516   for (Expr *E : Exprs) {
2517     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2518   }
2519   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2520   if (Lookup)
2521     return Lookup;
2522 
2523   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2524   LLVMArgs.reserve(Exprs.size());
2525   ConstantEmitter ConstEmiter(*this);
2526   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2527     const auto *CE = cast<clang::ConstantExpr>(E);
2528     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2529                                     CE->getType());
2530   });
2531   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2532   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2533                                       llvm::GlobalValue::PrivateLinkage, Struct,
2534                                       ".args");
2535   GV->setSection(AnnotationSection);
2536   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2537   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2538 
2539   Lookup = Bitcasted;
2540   return Bitcasted;
2541 }
2542 
2543 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2544                                                 const AnnotateAttr *AA,
2545                                                 SourceLocation L) {
2546   // Get the globals for file name, annotation, and the line number.
2547   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2548                  *UnitGV = EmitAnnotationUnit(L),
2549                  *LineNoCst = EmitAnnotationLineNo(L),
2550                  *Args = EmitAnnotationArgs(AA);
2551 
2552   llvm::Constant *ASZeroGV = GV;
2553   if (GV->getAddressSpace() != 0) {
2554     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2555                    GV, GV->getValueType()->getPointerTo(0));
2556   }
2557 
2558   // Create the ConstantStruct for the global annotation.
2559   llvm::Constant *Fields[] = {
2560       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2561       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2562       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2563       LineNoCst,
2564       Args,
2565   };
2566   return llvm::ConstantStruct::getAnon(Fields);
2567 }
2568 
2569 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2570                                          llvm::GlobalValue *GV) {
2571   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2572   // Get the struct elements for these annotations.
2573   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2574     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2575 }
2576 
2577 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2578                                        SourceLocation Loc) const {
2579   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2580   // NoSanitize by function name.
2581   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2582     return true;
2583   // NoSanitize by location.
2584   if (Loc.isValid())
2585     return NoSanitizeL.containsLocation(Kind, Loc);
2586   // If location is unknown, this may be a compiler-generated function. Assume
2587   // it's located in the main file.
2588   auto &SM = Context.getSourceManager();
2589   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2590     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2591   }
2592   return false;
2593 }
2594 
2595 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2596                                        SourceLocation Loc, QualType Ty,
2597                                        StringRef Category) const {
2598   // For now globals can be ignored only in ASan and KASan.
2599   const SanitizerMask EnabledAsanMask =
2600       LangOpts.Sanitize.Mask &
2601       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2602        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2603        SanitizerKind::MemTag);
2604   if (!EnabledAsanMask)
2605     return false;
2606   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2607   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2608     return true;
2609   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2610     return true;
2611   // Check global type.
2612   if (!Ty.isNull()) {
2613     // Drill down the array types: if global variable of a fixed type is
2614     // not sanitized, we also don't instrument arrays of them.
2615     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2616       Ty = AT->getElementType();
2617     Ty = Ty.getCanonicalType().getUnqualifiedType();
2618     // Only record types (classes, structs etc.) are ignored.
2619     if (Ty->isRecordType()) {
2620       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2621       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2622         return true;
2623     }
2624   }
2625   return false;
2626 }
2627 
2628 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2629                                    StringRef Category) const {
2630   const auto &XRayFilter = getContext().getXRayFilter();
2631   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2632   auto Attr = ImbueAttr::NONE;
2633   if (Loc.isValid())
2634     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2635   if (Attr == ImbueAttr::NONE)
2636     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2637   switch (Attr) {
2638   case ImbueAttr::NONE:
2639     return false;
2640   case ImbueAttr::ALWAYS:
2641     Fn->addFnAttr("function-instrument", "xray-always");
2642     break;
2643   case ImbueAttr::ALWAYS_ARG1:
2644     Fn->addFnAttr("function-instrument", "xray-always");
2645     Fn->addFnAttr("xray-log-args", "1");
2646     break;
2647   case ImbueAttr::NEVER:
2648     Fn->addFnAttr("function-instrument", "xray-never");
2649     break;
2650   }
2651   return true;
2652 }
2653 
2654 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2655                                            SourceLocation Loc) const {
2656   const auto &ProfileList = getContext().getProfileList();
2657   // If the profile list is empty, then instrument everything.
2658   if (ProfileList.isEmpty())
2659     return false;
2660   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2661   // First, check the function name.
2662   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2663   if (V.hasValue())
2664     return *V;
2665   // Next, check the source location.
2666   if (Loc.isValid()) {
2667     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2668     if (V.hasValue())
2669       return *V;
2670   }
2671   // If location is unknown, this may be a compiler-generated function. Assume
2672   // it's located in the main file.
2673   auto &SM = Context.getSourceManager();
2674   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2675     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2676     if (V.hasValue())
2677       return *V;
2678   }
2679   return ProfileList.getDefault();
2680 }
2681 
2682 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2683   // Never defer when EmitAllDecls is specified.
2684   if (LangOpts.EmitAllDecls)
2685     return true;
2686 
2687   if (CodeGenOpts.KeepStaticConsts) {
2688     const auto *VD = dyn_cast<VarDecl>(Global);
2689     if (VD && VD->getType().isConstQualified() &&
2690         VD->getStorageDuration() == SD_Static)
2691       return true;
2692   }
2693 
2694   return getContext().DeclMustBeEmitted(Global);
2695 }
2696 
2697 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2698   // In OpenMP 5.0 variables and function may be marked as
2699   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2700   // that they must be emitted on the host/device. To be sure we need to have
2701   // seen a declare target with an explicit mentioning of the function, we know
2702   // we have if the level of the declare target attribute is -1. Note that we
2703   // check somewhere else if we should emit this at all.
2704   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2705     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2706         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2707     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2708       return false;
2709   }
2710 
2711   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2712     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2713       // Implicit template instantiations may change linkage if they are later
2714       // explicitly instantiated, so they should not be emitted eagerly.
2715       return false;
2716   }
2717   if (const auto *VD = dyn_cast<VarDecl>(Global))
2718     if (Context.getInlineVariableDefinitionKind(VD) ==
2719         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2720       // A definition of an inline constexpr static data member may change
2721       // linkage later if it's redeclared outside the class.
2722       return false;
2723   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2724   // codegen for global variables, because they may be marked as threadprivate.
2725   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2726       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2727       !isTypeConstant(Global->getType(), false) &&
2728       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2729     return false;
2730 
2731   return true;
2732 }
2733 
2734 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2735   StringRef Name = getMangledName(GD);
2736 
2737   // The UUID descriptor should be pointer aligned.
2738   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2739 
2740   // Look for an existing global.
2741   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2742     return ConstantAddress(GV, Alignment);
2743 
2744   ConstantEmitter Emitter(*this);
2745   llvm::Constant *Init;
2746 
2747   APValue &V = GD->getAsAPValue();
2748   if (!V.isAbsent()) {
2749     // If possible, emit the APValue version of the initializer. In particular,
2750     // this gets the type of the constant right.
2751     Init = Emitter.emitForInitializer(
2752         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2753   } else {
2754     // As a fallback, directly construct the constant.
2755     // FIXME: This may get padding wrong under esoteric struct layout rules.
2756     // MSVC appears to create a complete type 'struct __s_GUID' that it
2757     // presumably uses to represent these constants.
2758     MSGuidDecl::Parts Parts = GD->getParts();
2759     llvm::Constant *Fields[4] = {
2760         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2761         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2762         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2763         llvm::ConstantDataArray::getRaw(
2764             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2765             Int8Ty)};
2766     Init = llvm::ConstantStruct::getAnon(Fields);
2767   }
2768 
2769   auto *GV = new llvm::GlobalVariable(
2770       getModule(), Init->getType(),
2771       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2772   if (supportsCOMDAT())
2773     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2774   setDSOLocal(GV);
2775 
2776   llvm::Constant *Addr = GV;
2777   if (!V.isAbsent()) {
2778     Emitter.finalize(GV);
2779   } else {
2780     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2781     Addr = llvm::ConstantExpr::getBitCast(
2782         GV, Ty->getPointerTo(GV->getAddressSpace()));
2783   }
2784   return ConstantAddress(Addr, Alignment);
2785 }
2786 
2787 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2788     const TemplateParamObjectDecl *TPO) {
2789   StringRef Name = getMangledName(TPO);
2790   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2791 
2792   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2793     return ConstantAddress(GV, Alignment);
2794 
2795   ConstantEmitter Emitter(*this);
2796   llvm::Constant *Init = Emitter.emitForInitializer(
2797         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2798 
2799   if (!Init) {
2800     ErrorUnsupported(TPO, "template parameter object");
2801     return ConstantAddress::invalid();
2802   }
2803 
2804   auto *GV = new llvm::GlobalVariable(
2805       getModule(), Init->getType(),
2806       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2807   if (supportsCOMDAT())
2808     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2809   Emitter.finalize(GV);
2810 
2811   return ConstantAddress(GV, Alignment);
2812 }
2813 
2814 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2815   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2816   assert(AA && "No alias?");
2817 
2818   CharUnits Alignment = getContext().getDeclAlign(VD);
2819   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2820 
2821   // See if there is already something with the target's name in the module.
2822   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2823   if (Entry) {
2824     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2825     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2826     return ConstantAddress(Ptr, Alignment);
2827   }
2828 
2829   llvm::Constant *Aliasee;
2830   if (isa<llvm::FunctionType>(DeclTy))
2831     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2832                                       GlobalDecl(cast<FunctionDecl>(VD)),
2833                                       /*ForVTable=*/false);
2834   else
2835     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr);
2836 
2837   auto *F = cast<llvm::GlobalValue>(Aliasee);
2838   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2839   WeakRefReferences.insert(F);
2840 
2841   return ConstantAddress(Aliasee, Alignment);
2842 }
2843 
2844 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2845   const auto *Global = cast<ValueDecl>(GD.getDecl());
2846 
2847   // Weak references don't produce any output by themselves.
2848   if (Global->hasAttr<WeakRefAttr>())
2849     return;
2850 
2851   // If this is an alias definition (which otherwise looks like a declaration)
2852   // emit it now.
2853   if (Global->hasAttr<AliasAttr>())
2854     return EmitAliasDefinition(GD);
2855 
2856   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2857   if (Global->hasAttr<IFuncAttr>())
2858     return emitIFuncDefinition(GD);
2859 
2860   // If this is a cpu_dispatch multiversion function, emit the resolver.
2861   if (Global->hasAttr<CPUDispatchAttr>())
2862     return emitCPUDispatchDefinition(GD);
2863 
2864   // If this is CUDA, be selective about which declarations we emit.
2865   if (LangOpts.CUDA) {
2866     if (LangOpts.CUDAIsDevice) {
2867       if (!Global->hasAttr<CUDADeviceAttr>() &&
2868           !Global->hasAttr<CUDAGlobalAttr>() &&
2869           !Global->hasAttr<CUDAConstantAttr>() &&
2870           !Global->hasAttr<CUDASharedAttr>() &&
2871           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2872           !Global->getType()->isCUDADeviceBuiltinTextureType())
2873         return;
2874     } else {
2875       // We need to emit host-side 'shadows' for all global
2876       // device-side variables because the CUDA runtime needs their
2877       // size and host-side address in order to provide access to
2878       // their device-side incarnations.
2879 
2880       // So device-only functions are the only things we skip.
2881       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2882           Global->hasAttr<CUDADeviceAttr>())
2883         return;
2884 
2885       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2886              "Expected Variable or Function");
2887     }
2888   }
2889 
2890   if (LangOpts.OpenMP) {
2891     // If this is OpenMP, check if it is legal to emit this global normally.
2892     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2893       return;
2894     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2895       if (MustBeEmitted(Global))
2896         EmitOMPDeclareReduction(DRD);
2897       return;
2898     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2899       if (MustBeEmitted(Global))
2900         EmitOMPDeclareMapper(DMD);
2901       return;
2902     }
2903   }
2904 
2905   // Ignore declarations, they will be emitted on their first use.
2906   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2907     // Forward declarations are emitted lazily on first use.
2908     if (!FD->doesThisDeclarationHaveABody()) {
2909       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2910         return;
2911 
2912       StringRef MangledName = getMangledName(GD);
2913 
2914       // Compute the function info and LLVM type.
2915       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2916       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2917 
2918       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2919                               /*DontDefer=*/false);
2920       return;
2921     }
2922   } else {
2923     const auto *VD = cast<VarDecl>(Global);
2924     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2925     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2926         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2927       if (LangOpts.OpenMP) {
2928         // Emit declaration of the must-be-emitted declare target variable.
2929         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2930                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2931           bool UnifiedMemoryEnabled =
2932               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2933           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2934               !UnifiedMemoryEnabled) {
2935             (void)GetAddrOfGlobalVar(VD);
2936           } else {
2937             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2938                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2939                      UnifiedMemoryEnabled)) &&
2940                    "Link clause or to clause with unified memory expected.");
2941             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2942           }
2943 
2944           return;
2945         }
2946       }
2947       // If this declaration may have caused an inline variable definition to
2948       // change linkage, make sure that it's emitted.
2949       if (Context.getInlineVariableDefinitionKind(VD) ==
2950           ASTContext::InlineVariableDefinitionKind::Strong)
2951         GetAddrOfGlobalVar(VD);
2952       return;
2953     }
2954   }
2955 
2956   // Defer code generation to first use when possible, e.g. if this is an inline
2957   // function. If the global must always be emitted, do it eagerly if possible
2958   // to benefit from cache locality.
2959   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2960     // Emit the definition if it can't be deferred.
2961     EmitGlobalDefinition(GD);
2962     return;
2963   }
2964 
2965   // If we're deferring emission of a C++ variable with an
2966   // initializer, remember the order in which it appeared in the file.
2967   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2968       cast<VarDecl>(Global)->hasInit()) {
2969     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2970     CXXGlobalInits.push_back(nullptr);
2971   }
2972 
2973   StringRef MangledName = getMangledName(GD);
2974   if (GetGlobalValue(MangledName) != nullptr) {
2975     // The value has already been used and should therefore be emitted.
2976     addDeferredDeclToEmit(GD);
2977   } else if (MustBeEmitted(Global)) {
2978     // The value must be emitted, but cannot be emitted eagerly.
2979     assert(!MayBeEmittedEagerly(Global));
2980     addDeferredDeclToEmit(GD);
2981   } else {
2982     // Otherwise, remember that we saw a deferred decl with this name.  The
2983     // first use of the mangled name will cause it to move into
2984     // DeferredDeclsToEmit.
2985     DeferredDecls[MangledName] = GD;
2986   }
2987 }
2988 
2989 // Check if T is a class type with a destructor that's not dllimport.
2990 static bool HasNonDllImportDtor(QualType T) {
2991   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2992     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2993       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2994         return true;
2995 
2996   return false;
2997 }
2998 
2999 namespace {
3000   struct FunctionIsDirectlyRecursive
3001       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3002     const StringRef Name;
3003     const Builtin::Context &BI;
3004     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3005         : Name(N), BI(C) {}
3006 
3007     bool VisitCallExpr(const CallExpr *E) {
3008       const FunctionDecl *FD = E->getDirectCallee();
3009       if (!FD)
3010         return false;
3011       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3012       if (Attr && Name == Attr->getLabel())
3013         return true;
3014       unsigned BuiltinID = FD->getBuiltinID();
3015       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3016         return false;
3017       StringRef BuiltinName = BI.getName(BuiltinID);
3018       if (BuiltinName.startswith("__builtin_") &&
3019           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3020         return true;
3021       }
3022       return false;
3023     }
3024 
3025     bool VisitStmt(const Stmt *S) {
3026       for (const Stmt *Child : S->children())
3027         if (Child && this->Visit(Child))
3028           return true;
3029       return false;
3030     }
3031   };
3032 
3033   // Make sure we're not referencing non-imported vars or functions.
