1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 113 114 if (LangOpts.ObjC1) 115 createObjCRuntime(); 116 if (LangOpts.OpenCL) 117 createOpenCLRuntime(); 118 if (LangOpts.OpenMP) 119 createOpenMPRuntime(); 120 if (LangOpts.CUDA) 121 createCUDARuntime(); 122 123 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 124 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 125 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 126 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 127 getCXXABI().getMangleContext()); 128 129 // If debug info or coverage generation is enabled, create the CGDebugInfo 130 // object. 131 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 132 CodeGenOpts.EmitGcovArcs || 133 CodeGenOpts.EmitGcovNotes) 134 DebugInfo = new CGDebugInfo(*this); 135 136 Block.GlobalUniqueCount = 0; 137 138 if (C.getLangOpts().ObjCAutoRefCount) 139 ARCData = new ARCEntrypoints(); 140 RRData = new RREntrypoints(); 141 142 if (!CodeGenOpts.InstrProfileInput.empty()) { 143 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 144 CodeGenOpts.InstrProfileInput, PGOReader)) { 145 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 146 "Could not read profile: %0"); 147 getDiags().Report(DiagID) << EC.message(); 148 } 149 } 150 151 // If coverage mapping generation is enabled, create the 152 // CoverageMappingModuleGen object. 153 if (CodeGenOpts.CoverageMapping) 154 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 155 } 156 157 CodeGenModule::~CodeGenModule() { 158 delete ObjCRuntime; 159 delete OpenCLRuntime; 160 delete OpenMPRuntime; 161 delete CUDARuntime; 162 delete TheTargetCodeGenInfo; 163 delete TBAA; 164 delete DebugInfo; 165 delete ARCData; 166 delete RRData; 167 } 168 169 void CodeGenModule::createObjCRuntime() { 170 // This is just isGNUFamily(), but we want to force implementors of 171 // new ABIs to decide how best to do this. 172 switch (LangOpts.ObjCRuntime.getKind()) { 173 case ObjCRuntime::GNUstep: 174 case ObjCRuntime::GCC: 175 case ObjCRuntime::ObjFW: 176 ObjCRuntime = CreateGNUObjCRuntime(*this); 177 return; 178 179 case ObjCRuntime::FragileMacOSX: 180 case ObjCRuntime::MacOSX: 181 case ObjCRuntime::iOS: 182 ObjCRuntime = CreateMacObjCRuntime(*this); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime = new CGOpenCLRuntime(*this); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 OpenMPRuntime = new CGOpenMPRuntime(*this); 194 } 195 196 void CodeGenModule::createCUDARuntime() { 197 CUDARuntime = CreateNVCUDARuntime(*this); 198 } 199 200 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 201 Replacements[Name] = C; 202 } 203 204 void CodeGenModule::applyReplacements() { 205 for (ReplacementsTy::iterator I = Replacements.begin(), 206 E = Replacements.end(); 207 I != E; ++I) { 208 StringRef MangledName = I->first(); 209 llvm::Constant *Replacement = I->second; 210 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 211 if (!Entry) 212 continue; 213 auto *OldF = cast<llvm::Function>(Entry); 214 auto *NewF = dyn_cast<llvm::Function>(Replacement); 215 if (!NewF) { 216 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 217 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 218 } else { 219 auto *CE = cast<llvm::ConstantExpr>(Replacement); 220 assert(CE->getOpcode() == llvm::Instruction::BitCast || 221 CE->getOpcode() == llvm::Instruction::GetElementPtr); 222 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 223 } 224 } 225 226 // Replace old with new, but keep the old order. 227 OldF->replaceAllUsesWith(Replacement); 228 if (NewF) { 229 NewF->removeFromParent(); 230 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 231 } 232 OldF->eraseFromParent(); 233 } 234 } 235 236 // This is only used in aliases that we created and we know they have a 237 // linear structure. 238 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 239 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 240 const llvm::Constant *C = &GA; 241 for (;;) { 242 C = C->stripPointerCasts(); 243 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 244 return GO; 245 // stripPointerCasts will not walk over weak aliases. 246 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 247 if (!GA2) 248 return nullptr; 249 if (!Visited.insert(GA2).second) 250 return nullptr; 251 C = GA2->getAliasee(); 252 } 253 } 254 255 void CodeGenModule::checkAliases() { 256 // Check if the constructed aliases are well formed. It is really unfortunate 257 // that we have to do this in CodeGen, but we only construct mangled names 258 // and aliases during codegen. 259 bool Error = false; 260 DiagnosticsEngine &Diags = getDiags(); 261 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 262 E = Aliases.end(); I != E; ++I) { 263 const GlobalDecl &GD = *I; 264 const auto *D = cast<ValueDecl>(GD.getDecl()); 265 const AliasAttr *AA = D->getAttr<AliasAttr>(); 266 StringRef MangledName = getMangledName(GD); 267 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 268 auto *Alias = cast<llvm::GlobalAlias>(Entry); 269 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 270 if (!GV) { 271 Error = true; 272 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 273 } else if (GV->isDeclaration()) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 276 } 277 278 llvm::Constant *Aliasee = Alias->getAliasee(); 279 llvm::GlobalValue *AliaseeGV; 280 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 281 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 282 else 283 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 284 285 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 286 StringRef AliasSection = SA->getName(); 287 if (AliasSection != AliaseeGV->getSection()) 288 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 289 << AliasSection; 290 } 291 292 // We have to handle alias to weak aliases in here. LLVM itself disallows 293 // this since the object semantics would not match the IL one. For 294 // compatibility with gcc we implement it by just pointing the alias 295 // to its aliasee's aliasee. We also warn, since the user is probably 296 // expecting the link to be weak. 297 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 298 if (GA->mayBeOverridden()) { 299 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 300 << GV->getName() << GA->getName(); 301 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 302 GA->getAliasee(), Alias->getType()); 303 Alias->setAliasee(Aliasee); 304 } 305 } 306 } 307 if (!Error) 308 return; 309 310 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 311 E = Aliases.end(); I != E; ++I) { 312 const GlobalDecl &GD = *I; 313 StringRef MangledName = getMangledName(GD); 314 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 315 auto *Alias = cast<llvm::GlobalAlias>(Entry); 316 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 317 Alias->eraseFromParent(); 318 } 319 } 320 321 void CodeGenModule::clear() { 322 DeferredDeclsToEmit.clear(); 323 } 324 325 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 326 StringRef MainFile) { 327 if (!hasDiagnostics()) 328 return; 329 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 330 if (MainFile.empty()) 331 MainFile = "<stdin>"; 332 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 333 } else 334 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 335 << Mismatched; 336 } 337 338 void CodeGenModule::Release() { 339 EmitDeferred(); 340 applyReplacements(); 341 checkAliases(); 342 EmitCXXGlobalInitFunc(); 343 EmitCXXGlobalDtorFunc(); 344 EmitCXXThreadLocalInitFunc(); 345 if (ObjCRuntime) 346 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 347 AddGlobalCtor(ObjCInitFunction); 348 if (PGOReader && PGOStats.hasDiagnostics()) 349 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 350 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 351 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 352 EmitGlobalAnnotations(); 353 EmitStaticExternCAliases(); 354 EmitDeferredUnusedCoverageMappings(); 355 if (CoverageMapping) 356 CoverageMapping->emit(); 357 emitLLVMUsed(); 358 359 if (CodeGenOpts.Autolink && 360 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 361 EmitModuleLinkOptions(); 362 } 363 if (CodeGenOpts.DwarfVersion) 364 // We actually want the latest version when there are conflicts. 365 // We can change from Warning to Latest if such mode is supported. 366 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 367 CodeGenOpts.DwarfVersion); 368 if (DebugInfo) 369 // We support a single version in the linked module. The LLVM 370 // parser will drop debug info with a different version number 371 // (and warn about it, too). 372 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 373 llvm::DEBUG_METADATA_VERSION); 374 375 // We need to record the widths of enums and wchar_t, so that we can generate 376 // the correct build attributes in the ARM backend. 377 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 378 if ( Arch == llvm::Triple::arm 379 || Arch == llvm::Triple::armeb 380 || Arch == llvm::Triple::thumb 381 || Arch == llvm::Triple::thumbeb) { 382 // Width of wchar_t in bytes 383 uint64_t WCharWidth = 384 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 385 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 386 387 // The minimum width of an enum in bytes 388 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 389 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 390 } 391 392 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 393 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 394 switch (PLevel) { 395 case 0: break; 396 case 1: PL = llvm::PICLevel::Small; break; 397 case 2: PL = llvm::PICLevel::Large; break; 398 default: llvm_unreachable("Invalid PIC Level"); 399 } 400 401 getModule().setPICLevel(PL); 402 } 403 404 SimplifyPersonality(); 405 406 if (getCodeGenOpts().EmitDeclMetadata) 407 EmitDeclMetadata(); 408 409 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 410 EmitCoverageFile(); 411 412 if (DebugInfo) 413 DebugInfo->finalize(); 414 415 EmitVersionIdentMetadata(); 416 417 EmitTargetMetadata(); 418 } 419 420 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 421 // Make sure that this type is translated. 422 Types.UpdateCompletedType(TD); 423 } 424 425 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 426 if (!TBAA) 427 return nullptr; 428 return TBAA->getTBAAInfo(QTy); 429 } 430 431 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 432 if (!TBAA) 433 return nullptr; 434 return TBAA->getTBAAInfoForVTablePtr(); 435 } 436 437 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 438 if (!TBAA) 439 return nullptr; 440 return TBAA->getTBAAStructInfo(QTy); 441 } 442 443 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 444 if (!TBAA) 445 return nullptr; 446 return TBAA->getTBAAStructTypeInfo(QTy); 447 } 448 449 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 450 llvm::MDNode *AccessN, 451 uint64_t O) { 452 if (!TBAA) 453 return nullptr; 454 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 455 } 456 457 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 458 /// and struct-path aware TBAA, the tag has the same format: 459 /// base type, access type and offset. 460 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 461 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 462 llvm::MDNode *TBAAInfo, 463 bool ConvertTypeToTag) { 464 if (ConvertTypeToTag && TBAA) 465 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 466 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 467 else 468 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 469 } 470 471 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 472 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 473 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 474 } 475 476 /// ErrorUnsupported - Print out an error that codegen doesn't support the 477 /// specified stmt yet. 478 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 479 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 480 "cannot compile this %0 yet"); 481 std::string Msg = Type; 482 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 483 << Msg << S->getSourceRange(); 484 } 485 486 /// ErrorUnsupported - Print out an error that codegen doesn't support the 487 /// specified decl yet. 488 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 489 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 490 "cannot compile this %0 yet"); 491 std::string Msg = Type; 492 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 493 } 494 495 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 496 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 497 } 498 499 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 500 const NamedDecl *D) const { 501 // Internal definitions always have default visibility. 502 if (GV->hasLocalLinkage()) { 503 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 504 return; 505 } 506 507 // Set visibility for definitions. 508 LinkageInfo LV = D->getLinkageAndVisibility(); 509 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 510 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 511 } 512 513 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 514 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 515 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 516 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 517 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 518 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 519 } 520 521 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 522 CodeGenOptions::TLSModel M) { 523 switch (M) { 524 case CodeGenOptions::GeneralDynamicTLSModel: 525 return llvm::GlobalVariable::GeneralDynamicTLSModel; 526 case CodeGenOptions::LocalDynamicTLSModel: 527 return llvm::GlobalVariable::LocalDynamicTLSModel; 528 case CodeGenOptions::InitialExecTLSModel: 529 return llvm::GlobalVariable::InitialExecTLSModel; 530 case CodeGenOptions::LocalExecTLSModel: 531 return llvm::GlobalVariable::LocalExecTLSModel; 532 } 533 llvm_unreachable("Invalid TLS model!"); 534 } 535 536 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 537 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 538 539 llvm::GlobalValue::ThreadLocalMode TLM; 540 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 541 542 // Override the TLS model if it is explicitly specified. 543 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 544 TLM = GetLLVMTLSModel(Attr->getModel()); 545 } 546 547 GV->setThreadLocalMode(TLM); 548 } 549 550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 551 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 552 if (!FoundStr.empty()) 553 return FoundStr; 554 555 const auto *ND = cast<NamedDecl>(GD.getDecl()); 556 SmallString<256> Buffer; 557 StringRef Str; 558 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 559 llvm::raw_svector_ostream Out(Buffer); 560 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 561 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 562 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 563 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 564 else 565 getCXXABI().getMangleContext().mangleName(ND, Out); 566 Str = Out.str(); 567 } else { 568 IdentifierInfo *II = ND->getIdentifier(); 569 assert(II && "Attempt to mangle unnamed decl."); 570 Str = II->getName(); 571 } 572 573 // Keep the first result in the case of a mangling collision. 