1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // Record mregparm value now so it is visible through rest of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 454 if (CodeGenOpts.DwarfVersion) { 455 // We actually want the latest version when there are conflicts. 456 // We can change from Warning to Latest if such mode is supported. 457 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 458 CodeGenOpts.DwarfVersion); 459 } 460 if (CodeGenOpts.EmitCodeView) { 461 // Indicate that we want CodeView in the metadata. 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 463 } 464 if (CodeGenOpts.CodeViewGHash) { 465 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 466 } 467 if (CodeGenOpts.ControlFlowGuard) { 468 // We want function ID tables for Control Flow Guard. 469 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 470 } 471 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 472 // We don't support LTO with 2 with different StrictVTablePointers 473 // FIXME: we could support it by stripping all the information introduced 474 // by StrictVTablePointers. 475 476 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 477 478 llvm::Metadata *Ops[2] = { 479 llvm::MDString::get(VMContext, "StrictVTablePointers"), 480 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 481 llvm::Type::getInt32Ty(VMContext), 1))}; 482 483 getModule().addModuleFlag(llvm::Module::Require, 484 "StrictVTablePointersRequirement", 485 llvm::MDNode::get(VMContext, Ops)); 486 } 487 if (DebugInfo) 488 // We support a single version in the linked module. The LLVM 489 // parser will drop debug info with a different version number 490 // (and warn about it, too). 491 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 492 llvm::DEBUG_METADATA_VERSION); 493 494 // We need to record the widths of enums and wchar_t, so that we can generate 495 // the correct build attributes in the ARM backend. wchar_size is also used by 496 // TargetLibraryInfo. 497 uint64_t WCharWidth = 498 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 499 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 500 501 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 502 if ( Arch == llvm::Triple::arm 503 || Arch == llvm::Triple::armeb 504 || Arch == llvm::Triple::thumb 505 || Arch == llvm::Triple::thumbeb) { 506 // The minimum width of an enum in bytes 507 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 508 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 509 } 510 511 if (CodeGenOpts.SanitizeCfiCrossDso) { 512 // Indicate that we want cross-DSO control flow integrity checks. 513 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 514 } 515 516 if (CodeGenOpts.CFProtectionReturn && 517 Target.checkCFProtectionReturnSupported(getDiags())) { 518 // Indicate that we want to instrument return control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 520 1); 521 } 522 523 if (CodeGenOpts.CFProtectionBranch && 524 Target.checkCFProtectionBranchSupported(getDiags())) { 525 // Indicate that we want to instrument branch control flow protection. 526 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 527 1); 528 } 529 530 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 531 // Indicate whether __nvvm_reflect should be configured to flush denormal 532 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 533 // property.) 534 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 535 CodeGenOpts.FlushDenorm ? 1 : 0); 536 } 537 538 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 539 if (LangOpts.OpenCL) { 540 EmitOpenCLMetadata(); 541 // Emit SPIR version. 542 if (getTriple().getArch() == llvm::Triple::spir || 543 getTriple().getArch() == llvm::Triple::spir64) { 544 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 545 // opencl.spir.version named metadata. 546 llvm::Metadata *SPIRVerElts[] = { 547 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 548 Int32Ty, LangOpts.OpenCLVersion / 100)), 549 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 550 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 551 llvm::NamedMDNode *SPIRVerMD = 552 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 553 llvm::LLVMContext &Ctx = TheModule.getContext(); 554 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 555 } 556 } 557 558 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 559 assert(PLevel < 3 && "Invalid PIC Level"); 560 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 561 if (Context.getLangOpts().PIE) 562 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 563 } 564 565 if (getCodeGenOpts().CodeModel.size() > 0) { 566 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 567 .Case("tiny", llvm::CodeModel::Tiny) 568 .Case("small", llvm::CodeModel::Small) 569 .Case("kernel", llvm::CodeModel::Kernel) 570 .Case("medium", llvm::CodeModel::Medium) 571 .Case("large", llvm::CodeModel::Large) 572 .Default(~0u); 573 if (CM != ~0u) { 574 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 575 getModule().setCodeModel(codeModel); 576 } 577 } 578 579 if (CodeGenOpts.NoPLT) 580 getModule().setRtLibUseGOT(); 581 582 SimplifyPersonality(); 583 584 if (getCodeGenOpts().EmitDeclMetadata) 585 EmitDeclMetadata(); 586 587 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 588 EmitCoverageFile(); 589 590 if (DebugInfo) 591 DebugInfo->finalize(); 592 593 if (getCodeGenOpts().EmitVersionIdentMetadata) 594 EmitVersionIdentMetadata(); 595 596 if (!getCodeGenOpts().RecordCommandLine.empty()) 597 EmitCommandLineMetadata(); 598 599 EmitTargetMetadata(); 600 } 601 602 void CodeGenModule::EmitOpenCLMetadata() { 603 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 604 // opencl.ocl.version named metadata node. 605 llvm::Metadata *OCLVerElts[] = { 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 Int32Ty, LangOpts.OpenCLVersion / 100)), 608 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 609 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 610 llvm::NamedMDNode *OCLVerMD = 611 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 612 llvm::LLVMContext &Ctx = TheModule.getContext(); 613 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 614 } 615 616 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 617 // Make sure that this type is translated. 618 Types.UpdateCompletedType(TD); 619 } 620 621 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 622 // Make sure that this type is translated. 623 Types.RefreshTypeCacheForClass(RD); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getTypeInfo(QTy); 630 } 631 632 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 633 if (!TBAA) 634 return TBAAAccessInfo(); 635 return TBAA->getAccessInfo(AccessType); 636 } 637 638 TBAAAccessInfo 639 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 643 } 644 645 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 646 if (!TBAA) 647 return nullptr; 648 return TBAA->getTBAAStructInfo(QTy); 649 } 650 651 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 652 if (!TBAA) 653 return nullptr; 654 return TBAA->getBaseTypeInfo(QTy); 655 } 656 657 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 658 if (!TBAA) 659 return nullptr; 660 return TBAA->getAccessTagInfo(Info); 661 } 662 663 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 664 TBAAAccessInfo TargetInfo) { 665 if (!TBAA) 666 return TBAAAccessInfo(); 667 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 668 } 669 670 TBAAAccessInfo 671 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 672 TBAAAccessInfo InfoB) { 673 if (!TBAA) 674 return TBAAAccessInfo(); 675 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 676 } 677 678 TBAAAccessInfo 679 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 680 TBAAAccessInfo SrcInfo) { 681 if (!TBAA) 682 return TBAAAccessInfo(); 683 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 684 } 685 686 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 687 TBAAAccessInfo TBAAInfo) { 688 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 689 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 690 } 691 692 void CodeGenModule::DecorateInstructionWithInvariantGroup( 693 llvm::Instruction *I, const CXXRecordDecl *RD) { 694 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 695 llvm::MDNode::get(getLLVMContext(), {})); 696 } 697 698 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 699 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 700 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 701 } 702 703 /// ErrorUnsupported - Print out an error that codegen doesn't support the 704 /// specified stmt yet. 705 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 706 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 707 "cannot compile this %0 yet"); 708 std::string Msg = Type; 709 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 710 << Msg << S->getSourceRange(); 711 } 712 713 /// ErrorUnsupported - Print out an error that codegen doesn't support the 714 /// specified decl yet. 715 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 716 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 717 "cannot compile this %0 yet"); 718 std::string Msg = Type; 719 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 720 } 721 722 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 723 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 724 } 725 726 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 727 const NamedDecl *D) const { 728 if (GV->hasDLLImportStorageClass()) 729 return; 730 // Internal definitions always have default visibility. 731 if (GV->hasLocalLinkage()) { 732 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 733 return; 734 } 735 if (!D) 736 return; 737 // Set visibility for definitions, and for declarations if requested globally 738 // or set explicitly. 739 LinkageInfo LV = D->getLinkageAndVisibility(); 740 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 741 !GV->isDeclarationForLinker()) 742 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 743 } 744 745 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 746 llvm::GlobalValue *GV) { 747 if (GV->hasLocalLinkage()) 748 return true; 749 750 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 751 return true; 752 753 // DLLImport explicitly marks the GV as external. 754 if (GV->hasDLLImportStorageClass()) 755 return false; 756 757 const llvm::Triple &TT = CGM.getTriple(); 758 if (TT.isWindowsGNUEnvironment()) { 759 // In MinGW, variables without DLLImport can still be automatically 760 // imported from a DLL by the linker; don't mark variables that 761 // potentially could come from another DLL as DSO local. 762 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 763 !GV->isThreadLocal()) 764 return false; 765 } 766 // Every other GV is local on COFF. 767 // Make an exception for windows OS in the triple: Some firmware builds use 768 // *-win32-macho triples. This (accidentally?) produced windows relocations 769 // without GOT tables in older clang versions; Keep this behaviour. 770 // FIXME: even thread local variables? 771 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 772 return true; 773 774 // Only handle COFF and ELF for now. 775 if (!TT.isOSBinFormatELF()) 776 return false; 777 778 // If this is not an executable, don't assume anything is local. 779 const auto &CGOpts = CGM.getCodeGenOpts(); 780 llvm::Reloc::Model RM = CGOpts.RelocationModel; 781 const auto &LOpts = CGM.getLangOpts(); 782 if (RM != llvm::Reloc::Static && !LOpts.PIE) 783 return false; 784 785 // A definition cannot be preempted from an executable. 786 if (!GV->isDeclarationForLinker()) 787 return true; 788 789 // Most PIC code sequences that assume that a symbol is local cannot produce a 790 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 791 // depended, it seems worth it to handle it here. 792 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 793 return false; 794 795 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 796 llvm::Triple::ArchType Arch = TT.getArch(); 797 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 798 Arch == llvm::Triple::ppc64le) 799 return false; 800 801 // If we can use copy relocations we can assume it is local. 802 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 803 if (!Var->isThreadLocal() && 804 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 805 return true; 806 807 // If we can use a plt entry as the symbol address we can assume it 808 // is local. 809 // FIXME: This should work for PIE, but the gold linker doesn't support it. 810 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 811 return true; 812 813 // Otherwise don't assue it is local. 814 return false; 815 } 816 817 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 818 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 GlobalDecl GD) const { 823 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 824 // C++ destructors have a few C++ ABI specific special cases. 825 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 826 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 827 return; 828 } 829 setDLLImportDLLExport(GV, D); 830 } 831 832 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 833 const NamedDecl *D) const { 834 if (D && D->isExternallyVisible()) { 835 if (D->hasAttr<DLLImportAttr>()) 836 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 837 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 838 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 839 } 840 } 841 842 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 843 GlobalDecl GD) const { 844 setDLLImportDLLExport(GV, GD); 845 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 846 } 847 848 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 849 const NamedDecl *D) const { 850 setDLLImportDLLExport(GV, D); 851 setGlobalVisibilityAndLocal(GV, D); 852 } 853 854 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 855 const NamedDecl *D) const { 856 setGlobalVisibility(GV, D); 857 setDSOLocal(GV); 858 } 859 860 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 861 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 862 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 863 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 864 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 865 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 866 } 867 868 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 869 CodeGenOptions::TLSModel M) { 870 switch (M) { 871 case CodeGenOptions::GeneralDynamicTLSModel: 872 return llvm::GlobalVariable::GeneralDynamicTLSModel; 873 case CodeGenOptions::LocalDynamicTLSModel: 874 return llvm::GlobalVariable::LocalDynamicTLSModel; 875 case CodeGenOptions::InitialExecTLSModel: 876 return llvm::GlobalVariable::InitialExecTLSModel; 877 case CodeGenOptions::LocalExecTLSModel: 878 return llvm::GlobalVariable::LocalExecTLSModel; 879 } 880 llvm_unreachable("Invalid TLS model!"); 881 } 882 883 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 884 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 885 886 llvm::GlobalValue::ThreadLocalMode TLM; 887 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 888 889 // Override the TLS model if it is explicitly specified. 890 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 891 TLM = GetLLVMTLSModel(Attr->getModel()); 892 } 893 894 GV->setThreadLocalMode(TLM); 895 } 896 897 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 898 StringRef Name) { 899 const TargetInfo &Target = CGM.getTarget(); 900 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 901 } 902 903 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 904 const CPUSpecificAttr *Attr, 905 unsigned CPUIndex, 906 raw_ostream &Out) { 907 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 908 // supported. 909 if (Attr) 910 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 911 else if (CGM.getTarget().supportsIFunc()) 912 Out << ".resolver"; 913 } 914 915 static void AppendTargetMangling(const CodeGenModule &CGM, 916 const TargetAttr *Attr, raw_ostream &Out) { 917 if (Attr->isDefaultVersion()) 918 return; 919 920 Out << '.'; 921 const TargetInfo &Target = CGM.getTarget(); 922 TargetAttr::ParsedTargetAttr Info = 923 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 924 // Multiversioning doesn't allow "no-${feature}", so we can 925 // only have "+" prefixes here. 926 assert(LHS.startswith("+") && RHS.startswith("+") && 927 "Features should always have a prefix."); 928 return Target.multiVersionSortPriority(LHS.substr(1)) > 929 Target.multiVersionSortPriority(RHS.substr(1)); 930 }); 931 932 bool IsFirst = true; 933 934 if (!Info.Architecture.empty()) { 935 IsFirst = false; 936 Out << "arch_" << Info.Architecture; 937 } 938 939 for (StringRef Feat : Info.Features) { 940 if (!IsFirst) 941 Out << '_'; 942 IsFirst = false; 943 Out << Feat.substr(1); 944 } 945 } 946 947 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 948 const NamedDecl *ND, 949 bool OmitMultiVersionMangling = false) { 950 SmallString<256> Buffer; 951 llvm::raw_svector_ostream Out(Buffer); 952 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 953 if (MC.shouldMangleDeclName(ND)) { 954 llvm::raw_svector_ostream Out(Buffer); 955 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 956 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 957 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 958 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 959 else 960 MC.mangleName(ND, Out); 961 } else { 962 IdentifierInfo *II = ND->getIdentifier(); 963 assert(II && "Attempt to mangle unnamed decl."); 964 const auto *FD = dyn_cast<FunctionDecl>(ND); 965 966 if (FD && 967 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 968 llvm::raw_svector_ostream Out(Buffer); 969 Out << "__regcall3__" << II->getName(); 970 } else { 971 Out << II->getName(); 972 } 973 } 974 975 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 976 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 977 switch (FD->getMultiVersionKind()) { 978 case MultiVersionKind::CPUDispatch: 979 case MultiVersionKind::CPUSpecific: 980 AppendCPUSpecificCPUDispatchMangling(CGM, 981 FD->getAttr<CPUSpecificAttr>(), 982 GD.getMultiVersionIndex(), Out); 983 break; 984 case MultiVersionKind::Target: 985 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 986 break; 987 case MultiVersionKind::None: 988 llvm_unreachable("None multiversion type isn't valid here"); 989 } 990 } 991 992 return Out.str(); 993 } 994 995 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 996 const FunctionDecl *FD) { 997 if (!FD->isMultiVersion()) 998 return; 999 1000 // Get the name of what this would be without the 'target' attribute. This 1001 // allows us to lookup the version that was emitted when this wasn't a 1002 // multiversion function. 1003 std::string NonTargetName = 1004 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1005 GlobalDecl OtherGD; 1006 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1007 assert(OtherGD.getCanonicalDecl() 1008 .getDecl() 1009 ->getAsFunction() 1010 ->isMultiVersion() && 1011 "Other GD should now be a multiversioned function"); 1012 // OtherFD is the version of this function that was mangled BEFORE 1013 // becoming a MultiVersion function. It potentially needs to be updated. 