3034   struct DLLImportFunctionVisitor
3035       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3036     bool SafeToInline = true;
3037 
3038     bool shouldVisitImplicitCode() const { return true; }
3039 
3040     bool VisitVarDecl(VarDecl *VD) {
3041       if (VD->getTLSKind()) {
3042         // A thread-local variable cannot be imported.
3043         SafeToInline = false;
3044         return SafeToInline;
3045       }
3046 
3047       // A variable definition might imply a destructor call.
3048       if (VD->isThisDeclarationADefinition())
3049         SafeToInline = !HasNonDllImportDtor(VD->getType());
3050 
3051       return SafeToInline;
3052     }
3053 
3054     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3055       if (const auto *D = E->getTemporary()->getDestructor())
3056         SafeToInline = D->hasAttr<DLLImportAttr>();
3057       return SafeToInline;
3058     }
3059 
3060     bool VisitDeclRefExpr(DeclRefExpr *E) {
3061       ValueDecl *VD = E->getDecl();
3062       if (isa<FunctionDecl>(VD))
3063         SafeToInline = VD->hasAttr<DLLImportAttr>();
3064       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3065         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3066       return SafeToInline;
3067     }
3068 
3069     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3070       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3071       return SafeToInline;
3072     }
3073 
3074     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3075       CXXMethodDecl *M = E->getMethodDecl();
3076       if (!M) {
3077         // Call through a pointer to member function. This is safe to inline.
3078         SafeToInline = true;
3079       } else {
3080         SafeToInline = M->hasAttr<DLLImportAttr>();
3081       }
3082       return SafeToInline;
3083     }
3084 
3085     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3086       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3087       return SafeToInline;
3088     }
3089 
3090     bool VisitCXXNewExpr(CXXNewExpr *E) {
3091       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3092       return SafeToInline;
3093     }
3094   };
3095 }
3096 
3097 // isTriviallyRecursive - Check if this function calls another
3098 // decl that, because of the asm attribute or the other decl being a builtin,
3099 // ends up pointing to itself.
3100 bool
3101 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3102   StringRef Name;
3103   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3104     // asm labels are a special kind of mangling we have to support.
3105     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3106     if (!Attr)
3107       return false;
3108     Name = Attr->getLabel();
3109   } else {
3110     Name = FD->getName();
3111   }
3112 
3113   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3114   const Stmt *Body = FD->getBody();
3115   return Body ? Walker.Visit(Body) : false;
3116 }
3117 
3118 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3119   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3120     return true;
3121   const auto *F = cast<FunctionDecl>(GD.getDecl());
3122   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3123     return false;
3124 
3125   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3126     // Check whether it would be safe to inline this dllimport function.
3127     DLLImportFunctionVisitor Visitor;
3128     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3129     if (!Visitor.SafeToInline)
3130       return false;
3131 
3132     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3133       // Implicit destructor invocations aren't captured in the AST, so the
3134       // check above can't see them. Check for them manually here.
3135       for (const Decl *Member : Dtor->getParent()->decls())
3136         if (isa<FieldDecl>(Member))
3137           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3138             return false;
3139       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3140         if (HasNonDllImportDtor(B.getType()))
3141           return false;
3142     }
3143   }
3144 
3145   // PR9614. Avoid cases where the source code is lying to us. An available
3146   // externally function should have an equivalent function somewhere else,
3147   // but a function that calls itself through asm label/`__builtin_` trickery is
3148   // clearly not equivalent to the real implementation.
3149   // This happens in glibc's btowc and in some configure checks.
3150   return !isTriviallyRecursive(F);
3151 }
3152 
3153 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3154   return CodeGenOpts.OptimizationLevel > 0;
3155 }
3156 
3157 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3158                                                        llvm::GlobalValue *GV) {
3159   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3160 
3161   if (FD->isCPUSpecificMultiVersion()) {
3162     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3163     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3164       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3165     // Requires multiple emits.
3166   } else
3167     EmitGlobalFunctionDefinition(GD, GV);
3168 }
3169 
3170 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3171   const auto *D = cast<ValueDecl>(GD.getDecl());
3172 
3173   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3174                                  Context.getSourceManager(),
3175                                  "Generating code for declaration");
3176 
3177   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3178     // At -O0, don't generate IR for functions with available_externally
3179     // linkage.
3180     if (!shouldEmitFunction(GD))
3181       return;
3182 
3183     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3184       std::string Name;
3185       llvm::raw_string_ostream OS(Name);
3186       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3187                                /*Qualified=*/true);
3188       return Name;
3189     });
3190 
3191     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3192       // Make sure to emit the definition(s) before we emit the thunks.
3193       // This is necessary for the generation of certain thunks.
3194       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3195         ABI->emitCXXStructor(GD);
3196       else if (FD->isMultiVersion())
3197         EmitMultiVersionFunctionDefinition(GD, GV);
3198       else
3199         EmitGlobalFunctionDefinition(GD, GV);
3200 
3201       if (Method->isVirtual())
3202         getVTables().EmitThunks(GD);
3203 
3204       return;
3205     }
3206 
3207     if (FD->isMultiVersion())
3208       return EmitMultiVersionFunctionDefinition(GD, GV);
3209     return EmitGlobalFunctionDefinition(GD, GV);
3210   }
3211 
3212   if (const auto *VD = dyn_cast<VarDecl>(D))
3213     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3214 
3215   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3216 }
3217 
3218 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3219                                                       llvm::Function *NewFn);
3220 
3221 static unsigned
3222 TargetMVPriority(const TargetInfo &TI,
3223                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3224   unsigned Priority = 0;
3225   for (StringRef Feat : RO.Conditions.Features)
3226     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3227 
3228   if (!RO.Conditions.Architecture.empty())
3229     Priority = std::max(
3230         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3231   return Priority;
3232 }
3233 
3234 void CodeGenModule::emitMultiVersionFunctions() {
3235   std::vector<GlobalDecl> MVFuncsToEmit;
3236   MultiVersionFuncs.swap(MVFuncsToEmit);
3237   for (GlobalDecl GD : MVFuncsToEmit) {
3238     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3239     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3240     getContext().forEachMultiversionedFunctionVersion(
3241         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3242           GlobalDecl CurGD{
3243               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3244           StringRef MangledName = getMangledName(CurGD);
3245           llvm::Constant *Func = GetGlobalValue(MangledName);
3246           if (!Func) {
3247             if (CurFD->isDefined()) {
3248               EmitGlobalFunctionDefinition(CurGD, nullptr);
3249               Func = GetGlobalValue(MangledName);
3250             } else {
3251               const CGFunctionInfo &FI =
3252                   getTypes().arrangeGlobalDeclaration(GD);
3253               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3254               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3255                                        /*DontDefer=*/false, ForDefinition);
3256             }
3257             assert(Func && "This should have just been created");
3258           }
3259 
3260           const auto *TA = CurFD->getAttr<TargetAttr>();
3261           llvm::SmallVector<StringRef, 8> Feats;
3262           TA->getAddedFeatures(Feats);
3263 
3264           Options.emplace_back(cast<llvm::Function>(Func),
3265                                TA->getArchitecture(), Feats);
3266         });
3267 
3268     llvm::Function *ResolverFunc;
3269     const TargetInfo &TI = getTarget();
3270 
3271     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3272       ResolverFunc = cast<llvm::Function>(
3273           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3274       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3275     } else {
3276       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3277     }
3278 
3279     if (supportsCOMDAT())
3280       ResolverFunc->setComdat(
3281           getModule().getOrInsertComdat(ResolverFunc->getName()));
3282 
3283     llvm::stable_sort(
3284         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3285                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3286           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3287         });
3288     CodeGenFunction CGF(*this);
3289     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3290   }
3291 
3292   // Ensure that any additions to the deferred decls list caused by emitting a
3293   // variant are emitted.  This can happen when the variant itself is inline and
3294   // calls a function without linkage.
3295   if (!MVFuncsToEmit.empty())
3296     EmitDeferred();
3297 
3298   // Ensure that any additions to the multiversion funcs list from either the
3299   // deferred decls or the multiversion functions themselves are emitted.
3300   if (!MultiVersionFuncs.empty())
3301     emitMultiVersionFunctions();
3302 }
3303 
3304 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3305   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3306   assert(FD && "Not a FunctionDecl?");
3307   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3308   assert(DD && "Not a cpu_dispatch Function?");
3309   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3310 
3311   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3312     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3313     DeclTy = getTypes().GetFunctionType(FInfo);
3314   }
3315 
3316   StringRef ResolverName = getMangledName(GD);
3317 
3318   llvm::Type *ResolverType;
3319   GlobalDecl ResolverGD;
3320   if (getTarget().supportsIFunc())
3321     ResolverType = llvm::FunctionType::get(
3322         llvm::PointerType::get(DeclTy,
3323                                Context.getTargetAddressSpace(FD->getType())),
3324         false);
3325   else {
3326     ResolverType = DeclTy;
3327     ResolverGD = GD;
3328   }
3329 
3330   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3331       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3332   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3333   if (supportsCOMDAT())
3334     ResolverFunc->setComdat(
3335         getModule().getOrInsertComdat(ResolverFunc->getName()));
3336 
3337   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3338   const TargetInfo &Target = getTarget();
3339   unsigned Index = 0;
3340   for (const IdentifierInfo *II : DD->cpus()) {
3341     // Get the name of the target function so we can look it up/create it.
3342     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3343                               getCPUSpecificMangling(*this, II->getName());
3344 
3345     llvm::Constant *Func = GetGlobalValue(MangledName);
3346 
3347     if (!Func) {
3348       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3349       if (ExistingDecl.getDecl() &&
3350           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3351         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3352         Func = GetGlobalValue(MangledName);
3353       } else {
3354         if (!ExistingDecl.getDecl())
3355           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3356 
3357       Func = GetOrCreateLLVMFunction(
3358           MangledName, DeclTy, ExistingDecl,
3359           /*ForVTable=*/false, /*DontDefer=*/true,
3360           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3361       }
3362     }
3363 
3364     llvm::SmallVector<StringRef, 32> Features;
3365     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3366     llvm::transform(Features, Features.begin(),
3367                     [](StringRef Str) { return Str.substr(1); });
3368     Features.erase(std::remove_if(
3369         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3370           return !Target.validateCpuSupports(Feat);
3371         }), Features.end());
3372     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3373     ++Index;
3374   }
3375 
3376   llvm::stable_sort(
3377       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3378                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3379         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3380                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3381       });
3382 
3383   // If the list contains multiple 'default' versions, such as when it contains
3384   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3385   // always run on at least a 'pentium'). We do this by deleting the 'least
3386   // advanced' (read, lowest mangling letter).
3387   while (Options.size() > 1 &&
3388          CodeGenFunction::GetX86CpuSupportsMask(
3389              (Options.end() - 2)->Conditions.Features) == 0) {
3390     StringRef LHSName = (Options.end() - 2)->Function->getName();
3391     StringRef RHSName = (Options.end() - 1)->Function->getName();
3392     if (LHSName.compare(RHSName) < 0)
3393       Options.erase(Options.end() - 2);
3394     else
3395       Options.erase(Options.end() - 1);
3396   }
3397 
3398   CodeGenFunction CGF(*this);
3399   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3400 
3401   if (getTarget().supportsIFunc()) {
3402     std::string AliasName = getMangledNameImpl(
3403         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3404     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3405     if (!AliasFunc) {
3406       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3407           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3408           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3409       auto *GA = llvm::GlobalAlias::create(
3410          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3411       GA->setLinkage(llvm::Function::WeakODRLinkage);
3412       SetCommonAttributes(GD, GA);
3413     }
3414   }
3415 }
3416 
3417 /// If a dispatcher for the specified mangled name is not in the module, create
3418 /// and return an llvm Function with the specified type.
3419 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3420     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3421   std::string MangledName =
3422       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3423 
3424   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3425   // a separate resolver).
3426   std::string ResolverName = MangledName;
3427   if (getTarget().supportsIFunc())
3428     ResolverName += ".ifunc";
3429   else if (FD->isTargetMultiVersion())
3430     ResolverName += ".resolver";
3431 
3432   // If this already exists, just return that one.
3433   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3434     return ResolverGV;
3435 
3436   // Since this is the first time we've created this IFunc, make sure
3437   // that we put this multiversioned function into the list to be
3438   // replaced later if necessary (target multiversioning only).
3439   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3440     MultiVersionFuncs.push_back(GD);
3441 
3442   if (getTarget().supportsIFunc()) {
3443     llvm::Type *ResolverType = llvm::FunctionType::get(
3444         llvm::PointerType::get(
3445             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3446         false);
3447     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3448         MangledName + ".resolver", ResolverType, GlobalDecl{},
3449         /*ForVTable=*/false);
3450     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3451         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3452     GIF->setName(ResolverName);
3453     SetCommonAttributes(FD, GIF);
3454 
3455     return GIF;
3456   }
3457 
3458   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3459       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3460   assert(isa<llvm::GlobalValue>(Resolver) &&
3461          "Resolver should be created for the first time");
3462   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3463   return Resolver;
3464 }
3465 
3466 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3467 /// module, create and return an llvm Function with the specified type. If there
3468 /// is something in the module with the specified name, return it potentially
3469 /// bitcasted to the right type.
3470 ///
3471 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3472 /// to set the attributes on the function when it is first created.
3473 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3474     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3475     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3476     ForDefinition_t IsForDefinition) {
3477   const Decl *D = GD.getDecl();
3478 
3479   // Any attempts to use a MultiVersion function should result in retrieving
3480   // the iFunc instead. Name Mangling will handle the rest of the changes.
3481   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3482     // For the device mark the function as one that should be emitted.
3483     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3484         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3485         !DontDefer && !IsForDefinition) {
3486       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3487         GlobalDecl GDDef;
3488         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3489           GDDef = GlobalDecl(CD, GD.getCtorType());
3490         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3491           GDDef = GlobalDecl(DD, GD.getDtorType());
3492         else
3493           GDDef = GlobalDecl(FDDef);
3494         EmitGlobal(GDDef);
3495       }
3496     }
3497 
3498     if (FD->isMultiVersion()) {
3499       if (FD->hasAttr<TargetAttr>())
3500         UpdateMultiVersionNames(GD, FD);
3501       if (!IsForDefinition)
3502         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3503     }
3504   }
3505 
3506   // Lookup the entry, lazily creating it if necessary.
3507   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3508   if (Entry) {
3509     if (WeakRefReferences.erase(Entry)) {
3510       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3511       if (FD && !FD->hasAttr<WeakAttr>())
3512         Entry->setLinkage(llvm::Function::ExternalLinkage);
3513     }
3514 
3515     // Handle dropped DLL attributes.
3516     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3517       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3518       setDSOLocal(Entry);
3519     }
3520 
3521     // If there are two attempts to define the same mangled name, issue an
3522     // error.