574 auto Result = Manglings.insert(std::make_pair(Str, GD)); 575 return FoundStr = Result.first->first(); 576 } 577 578 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 579 const BlockDecl *BD) { 580 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 581 const Decl *D = GD.getDecl(); 582 583 SmallString<256> Buffer; 584 llvm::raw_svector_ostream Out(Buffer); 585 if (!D) 586 MangleCtx.mangleGlobalBlock(BD, 587 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 588 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 589 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 590 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 591 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 592 else 593 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 594 595 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 596 return Result.first->first(); 597 } 598 599 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 600 return getModule().getNamedValue(Name); 601 } 602 603 /// AddGlobalCtor - Add a function to the list that will be called before 604 /// main() runs. 605 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 606 llvm::Constant *AssociatedData) { 607 // FIXME: Type coercion of void()* types. 608 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 609 } 610 611 /// AddGlobalDtor - Add a function to the list that will be called 612 /// when the module is unloaded. 613 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 614 // FIXME: Type coercion of void()* types. 615 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 616 } 617 618 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 619 // Ctor function type is void()*. 620 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 621 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 622 623 // Get the type of a ctor entry, { i32, void ()*, i8* }. 624 llvm::StructType *CtorStructTy = llvm::StructType::get( 625 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 626 627 // Construct the constructor and destructor arrays. 628 SmallVector<llvm::Constant*, 8> Ctors; 629 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 630 llvm::Constant *S[] = { 631 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 632 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 633 (I->AssociatedData 634 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 635 : llvm::Constant::getNullValue(VoidPtrTy)) 636 }; 637 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 638 } 639 640 if (!Ctors.empty()) { 641 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 642 new llvm::GlobalVariable(TheModule, AT, false, 643 llvm::GlobalValue::AppendingLinkage, 644 llvm::ConstantArray::get(AT, Ctors), 645 GlobalName); 646 } 647 } 648 649 llvm::GlobalValue::LinkageTypes 650 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 651 const auto *D = cast<FunctionDecl>(GD.getDecl()); 652 653 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 654 655 if (isa<CXXDestructorDecl>(D) && 656 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 657 GD.getDtorType())) { 658 // Destructor variants in the Microsoft C++ ABI are always internal or 659 // linkonce_odr thunks emitted on an as-needed basis. 660 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 661 : llvm::GlobalValue::LinkOnceODRLinkage; 662 } 663 664 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 665 } 666 667 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 668 llvm::Function *F) { 669 setNonAliasAttributes(D, F); 670 } 671 672 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 673 const CGFunctionInfo &Info, 674 llvm::Function *F) { 675 unsigned CallingConv; 676 AttributeListType AttributeList; 677 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 678 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 679 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 680 } 681 682 /// Determines whether the language options require us to model 683 /// unwind exceptions. We treat -fexceptions as mandating this 684 /// except under the fragile ObjC ABI with only ObjC exceptions 685 /// enabled. This means, for example, that C with -fexceptions 686 /// enables this. 687 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 688 // If exceptions are completely disabled, obviously this is false. 689 if (!LangOpts.Exceptions) return false; 690 691 // If C++ exceptions are enabled, this is true. 692 if (LangOpts.CXXExceptions) return true; 693 694 // If ObjC exceptions are enabled, this depends on the ABI. 695 if (LangOpts.ObjCExceptions) { 696 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 697 } 698 699 return true; 700 } 701 702 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 703 llvm::Function *F) { 704 llvm::AttrBuilder B; 705 706 if (CodeGenOpts.UnwindTables) 707 B.addAttribute(llvm::Attribute::UWTable); 708 709 if (!hasUnwindExceptions(LangOpts)) 710 B.addAttribute(llvm::Attribute::NoUnwind); 711 712 if (D->hasAttr<NakedAttr>()) { 713 // Naked implies noinline: we should not be inlining such functions. 714 B.addAttribute(llvm::Attribute::Naked); 715 B.addAttribute(llvm::Attribute::NoInline); 716 } else if (D->hasAttr<NoDuplicateAttr>()) { 717 B.addAttribute(llvm::Attribute::NoDuplicate); 718 } else if (D->hasAttr<NoInlineAttr>()) { 719 B.addAttribute(llvm::Attribute::NoInline); 720 } else if (D->hasAttr<AlwaysInlineAttr>() && 721 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 722 llvm::Attribute::NoInline)) { 723 // (noinline wins over always_inline, and we can't specify both in IR) 724 B.addAttribute(llvm::Attribute::AlwaysInline); 725 } 726 727 if (D->hasAttr<ColdAttr>()) { 728 if (!D->hasAttr<OptimizeNoneAttr>()) 729 B.addAttribute(llvm::Attribute::OptimizeForSize); 730 B.addAttribute(llvm::Attribute::Cold); 731 } 732 733 if (D->hasAttr<MinSizeAttr>()) 734 B.addAttribute(llvm::Attribute::MinSize); 735 736 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 737 B.addAttribute(llvm::Attribute::StackProtect); 738 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 739 B.addAttribute(llvm::Attribute::StackProtectStrong); 740 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 741 B.addAttribute(llvm::Attribute::StackProtectReq); 742 743 // Add sanitizer attributes if function is not blacklisted. 744 if (!isInSanitizerBlacklist(F, D->getLocation())) { 745 // When AddressSanitizer is enabled, set SanitizeAddress attribute 746 // unless __attribute__((no_sanitize_address)) is used. 747 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 748 !D->hasAttr<NoSanitizeAddressAttr>()) 749 B.addAttribute(llvm::Attribute::SanitizeAddress); 750 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 751 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 752 !D->hasAttr<NoSanitizeThreadAttr>()) 753 B.addAttribute(llvm::Attribute::SanitizeThread); 754 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 755 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 756 !D->hasAttr<NoSanitizeMemoryAttr>()) 757 B.addAttribute(llvm::Attribute::SanitizeMemory); 758 } 759 760 F->addAttributes(llvm::AttributeSet::FunctionIndex, 761 llvm::AttributeSet::get( 762 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 763 764 if (D->hasAttr<OptimizeNoneAttr>()) { 765 // OptimizeNone implies noinline; we should not be inlining such functions. 766 F->addFnAttr(llvm::Attribute::OptimizeNone); 767 F->addFnAttr(llvm::Attribute::NoInline); 768 769 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 770 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 771 "OptimizeNone and OptimizeForSize on same function!"); 772 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 773 "OptimizeNone and MinSize on same function!"); 774 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 775 "OptimizeNone and AlwaysInline on same function!"); 776 777 // Attribute 'inlinehint' has no effect on 'optnone' functions. 778 // Explicitly remove it from the set of function attributes. 779 F->removeFnAttr(llvm::Attribute::InlineHint); 780 } 781 782 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 783 F->setUnnamedAddr(true); 784 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 785 if (MD->isVirtual()) 786 F->setUnnamedAddr(true); 787 788 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 789 if (alignment) 790 F->setAlignment(alignment); 791 792 // C++ ABI requires 2-byte alignment for member functions. 793 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 794 F->setAlignment(2); 795 } 796 797 void CodeGenModule::SetCommonAttributes(const Decl *D, 798 llvm::GlobalValue *GV) { 799 if (const auto *ND = dyn_cast<NamedDecl>(D)) 800 setGlobalVisibility(GV, ND); 801 else 802 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 803 804 if (D->hasAttr<UsedAttr>()) 805 addUsedGlobal(GV); 806 } 807 808 void CodeGenModule::setAliasAttributes(const Decl *D, 809 llvm::GlobalValue *GV) { 810 SetCommonAttributes(D, GV); 811 812 // Process the dllexport attribute based on whether the original definition 813 // (not necessarily the aliasee) was exported. 814 if (D->hasAttr<DLLExportAttr>()) 815 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 816 } 817 818 void CodeGenModule::setNonAliasAttributes(const Decl *D, 819 llvm::GlobalObject *GO) { 820 SetCommonAttributes(D, GO); 821 822 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 823 GO->setSection(SA->getName()); 824 825 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 826 } 827 828 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 829 llvm::Function *F, 830 const CGFunctionInfo &FI) { 831 SetLLVMFunctionAttributes(D, FI, F); 832 SetLLVMFunctionAttributesForDefinition(D, F); 833 834 F->setLinkage(llvm::Function::InternalLinkage); 835 836 setNonAliasAttributes(D, F); 837 } 838 839 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 840 const NamedDecl *ND) { 841 // Set linkage and visibility in case we never see a definition. 842 LinkageInfo LV = ND->getLinkageAndVisibility(); 843 if (LV.getLinkage() != ExternalLinkage) { 844 // Don't set internal linkage on declarations. 845 } else { 846 if (ND->hasAttr<DLLImportAttr>()) { 847 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 848 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 849 } else if (ND->hasAttr<DLLExportAttr>()) { 850 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 851 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 852 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 853 // "extern_weak" is overloaded in LLVM; we probably should have 854 // separate linkage types for this. 855 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 856 } 857 858 // Set visibility on a declaration only if it's explicit. 859 if (LV.isVisibilityExplicit()) 860 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 861 } 862 } 863 864 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 865 bool IsIncompleteFunction, 866 bool IsThunk) { 867 if (unsigned IID = F->getIntrinsicID()) { 868 // If this is an intrinsic function, set the function's attributes 869 // to the intrinsic's attributes. 870 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 871 (llvm::Intrinsic::ID)IID)); 872 return; 873 } 874 875 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 876 877 if (!IsIncompleteFunction) 878 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 879 880 // Add the Returned attribute for "this", except for iOS 5 and earlier 881 // where substantial code, including the libstdc++ dylib, was compiled with 882 // GCC and does not actually return "this". 883 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 884 !(getTarget().getTriple().isiOS() && 885 getTarget().getTriple().isOSVersionLT(6))) { 886 assert(!F->arg_empty() && 887 F->arg_begin()->getType() 888 ->canLosslesslyBitCastTo(F->getReturnType()) && 889 "unexpected this return"); 890 F->addAttribute(1, llvm::Attribute::Returned); 891 } 892 893 // Only a few attributes are set on declarations; these may later be 894 // overridden by a definition. 895 896 setLinkageAndVisibilityForGV(F, FD); 897 898 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 899 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 900 // Don't dllexport/import destructor thunks. 901 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 902 } 903 } 904 905 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 906 F->setSection(SA->getName()); 907 908 // A replaceable global allocation function does not act like a builtin by 909 // default, only if it is invoked by a new-expression or delete-expression. 910 if (FD->isReplaceableGlobalAllocationFunction()) 911 F->addAttribute(llvm::AttributeSet::FunctionIndex, 912 llvm::Attribute::NoBuiltin); 913 } 914 915 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 916 assert(!GV->isDeclaration() && 917 "Only globals with definition can force usage."); 918 LLVMUsed.push_back(GV); 919 } 920 921 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 922 assert(!GV->isDeclaration() && 923 "Only globals with definition can force usage."); 924 LLVMCompilerUsed.push_back(GV); 925 } 926 927 static void emitUsed(CodeGenModule &CGM, StringRef Name, 928 std::vector<llvm::WeakVH> &List) { 929 // Don't create llvm.used if there is no need. 930 if (List.empty()) 931 return; 932 933 // Convert List to what ConstantArray needs. 934 SmallVector<llvm::Constant*, 8> UsedArray; 935 UsedArray.resize(List.size()); 936 for (unsigned i = 0, e = List.size(); i != e; ++i) { 937 UsedArray[i] = 938 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 939 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 940 } 941 942 if (UsedArray.empty()) 943 return; 944 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 945 946 auto *GV = new llvm::GlobalVariable( 947 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 948 llvm::ConstantArray::get(ATy, UsedArray), Name); 949 950 GV->setSection("llvm.metadata"); 951 } 952 953 void CodeGenModule::emitLLVMUsed() { 954 emitUsed(*this, "llvm.used", LLVMUsed); 955 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 956 } 957 958 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 959 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 960 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 961 } 962 963 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 964 llvm::SmallString<32> Opt; 965 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 966 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 968 } 969 970 void CodeGenModule::AddDependentLib(StringRef Lib) { 971 llvm::SmallString<24> Opt; 972 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 973 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 974 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 975 } 976 977 /// \brief Add link options implied by the given module, including modules 978 /// it depends on, using a postorder walk. 979 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 980 SmallVectorImpl<llvm::Metadata *> &Metadata, 981 llvm::SmallPtrSet<Module *, 16> &Visited) { 982 // Import this module's parent. 983 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 984 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 985 } 986 987 // Import this module's dependencies. 988 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 989 if (Visited.insert(Mod->Imports[I - 1]).second) 990 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 991 } 992 993 // Add linker options to link against the libraries/frameworks 994 // described by this module. 995 llvm::LLVMContext &Context = CGM.getLLVMContext(); 996 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 997 // Link against a framework. Frameworks are currently Darwin only, so we 998 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 999 if (Mod->LinkLibraries[I-1].IsFramework) { 1000 llvm::Metadata *Args[2] = { 1001 llvm::MDString::get(Context, "-framework"), 1002 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1003 1004 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1005 continue; 1006 } 1007 1008 // Link against a library. 1009 llvm::SmallString<24> Opt; 1010 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1011 Mod->LinkLibraries[I-1].Library, Opt); 1012 auto *OptString = llvm::MDString::get(Context, Opt); 1013 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1014 } 1015 } 1016 1017 void CodeGenModule::EmitModuleLinkOptions() { 1018 // Collect the set of all of the modules we want to visit to emit link 1019 // options, which is essentially the imported modules and all of their 1020 // non-explicit child modules. 