1014 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1015 .getDecl() 1016 ->getAsFunction() 1017 ->getMostRecentDecl(); 1018 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1019 // This is so that if the initial version was already the 'default' 1020 // version, we don't try to update it. 1021 if (OtherName != NonTargetName) { 1022 // Remove instead of erase, since others may have stored the StringRef 1023 // to this. 1024 const auto ExistingRecord = Manglings.find(NonTargetName); 1025 if (ExistingRecord != std::end(Manglings)) 1026 Manglings.remove(&(*ExistingRecord)); 1027 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1028 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1029 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1030 Entry->setName(OtherName); 1031 } 1032 } 1033 } 1034 1035 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1036 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1037 1038 // Some ABIs don't have constructor variants. Make sure that base and 1039 // complete constructors get mangled the same. 1040 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1041 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1042 CXXCtorType OrigCtorType = GD.getCtorType(); 1043 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1044 if (OrigCtorType == Ctor_Base) 1045 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1046 } 1047 } 1048 1049 auto FoundName = MangledDeclNames.find(CanonicalGD); 1050 if (FoundName != MangledDeclNames.end()) 1051 return FoundName->second; 1052 1053 // Keep the first result in the case of a mangling collision. 1054 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1055 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1056 1057 // Postfix kernel stub names with .stub to differentiate them from kernel 1058 // names in device binaries. This is to facilitate the debugger to find 1059 // the correct symbols for kernels in the device binary. 1060 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1061 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1062 FD->hasAttr<CUDAGlobalAttr>()) 1063 MangledName = MangledName + ".stub"; 1064 1065 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1066 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1067 } 1068 1069 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1070 const BlockDecl *BD) { 1071 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1072 const Decl *D = GD.getDecl(); 1073 1074 SmallString<256> Buffer; 1075 llvm::raw_svector_ostream Out(Buffer); 1076 if (!D) 1077 MangleCtx.mangleGlobalBlock(BD, 1078 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1079 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1080 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1081 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1082 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1083 else 1084 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1085 1086 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1087 return Result.first->first(); 1088 } 1089 1090 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1091 return getModule().getNamedValue(Name); 1092 } 1093 1094 /// AddGlobalCtor - Add a function to the list that will be called before 1095 /// main() runs. 1096 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1097 llvm::Constant *AssociatedData) { 1098 // FIXME: Type coercion of void()* types. 1099 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1100 } 1101 1102 /// AddGlobalDtor - Add a function to the list that will be called 1103 /// when the module is unloaded. 1104 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1105 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1106 DtorsUsingAtExit[Priority].push_back(Dtor); 1107 return; 1108 } 1109 1110 // FIXME: Type coercion of void()* types. 1111 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1112 } 1113 1114 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1115 if (Fns.empty()) return; 1116 1117 // Ctor function type is void()*. 1118 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1119 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1120 TheModule.getDataLayout().getProgramAddressSpace()); 1121 1122 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1123 llvm::StructType *CtorStructTy = llvm::StructType::get( 1124 Int32Ty, CtorPFTy, VoidPtrTy); 1125 1126 // Construct the constructor and destructor arrays. 1127 ConstantInitBuilder builder(*this); 1128 auto ctors = builder.beginArray(CtorStructTy); 1129 for (const auto &I : Fns) { 1130 auto ctor = ctors.beginStruct(CtorStructTy); 1131 ctor.addInt(Int32Ty, I.Priority); 1132 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1133 if (I.AssociatedData) 1134 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1135 else 1136 ctor.addNullPointer(VoidPtrTy); 1137 ctor.finishAndAddTo(ctors); 1138 } 1139 1140 auto list = 1141 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1142 /*constant*/ false, 1143 llvm::GlobalValue::AppendingLinkage); 1144 1145 // The LTO linker doesn't seem to like it when we set an alignment 1146 // on appending variables. Take it off as a workaround. 1147 list->setAlignment(0); 1148 1149 Fns.clear(); 1150 } 1151 1152 llvm::GlobalValue::LinkageTypes 1153 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1154 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1155 1156 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1157 1158 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1159 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1160 1161 if (isa<CXXConstructorDecl>(D) && 1162 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1163 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1164 // Our approach to inheriting constructors is fundamentally different from 1165 // that used by the MS ABI, so keep our inheriting constructor thunks 1166 // internal rather than trying to pick an unambiguous mangling for them. 1167 return llvm::GlobalValue::InternalLinkage; 1168 } 1169 1170 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1171 } 1172 1173 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1174 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1175 if (!MDS) return nullptr; 1176 1177 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1178 } 1179 1180 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1181 const CGFunctionInfo &Info, 1182 llvm::Function *F) { 1183 unsigned CallingConv; 1184 llvm::AttributeList PAL; 1185 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1186 F->setAttributes(PAL); 1187 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1188 } 1189 1190 /// Determines whether the language options require us to model 1191 /// unwind exceptions. We treat -fexceptions as mandating this 1192 /// except under the fragile ObjC ABI with only ObjC exceptions 1193 /// enabled. This means, for example, that C with -fexceptions 1194 /// enables this. 1195 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1196 // If exceptions are completely disabled, obviously this is false. 1197 if (!LangOpts.Exceptions) return false; 1198 1199 // If C++ exceptions are enabled, this is true. 1200 if (LangOpts.CXXExceptions) return true; 1201 1202 // If ObjC exceptions are enabled, this depends on the ABI. 1203 if (LangOpts.ObjCExceptions) { 1204 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1205 } 1206 1207 return true; 1208 } 1209 1210 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1211 const CXXMethodDecl *MD) { 1212 // Check that the type metadata can ever actually be used by a call. 1213 if (!CGM.getCodeGenOpts().LTOUnit || 1214 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1215 return false; 1216 1217 // Only functions whose address can be taken with a member function pointer 1218 // need this sort of type metadata. 1219 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1220 !isa<CXXDestructorDecl>(MD); 1221 } 1222 1223 std::vector<const CXXRecordDecl *> 1224 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1225 llvm::SetVector<const CXXRecordDecl *> MostBases; 1226 1227 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1228 CollectMostBases = [&](const CXXRecordDecl *RD) { 1229 if (RD->getNumBases() == 0) 1230 MostBases.insert(RD); 1231 for (const CXXBaseSpecifier &B : RD->bases()) 1232 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1233 }; 1234 CollectMostBases(RD); 1235 return MostBases.takeVector(); 1236 } 1237 1238 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1239 llvm::Function *F) { 1240 llvm::AttrBuilder B; 1241 1242 if (CodeGenOpts.UnwindTables) 1243 B.addAttribute(llvm::Attribute::UWTable); 1244 1245 if (!hasUnwindExceptions(LangOpts)) 1246 B.addAttribute(llvm::Attribute::NoUnwind); 1247 1248 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1249 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1250 B.addAttribute(llvm::Attribute::StackProtect); 1251 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1252 B.addAttribute(llvm::Attribute::StackProtectStrong); 1253 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1254 B.addAttribute(llvm::Attribute::StackProtectReq); 1255 } 1256 1257 if (!D) { 1258 // If we don't have a declaration to control inlining, the function isn't 1259 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1260 // disabled, mark the function as noinline. 1261 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1262 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1263 B.addAttribute(llvm::Attribute::NoInline); 1264 1265 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1266 return; 1267 } 1268 1269 // Track whether we need to add the optnone LLVM attribute, 1270 // starting with the default for this optimization level. 1271 bool ShouldAddOptNone = 1272 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1273 // We can't add optnone in the following cases, it won't pass the verifier. 1274 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1275 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1276 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1277 1278 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1279 B.addAttribute(llvm::Attribute::OptimizeNone); 1280 1281 // OptimizeNone implies noinline; we should not be inlining such functions. 1282 B.addAttribute(llvm::Attribute::NoInline); 1283 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1284 "OptimizeNone and AlwaysInline on same function!"); 1285 1286 // We still need to handle naked functions even though optnone subsumes 1287 // much of their semantics. 1288 if (D->hasAttr<NakedAttr>()) 1289 B.addAttribute(llvm::Attribute::Naked); 1290 1291 // OptimizeNone wins over OptimizeForSize and MinSize. 1292 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1293 F->removeFnAttr(llvm::Attribute::MinSize); 1294 } else if (D->hasAttr<NakedAttr>()) { 1295 // Naked implies noinline: we should not be inlining such functions. 1296 B.addAttribute(llvm::Attribute::Naked); 1297 B.addAttribute(llvm::Attribute::NoInline); 1298 } else if (D->hasAttr<NoDuplicateAttr>()) { 1299 B.addAttribute(llvm::Attribute::NoDuplicate); 1300 } else if (D->hasAttr<NoInlineAttr>()) { 1301 B.addAttribute(llvm::Attribute::NoInline); 1302 } else if (D->hasAttr<AlwaysInlineAttr>() && 1303 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1304 // (noinline wins over always_inline, and we can't specify both in IR) 1305 B.addAttribute(llvm::Attribute::AlwaysInline); 1306 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1307 // If we're not inlining, then force everything that isn't always_inline to 1308 // carry an explicit noinline attribute. 1309 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1310 B.addAttribute(llvm::Attribute::NoInline); 1311 } else { 1312 // Otherwise, propagate the inline hint attribute and potentially use its 1313 // absence to mark things as noinline. 1314 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1315 // Search function and template pattern redeclarations for inline. 1316 auto CheckForInline = [](const FunctionDecl *FD) { 1317 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1318 return Redecl->isInlineSpecified(); 1319 }; 1320 if (any_of(FD->redecls(), CheckRedeclForInline)) 1321 return true; 1322 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1323 if (!Pattern) 1324 return false; 1325 return any_of(Pattern->redecls(), CheckRedeclForInline); 1326 }; 1327 if (CheckForInline(FD)) { 1328 B.addAttribute(llvm::Attribute::InlineHint); 1329 } else if (CodeGenOpts.getInlining() == 1330 CodeGenOptions::OnlyHintInlining && 1331 !FD->isInlined() && 1332 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1333 B.addAttribute(llvm::Attribute::NoInline); 1334 } 1335 } 1336 } 1337 1338 // Add other optimization related attributes if we are optimizing this 1339 // function. 1340 if (!D->hasAttr<OptimizeNoneAttr>()) { 1341 if (D->hasAttr<ColdAttr>()) { 1342 if (!ShouldAddOptNone) 1343 B.addAttribute(llvm::Attribute::OptimizeForSize); 1344 B.addAttribute(llvm::Attribute::Cold); 1345 } 1346 1347 if (D->hasAttr<MinSizeAttr>()) 1348 B.addAttribute(llvm::Attribute::MinSize); 1349 } 1350 1351 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1352 1353 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1354 if (alignment) 1355 F->setAlignment(alignment); 1356 1357 if (!D->hasAttr<AlignedAttr>()) 1358 if (LangOpts.FunctionAlignment) 1359 F->setAlignment(1 << LangOpts.FunctionAlignment); 1360 1361 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1362 // reserve a bit for differentiating between virtual and non-virtual member 1363 // functions. If the current target's C++ ABI requires this and this is a 1364 // member function, set its alignment accordingly. 1365 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1366 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1367 F->setAlignment(2); 1368 } 1369 1370 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1371 if (CodeGenOpts.SanitizeCfiCrossDso) 1372 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1373 CreateFunctionTypeMetadataForIcall(FD, F); 1374 1375 // Emit type metadata on member functions for member function pointer checks. 1376 // These are only ever necessary on definitions; we're guaranteed that the 1377 // definition will be present in the LTO unit as a result of LTO visibility. 1378 auto *MD = dyn_cast<CXXMethodDecl>(D); 1379 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1380 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1381 llvm::Metadata *Id = 1382 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1383 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1384 F->addTypeMetadata(0, Id); 1385 } 1386 } 1387 } 1388 1389 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1390 const Decl *D = GD.getDecl(); 1391 if (dyn_cast_or_null<NamedDecl>(D)) 1392 setGVProperties(GV, GD); 1393 else 1394 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1395 1396 if (D && D->hasAttr<UsedAttr>()) 1397 addUsedGlobal(GV); 1398 1399 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1400 const auto *VD = cast<VarDecl>(D); 1401 if (VD->getType().isConstQualified() && 1402 VD->getStorageDuration() == SD_Static) 1403 addUsedGlobal(GV); 1404 } 1405 } 1406 1407 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1408 llvm::AttrBuilder &Attrs) { 1409 // Add target-cpu and target-features attributes to functions. If 1410 // we have a decl for the function and it has a target attribute then 1411 // parse that and add it to the feature set. 1412 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1413 std::vector<std::string> Features; 1414 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1415 FD = FD ? FD->getMostRecentDecl() : FD; 1416 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1417 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1418 bool AddedAttr = false; 1419 if (TD || SD) { 1420 llvm::StringMap<bool> FeatureMap; 1421 getFunctionFeatureMap(FeatureMap, GD); 1422 1423 // Produce the canonical string for this set of features. 1424 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1425 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1426 1427 // Now add the target-cpu and target-features to the function. 1428 // While we populated the feature map above, we still need to 1429 // get and parse the target attribute so we can get the cpu for 1430 // the function. 1431 if (TD) { 1432 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1433 if (ParsedAttr.Architecture != "" && 1434 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1435 TargetCPU = ParsedAttr.Architecture; 1436 } 1437 } else { 1438 // Otherwise just add the existing target cpu and target features to the 1439 // function. 1440 Features = getTarget().getTargetOpts().Features; 1441 } 1442 1443 if (TargetCPU != "") { 1444 Attrs.addAttribute("target-cpu", TargetCPU); 1445 AddedAttr = true; 1446 } 1447 if (!Features.empty()) { 1448 llvm::sort(Features); 1449 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1450 AddedAttr = true; 1451 } 1452 1453 return AddedAttr; 1454 } 1455 1456 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1457 llvm::GlobalObject *GO) { 1458 const Decl *D = GD.getDecl(); 1459 SetCommonAttributes(GD, GO); 1460 1461 if (D) { 1462 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1463 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1464 GV->addAttribute("bss-section", SA->getName()); 1465 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1466 GV->addAttribute("data-section", SA->getName()); 1467 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1468 GV->addAttribute("rodata-section", SA->getName()); 1469 } 1470 1471 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1472 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1473 if (!D->getAttr<SectionAttr>()) 1474 F->addFnAttr("implicit-section-name", SA->getName()); 1475 1476 llvm::AttrBuilder Attrs; 1477 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1478 // We know that GetCPUAndFeaturesAttributes will always have the 1479 // newest set, since it has the newest possible FunctionDecl, so the 1480 // new ones should replace the old. 1481 F->removeFnAttr("target-cpu"); 1482 F->removeFnAttr("target-features"); 1483 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1484 } 1485 } 1486 1487 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1488 GO->setSection(CSA->getName()); 1489 else if (const auto *SA = D->getAttr<SectionAttr>()) 1490 GO->setSection(SA->getName()); 1491 } 1492 1493 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1494 } 1495 1496 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1497 llvm::Function *F, 1498 const CGFunctionInfo &FI) { 1499 const Decl *D = GD.getDecl(); 1500 SetLLVMFunctionAttributes(GD, FI, F); 1501 SetLLVMFunctionAttributesForDefinition(D, F); 1502 1503 F->setLinkage(llvm::Function::InternalLinkage); 1504 1505 setNonAliasAttributes(GD, F); 1506 } 1507 1508 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1509 // Set linkage and visibility in case we never see a definition. 1510 LinkageInfo LV = ND->getLinkageAndVisibility(); 1511 // Don't set internal linkage on declarations. 1512 // "extern_weak" is overloaded in LLVM; we probably should have 1513 // separate linkage types for this. 1514 if (isExternallyVisible(LV.getLinkage()) && 1515 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1516 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1517 } 1518 1519 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1520 llvm::Function *F) { 1521 // Only if we are checking indirect calls. 1522 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1523 return; 1524 1525 // Non-static class methods are handled via vtable or member function pointer 1526 // checks elsewhere. 1527 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1528 return; 1529 1530 // Additionally, if building with cross-DSO support... 