3523     if (IsForDefinition && !Entry->isDeclaration()) {
3524       GlobalDecl OtherGD;
3525       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3526       // to make sure that we issue an error only once.
3527       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3528           (GD.getCanonicalDecl().getDecl() !=
3529            OtherGD.getCanonicalDecl().getDecl()) &&
3530           DiagnosedConflictingDefinitions.insert(GD).second) {
3531         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3532             << MangledName;
3533         getDiags().Report(OtherGD.getDecl()->getLocation(),
3534                           diag::note_previous_definition);
3535       }
3536     }
3537 
3538     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3539         (Entry->getValueType() == Ty)) {
3540       return Entry;
3541     }
3542 
3543     // Make sure the result is of the correct type.
3544     // (If function is requested for a definition, we always need to create a new
3545     // function, not just return a bitcast.)
3546     if (!IsForDefinition)
3547       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3548   }
3549 
3550   // This function doesn't have a complete type (for example, the return
3551   // type is an incomplete struct). Use a fake type instead, and make
3552   // sure not to try to set attributes.
3553   bool IsIncompleteFunction = false;
3554 
3555   llvm::FunctionType *FTy;
3556   if (isa<llvm::FunctionType>(Ty)) {
3557     FTy = cast<llvm::FunctionType>(Ty);
3558   } else {
3559     FTy = llvm::FunctionType::get(VoidTy, false);
3560     IsIncompleteFunction = true;
3561   }
3562 
3563   llvm::Function *F =
3564       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3565                              Entry ? StringRef() : MangledName, &getModule());
3566 
3567   // If we already created a function with the same mangled name (but different
3568   // type) before, take its name and add it to the list of functions to be
3569   // replaced with F at the end of CodeGen.
3570   //
3571   // This happens if there is a prototype for a function (e.g. "int f()") and
3572   // then a definition of a different type (e.g. "int f(int x)").
3573   if (Entry) {
3574     F->takeName(Entry);
3575 
3576     // This might be an implementation of a function without a prototype, in
3577     // which case, try to do special replacement of calls which match the new
3578     // prototype.  The really key thing here is that we also potentially drop
3579     // arguments from the call site so as to make a direct call, which makes the
3580     // inliner happier and suppresses a number of optimizer warnings (!) about
3581     // dropping arguments.
3582     if (!Entry->use_empty()) {
3583       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3584       Entry->removeDeadConstantUsers();
3585     }
3586 
3587     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3588         F, Entry->getValueType()->getPointerTo());
3589     addGlobalValReplacement(Entry, BC);
3590   }
3591 
3592   assert(F->getName() == MangledName && "name was uniqued!");
3593   if (D)
3594     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3595   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3596     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3597     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3598   }
3599 
3600   if (!DontDefer) {
3601     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3602     // each other bottoming out with the base dtor.  Therefore we emit non-base
3603     // dtors on usage, even if there is no dtor definition in the TU.
3604     if (D && isa<CXXDestructorDecl>(D) &&
3605         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3606                                            GD.getDtorType()))
3607       addDeferredDeclToEmit(GD);
3608 
3609     // This is the first use or definition of a mangled name.  If there is a
3610     // deferred decl with this name, remember that we need to emit it at the end
3611     // of the file.
3612     auto DDI = DeferredDecls.find(MangledName);
3613     if (DDI != DeferredDecls.end()) {
3614       // Move the potentially referenced deferred decl to the
3615       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3616       // don't need it anymore).
3617       addDeferredDeclToEmit(DDI->second);
3618       DeferredDecls.erase(DDI);
3619 
3620       // Otherwise, there are cases we have to worry about where we're
3621       // using a declaration for which we must emit a definition but where
3622       // we might not find a top-level definition:
3623       //   - member functions defined inline in their classes
3624       //   - friend functions defined inline in some class
3625       //   - special member functions with implicit definitions
3626       // If we ever change our AST traversal to walk into class methods,
3627       // this will be unnecessary.
3628       //
3629       // We also don't emit a definition for a function if it's going to be an
3630       // entry in a vtable, unless it's already marked as used.
3631     } else if (getLangOpts().CPlusPlus && D) {
3632       // Look for a declaration that's lexically in a record.
3633       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3634            FD = FD->getPreviousDecl()) {
3635         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3636           if (FD->doesThisDeclarationHaveABody()) {
3637             addDeferredDeclToEmit(GD.getWithDecl(FD));
3638             break;
3639           }
3640         }
3641       }
3642     }
3643   }
3644 
3645   // Make sure the result is of the requested type.
3646   if (!IsIncompleteFunction) {
3647     assert(F->getFunctionType() == Ty);
3648     return F;
3649   }
3650 
3651   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3652   return llvm::ConstantExpr::getBitCast(F, PTy);
3653 }
3654 
3655 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3656 /// non-null, then this function will use the specified type if it has to
3657 /// create it (this occurs when we see a definition of the function).
3658 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3659                                                  llvm::Type *Ty,
3660                                                  bool ForVTable,
3661                                                  bool DontDefer,
3662                                               ForDefinition_t IsForDefinition) {
3663   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3664          "consteval function should never be emitted");
3665   // If there was no specific requested type, just convert it now.
3666   if (!Ty) {
3667     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3668     Ty = getTypes().ConvertType(FD->getType());
3669   }
3670 
3671   // Devirtualized destructor calls may come through here instead of via
3672   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3673   // of the complete destructor when necessary.
3674   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3675     if (getTarget().getCXXABI().isMicrosoft() &&
3676         GD.getDtorType() == Dtor_Complete &&
3677         DD->getParent()->getNumVBases() == 0)
3678       GD = GlobalDecl(DD, Dtor_Base);
3679   }
3680 
3681   StringRef MangledName = getMangledName(GD);
3682   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3683                                     /*IsThunk=*/false, llvm::AttributeList(),
3684                                     IsForDefinition);
3685   // Returns kernel handle for HIP kernel stub function.
3686   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3687       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3688     auto *Handle = getCUDARuntime().getKernelHandle(
3689         cast<llvm::Function>(F->stripPointerCasts()), GD);
3690     if (IsForDefinition)
3691       return F;
3692     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3693   }
3694   return F;
3695 }
3696 
3697 static const FunctionDecl *
3698 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3699   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3700   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3701 
3702   IdentifierInfo &CII = C.Idents.get(Name);
3703   for (const auto *Result : DC->lookup(&CII))
3704     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3705       return FD;
3706 
3707   if (!C.getLangOpts().CPlusPlus)
3708     return nullptr;
3709 
3710   // Demangle the premangled name from getTerminateFn()
3711   IdentifierInfo &CXXII =
3712       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3713           ? C.Idents.get("terminate")
3714           : C.Idents.get(Name);
3715 
3716   for (const auto &N : {"__cxxabiv1", "std"}) {
3717     IdentifierInfo &NS = C.Idents.get(N);
3718     for (const auto *Result : DC->lookup(&NS)) {
3719       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3720       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3721         for (const auto *Result : LSD->lookup(&NS))
3722           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3723             break;
3724 
3725       if (ND)
3726         for (const auto *Result : ND->lookup(&CXXII))
3727           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3728             return FD;
3729     }
3730   }
3731 
3732   return nullptr;
3733 }
3734 
3735 /// CreateRuntimeFunction - Create a new runtime function with the specified
3736 /// type and name.
3737 llvm::FunctionCallee
3738 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3739                                      llvm::AttributeList ExtraAttrs, bool Local,
3740                                      bool AssumeConvergent) {
3741   if (AssumeConvergent) {
3742     ExtraAttrs =
3743         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3744                                 llvm::Attribute::Convergent);
3745   }
3746 
3747   llvm::Constant *C =
3748       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3749                               /*DontDefer=*/false, /*IsThunk=*/false,
3750                               ExtraAttrs);
3751 
3752   if (auto *F = dyn_cast<llvm::Function>(C)) {
3753     if (F->empty()) {
3754       F->setCallingConv(getRuntimeCC());
3755 
3756       // In Windows Itanium environments, try to mark runtime functions
3757       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3758       // will link their standard library statically or dynamically. Marking
3759       // functions imported when they are not imported can cause linker errors
3760       // and warnings.
3761       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3762           !getCodeGenOpts().LTOVisibilityPublicStd) {
3763         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3764         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3765           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3766           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3767         }
3768       }
3769       setDSOLocal(F);
3770     }
3771   }
3772 
3773   return {FTy, C};
3774 }
3775 
3776 /// isTypeConstant - Determine whether an object of this type can be emitted
3777 /// as a constant.
3778 ///
3779 /// If ExcludeCtor is true, the duration when the object's constructor runs
3780 /// will not be considered. The caller will need to verify that the object is
3781 /// not written to during its construction.
3782 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3783   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3784     return false;
3785 
3786   if (Context.getLangOpts().CPlusPlus) {
3787     if (const CXXRecordDecl *Record
3788           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3789       return ExcludeCtor && !Record->hasMutableFields() &&
3790              Record->hasTrivialDestructor();
3791   }
3792 
3793   return true;
3794 }
3795 
3796 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3797 /// create and return an llvm GlobalVariable with the specified type and address
3798 /// space. If there is something in the module with the specified name, return
3799 /// it potentially bitcasted to the right type.
3800 ///
3801 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3802 /// to set the attributes on the global when it is first created.
3803 ///
3804 /// If IsForDefinition is true, it is guaranteed that an actual global with
3805 /// type Ty will be returned, not conversion of a variable with the same
3806 /// mangled name but some other type.
3807 llvm::Constant *
3808 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3809                                      unsigned AddrSpace, const VarDecl *D,
3810                                      ForDefinition_t IsForDefinition) {
3811   // Lookup the entry, lazily creating it if necessary.
3812   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3813   if (Entry) {
3814     if (WeakRefReferences.erase(Entry)) {
3815       if (D && !D->hasAttr<WeakAttr>())
3816         Entry->setLinkage(llvm::Function::ExternalLinkage);
3817     }
3818 
3819     // Handle dropped DLL attributes.
3820     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3821       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3822 
3823     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3824       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3825 
3826     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace)
3827       return Entry;
3828 
3829     // If there are two attempts to define the same mangled name, issue an
3830     // error.
3831     if (IsForDefinition && !Entry->isDeclaration()) {
3832       GlobalDecl OtherGD;
3833       const VarDecl *OtherD;
3834 
3835       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3836       // to make sure that we issue an error only once.
3837       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3838           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3839           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3840           OtherD->hasInit() &&
3841           DiagnosedConflictingDefinitions.insert(D).second) {
3842         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3843             << MangledName;
3844         getDiags().Report(OtherGD.getDecl()->getLocation(),
3845                           diag::note_previous_definition);
3846       }
3847     }
3848 
3849     // Make sure the result is of the correct type.
3850     if (Entry->getType()->getAddressSpace() != AddrSpace) {
3851       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3852                                                   Ty->getPointerTo(AddrSpace));
3853     }
3854 
3855     // (If global is requested for a definition, we always need to create a new
3856     // global, not just return a bitcast.)
3857     if (!IsForDefinition)
3858       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace));
3859   }
3860 
3861   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3862   auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace);
3863 
3864   auto *GV = new llvm::GlobalVariable(
3865       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3866       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3867       TargetAddrSpace);
3868 
3869   // If we already created a global with the same mangled name (but different
3870   // type) before, take its name and remove it from its parent.
3871   if (Entry) {
3872     GV->takeName(Entry);
3873 
3874     if (!Entry->use_empty()) {
3875       llvm::Constant *NewPtrForOldDecl =
3876           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3877       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3878     }
3879 
3880     Entry->eraseFromParent();
3881   }
3882 
3883   // This is the first use or definition of a mangled name.  If there is a
3884   // deferred decl with this name, remember that we need to emit it at the end
3885   // of the file.
3886   auto DDI = DeferredDecls.find(MangledName);
3887   if (DDI != DeferredDecls.end()) {
3888     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3889     // list, and remove it from DeferredDecls (since we don't need it anymore).
3890     addDeferredDeclToEmit(DDI->second);
3891     DeferredDecls.erase(DDI);
3892   }
3893 
3894   // Handle things which are present even on external declarations.
3895   if (D) {
3896     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3897       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3898 
3899     // FIXME: This code is overly simple and should be merged with other global
3900     // handling.
3901     GV->setConstant(isTypeConstant(D->getType(), false));
3902 
3903     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3904 
3905     setLinkageForGV(GV, D);
3906 
3907     if (D->getTLSKind()) {
3908       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3909         CXXThreadLocals.push_back(D);
3910       setTLSMode(GV, *D);
3911     }
3912 
3913     setGVProperties(GV, D);
3914 
3915     // If required by the ABI, treat declarations of static data members with
3916     // inline initializers as definitions.
3917     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3918       EmitGlobalVarDefinition(D);
3919     }
3920 
3921     // Emit section information for extern variables.
3922     if (D->hasExternalStorage()) {
3923       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3924         GV->setSection(SA->getName());
3925     }
3926 
3927     // Handle XCore specific ABI requirements.
3928     if (getTriple().getArch() == llvm::Triple::xcore &&
3929         D->getLanguageLinkage() == CLanguageLinkage &&
3930         D->getType().isConstant(Context) &&
3931         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3932       GV->setSection(".cp.rodata");
3933 
3934     // Check if we a have a const declaration with an initializer, we may be
3935     // able to emit it as available_externally to expose it's value to the
3936     // optimizer.
3937     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3938         D->getType().isConstQualified() && !GV->hasInitializer() &&
3939         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3940       const auto *Record =
3941           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3942       bool HasMutableFields = Record && Record->hasMutableFields();
3943       if (!HasMutableFields) {
3944         const VarDecl *InitDecl;
3945         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3946         if (InitExpr) {
3947           ConstantEmitter emitter(*this);
3948           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3949           if (Init) {
3950             auto *InitType = Init->getType();
3951             if (GV->getValueType() != InitType) {
3952               // The type of the initializer does not match the definition.
3953               // This happens when an initializer has a different type from
3954               // the type of the global (because of padding at the end of a
3955               // structure for instance).
3956               GV->setName(StringRef());
3957               // Make a new global with the correct type, this is now guaranteed
3958               // to work.
3959               auto *NewGV = cast<llvm::GlobalVariable>(
3960                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3961                       ->stripPointerCasts());
3962 
3963               // Erase the old global, since it is no longer used.
3964               GV->eraseFromParent();
3965               GV = NewGV;
3966             } else {
3967               GV->setInitializer(Init);
3968               GV->setConstant(true);
3969               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3970             }
3971             emitter.finalize(GV);
3972           }
3973         }
3974       }
3975     }
3976   }
3977 
3978   if (GV->isDeclaration()) {
3979     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3980     // External HIP managed variables needed to be recorded for transformation
3981     // in both device and host compilations.