1021 llvm::SetVector<clang::Module *> LinkModules; 1022 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1023 SmallVector<clang::Module *, 16> Stack; 1024 1025 // Seed the stack with imported modules. 1026 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1027 MEnd = ImportedModules.end(); 1028 M != MEnd; ++M) { 1029 if (Visited.insert(*M).second) 1030 Stack.push_back(*M); 1031 } 1032 1033 // Find all of the modules to import, making a little effort to prune 1034 // non-leaf modules. 1035 while (!Stack.empty()) { 1036 clang::Module *Mod = Stack.pop_back_val(); 1037 1038 bool AnyChildren = false; 1039 1040 // Visit the submodules of this module. 1041 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1042 SubEnd = Mod->submodule_end(); 1043 Sub != SubEnd; ++Sub) { 1044 // Skip explicit children; they need to be explicitly imported to be 1045 // linked against. 1046 if ((*Sub)->IsExplicit) 1047 continue; 1048 1049 if (Visited.insert(*Sub).second) { 1050 Stack.push_back(*Sub); 1051 AnyChildren = true; 1052 } 1053 } 1054 1055 // We didn't find any children, so add this module to the list of 1056 // modules to link against. 1057 if (!AnyChildren) { 1058 LinkModules.insert(Mod); 1059 } 1060 } 1061 1062 // Add link options for all of the imported modules in reverse topological 1063 // order. We don't do anything to try to order import link flags with respect 1064 // to linker options inserted by things like #pragma comment(). 1065 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1066 Visited.clear(); 1067 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1068 MEnd = LinkModules.end(); 1069 M != MEnd; ++M) { 1070 if (Visited.insert(*M).second) 1071 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1072 } 1073 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1074 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1075 1076 // Add the linker options metadata flag. 1077 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1078 llvm::MDNode::get(getLLVMContext(), 1079 LinkerOptionsMetadata)); 1080 } 1081 1082 void CodeGenModule::EmitDeferred() { 1083 // Emit code for any potentially referenced deferred decls. Since a 1084 // previously unused static decl may become used during the generation of code 1085 // for a static function, iterate until no changes are made. 1086 1087 if (!DeferredVTables.empty()) { 1088 EmitDeferredVTables(); 1089 1090 // Emitting a v-table doesn't directly cause more v-tables to 1091 // become deferred, although it can cause functions to be 1092 // emitted that then need those v-tables. 1093 assert(DeferredVTables.empty()); 1094 } 1095 1096 // Stop if we're out of both deferred v-tables and deferred declarations. 1097 if (DeferredDeclsToEmit.empty()) 1098 return; 1099 1100 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1101 // work, it will not interfere with this. 1102 std::vector<DeferredGlobal> CurDeclsToEmit; 1103 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1104 1105 for (DeferredGlobal &G : CurDeclsToEmit) { 1106 GlobalDecl D = G.GD; 1107 llvm::GlobalValue *GV = G.GV; 1108 G.GV = nullptr; 1109 1110 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1111 if (!GV) 1112 GV = GetGlobalValue(getMangledName(D)); 1113 1114 // Check to see if we've already emitted this. This is necessary 1115 // for a couple of reasons: first, decls can end up in the 1116 // deferred-decls queue multiple times, and second, decls can end 1117 // up with definitions in unusual ways (e.g. by an extern inline 1118 // function acquiring a strong function redefinition). Just 1119 // ignore these cases. 1120 if (GV && !GV->isDeclaration()) 1121 continue; 1122 1123 // Otherwise, emit the definition and move on to the next one. 1124 EmitGlobalDefinition(D, GV); 1125 1126 // If we found out that we need to emit more decls, do that recursively. 1127 // This has the advantage that the decls are emitted in a DFS and related 1128 // ones are close together, which is convenient for testing. 1129 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1130 EmitDeferred(); 1131 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1132 } 1133 } 1134 } 1135 1136 void CodeGenModule::EmitGlobalAnnotations() { 1137 if (Annotations.empty()) 1138 return; 1139 1140 // Create a new global variable for the ConstantStruct in the Module. 1141 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1142 Annotations[0]->getType(), Annotations.size()), Annotations); 1143 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1144 llvm::GlobalValue::AppendingLinkage, 1145 Array, "llvm.global.annotations"); 1146 gv->setSection(AnnotationSection); 1147 } 1148 1149 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1150 llvm::Constant *&AStr = AnnotationStrings[Str]; 1151 if (AStr) 1152 return AStr; 1153 1154 // Not found yet, create a new global. 1155 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1156 auto *gv = 1157 new llvm::GlobalVariable(getModule(), s->getType(), true, 1158 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1159 gv->setSection(AnnotationSection); 1160 gv->setUnnamedAddr(true); 1161 AStr = gv; 1162 return gv; 1163 } 1164 1165 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1166 SourceManager &SM = getContext().getSourceManager(); 1167 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1168 if (PLoc.isValid()) 1169 return EmitAnnotationString(PLoc.getFilename()); 1170 return EmitAnnotationString(SM.getBufferName(Loc)); 1171 } 1172 1173 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1174 SourceManager &SM = getContext().getSourceManager(); 1175 PresumedLoc PLoc = SM.getPresumedLoc(L); 1176 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1177 SM.getExpansionLineNumber(L); 1178 return llvm::ConstantInt::get(Int32Ty, LineNo); 1179 } 1180 1181 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1182 const AnnotateAttr *AA, 1183 SourceLocation L) { 1184 // Get the globals for file name, annotation, and the line number. 1185 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1186 *UnitGV = EmitAnnotationUnit(L), 1187 *LineNoCst = EmitAnnotationLineNo(L); 1188 1189 // Create the ConstantStruct for the global annotation. 1190 llvm::Constant *Fields[4] = { 1191 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1192 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1193 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1194 LineNoCst 1195 }; 1196 return llvm::ConstantStruct::getAnon(Fields); 1197 } 1198 1199 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1200 llvm::GlobalValue *GV) { 1201 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1202 // Get the struct elements for these annotations. 1203 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1204 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1205 } 1206 1207 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1208 SourceLocation Loc) const { 1209 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1210 // Blacklist by function name. 1211 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1212 return true; 1213 // Blacklist by location. 1214 if (!Loc.isInvalid()) 1215 return SanitizerBL.isBlacklistedLocation(Loc); 1216 // If location is unknown, this may be a compiler-generated function. Assume 1217 // it's located in the main file. 1218 auto &SM = Context.getSourceManager(); 1219 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1220 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1221 } 1222 return false; 1223 } 1224 1225 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1226 SourceLocation Loc, QualType Ty, 1227 StringRef Category) const { 1228 // For now globals can be blacklisted only in ASan. 1229 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1230 return false; 1231 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1232 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1233 return true; 1234 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1235 return true; 1236 // Check global type. 1237 if (!Ty.isNull()) { 1238 // Drill down the array types: if global variable of a fixed type is 1239 // blacklisted, we also don't instrument arrays of them. 1240 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1241 Ty = AT->getElementType(); 1242 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1243 // We allow to blacklist only record types (classes, structs etc.) 1244 if (Ty->isRecordType()) { 1245 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1246 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1247 return true; 1248 } 1249 } 1250 return false; 1251 } 1252 1253 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1254 // Never defer when EmitAllDecls is specified. 1255 if (LangOpts.EmitAllDecls) 1256 return true; 1257 1258 return getContext().DeclMustBeEmitted(Global); 1259 } 1260 1261 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1262 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1263 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1264 // Implicit template instantiations may change linkage if they are later 1265 // explicitly instantiated, so they should not be emitted eagerly. 1266 return false; 1267 1268 return true; 1269 } 1270 1271 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1272 const CXXUuidofExpr* E) { 1273 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1274 // well-formed. 1275 StringRef Uuid = E->getUuidAsStringRef(Context); 1276 std::string Name = "_GUID_" + Uuid.lower(); 1277 std::replace(Name.begin(), Name.end(), '-', '_'); 1278 1279 // Look for an existing global. 1280 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1281 return GV; 1282 1283 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1284 assert(Init && "failed to initialize as constant"); 1285 1286 auto *GV = new llvm::GlobalVariable( 1287 getModule(), Init->getType(), 1288 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1289 if (supportsCOMDAT()) 1290 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1291 return GV; 1292 } 1293 1294 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1295 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1296 assert(AA && "No alias?"); 1297 1298 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1299 1300 // See if there is already something with the target's name in the module. 1301 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1302 if (Entry) { 1303 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1304 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1305 } 1306 1307 llvm::Constant *Aliasee; 1308 if (isa<llvm::FunctionType>(DeclTy)) 1309 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1310 GlobalDecl(cast<FunctionDecl>(VD)), 1311 /*ForVTable=*/false); 1312 else 1313 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1314 llvm::PointerType::getUnqual(DeclTy), 1315 nullptr); 1316 1317 auto *F = cast<llvm::GlobalValue>(Aliasee); 1318 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1319 WeakRefReferences.insert(F); 1320 1321 return Aliasee; 1322 } 1323 1324 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1325 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1326 1327 // Weak references don't produce any output by themselves. 1328 if (Global->hasAttr<WeakRefAttr>()) 1329 return; 1330 1331 // If this is an alias definition (which otherwise looks like a declaration) 1332 // emit it now. 1333 if (Global->hasAttr<AliasAttr>()) 1334 return EmitAliasDefinition(GD); 1335 1336 // If this is CUDA, be selective about which declarations we emit. 1337 if (LangOpts.CUDA) { 1338 if (CodeGenOpts.CUDAIsDevice) { 1339 if (!Global->hasAttr<CUDADeviceAttr>() && 1340 !Global->hasAttr<CUDAGlobalAttr>() && 1341 !Global->hasAttr<CUDAConstantAttr>() && 1342 !Global->hasAttr<CUDASharedAttr>()) 1343 return; 1344 } else { 1345 if (!Global->hasAttr<CUDAHostAttr>() && ( 1346 Global->hasAttr<CUDADeviceAttr>() || 1347 Global->hasAttr<CUDAConstantAttr>() || 1348 Global->hasAttr<CUDASharedAttr>())) 1349 return; 1350 } 1351 } 1352 1353 // Ignore declarations, they will be emitted on their first use. 1354 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1355 // Forward declarations are emitted lazily on first use. 1356 if (!FD->doesThisDeclarationHaveABody()) { 1357 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1358 return; 1359 1360 StringRef MangledName = getMangledName(GD); 1361 1362 // Compute the function info and LLVM type. 1363 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1364 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1365 1366 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1367 /*DontDefer=*/false); 1368 return; 1369 } 1370 } else { 1371 const auto *VD = cast<VarDecl>(Global); 1372 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1373 1374 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1375 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1376 return; 1377 } 1378 1379 // Defer code generation to first use when possible, e.g. if this is an inline 1380 // function. If the global must always be emitted, do it eagerly if possible 1381 // to benefit from cache locality. 1382 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1383 // Emit the definition if it can't be deferred. 1384 EmitGlobalDefinition(GD); 1385 return; 1386 } 1387 1388 // If we're deferring emission of a C++ variable with an 1389 // initializer, remember the order in which it appeared in the file. 1390 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1391 cast<VarDecl>(Global)->hasInit()) { 1392 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1393 CXXGlobalInits.push_back(nullptr); 1394 } 1395 1396 StringRef MangledName = getMangledName(GD); 1397 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1398 // The value has already been used and should therefore be emitted. 1399 addDeferredDeclToEmit(GV, GD); 1400 } else if (MustBeEmitted(Global)) { 1401 // The value must be emitted, but cannot be emitted eagerly. 1402 assert(!MayBeEmittedEagerly(Global)); 1403 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1404 } else { 1405 // Otherwise, remember that we saw a deferred decl with this name. The 1406 // first use of the mangled name will cause it to move into 1407 // DeferredDeclsToEmit. 1408 DeferredDecls[MangledName] = GD; 1409 } 1410 } 1411 1412 namespace { 1413 struct FunctionIsDirectlyRecursive : 1414 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1415 const StringRef Name; 1416 const Builtin::Context &BI; 1417 bool Result; 1418 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1419 Name(N), BI(C), Result(false) { 1420 } 1421 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1422 1423 bool TraverseCallExpr(CallExpr *E) { 1424 const FunctionDecl *FD = E->getDirectCallee(); 1425 if (!FD) 1426 return true; 1427 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1428 if (Attr && Name == Attr->getLabel()) { 1429 Result = true; 1430 return false; 1431 } 1432 unsigned BuiltinID = FD->getBuiltinID(); 1433 if (!BuiltinID) 1434 return true; 1435 StringRef BuiltinName = BI.GetName(BuiltinID); 1436 if (BuiltinName.startswith("__builtin_") && 1437 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1438 Result = true; 1439 return false; 1440 } 1441 return true; 1442 } 1443 }; 1444 } 1445 1446 // isTriviallyRecursive - Check if this function calls another 1447 // decl that, because of the asm attribute or the other decl being a builtin, 1448 // ends up pointing to itself. 1449 bool 1450 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1451 StringRef Name; 1452 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1453 // asm labels are a special kind of mangling we have to support. 