1531 if (CodeGenOpts.SanitizeCfiCrossDso) { 1532 // Skip available_externally functions. They won't be codegen'ed in the 1533 // current module anyway. 1534 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1535 return; 1536 } 1537 1538 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1539 F->addTypeMetadata(0, MD); 1540 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1541 1542 // Emit a hash-based bit set entry for cross-DSO calls. 1543 if (CodeGenOpts.SanitizeCfiCrossDso) 1544 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1545 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1546 } 1547 1548 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1549 bool IsIncompleteFunction, 1550 bool IsThunk) { 1551 1552 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1553 // If this is an intrinsic function, set the function's attributes 1554 // to the intrinsic's attributes. 1555 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1556 return; 1557 } 1558 1559 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1560 1561 if (!IsIncompleteFunction) 1562 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1563 1564 // Add the Returned attribute for "this", except for iOS 5 and earlier 1565 // where substantial code, including the libstdc++ dylib, was compiled with 1566 // GCC and does not actually return "this". 1567 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1568 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1569 assert(!F->arg_empty() && 1570 F->arg_begin()->getType() 1571 ->canLosslesslyBitCastTo(F->getReturnType()) && 1572 "unexpected this return"); 1573 F->addAttribute(1, llvm::Attribute::Returned); 1574 } 1575 1576 // Only a few attributes are set on declarations; these may later be 1577 // overridden by a definition. 1578 1579 setLinkageForGV(F, FD); 1580 setGVProperties(F, FD); 1581 1582 // Setup target-specific attributes. 1583 if (!IsIncompleteFunction && F->isDeclaration()) 1584 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1585 1586 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1587 F->setSection(CSA->getName()); 1588 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1589 F->setSection(SA->getName()); 1590 1591 if (FD->isReplaceableGlobalAllocationFunction()) { 1592 // A replaceable global allocation function does not act like a builtin by 1593 // default, only if it is invoked by a new-expression or delete-expression. 1594 F->addAttribute(llvm::AttributeList::FunctionIndex, 1595 llvm::Attribute::NoBuiltin); 1596 1597 // A sane operator new returns a non-aliasing pointer. 1598 // FIXME: Also add NonNull attribute to the return value 1599 // for the non-nothrow forms? 1600 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1601 if (getCodeGenOpts().AssumeSaneOperatorNew && 1602 (Kind == OO_New || Kind == OO_Array_New)) 1603 F->addAttribute(llvm::AttributeList::ReturnIndex, 1604 llvm::Attribute::NoAlias); 1605 } 1606 1607 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1608 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1609 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1610 if (MD->isVirtual()) 1611 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1612 1613 // Don't emit entries for function declarations in the cross-DSO mode. This 1614 // is handled with better precision by the receiving DSO. 1615 if (!CodeGenOpts.SanitizeCfiCrossDso) 1616 CreateFunctionTypeMetadataForIcall(FD, F); 1617 1618 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1619 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1620 1621 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1622 // Annotate the callback behavior as metadata: 1623 // - The callback callee (as argument number). 1624 // - The callback payloads (as argument numbers). 1625 llvm::LLVMContext &Ctx = F->getContext(); 1626 llvm::MDBuilder MDB(Ctx); 1627 1628 // The payload indices are all but the first one in the encoding. The first 1629 // identifies the callback callee. 1630 int CalleeIdx = *CB->encoding_begin(); 1631 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1632 F->addMetadata(llvm::LLVMContext::MD_callback, 1633 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1634 CalleeIdx, PayloadIndices, 1635 /* VarArgsArePassed */ false)})); 1636 } 1637 } 1638 1639 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1640 assert(!GV->isDeclaration() && 1641 "Only globals with definition can force usage."); 1642 LLVMUsed.emplace_back(GV); 1643 } 1644 1645 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1646 assert(!GV->isDeclaration() && 1647 "Only globals with definition can force usage."); 1648 LLVMCompilerUsed.emplace_back(GV); 1649 } 1650 1651 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1652 std::vector<llvm::WeakTrackingVH> &List) { 1653 // Don't create llvm.used if there is no need. 1654 if (List.empty()) 1655 return; 1656 1657 // Convert List to what ConstantArray needs. 1658 SmallVector<llvm::Constant*, 8> UsedArray; 1659 UsedArray.resize(List.size()); 1660 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1661 UsedArray[i] = 1662 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1663 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1664 } 1665 1666 if (UsedArray.empty()) 1667 return; 1668 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1669 1670 auto *GV = new llvm::GlobalVariable( 1671 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1672 llvm::ConstantArray::get(ATy, UsedArray), Name); 1673 1674 GV->setSection("llvm.metadata"); 1675 } 1676 1677 void CodeGenModule::emitLLVMUsed() { 1678 emitUsed(*this, "llvm.used", LLVMUsed); 1679 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1680 } 1681 1682 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1683 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1684 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1685 } 1686 1687 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1688 llvm::SmallString<32> Opt; 1689 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1690 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1691 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1692 } 1693 1694 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1695 auto &C = getLLVMContext(); 1696 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1697 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1698 } 1699 1700 void CodeGenModule::AddDependentLib(StringRef Lib) { 1701 llvm::SmallString<24> Opt; 1702 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1703 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1704 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1705 } 1706 1707 /// Add link options implied by the given module, including modules 1708 /// it depends on, using a postorder walk. 1709 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1710 SmallVectorImpl<llvm::MDNode *> &Metadata, 1711 llvm::SmallPtrSet<Module *, 16> &Visited) { 1712 // Import this module's parent. 1713 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1714 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1715 } 1716 1717 // Import this module's dependencies. 1718 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1719 if (Visited.insert(Mod->Imports[I - 1]).second) 1720 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1721 } 1722 1723 // Add linker options to link against the libraries/frameworks 1724 // described by this module. 1725 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1726 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1727 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1728 1729 // For modules that use export_as for linking, use that module 1730 // name instead. 1731 if (Mod->UseExportAsModuleLinkName) 1732 return; 1733 1734 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1735 // Link against a framework. Frameworks are currently Darwin only, so we 1736 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1737 if (Mod->LinkLibraries[I-1].IsFramework) { 1738 llvm::Metadata *Args[2] = { 1739 llvm::MDString::get(Context, "-framework"), 1740 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1741 1742 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1743 continue; 1744 } 1745 1746 // Link against a library. 1747 if (IsELF && !IsPS4) { 1748 llvm::Metadata *Args[2] = { 1749 llvm::MDString::get(Context, "lib"), 1750 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1751 }; 1752 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1753 } else { 1754 llvm::SmallString<24> Opt; 1755 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1756 Mod->LinkLibraries[I - 1].Library, Opt); 1757 auto *OptString = llvm::MDString::get(Context, Opt); 1758 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1759 } 1760 } 1761 } 1762 1763 void CodeGenModule::EmitModuleLinkOptions() { 1764 // Collect the set of all of the modules we want to visit to emit link 1765 // options, which is essentially the imported modules and all of their 1766 // non-explicit child modules. 1767 llvm::SetVector<clang::Module *> LinkModules; 1768 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1769 SmallVector<clang::Module *, 16> Stack; 1770 1771 // Seed the stack with imported modules. 1772 for (Module *M : ImportedModules) { 1773 // Do not add any link flags when an implementation TU of a module imports 1774 // a header of that same module. 1775 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1776 !getLangOpts().isCompilingModule()) 1777 continue; 1778 if (Visited.insert(M).second) 1779 Stack.push_back(M); 1780 } 1781 1782 // Find all of the modules to import, making a little effort to prune 1783 // non-leaf modules. 1784 while (!Stack.empty()) { 1785 clang::Module *Mod = Stack.pop_back_val(); 1786 1787 bool AnyChildren = false; 1788 1789 // Visit the submodules of this module. 1790 for (const auto &SM : Mod->submodules()) { 1791 // Skip explicit children; they need to be explicitly imported to be 1792 // linked against. 1793 if (SM->IsExplicit) 1794 continue; 1795 1796 if (Visited.insert(SM).second) { 1797 Stack.push_back(SM); 1798 AnyChildren = true; 1799 } 1800 } 1801 1802 // We didn't find any children, so add this module to the list of 1803 // modules to link against. 1804 if (!AnyChildren) { 1805 LinkModules.insert(Mod); 1806 } 1807 } 1808 1809 // Add link options for all of the imported modules in reverse topological 1810 // order. We don't do anything to try to order import link flags with respect 1811 // to linker options inserted by things like #pragma comment(). 1812 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1813 Visited.clear(); 1814 for (Module *M : LinkModules) 1815 if (Visited.insert(M).second) 1816 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1817 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1818 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1819 1820 // Add the linker options metadata flag. 1821 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1822 for (auto *MD : LinkerOptionsMetadata) 1823 NMD->addOperand(MD); 1824 } 1825 1826 void CodeGenModule::EmitDeferred() { 1827 // Emit deferred declare target declarations. 1828 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1829 getOpenMPRuntime().emitDeferredTargetDecls(); 1830 1831 // Emit code for any potentially referenced deferred decls. Since a 1832 // previously unused static decl may become used during the generation of code 1833 // for a static function, iterate until no changes are made. 1834 1835 if (!DeferredVTables.empty()) { 1836 EmitDeferredVTables(); 1837 1838 // Emitting a vtable doesn't directly cause more vtables to 1839 // become deferred, although it can cause functions to be 1840 // emitted that then need those vtables. 1841 assert(DeferredVTables.empty()); 1842 } 1843 1844 // Stop if we're out of both deferred vtables and deferred declarations. 1845 if (DeferredDeclsToEmit.empty()) 1846 return; 1847 1848 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1849 // work, it will not interfere with this. 1850 std::vector<GlobalDecl> CurDeclsToEmit; 1851 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1852 1853 for (GlobalDecl &D : CurDeclsToEmit) { 1854 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1855 // to get GlobalValue with exactly the type we need, not something that 1856 // might had been created for another decl with the same mangled name but 1857 // different type. 1858 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1859 GetAddrOfGlobal(D, ForDefinition)); 1860 1861 // In case of different address spaces, we may still get a cast, even with 1862 // IsForDefinition equal to true. Query mangled names table to get 1863 // GlobalValue. 1864 if (!GV) 1865 GV = GetGlobalValue(getMangledName(D)); 1866 1867 // Make sure GetGlobalValue returned non-null. 1868 assert(GV); 1869 1870 // Check to see if we've already emitted this. This is necessary 1871 // for a couple of reasons: first, decls can end up in the 1872 // deferred-decls queue multiple times, and second, decls can end 1873 // up with definitions in unusual ways (e.g. by an extern inline 1874 // function acquiring a strong function redefinition). Just 1875 // ignore these cases. 1876 if (!GV->isDeclaration()) 1877 continue; 1878 1879 // Otherwise, emit the definition and move on to the next one. 1880 EmitGlobalDefinition(D, GV); 1881 1882 // If we found out that we need to emit more decls, do that recursively. 1883 // This has the advantage that the decls are emitted in a DFS and related 1884 // ones are close together, which is convenient for testing. 1885 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1886 EmitDeferred(); 1887 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1888 } 1889 } 1890 } 1891 1892 void CodeGenModule::EmitVTablesOpportunistically() { 1893 // Try to emit external vtables as available_externally if they have emitted 1894 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1895 // is not allowed to create new references to things that need to be emitted 1896 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1897 1898 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1899 && "Only emit opportunistic vtables with optimizations"); 1900 1901 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1902 assert(getVTables().isVTableExternal(RD) && 1903 "This queue should only contain external vtables"); 1904 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1905 VTables.GenerateClassData(RD); 1906 } 1907 OpportunisticVTables.clear(); 1908 } 1909 1910 void CodeGenModule::EmitGlobalAnnotations() { 1911 if (Annotations.empty()) 1912 return; 1913 1914 // Create a new global variable for the ConstantStruct in the Module. 1915 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1916 Annotations[0]->getType(), Annotations.size()), Annotations); 1917 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1918 llvm::GlobalValue::AppendingLinkage, 1919 Array, "llvm.global.annotations"); 1920 gv->setSection(AnnotationSection); 1921 } 1922 1923 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1924 llvm::Constant *&AStr = AnnotationStrings[Str]; 1925 if (AStr) 1926 return AStr; 1927 1928 // Not found yet, create a new global. 1929 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1930 auto *gv = 1931 new llvm::GlobalVariable(getModule(), s->getType(), true, 1932 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1933 gv->setSection(AnnotationSection); 1934 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1935 AStr = gv; 1936 return gv; 1937 } 1938 1939 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1940 SourceManager &SM = getContext().getSourceManager(); 1941 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1942 if (PLoc.isValid()) 1943 return EmitAnnotationString(PLoc.getFilename()); 1944 return EmitAnnotationString(SM.getBufferName(Loc)); 1945 } 1946 1947 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1948 SourceManager &SM = getContext().getSourceManager(); 1949 PresumedLoc PLoc = SM.getPresumedLoc(L); 1950 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1951 SM.getExpansionLineNumber(L); 1952 return llvm::ConstantInt::get(Int32Ty, LineNo); 1953 } 1954 1955 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1956 const AnnotateAttr *AA, 1957 SourceLocation L) { 1958 // Get the globals for file name, annotation, and the line number. 1959 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1960 *UnitGV = EmitAnnotationUnit(L), 1961 *LineNoCst = EmitAnnotationLineNo(L); 1962 1963 // Create the ConstantStruct for the global annotation. 1964 llvm::Constant *Fields[4] = { 1965 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1966 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1967 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1968 LineNoCst 1969 }; 1970 return llvm::ConstantStruct::getAnon(Fields); 1971 } 1972 1973 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1974 llvm::GlobalValue *GV) { 1975 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1976 // Get the struct elements for these annotations. 1977 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1978 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1979 } 1980 1981 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1982 llvm::Function *Fn, 1983 SourceLocation Loc) const { 1984 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1985 // Blacklist by function name. 1986 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1987 return true; 1988 // Blacklist by location. 1989 if (Loc.isValid()) 1990 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1991 // If location is unknown, this may be a compiler-generated function. Assume 1992 // it's located in the main file. 1993 auto &SM = Context.getSourceManager(); 1994 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1995 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1996 } 1997 return false; 1998 } 1999 2000 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2001 SourceLocation Loc, QualType Ty, 2002 StringRef Category) const { 2003 // For now globals can be blacklisted only in ASan and KASan. 2004 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2005 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2006 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2007 if (!EnabledAsanMask) 2008 return false; 2009 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2010 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2011 return true; 2012 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2013 return true; 2014 // Check global type. 2015 if (!Ty.isNull()) { 2016 // Drill down the array types: if global variable of a fixed type is 2017 // blacklisted, we also don't instrument arrays of them. 2018 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2019 Ty = AT->getElementType(); 2020 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2021 // We allow to blacklist only record types (classes, structs etc.) 2022 if (Ty->isRecordType()) { 2023 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2024 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2025 return true; 2026 } 2027 } 2028 return false; 2029 } 2030 2031 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2032 StringRef Category) const { 2033 const auto &XRayFilter = getContext().getXRayFilter(); 2034 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2035 auto Attr = ImbueAttr::NONE; 2036 if (Loc.isValid()) 2037 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2038 if (Attr == ImbueAttr::NONE) 2039 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2040 switch (Attr) { 2041 case ImbueAttr::NONE: 2042 return false; 2043 case ImbueAttr::ALWAYS: 2044 Fn->addFnAttr("function-instrument", "xray-always"); 2045 break; 2046 case ImbueAttr::ALWAYS_ARG1: 2047 Fn->addFnAttr("function-instrument", "xray-always"); 2048 Fn->addFnAttr("xray-log-args", "1"); 2049 break; 2050 case ImbueAttr::NEVER: 2051 Fn->addFnAttr("function-instrument", "xray-never"); 2052 break; 2053 } 2054 return true; 2055 } 2056 2057 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2058 // Never defer when EmitAllDecls is specified. 