3982     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3983         D->hasExternalStorage())
3984       getCUDARuntime().handleVarRegistration(D, *GV);
3985   }
3986 
3987   LangAS ExpectedAS =
3988       D ? D->getType().getAddressSpace()
3989         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3990   assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace);
3991   if (DAddrSpace != ExpectedAS) {
3992     return getTargetCodeGenInfo().performAddrSpaceCast(
3993         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace));
3994   }
3995 
3996   return GV;
3997 }
3998 
3999 llvm::Constant *
4000 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4001   const Decl *D = GD.getDecl();
4002 
4003   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4004     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4005                                 /*DontDefer=*/false, IsForDefinition);
4006 
4007   if (isa<CXXMethodDecl>(D)) {
4008     auto FInfo =
4009         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4010     auto Ty = getTypes().GetFunctionType(*FInfo);
4011     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4012                              IsForDefinition);
4013   }
4014 
4015   if (isa<FunctionDecl>(D)) {
4016     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4017     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4018     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4019                              IsForDefinition);
4020   }
4021 
4022   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4023 }
4024 
4025 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4026     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4027     unsigned Alignment) {
4028   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4029   llvm::GlobalVariable *OldGV = nullptr;
4030 
4031   if (GV) {
4032     // Check if the variable has the right type.
4033     if (GV->getValueType() == Ty)
4034       return GV;
4035 
4036     // Because C++ name mangling, the only way we can end up with an already
4037     // existing global with the same name is if it has been declared extern "C".
4038     assert(GV->isDeclaration() && "Declaration has wrong type!");
4039     OldGV = GV;
4040   }
4041 
4042   // Create a new variable.
4043   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4044                                 Linkage, nullptr, Name);
4045 
4046   if (OldGV) {
4047     // Replace occurrences of the old variable if needed.
4048     GV->takeName(OldGV);
4049 
4050     if (!OldGV->use_empty()) {
4051       llvm::Constant *NewPtrForOldDecl =
4052       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4053       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4054     }
4055 
4056     OldGV->eraseFromParent();
4057   }
4058 
4059   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4060       !GV->hasAvailableExternallyLinkage())
4061     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4062 
4063   GV->setAlignment(llvm::MaybeAlign(Alignment));
4064 
4065   return GV;
4066 }
4067 
4068 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4069 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4070 /// then it will be created with the specified type instead of whatever the
4071 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4072 /// that an actual global with type Ty will be returned, not conversion of a
4073 /// variable with the same mangled name but some other type.
4074 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4075                                                   llvm::Type *Ty,
4076                                            ForDefinition_t IsForDefinition) {
4077   assert(D->hasGlobalStorage() && "Not a global variable");
4078   QualType ASTTy = D->getType();
4079   if (!Ty)
4080     Ty = getTypes().ConvertTypeForMem(ASTTy);
4081 
4082   StringRef MangledName = getMangledName(D);
4083   return GetOrCreateLLVMGlobal(MangledName, Ty,
4084                                getContext().getTargetAddressSpace(ASTTy), D,
4085                                IsForDefinition);
4086 }
4087 
4088 /// CreateRuntimeVariable - Create a new runtime global variable with the
4089 /// specified type and name.
4090 llvm::Constant *
4091 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4092                                      StringRef Name) {
4093   auto AddrSpace =
4094       getContext().getLangOpts().OpenCL
4095           ? getContext().getTargetAddressSpace(LangAS::opencl_global)
4096           : 0;
4097   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4098   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4099   return Ret;
4100 }
4101 
4102 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4103   assert(!D->getInit() && "Cannot emit definite definitions here!");
4104 
4105   StringRef MangledName = getMangledName(D);
4106   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4107 
4108   // We already have a definition, not declaration, with the same mangled name.
4109   // Emitting of declaration is not required (and actually overwrites emitted
4110   // definition).
4111   if (GV && !GV->isDeclaration())
4112     return;
4113 
4114   // If we have not seen a reference to this variable yet, place it into the
4115   // deferred declarations table to be emitted if needed later.
4116   if (!MustBeEmitted(D) && !GV) {
4117       DeferredDecls[MangledName] = D;
4118       return;
4119   }
4120 
4121   // The tentative definition is the only definition.
4122   EmitGlobalVarDefinition(D);
4123 }
4124 
4125 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4126   EmitExternalVarDeclaration(D);
4127 }
4128 
4129 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4130   return Context.toCharUnitsFromBits(
4131       getDataLayout().getTypeStoreSizeInBits(Ty));
4132 }
4133 
4134 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4135   LangAS AddrSpace = LangAS::Default;
4136   if (LangOpts.OpenCL) {
4137     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4138     assert(AddrSpace == LangAS::opencl_global ||
4139            AddrSpace == LangAS::opencl_global_device ||
4140            AddrSpace == LangAS::opencl_global_host ||
4141            AddrSpace == LangAS::opencl_constant ||
4142            AddrSpace == LangAS::opencl_local ||
4143            AddrSpace >= LangAS::FirstTargetAddressSpace);
4144     return AddrSpace;
4145   }
4146 
4147   if (LangOpts.SYCLIsDevice &&
4148       (!D || D->getType().getAddressSpace() == LangAS::Default))
4149     return LangAS::sycl_global;
4150 
4151   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4152     if (D && D->hasAttr<CUDAConstantAttr>())
4153       return LangAS::cuda_constant;
4154     else if (D && D->hasAttr<CUDASharedAttr>())
4155       return LangAS::cuda_shared;
4156     else if (D && D->hasAttr<CUDADeviceAttr>())
4157       return LangAS::cuda_device;
4158     else if (D && D->getType().isConstQualified())
4159       return LangAS::cuda_constant;
4160     else
4161       return LangAS::cuda_device;
4162   }
4163 
4164   if (LangOpts.OpenMP) {
4165     LangAS AS;
4166     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4167       return AS;
4168   }
4169   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4170 }
4171 
4172 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4173   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4174   if (LangOpts.OpenCL)
4175     return LangAS::opencl_constant;
4176   if (LangOpts.SYCLIsDevice)
4177     return LangAS::sycl_global;
4178   if (auto AS = getTarget().getConstantAddressSpace())
4179     return AS.getValue();
4180   return LangAS::Default;
4181 }
4182 
4183 // In address space agnostic languages, string literals are in default address
4184 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4185 // emitted in constant address space in LLVM IR. To be consistent with other
4186 // parts of AST, string literal global variables in constant address space
4187 // need to be casted to default address space before being put into address
4188 // map and referenced by other part of CodeGen.
4189 // In OpenCL, string literals are in constant address space in AST, therefore
4190 // they should not be casted to default address space.
4191 static llvm::Constant *
4192 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4193                                        llvm::GlobalVariable *GV) {
4194   llvm::Constant *Cast = GV;
4195   if (!CGM.getLangOpts().OpenCL) {
4196     auto AS = CGM.GetGlobalConstantAddressSpace();
4197     if (AS != LangAS::Default)
4198       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4199           CGM, GV, AS, LangAS::Default,
4200           GV->getValueType()->getPointerTo(
4201               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4202   }
4203   return Cast;
4204 }
4205 
4206 template<typename SomeDecl>
4207 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4208                                                llvm::GlobalValue *GV) {
4209   if (!getLangOpts().CPlusPlus)
4210     return;
4211 
4212   // Must have 'used' attribute, or else inline assembly can't rely on
4213   // the name existing.
4214   if (!D->template hasAttr<UsedAttr>())
4215     return;
4216 
4217   // Must have internal linkage and an ordinary name.
4218   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4219     return;
4220 
4221   // Must be in an extern "C" context. Entities declared directly within
4222   // a record are not extern "C" even if the record is in such a context.
4223   const SomeDecl *First = D->getFirstDecl();
4224   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4225     return;
4226 
4227   // OK, this is an internal linkage entity inside an extern "C" linkage
4228   // specification. Make a note of that so we can give it the "expected"
4229   // mangled name if nothing else is using that name.
4230   std::pair<StaticExternCMap::iterator, bool> R =
4231       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4232 
4233   // If we have multiple internal linkage entities with the same name
4234   // in extern "C" regions, none of them gets that name.
4235   if (!R.second)
4236     R.first->second = nullptr;
4237 }
4238 
4239 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4240   if (!CGM.supportsCOMDAT())
4241     return false;
4242 
4243   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4244   // them being "merged" by the COMDAT Folding linker optimization.
4245   if (D.hasAttr<CUDAGlobalAttr>())
4246     return false;
4247 
4248   if (D.hasAttr<SelectAnyAttr>())
4249     return true;
4250 
4251   GVALinkage Linkage;
4252   if (auto *VD = dyn_cast<VarDecl>(&D))
4253     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4254   else
4255     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4256 
4257   switch (Linkage) {
4258   case GVA_Internal:
4259   case GVA_AvailableExternally:
4260   case GVA_StrongExternal:
4261     return false;
4262   case GVA_DiscardableODR:
4263   case GVA_StrongODR:
4264     return true;
4265   }
4266   llvm_unreachable("No such linkage");
4267 }
4268 
4269 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4270                                           llvm::GlobalObject &GO) {
4271   if (!shouldBeInCOMDAT(*this, D))
4272     return;
4273   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4274 }
4275 
4276 /// Pass IsTentative as true if you want to create a tentative definition.
4277 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4278                                             bool IsTentative) {
4279   // OpenCL global variables of sampler type are translated to function calls,
4280   // therefore no need to be translated.
4281   QualType ASTTy = D->getType();
4282   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4283     return;
4284 
4285   // If this is OpenMP device, check if it is legal to emit this global
4286   // normally.
4287   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4288       OpenMPRuntime->emitTargetGlobalVariable(D))
4289     return;
4290 
4291   llvm::TrackingVH<llvm::Constant> Init;
4292   bool NeedsGlobalCtor = false;
4293   bool NeedsGlobalDtor =
4294       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4295 
4296   const VarDecl *InitDecl;
4297   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4298 
4299   Optional<ConstantEmitter> emitter;
4300 
4301   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4302   // as part of their declaration."  Sema has already checked for
4303   // error cases, so we just need to set Init to UndefValue.
4304   bool IsCUDASharedVar =
4305       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4306   // Shadows of initialized device-side global variables are also left
4307   // undefined.
4308   // Managed Variables should be initialized on both host side and device side.
4309   bool IsCUDAShadowVar =
4310       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4311       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4312        D->hasAttr<CUDASharedAttr>());
4313   bool IsCUDADeviceShadowVar =
4314       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4315       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4316        D->getType()->isCUDADeviceBuiltinTextureType());
4317   if (getLangOpts().CUDA &&
4318       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4319     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4320   else if (D->hasAttr<LoaderUninitializedAttr>())
4321     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4322   else if (!InitExpr) {
4323     // This is a tentative definition; tentative definitions are
4324     // implicitly initialized with { 0 }.
4325     //
4326     // Note that tentative definitions are only emitted at the end of
4327     // a translation unit, so they should never have incomplete
4328     // type. In addition, EmitTentativeDefinition makes sure that we
4329     // never attempt to emit a tentative definition if a real one
4330     // exists. A use may still exists, however, so we still may need
4331     // to do a RAUW.
4332     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4333     Init = EmitNullConstant(D->getType());
4334   } else {
4335     initializedGlobalDecl = GlobalDecl(D);
4336     emitter.emplace(*this);
4337     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4338     if (!Initializer) {
4339       QualType T = InitExpr->getType();
4340       if (D->getType()->isReferenceType())
4341         T = D->getType();
4342 
4343       if (getLangOpts().CPlusPlus) {
4344         Init = EmitNullConstant(T);
4345         NeedsGlobalCtor = true;
4346       } else {
4347         ErrorUnsupported(D, "static initializer");
4348         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4349       }
4350     } else {
4351       Init = Initializer;
4352       // We don't need an initializer, so remove the entry for the delayed
4353       // initializer position (just in case this entry was delayed) if we
4354       // also don't need to register a destructor.
4355       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4356         DelayedCXXInitPosition.erase(D);
4357     }
4358   }
4359 
4360   llvm::Type* InitType = Init->getType();
4361   llvm::Constant *Entry =
4362       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4363 
4364   // Strip off pointer casts if we got them.
4365   Entry = Entry->stripPointerCasts();
4366 
4367   // Entry is now either a Function or GlobalVariable.
4368   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4369 
4370   // We have a definition after a declaration with the wrong type.
4371   // We must make a new GlobalVariable* and update everything that used OldGV
4372   // (a declaration or tentative definition) with the new GlobalVariable*
4373   // (which will be a definition).
4374   //
4375   // This happens if there is a prototype for a global (e.g.
4376   // "extern int x[];") and then a definition of a different type (e.g.
4377   // "int x[10];"). This also happens when an initializer has a different type
4378   // from the type of the global (this happens with unions).
4379   if (!GV || GV->getValueType() != InitType ||
4380       GV->getType()->getAddressSpace() !=
4381           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4382 
4383     // Move the old entry aside so that we'll create a new one.
4384     Entry->setName(StringRef());
4385 
4386     // Make a new global with the correct type, this is now guaranteed to work.
4387     GV = cast<llvm::GlobalVariable>(
4388         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4389             ->stripPointerCasts());
4390 
4391     // Replace all uses of the old global with the new global
4392     llvm::Constant *NewPtrForOldDecl =
4393         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4394                                                              Entry->getType());
4395     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4396 
4397     // Erase the old global, since it is no longer used.
4398     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4399   }
4400 
4401   MaybeHandleStaticInExternC(D, GV);
4402 
4403   if (D->hasAttr<AnnotateAttr>())
4404     AddGlobalAnnotations(D, GV);
4405 
4406   // Set the llvm linkage type as appropriate.
4407   llvm::GlobalValue::LinkageTypes Linkage =
4408       getLLVMLinkageVarDefinition(D, GV->isConstant());
4409 
4410   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4411   // the device. [...]"
4412   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4413   // __device__, declares a variable that: [...]
4414   // Is accessible from all the threads within the grid and from the host
4415   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4416   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4417   if (GV && LangOpts.CUDA) {
4418     if (LangOpts.CUDAIsDevice) {
4419       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4420           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4421         GV->setExternallyInitialized(true);
4422     } else {
4423       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4424     }
4425     getCUDARuntime().handleVarRegistration(D, *GV);
4426   }
4427 
4428   GV->setInitializer(Init);
4429   if (emitter)
4430     emitter->finalize(GV);
4431 
4432   // If it is safe to mark the global 'constant', do so now.
4433   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4434                   isTypeConstant(D->getType(), true));
4435 
4436   // If it is in a read-only section, mark it 'constant'.
4437   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4438     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4439     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4440       GV->setConstant(true);
4441   }
4442 
4443   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4444 
4445   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4446   // function is only defined alongside the variable, not also alongside
4447   // callers. Normally, all accesses to a thread_local go through the
4448   // thread-wrapper in order to ensure initialization has occurred, underlying
4449   // variable will never be used other than the thread-wrapper, so it can be
4450   // converted to internal linkage.
4451   //
4452   // However, if the variable has the 'constinit' attribute, it _can_ be
4453   // referenced directly, without calling the thread-wrapper, so the linkage
4454   // must not be changed.
4455   //
4456   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4457   // weak or linkonce, the de-duplication semantics are important to preserve,
4458   // so we don't change the linkage.
4459   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4460       Linkage == llvm::GlobalValue::ExternalLinkage &&
4461       Context.getTargetInfo().getTriple().isOSDarwin() &&
4462       !D->hasAttr<ConstInitAttr>())
4463     Linkage = llvm::GlobalValue::InternalLinkage;
4464 
4465   GV->setLinkage(Linkage);
4466   if (D->hasAttr<DLLImportAttr>())
4467     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4468   else if (D->hasAttr<DLLExportAttr>())
4469     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4470   else
4471     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4472 
4473   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4474     // common vars aren't constant even if declared const.