1454 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1455 if (!Attr) 1456 return false; 1457 Name = Attr->getLabel(); 1458 } else { 1459 Name = FD->getName(); 1460 } 1461 1462 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1463 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1464 return Walker.Result; 1465 } 1466 1467 bool 1468 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1469 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1470 return true; 1471 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1472 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1473 return false; 1474 // PR9614. Avoid cases where the source code is lying to us. An available 1475 // externally function should have an equivalent function somewhere else, 1476 // but a function that calls itself is clearly not equivalent to the real 1477 // implementation. 1478 // This happens in glibc's btowc and in some configure checks. 1479 return !isTriviallyRecursive(F); 1480 } 1481 1482 /// If the type for the method's class was generated by 1483 /// CGDebugInfo::createContextChain(), the cache contains only a 1484 /// limited DIType without any declarations. Since EmitFunctionStart() 1485 /// needs to find the canonical declaration for each method, we need 1486 /// to construct the complete type prior to emitting the method. 1487 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1488 if (!D->isInstance()) 1489 return; 1490 1491 if (CGDebugInfo *DI = getModuleDebugInfo()) 1492 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1493 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1494 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1495 } 1496 } 1497 1498 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1499 const auto *D = cast<ValueDecl>(GD.getDecl()); 1500 1501 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1502 Context.getSourceManager(), 1503 "Generating code for declaration"); 1504 1505 if (isa<FunctionDecl>(D)) { 1506 // At -O0, don't generate IR for functions with available_externally 1507 // linkage. 1508 if (!shouldEmitFunction(GD)) 1509 return; 1510 1511 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1512 CompleteDIClassType(Method); 1513 // Make sure to emit the definition(s) before we emit the thunks. 1514 // This is necessary for the generation of certain thunks. 1515 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1516 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1517 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1518 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1519 else 1520 EmitGlobalFunctionDefinition(GD, GV); 1521 1522 if (Method->isVirtual()) 1523 getVTables().EmitThunks(GD); 1524 1525 return; 1526 } 1527 1528 return EmitGlobalFunctionDefinition(GD, GV); 1529 } 1530 1531 if (const auto *VD = dyn_cast<VarDecl>(D)) 1532 return EmitGlobalVarDefinition(VD); 1533 1534 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1535 } 1536 1537 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1538 /// module, create and return an llvm Function with the specified type. If there 1539 /// is something in the module with the specified name, return it potentially 1540 /// bitcasted to the right type. 1541 /// 1542 /// If D is non-null, it specifies a decl that correspond to this. This is used 1543 /// to set the attributes on the function when it is first created. 1544 llvm::Constant * 1545 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1546 llvm::Type *Ty, 1547 GlobalDecl GD, bool ForVTable, 1548 bool DontDefer, bool IsThunk, 1549 llvm::AttributeSet ExtraAttrs) { 1550 const Decl *D = GD.getDecl(); 1551 1552 // Lookup the entry, lazily creating it if necessary. 1553 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1554 if (Entry) { 1555 if (WeakRefReferences.erase(Entry)) { 1556 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1557 if (FD && !FD->hasAttr<WeakAttr>()) 1558 Entry->setLinkage(llvm::Function::ExternalLinkage); 1559 } 1560 1561 // Handle dropped DLL attributes. 1562 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1563 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1564 1565 if (Entry->getType()->getElementType() == Ty) 1566 return Entry; 1567 1568 // Make sure the result is of the correct type. 1569 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1570 } 1571 1572 // This function doesn't have a complete type (for example, the return 1573 // type is an incomplete struct). Use a fake type instead, and make 1574 // sure not to try to set attributes. 1575 bool IsIncompleteFunction = false; 1576 1577 llvm::FunctionType *FTy; 1578 if (isa<llvm::FunctionType>(Ty)) { 1579 FTy = cast<llvm::FunctionType>(Ty); 1580 } else { 1581 FTy = llvm::FunctionType::get(VoidTy, false); 1582 IsIncompleteFunction = true; 1583 } 1584 1585 llvm::Function *F = llvm::Function::Create(FTy, 1586 llvm::Function::ExternalLinkage, 1587 MangledName, &getModule()); 1588 assert(F->getName() == MangledName && "name was uniqued!"); 1589 if (D) 1590 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1591 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1592 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1593 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1594 llvm::AttributeSet::get(VMContext, 1595 llvm::AttributeSet::FunctionIndex, 1596 B)); 1597 } 1598 1599 if (!DontDefer) { 1600 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1601 // each other bottoming out with the base dtor. Therefore we emit non-base 1602 // dtors on usage, even if there is no dtor definition in the TU. 1603 if (D && isa<CXXDestructorDecl>(D) && 1604 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1605 GD.getDtorType())) 1606 addDeferredDeclToEmit(F, GD); 1607 1608 // This is the first use or definition of a mangled name. If there is a 1609 // deferred decl with this name, remember that we need to emit it at the end 1610 // of the file. 1611 auto DDI = DeferredDecls.find(MangledName); 1612 if (DDI != DeferredDecls.end()) { 1613 // Move the potentially referenced deferred decl to the 1614 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1615 // don't need it anymore). 1616 addDeferredDeclToEmit(F, DDI->second); 1617 DeferredDecls.erase(DDI); 1618 1619 // Otherwise, if this is a sized deallocation function, emit a weak 1620 // definition for it at the end of the translation unit (if allowed), 1621 // unless the sized deallocation function is aliased. 1622 } else if (D && 1623 cast<FunctionDecl>(D) 1624 ->getCorrespondingUnsizedGlobalDeallocationFunction() && 1625 getLangOpts().DefaultSizedDelete && 1626 !D->hasAttr<AliasAttr>()) { 1627 addDeferredDeclToEmit(F, GD); 1628 1629 // Otherwise, there are cases we have to worry about where we're 1630 // using a declaration for which we must emit a definition but where 1631 // we might not find a top-level definition: 1632 // - member functions defined inline in their classes 1633 // - friend functions defined inline in some class 1634 // - special member functions with implicit definitions 1635 // If we ever change our AST traversal to walk into class methods, 1636 // this will be unnecessary. 1637 // 1638 // We also don't emit a definition for a function if it's going to be an 1639 // entry in a vtable, unless it's already marked as used. 1640 } else if (getLangOpts().CPlusPlus && D) { 1641 // Look for a declaration that's lexically in a record. 1642 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1643 FD = FD->getPreviousDecl()) { 1644 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1645 if (FD->doesThisDeclarationHaveABody()) { 1646 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1647 break; 1648 } 1649 } 1650 } 1651 } 1652 } 1653 1654 // Make sure the result is of the requested type. 1655 if (!IsIncompleteFunction) { 1656 assert(F->getType()->getElementType() == Ty); 1657 return F; 1658 } 1659 1660 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1661 return llvm::ConstantExpr::getBitCast(F, PTy); 1662 } 1663 1664 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1665 /// non-null, then this function will use the specified type if it has to 1666 /// create it (this occurs when we see a definition of the function). 1667 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1668 llvm::Type *Ty, 1669 bool ForVTable, 1670 bool DontDefer) { 1671 // If there was no specific requested type, just convert it now. 1672 if (!Ty) 1673 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1674 1675 StringRef MangledName = getMangledName(GD); 1676 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1677 } 1678 1679 /// CreateRuntimeFunction - Create a new runtime function with the specified 1680 /// type and name. 1681 llvm::Constant * 1682 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1683 StringRef Name, 1684 llvm::AttributeSet ExtraAttrs) { 1685 llvm::Constant *C = 1686 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1687 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1688 if (auto *F = dyn_cast<llvm::Function>(C)) 1689 if (F->empty()) 1690 F->setCallingConv(getRuntimeCC()); 1691 return C; 1692 } 1693 1694 /// CreateBuiltinFunction - Create a new builtin function with the specified 1695 /// type and name. 1696 llvm::Constant * 1697 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1698 StringRef Name, 1699 llvm::AttributeSet ExtraAttrs) { 1700 llvm::Constant *C = 1701 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1702 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1703 if (auto *F = dyn_cast<llvm::Function>(C)) 1704 if (F->empty()) 1705 F->setCallingConv(getBuiltinCC()); 1706 return C; 1707 } 1708 1709 /// isTypeConstant - Determine whether an object of this type can be emitted 1710 /// as a constant. 1711 /// 1712 /// If ExcludeCtor is true, the duration when the object's constructor runs 1713 /// will not be considered. The caller will need to verify that the object is 1714 /// not written to during its construction. 1715 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1716 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1717 return false; 1718 1719 if (Context.getLangOpts().CPlusPlus) { 1720 if (const CXXRecordDecl *Record 1721 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1722 return ExcludeCtor && !Record->hasMutableFields() && 1723 Record->hasTrivialDestructor(); 1724 } 1725 1726 return true; 1727 } 1728 1729 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1730 /// create and return an llvm GlobalVariable with the specified type. If there 1731 /// is something in the module with the specified name, return it potentially 1732 /// bitcasted to the right type. 1733 /// 1734 /// If D is non-null, it specifies a decl that correspond to this. This is used 1735 /// to set the attributes on the global when it is first created. 1736 llvm::Constant * 1737 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1738 llvm::PointerType *Ty, 1739 const VarDecl *D) { 1740 // Lookup the entry, lazily creating it if necessary. 1741 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1742 if (Entry) { 1743 if (WeakRefReferences.erase(Entry)) { 1744 if (D && !D->hasAttr<WeakAttr>()) 1745 Entry->setLinkage(llvm::Function::ExternalLinkage); 1746 } 1747 1748 // Handle dropped DLL attributes. 1749 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1750 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1751 1752 if (Entry->getType() == Ty) 1753 return Entry; 1754 1755 // Make sure the result is of the correct type. 1756 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1757 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1758 1759 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1760 } 1761 1762 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1763 auto *GV = new llvm::GlobalVariable( 1764 getModule(), Ty->getElementType(), false, 1765 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1766 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1767 1768 // This is the first use or definition of a mangled name. If there is a 1769 // deferred decl with this name, remember that we need to emit it at the end 1770 // of the file. 1771 auto DDI = DeferredDecls.find(MangledName); 1772 if (DDI != DeferredDecls.end()) { 1773 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1774 // list, and remove it from DeferredDecls (since we don't need it anymore). 1775 addDeferredDeclToEmit(GV, DDI->second); 1776 DeferredDecls.erase(DDI); 1777 } 1778 1779 // Handle things which are present even on external declarations. 1780 if (D) { 1781 // FIXME: This code is overly simple and should be merged with other global 1782 // handling. 1783 GV->setConstant(isTypeConstant(D->getType(), false)); 1784 1785 setLinkageAndVisibilityForGV(GV, D); 1786 1787 if (D->getTLSKind()) { 1788 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1789 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1790 setTLSMode(GV, *D); 1791 } 1792 1793 // If required by the ABI, treat declarations of static data members with 1794 // inline initializers as definitions. 1795 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1796 EmitGlobalVarDefinition(D); 1797 } 1798 1799 // Handle XCore specific ABI requirements. 1800 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1801 D->getLanguageLinkage() == CLanguageLinkage && 1802 D->getType().isConstant(Context) && 1803 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1804 GV->setSection(".cp.rodata"); 1805 } 1806 1807 if (AddrSpace != Ty->getAddressSpace()) 1808 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1809 1810 return GV; 1811 } 1812 1813 1814 llvm::GlobalVariable * 1815 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1816 llvm::Type *Ty, 1817 llvm::GlobalValue::LinkageTypes Linkage) { 1818 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1819 llvm::GlobalVariable *OldGV = nullptr; 1820 1821 if (GV) { 1822 // Check if the variable has the right type. 1823 if (GV->getType()->getElementType() == Ty) 1824 return GV; 1825 1826 // Because C++ name mangling, the only way we can end up with an already 1827 // existing global with the same name is if it has been declared extern "C". 1828 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1829 OldGV = GV; 1830 } 1831 1832 // Create a new variable. 1833 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1834 Linkage, nullptr, Name); 1835 1836 if (OldGV) { 1837 // Replace occurrences of the old variable if needed. 1838 GV->takeName(OldGV); 1839 1840 if (!OldGV->use_empty()) { 1841 llvm::Constant *NewPtrForOldDecl = 1842 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1843 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1844 } 1845 1846 OldGV->eraseFromParent(); 1847 } 1848 1849 if (supportsCOMDAT() && GV->isWeakForLinker()) 1850 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1851 1852 return GV; 1853 } 1854 1855 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1856 /// given global variable. If Ty is non-null and if the global doesn't exist, 1857 /// then it will be created with the specified type instead of whatever the 1858 /// normal requested type would be. 1859 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1860 llvm::Type *Ty) { 1861 assert(D->hasGlobalStorage() && "Not a global variable"); 1862 QualType ASTTy = D->getType(); 1863 if (!Ty) 1864 Ty = getTypes().ConvertTypeForMem(ASTTy); 1865 1866 llvm::PointerType *PTy = 1867 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1868 1869 StringRef MangledName = getMangledName(D); 1870 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1871 } 1872 1873 /// CreateRuntimeVariable - Create a new runtime global variable with the 1874 /// specified type and name. 1875 llvm::Constant * 1876 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1877 StringRef Name) { 1878 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1879 } 1880 1881 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1882 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1883 1884 if (!MustBeEmitted(D)) { 1885 // If we have not seen a reference to this variable yet, place it 1886 // into the deferred declarations table to be emitted if needed 1887 // later. 