2059 if (LangOpts.EmitAllDecls) 2060 return true; 2061 2062 if (CodeGenOpts.KeepStaticConsts) { 2063 const auto *VD = dyn_cast<VarDecl>(Global); 2064 if (VD && VD->getType().isConstQualified() && 2065 VD->getStorageDuration() == SD_Static) 2066 return true; 2067 } 2068 2069 return getContext().DeclMustBeEmitted(Global); 2070 } 2071 2072 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2073 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2074 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2075 // Implicit template instantiations may change linkage if they are later 2076 // explicitly instantiated, so they should not be emitted eagerly. 2077 return false; 2078 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2079 if (Context.getInlineVariableDefinitionKind(VD) == 2080 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2081 // A definition of an inline constexpr static data member may change 2082 // linkage later if it's redeclared outside the class. 2083 return false; 2084 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2085 // codegen for global variables, because they may be marked as threadprivate. 2086 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2087 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2088 !isTypeConstant(Global->getType(), false) && 2089 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2090 return false; 2091 2092 return true; 2093 } 2094 2095 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2096 const CXXUuidofExpr* E) { 2097 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2098 // well-formed. 2099 StringRef Uuid = E->getUuidStr(); 2100 std::string Name = "_GUID_" + Uuid.lower(); 2101 std::replace(Name.begin(), Name.end(), '-', '_'); 2102 2103 // The UUID descriptor should be pointer aligned. 2104 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2105 2106 // Look for an existing global. 2107 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2108 return ConstantAddress(GV, Alignment); 2109 2110 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2111 assert(Init && "failed to initialize as constant"); 2112 2113 auto *GV = new llvm::GlobalVariable( 2114 getModule(), Init->getType(), 2115 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2116 if (supportsCOMDAT()) 2117 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2118 setDSOLocal(GV); 2119 return ConstantAddress(GV, Alignment); 2120 } 2121 2122 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2123 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2124 assert(AA && "No alias?"); 2125 2126 CharUnits Alignment = getContext().getDeclAlign(VD); 2127 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2128 2129 // See if there is already something with the target's name in the module. 2130 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2131 if (Entry) { 2132 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2133 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2134 return ConstantAddress(Ptr, Alignment); 2135 } 2136 2137 llvm::Constant *Aliasee; 2138 if (isa<llvm::FunctionType>(DeclTy)) 2139 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2140 GlobalDecl(cast<FunctionDecl>(VD)), 2141 /*ForVTable=*/false); 2142 else 2143 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2144 llvm::PointerType::getUnqual(DeclTy), 2145 nullptr); 2146 2147 auto *F = cast<llvm::GlobalValue>(Aliasee); 2148 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2149 WeakRefReferences.insert(F); 2150 2151 return ConstantAddress(Aliasee, Alignment); 2152 } 2153 2154 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2155 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2156 2157 // Weak references don't produce any output by themselves. 2158 if (Global->hasAttr<WeakRefAttr>()) 2159 return; 2160 2161 // If this is an alias definition (which otherwise looks like a declaration) 2162 // emit it now. 2163 if (Global->hasAttr<AliasAttr>()) 2164 return EmitAliasDefinition(GD); 2165 2166 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2167 if (Global->hasAttr<IFuncAttr>()) 2168 return emitIFuncDefinition(GD); 2169 2170 // If this is a cpu_dispatch multiversion function, emit the resolver. 2171 if (Global->hasAttr<CPUDispatchAttr>()) 2172 return emitCPUDispatchDefinition(GD); 2173 2174 // If this is CUDA, be selective about which declarations we emit. 2175 if (LangOpts.CUDA) { 2176 if (LangOpts.CUDAIsDevice) { 2177 if (!Global->hasAttr<CUDADeviceAttr>() && 2178 !Global->hasAttr<CUDAGlobalAttr>() && 2179 !Global->hasAttr<CUDAConstantAttr>() && 2180 !Global->hasAttr<CUDASharedAttr>()) 2181 return; 2182 } else { 2183 // We need to emit host-side 'shadows' for all global 2184 // device-side variables because the CUDA runtime needs their 2185 // size and host-side address in order to provide access to 2186 // their device-side incarnations. 2187 2188 // So device-only functions are the only things we skip. 2189 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2190 Global->hasAttr<CUDADeviceAttr>()) 2191 return; 2192 2193 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2194 "Expected Variable or Function"); 2195 } 2196 } 2197 2198 if (LangOpts.OpenMP) { 2199 // If this is OpenMP device, check if it is legal to emit this global 2200 // normally. 2201 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2202 return; 2203 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2204 if (MustBeEmitted(Global)) 2205 EmitOMPDeclareReduction(DRD); 2206 return; 2207 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2208 if (MustBeEmitted(Global)) 2209 EmitOMPDeclareMapper(DMD); 2210 return; 2211 } 2212 } 2213 2214 // Ignore declarations, they will be emitted on their first use. 2215 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2216 // Forward declarations are emitted lazily on first use. 2217 if (!FD->doesThisDeclarationHaveABody()) { 2218 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2219 return; 2220 2221 StringRef MangledName = getMangledName(GD); 2222 2223 // Compute the function info and LLVM type. 2224 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2225 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2226 2227 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2228 /*DontDefer=*/false); 2229 return; 2230 } 2231 } else { 2232 const auto *VD = cast<VarDecl>(Global); 2233 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2234 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2235 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2236 if (LangOpts.OpenMP) { 2237 // Emit declaration of the must-be-emitted declare target variable. 2238 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2239 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2240 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2241 (void)GetAddrOfGlobalVar(VD); 2242 } else { 2243 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2244 "link claue expected."); 2245 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2246 } 2247 return; 2248 } 2249 } 2250 // If this declaration may have caused an inline variable definition to 2251 // change linkage, make sure that it's emitted. 2252 if (Context.getInlineVariableDefinitionKind(VD) == 2253 ASTContext::InlineVariableDefinitionKind::Strong) 2254 GetAddrOfGlobalVar(VD); 2255 return; 2256 } 2257 } 2258 2259 // Defer code generation to first use when possible, e.g. if this is an inline 2260 // function. If the global must always be emitted, do it eagerly if possible 2261 // to benefit from cache locality. 2262 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2263 // Emit the definition if it can't be deferred. 2264 EmitGlobalDefinition(GD); 2265 return; 2266 } 2267 2268 // If we're deferring emission of a C++ variable with an 2269 // initializer, remember the order in which it appeared in the file. 2270 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2271 cast<VarDecl>(Global)->hasInit()) { 2272 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2273 CXXGlobalInits.push_back(nullptr); 2274 } 2275 2276 StringRef MangledName = getMangledName(GD); 2277 if (GetGlobalValue(MangledName) != nullptr) { 2278 // The value has already been used and should therefore be emitted. 2279 addDeferredDeclToEmit(GD); 2280 } else if (MustBeEmitted(Global)) { 2281 // The value must be emitted, but cannot be emitted eagerly. 2282 assert(!MayBeEmittedEagerly(Global)); 2283 addDeferredDeclToEmit(GD); 2284 } else { 2285 // Otherwise, remember that we saw a deferred decl with this name. The 2286 // first use of the mangled name will cause it to move into 2287 // DeferredDeclsToEmit. 2288 DeferredDecls[MangledName] = GD; 2289 } 2290 } 2291 2292 // Check if T is a class type with a destructor that's not dllimport. 2293 static bool HasNonDllImportDtor(QualType T) { 2294 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2295 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2296 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2297 return true; 2298 2299 return false; 2300 } 2301 2302 namespace { 2303 struct FunctionIsDirectlyRecursive 2304 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2305 const StringRef Name; 2306 const Builtin::Context &BI; 2307 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2308 : Name(N), BI(C) {} 2309 2310 bool VisitCallExpr(const CallExpr *E) { 2311 const FunctionDecl *FD = E->getDirectCallee(); 2312 if (!FD) 2313 return false; 2314 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2315 if (Attr && Name == Attr->getLabel()) 2316 return true; 2317 unsigned BuiltinID = FD->getBuiltinID(); 2318 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2319 return false; 2320 StringRef BuiltinName = BI.getName(BuiltinID); 2321 if (BuiltinName.startswith("__builtin_") && 2322 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2323 return true; 2324 } 2325 return false; 2326 } 2327 2328 bool VisitStmt(const Stmt *S) { 2329 for (const Stmt *Child : S->children()) 2330 if (Child && this->Visit(Child)) 2331 return true; 2332 return false; 2333 } 2334 }; 2335 2336 // Make sure we're not referencing non-imported vars or functions. 2337 struct DLLImportFunctionVisitor 2338 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2339 bool SafeToInline = true; 2340 2341 bool shouldVisitImplicitCode() const { return true; } 2342 2343 bool VisitVarDecl(VarDecl *VD) { 2344 if (VD->getTLSKind()) { 2345 // A thread-local variable cannot be imported. 2346 SafeToInline = false; 2347 return SafeToInline; 2348 } 2349 2350 // A variable definition might imply a destructor call. 2351 if (VD->isThisDeclarationADefinition()) 2352 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2353 2354 return SafeToInline; 2355 } 2356 2357 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2358 if (const auto *D = E->getTemporary()->getDestructor()) 2359 SafeToInline = D->hasAttr<DLLImportAttr>(); 2360 return SafeToInline; 2361 } 2362 2363 bool VisitDeclRefExpr(DeclRefExpr *E) { 2364 ValueDecl *VD = E->getDecl(); 2365 if (isa<FunctionDecl>(VD)) 2366 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2367 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2368 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2369 return SafeToInline; 2370 } 2371 2372 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2373 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2374 return SafeToInline; 2375 } 2376 2377 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2378 CXXMethodDecl *M = E->getMethodDecl(); 2379 if (!M) { 2380 // Call through a pointer to member function. This is safe to inline. 2381 SafeToInline = true; 2382 } else { 2383 SafeToInline = M->hasAttr<DLLImportAttr>(); 2384 } 2385 return SafeToInline; 2386 } 2387 2388 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2389 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2390 return SafeToInline; 2391 } 2392 2393 bool VisitCXXNewExpr(CXXNewExpr *E) { 2394 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2395 return SafeToInline; 2396 } 2397 }; 2398 } 2399 2400 // isTriviallyRecursive - Check if this function calls another 2401 // decl that, because of the asm attribute or the other decl being a builtin, 2402 // ends up pointing to itself. 2403 bool 2404 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2405 StringRef Name; 2406 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2407 // asm labels are a special kind of mangling we have to support. 2408 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2409 if (!Attr) 2410 return false; 2411 Name = Attr->getLabel(); 2412 } else { 2413 Name = FD->getName(); 2414 } 2415 2416 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2417 const Stmt *Body = FD->getBody(); 2418 return Body ? Walker.Visit(Body) : false; 2419 } 2420 2421 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2422 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2423 return true; 2424 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2425 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2426 return false; 2427 2428 if (F->hasAttr<DLLImportAttr>()) { 2429 // Check whether it would be safe to inline this dllimport function. 2430 DLLImportFunctionVisitor Visitor; 2431 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2432 if (!Visitor.SafeToInline) 2433 return false; 2434 2435 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2436 // Implicit destructor invocations aren't captured in the AST, so the 2437 // check above can't see them. Check for them manually here. 2438 for (const Decl *Member : Dtor->getParent()->decls()) 2439 if (isa<FieldDecl>(Member)) 2440 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2441 return false; 2442 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2443 if (HasNonDllImportDtor(B.getType())) 2444 return false; 2445 } 2446 } 2447 2448 // PR9614. Avoid cases where the source code is lying to us. An available 2449 // externally function should have an equivalent function somewhere else, 2450 // but a function that calls itself is clearly not equivalent to the real 2451 // implementation. 2452 // This happens in glibc's btowc and in some configure checks. 2453 return !isTriviallyRecursive(F); 2454 } 2455 2456 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2457 return CodeGenOpts.OptimizationLevel > 0; 2458 } 2459 2460 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2461 llvm::GlobalValue *GV) { 2462 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2463 2464 if (FD->isCPUSpecificMultiVersion()) { 2465 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2466 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2467 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2468 // Requires multiple emits. 2469 } else 2470 EmitGlobalFunctionDefinition(GD, GV); 2471 } 2472 2473 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2474 const auto *D = cast<ValueDecl>(GD.getDecl()); 2475 2476 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2477 Context.getSourceManager(), 2478 "Generating code for declaration"); 2479 2480 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2481 // At -O0, don't generate IR for functions with available_externally 2482 // linkage. 2483 if (!shouldEmitFunction(GD)) 2484 return; 2485 2486 llvm::TimeTraceScope TimeScope( 2487 "CodeGen Function", [&]() { return FD->getQualifiedNameAsString(); }); 2488 2489 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2490 // Make sure to emit the definition(s) before we emit the thunks. 2491 // This is necessary for the generation of certain thunks. 2492 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2493 ABI->emitCXXStructor(GD); 2494 else if (FD->isMultiVersion()) 2495 EmitMultiVersionFunctionDefinition(GD, GV); 2496 else 2497 EmitGlobalFunctionDefinition(GD, GV); 2498 2499 if (Method->isVirtual()) 2500 getVTables().EmitThunks(GD); 2501 2502 return; 2503 } 2504 2505 if (FD->isMultiVersion()) 2506 return EmitMultiVersionFunctionDefinition(GD, GV); 2507 return EmitGlobalFunctionDefinition(GD, GV); 2508 } 2509 2510 if (const auto *VD = dyn_cast<VarDecl>(D)) 2511 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2512 2513 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2514 } 2515 2516 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2517 llvm::Function *NewFn); 2518 2519 static unsigned 2520 TargetMVPriority(const TargetInfo &TI, 2521 const CodeGenFunction::MultiVersionResolverOption &RO) { 2522 unsigned Priority = 0; 2523 for (StringRef Feat : RO.Conditions.Features) 2524 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2525 2526 if (!RO.Conditions.Architecture.empty()) 2527 Priority = std::max( 2528 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2529 return Priority; 2530 } 2531 2532 void CodeGenModule::emitMultiVersionFunctions() { 2533 for (GlobalDecl GD : MultiVersionFuncs) { 2534 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2535 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2536 getContext().forEachMultiversionedFunctionVersion( 2537 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2538 GlobalDecl CurGD{ 2539 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2540 StringRef MangledName = getMangledName(CurGD); 2541 llvm::Constant *Func = GetGlobalValue(MangledName); 2542 if (!Func) { 2543 if (CurFD->isDefined()) { 2544 EmitGlobalFunctionDefinition(CurGD, nullptr); 2545 Func = GetGlobalValue(MangledName); 2546 } else { 2547 const CGFunctionInfo &FI = 2548 getTypes().arrangeGlobalDeclaration(GD); 2549 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2550 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2551 /*DontDefer=*/false, ForDefinition); 2552 } 2553 assert(Func && "This should have just been created"); 2554 } 2555 2556 const auto *TA = CurFD->getAttr<TargetAttr>(); 2557 llvm::SmallVector<StringRef, 8> Feats; 2558 TA->getAddedFeatures(Feats); 2559 2560 Options.emplace_back(cast<llvm::Function>(Func), 2561 TA->getArchitecture(), Feats); 2562 }); 2563 2564 llvm::Function *ResolverFunc; 2565 const TargetInfo &TI = getTarget(); 2566 2567 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2568 ResolverFunc = cast<llvm::Function>( 2569 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2570 else 2571 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2572 2573 if (supportsCOMDAT()) 2574 ResolverFunc->setComdat( 2575 getModule().getOrInsertComdat(ResolverFunc->getName())); 2576 2577 std::stable_sort( 2578 Options.begin(), Options.end(), 2579 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2580 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2581 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2582 }); 2583 CodeGenFunction CGF(*this); 2584 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2585 } 2586 } 2587 2588 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2589 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2590 assert(FD && "Not a FunctionDecl?"); 2591 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2592 assert(DD && "Not a cpu_dispatch Function?"); 2593 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2594 2595 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2596 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2597 DeclTy = getTypes().GetFunctionType(FInfo); 2598 } 2599 2600 StringRef ResolverName = getMangledName(GD); 2601 2602 llvm::Type *ResolverType; 2603 GlobalDecl ResolverGD; 2604 if (getTarget().supportsIFunc()) 2605 ResolverType = llvm::FunctionType::get( 2606 llvm::PointerType::get(DeclTy, 2607 Context.getTargetAddressSpace(FD->getType())), 2608 false); 2609 else { 2610 ResolverType = DeclTy; 2611 ResolverGD = GD; 2612 } 2613 2614 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2615 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2616 2617 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2618 const TargetInfo &Target = getTarget(); 2619 unsigned Index = 0; 2620 for (const IdentifierInfo *II : DD->cpus()) { 2621 // Get the name of the target function so we can look it up/create it. 2622 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2623 getCPUSpecificMangling(*this, II->getName()); 2624 2625 llvm::Constant *Func = GetGlobalValue(MangledName); 2626 2627 if (!Func) { 2628 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2629 if (ExistingDecl.getDecl() && 2630 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2631 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2632 Func = GetGlobalValue(MangledName); 2633 } else { 2634 if (!ExistingDecl.getDecl()) 2635 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2636 2637 Func = GetOrCreateLLVMFunction( 2638 MangledName, DeclTy, ExistingDecl, 2639 /*ForVTable=*/false, /*DontDefer=*/true, 2640 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2641 } 2642 } 2643 2644 llvm::SmallVector<StringRef, 32> Features; 2645 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2646 llvm::transform(Features, Features.begin(), 2647 [](StringRef Str) { return Str.substr(1); }); 2648 Features.erase(std::remove_if( 2649 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2650 return !Target.validateCpuSupports(Feat); 2651 }), Features.end()); 2652 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2653 ++Index; 2654 } 2655 2656 llvm::sort( 2657 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2658 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2659 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2660 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2661 }); 2662 2663 // If the list contains multiple 'default' versions, such as when it contains 2664 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2665 // always run on at least a 'pentium'). We do this by deleting the 'least 2666 // advanced' (read, lowest mangling letter). 