4475     GV->setConstant(false);
4476     // Tentative definition of global variables may be initialized with
4477     // non-zero null pointers. In this case they should have weak linkage
4478     // since common linkage must have zero initializer and must not have
4479     // explicit section therefore cannot have non-zero initial value.
4480     if (!GV->getInitializer()->isNullValue())
4481       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4482   }
4483 
4484   setNonAliasAttributes(D, GV);
4485 
4486   if (D->getTLSKind() && !GV->isThreadLocal()) {
4487     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4488       CXXThreadLocals.push_back(D);
4489     setTLSMode(GV, *D);
4490   }
4491 
4492   maybeSetTrivialComdat(*D, *GV);
4493 
4494   // Emit the initializer function if necessary.
4495   if (NeedsGlobalCtor || NeedsGlobalDtor)
4496     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4497 
4498   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4499 
4500   // Emit global variable debug information.
4501   if (CGDebugInfo *DI = getModuleDebugInfo())
4502     if (getCodeGenOpts().hasReducedDebugInfo())
4503       DI->EmitGlobalVariable(GV, D);
4504 }
4505 
4506 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4507   if (CGDebugInfo *DI = getModuleDebugInfo())
4508     if (getCodeGenOpts().hasReducedDebugInfo()) {
4509       QualType ASTTy = D->getType();
4510       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4511       llvm::Constant *GV = GetOrCreateLLVMGlobal(
4512           D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D);
4513       DI->EmitExternalVariable(
4514           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4515     }
4516 }
4517 
4518 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4519                                       CodeGenModule &CGM, const VarDecl *D,
4520                                       bool NoCommon) {
4521   // Don't give variables common linkage if -fno-common was specified unless it
4522   // was overridden by a NoCommon attribute.
4523   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4524     return true;
4525 
4526   // C11 6.9.2/2:
4527   //   A declaration of an identifier for an object that has file scope without
4528   //   an initializer, and without a storage-class specifier or with the
4529   //   storage-class specifier static, constitutes a tentative definition.
4530   if (D->getInit() || D->hasExternalStorage())
4531     return true;
4532 
4533   // A variable cannot be both common and exist in a section.
4534   if (D->hasAttr<SectionAttr>())
4535     return true;
4536 
4537   // A variable cannot be both common and exist in a section.
4538   // We don't try to determine which is the right section in the front-end.
4539   // If no specialized section name is applicable, it will resort to default.
4540   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4541       D->hasAttr<PragmaClangDataSectionAttr>() ||
4542       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4543       D->hasAttr<PragmaClangRodataSectionAttr>())
4544     return true;
4545 
4546   // Thread local vars aren't considered common linkage.
4547   if (D->getTLSKind())
4548     return true;
4549 
4550   // Tentative definitions marked with WeakImportAttr are true definitions.
4551   if (D->hasAttr<WeakImportAttr>())
4552     return true;
4553 
4554   // A variable cannot be both common and exist in a comdat.
4555   if (shouldBeInCOMDAT(CGM, *D))
4556     return true;
4557 
4558   // Declarations with a required alignment do not have common linkage in MSVC
4559   // mode.
4560   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4561     if (D->hasAttr<AlignedAttr>())
4562       return true;
4563     QualType VarType = D->getType();
4564     if (Context.isAlignmentRequired(VarType))
4565       return true;
4566 
4567     if (const auto *RT = VarType->getAs<RecordType>()) {
4568       const RecordDecl *RD = RT->getDecl();
4569       for (const FieldDecl *FD : RD->fields()) {
4570         if (FD->isBitField())
4571           continue;
4572         if (FD->hasAttr<AlignedAttr>())
4573           return true;
4574         if (Context.isAlignmentRequired(FD->getType()))
4575           return true;
4576       }
4577     }
4578   }
4579 
4580   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4581   // common symbols, so symbols with greater alignment requirements cannot be
4582   // common.
4583   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4584   // alignments for common symbols via the aligncomm directive, so this
4585   // restriction only applies to MSVC environments.
4586   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4587       Context.getTypeAlignIfKnown(D->getType()) >
4588           Context.toBits(CharUnits::fromQuantity(32)))
4589     return true;
4590 
4591   return false;
4592 }
4593 
4594 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4595     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4596   if (Linkage == GVA_Internal)
4597     return llvm::Function::InternalLinkage;
4598 
4599   if (D->hasAttr<WeakAttr>()) {
4600     if (IsConstantVariable)
4601       return llvm::GlobalVariable::WeakODRLinkage;
4602     else
4603       return llvm::GlobalVariable::WeakAnyLinkage;
4604   }
4605 
4606   if (const auto *FD = D->getAsFunction())
4607     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4608       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4609 
4610   // We are guaranteed to have a strong definition somewhere else,
4611   // so we can use available_externally linkage.
4612   if (Linkage == GVA_AvailableExternally)
4613     return llvm::GlobalValue::AvailableExternallyLinkage;
4614 
4615   // Note that Apple's kernel linker doesn't support symbol
4616   // coalescing, so we need to avoid linkonce and weak linkages there.
4617   // Normally, this means we just map to internal, but for explicit
4618   // instantiations we'll map to external.
4619 
4620   // In C++, the compiler has to emit a definition in every translation unit
4621   // that references the function.  We should use linkonce_odr because
4622   // a) if all references in this translation unit are optimized away, we
4623   // don't need to codegen it.  b) if the function persists, it needs to be
4624   // merged with other definitions. c) C++ has the ODR, so we know the
4625   // definition is dependable.
4626   if (Linkage == GVA_DiscardableODR)
4627     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4628                                             : llvm::Function::InternalLinkage;
4629 
4630   // An explicit instantiation of a template has weak linkage, since
4631   // explicit instantiations can occur in multiple translation units
4632   // and must all be equivalent. However, we are not allowed to
4633   // throw away these explicit instantiations.
4634   //
4635   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4636   // so say that CUDA templates are either external (for kernels) or internal.
4637   // This lets llvm perform aggressive inter-procedural optimizations. For
4638   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4639   // therefore we need to follow the normal linkage paradigm.
4640   if (Linkage == GVA_StrongODR) {
4641     if (getLangOpts().AppleKext)
4642       return llvm::Function::ExternalLinkage;
4643     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4644         !getLangOpts().GPURelocatableDeviceCode)
4645       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4646                                           : llvm::Function::InternalLinkage;
4647     return llvm::Function::WeakODRLinkage;
4648   }
4649 
4650   // C++ doesn't have tentative definitions and thus cannot have common
4651   // linkage.
4652   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4653       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4654                                  CodeGenOpts.NoCommon))
4655     return llvm::GlobalVariable::CommonLinkage;
4656 
4657   // selectany symbols are externally visible, so use weak instead of
4658   // linkonce.  MSVC optimizes away references to const selectany globals, so
4659   // all definitions should be the same and ODR linkage should be used.
4660   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4661   if (D->hasAttr<SelectAnyAttr>())
4662     return llvm::GlobalVariable::WeakODRLinkage;
4663 
4664   // Otherwise, we have strong external linkage.
4665   assert(Linkage == GVA_StrongExternal);
4666   return llvm::GlobalVariable::ExternalLinkage;
4667 }
4668 
4669 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4670     const VarDecl *VD, bool IsConstant) {
4671   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4672   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4673 }
4674 
4675 /// Replace the uses of a function that was declared with a non-proto type.
4676 /// We want to silently drop extra arguments from call sites
4677 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4678                                           llvm::Function *newFn) {
4679   // Fast path.
4680   if (old->use_empty()) return;
4681 
4682   llvm::Type *newRetTy = newFn->getReturnType();
4683   SmallVector<llvm::Value*, 4> newArgs;
4684 
4685   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4686          ui != ue; ) {
4687     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4688     llvm::User *user = use->getUser();
4689 
4690     // Recognize and replace uses of bitcasts.  Most calls to
4691     // unprototyped functions will use bitcasts.
4692     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4693       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4694         replaceUsesOfNonProtoConstant(bitcast, newFn);
4695       continue;
4696     }
4697 
4698     // Recognize calls to the function.
4699     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4700     if (!callSite) continue;
4701     if (!callSite->isCallee(&*use))
4702       continue;
4703 
4704     // If the return types don't match exactly, then we can't
4705     // transform this call unless it's dead.
4706     if (callSite->getType() != newRetTy && !callSite->use_empty())
4707       continue;
4708 
4709     // Get the call site's attribute list.
4710     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4711     llvm::AttributeList oldAttrs = callSite->getAttributes();
4712 
4713     // If the function was passed too few arguments, don't transform.
4714     unsigned newNumArgs = newFn->arg_size();
4715     if (callSite->arg_size() < newNumArgs)
4716       continue;
4717 
4718     // If extra arguments were passed, we silently drop them.
4719     // If any of the types mismatch, we don't transform.
4720     unsigned argNo = 0;
4721     bool dontTransform = false;
4722     for (llvm::Argument &A : newFn->args()) {
4723       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4724         dontTransform = true;
4725         break;
4726       }
4727 
4728       // Add any parameter attributes.
4729       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4730       argNo++;
4731     }
4732     if (dontTransform)
4733       continue;
4734 
4735     // Okay, we can transform this.  Create the new call instruction and copy
4736     // over the required information.
4737     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4738 
4739     // Copy over any operand bundles.
4740     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4741     callSite->getOperandBundlesAsDefs(newBundles);
4742 
4743     llvm::CallBase *newCall;
4744     if (dyn_cast<llvm::CallInst>(callSite)) {
4745       newCall =
4746           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4747     } else {
4748       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4749       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4750                                          oldInvoke->getUnwindDest(), newArgs,
4751                                          newBundles, "", callSite);
4752     }
4753     newArgs.clear(); // for the next iteration
4754 
4755     if (!newCall->getType()->isVoidTy())
4756       newCall->takeName(callSite);
4757     newCall->setAttributes(llvm::AttributeList::get(
4758         newFn->getContext(), oldAttrs.getFnAttributes(),
4759         oldAttrs.getRetAttributes(), newArgAttrs));
4760     newCall->setCallingConv(callSite->getCallingConv());
4761 
4762     // Finally, remove the old call, replacing any uses with the new one.
4763     if (!callSite->use_empty())
4764       callSite->replaceAllUsesWith(newCall);
4765 
4766     // Copy debug location attached to CI.
4767     if (callSite->getDebugLoc())
4768       newCall->setDebugLoc(callSite->getDebugLoc());
4769 
4770     callSite->eraseFromParent();
4771   }
4772 }
4773 
4774 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4775 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4776 /// existing call uses of the old function in the module, this adjusts them to
4777 /// call the new function directly.
4778 ///
4779 /// This is not just a cleanup: the always_inline pass requires direct calls to
4780 /// functions to be able to inline them.  If there is a bitcast in the way, it
4781 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4782 /// run at -O0.
4783 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4784                                                       llvm::Function *NewFn) {
4785   // If we're redefining a global as a function, don't transform it.
4786   if (!isa<llvm::Function>(Old)) return;
4787 
4788   replaceUsesOfNonProtoConstant(Old, NewFn);
4789 }
4790 
4791 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4792   auto DK = VD->isThisDeclarationADefinition();
4793   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4794     return;
4795 
4796   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4797   // If we have a definition, this might be a deferred decl. If the
4798   // instantiation is explicit, make sure we emit it at the end.
4799   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4800     GetAddrOfGlobalVar(VD);
4801 
4802   EmitTopLevelDecl(VD);
4803 }
4804 
4805 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4806                                                  llvm::GlobalValue *GV) {
4807   const auto *D = cast<FunctionDecl>(GD.getDecl());
4808 
4809   // Compute the function info and LLVM type.
4810   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4811   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4812 
4813   // Get or create the prototype for the function.
4814   if (!GV || (GV->getValueType() != Ty))
4815     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4816                                                    /*DontDefer=*/true,
4817                                                    ForDefinition));
4818 
4819   // Already emitted.
4820   if (!GV->isDeclaration())
4821     return;
4822 
4823   // We need to set linkage and visibility on the function before
4824   // generating code for it because various parts of IR generation
4825   // want to propagate this information down (e.g. to local static
4826   // declarations).
4827   auto *Fn = cast<llvm::Function>(GV);
4828   setFunctionLinkage(GD, Fn);
4829 
4830   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4831   setGVProperties(Fn, GD);
4832 
4833   MaybeHandleStaticInExternC(D, Fn);
4834 
4835   maybeSetTrivialComdat(*D, *Fn);
4836 
4837   // Set CodeGen attributes that represent floating point environment.
4838   setLLVMFunctionFEnvAttributes(D, Fn);
4839 
4840   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4841 
4842   setNonAliasAttributes(GD, Fn);
4843   SetLLVMFunctionAttributesForDefinition(D, Fn);
4844 
4845   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4846     AddGlobalCtor(Fn, CA->getPriority());
4847   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4848     AddGlobalDtor(Fn, DA->getPriority(), true);
4849   if (D->hasAttr<AnnotateAttr>())
4850     AddGlobalAnnotations(D, Fn);
4851 }
4852 
4853 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4854   const auto *D = cast<ValueDecl>(GD.getDecl());
4855   const AliasAttr *AA = D->getAttr<AliasAttr>();
4856   assert(AA && "Not an alias?");
4857 
4858   StringRef MangledName = getMangledName(GD);
4859 
4860   if (AA->getAliasee() == MangledName) {
4861     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4862     return;
4863   }
4864 
4865   // If there is a definition in the module, then it wins over the alias.
4866   // This is dubious, but allow it to be safe.  Just ignore the alias.
4867   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4868   if (Entry && !Entry->isDeclaration())
4869     return;
4870 
4871   Aliases.push_back(GD);
4872 
4873   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4874 
4875   // Create a reference to the named value.  This ensures that it is emitted
4876   // if a deferred decl.
4877   llvm::Constant *Aliasee;
4878   llvm::GlobalValue::LinkageTypes LT;
4879   if (isa<llvm::FunctionType>(DeclTy)) {
4880     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4881                                       /*ForVTable=*/false);
4882     LT = getFunctionLinkage(GD);
4883   } else {
4884     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0,
4885                                     /*D=*/nullptr);
4886     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4887       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4888     else
4889       LT = getFunctionLinkage(GD);
4890   }
4891 
4892   // Create the new alias itself, but don't set a name yet.
4893   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4894   auto *GA =
4895       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4896 
4897   if (Entry) {
4898     if (GA->getAliasee() == Entry) {
4899       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4900       return;
4901     }
4902 
4903     assert(Entry->isDeclaration());
4904 
4905     // If there is a declaration in the module, then we had an extern followed
4906     // by the alias, as in:
4907     //   extern int test6();
4908     //   ...
4909     //   int test6() __attribute__((alias("test7")));
4910     //
4911     // Remove it and replace uses of it with the alias.
4912     GA->takeName(Entry);
4913 
4914     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4915                                                           Entry->getType()));
4916     Entry->eraseFromParent();
4917   } else {
4918     GA->setName(MangledName);
4919   }
4920 
4921   // Set attributes which are particular to an alias; this is a
4922   // specialization of the attributes which may be set on a global
4923   // variable/function.
4924   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4925       D->isWeakImported()) {
4926     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4927   }
4928 
4929   if (const auto *VD = dyn_cast<VarDecl>(D))
4930     if (VD->getTLSKind())
4931       setTLSMode(GA, *VD);
4932 
4933   SetCommonAttributes(GD, GA);
4934 }
4935 
4936 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4937   const auto *D = cast<ValueDecl>(GD.getDecl());
4938   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4939   assert(IFA && "Not an ifunc?");
4940 
4941   StringRef MangledName = getMangledName(GD);
4942 
4943   if (IFA->getResolver() == MangledName) {
4944     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4945     return;
4946   }
4947 
4948   // Report an error if some definition overrides ifunc.