1888 StringRef MangledName = getMangledName(D); 1889 if (!GetGlobalValue(MangledName)) { 1890 DeferredDecls[MangledName] = D; 1891 return; 1892 } 1893 } 1894 1895 // The tentative definition is the only definition. 1896 EmitGlobalVarDefinition(D); 1897 } 1898 1899 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1900 return Context.toCharUnitsFromBits( 1901 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1902 } 1903 1904 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1905 unsigned AddrSpace) { 1906 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1907 if (D->hasAttr<CUDAConstantAttr>()) 1908 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1909 else if (D->hasAttr<CUDASharedAttr>()) 1910 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1911 else 1912 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1913 } 1914 1915 return AddrSpace; 1916 } 1917 1918 template<typename SomeDecl> 1919 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1920 llvm::GlobalValue *GV) { 1921 if (!getLangOpts().CPlusPlus) 1922 return; 1923 1924 // Must have 'used' attribute, or else inline assembly can't rely on 1925 // the name existing. 1926 if (!D->template hasAttr<UsedAttr>()) 1927 return; 1928 1929 // Must have internal linkage and an ordinary name. 1930 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1931 return; 1932 1933 // Must be in an extern "C" context. Entities declared directly within 1934 // a record are not extern "C" even if the record is in such a context. 1935 const SomeDecl *First = D->getFirstDecl(); 1936 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1937 return; 1938 1939 // OK, this is an internal linkage entity inside an extern "C" linkage 1940 // specification. Make a note of that so we can give it the "expected" 1941 // mangled name if nothing else is using that name. 1942 std::pair<StaticExternCMap::iterator, bool> R = 1943 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1944 1945 // If we have multiple internal linkage entities with the same name 1946 // in extern "C" regions, none of them gets that name. 1947 if (!R.second) 1948 R.first->second = nullptr; 1949 } 1950 1951 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1952 if (!CGM.supportsCOMDAT()) 1953 return false; 1954 1955 if (D.hasAttr<SelectAnyAttr>()) 1956 return true; 1957 1958 GVALinkage Linkage; 1959 if (auto *VD = dyn_cast<VarDecl>(&D)) 1960 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1961 else 1962 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1963 1964 switch (Linkage) { 1965 case GVA_Internal: 1966 case GVA_AvailableExternally: 1967 case GVA_StrongExternal: 1968 return false; 1969 case GVA_DiscardableODR: 1970 case GVA_StrongODR: 1971 return true; 1972 } 1973 llvm_unreachable("No such linkage"); 1974 } 1975 1976 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1977 llvm::GlobalObject &GO) { 1978 if (!shouldBeInCOMDAT(*this, D)) 1979 return; 1980 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1981 } 1982 1983 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1984 llvm::Constant *Init = nullptr; 1985 QualType ASTTy = D->getType(); 1986 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1987 bool NeedsGlobalCtor = false; 1988 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1989 1990 const VarDecl *InitDecl; 1991 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1992 1993 if (!InitExpr) { 1994 // This is a tentative definition; tentative definitions are 1995 // implicitly initialized with { 0 }. 1996 // 1997 // Note that tentative definitions are only emitted at the end of 1998 // a translation unit, so they should never have incomplete 1999 // type. In addition, EmitTentativeDefinition makes sure that we 2000 // never attempt to emit a tentative definition if a real one 2001 // exists. A use may still exists, however, so we still may need 2002 // to do a RAUW. 2003 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2004 Init = EmitNullConstant(D->getType()); 2005 } else { 2006 initializedGlobalDecl = GlobalDecl(D); 2007 Init = EmitConstantInit(*InitDecl); 2008 2009 if (!Init) { 2010 QualType T = InitExpr->getType(); 2011 if (D->getType()->isReferenceType()) 2012 T = D->getType(); 2013 2014 if (getLangOpts().CPlusPlus) { 2015 Init = EmitNullConstant(T); 2016 NeedsGlobalCtor = true; 2017 } else { 2018 ErrorUnsupported(D, "static initializer"); 2019 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2020 } 2021 } else { 2022 // We don't need an initializer, so remove the entry for the delayed 2023 // initializer position (just in case this entry was delayed) if we 2024 // also don't need to register a destructor. 2025 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2026 DelayedCXXInitPosition.erase(D); 2027 } 2028 } 2029 2030 llvm::Type* InitType = Init->getType(); 2031 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2032 2033 // Strip off a bitcast if we got one back. 2034 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2035 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2036 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2037 // All zero index gep. 2038 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2039 Entry = CE->getOperand(0); 2040 } 2041 2042 // Entry is now either a Function or GlobalVariable. 2043 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2044 2045 // We have a definition after a declaration with the wrong type. 2046 // We must make a new GlobalVariable* and update everything that used OldGV 2047 // (a declaration or tentative definition) with the new GlobalVariable* 2048 // (which will be a definition). 2049 // 2050 // This happens if there is a prototype for a global (e.g. 2051 // "extern int x[];") and then a definition of a different type (e.g. 2052 // "int x[10];"). This also happens when an initializer has a different type 2053 // from the type of the global (this happens with unions). 2054 if (!GV || 2055 GV->getType()->getElementType() != InitType || 2056 GV->getType()->getAddressSpace() != 2057 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2058 2059 // Move the old entry aside so that we'll create a new one. 2060 Entry->setName(StringRef()); 2061 2062 // Make a new global with the correct type, this is now guaranteed to work. 2063 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2064 2065 // Replace all uses of the old global with the new global 2066 llvm::Constant *NewPtrForOldDecl = 2067 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2068 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2069 2070 // Erase the old global, since it is no longer used. 2071 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2072 } 2073 2074 MaybeHandleStaticInExternC(D, GV); 2075 2076 if (D->hasAttr<AnnotateAttr>()) 2077 AddGlobalAnnotations(D, GV); 2078 2079 GV->setInitializer(Init); 2080 2081 // If it is safe to mark the global 'constant', do so now. 2082 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2083 isTypeConstant(D->getType(), true)); 2084 2085 // If it is in a read-only section, mark it 'constant'. 2086 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2087 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2088 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2089 GV->setConstant(true); 2090 } 2091 2092 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2093 2094 // Set the llvm linkage type as appropriate. 2095 llvm::GlobalValue::LinkageTypes Linkage = 2096 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2097 2098 // On Darwin, the backing variable for a C++11 thread_local variable always 2099 // has internal linkage; all accesses should just be calls to the 2100 // Itanium-specified entry point, which has the normal linkage of the 2101 // variable. 2102 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2103 Context.getTargetInfo().getTriple().isMacOSX()) 2104 Linkage = llvm::GlobalValue::InternalLinkage; 2105 2106 GV->setLinkage(Linkage); 2107 if (D->hasAttr<DLLImportAttr>()) 2108 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2109 else if (D->hasAttr<DLLExportAttr>()) 2110 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2111 else 2112 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2113 2114 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2115 // common vars aren't constant even if declared const. 2116 GV->setConstant(false); 2117 2118 setNonAliasAttributes(D, GV); 2119 2120 if (D->getTLSKind() && !GV->isThreadLocal()) { 2121 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2122 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2123 setTLSMode(GV, *D); 2124 } 2125 2126 maybeSetTrivialComdat(*D, *GV); 2127 2128 // Emit the initializer function if necessary. 2129 if (NeedsGlobalCtor || NeedsGlobalDtor) 2130 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2131 2132 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2133 2134 // Emit global variable debug information. 2135 if (CGDebugInfo *DI = getModuleDebugInfo()) 2136 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2137 DI->EmitGlobalVariable(GV, D); 2138 } 2139 2140 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2141 const VarDecl *D, bool NoCommon) { 2142 // Don't give variables common linkage if -fno-common was specified unless it 2143 // was overridden by a NoCommon attribute. 2144 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2145 return true; 2146 2147 // C11 6.9.2/2: 2148 // A declaration of an identifier for an object that has file scope without 2149 // an initializer, and without a storage-class specifier or with the 2150 // storage-class specifier static, constitutes a tentative definition. 2151 if (D->getInit() || D->hasExternalStorage()) 2152 return true; 2153 2154 // A variable cannot be both common and exist in a section. 2155 if (D->hasAttr<SectionAttr>()) 2156 return true; 2157 2158 // Thread local vars aren't considered common linkage. 2159 if (D->getTLSKind()) 2160 return true; 2161 2162 // Tentative definitions marked with WeakImportAttr are true definitions. 2163 if (D->hasAttr<WeakImportAttr>()) 2164 return true; 2165 2166 // Declarations with a required alignment do not have common linakge in MSVC 2167 // mode. 2168 if (Context.getLangOpts().MSVCCompat) { 2169 if (D->hasAttr<AlignedAttr>()) 2170 return true; 2171 QualType VarType = D->getType(); 2172 if (Context.isAlignmentRequired(VarType)) 2173 return true; 2174 2175 if (const auto *RT = VarType->getAs<RecordType>()) { 2176 const RecordDecl *RD = RT->getDecl(); 2177 for (const FieldDecl *FD : RD->fields()) { 2178 if (FD->isBitField()) 2179 continue; 2180 if (FD->hasAttr<AlignedAttr>()) 2181 return true; 2182 if (Context.isAlignmentRequired(FD->getType())) 2183 return true; 2184 } 2185 } 2186 } 2187 2188 return false; 2189 } 2190 2191 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2192 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2193 if (Linkage == GVA_Internal) 2194 return llvm::Function::InternalLinkage; 2195 2196 if (D->hasAttr<WeakAttr>()) { 2197 if (IsConstantVariable) 2198 return llvm::GlobalVariable::WeakODRLinkage; 2199 else 2200 return llvm::GlobalVariable::WeakAnyLinkage; 2201 } 2202 2203 // We are guaranteed to have a strong definition somewhere else, 2204 // so we can use available_externally linkage. 2205 if (Linkage == GVA_AvailableExternally) 2206 return llvm::Function::AvailableExternallyLinkage; 2207 2208 // Note that Apple's kernel linker doesn't support symbol 2209 // coalescing, so we need to avoid linkonce and weak linkages there. 2210 // Normally, this means we just map to internal, but for explicit 2211 // instantiations we'll map to external. 2212 2213 // In C++, the compiler has to emit a definition in every translation unit 2214 // that references the function. We should use linkonce_odr because 2215 // a) if all references in this translation unit are optimized away, we 2216 // don't need to codegen it. b) if the function persists, it needs to be 2217 // merged with other definitions. c) C++ has the ODR, so we know the 2218 // definition is dependable. 2219 if (Linkage == GVA_DiscardableODR) 2220 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2221 : llvm::Function::InternalLinkage; 2222 2223 // An explicit instantiation of a template has weak linkage, since 2224 // explicit instantiations can occur in multiple translation units 2225 // and must all be equivalent. However, we are not allowed to 2226 // throw away these explicit instantiations. 2227 if (Linkage == GVA_StrongODR) 2228 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2229 : llvm::Function::ExternalLinkage; 2230 2231 // C++ doesn't have tentative definitions and thus cannot have common 2232 // linkage. 2233 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2234 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2235 CodeGenOpts.NoCommon)) 2236 return llvm::GlobalVariable::CommonLinkage; 2237 2238 // selectany symbols are externally visible, so use weak instead of 2239 // linkonce. MSVC optimizes away references to const selectany globals, so 2240 // all definitions should be the same and ODR linkage should be used. 2241 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2242 if (D->hasAttr<SelectAnyAttr>()) 2243 return llvm::GlobalVariable::WeakODRLinkage; 2244 2245 // Otherwise, we have strong external linkage. 2246 assert(Linkage == GVA_StrongExternal); 2247 return llvm::GlobalVariable::ExternalLinkage; 2248 } 2249 2250 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2251 const VarDecl *VD, bool IsConstant) { 2252 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2253 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2254 } 2255 2256 /// Replace the uses of a function that was declared with a non-proto type. 2257 /// We want to silently drop extra arguments from call sites 2258 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2259 llvm::Function *newFn) { 2260 // Fast path. 2261 if (old->use_empty()) return; 2262 2263 llvm::Type *newRetTy = newFn->getReturnType(); 2264 SmallVector<llvm::Value*, 4> newArgs; 2265 2266 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2267 ui != ue; ) { 2268 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2269 llvm::User *user = use->getUser(); 2270 2271 // Recognize and replace uses of bitcasts. Most calls to 2272 // unprototyped functions will use bitcasts. 2273 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2274 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2275 replaceUsesOfNonProtoConstant(bitcast, newFn); 2276 continue; 2277 } 2278 2279 // Recognize calls to the function. 2280 llvm::CallSite callSite(user); 2281 if (!callSite) continue; 2282 if (!callSite.isCallee(&*use)) continue; 2283 2284 // If the return types don't match exactly, then we can't 2285 // transform this call unless it's dead. 2286 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2287 continue; 2288 2289 // Get the call site's attribute list. 2290 SmallVector<llvm::AttributeSet, 8> newAttrs; 2291 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2292 2293 // Collect any return attributes from the call. 2294 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2295 newAttrs.push_back( 2296 llvm::AttributeSet::get(newFn->getContext(), 2297 oldAttrs.getRetAttributes())); 2298 2299 // If the function was passed too few arguments, don't transform. 2300 unsigned newNumArgs = newFn->arg_size(); 2301 if (callSite.arg_size() < newNumArgs) continue; 2302 2303 // If extra arguments were passed, we silently drop them. 2304 // If any of the types mismatch, we don't transform. 2305 unsigned argNo = 0; 2306 bool dontTransform = false; 2307 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2308 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2309 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2310 dontTransform = true; 2311 break; 2312 } 2313 2314 // Add any parameter attributes. 2315 if (oldAttrs.hasAttributes(argNo + 1)) 2316 newAttrs. 