2667 while (Options.size() > 1 && 2668 CodeGenFunction::GetX86CpuSupportsMask( 2669 (Options.end() - 2)->Conditions.Features) == 0) { 2670 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2671 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2672 if (LHSName.compare(RHSName) < 0) 2673 Options.erase(Options.end() - 2); 2674 else 2675 Options.erase(Options.end() - 1); 2676 } 2677 2678 CodeGenFunction CGF(*this); 2679 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2680 } 2681 2682 /// If a dispatcher for the specified mangled name is not in the module, create 2683 /// and return an llvm Function with the specified type. 2684 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2685 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2686 std::string MangledName = 2687 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2688 2689 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2690 // a separate resolver). 2691 std::string ResolverName = MangledName; 2692 if (getTarget().supportsIFunc()) 2693 ResolverName += ".ifunc"; 2694 else if (FD->isTargetMultiVersion()) 2695 ResolverName += ".resolver"; 2696 2697 // If this already exists, just return that one. 2698 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2699 return ResolverGV; 2700 2701 // Since this is the first time we've created this IFunc, make sure 2702 // that we put this multiversioned function into the list to be 2703 // replaced later if necessary (target multiversioning only). 2704 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2705 MultiVersionFuncs.push_back(GD); 2706 2707 if (getTarget().supportsIFunc()) { 2708 llvm::Type *ResolverType = llvm::FunctionType::get( 2709 llvm::PointerType::get( 2710 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2711 false); 2712 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2713 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2714 /*ForVTable=*/false); 2715 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2716 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2717 GIF->setName(ResolverName); 2718 SetCommonAttributes(FD, GIF); 2719 2720 return GIF; 2721 } 2722 2723 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2724 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2725 assert(isa<llvm::GlobalValue>(Resolver) && 2726 "Resolver should be created for the first time"); 2727 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2728 return Resolver; 2729 } 2730 2731 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2732 /// module, create and return an llvm Function with the specified type. If there 2733 /// is something in the module with the specified name, return it potentially 2734 /// bitcasted to the right type. 2735 /// 2736 /// If D is non-null, it specifies a decl that correspond to this. This is used 2737 /// to set the attributes on the function when it is first created. 2738 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2739 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2740 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2741 ForDefinition_t IsForDefinition) { 2742 const Decl *D = GD.getDecl(); 2743 2744 // Any attempts to use a MultiVersion function should result in retrieving 2745 // the iFunc instead. Name Mangling will handle the rest of the changes. 2746 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2747 // For the device mark the function as one that should be emitted. 2748 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2749 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2750 !DontDefer && !IsForDefinition) { 2751 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2752 GlobalDecl GDDef; 2753 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2754 GDDef = GlobalDecl(CD, GD.getCtorType()); 2755 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2756 GDDef = GlobalDecl(DD, GD.getDtorType()); 2757 else 2758 GDDef = GlobalDecl(FDDef); 2759 EmitGlobal(GDDef); 2760 } 2761 } 2762 2763 if (FD->isMultiVersion()) { 2764 const auto *TA = FD->getAttr<TargetAttr>(); 2765 if (TA && TA->isDefaultVersion()) 2766 UpdateMultiVersionNames(GD, FD); 2767 if (!IsForDefinition) 2768 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2769 } 2770 } 2771 2772 // Lookup the entry, lazily creating it if necessary. 2773 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2774 if (Entry) { 2775 if (WeakRefReferences.erase(Entry)) { 2776 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2777 if (FD && !FD->hasAttr<WeakAttr>()) 2778 Entry->setLinkage(llvm::Function::ExternalLinkage); 2779 } 2780 2781 // Handle dropped DLL attributes. 2782 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2783 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2784 setDSOLocal(Entry); 2785 } 2786 2787 // If there are two attempts to define the same mangled name, issue an 2788 // error. 2789 if (IsForDefinition && !Entry->isDeclaration()) { 2790 GlobalDecl OtherGD; 2791 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2792 // to make sure that we issue an error only once. 2793 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2794 (GD.getCanonicalDecl().getDecl() != 2795 OtherGD.getCanonicalDecl().getDecl()) && 2796 DiagnosedConflictingDefinitions.insert(GD).second) { 2797 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2798 << MangledName; 2799 getDiags().Report(OtherGD.getDecl()->getLocation(), 2800 diag::note_previous_definition); 2801 } 2802 } 2803 2804 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2805 (Entry->getType()->getElementType() == Ty)) { 2806 return Entry; 2807 } 2808 2809 // Make sure the result is of the correct type. 2810 // (If function is requested for a definition, we always need to create a new 2811 // function, not just return a bitcast.) 2812 if (!IsForDefinition) 2813 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2814 } 2815 2816 // This function doesn't have a complete type (for example, the return 2817 // type is an incomplete struct). Use a fake type instead, and make 2818 // sure not to try to set attributes. 2819 bool IsIncompleteFunction = false; 2820 2821 llvm::FunctionType *FTy; 2822 if (isa<llvm::FunctionType>(Ty)) { 2823 FTy = cast<llvm::FunctionType>(Ty); 2824 } else { 2825 FTy = llvm::FunctionType::get(VoidTy, false); 2826 IsIncompleteFunction = true; 2827 } 2828 2829 llvm::Function *F = 2830 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2831 Entry ? StringRef() : MangledName, &getModule()); 2832 2833 // If we already created a function with the same mangled name (but different 2834 // type) before, take its name and add it to the list of functions to be 2835 // replaced with F at the end of CodeGen. 2836 // 2837 // This happens if there is a prototype for a function (e.g. "int f()") and 2838 // then a definition of a different type (e.g. "int f(int x)"). 2839 if (Entry) { 2840 F->takeName(Entry); 2841 2842 // This might be an implementation of a function without a prototype, in 2843 // which case, try to do special replacement of calls which match the new 2844 // prototype. The really key thing here is that we also potentially drop 2845 // arguments from the call site so as to make a direct call, which makes the 2846 // inliner happier and suppresses a number of optimizer warnings (!) about 2847 // dropping arguments. 2848 if (!Entry->use_empty()) { 2849 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2850 Entry->removeDeadConstantUsers(); 2851 } 2852 2853 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2854 F, Entry->getType()->getElementType()->getPointerTo()); 2855 addGlobalValReplacement(Entry, BC); 2856 } 2857 2858 assert(F->getName() == MangledName && "name was uniqued!"); 2859 if (D) 2860 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2861 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2862 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2863 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2864 } 2865 2866 if (!DontDefer) { 2867 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2868 // each other bottoming out with the base dtor. Therefore we emit non-base 2869 // dtors on usage, even if there is no dtor definition in the TU. 2870 if (D && isa<CXXDestructorDecl>(D) && 2871 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2872 GD.getDtorType())) 2873 addDeferredDeclToEmit(GD); 2874 2875 // This is the first use or definition of a mangled name. If there is a 2876 // deferred decl with this name, remember that we need to emit it at the end 2877 // of the file. 2878 auto DDI = DeferredDecls.find(MangledName); 2879 if (DDI != DeferredDecls.end()) { 2880 // Move the potentially referenced deferred decl to the 2881 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2882 // don't need it anymore). 2883 addDeferredDeclToEmit(DDI->second); 2884 DeferredDecls.erase(DDI); 2885 2886 // Otherwise, there are cases we have to worry about where we're 2887 // using a declaration for which we must emit a definition but where 2888 // we might not find a top-level definition: 2889 // - member functions defined inline in their classes 2890 // - friend functions defined inline in some class 2891 // - special member functions with implicit definitions 2892 // If we ever change our AST traversal to walk into class methods, 2893 // this will be unnecessary. 2894 // 2895 // We also don't emit a definition for a function if it's going to be an 2896 // entry in a vtable, unless it's already marked as used. 2897 } else if (getLangOpts().CPlusPlus && D) { 2898 // Look for a declaration that's lexically in a record. 2899 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2900 FD = FD->getPreviousDecl()) { 2901 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2902 if (FD->doesThisDeclarationHaveABody()) { 2903 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2904 break; 2905 } 2906 } 2907 } 2908 } 2909 } 2910 2911 // Make sure the result is of the requested type. 2912 if (!IsIncompleteFunction) { 2913 assert(F->getType()->getElementType() == Ty); 2914 return F; 2915 } 2916 2917 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2918 return llvm::ConstantExpr::getBitCast(F, PTy); 2919 } 2920 2921 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2922 /// non-null, then this function will use the specified type if it has to 2923 /// create it (this occurs when we see a definition of the function). 2924 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2925 llvm::Type *Ty, 2926 bool ForVTable, 2927 bool DontDefer, 2928 ForDefinition_t IsForDefinition) { 2929 // If there was no specific requested type, just convert it now. 2930 if (!Ty) { 2931 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2932 Ty = getTypes().ConvertType(FD->getType()); 2933 } 2934 2935 // Devirtualized destructor calls may come through here instead of via 2936 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2937 // of the complete destructor when necessary. 2938 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2939 if (getTarget().getCXXABI().isMicrosoft() && 2940 GD.getDtorType() == Dtor_Complete && 2941 DD->getParent()->getNumVBases() == 0) 2942 GD = GlobalDecl(DD, Dtor_Base); 2943 } 2944 2945 StringRef MangledName = getMangledName(GD); 2946 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2947 /*IsThunk=*/false, llvm::AttributeList(), 2948 IsForDefinition); 2949 } 2950 2951 static const FunctionDecl * 2952 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2953 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2954 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2955 2956 IdentifierInfo &CII = C.Idents.get(Name); 2957 for (const auto &Result : DC->lookup(&CII)) 2958 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2959 return FD; 2960 2961 if (!C.getLangOpts().CPlusPlus) 2962 return nullptr; 2963 2964 // Demangle the premangled name from getTerminateFn() 2965 IdentifierInfo &CXXII = 2966 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2967 ? C.Idents.get("terminate") 2968 : C.Idents.get(Name); 2969 2970 for (const auto &N : {"__cxxabiv1", "std"}) { 2971 IdentifierInfo &NS = C.Idents.get(N); 2972 for (const auto &Result : DC->lookup(&NS)) { 2973 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2974 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2975 for (const auto &Result : LSD->lookup(&NS)) 2976 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2977 break; 2978 2979 if (ND) 2980 for (const auto &Result : ND->lookup(&CXXII)) 2981 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2982 return FD; 2983 } 2984 } 2985 2986 return nullptr; 2987 } 2988 2989 /// CreateRuntimeFunction - Create a new runtime function with the specified 2990 /// type and name. 2991 llvm::FunctionCallee 2992 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2993 llvm::AttributeList ExtraAttrs, 2994 bool Local) { 2995 llvm::Constant *C = 2996 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2997 /*DontDefer=*/false, /*IsThunk=*/false, 2998 ExtraAttrs); 2999 3000 if (auto *F = dyn_cast<llvm::Function>(C)) { 3001 if (F->empty()) { 3002 F->setCallingConv(getRuntimeCC()); 3003 3004 if (!Local && getTriple().isOSBinFormatCOFF() && 3005 !getCodeGenOpts().LTOVisibilityPublicStd && 3006 !getTriple().isWindowsGNUEnvironment()) { 3007 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3008 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3009 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3010 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3011 } 3012 } 3013 setDSOLocal(F); 3014 } 3015 } 3016 3017 return {FTy, C}; 3018 } 3019 3020 /// isTypeConstant - Determine whether an object of this type can be emitted 3021 /// as a constant. 3022 /// 3023 /// If ExcludeCtor is true, the duration when the object's constructor runs 3024 /// will not be considered. The caller will need to verify that the object is 3025 /// not written to during its construction. 3026 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3027 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3028 return false; 3029 3030 if (Context.getLangOpts().CPlusPlus) { 3031 if (const CXXRecordDecl *Record 3032 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3033 return ExcludeCtor && !Record->hasMutableFields() && 3034 Record->hasTrivialDestructor(); 3035 } 3036 3037 return true; 3038 } 3039 3040 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3041 /// create and return an llvm GlobalVariable with the specified type. If there 3042 /// is something in the module with the specified name, return it potentially 3043 /// bitcasted to the right type. 3044 /// 3045 /// If D is non-null, it specifies a decl that correspond to this. This is used 3046 /// to set the attributes on the global when it is first created. 3047 /// 3048 /// If IsForDefinition is true, it is guaranteed that an actual global with 3049 /// type Ty will be returned, not conversion of a variable with the same 3050 /// mangled name but some other type. 3051 llvm::Constant * 3052 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3053 llvm::PointerType *Ty, 3054 const VarDecl *D, 3055 ForDefinition_t IsForDefinition) { 3056 // Lookup the entry, lazily creating it if necessary. 3057 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3058 if (Entry) { 3059 if (WeakRefReferences.erase(Entry)) { 3060 if (D && !D->hasAttr<WeakAttr>()) 3061 Entry->setLinkage(llvm::Function::ExternalLinkage); 3062 } 3063 3064 // Handle dropped DLL attributes. 3065 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3066 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3067 3068 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3069 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3070 3071 if (Entry->getType() == Ty) 3072 return Entry; 3073 3074 // If there are two attempts to define the same mangled name, issue an 3075 // error. 3076 if (IsForDefinition && !Entry->isDeclaration()) { 3077 GlobalDecl OtherGD; 3078 const VarDecl *OtherD; 3079 3080 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3081 // to make sure that we issue an error only once. 3082 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3083 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3084 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3085 OtherD->hasInit() && 3086 DiagnosedConflictingDefinitions.insert(D).second) { 3087 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3088 << MangledName; 3089 getDiags().Report(OtherGD.getDecl()->getLocation(), 3090 diag::note_previous_definition); 3091 } 3092 } 3093 3094 // Make sure the result is of the correct type. 3095 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3096 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3097 3098 // (If global is requested for a definition, we always need to create a new 3099 // global, not just return a bitcast.) 