4949   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4950   if (Entry && !Entry->isDeclaration()) {
4951     GlobalDecl OtherGD;
4952     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4953         DiagnosedConflictingDefinitions.insert(GD).second) {
4954       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4955           << MangledName;
4956       Diags.Report(OtherGD.getDecl()->getLocation(),
4957                    diag::note_previous_definition);
4958     }
4959     return;
4960   }
4961 
4962   Aliases.push_back(GD);
4963 
4964   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4965   llvm::Constant *Resolver =
4966       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4967                               /*ForVTable=*/false);
4968   llvm::GlobalIFunc *GIF =
4969       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4970                                 "", Resolver, &getModule());
4971   if (Entry) {
4972     if (GIF->getResolver() == Entry) {
4973       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4974       return;
4975     }
4976     assert(Entry->isDeclaration());
4977 
4978     // If there is a declaration in the module, then we had an extern followed
4979     // by the ifunc, as in:
4980     //   extern int test();
4981     //   ...
4982     //   int test() __attribute__((ifunc("resolver")));
4983     //
4984     // Remove it and replace uses of it with the ifunc.
4985     GIF->takeName(Entry);
4986 
4987     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4988                                                           Entry->getType()));
4989     Entry->eraseFromParent();
4990   } else
4991     GIF->setName(MangledName);
4992 
4993   SetCommonAttributes(GD, GIF);
4994 }
4995 
4996 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4997                                             ArrayRef<llvm::Type*> Tys) {
4998   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4999                                          Tys);
5000 }
5001 
5002 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5003 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5004                          const StringLiteral *Literal, bool TargetIsLSB,
5005                          bool &IsUTF16, unsigned &StringLength) {
5006   StringRef String = Literal->getString();
5007   unsigned NumBytes = String.size();
5008 
5009   // Check for simple case.
5010   if (!Literal->containsNonAsciiOrNull()) {
5011     StringLength = NumBytes;
5012     return *Map.insert(std::make_pair(String, nullptr)).first;
5013   }
5014 
5015   // Otherwise, convert the UTF8 literals into a string of shorts.
5016   IsUTF16 = true;
5017 
5018   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5019   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5020   llvm::UTF16 *ToPtr = &ToBuf[0];
5021 
5022   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5023                                  ToPtr + NumBytes, llvm::strictConversion);
5024 
5025   // ConvertUTF8toUTF16 returns the length in ToPtr.
5026   StringLength = ToPtr - &ToBuf[0];
5027 
5028   // Add an explicit null.
5029   *ToPtr = 0;
5030   return *Map.insert(std::make_pair(
5031                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5032                                    (StringLength + 1) * 2),
5033                          nullptr)).first;
5034 }
5035 
5036 ConstantAddress
5037 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5038   unsigned StringLength = 0;
5039   bool isUTF16 = false;
5040   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5041       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5042                                getDataLayout().isLittleEndian(), isUTF16,
5043                                StringLength);
5044 
5045   if (auto *C = Entry.second)
5046     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5047 
5048   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5049   llvm::Constant *Zeros[] = { Zero, Zero };
5050 
5051   const ASTContext &Context = getContext();
5052   const llvm::Triple &Triple = getTriple();
5053 
5054   const auto CFRuntime = getLangOpts().CFRuntime;
5055   const bool IsSwiftABI =
5056       static_cast<unsigned>(CFRuntime) >=
5057       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5058   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5059 
5060   // If we don't already have it, get __CFConstantStringClassReference.
5061   if (!CFConstantStringClassRef) {
5062     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5063     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5064     Ty = llvm::ArrayType::get(Ty, 0);
5065 
5066     switch (CFRuntime) {
5067     default: break;
5068     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5069     case LangOptions::CoreFoundationABI::Swift5_0:
5070       CFConstantStringClassName =
5071           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5072                               : "$s10Foundation19_NSCFConstantStringCN";
5073       Ty = IntPtrTy;
5074       break;
5075     case LangOptions::CoreFoundationABI::Swift4_2:
5076       CFConstantStringClassName =
5077           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5078                               : "$S10Foundation19_NSCFConstantStringCN";
5079       Ty = IntPtrTy;
5080       break;
5081     case LangOptions::CoreFoundationABI::Swift4_1:
5082       CFConstantStringClassName =
5083           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5084                               : "__T010Foundation19_NSCFConstantStringCN";
5085       Ty = IntPtrTy;
5086       break;
5087     }
5088 
5089     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5090 
5091     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5092       llvm::GlobalValue *GV = nullptr;
5093 
5094       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5095         IdentifierInfo &II = Context.Idents.get(GV->getName());
5096         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5097         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5098 
5099         const VarDecl *VD = nullptr;
5100         for (const auto *Result : DC->lookup(&II))
5101           if ((VD = dyn_cast<VarDecl>(Result)))
5102             break;
5103 
5104         if (Triple.isOSBinFormatELF()) {
5105           if (!VD)
5106             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5107         } else {
5108           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5109           if (!VD || !VD->hasAttr<DLLExportAttr>())
5110             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5111           else
5112             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5113         }
5114 
5115         setDSOLocal(GV);
5116       }
5117     }
5118 
5119     // Decay array -> ptr
5120     CFConstantStringClassRef =
5121         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5122                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5123   }
5124 
5125   QualType CFTy = Context.getCFConstantStringType();
5126 
5127   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5128 
5129   ConstantInitBuilder Builder(*this);
5130   auto Fields = Builder.beginStruct(STy);
5131 
5132   // Class pointer.
5133   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5134 
5135   // Flags.
5136   if (IsSwiftABI) {
5137     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5138     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5139   } else {
5140     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5141   }
5142 
5143   // String pointer.
5144   llvm::Constant *C = nullptr;
5145   if (isUTF16) {
5146     auto Arr = llvm::makeArrayRef(
5147         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5148         Entry.first().size() / 2);
5149     C = llvm::ConstantDataArray::get(VMContext, Arr);
5150   } else {
5151     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5152   }
5153 
5154   // Note: -fwritable-strings doesn't make the backing store strings of
5155   // CFStrings writable. (See <rdar://problem/10657500>)
5156   auto *GV =
5157       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5158                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5159   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5160   // Don't enforce the target's minimum global alignment, since the only use
5161   // of the string is via this class initializer.
5162   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5163                             : Context.getTypeAlignInChars(Context.CharTy);
5164   GV->setAlignment(Align.getAsAlign());
5165 
5166   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5167   // Without it LLVM can merge the string with a non unnamed_addr one during
5168   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5169   if (Triple.isOSBinFormatMachO())
5170     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5171                            : "__TEXT,__cstring,cstring_literals");
5172   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5173   // the static linker to adjust permissions to read-only later on.
5174   else if (Triple.isOSBinFormatELF())
5175     GV->setSection(".rodata");
5176 
5177   // String.
5178   llvm::Constant *Str =
5179       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5180 
5181   if (isUTF16)
5182     // Cast the UTF16 string to the correct type.
5183     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5184   Fields.add(Str);
5185 
5186   // String length.
5187   llvm::IntegerType *LengthTy =
5188       llvm::IntegerType::get(getModule().getContext(),
5189                              Context.getTargetInfo().getLongWidth());
5190   if (IsSwiftABI) {
5191     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5192         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5193       LengthTy = Int32Ty;
5194     else
5195       LengthTy = IntPtrTy;
5196   }
5197   Fields.addInt(LengthTy, StringLength);
5198 
5199   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5200   // properly aligned on 32-bit platforms.
5201   CharUnits Alignment =
5202       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5203 
5204   // The struct.
5205   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5206                                     /*isConstant=*/false,
5207                                     llvm::GlobalVariable::PrivateLinkage);
5208   GV->addAttribute("objc_arc_inert");
5209   switch (Triple.getObjectFormat()) {
5210   case llvm::Triple::UnknownObjectFormat:
5211     llvm_unreachable("unknown file format");
5212   case llvm::Triple::GOFF:
5213     llvm_unreachable("GOFF is not yet implemented");
5214   case llvm::Triple::XCOFF:
5215     llvm_unreachable("XCOFF is not yet implemented");
5216   case llvm::Triple::COFF:
5217   case llvm::Triple::ELF:
5218   case llvm::Triple::Wasm:
5219     GV->setSection("cfstring");
5220     break;
5221   case llvm::Triple::MachO:
5222     GV->setSection("__DATA,__cfstring");
5223     break;
5224   }
5225   Entry.second = GV;
5226 
5227   return ConstantAddress(GV, Alignment);
5228 }
5229 
5230 bool CodeGenModule::getExpressionLocationsEnabled() const {
5231   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5232 }
5233 
5234 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5235   if (ObjCFastEnumerationStateType.isNull()) {
5236     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5237     D->startDefinition();
5238 
5239     QualType FieldTypes[] = {
5240       Context.UnsignedLongTy,
5241       Context.getPointerType(Context.getObjCIdType()),
5242       Context.getPointerType(Context.UnsignedLongTy),
5243       Context.getConstantArrayType(Context.UnsignedLongTy,
5244                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5245     };
5246 
5247     for (size_t i = 0; i < 4; ++i) {
5248       FieldDecl *Field = FieldDecl::Create(Context,
5249                                            D,
5250                                            SourceLocation(),
5251                                            SourceLocation(), nullptr,
5252                                            FieldTypes[i], /*TInfo=*/nullptr,
5253                                            /*BitWidth=*/nullptr,
5254                                            /*Mutable=*/false,
5255                                            ICIS_NoInit);
5256       Field->setAccess(AS_public);
5257       D->addDecl(Field);
5258     }
5259 
5260     D->completeDefinition();
5261     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5262   }
5263 
5264   return ObjCFastEnumerationStateType;
5265 }
5266 
5267 llvm::Constant *
5268 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5269   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5270 
5271   // Don't emit it as the address of the string, emit the string data itself
5272   // as an inline array.
5273   if (E->getCharByteWidth() == 1) {
5274     SmallString<64> Str(E->getString());
5275 
5276     // Resize the string to the right size, which is indicated by its type.
5277     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5278     Str.resize(CAT->getSize().getZExtValue());
5279     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5280   }
5281 
5282   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5283   llvm::Type *ElemTy = AType->getElementType();
5284   unsigned NumElements = AType->getNumElements();
5285 
5286   // Wide strings have either 2-byte or 4-byte elements.
5287   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5288     SmallVector<uint16_t, 32> Elements;
5289     Elements.reserve(NumElements);
5290 
5291     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5292       Elements.push_back(E->getCodeUnit(i));
5293     Elements.resize(NumElements);
5294     return llvm::ConstantDataArray::get(VMContext, Elements);
5295   }
5296 
5297   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5298   SmallVector<uint32_t, 32> Elements;
5299   Elements.reserve(NumElements);
5300 
5301   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5302     Elements.push_back(E->getCodeUnit(i));
5303   Elements.resize(NumElements);
5304   return llvm::ConstantDataArray::get(VMContext, Elements);
5305 }
5306 
5307 static llvm::GlobalVariable *
5308 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5309                       CodeGenModule &CGM, StringRef GlobalName,
5310                       CharUnits Alignment) {
5311   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5312       CGM.GetGlobalConstantAddressSpace());
5313 
5314   llvm::Module &M = CGM.getModule();
5315   // Create a global variable for this string
5316   auto *GV = new llvm::GlobalVariable(
5317       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5318       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5319   GV->setAlignment(Alignment.getAsAlign());
5320   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5321   if (GV->isWeakForLinker()) {
5322     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5323     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5324   }
5325   CGM.setDSOLocal(GV);
5326 
5327   return GV;
5328 }
5329 
5330 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5331 /// constant array for the given string literal.
5332 ConstantAddress
5333 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5334                                                   StringRef Name) {
5335   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5336 
5337   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5338   llvm::GlobalVariable **Entry = nullptr;
5339   if (!LangOpts.WritableStrings) {
5340     Entry = &ConstantStringMap[C];
5341     if (auto GV = *Entry) {
5342       if (Alignment.getQuantity() > GV->getAlignment())
5343         GV->setAlignment(Alignment.getAsAlign());
5344       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5345                              Alignment);
5346     }
5347   }
5348 
5349   SmallString<256> MangledNameBuffer;
5350   StringRef GlobalVariableName;
5351   llvm::GlobalValue::LinkageTypes LT;
5352 
5353   // Mangle the string literal if that's how the ABI merges duplicate strings.
5354   // Don't do it if they are writable, since we don't want writes in one TU to
5355   // affect strings in another.
5356   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5357       !LangOpts.WritableStrings) {
5358     llvm::raw_svector_ostream Out(MangledNameBuffer);
5359     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5360     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5361     GlobalVariableName = MangledNameBuffer;
5362   } else {
5363     LT = llvm::GlobalValue::PrivateLinkage;
5364     GlobalVariableName = Name;
5365   }
5366 
5367   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5368   if (Entry)
5369     *Entry = GV;
5370 
5371   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5372                                   QualType());
5373 
5374   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5375                          Alignment);
5376 }
5377 
5378 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5379 /// array for the given ObjCEncodeExpr node.
5380 ConstantAddress
5381 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5382   std::string Str;
5383   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5384 
5385   return GetAddrOfConstantCString(Str);
5386 }
5387 
5388 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5389 /// the literal and a terminating '\0' character.
5390 /// The result has pointer to array type.
5391 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5392     const std::string &Str, const char *GlobalName) {
5393   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5394   CharUnits Alignment =
5395     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5396 
5397   llvm::Constant *C =
5398       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5399 
5400   // Don't share any string literals if strings aren't constant.
5401   llvm::GlobalVariable **Entry = nullptr;
5402   if (!LangOpts.WritableStrings) {
5403     Entry = &ConstantStringMap[C];
5404     if (auto GV = *Entry) {
5405       if (Alignment.getQuantity() > GV->getAlignment())
5406         GV->setAlignment(Alignment.getAsAlign());
5407       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5408                              Alignment);
5409     }
5410   }
5411 
5412   // Get the default prefix if a name wasn't specified.
5413   if (!GlobalName)
5414     GlobalName = ".str";
5415   // Create a global variable for this.
5416   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5417                                   GlobalName, Alignment);
5418   if (Entry)
5419     *Entry = GV;
5420 
5421   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5422                          Alignment);
5423 }
5424 
5425 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5426     const MaterializeTemporaryExpr *E, const Expr *Init) {
5427   assert((E->getStorageDuration() == SD_Static ||
5428           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5429   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5430 
5431   // If we're not materializing a subobject of the temporary, keep the
5432   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5433   QualType MaterializedType = Init->getType();
5434   if (Init == E->getSubExpr())
5435     MaterializedType = E->getType();
5436 
5437   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5438 
5439   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5440   if (!InsertResult.second) {
5441     // We've seen this before: either we already created it or we're in the
5442     // process of doing so.
5443     if (!InsertResult.first->second) {
5444       // We recursively re-entered this function, probably during emission of
5445       // the initializer. Create a placeholder. We'll clean this up in the
5446       // outer call, at the end of this function.