2317 push_back(llvm:: 2318 AttributeSet::get(newFn->getContext(), 2319 oldAttrs.getParamAttributes(argNo + 1))); 2320 } 2321 if (dontTransform) 2322 continue; 2323 2324 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2325 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2326 oldAttrs.getFnAttributes())); 2327 2328 // Okay, we can transform this. Create the new call instruction and copy 2329 // over the required information. 2330 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2331 2332 llvm::CallSite newCall; 2333 if (callSite.isCall()) { 2334 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2335 callSite.getInstruction()); 2336 } else { 2337 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2338 newCall = llvm::InvokeInst::Create(newFn, 2339 oldInvoke->getNormalDest(), 2340 oldInvoke->getUnwindDest(), 2341 newArgs, "", 2342 callSite.getInstruction()); 2343 } 2344 newArgs.clear(); // for the next iteration 2345 2346 if (!newCall->getType()->isVoidTy()) 2347 newCall->takeName(callSite.getInstruction()); 2348 newCall.setAttributes( 2349 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2350 newCall.setCallingConv(callSite.getCallingConv()); 2351 2352 // Finally, remove the old call, replacing any uses with the new one. 2353 if (!callSite->use_empty()) 2354 callSite->replaceAllUsesWith(newCall.getInstruction()); 2355 2356 // Copy debug location attached to CI. 2357 if (!callSite->getDebugLoc().isUnknown()) 2358 newCall->setDebugLoc(callSite->getDebugLoc()); 2359 callSite->eraseFromParent(); 2360 } 2361 } 2362 2363 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2364 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2365 /// existing call uses of the old function in the module, this adjusts them to 2366 /// call the new function directly. 2367 /// 2368 /// This is not just a cleanup: the always_inline pass requires direct calls to 2369 /// functions to be able to inline them. If there is a bitcast in the way, it 2370 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2371 /// run at -O0. 2372 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2373 llvm::Function *NewFn) { 2374 // If we're redefining a global as a function, don't transform it. 2375 if (!isa<llvm::Function>(Old)) return; 2376 2377 replaceUsesOfNonProtoConstant(Old, NewFn); 2378 } 2379 2380 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2381 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2382 // If we have a definition, this might be a deferred decl. If the 2383 // instantiation is explicit, make sure we emit it at the end. 2384 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2385 GetAddrOfGlobalVar(VD); 2386 2387 EmitTopLevelDecl(VD); 2388 } 2389 2390 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2391 llvm::GlobalValue *GV) { 2392 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2393 2394 // Compute the function info and LLVM type. 2395 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2396 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2397 2398 // Get or create the prototype for the function. 2399 if (!GV) { 2400 llvm::Constant *C = 2401 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2402 2403 // Strip off a bitcast if we got one back. 2404 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2405 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2406 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2407 } else { 2408 GV = cast<llvm::GlobalValue>(C); 2409 } 2410 } 2411 2412 if (!GV->isDeclaration()) { 2413 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2414 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2415 if (auto *Prev = OldGD.getDecl()) 2416 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2417 return; 2418 } 2419 2420 if (GV->getType()->getElementType() != Ty) { 2421 // If the types mismatch then we have to rewrite the definition. 2422 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2423 2424 // F is the Function* for the one with the wrong type, we must make a new 2425 // Function* and update everything that used F (a declaration) with the new 2426 // Function* (which will be a definition). 2427 // 2428 // This happens if there is a prototype for a function 2429 // (e.g. "int f()") and then a definition of a different type 2430 // (e.g. "int f(int x)"). Move the old function aside so that it 2431 // doesn't interfere with GetAddrOfFunction. 2432 GV->setName(StringRef()); 2433 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2434 2435 // This might be an implementation of a function without a 2436 // prototype, in which case, try to do special replacement of 2437 // calls which match the new prototype. The really key thing here 2438 // is that we also potentially drop arguments from the call site 2439 // so as to make a direct call, which makes the inliner happier 2440 // and suppresses a number of optimizer warnings (!) about 2441 // dropping arguments. 2442 if (!GV->use_empty()) { 2443 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2444 GV->removeDeadConstantUsers(); 2445 } 2446 2447 // Replace uses of F with the Function we will endow with a body. 2448 if (!GV->use_empty()) { 2449 llvm::Constant *NewPtrForOldDecl = 2450 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2451 GV->replaceAllUsesWith(NewPtrForOldDecl); 2452 } 2453 2454 // Ok, delete the old function now, which is dead. 2455 GV->eraseFromParent(); 2456 2457 GV = NewFn; 2458 } 2459 2460 // We need to set linkage and visibility on the function before 2461 // generating code for it because various parts of IR generation 2462 // want to propagate this information down (e.g. to local static 2463 // declarations). 2464 auto *Fn = cast<llvm::Function>(GV); 2465 setFunctionLinkage(GD, Fn); 2466 if (D->hasAttr<DLLImportAttr>()) 2467 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2468 else if (D->hasAttr<DLLExportAttr>()) 2469 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2470 else 2471 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2472 2473 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2474 setGlobalVisibility(Fn, D); 2475 2476 MaybeHandleStaticInExternC(D, Fn); 2477 2478 maybeSetTrivialComdat(*D, *Fn); 2479 2480 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2481 2482 setFunctionDefinitionAttributes(D, Fn); 2483 SetLLVMFunctionAttributesForDefinition(D, Fn); 2484 2485 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2486 AddGlobalCtor(Fn, CA->getPriority()); 2487 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2488 AddGlobalDtor(Fn, DA->getPriority()); 2489 if (D->hasAttr<AnnotateAttr>()) 2490 AddGlobalAnnotations(D, Fn); 2491 } 2492 2493 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2494 const auto *D = cast<ValueDecl>(GD.getDecl()); 2495 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2496 assert(AA && "Not an alias?"); 2497 2498 StringRef MangledName = getMangledName(GD); 2499 2500 // If there is a definition in the module, then it wins over the alias. 2501 // This is dubious, but allow it to be safe. Just ignore the alias. 2502 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2503 if (Entry && !Entry->isDeclaration()) 2504 return; 2505 2506 Aliases.push_back(GD); 2507 2508 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2509 2510 // Create a reference to the named value. This ensures that it is emitted 2511 // if a deferred decl. 2512 llvm::Constant *Aliasee; 2513 if (isa<llvm::FunctionType>(DeclTy)) 2514 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2515 /*ForVTable=*/false); 2516 else 2517 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2518 llvm::PointerType::getUnqual(DeclTy), 2519 /*D=*/nullptr); 2520 2521 // Create the new alias itself, but don't set a name yet. 2522 auto *GA = llvm::GlobalAlias::create( 2523 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2524 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2525 2526 if (Entry) { 2527 if (GA->getAliasee() == Entry) { 2528 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2529 return; 2530 } 2531 2532 assert(Entry->isDeclaration()); 2533 2534 // If there is a declaration in the module, then we had an extern followed 2535 // by the alias, as in: 2536 // extern int test6(); 2537 // ... 2538 // int test6() __attribute__((alias("test7"))); 2539 // 2540 // Remove it and replace uses of it with the alias. 2541 GA->takeName(Entry); 2542 2543 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2544 Entry->getType())); 2545 Entry->eraseFromParent(); 2546 } else { 2547 GA->setName(MangledName); 2548 } 2549 2550 // Set attributes which are particular to an alias; this is a 2551 // specialization of the attributes which may be set on a global 2552 // variable/function. 2553 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2554 D->isWeakImported()) { 2555 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2556 } 2557 2558 if (const auto *VD = dyn_cast<VarDecl>(D)) 2559 if (VD->getTLSKind()) 2560 setTLSMode(GA, *VD); 2561 2562 setAliasAttributes(D, GA); 2563 } 2564 2565 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2566 ArrayRef<llvm::Type*> Tys) { 2567 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2568 Tys); 2569 } 2570 2571 static llvm::StringMapEntry<llvm::Constant*> & 2572 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2573 const StringLiteral *Literal, 2574 bool TargetIsLSB, 2575 bool &IsUTF16, 2576 unsigned &StringLength) { 2577 StringRef String = Literal->getString(); 2578 unsigned NumBytes = String.size(); 2579 2580 // Check for simple case. 2581 if (!Literal->containsNonAsciiOrNull()) { 2582 StringLength = NumBytes; 2583 return *Map.insert(std::make_pair(String, nullptr)).first; 2584 } 2585 2586 // Otherwise, convert the UTF8 literals into a string of shorts. 2587 IsUTF16 = true; 2588 2589 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2590 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2591 UTF16 *ToPtr = &ToBuf[0]; 2592 2593 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2594 &ToPtr, ToPtr + NumBytes, 2595 strictConversion); 2596 2597 // ConvertUTF8toUTF16 returns the length in ToPtr. 2598 StringLength = ToPtr - &ToBuf[0]; 2599 2600 // Add an explicit null. 2601 *ToPtr = 0; 2602 return *Map.insert(std::make_pair( 2603 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2604 (StringLength + 1) * 2), 2605 nullptr)).first; 2606 } 2607 2608 static llvm::StringMapEntry<llvm::Constant*> & 2609 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2610 const StringLiteral *Literal, 2611 unsigned &StringLength) { 2612 StringRef String = Literal->getString(); 2613 StringLength = String.size(); 2614 return *Map.insert(std::make_pair(String, nullptr)).first; 2615 } 2616 2617 llvm::Constant * 2618 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2619 unsigned StringLength = 0; 2620 bool isUTF16 = false; 2621 llvm::StringMapEntry<llvm::Constant*> &Entry = 2622 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2623 getDataLayout().isLittleEndian(), 2624 isUTF16, StringLength); 2625 2626 if (auto *C = Entry.second) 2627 return C; 2628 2629 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2630 llvm::Constant *Zeros[] = { Zero, Zero }; 2631 llvm::Value *V; 2632 2633 // If we don't already have it, get __CFConstantStringClassReference. 2634 if (!CFConstantStringClassRef) { 2635 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2636 Ty = llvm::ArrayType::get(Ty, 0); 2637 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2638 "__CFConstantStringClassReference"); 2639 // Decay array -> ptr 2640 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2641 CFConstantStringClassRef = V; 2642 } 2643 else 2644 V = CFConstantStringClassRef; 2645 2646 QualType CFTy = getContext().getCFConstantStringType(); 2647 2648 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2649 2650 llvm::Constant *Fields[4]; 2651 2652 // Class pointer. 2653 Fields[0] = cast<llvm::ConstantExpr>(V); 2654 2655 // Flags. 2656 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2657 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2658 llvm::ConstantInt::get(Ty, 0x07C8); 2659 2660 // String pointer. 2661 llvm::Constant *C = nullptr; 2662 if (isUTF16) { 2663 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2664 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2665 Entry.first().size() / 2); 2666 C = llvm::ConstantDataArray::get(VMContext, Arr); 2667 } else { 2668 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2669 } 2670 2671 // Note: -fwritable-strings doesn't make the backing store strings of 2672 // CFStrings writable. (See <rdar://problem/10657500>) 2673 auto *GV = 2674 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2675 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2676 GV->setUnnamedAddr(true); 2677 // Don't enforce the target's minimum global alignment, since the only use 2678 // of the string is via this class initializer. 2679 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2680 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2681 // that changes the section it ends in, which surprises ld64. 2682 if (isUTF16) { 2683 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2684 GV->setAlignment(Align.getQuantity()); 2685 GV->setSection("__TEXT,__ustring"); 2686 } else { 2687 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2688 GV->setAlignment(Align.getQuantity()); 2689 GV->setSection("__TEXT,__cstring,cstring_literals"); 2690 } 2691 2692 // String. 2693 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2694 2695 if (isUTF16) 2696 // Cast the UTF16 string to the correct type. 2697 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2698 2699 // String length. 2700 Ty = getTypes().ConvertType(getContext().LongTy); 2701 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2702 2703 // The struct. 2704 C = llvm::ConstantStruct::get(STy, Fields); 2705 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2706 llvm::GlobalVariable::PrivateLinkage, C, 2707 "_unnamed_cfstring_"); 2708 GV->setSection("__DATA,__cfstring"); 2709 Entry.second = GV; 2710 2711 return GV; 2712 } 2713 2714 llvm::Constant * 2715 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2716 unsigned StringLength = 0; 2717 llvm::StringMapEntry<llvm::Constant*> &Entry = 2718 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2719 2720 if (auto *C = Entry.second) 2721 return C; 2722 2723 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2724 llvm::Constant *Zeros[] = { Zero, Zero }; 2725 llvm::Value *V; 2726 // If we don't already have it, get _NSConstantStringClassReference. 2727 if (!ConstantStringClassRef) { 2728 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2729 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2730 llvm::Constant *GV; 2731 if (LangOpts.ObjCRuntime.isNonFragile()) { 2732 std::string str = 2733 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2734 : "OBJC_CLASS_$_" + StringClass; 2735 GV = getObjCRuntime().GetClassGlobal(str); 2736 // Make sure the result is of the correct type. 2737 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2738 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2739 ConstantStringClassRef = V; 2740 } else { 2741 std::string str = 2742 StringClass.empty() ? "_NSConstantStringClassReference" 2743 : "_" + StringClass + "ClassReference"; 2744 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2745 GV = CreateRuntimeVariable(PTy, str); 2746 // Decay array -> ptr 2747 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2748 ConstantStringClassRef = V; 2749 } 2750 } 2751 else 2752 V = ConstantStringClassRef; 2753 2754 if (!NSConstantStringType) { 2755 // Construct the type for a constant NSString. 