3100 if (!IsForDefinition) 3101 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3102 } 3103 3104 auto AddrSpace = GetGlobalVarAddressSpace(D); 3105 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3106 3107 auto *GV = new llvm::GlobalVariable( 3108 getModule(), Ty->getElementType(), false, 3109 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3110 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3111 3112 // If we already created a global with the same mangled name (but different 3113 // type) before, take its name and remove it from its parent. 3114 if (Entry) { 3115 GV->takeName(Entry); 3116 3117 if (!Entry->use_empty()) { 3118 llvm::Constant *NewPtrForOldDecl = 3119 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3120 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3121 } 3122 3123 Entry->eraseFromParent(); 3124 } 3125 3126 // This is the first use or definition of a mangled name. If there is a 3127 // deferred decl with this name, remember that we need to emit it at the end 3128 // of the file. 3129 auto DDI = DeferredDecls.find(MangledName); 3130 if (DDI != DeferredDecls.end()) { 3131 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3132 // list, and remove it from DeferredDecls (since we don't need it anymore). 3133 addDeferredDeclToEmit(DDI->second); 3134 DeferredDecls.erase(DDI); 3135 } 3136 3137 // Handle things which are present even on external declarations. 3138 if (D) { 3139 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3140 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3141 3142 // FIXME: This code is overly simple and should be merged with other global 3143 // handling. 3144 GV->setConstant(isTypeConstant(D->getType(), false)); 3145 3146 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3147 3148 setLinkageForGV(GV, D); 3149 3150 if (D->getTLSKind()) { 3151 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3152 CXXThreadLocals.push_back(D); 3153 setTLSMode(GV, *D); 3154 } 3155 3156 setGVProperties(GV, D); 3157 3158 // If required by the ABI, treat declarations of static data members with 3159 // inline initializers as definitions. 3160 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3161 EmitGlobalVarDefinition(D); 3162 } 3163 3164 // Emit section information for extern variables. 3165 if (D->hasExternalStorage()) { 3166 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3167 GV->setSection(SA->getName()); 3168 } 3169 3170 // Handle XCore specific ABI requirements. 3171 if (getTriple().getArch() == llvm::Triple::xcore && 3172 D->getLanguageLinkage() == CLanguageLinkage && 3173 D->getType().isConstant(Context) && 3174 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3175 GV->setSection(".cp.rodata"); 3176 3177 // Check if we a have a const declaration with an initializer, we may be 3178 // able to emit it as available_externally to expose it's value to the 3179 // optimizer. 3180 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3181 D->getType().isConstQualified() && !GV->hasInitializer() && 3182 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3183 const auto *Record = 3184 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3185 bool HasMutableFields = Record && Record->hasMutableFields(); 3186 if (!HasMutableFields) { 3187 const VarDecl *InitDecl; 3188 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3189 if (InitExpr) { 3190 ConstantEmitter emitter(*this); 3191 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3192 if (Init) { 3193 auto *InitType = Init->getType(); 3194 if (GV->getType()->getElementType() != InitType) { 3195 // The type of the initializer does not match the definition. 3196 // This happens when an initializer has a different type from 3197 // the type of the global (because of padding at the end of a 3198 // structure for instance). 3199 GV->setName(StringRef()); 3200 // Make a new global with the correct type, this is now guaranteed 3201 // to work. 3202 auto *NewGV = cast<llvm::GlobalVariable>( 3203 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3204 3205 // Erase the old global, since it is no longer used. 3206 GV->eraseFromParent(); 3207 GV = NewGV; 3208 } else { 3209 GV->setInitializer(Init); 3210 GV->setConstant(true); 3211 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3212 } 3213 emitter.finalize(GV); 3214 } 3215 } 3216 } 3217 } 3218 } 3219 3220 LangAS ExpectedAS = 3221 D ? D->getType().getAddressSpace() 3222 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3223 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3224 Ty->getPointerAddressSpace()); 3225 if (AddrSpace != ExpectedAS) 3226 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3227 ExpectedAS, Ty); 3228 3229 if (GV->isDeclaration()) 3230 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3231 3232 return GV; 3233 } 3234 3235 llvm::Constant * 3236 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3237 ForDefinition_t IsForDefinition) { 3238 const Decl *D = GD.getDecl(); 3239 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3240 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3241 /*DontDefer=*/false, IsForDefinition); 3242 else if (isa<CXXMethodDecl>(D)) { 3243 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3244 cast<CXXMethodDecl>(D)); 3245 auto Ty = getTypes().GetFunctionType(*FInfo); 3246 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3247 IsForDefinition); 3248 } else if (isa<FunctionDecl>(D)) { 3249 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3250 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3251 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3252 IsForDefinition); 3253 } else 3254 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3255 IsForDefinition); 3256 } 3257 3258 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3259 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3260 unsigned Alignment) { 3261 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3262 llvm::GlobalVariable *OldGV = nullptr; 3263 3264 if (GV) { 3265 // Check if the variable has the right type. 3266 if (GV->getType()->getElementType() == Ty) 3267 return GV; 3268 3269 // Because C++ name mangling, the only way we can end up with an already 3270 // existing global with the same name is if it has been declared extern "C". 3271 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3272 OldGV = GV; 3273 } 3274 3275 // Create a new variable. 3276 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3277 Linkage, nullptr, Name); 3278 3279 if (OldGV) { 3280 // Replace occurrences of the old variable if needed. 3281 GV->takeName(OldGV); 3282 3283 if (!OldGV->use_empty()) { 3284 llvm::Constant *NewPtrForOldDecl = 3285 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3286 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3287 } 3288 3289 OldGV->eraseFromParent(); 3290 } 3291 3292 if (supportsCOMDAT() && GV->isWeakForLinker() && 3293 !GV->hasAvailableExternallyLinkage()) 3294 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3295 3296 GV->setAlignment(Alignment); 3297 3298 return GV; 3299 } 3300 3301 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3302 /// given global variable. If Ty is non-null and if the global doesn't exist, 3303 /// then it will be created with the specified type instead of whatever the 3304 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3305 /// that an actual global with type Ty will be returned, not conversion of a 3306 /// variable with the same mangled name but some other type. 3307 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3308 llvm::Type *Ty, 3309 ForDefinition_t IsForDefinition) { 3310 assert(D->hasGlobalStorage() && "Not a global variable"); 3311 QualType ASTTy = D->getType(); 3312 if (!Ty) 3313 Ty = getTypes().ConvertTypeForMem(ASTTy); 3314 3315 llvm::PointerType *PTy = 3316 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3317 3318 StringRef MangledName = getMangledName(D); 3319 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3320 } 3321 3322 /// CreateRuntimeVariable - Create a new runtime global variable with the 3323 /// specified type and name. 3324 llvm::Constant * 3325 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3326 StringRef Name) { 3327 auto *Ret = 3328 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3329 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3330 return Ret; 3331 } 3332 3333 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3334 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3335 3336 StringRef MangledName = getMangledName(D); 3337 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3338 3339 // We already have a definition, not declaration, with the same mangled name. 3340 // Emitting of declaration is not required (and actually overwrites emitted 3341 // definition). 3342 if (GV && !GV->isDeclaration()) 3343 return; 3344 3345 // If we have not seen a reference to this variable yet, place it into the 3346 // deferred declarations table to be emitted if needed later. 3347 if (!MustBeEmitted(D) && !GV) { 3348 DeferredDecls[MangledName] = D; 3349 return; 3350 } 3351 3352 // The tentative definition is the only definition. 3353 EmitGlobalVarDefinition(D); 3354 } 3355 3356 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3357 return Context.toCharUnitsFromBits( 3358 getDataLayout().getTypeStoreSizeInBits(Ty)); 3359 } 3360 3361 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3362 LangAS AddrSpace = LangAS::Default; 3363 if (LangOpts.OpenCL) { 3364 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3365 assert(AddrSpace == LangAS::opencl_global || 3366 AddrSpace == LangAS::opencl_constant || 3367 AddrSpace == LangAS::opencl_local || 3368 AddrSpace >= LangAS::FirstTargetAddressSpace); 3369 return AddrSpace; 3370 } 3371 3372 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3373 if (D && D->hasAttr<CUDAConstantAttr>()) 3374 return LangAS::cuda_constant; 3375 else if (D && D->hasAttr<CUDASharedAttr>()) 3376 return LangAS::cuda_shared; 3377 else if (D && D->hasAttr<CUDADeviceAttr>()) 3378 return LangAS::cuda_device; 3379 else if (D && D->getType().isConstQualified()) 3380 return LangAS::cuda_constant; 3381 else 3382 return LangAS::cuda_device; 3383 } 3384 3385 if (LangOpts.OpenMP) { 3386 LangAS AS; 3387 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3388 return AS; 3389 } 3390 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3391 } 3392 3393 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3394 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3395 if (LangOpts.OpenCL) 3396 return LangAS::opencl_constant; 3397 if (auto AS = getTarget().getConstantAddressSpace()) 3398 return AS.getValue(); 3399 return LangAS::Default; 3400 } 3401 3402 // In address space agnostic languages, string literals are in default address 3403 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3404 // emitted in constant address space in LLVM IR. To be consistent with other 3405 // parts of AST, string literal global variables in constant address space 3406 // need to be casted to default address space before being put into address 3407 // map and referenced by other part of CodeGen. 3408 // In OpenCL, string literals are in constant address space in AST, therefore 3409 // they should not be casted to default address space. 3410 static llvm::Constant * 3411 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3412 llvm::GlobalVariable *GV) { 3413 llvm::Constant *Cast = GV; 3414 if (!CGM.getLangOpts().OpenCL) { 3415 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3416 if (AS != LangAS::Default) 3417 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3418 CGM, GV, AS.getValue(), LangAS::Default, 3419 GV->getValueType()->getPointerTo( 3420 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3421 } 3422 } 3423 return Cast; 3424 } 3425 3426 template<typename SomeDecl> 3427 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3428 llvm::GlobalValue *GV) { 3429 if (!getLangOpts().CPlusPlus) 3430 return; 3431 3432 // Must have 'used' attribute, or else inline assembly can't rely on 3433 // the name existing. 3434 if (!D->template hasAttr<UsedAttr>()) 3435 return; 3436 3437 // Must have internal linkage and an ordinary name. 3438 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3439 return; 3440 3441 // Must be in an extern "C" context. Entities declared directly within 3442 // a record are not extern "C" even if the record is in such a context. 3443 const SomeDecl *First = D->getFirstDecl(); 3444 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3445 return; 3446 3447 // OK, this is an internal linkage entity inside an extern "C" linkage 3448 // specification. Make a note of that so we can give it the "expected" 3449 // mangled name if nothing else is using that name. 3450 std::pair<StaticExternCMap::iterator, bool> R = 3451 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3452 3453 // If we have multiple internal linkage entities with the same name 3454 // in extern "C" regions, none of them gets that name. 3455 if (!R.second) 3456 R.first->second = nullptr; 3457 } 3458 3459 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3460 if (!CGM.supportsCOMDAT()) 3461 return false; 3462 3463 if (D.hasAttr<SelectAnyAttr>()) 3464 return true; 3465 3466 GVALinkage Linkage; 3467 if (auto *VD = dyn_cast<VarDecl>(&D)) 3468 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3469 else 3470 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3471 3472 switch (Linkage) { 3473 case GVA_Internal: 3474 case GVA_AvailableExternally: 3475 case GVA_StrongExternal: 3476 return false; 3477 case GVA_DiscardableODR: 3478 case GVA_StrongODR: 3479 return true; 3480 } 3481 llvm_unreachable("No such linkage"); 3482 } 3483 3484 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3485 llvm::GlobalObject &GO) { 3486 if (!shouldBeInCOMDAT(*this, D)) 3487 return; 3488 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3489 } 3490 3491 /// Pass IsTentative as true if you want to create a tentative definition. 3492 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3493 bool IsTentative) { 3494 // OpenCL global variables of sampler type are translated to function calls, 3495 // therefore no need to be translated. 3496 QualType ASTTy = D->getType(); 3497 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3498 return; 3499 3500 // If this is OpenMP device, check if it is legal to emit this global 3501 // normally. 3502 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3503 OpenMPRuntime->emitTargetGlobalVariable(D)) 3504 return; 3505 3506 llvm::Constant *Init = nullptr; 3507 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3508 bool NeedsGlobalCtor = false; 3509 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3510 3511 const VarDecl *InitDecl; 3512 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3513 3514 Optional<ConstantEmitter> emitter; 3515 3516 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3517 // as part of their declaration." Sema has already checked for 3518 // error cases, so we just need to set Init to UndefValue. 3519 bool IsCUDASharedVar = 3520 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3521 // Shadows of initialized device-side global variables are also left 3522 // undefined. 3523 bool IsCUDAShadowVar = 3524 !getLangOpts().CUDAIsDevice && 3525 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3526 D->hasAttr<CUDASharedAttr>()); 3527 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3528 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3529 else if (!InitExpr) { 3530 // This is a tentative definition; tentative definitions are 3531 // implicitly initialized with { 0 }. 3532 // 3533 // Note that tentative definitions are only emitted at the end of 3534 // a translation unit, so they should never have incomplete 3535 // type. In addition, EmitTentativeDefinition makes sure that we 3536 // never attempt to emit a tentative definition if a real one 3537 // exists. A use may still exists, however, so we still may need 3538 // to do a RAUW. 3539 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3540 Init = EmitNullConstant(D->getType()); 3541 } else { 3542 initializedGlobalDecl = GlobalDecl(D); 3543 emitter.emplace(*this); 3544 Init = emitter->tryEmitForInitializer(*InitDecl); 3545 3546 if (!Init) { 3547 QualType T = InitExpr->getType(); 3548 if (D->getType()->isReferenceType()) 3549 T = D->getType(); 3550 3551 if (getLangOpts().CPlusPlus) { 3552 Init = EmitNullConstant(T); 3553 NeedsGlobalCtor = true; 3554 } else { 3555 ErrorUnsupported(D, "static initializer"); 3556 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3557 } 3558 } else { 3559 // We don't need an initializer, so remove the entry for the delayed 3560 // initializer position (just in case this entry was delayed) if we 3561 // also don't need to register a destructor. 3562 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3563 DelayedCXXInitPosition.erase(D); 3564 } 3565 } 3566 3567 llvm::Type* InitType = Init->getType(); 3568 llvm::Constant *Entry = 3569 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3570 3571 // Strip off a bitcast if we got one back. 3572 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3573 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3574 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3575 // All zero index gep. 3576 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3577 Entry = CE->getOperand(0); 3578 } 3579 3580 // Entry is now either a Function or GlobalVariable. 3581 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3582 3583 // We have a definition after a declaration with the wrong type. 3584 // We must make a new GlobalVariable* and update everything that used OldGV 3585 // (a declaration or tentative definition) with the new GlobalVariable* 3586 // (which will be a definition). 3587 // 3588 // This happens if there is a prototype for a global (e.g. 3589 // "extern int x[];") and then a definition of a different type (e.g. 3590 // "int x[10];"). This also happens when an initializer has a different type 3591 // from the type of the global (this happens with unions). 3592 if (!GV || GV->getType()->getElementType() != InitType || 3593 GV->getType()->getAddressSpace() != 3594 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3595 3596 // Move the old entry aside so that we'll create a new one. 3597 Entry->setName(StringRef()); 3598 3599 // Make a new global with the correct type, this is now guaranteed to work. 3600 GV = cast<llvm::GlobalVariable>( 3601 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3602 3603 // Replace all uses of the old global with the new global 3604 llvm::Constant *NewPtrForOldDecl = 3605 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3606 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3607 3608 // Erase the old global, since it is no longer used. 3609 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3610 } 3611 3612 MaybeHandleStaticInExternC(D, GV); 3613 3614 if (D->hasAttr<AnnotateAttr>()) 3615 AddGlobalAnnotations(D, GV); 3616 3617 // Set the llvm linkage type as appropriate. 3618 llvm::GlobalValue::LinkageTypes Linkage = 3619 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3620 3621 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3622 // the device. [...]" 3623 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3624 // __device__, declares a variable that: [...] 3625 // Is accessible from all the threads within the grid and from the host 3626 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3627 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3628 if (GV && LangOpts.CUDA) { 3629 if (LangOpts.CUDAIsDevice) { 3630 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3631 GV->setExternallyInitialized(true); 3632 } else { 3633 // Host-side shadows of external declarations of device-side 3634 // global variables become internal definitions. These have to 3635 // be internal in order to prevent name conflicts with global 3636 // host variables with the same name in a different TUs. 3637 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3638 Linkage = llvm::GlobalValue::InternalLinkage; 3639 3640 // Shadow variables and their properties must be registered 3641 // with CUDA runtime. 