5447       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5448       InsertResult.first->second = new llvm::GlobalVariable(
5449           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5450           nullptr);
5451     }
5452     return ConstantAddress(InsertResult.first->second, Align);
5453   }
5454 
5455   // FIXME: If an externally-visible declaration extends multiple temporaries,
5456   // we need to give each temporary the same name in every translation unit (and
5457   // we also need to make the temporaries externally-visible).
5458   SmallString<256> Name;
5459   llvm::raw_svector_ostream Out(Name);
5460   getCXXABI().getMangleContext().mangleReferenceTemporary(
5461       VD, E->getManglingNumber(), Out);
5462 
5463   APValue *Value = nullptr;
5464   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5465     // If the initializer of the extending declaration is a constant
5466     // initializer, we should have a cached constant initializer for this
5467     // temporary. Note that this might have a different value from the value
5468     // computed by evaluating the initializer if the surrounding constant
5469     // expression modifies the temporary.
5470     Value = E->getOrCreateValue(false);
5471   }
5472 
5473   // Try evaluating it now, it might have a constant initializer.
5474   Expr::EvalResult EvalResult;
5475   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5476       !EvalResult.hasSideEffects())
5477     Value = &EvalResult.Val;
5478 
5479   LangAS AddrSpace =
5480       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5481 
5482   Optional<ConstantEmitter> emitter;
5483   llvm::Constant *InitialValue = nullptr;
5484   bool Constant = false;
5485   llvm::Type *Type;
5486   if (Value) {
5487     // The temporary has a constant initializer, use it.
5488     emitter.emplace(*this);
5489     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5490                                                MaterializedType);
5491     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5492     Type = InitialValue->getType();
5493   } else {
5494     // No initializer, the initialization will be provided when we
5495     // initialize the declaration which performed lifetime extension.
5496     Type = getTypes().ConvertTypeForMem(MaterializedType);
5497   }
5498 
5499   // Create a global variable for this lifetime-extended temporary.
5500   llvm::GlobalValue::LinkageTypes Linkage =
5501       getLLVMLinkageVarDefinition(VD, Constant);
5502   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5503     const VarDecl *InitVD;
5504     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5505         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5506       // Temporaries defined inside a class get linkonce_odr linkage because the
5507       // class can be defined in multiple translation units.
5508       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5509     } else {
5510       // There is no need for this temporary to have external linkage if the
5511       // VarDecl has external linkage.
5512       Linkage = llvm::GlobalVariable::InternalLinkage;
5513     }
5514   }
5515   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5516   auto *GV = new llvm::GlobalVariable(
5517       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5518       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5519   if (emitter) emitter->finalize(GV);
5520   setGVProperties(GV, VD);
5521   GV->setAlignment(Align.getAsAlign());
5522   if (supportsCOMDAT() && GV->isWeakForLinker())
5523     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5524   if (VD->getTLSKind())
5525     setTLSMode(GV, *VD);
5526   llvm::Constant *CV = GV;
5527   if (AddrSpace != LangAS::Default)
5528     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5529         *this, GV, AddrSpace, LangAS::Default,
5530         Type->getPointerTo(
5531             getContext().getTargetAddressSpace(LangAS::Default)));
5532 
5533   // Update the map with the new temporary. If we created a placeholder above,
5534   // replace it with the new global now.
5535   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5536   if (Entry) {
5537     Entry->replaceAllUsesWith(
5538         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5539     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5540   }
5541   Entry = CV;
5542 
5543   return ConstantAddress(CV, Align);
5544 }
5545 
5546 /// EmitObjCPropertyImplementations - Emit information for synthesized
5547 /// properties for an implementation.
5548 void CodeGenModule::EmitObjCPropertyImplementations(const
5549                                                     ObjCImplementationDecl *D) {
5550   for (const auto *PID : D->property_impls()) {
5551     // Dynamic is just for type-checking.
5552     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5553       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5554 
5555       // Determine which methods need to be implemented, some may have
5556       // been overridden. Note that ::isPropertyAccessor is not the method
5557       // we want, that just indicates if the decl came from a
5558       // property. What we want to know is if the method is defined in
5559       // this implementation.
5560       auto *Getter = PID->getGetterMethodDecl();
5561       if (!Getter || Getter->isSynthesizedAccessorStub())
5562         CodeGenFunction(*this).GenerateObjCGetter(
5563             const_cast<ObjCImplementationDecl *>(D), PID);
5564       auto *Setter = PID->getSetterMethodDecl();
5565       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5566         CodeGenFunction(*this).GenerateObjCSetter(
5567                                  const_cast<ObjCImplementationDecl *>(D), PID);
5568     }
5569   }
5570 }
5571 
5572 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5573   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5574   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5575        ivar; ivar = ivar->getNextIvar())
5576     if (ivar->getType().isDestructedType())
5577       return true;
5578 
5579   return false;
5580 }
5581 
5582 static bool AllTrivialInitializers(CodeGenModule &CGM,
5583                                    ObjCImplementationDecl *D) {
5584   CodeGenFunction CGF(CGM);
5585   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5586        E = D->init_end(); B != E; ++B) {
5587     CXXCtorInitializer *CtorInitExp = *B;
5588     Expr *Init = CtorInitExp->getInit();
5589     if (!CGF.isTrivialInitializer(Init))
5590       return false;
5591   }
5592   return true;
5593 }
5594 
5595 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5596 /// for an implementation.
5597 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5598   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5599   if (needsDestructMethod(D)) {
5600     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5601     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5602     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5603         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5604         getContext().VoidTy, nullptr, D,
5605         /*isInstance=*/true, /*isVariadic=*/false,
5606         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5607         /*isImplicitlyDeclared=*/true,
5608         /*isDefined=*/false, ObjCMethodDecl::Required);
5609     D->addInstanceMethod(DTORMethod);
5610     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5611     D->setHasDestructors(true);
5612   }
5613 
5614   // If the implementation doesn't have any ivar initializers, we don't need
5615   // a .cxx_construct.
5616   if (D->getNumIvarInitializers() == 0 ||
5617       AllTrivialInitializers(*this, D))
5618     return;
5619 
5620   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5621   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5622   // The constructor returns 'self'.
5623   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5624       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5625       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5626       /*isVariadic=*/false,
5627       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5628       /*isImplicitlyDeclared=*/true,
5629       /*isDefined=*/false, ObjCMethodDecl::Required);
5630   D->addInstanceMethod(CTORMethod);
5631   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5632   D->setHasNonZeroConstructors(true);
5633 }
5634 
5635 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5636 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5637   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5638       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5639     ErrorUnsupported(LSD, "linkage spec");
5640     return;
5641   }
5642 
5643   EmitDeclContext(LSD);
5644 }
5645 
5646 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5647   for (auto *I : DC->decls()) {
5648     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5649     // are themselves considered "top-level", so EmitTopLevelDecl on an
5650     // ObjCImplDecl does not recursively visit them. We need to do that in
5651     // case they're nested inside another construct (LinkageSpecDecl /
5652     // ExportDecl) that does stop them from being considered "top-level".
5653     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5654       for (auto *M : OID->methods())
5655         EmitTopLevelDecl(M);
5656     }
5657 
5658     EmitTopLevelDecl(I);
5659   }
5660 }
5661 
5662 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5663 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5664   // Ignore dependent declarations.
5665   if (D->isTemplated())
5666     return;
5667 
5668   // Consteval function shouldn't be emitted.
5669   if (auto *FD = dyn_cast<FunctionDecl>(D))
5670     if (FD->isConsteval())
5671       return;
5672 
5673   switch (D->getKind()) {
5674   case Decl::CXXConversion:
5675   case Decl::CXXMethod:
5676   case Decl::Function:
5677     EmitGlobal(cast<FunctionDecl>(D));
5678     // Always provide some coverage mapping
5679     // even for the functions that aren't emitted.
5680     AddDeferredUnusedCoverageMapping(D);
5681     break;
5682 
5683   case Decl::CXXDeductionGuide:
5684     // Function-like, but does not result in code emission.
5685     break;
5686 
5687   case Decl::Var:
5688   case Decl::Decomposition:
5689   case Decl::VarTemplateSpecialization:
5690     EmitGlobal(cast<VarDecl>(D));
5691     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5692       for (auto *B : DD->bindings())
5693         if (auto *HD = B->getHoldingVar())
5694           EmitGlobal(HD);
5695     break;
5696 
5697   // Indirect fields from global anonymous structs and unions can be
5698   // ignored; only the actual variable requires IR gen support.
5699   case Decl::IndirectField:
5700     break;
5701 
5702   // C++ Decls
5703   case Decl::Namespace:
5704     EmitDeclContext(cast<NamespaceDecl>(D));
5705     break;
5706   case Decl::ClassTemplateSpecialization: {
5707     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5708     if (CGDebugInfo *DI = getModuleDebugInfo())
5709       if (Spec->getSpecializationKind() ==
5710               TSK_ExplicitInstantiationDefinition &&
5711           Spec->hasDefinition())
5712         DI->completeTemplateDefinition(*Spec);
5713   } LLVM_FALLTHROUGH;
5714   case Decl::CXXRecord: {
5715     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5716     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5717       if (CRD->hasDefinition())
5718         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5719       if (auto *ES = D->getASTContext().getExternalSource())
5720         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5721           DI->completeUnusedClass(*CRD);
5722     }
5723     // Emit any static data members, they may be definitions.
5724     for (auto *I : CRD->decls())
5725       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5726         EmitTopLevelDecl(I);
5727     break;
5728   }
5729     // No code generation needed.
5730   case Decl::UsingShadow:
5731   case Decl::ClassTemplate:
5732   case Decl::VarTemplate:
5733   case Decl::Concept:
5734   case Decl::VarTemplatePartialSpecialization:
5735   case Decl::FunctionTemplate:
5736   case Decl::TypeAliasTemplate:
5737   case Decl::Block:
5738   case Decl::Empty:
5739   case Decl::Binding:
5740     break;
5741   case Decl::Using:          // using X; [C++]
5742     if (CGDebugInfo *DI = getModuleDebugInfo())
5743         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5744     break;
5745   case Decl::UsingEnum: // using enum X; [C++]
5746     if (CGDebugInfo *DI = getModuleDebugInfo())
5747       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5748     break;
5749   case Decl::NamespaceAlias:
5750     if (CGDebugInfo *DI = getModuleDebugInfo())
5751         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5752     break;
5753   case Decl::UsingDirective: // using namespace X; [C++]
5754     if (CGDebugInfo *DI = getModuleDebugInfo())
5755       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5756     break;
5757   case Decl::CXXConstructor:
5758     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5759     break;
5760   case Decl::CXXDestructor:
5761     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5762     break;
5763 
5764   case Decl::StaticAssert:
5765     // Nothing to do.
5766     break;
5767 
5768   // Objective-C Decls
5769 
5770   // Forward declarations, no (immediate) code generation.
5771   case Decl::ObjCInterface:
5772   case Decl::ObjCCategory:
5773     break;
5774 
5775   case Decl::ObjCProtocol: {
5776     auto *Proto = cast<ObjCProtocolDecl>(D);
5777     if (Proto->isThisDeclarationADefinition())
5778       ObjCRuntime->GenerateProtocol(Proto);
5779     break;
5780   }
5781 
5782   case Decl::ObjCCategoryImpl:
5783     // Categories have properties but don't support synthesize so we
5784     // can ignore them here.
5785     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5786     break;
5787 
5788   case Decl::ObjCImplementation: {
5789     auto *OMD = cast<ObjCImplementationDecl>(D);
5790     EmitObjCPropertyImplementations(OMD);
5791     EmitObjCIvarInitializations(OMD);
5792     ObjCRuntime->GenerateClass(OMD);
5793     // Emit global variable debug information.
5794     if (CGDebugInfo *DI = getModuleDebugInfo())
5795       if (getCodeGenOpts().hasReducedDebugInfo())
5796         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5797             OMD->getClassInterface()), OMD->getLocation());
5798     break;
5799   }
5800   case Decl::ObjCMethod: {
5801     auto *OMD = cast<ObjCMethodDecl>(D);
5802     // If this is not a prototype, emit the body.
5803     if (OMD->getBody())
5804       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5805     break;
5806   }
5807   case Decl::ObjCCompatibleAlias:
5808     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5809     break;
5810 
5811   case Decl::PragmaComment: {
5812     const auto *PCD = cast<PragmaCommentDecl>(D);
5813     switch (PCD->getCommentKind()) {
5814     case PCK_Unknown:
5815       llvm_unreachable("unexpected pragma comment kind");
5816     case PCK_Linker:
5817       AppendLinkerOptions(PCD->getArg());
5818       break;
5819     case PCK_Lib:
5820         AddDependentLib(PCD->getArg());
5821       break;
5822     case PCK_Compiler:
5823     case PCK_ExeStr:
5824     case PCK_User:
5825       break; // We ignore all of these.
5826     }
5827     break;
5828   }
5829 
5830   case Decl::PragmaDetectMismatch: {
5831     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5832     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5833     break;
5834   }
5835 
5836   case Decl::LinkageSpec:
5837     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5838     break;
5839 
5840   case Decl::FileScopeAsm: {
5841     // File-scope asm is ignored during device-side CUDA compilation.
5842     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5843       break;
5844     // File-scope asm is ignored during device-side OpenMP compilation.
5845     if (LangOpts.OpenMPIsDevice)
5846       break;
5847     // File-scope asm is ignored during device-side SYCL compilation.
5848     if (LangOpts.SYCLIsDevice)
5849       break;
5850     auto *AD = cast<FileScopeAsmDecl>(D);
5851     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5852     break;
5853   }
5854 
5855   case Decl::Import: {
5856     auto *Import = cast<ImportDecl>(D);
5857 
5858     // If we've already imported this module, we're done.
5859     if (!ImportedModules.insert(Import->getImportedModule()))
5860       break;
5861 
5862     // Emit debug information for direct imports.
5863     if (!Import->getImportedOwningModule()) {
5864       if (CGDebugInfo *DI = getModuleDebugInfo())
5865         DI->EmitImportDecl(*Import);
5866     }
5867 
5868     // Find all of the submodules and emit the module initializers.
5869     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5870     SmallVector<clang::Module *, 16> Stack;
5871     Visited.insert(Import->getImportedModule());
5872     Stack.push_back(Import->getImportedModule());
5873 
5874     while (!Stack.empty()) {
5875       clang::Module *Mod = Stack.pop_back_val();
5876       if (!EmittedModuleInitializers.insert(Mod).second)
5877         continue;
5878 
5879       for (auto *D : Context.getModuleInitializers(Mod))
5880         EmitTopLevelDecl(D);
5881 
5882       // Visit the submodules of this module.
5883       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5884                                              SubEnd = Mod->submodule_end();
5885            Sub != SubEnd; ++Sub) {
5886         // Skip explicit children; they need to be explicitly imported to emit
5887         // the initializers.