2756 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2757 D->startDefinition(); 2758 2759 QualType FieldTypes[3]; 2760 2761 // const int *isa; 2762 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2763 // const char *str; 2764 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2765 // unsigned int length; 2766 FieldTypes[2] = Context.UnsignedIntTy; 2767 2768 // Create fields 2769 for (unsigned i = 0; i < 3; ++i) { 2770 FieldDecl *Field = FieldDecl::Create(Context, D, 2771 SourceLocation(), 2772 SourceLocation(), nullptr, 2773 FieldTypes[i], /*TInfo=*/nullptr, 2774 /*BitWidth=*/nullptr, 2775 /*Mutable=*/false, 2776 ICIS_NoInit); 2777 Field->setAccess(AS_public); 2778 D->addDecl(Field); 2779 } 2780 2781 D->completeDefinition(); 2782 QualType NSTy = Context.getTagDeclType(D); 2783 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2784 } 2785 2786 llvm::Constant *Fields[3]; 2787 2788 // Class pointer. 2789 Fields[0] = cast<llvm::ConstantExpr>(V); 2790 2791 // String pointer. 2792 llvm::Constant *C = 2793 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2794 2795 llvm::GlobalValue::LinkageTypes Linkage; 2796 bool isConstant; 2797 Linkage = llvm::GlobalValue::PrivateLinkage; 2798 isConstant = !LangOpts.WritableStrings; 2799 2800 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2801 Linkage, C, ".str"); 2802 GV->setUnnamedAddr(true); 2803 // Don't enforce the target's minimum global alignment, since the only use 2804 // of the string is via this class initializer. 2805 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2806 GV->setAlignment(Align.getQuantity()); 2807 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2808 2809 // String length. 2810 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2811 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2812 2813 // The struct. 2814 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2815 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2816 llvm::GlobalVariable::PrivateLinkage, C, 2817 "_unnamed_nsstring_"); 2818 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2819 const char *NSStringNonFragileABISection = 2820 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2821 // FIXME. Fix section. 2822 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2823 ? NSStringNonFragileABISection 2824 : NSStringSection); 2825 Entry.second = GV; 2826 2827 return GV; 2828 } 2829 2830 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2831 if (ObjCFastEnumerationStateType.isNull()) { 2832 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2833 D->startDefinition(); 2834 2835 QualType FieldTypes[] = { 2836 Context.UnsignedLongTy, 2837 Context.getPointerType(Context.getObjCIdType()), 2838 Context.getPointerType(Context.UnsignedLongTy), 2839 Context.getConstantArrayType(Context.UnsignedLongTy, 2840 llvm::APInt(32, 5), ArrayType::Normal, 0) 2841 }; 2842 2843 for (size_t i = 0; i < 4; ++i) { 2844 FieldDecl *Field = FieldDecl::Create(Context, 2845 D, 2846 SourceLocation(), 2847 SourceLocation(), nullptr, 2848 FieldTypes[i], /*TInfo=*/nullptr, 2849 /*BitWidth=*/nullptr, 2850 /*Mutable=*/false, 2851 ICIS_NoInit); 2852 Field->setAccess(AS_public); 2853 D->addDecl(Field); 2854 } 2855 2856 D->completeDefinition(); 2857 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2858 } 2859 2860 return ObjCFastEnumerationStateType; 2861 } 2862 2863 llvm::Constant * 2864 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2865 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2866 2867 // Don't emit it as the address of the string, emit the string data itself 2868 // as an inline array. 2869 if (E->getCharByteWidth() == 1) { 2870 SmallString<64> Str(E->getString()); 2871 2872 // Resize the string to the right size, which is indicated by its type. 2873 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2874 Str.resize(CAT->getSize().getZExtValue()); 2875 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2876 } 2877 2878 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2879 llvm::Type *ElemTy = AType->getElementType(); 2880 unsigned NumElements = AType->getNumElements(); 2881 2882 // Wide strings have either 2-byte or 4-byte elements. 2883 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2884 SmallVector<uint16_t, 32> Elements; 2885 Elements.reserve(NumElements); 2886 2887 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2888 Elements.push_back(E->getCodeUnit(i)); 2889 Elements.resize(NumElements); 2890 return llvm::ConstantDataArray::get(VMContext, Elements); 2891 } 2892 2893 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2894 SmallVector<uint32_t, 32> Elements; 2895 Elements.reserve(NumElements); 2896 2897 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2898 Elements.push_back(E->getCodeUnit(i)); 2899 Elements.resize(NumElements); 2900 return llvm::ConstantDataArray::get(VMContext, Elements); 2901 } 2902 2903 static llvm::GlobalVariable * 2904 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2905 CodeGenModule &CGM, StringRef GlobalName, 2906 unsigned Alignment) { 2907 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2908 unsigned AddrSpace = 0; 2909 if (CGM.getLangOpts().OpenCL) 2910 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2911 2912 llvm::Module &M = CGM.getModule(); 2913 // Create a global variable for this string 2914 auto *GV = new llvm::GlobalVariable( 2915 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2916 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2917 GV->setAlignment(Alignment); 2918 GV->setUnnamedAddr(true); 2919 if (GV->isWeakForLinker()) { 2920 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2921 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2922 } 2923 2924 return GV; 2925 } 2926 2927 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2928 /// constant array for the given string literal. 2929 llvm::GlobalVariable * 2930 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2931 StringRef Name) { 2932 auto Alignment = 2933 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2934 2935 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2936 llvm::GlobalVariable **Entry = nullptr; 2937 if (!LangOpts.WritableStrings) { 2938 Entry = &ConstantStringMap[C]; 2939 if (auto GV = *Entry) { 2940 if (Alignment > GV->getAlignment()) 2941 GV->setAlignment(Alignment); 2942 return GV; 2943 } 2944 } 2945 2946 SmallString<256> MangledNameBuffer; 2947 StringRef GlobalVariableName; 2948 llvm::GlobalValue::LinkageTypes LT; 2949 2950 // Mangle the string literal if the ABI allows for it. However, we cannot 2951 // do this if we are compiling with ASan or -fwritable-strings because they 2952 // rely on strings having normal linkage. 2953 if (!LangOpts.WritableStrings && 2954 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2955 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2956 llvm::raw_svector_ostream Out(MangledNameBuffer); 2957 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2958 Out.flush(); 2959 2960 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2961 GlobalVariableName = MangledNameBuffer; 2962 } else { 2963 LT = llvm::GlobalValue::PrivateLinkage; 2964 GlobalVariableName = Name; 2965 } 2966 2967 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2968 if (Entry) 2969 *Entry = GV; 2970 2971 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2972 QualType()); 2973 return GV; 2974 } 2975 2976 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2977 /// array for the given ObjCEncodeExpr node. 2978 llvm::GlobalVariable * 2979 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2980 std::string Str; 2981 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2982 2983 return GetAddrOfConstantCString(Str); 2984 } 2985 2986 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2987 /// the literal and a terminating '\0' character. 2988 /// The result has pointer to array type. 2989 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2990 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2991 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2992 if (Alignment == 0) { 2993 Alignment = getContext() 2994 .getAlignOfGlobalVarInChars(getContext().CharTy) 2995 .getQuantity(); 2996 } 2997 2998 llvm::Constant *C = 2999 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3000 3001 // Don't share any string literals if strings aren't constant. 3002 llvm::GlobalVariable **Entry = nullptr; 3003 if (!LangOpts.WritableStrings) { 3004 Entry = &ConstantStringMap[C]; 3005 if (auto GV = *Entry) { 3006 if (Alignment > GV->getAlignment()) 3007 GV->setAlignment(Alignment); 3008 return GV; 3009 } 3010 } 3011 3012 // Get the default prefix if a name wasn't specified. 3013 if (!GlobalName) 3014 GlobalName = ".str"; 3015 // Create a global variable for this. 3016 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3017 GlobalName, Alignment); 3018 if (Entry) 3019 *Entry = GV; 3020 return GV; 3021 } 3022 3023 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3024 const MaterializeTemporaryExpr *E, const Expr *Init) { 3025 assert((E->getStorageDuration() == SD_Static || 3026 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3027 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3028 3029 // If we're not materializing a subobject of the temporary, keep the 3030 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3031 QualType MaterializedType = Init->getType(); 3032 if (Init == E->GetTemporaryExpr()) 3033 MaterializedType = E->getType(); 3034 3035 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3036 if (Slot) 3037 return Slot; 3038 3039 // FIXME: If an externally-visible declaration extends multiple temporaries, 3040 // we need to give each temporary the same name in every translation unit (and 3041 // we also need to make the temporaries externally-visible). 3042 SmallString<256> Name; 3043 llvm::raw_svector_ostream Out(Name); 3044 getCXXABI().getMangleContext().mangleReferenceTemporary( 3045 VD, E->getManglingNumber(), Out); 3046 Out.flush(); 3047 3048 APValue *Value = nullptr; 3049 if (E->getStorageDuration() == SD_Static) { 3050 // We might have a cached constant initializer for this temporary. Note 3051 // that this might have a different value from the value computed by 3052 // evaluating the initializer if the surrounding constant expression 3053 // modifies the temporary. 3054 Value = getContext().getMaterializedTemporaryValue(E, false); 3055 if (Value && Value->isUninit()) 3056 Value = nullptr; 3057 } 3058 3059 // Try evaluating it now, it might have a constant initializer. 3060 Expr::EvalResult EvalResult; 3061 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3062 !EvalResult.hasSideEffects()) 3063 Value = &EvalResult.Val; 3064 3065 llvm::Constant *InitialValue = nullptr; 3066 bool Constant = false; 3067 llvm::Type *Type; 3068 if (Value) { 3069 // The temporary has a constant initializer, use it. 3070 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3071 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3072 Type = InitialValue->getType(); 3073 } else { 3074 // No initializer, the initialization will be provided when we 3075 // initialize the declaration which performed lifetime extension. 3076 Type = getTypes().ConvertTypeForMem(MaterializedType); 3077 } 3078 3079 // Create a global variable for this lifetime-extended temporary. 3080 llvm::GlobalValue::LinkageTypes Linkage = 3081 getLLVMLinkageVarDefinition(VD, Constant); 3082 // There is no need for this temporary to have global linkage if the global 3083 // variable has external linkage. 3084 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 3085 Linkage = llvm::GlobalVariable::PrivateLinkage; 3086 unsigned AddrSpace = GetGlobalVarAddressSpace( 3087 VD, getContext().getTargetAddressSpace(MaterializedType)); 3088 auto *GV = new llvm::GlobalVariable( 3089 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3090 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3091 AddrSpace); 3092 setGlobalVisibility(GV, VD); 3093 GV->setAlignment( 3094 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3095 if (VD->getTLSKind()) 3096 setTLSMode(GV, *VD); 3097 Slot = GV; 3098 return GV; 3099 } 3100 3101 /// EmitObjCPropertyImplementations - Emit information for synthesized 3102 /// properties for an implementation. 3103 void CodeGenModule::EmitObjCPropertyImplementations(const 3104 ObjCImplementationDecl *D) { 3105 for (const auto *PID : D->property_impls()) { 3106 // Dynamic is just for type-checking. 3107 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3108 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3109 3110 // Determine which methods need to be implemented, some may have 3111 // been overridden. Note that ::isPropertyAccessor is not the method 3112 // we want, that just indicates if the decl came from a 3113 // property. What we want to know is if the method is defined in 3114 // this implementation. 3115 if (!D->getInstanceMethod(PD->getGetterName())) 3116 CodeGenFunction(*this).GenerateObjCGetter( 3117 const_cast<ObjCImplementationDecl *>(D), PID); 3118 if (!PD->isReadOnly() && 3119 !D->getInstanceMethod(PD->getSetterName())) 3120 CodeGenFunction(*this).GenerateObjCSetter( 3121 const_cast<ObjCImplementationDecl *>(D), PID); 3122 } 3123 } 3124 } 3125 3126 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3127 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3128 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3129 ivar; ivar = ivar->getNextIvar()) 3130 if (ivar->getType().isDestructedType()) 3131 return true; 3132 3133 return false; 3134 } 3135 3136 static bool AllTrivialInitializers(CodeGenModule &CGM, 3137 ObjCImplementationDecl *D) { 3138 CodeGenFunction CGF(CGM); 3139 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3140 E = D->init_end(); B != E; ++B) { 3141 CXXCtorInitializer *CtorInitExp = *B; 3142 Expr *Init = CtorInitExp->getInit(); 3143 if (!CGF.isTrivialInitializer(Init)) 3144 return false; 3145 } 3146 return true; 3147 } 3148 3149 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3150 /// for an implementation. 3151 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3152 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3153 if (needsDestructMethod(D)) { 3154 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3155 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3156 ObjCMethodDecl *DTORMethod = 3157 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3158 cxxSelector, getContext().VoidTy, nullptr, D, 3159 /*isInstance=*/true, /*isVariadic=*/false, 3160 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3161 /*isDefined=*/false, ObjCMethodDecl::Required); 3162 D->addInstanceMethod(DTORMethod); 3163 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3164 D->setHasDestructors(true); 3165 } 3166 3167 // If the implementation doesn't have any ivar initializers, we don't need 3168 // a .cxx_construct. 3169 if (D->getNumIvarInitializers() == 0 || 3170 AllTrivialInitializers(*this, D)) 3171 return; 3172 3173 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3174 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3175 // The constructor returns 'self'. 3176 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3177 D->getLocation(), 3178 D->getLocation(), 3179 cxxSelector, 3180 getContext().getObjCIdType(), 3181 nullptr, D, /*isInstance=*/true, 3182 /*isVariadic=*/false, 3183 /*isPropertyAccessor=*/true, 3184 /*isImplicitlyDeclared=*/true, 3185 /*isDefined=*/false, 3186 ObjCMethodDecl::Required); 3187 D->addInstanceMethod(CTORMethod); 3188 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3189 D->setHasNonZeroConstructors(true); 3190 } 3191 3192 /// EmitNamespace - Emit all declarations in a namespace. 3193 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3194 for (auto *I : ND->decls()) { 3195 if (const auto *VD = dyn_cast<VarDecl>(I)) 3196 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3197 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3198 continue; 3199 EmitTopLevelDecl(I); 3200 } 3201 } 3202 3203 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3204 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3205 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3206 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3207 ErrorUnsupported(LSD, "linkage spec"); 3208 return; 3209 } 3210 3211 for (auto *I : LSD->decls()) { 3212 // Meta-data for ObjC class includes references to implemented methods. 