3642 unsigned Flags = 0; 3643 if (!D->hasDefinition()) 3644 Flags |= CGCUDARuntime::ExternDeviceVar; 3645 if (D->hasAttr<CUDAConstantAttr>()) 3646 Flags |= CGCUDARuntime::ConstantDeviceVar; 3647 // Extern global variables will be registered in the TU where they are 3648 // defined. 3649 if (!D->hasExternalStorage()) 3650 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3651 } else if (D->hasAttr<CUDASharedAttr>()) 3652 // __shared__ variables are odd. Shadows do get created, but 3653 // they are not registered with the CUDA runtime, so they 3654 // can't really be used to access their device-side 3655 // counterparts. It's not clear yet whether it's nvcc's bug or 3656 // a feature, but we've got to do the same for compatibility. 3657 Linkage = llvm::GlobalValue::InternalLinkage; 3658 } 3659 } 3660 3661 GV->setInitializer(Init); 3662 if (emitter) emitter->finalize(GV); 3663 3664 // If it is safe to mark the global 'constant', do so now. 3665 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3666 isTypeConstant(D->getType(), true)); 3667 3668 // If it is in a read-only section, mark it 'constant'. 3669 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3670 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3671 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3672 GV->setConstant(true); 3673 } 3674 3675 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3676 3677 3678 // On Darwin, if the normal linkage of a C++ thread_local variable is 3679 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3680 // copies within a linkage unit; otherwise, the backing variable has 3681 // internal linkage and all accesses should just be calls to the 3682 // Itanium-specified entry point, which has the normal linkage of the 3683 // variable. This is to preserve the ability to change the implementation 3684 // behind the scenes. 3685 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3686 Context.getTargetInfo().getTriple().isOSDarwin() && 3687 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3688 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3689 Linkage = llvm::GlobalValue::InternalLinkage; 3690 3691 GV->setLinkage(Linkage); 3692 if (D->hasAttr<DLLImportAttr>()) 3693 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3694 else if (D->hasAttr<DLLExportAttr>()) 3695 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3696 else 3697 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3698 3699 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3700 // common vars aren't constant even if declared const. 3701 GV->setConstant(false); 3702 // Tentative definition of global variables may be initialized with 3703 // non-zero null pointers. In this case they should have weak linkage 3704 // since common linkage must have zero initializer and must not have 3705 // explicit section therefore cannot have non-zero initial value. 3706 if (!GV->getInitializer()->isNullValue()) 3707 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3708 } 3709 3710 setNonAliasAttributes(D, GV); 3711 3712 if (D->getTLSKind() && !GV->isThreadLocal()) { 3713 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3714 CXXThreadLocals.push_back(D); 3715 setTLSMode(GV, *D); 3716 } 3717 3718 maybeSetTrivialComdat(*D, *GV); 3719 3720 // Emit the initializer function if necessary. 3721 if (NeedsGlobalCtor || NeedsGlobalDtor) 3722 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3723 3724 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3725 3726 // Emit global variable debug information. 3727 if (CGDebugInfo *DI = getModuleDebugInfo()) 3728 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3729 DI->EmitGlobalVariable(GV, D); 3730 } 3731 3732 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3733 CodeGenModule &CGM, const VarDecl *D, 3734 bool NoCommon) { 3735 // Don't give variables common linkage if -fno-common was specified unless it 3736 // was overridden by a NoCommon attribute. 3737 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3738 return true; 3739 3740 // C11 6.9.2/2: 3741 // A declaration of an identifier for an object that has file scope without 3742 // an initializer, and without a storage-class specifier or with the 3743 // storage-class specifier static, constitutes a tentative definition. 3744 if (D->getInit() || D->hasExternalStorage()) 3745 return true; 3746 3747 // A variable cannot be both common and exist in a section. 3748 if (D->hasAttr<SectionAttr>()) 3749 return true; 3750 3751 // A variable cannot be both common and exist in a section. 3752 // We don't try to determine which is the right section in the front-end. 3753 // If no specialized section name is applicable, it will resort to default. 3754 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3755 D->hasAttr<PragmaClangDataSectionAttr>() || 3756 D->hasAttr<PragmaClangRodataSectionAttr>()) 3757 return true; 3758 3759 // Thread local vars aren't considered common linkage. 3760 if (D->getTLSKind()) 3761 return true; 3762 3763 // Tentative definitions marked with WeakImportAttr are true definitions. 3764 if (D->hasAttr<WeakImportAttr>()) 3765 return true; 3766 3767 // A variable cannot be both common and exist in a comdat. 3768 if (shouldBeInCOMDAT(CGM, *D)) 3769 return true; 3770 3771 // Declarations with a required alignment do not have common linkage in MSVC 3772 // mode. 3773 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3774 if (D->hasAttr<AlignedAttr>()) 3775 return true; 3776 QualType VarType = D->getType(); 3777 if (Context.isAlignmentRequired(VarType)) 3778 return true; 3779 3780 if (const auto *RT = VarType->getAs<RecordType>()) { 3781 const RecordDecl *RD = RT->getDecl(); 3782 for (const FieldDecl *FD : RD->fields()) { 3783 if (FD->isBitField()) 3784 continue; 3785 if (FD->hasAttr<AlignedAttr>()) 3786 return true; 3787 if (Context.isAlignmentRequired(FD->getType())) 3788 return true; 3789 } 3790 } 3791 } 3792 3793 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 3794 // common symbols, so symbols with greater alignment requirements cannot be 3795 // common. 3796 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 3797 // alignments for common symbols via the aligncomm directive, so this 3798 // restriction only applies to MSVC environments. 3799 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 3800 Context.getTypeAlignIfKnown(D->getType()) > 3801 Context.toBits(CharUnits::fromQuantity(32))) 3802 return true; 3803 3804 return false; 3805 } 3806 3807 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3808 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3809 if (Linkage == GVA_Internal) 3810 return llvm::Function::InternalLinkage; 3811 3812 if (D->hasAttr<WeakAttr>()) { 3813 if (IsConstantVariable) 3814 return llvm::GlobalVariable::WeakODRLinkage; 3815 else 3816 return llvm::GlobalVariable::WeakAnyLinkage; 3817 } 3818 3819 if (const auto *FD = D->getAsFunction()) 3820 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3821 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3822 3823 // We are guaranteed to have a strong definition somewhere else, 3824 // so we can use available_externally linkage. 3825 if (Linkage == GVA_AvailableExternally) 3826 return llvm::GlobalValue::AvailableExternallyLinkage; 3827 3828 // Note that Apple's kernel linker doesn't support symbol 3829 // coalescing, so we need to avoid linkonce and weak linkages there. 3830 // Normally, this means we just map to internal, but for explicit 3831 // instantiations we'll map to external. 3832 3833 // In C++, the compiler has to emit a definition in every translation unit 3834 // that references the function. We should use linkonce_odr because 3835 // a) if all references in this translation unit are optimized away, we 3836 // don't need to codegen it. b) if the function persists, it needs to be 3837 // merged with other definitions. c) C++ has the ODR, so we know the 3838 // definition is dependable. 3839 if (Linkage == GVA_DiscardableODR) 3840 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3841 : llvm::Function::InternalLinkage; 3842 3843 // An explicit instantiation of a template has weak linkage, since 3844 // explicit instantiations can occur in multiple translation units 3845 // and must all be equivalent. However, we are not allowed to 3846 // throw away these explicit instantiations. 3847 // 3848 // We don't currently support CUDA device code spread out across multiple TUs, 3849 // so say that CUDA templates are either external (for kernels) or internal. 3850 // This lets llvm perform aggressive inter-procedural optimizations. 3851 if (Linkage == GVA_StrongODR) { 3852 if (Context.getLangOpts().AppleKext) 3853 return llvm::Function::ExternalLinkage; 3854 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3855 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3856 : llvm::Function::InternalLinkage; 3857 return llvm::Function::WeakODRLinkage; 3858 } 3859 3860 // C++ doesn't have tentative definitions and thus cannot have common 3861 // linkage. 3862 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3863 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3864 CodeGenOpts.NoCommon)) 3865 return llvm::GlobalVariable::CommonLinkage; 3866 3867 // selectany symbols are externally visible, so use weak instead of 3868 // linkonce. MSVC optimizes away references to const selectany globals, so 3869 // all definitions should be the same and ODR linkage should be used. 3870 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3871 if (D->hasAttr<SelectAnyAttr>()) 3872 return llvm::GlobalVariable::WeakODRLinkage; 3873 3874 // Otherwise, we have strong external linkage. 3875 assert(Linkage == GVA_StrongExternal); 3876 return llvm::GlobalVariable::ExternalLinkage; 3877 } 3878 3879 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3880 const VarDecl *VD, bool IsConstant) { 3881 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3882 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3883 } 3884 3885 /// Replace the uses of a function that was declared with a non-proto type. 3886 /// We want to silently drop extra arguments from call sites 3887 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3888 llvm::Function *newFn) { 3889 // Fast path. 3890 if (old->use_empty()) return; 3891 3892 llvm::Type *newRetTy = newFn->getReturnType(); 3893 SmallVector<llvm::Value*, 4> newArgs; 3894 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3895 3896 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3897 ui != ue; ) { 3898 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3899 llvm::User *user = use->getUser(); 3900 3901 // Recognize and replace uses of bitcasts. Most calls to 3902 // unprototyped functions will use bitcasts. 3903 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3904 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3905 replaceUsesOfNonProtoConstant(bitcast, newFn); 3906 continue; 3907 } 3908 3909 // Recognize calls to the function. 3910 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 3911 if (!callSite) continue; 3912 if (!callSite->isCallee(&*use)) 3913 continue; 3914 3915 // If the return types don't match exactly, then we can't 3916 // transform this call unless it's dead. 3917 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3918 continue; 3919 3920 // Get the call site's attribute list. 3921 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3922 llvm::AttributeList oldAttrs = callSite->getAttributes(); 3923 3924 // If the function was passed too few arguments, don't transform. 3925 unsigned newNumArgs = newFn->arg_size(); 3926 if (callSite->arg_size() < newNumArgs) 3927 continue; 3928 3929 // If extra arguments were passed, we silently drop them. 3930 // If any of the types mismatch, we don't transform. 3931 unsigned argNo = 0; 3932 bool dontTransform = false; 3933 for (llvm::Argument &A : newFn->args()) { 3934 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 3935 dontTransform = true; 3936 break; 3937 } 3938 3939 // Add any parameter attributes. 3940 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3941 argNo++; 3942 } 3943 if (dontTransform) 3944 continue; 3945 3946 // Okay, we can transform this. Create the new call instruction and copy 3947 // over the required information. 3948 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 3949 3950 // Copy over any operand bundles. 3951 callSite->getOperandBundlesAsDefs(newBundles); 3952 3953 llvm::CallBase *newCall; 3954 if (dyn_cast<llvm::CallInst>(callSite)) { 3955 newCall = 3956 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 3957 } else { 3958 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 3959 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 3960 oldInvoke->getUnwindDest(), newArgs, 3961 newBundles, "", callSite); 3962 } 3963 newArgs.clear(); // for the next iteration 3964 3965 if (!newCall->getType()->isVoidTy()) 3966 newCall->takeName(callSite); 3967 newCall->setAttributes(llvm::AttributeList::get( 3968 newFn->getContext(), oldAttrs.getFnAttributes(), 3969 oldAttrs.getRetAttributes(), newArgAttrs)); 3970 newCall->setCallingConv(callSite->getCallingConv()); 3971 3972 // Finally, remove the old call, replacing any uses with the new one. 3973 if (!callSite->use_empty()) 3974 callSite->replaceAllUsesWith(newCall); 3975 3976 // Copy debug location attached to CI. 3977 if (callSite->getDebugLoc()) 3978 newCall->setDebugLoc(callSite->getDebugLoc()); 3979 3980 callSite->eraseFromParent(); 3981 } 3982 } 3983 3984 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3985 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3986 /// existing call uses of the old function in the module, this adjusts them to 3987 /// call the new function directly. 3988 /// 3989 /// This is not just a cleanup: the always_inline pass requires direct calls to 3990 /// functions to be able to inline them. If there is a bitcast in the way, it 3991 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3992 /// run at -O0. 3993 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3994 llvm::Function *NewFn) { 3995 // If we're redefining a global as a function, don't transform it. 3996 if (!isa<llvm::Function>(Old)) return; 3997 3998 replaceUsesOfNonProtoConstant(Old, NewFn); 3999 } 4000 4001 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4002 auto DK = VD->isThisDeclarationADefinition(); 4003 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4004 return; 4005 4006 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4007 // If we have a definition, this might be a deferred decl. If the 4008 // instantiation is explicit, make sure we emit it at the end. 4009 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4010 GetAddrOfGlobalVar(VD); 4011 4012 EmitTopLevelDecl(VD); 4013 } 4014 4015 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4016 llvm::GlobalValue *GV) { 4017 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4018 4019 // Compute the function info and LLVM type. 4020 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4021 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4022 4023 // Get or create the prototype for the function. 4024 if (!GV || (GV->getType()->getElementType() != Ty)) 4025 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4026 /*DontDefer=*/true, 4027 ForDefinition)); 4028 4029 // Already emitted. 4030 if (!GV->isDeclaration()) 4031 return; 4032 4033 // We need to set linkage and visibility on the function before 4034 // generating code for it because various parts of IR generation 4035 // want to propagate this information down (e.g. to local static 4036 // declarations). 4037 auto *Fn = cast<llvm::Function>(GV); 4038 setFunctionLinkage(GD, Fn); 4039 4040 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4041 setGVProperties(Fn, GD); 4042 4043 MaybeHandleStaticInExternC(D, Fn); 4044 4045 4046 maybeSetTrivialComdat(*D, *Fn); 4047 4048 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4049 4050 setNonAliasAttributes(GD, Fn); 4051 SetLLVMFunctionAttributesForDefinition(D, Fn); 4052 4053 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4054 AddGlobalCtor(Fn, CA->getPriority()); 4055 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4056 AddGlobalDtor(Fn, DA->getPriority()); 4057 if (D->hasAttr<AnnotateAttr>()) 4058 AddGlobalAnnotations(D, Fn); 4059 } 4060 4061 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4062 const auto *D = cast<ValueDecl>(GD.getDecl()); 4063 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4064 assert(AA && "Not an alias?"); 4065 4066 StringRef MangledName = getMangledName(GD); 4067 4068 if (AA->getAliasee() == MangledName) { 4069 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4070 return; 4071 } 4072 4073 // If there is a definition in the module, then it wins over the alias. 4074 // This is dubious, but allow it to be safe. Just ignore the alias. 4075 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4076 if (Entry && !Entry->isDeclaration()) 4077 return; 4078 4079 Aliases.push_back(GD); 4080 4081 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4082 4083 // Create a reference to the named value. This ensures that it is emitted 4084 // if a deferred decl. 4085 llvm::Constant *Aliasee; 4086 if (isa<llvm::FunctionType>(DeclTy)) 4087 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4088 /*ForVTable=*/false); 4089 else 4090 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4091 llvm::PointerType::getUnqual(DeclTy), 4092 /*D=*/nullptr); 4093 4094 // Create the new alias itself, but don't set a name yet. 4095 auto *GA = llvm::GlobalAlias::create( 4096 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4097 4098 if (Entry) { 4099 if (GA->getAliasee() == Entry) { 4100 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4101 return; 4102 } 4103 4104 assert(Entry->isDeclaration()); 4105 4106 // If there is a declaration in the module, then we had an extern followed 4107 // by the alias, as in: 4108 // extern int test6(); 4109 // ... 4110 // int test6() __attribute__((alias("test7"))); 4111 // 4112 // Remove it and replace uses of it with the alias. 4113 GA->takeName(Entry); 4114 4115 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4116 Entry->getType())); 4117 Entry->eraseFromParent(); 4118 } else { 4119 GA->setName(MangledName); 4120 } 4121 4122 // Set attributes which are particular to an alias; this is a 4123 // specialization of the attributes which may be set on a global 4124 // variable/function. 4125 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4126 D->isWeakImported()) { 4127 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4128 } 4129 4130 if (const auto *VD = dyn_cast<VarDecl>(D)) 4131 if (VD->getTLSKind()) 4132 setTLSMode(GA, *VD); 4133 4134 SetCommonAttributes(GD, GA); 4135 } 4136 4137 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4138 const auto *D = cast<ValueDecl>(GD.getDecl()); 4139 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4140 assert(IFA && "Not an ifunc?"); 4141 4142 StringRef MangledName = getMangledName(GD); 4143 4144 if (IFA->getResolver() == MangledName) { 4145 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4146 return; 4147 } 4148 4149 // Report an error if some definition overrides ifunc. 