5888         if ((*Sub)->IsExplicit)
5889           continue;
5890 
5891         if (Visited.insert(*Sub).second)
5892           Stack.push_back(*Sub);
5893       }
5894     }
5895     break;
5896   }
5897 
5898   case Decl::Export:
5899     EmitDeclContext(cast<ExportDecl>(D));
5900     break;
5901 
5902   case Decl::OMPThreadPrivate:
5903     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5904     break;
5905 
5906   case Decl::OMPAllocate:
5907     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5908     break;
5909 
5910   case Decl::OMPDeclareReduction:
5911     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5912     break;
5913 
5914   case Decl::OMPDeclareMapper:
5915     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5916     break;
5917 
5918   case Decl::OMPRequires:
5919     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5920     break;
5921 
5922   case Decl::Typedef:
5923   case Decl::TypeAlias: // using foo = bar; [C++11]
5924     if (CGDebugInfo *DI = getModuleDebugInfo())
5925       DI->EmitAndRetainType(
5926           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5927     break;
5928 
5929   case Decl::Record:
5930     if (CGDebugInfo *DI = getModuleDebugInfo())
5931       if (cast<RecordDecl>(D)->getDefinition())
5932         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5933     break;
5934 
5935   case Decl::Enum:
5936     if (CGDebugInfo *DI = getModuleDebugInfo())
5937       if (cast<EnumDecl>(D)->getDefinition())
5938         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5939     break;
5940 
5941   default:
5942     // Make sure we handled everything we should, every other kind is a
5943     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5944     // function. Need to recode Decl::Kind to do that easily.
5945     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5946     break;
5947   }
5948 }
5949 
5950 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5951   // Do we need to generate coverage mapping?
5952   if (!CodeGenOpts.CoverageMapping)
5953     return;
5954   switch (D->getKind()) {
5955   case Decl::CXXConversion:
5956   case Decl::CXXMethod:
5957   case Decl::Function:
5958   case Decl::ObjCMethod:
5959   case Decl::CXXConstructor:
5960   case Decl::CXXDestructor: {
5961     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5962       break;
5963     SourceManager &SM = getContext().getSourceManager();
5964     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5965       break;
5966     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5967     if (I == DeferredEmptyCoverageMappingDecls.end())
5968       DeferredEmptyCoverageMappingDecls[D] = true;
5969     break;
5970   }
5971   default:
5972     break;
5973   };
5974 }
5975 
5976 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5977   // Do we need to generate coverage mapping?
5978   if (!CodeGenOpts.CoverageMapping)
5979     return;
5980   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5981     if (Fn->isTemplateInstantiation())
5982       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5983   }
5984   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5985   if (I == DeferredEmptyCoverageMappingDecls.end())
5986     DeferredEmptyCoverageMappingDecls[D] = false;
5987   else
5988     I->second = false;
5989 }
5990 
5991 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5992   // We call takeVector() here to avoid use-after-free.
5993   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5994   // we deserialize function bodies to emit coverage info for them, and that
5995   // deserializes more declarations. How should we handle that case?
5996   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5997     if (!Entry.second)
5998       continue;
5999     const Decl *D = Entry.first;
6000     switch (D->getKind()) {
6001     case Decl::CXXConversion:
6002     case Decl::CXXMethod:
6003     case Decl::Function:
6004     case Decl::ObjCMethod: {
6005       CodeGenPGO PGO(*this);
6006       GlobalDecl GD(cast<FunctionDecl>(D));
6007       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6008                                   getFunctionLinkage(GD));
6009       break;
6010     }
6011     case Decl::CXXConstructor: {
6012       CodeGenPGO PGO(*this);
6013       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6014       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6015                                   getFunctionLinkage(GD));
6016       break;
6017     }
6018     case Decl::CXXDestructor: {
6019       CodeGenPGO PGO(*this);
6020       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6021       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6022                                   getFunctionLinkage(GD));
6023       break;
6024     }
6025     default:
6026       break;
6027     };
6028   }
6029 }
6030 
6031 void CodeGenModule::EmitMainVoidAlias() {
6032   // In order to transition away from "__original_main" gracefully, emit an
6033   // alias for "main" in the no-argument case so that libc can detect when
6034   // new-style no-argument main is in used.
6035   if (llvm::Function *F = getModule().getFunction("main")) {
6036     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6037         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6038       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6039   }
6040 }
6041 
6042 /// Turns the given pointer into a constant.
6043 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6044                                           const void *Ptr) {
6045   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6046   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6047   return llvm::ConstantInt::get(i64, PtrInt);
6048 }
6049 
6050 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6051                                    llvm::NamedMDNode *&GlobalMetadata,
6052                                    GlobalDecl D,
6053                                    llvm::GlobalValue *Addr) {
6054   if (!GlobalMetadata)
6055     GlobalMetadata =
6056       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6057 
6058   // TODO: should we report variant information for ctors/dtors?
6059   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6060                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6061                                CGM.getLLVMContext(), D.getDecl()))};
6062   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6063 }
6064 
6065 /// For each function which is declared within an extern "C" region and marked
6066 /// as 'used', but has internal linkage, create an alias from the unmangled
6067 /// name to the mangled name if possible. People expect to be able to refer
6068 /// to such functions with an unmangled name from inline assembly within the
6069 /// same translation unit.
6070 void CodeGenModule::EmitStaticExternCAliases() {
6071   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6072     return;
6073   for (auto &I : StaticExternCValues) {
6074     IdentifierInfo *Name = I.first;
6075     llvm::GlobalValue *Val = I.second;
6076     if (Val && !getModule().getNamedValue(Name->getName()))
6077       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6078   }
6079 }
6080 
6081 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6082                                              GlobalDecl &Result) const {
6083   auto Res = Manglings.find(MangledName);
6084   if (Res == Manglings.end())
6085     return false;
6086   Result = Res->getValue();
6087   return true;
6088 }
6089 
6090 /// Emits metadata nodes associating all the global values in the
6091 /// current module with the Decls they came from.  This is useful for
6092 /// projects using IR gen as a subroutine.
6093 ///
6094 /// Since there's currently no way to associate an MDNode directly
6095 /// with an llvm::GlobalValue, we create a global named metadata
6096 /// with the name 'clang.global.decl.ptrs'.
6097 void CodeGenModule::EmitDeclMetadata() {
6098   llvm::NamedMDNode *GlobalMetadata = nullptr;
6099 
6100   for (auto &I : MangledDeclNames) {
6101     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6102     // Some mangled names don't necessarily have an associated GlobalValue
6103     // in this module, e.g. if we mangled it for DebugInfo.
6104     if (Addr)
6105       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6106   }
6107 }
6108 
6109 /// Emits metadata nodes for all the local variables in the current
6110 /// function.
6111 void CodeGenFunction::EmitDeclMetadata() {
6112   if (LocalDeclMap.empty()) return;
6113 
6114   llvm::LLVMContext &Context = getLLVMContext();
6115 
6116   // Find the unique metadata ID for this name.
6117   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6118 
6119   llvm::NamedMDNode *GlobalMetadata = nullptr;
6120 
6121   for (auto &I : LocalDeclMap) {
6122     const Decl *D = I.first;
6123     llvm::Value *Addr = I.second.getPointer();
6124     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6125       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6126       Alloca->setMetadata(
6127           DeclPtrKind, llvm::MDNode::get(
6128                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6129     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6130       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6131       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6132     }
6133   }
6134 }
6135 
6136 void CodeGenModule::EmitVersionIdentMetadata() {
6137   llvm::NamedMDNode *IdentMetadata =
6138     TheModule.getOrInsertNamedMetadata("llvm.ident");
6139   std::string Version = getClangFullVersion();
6140   llvm::LLVMContext &Ctx = TheModule.getContext();
6141 
6142   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6143   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6144 }
6145 
6146 void CodeGenModule::EmitCommandLineMetadata() {
6147   llvm::NamedMDNode *CommandLineMetadata =
6148     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6149   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6150   llvm::LLVMContext &Ctx = TheModule.getContext();
6151 
6152   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6153   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6154 }
6155 
6156 void CodeGenModule::EmitCoverageFile() {
6157   if (getCodeGenOpts().CoverageDataFile.empty() &&
6158       getCodeGenOpts().CoverageNotesFile.empty())
6159     return;
6160 
6161   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6162   if (!CUNode)
6163     return;
6164 
6165   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6166   llvm::LLVMContext &Ctx = TheModule.getContext();
6167   auto *CoverageDataFile =
6168       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6169   auto *CoverageNotesFile =
6170       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6171   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6172     llvm::MDNode *CU = CUNode->getOperand(i);
6173     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6174     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6175   }
6176 }
6177 
6178 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6179                                                        bool ForEH) {
6180   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6181   // FIXME: should we even be calling this method if RTTI is disabled
6182   // and it's not for EH?
6183   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6184       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6185        getTriple().isNVPTX()))
6186     return llvm::Constant::getNullValue(Int8PtrTy);
6187 
6188   if (ForEH && Ty->isObjCObjectPointerType() &&
6189       LangOpts.ObjCRuntime.isGNUFamily())
6190     return ObjCRuntime->GetEHType(Ty);
6191 
6192   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6193 }
6194 
6195 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6196   // Do not emit threadprivates in simd-only mode.
6197   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6198     return;
6199   for (auto RefExpr : D->varlists()) {
6200     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6201     bool PerformInit =
6202         VD->getAnyInitializer() &&
6203         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6204                                                         /*ForRef=*/false);
6205 
6206     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6207     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6208             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6209       CXXGlobalInits.push_back(InitFunction);
6210   }
6211 }
6212 
6213 llvm::Metadata *
6214 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6215                                             StringRef Suffix) {
6216   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6217   if (InternalId)
6218     return InternalId;
6219 
6220   if (isExternallyVisible(T->getLinkage())) {
6221     std::string OutName;
6222     llvm::raw_string_ostream Out(OutName);
6223     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6224     Out << Suffix;
6225 
6226     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6227   } else {
6228     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6229                                            llvm::ArrayRef<llvm::Metadata *>());
6230   }
6231 
6232   return InternalId;
6233 }
6234 
6235 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6236   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6237 }
6238 
6239 llvm::Metadata *
6240 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6241   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6242 }
6243 
6244 // Generalize pointer types to a void pointer with the qualifiers of the
6245 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6246 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6247 // 'void *'.
6248 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6249   if (!Ty->isPointerType())
6250     return Ty;
6251 
6252   return Ctx.getPointerType(
6253       QualType(Ctx.VoidTy).withCVRQualifiers(
6254           Ty->getPointeeType().getCVRQualifiers()));
6255 }
6256 
6257 // Apply type generalization to a FunctionType's return and argument types
6258 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6259   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6260     SmallVector<QualType, 8> GeneralizedParams;
6261     for (auto &Param : FnType->param_types())
6262       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6263 
6264     return Ctx.getFunctionType(
6265         GeneralizeType(Ctx, FnType->getReturnType()),
6266         GeneralizedParams, FnType->getExtProtoInfo());
6267   }
6268 
6269   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6270     return Ctx.getFunctionNoProtoType(
6271         GeneralizeType(Ctx, FnType->getReturnType()));
6272 
6273   llvm_unreachable("Encountered unknown FunctionType");
6274 }
6275 
6276 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6277   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6278                                       GeneralizedMetadataIdMap, ".generalized");
6279 }
6280 
6281 /// Returns whether this module needs the "all-vtables" type identifier.
6282 bool CodeGenModule::NeedAllVtablesTypeId() const {
6283   // Returns true if at least one of vtable-based CFI checkers is enabled and
6284   // is not in the trapping mode.
6285   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6286            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6287           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6288            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6289           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6290            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6291           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6292            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6293 }
6294 
6295 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6296                                           CharUnits Offset,
6297                                           const CXXRecordDecl *RD) {
6298   llvm::Metadata *MD =
6299       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6300   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6301 
6302   if (CodeGenOpts.SanitizeCfiCrossDso)
6303     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6304       VTable->addTypeMetadata(Offset.getQuantity(),
6305                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6306 
6307   if (NeedAllVtablesTypeId()) {
6308     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6309     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6310   }
6311 }
6312 
6313 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6314   if (!SanStats)
6315     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6316 
6317   return *SanStats;
6318 }
6319 
6320 llvm::Value *
6321 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6322                                                   CodeGenFunction &CGF) {
6323   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6324   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6325   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6326   auto *Call = CGF.EmitRuntimeCall(
6327       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6328   return Call;
6329 }
6330 
6331 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6332     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6333   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6334                                  /* forPointeeType= */ true);
6335 }
6336 
6337 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6338                                                  LValueBaseInfo *BaseInfo,
6339                                                  TBAAAccessInfo *TBAAInfo,
6340                                                  bool forPointeeType) {
6341   if (TBAAInfo)
6342     *TBAAInfo = getTBAAAccessInfo(T);
6343 
6344   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6345   // that doesn't return the information we need to compute BaseInfo.
6346 
6347   // Honor alignment typedef attributes even on incomplete types.
6348   // We also honor them straight for C++ class types, even as pointees;
6349   // there's an expressivity gap here.
6350   if (auto TT = T->getAs<TypedefType>()) {
6351     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6352       if (BaseInfo)
6353         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6354       return getContext().toCharUnitsFromBits(Align);
6355     }
6356   }
6357 
6358   bool AlignForArray = T->isArrayType();
6359 
6360   // Analyze the base element type, so we don't get confused by incomplete
6361   // array types.
6362   T = getContext().getBaseElementType(T);
6363 
6364   if (T->isIncompleteType()) {
6365     // We could try to replicate the logic from
6366     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6367     // type is incomplete, so it's impossible to test. We could try to reuse
6368     // getTypeAlignIfKnown, but that doesn't return the information we need
6369     // to set BaseInfo.  So just ignore the possibility that the alignment is
6370     // greater than one.
6371     if (BaseInfo)
6372       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6373     return CharUnits::One();
6374   }
6375 
6376   if (BaseInfo)
6377     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6378 
6379   CharUnits Alignment;
6380   const CXXRecordDecl *RD;
6381   if (T.getQualifiers().hasUnaligned()) {
6382     Alignment = CharUnits::One();
6383   } else if (forPointeeType && !AlignForArray &&
6384              (RD = T->getAsCXXRecordDecl())) {
6385     // For C++ class pointees, we don't know whether we're pointing at a
6386     // base or a complete object, so we generally need to use the
6387     // non-virtual alignment.
6388     Alignment = getClassPointerAlignment(RD);
6389   } else {
6390     Alignment = getContext().getTypeAlignInChars(T);
6391   }
6392 
6393   // Cap to the global maximum type alignment unless the alignment
6394   // was somehow explicit on the type.
6395   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6396     if (Alignment.getQuantity() > MaxAlign &&
6397         !getContext().isAlignmentRequired(T))
6398       Alignment = CharUnits::fromQuantity(MaxAlign);
6399   }
6400   return Alignment;
6401 }
6402 
6403 bool CodeGenModule::stopAutoInit() {
6404   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6405   if (StopAfter) {
6406     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6407     // used
6408     if (NumAutoVarInit >= StopAfter) {
6409       return true;
6410     }
6411     if (!NumAutoVarInit) {
6412       unsigned DiagID = getDiags().getCustomDiagID(
6413           DiagnosticsEngine::Warning,
6414           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6415           "number of times ftrivial-auto-var-init=%1 gets applied.");
6416       getDiags().Report(DiagID)
6417           << StopAfter
6418           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6419                       LangOptions::TrivialAutoVarInitKind::Zero
6420                   ? "zero"
6421                   : "pattern");
6422     }
6423     ++NumAutoVarInit;
6424   }
6425   return false;
6426 }
6427 
6428 void CodeGenModule::printPostfixForExternalizedStaticVar(
6429     llvm::raw_ostream &OS) const {
6430   OS << ".static." << getContext().getCUIDHash();
6431 }
6432