3213 // Generate class's method definitions first. 3214 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3215 for (auto *M : OID->methods()) 3216 EmitTopLevelDecl(M); 3217 } 3218 EmitTopLevelDecl(I); 3219 } 3220 } 3221 3222 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3223 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3224 // Ignore dependent declarations. 3225 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3226 return; 3227 3228 switch (D->getKind()) { 3229 case Decl::CXXConversion: 3230 case Decl::CXXMethod: 3231 case Decl::Function: 3232 // Skip function templates 3233 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3234 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3235 return; 3236 3237 EmitGlobal(cast<FunctionDecl>(D)); 3238 // Always provide some coverage mapping 3239 // even for the functions that aren't emitted. 3240 AddDeferredUnusedCoverageMapping(D); 3241 break; 3242 3243 case Decl::Var: 3244 // Skip variable templates 3245 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3246 return; 3247 case Decl::VarTemplateSpecialization: 3248 EmitGlobal(cast<VarDecl>(D)); 3249 break; 3250 3251 // Indirect fields from global anonymous structs and unions can be 3252 // ignored; only the actual variable requires IR gen support. 3253 case Decl::IndirectField: 3254 break; 3255 3256 // C++ Decls 3257 case Decl::Namespace: 3258 EmitNamespace(cast<NamespaceDecl>(D)); 3259 break; 3260 // No code generation needed. 3261 case Decl::UsingShadow: 3262 case Decl::ClassTemplate: 3263 case Decl::VarTemplate: 3264 case Decl::VarTemplatePartialSpecialization: 3265 case Decl::FunctionTemplate: 3266 case Decl::TypeAliasTemplate: 3267 case Decl::Block: 3268 case Decl::Empty: 3269 break; 3270 case Decl::Using: // using X; [C++] 3271 if (CGDebugInfo *DI = getModuleDebugInfo()) 3272 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3273 return; 3274 case Decl::NamespaceAlias: 3275 if (CGDebugInfo *DI = getModuleDebugInfo()) 3276 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3277 return; 3278 case Decl::UsingDirective: // using namespace X; [C++] 3279 if (CGDebugInfo *DI = getModuleDebugInfo()) 3280 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3281 return; 3282 case Decl::CXXConstructor: 3283 // Skip function templates 3284 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3285 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3286 return; 3287 3288 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3289 break; 3290 case Decl::CXXDestructor: 3291 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3292 return; 3293 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3294 break; 3295 3296 case Decl::StaticAssert: 3297 // Nothing to do. 3298 break; 3299 3300 // Objective-C Decls 3301 3302 // Forward declarations, no (immediate) code generation. 3303 case Decl::ObjCInterface: 3304 case Decl::ObjCCategory: 3305 break; 3306 3307 case Decl::ObjCProtocol: { 3308 auto *Proto = cast<ObjCProtocolDecl>(D); 3309 if (Proto->isThisDeclarationADefinition()) 3310 ObjCRuntime->GenerateProtocol(Proto); 3311 break; 3312 } 3313 3314 case Decl::ObjCCategoryImpl: 3315 // Categories have properties but don't support synthesize so we 3316 // can ignore them here. 3317 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3318 break; 3319 3320 case Decl::ObjCImplementation: { 3321 auto *OMD = cast<ObjCImplementationDecl>(D); 3322 EmitObjCPropertyImplementations(OMD); 3323 EmitObjCIvarInitializations(OMD); 3324 ObjCRuntime->GenerateClass(OMD); 3325 // Emit global variable debug information. 3326 if (CGDebugInfo *DI = getModuleDebugInfo()) 3327 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3328 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3329 OMD->getClassInterface()), OMD->getLocation()); 3330 break; 3331 } 3332 case Decl::ObjCMethod: { 3333 auto *OMD = cast<ObjCMethodDecl>(D); 3334 // If this is not a prototype, emit the body. 3335 if (OMD->getBody()) 3336 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3337 break; 3338 } 3339 case Decl::ObjCCompatibleAlias: 3340 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3341 break; 3342 3343 case Decl::LinkageSpec: 3344 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3345 break; 3346 3347 case Decl::FileScopeAsm: { 3348 auto *AD = cast<FileScopeAsmDecl>(D); 3349 StringRef AsmString = AD->getAsmString()->getString(); 3350 3351 const std::string &S = getModule().getModuleInlineAsm(); 3352 if (S.empty()) 3353 getModule().setModuleInlineAsm(AsmString); 3354 else if (S.end()[-1] == '\n') 3355 getModule().setModuleInlineAsm(S + AsmString.str()); 3356 else 3357 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3358 break; 3359 } 3360 3361 case Decl::Import: { 3362 auto *Import = cast<ImportDecl>(D); 3363 3364 // Ignore import declarations that come from imported modules. 3365 if (clang::Module *Owner = Import->getOwningModule()) { 3366 if (getLangOpts().CurrentModule.empty() || 3367 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3368 break; 3369 } 3370 3371 ImportedModules.insert(Import->getImportedModule()); 3372 break; 3373 } 3374 3375 case Decl::OMPThreadPrivate: 3376 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3377 break; 3378 3379 case Decl::ClassTemplateSpecialization: { 3380 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3381 if (DebugInfo && 3382 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3383 Spec->hasDefinition()) 3384 DebugInfo->completeTemplateDefinition(*Spec); 3385 break; 3386 } 3387 3388 default: 3389 // Make sure we handled everything we should, every other kind is a 3390 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3391 // function. Need to recode Decl::Kind to do that easily. 3392 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3393 break; 3394 } 3395 } 3396 3397 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3398 // Do we need to generate coverage mapping? 3399 if (!CodeGenOpts.CoverageMapping) 3400 return; 3401 switch (D->getKind()) { 3402 case Decl::CXXConversion: 3403 case Decl::CXXMethod: 3404 case Decl::Function: 3405 case Decl::ObjCMethod: 3406 case Decl::CXXConstructor: 3407 case Decl::CXXDestructor: { 3408 if (!cast<FunctionDecl>(D)->hasBody()) 3409 return; 3410 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3411 if (I == DeferredEmptyCoverageMappingDecls.end()) 3412 DeferredEmptyCoverageMappingDecls[D] = true; 3413 break; 3414 } 3415 default: 3416 break; 3417 }; 3418 } 3419 3420 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3421 // Do we need to generate coverage mapping? 3422 if (!CodeGenOpts.CoverageMapping) 3423 return; 3424 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3425 if (Fn->isTemplateInstantiation()) 3426 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3427 } 3428 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3429 if (I == DeferredEmptyCoverageMappingDecls.end()) 3430 DeferredEmptyCoverageMappingDecls[D] = false; 3431 else 3432 I->second = false; 3433 } 3434 3435 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3436 std::vector<const Decl *> DeferredDecls; 3437 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3438 if (!I.second) 3439 continue; 3440 DeferredDecls.push_back(I.first); 3441 } 3442 // Sort the declarations by their location to make sure that the tests get a 3443 // predictable order for the coverage mapping for the unused declarations. 3444 if (CodeGenOpts.DumpCoverageMapping) 3445 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3446 [] (const Decl *LHS, const Decl *RHS) { 3447 return LHS->getLocStart() < RHS->getLocStart(); 3448 }); 3449 for (const auto *D : DeferredDecls) { 3450 switch (D->getKind()) { 3451 case Decl::CXXConversion: 3452 case Decl::CXXMethod: 3453 case Decl::Function: 3454 case Decl::ObjCMethod: { 3455 CodeGenPGO PGO(*this); 3456 GlobalDecl GD(cast<FunctionDecl>(D)); 3457 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3458 getFunctionLinkage(GD)); 3459 break; 3460 } 3461 case Decl::CXXConstructor: { 3462 CodeGenPGO PGO(*this); 3463 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3464 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3465 getFunctionLinkage(GD)); 3466 break; 3467 } 3468 case Decl::CXXDestructor: { 3469 CodeGenPGO PGO(*this); 3470 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3471 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3472 getFunctionLinkage(GD)); 3473 break; 3474 } 3475 default: 3476 break; 3477 }; 3478 } 3479 } 3480 3481 /// Turns the given pointer into a constant. 3482 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3483 const void *Ptr) { 3484 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3485 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3486 return llvm::ConstantInt::get(i64, PtrInt); 3487 } 3488 3489 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3490 llvm::NamedMDNode *&GlobalMetadata, 3491 GlobalDecl D, 3492 llvm::GlobalValue *Addr) { 3493 if (!GlobalMetadata) 3494 GlobalMetadata = 3495 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3496 3497 // TODO: should we report variant information for ctors/dtors? 3498 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3499 llvm::ConstantAsMetadata::get(GetPointerConstant( 3500 CGM.getLLVMContext(), D.getDecl()))}; 3501 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3502 } 3503 3504 /// For each function which is declared within an extern "C" region and marked 3505 /// as 'used', but has internal linkage, create an alias from the unmangled 3506 /// name to the mangled name if possible. People expect to be able to refer 3507 /// to such functions with an unmangled name from inline assembly within the 3508 /// same translation unit. 3509 void CodeGenModule::EmitStaticExternCAliases() { 3510 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3511 E = StaticExternCValues.end(); 3512 I != E; ++I) { 3513 IdentifierInfo *Name = I->first; 3514 llvm::GlobalValue *Val = I->second; 3515 if (Val && !getModule().getNamedValue(Name->getName())) 3516 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3517 } 3518 } 3519 3520 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3521 GlobalDecl &Result) const { 3522 auto Res = Manglings.find(MangledName); 3523 if (Res == Manglings.end()) 3524 return false; 3525 Result = Res->getValue(); 3526 return true; 3527 } 3528 3529 /// Emits metadata nodes associating all the global values in the 3530 /// current module with the Decls they came from. This is useful for 3531 /// projects using IR gen as a subroutine. 3532 /// 3533 /// Since there's currently no way to associate an MDNode directly 3534 /// with an llvm::GlobalValue, we create a global named metadata 3535 /// with the name 'clang.global.decl.ptrs'. 3536 void CodeGenModule::EmitDeclMetadata() { 3537 llvm::NamedMDNode *GlobalMetadata = nullptr; 3538 3539 // StaticLocalDeclMap 3540 for (auto &I : MangledDeclNames) { 3541 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3542 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3543 } 3544 } 3545 3546 /// Emits metadata nodes for all the local variables in the current 3547 /// function. 3548 void CodeGenFunction::EmitDeclMetadata() { 3549 if (LocalDeclMap.empty()) return; 3550 3551 llvm::LLVMContext &Context = getLLVMContext(); 3552 3553 // Find the unique metadata ID for this name. 3554 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3555 3556 llvm::NamedMDNode *GlobalMetadata = nullptr; 3557 3558 for (auto &I : LocalDeclMap) { 3559 const Decl *D = I.first; 3560 llvm::Value *Addr = I.second; 3561 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3562 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3563 Alloca->setMetadata( 3564 DeclPtrKind, llvm::MDNode::get( 3565 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3566 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3567 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3568 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3569 } 3570 } 3571 } 3572 3573 void CodeGenModule::EmitVersionIdentMetadata() { 3574 llvm::NamedMDNode *IdentMetadata = 3575 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3576 std::string Version = getClangFullVersion(); 3577 llvm::LLVMContext &Ctx = TheModule.getContext(); 3578 3579 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3580 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3581 } 3582 3583 void CodeGenModule::EmitTargetMetadata() { 3584 // Warning, new MangledDeclNames may be appended within this loop. 3585 // We rely on MapVector insertions adding new elements to the end 3586 // of the container. 3587 // FIXME: Move this loop into the one target that needs it, and only 3588 // loop over those declarations for which we couldn't emit the target 3589 // metadata when we emitted the declaration. 3590 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3591 auto Val = *(MangledDeclNames.begin() + I); 3592 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3593 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3594 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3595 } 3596 } 3597 3598 void CodeGenModule::EmitCoverageFile() { 3599 if (!getCodeGenOpts().CoverageFile.empty()) { 3600 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3601 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3602 llvm::LLVMContext &Ctx = TheModule.getContext(); 3603 llvm::MDString *CoverageFile = 3604 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3605 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3606 llvm::MDNode *CU = CUNode->getOperand(i); 3607 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3608 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3609 } 3610 } 3611 } 3612 } 3613 3614 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3615 // Sema has checked that all uuid strings are of the form 3616 // "12345678-1234-1234-1234-1234567890ab". 3617 assert(Uuid.size() == 36); 3618 for (unsigned i = 0; i < 36; ++i) { 3619 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3620 else assert(isHexDigit(Uuid[i])); 3621 } 3622 3623 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3624 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3625 3626 llvm::Constant *Field3[8]; 3627 for (unsigned Idx = 0; Idx < 8; ++Idx) 3628 Field3[Idx] = llvm::ConstantInt::get( 3629 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3630 3631 llvm::Constant *Fields[4] = { 3632 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3633 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3634 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3635 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3636 }; 3637 3638 return llvm::ConstantStruct::getAnon(Fields); 3639 } 3640 3641 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3642 bool ForEH) { 3643 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3644 // FIXME: should we even be calling this method if RTTI is disabled 3645 // and it's not for EH? 3646 if (!ForEH && !getLangOpts().RTTI) 3647 return llvm::Constant::getNullValue(Int8PtrTy); 3648 3649 if (ForEH && Ty->isObjCObjectPointerType() && 3650 LangOpts.ObjCRuntime.isGNUFamily()) 3651 return ObjCRuntime->GetEHType(Ty); 3652 3653 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3654 } 3655 3656 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3657 for (auto RefExpr : D->varlists()) { 3658 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3659 bool PerformInit = 3660 VD->getAnyInitializer() && 3661 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3662 /*ForRef=*/false); 3663 if (auto InitFunction = 3664 getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition( 3665 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), 3666 PerformInit)) 3667 CXXGlobalInits.push_back(InitFunction); 3668 } 3669 } 3670 3671