4150 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4151 if (Entry && !Entry->isDeclaration()) { 4152 GlobalDecl OtherGD; 4153 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4154 DiagnosedConflictingDefinitions.insert(GD).second) { 4155 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4156 << MangledName; 4157 Diags.Report(OtherGD.getDecl()->getLocation(), 4158 diag::note_previous_definition); 4159 } 4160 return; 4161 } 4162 4163 Aliases.push_back(GD); 4164 4165 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4166 llvm::Constant *Resolver = 4167 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4168 /*ForVTable=*/false); 4169 llvm::GlobalIFunc *GIF = 4170 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4171 "", Resolver, &getModule()); 4172 if (Entry) { 4173 if (GIF->getResolver() == Entry) { 4174 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4175 return; 4176 } 4177 assert(Entry->isDeclaration()); 4178 4179 // If there is a declaration in the module, then we had an extern followed 4180 // by the ifunc, as in: 4181 // extern int test(); 4182 // ... 4183 // int test() __attribute__((ifunc("resolver"))); 4184 // 4185 // Remove it and replace uses of it with the ifunc. 4186 GIF->takeName(Entry); 4187 4188 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4189 Entry->getType())); 4190 Entry->eraseFromParent(); 4191 } else 4192 GIF->setName(MangledName); 4193 4194 SetCommonAttributes(GD, GIF); 4195 } 4196 4197 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4198 ArrayRef<llvm::Type*> Tys) { 4199 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4200 Tys); 4201 } 4202 4203 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4204 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4205 const StringLiteral *Literal, bool TargetIsLSB, 4206 bool &IsUTF16, unsigned &StringLength) { 4207 StringRef String = Literal->getString(); 4208 unsigned NumBytes = String.size(); 4209 4210 // Check for simple case. 4211 if (!Literal->containsNonAsciiOrNull()) { 4212 StringLength = NumBytes; 4213 return *Map.insert(std::make_pair(String, nullptr)).first; 4214 } 4215 4216 // Otherwise, convert the UTF8 literals into a string of shorts. 4217 IsUTF16 = true; 4218 4219 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4220 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4221 llvm::UTF16 *ToPtr = &ToBuf[0]; 4222 4223 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4224 ToPtr + NumBytes, llvm::strictConversion); 4225 4226 // ConvertUTF8toUTF16 returns the length in ToPtr. 4227 StringLength = ToPtr - &ToBuf[0]; 4228 4229 // Add an explicit null. 4230 *ToPtr = 0; 4231 return *Map.insert(std::make_pair( 4232 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4233 (StringLength + 1) * 2), 4234 nullptr)).first; 4235 } 4236 4237 ConstantAddress 4238 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4239 unsigned StringLength = 0; 4240 bool isUTF16 = false; 4241 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4242 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4243 getDataLayout().isLittleEndian(), isUTF16, 4244 StringLength); 4245 4246 if (auto *C = Entry.second) 4247 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4248 4249 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4250 llvm::Constant *Zeros[] = { Zero, Zero }; 4251 4252 const ASTContext &Context = getContext(); 4253 const llvm::Triple &Triple = getTriple(); 4254 4255 const auto CFRuntime = getLangOpts().CFRuntime; 4256 const bool IsSwiftABI = 4257 static_cast<unsigned>(CFRuntime) >= 4258 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4259 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4260 4261 // If we don't already have it, get __CFConstantStringClassReference. 4262 if (!CFConstantStringClassRef) { 4263 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4264 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4265 Ty = llvm::ArrayType::get(Ty, 0); 4266 4267 switch (CFRuntime) { 4268 default: break; 4269 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4270 case LangOptions::CoreFoundationABI::Swift5_0: 4271 CFConstantStringClassName = 4272 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4273 : "$s10Foundation19_NSCFConstantStringCN"; 4274 Ty = IntPtrTy; 4275 break; 4276 case LangOptions::CoreFoundationABI::Swift4_2: 4277 CFConstantStringClassName = 4278 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4279 : "$S10Foundation19_NSCFConstantStringCN"; 4280 Ty = IntPtrTy; 4281 break; 4282 case LangOptions::CoreFoundationABI::Swift4_1: 4283 CFConstantStringClassName = 4284 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4285 : "__T010Foundation19_NSCFConstantStringCN"; 4286 Ty = IntPtrTy; 4287 break; 4288 } 4289 4290 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4291 4292 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4293 llvm::GlobalValue *GV = nullptr; 4294 4295 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4296 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4297 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4298 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4299 4300 const VarDecl *VD = nullptr; 4301 for (const auto &Result : DC->lookup(&II)) 4302 if ((VD = dyn_cast<VarDecl>(Result))) 4303 break; 4304 4305 if (Triple.isOSBinFormatELF()) { 4306 if (!VD) 4307 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4308 } else { 4309 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4310 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4311 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4312 else 4313 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4314 } 4315 4316 setDSOLocal(GV); 4317 } 4318 } 4319 4320 // Decay array -> ptr 4321 CFConstantStringClassRef = 4322 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4323 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4324 } 4325 4326 QualType CFTy = Context.getCFConstantStringType(); 4327 4328 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4329 4330 ConstantInitBuilder Builder(*this); 4331 auto Fields = Builder.beginStruct(STy); 4332 4333 // Class pointer. 4334 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4335 4336 // Flags. 4337 if (IsSwiftABI) { 4338 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4339 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4340 } else { 4341 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4342 } 4343 4344 // String pointer. 4345 llvm::Constant *C = nullptr; 4346 if (isUTF16) { 4347 auto Arr = llvm::makeArrayRef( 4348 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4349 Entry.first().size() / 2); 4350 C = llvm::ConstantDataArray::get(VMContext, Arr); 4351 } else { 4352 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4353 } 4354 4355 // Note: -fwritable-strings doesn't make the backing store strings of 4356 // CFStrings writable. (See <rdar://problem/10657500>) 4357 auto *GV = 4358 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4359 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4360 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4361 // Don't enforce the target's minimum global alignment, since the only use 4362 // of the string is via this class initializer. 4363 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4364 : Context.getTypeAlignInChars(Context.CharTy); 4365 GV->setAlignment(Align.getQuantity()); 4366 4367 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4368 // Without it LLVM can merge the string with a non unnamed_addr one during 4369 // LTO. Doing that changes the section it ends in, which surprises ld64. 4370 if (Triple.isOSBinFormatMachO()) 4371 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4372 : "__TEXT,__cstring,cstring_literals"); 4373 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4374 // the static linker to adjust permissions to read-only later on. 4375 else if (Triple.isOSBinFormatELF()) 4376 GV->setSection(".rodata"); 4377 4378 // String. 4379 llvm::Constant *Str = 4380 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4381 4382 if (isUTF16) 4383 // Cast the UTF16 string to the correct type. 4384 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4385 Fields.add(Str); 4386 4387 // String length. 4388 llvm::IntegerType *LengthTy = 4389 llvm::IntegerType::get(getModule().getContext(), 4390 Context.getTargetInfo().getLongWidth()); 4391 if (IsSwiftABI) { 4392 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4393 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4394 LengthTy = Int32Ty; 4395 else 4396 LengthTy = IntPtrTy; 4397 } 4398 Fields.addInt(LengthTy, StringLength); 4399 4400 CharUnits Alignment = getPointerAlign(); 4401 4402 // The struct. 4403 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4404 /*isConstant=*/false, 4405 llvm::GlobalVariable::PrivateLinkage); 4406 switch (Triple.getObjectFormat()) { 4407 case llvm::Triple::UnknownObjectFormat: 4408 llvm_unreachable("unknown file format"); 4409 case llvm::Triple::XCOFF: 4410 llvm_unreachable("XCOFF is not yet implemented"); 4411 case llvm::Triple::COFF: 4412 case llvm::Triple::ELF: 4413 case llvm::Triple::Wasm: 4414 GV->setSection("cfstring"); 4415 break; 4416 case llvm::Triple::MachO: 4417 GV->setSection("__DATA,__cfstring"); 4418 break; 4419 } 4420 Entry.second = GV; 4421 4422 return ConstantAddress(GV, Alignment); 4423 } 4424 4425 bool CodeGenModule::getExpressionLocationsEnabled() const { 4426 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4427 } 4428 4429 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4430 if (ObjCFastEnumerationStateType.isNull()) { 4431 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4432 D->startDefinition(); 4433 4434 QualType FieldTypes[] = { 4435 Context.UnsignedLongTy, 4436 Context.getPointerType(Context.getObjCIdType()), 4437 Context.getPointerType(Context.UnsignedLongTy), 4438 Context.getConstantArrayType(Context.UnsignedLongTy, 4439 llvm::APInt(32, 5), ArrayType::Normal, 0) 4440 }; 4441 4442 for (size_t i = 0; i < 4; ++i) { 4443 FieldDecl *Field = FieldDecl::Create(Context, 4444 D, 4445 SourceLocation(), 4446 SourceLocation(), nullptr, 4447 FieldTypes[i], /*TInfo=*/nullptr, 4448 /*BitWidth=*/nullptr, 4449 /*Mutable=*/false, 4450 ICIS_NoInit); 4451 Field->setAccess(AS_public); 4452 D->addDecl(Field); 4453 } 4454 4455 D->completeDefinition(); 4456 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4457 } 4458 4459 return ObjCFastEnumerationStateType; 4460 } 4461 4462 llvm::Constant * 4463 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4464 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4465 4466 // Don't emit it as the address of the string, emit the string data itself 4467 // as an inline array. 4468 if (E->getCharByteWidth() == 1) { 4469 SmallString<64> Str(E->getString()); 4470 4471 // Resize the string to the right size, which is indicated by its type. 4472 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4473 Str.resize(CAT->getSize().getZExtValue()); 4474 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4475 } 4476 4477 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4478 llvm::Type *ElemTy = AType->getElementType(); 4479 unsigned NumElements = AType->getNumElements(); 4480 4481 // Wide strings have either 2-byte or 4-byte elements. 4482 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4483 SmallVector<uint16_t, 32> Elements; 4484 Elements.reserve(NumElements); 4485 4486 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4487 Elements.push_back(E->getCodeUnit(i)); 4488 Elements.resize(NumElements); 4489 return llvm::ConstantDataArray::get(VMContext, Elements); 4490 } 4491 4492 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4493 SmallVector<uint32_t, 32> Elements; 4494 Elements.reserve(NumElements); 4495 4496 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4497 Elements.push_back(E->getCodeUnit(i)); 4498 Elements.resize(NumElements); 4499 return llvm::ConstantDataArray::get(VMContext, Elements); 4500 } 4501 4502 static llvm::GlobalVariable * 4503 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4504 CodeGenModule &CGM, StringRef GlobalName, 4505 CharUnits Alignment) { 4506 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4507 CGM.getStringLiteralAddressSpace()); 4508 4509 llvm::Module &M = CGM.getModule(); 4510 // Create a global variable for this string 4511 auto *GV = new llvm::GlobalVariable( 4512 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4513 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4514 GV->setAlignment(Alignment.getQuantity()); 4515 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4516 if (GV->isWeakForLinker()) { 4517 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4518 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4519 } 4520 CGM.setDSOLocal(GV); 4521 4522 return GV; 4523 } 4524 4525 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4526 /// constant array for the given string literal. 4527 ConstantAddress 4528 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4529 StringRef Name) { 4530 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4531 4532 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4533 llvm::GlobalVariable **Entry = nullptr; 4534 if (!LangOpts.WritableStrings) { 4535 Entry = &ConstantStringMap[C]; 4536 if (auto GV = *Entry) { 4537 if (Alignment.getQuantity() > GV->getAlignment()) 4538 GV->setAlignment(Alignment.getQuantity()); 4539 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4540 Alignment); 4541 } 4542 } 4543 4544 SmallString<256> MangledNameBuffer; 4545 StringRef GlobalVariableName; 4546 llvm::GlobalValue::LinkageTypes LT; 4547 4548 // Mangle the string literal if that's how the ABI merges duplicate strings. 4549 // Don't do it if they are writable, since we don't want writes in one TU to 4550 // affect strings in another. 4551 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4552 !LangOpts.WritableStrings) { 4553 llvm::raw_svector_ostream Out(MangledNameBuffer); 4554 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4555 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4556 GlobalVariableName = MangledNameBuffer; 4557 } else { 4558 LT = llvm::GlobalValue::PrivateLinkage; 4559 GlobalVariableName = Name; 4560 } 4561 4562 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4563 if (Entry) 4564 *Entry = GV; 4565 4566 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4567 QualType()); 4568 4569 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4570 Alignment); 4571 } 4572 4573 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4574 /// array for the given ObjCEncodeExpr node. 4575 ConstantAddress 4576 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4577 std::string Str; 4578 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4579 4580 return GetAddrOfConstantCString(Str); 4581 } 4582 4583 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4584 /// the literal and a terminating '\0' character. 4585 /// The result has pointer to array type. 4586 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4587 const std::string &Str, const char *GlobalName) { 4588 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4589 CharUnits Alignment = 4590 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4591 4592 llvm::Constant *C = 4593 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4594 4595 // Don't share any string literals if strings aren't constant. 4596 llvm::GlobalVariable **Entry = nullptr; 4597 if (!LangOpts.WritableStrings) { 4598 Entry = &ConstantStringMap[C]; 4599 if (auto GV = *Entry) { 4600 if (Alignment.getQuantity() > GV->getAlignment()) 4601 GV->setAlignment(Alignment.getQuantity()); 4602 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4603 Alignment); 4604 } 4605 } 4606 4607 // Get the default prefix if a name wasn't specified. 4608 if (!GlobalName) 4609 GlobalName = ".str"; 4610 // Create a global variable for this. 4611 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4612 GlobalName, Alignment); 4613 if (Entry) 4614 *Entry = GV; 4615 4616 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4617 Alignment); 4618 } 4619 4620 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4621 const MaterializeTemporaryExpr *E, const Expr *Init) { 4622 assert((E->getStorageDuration() == SD_Static || 4623 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4624 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4625 4626 // If we're not materializing a subobject of the temporary, keep the 4627 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4628 QualType MaterializedType = Init->getType(); 4629 if (Init == E->GetTemporaryExpr()) 4630 MaterializedType = E->getType(); 4631 4632 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4633 4634 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4635 return ConstantAddress(Slot, Align); 4636 4637 // FIXME: If an externally-visible declaration extends multiple temporaries, 4638 // we need to give each temporary the same name in every translation unit (and 4639 // we also need to make the temporaries externally-visible). 4640 SmallString<256> Name; 4641 llvm::raw_svector_ostream Out(Name); 4642 getCXXABI().getMangleContext().mangleReferenceTemporary( 4643 VD, E->getManglingNumber(), Out); 4644 4645 APValue *Value = nullptr; 4646 if (E->getStorageDuration() == SD_Static) { 4647 // We might have a cached constant initializer for this temporary. Note 4648 // that this might have a different value from the value computed by 4649 // evaluating the initializer if the surrounding constant expression 4650 // modifies the temporary. 4651 Value = getContext().getMaterializedTemporaryValue(E, false); 4652 if (Value && Value->isUninit()) 4653 Value = nullptr; 4654 } 4655 4656 // Try evaluating it now, it might have a constant initializer. 4657 Expr::EvalResult EvalResult; 4658 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4659 !EvalResult.hasSideEffects()) 4660 Value = &EvalResult.Val; 4661 4662 LangAS AddrSpace = 4663 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4664 4665 Optional<ConstantEmitter> emitter; 4666 llvm::Constant *InitialValue = nullptr; 4667 bool Constant = false; 4668 llvm::Type *Type; 4669 if (Value) { 4670 // The temporary has a constant initializer, use it. 4671 emitter.emplace(*this); 4672 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4673 MaterializedType); 4674 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4675 Type = InitialValue->getType(); 4676 } else { 4677 // No initializer, the initialization will be provided when we 4678 // initialize the declaration which performed lifetime extension. 4679 Type = getTypes().ConvertTypeForMem(MaterializedType); 4680 } 4681 4682 // Create a global variable for this lifetime-extended temporary. 4683 llvm::GlobalValue::LinkageTypes Linkage = 4684 getLLVMLinkageVarDefinition(VD, Constant); 4685 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4686 const VarDecl *InitVD; 4687 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4688 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4689 // Temporaries defined inside a class get linkonce_odr linkage because the 4690 // class can be defined in multiple translation units. 4691 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4692 } else { 4693 // There is no need for this temporary to have external linkage if the 4694 // VarDecl has external linkage. 4695 Linkage = llvm::GlobalVariable::InternalLinkage; 4696 } 4697 } 4698 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4699 auto *GV = new llvm::GlobalVariable( 4700 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4701 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4702 if (emitter) emitter->finalize(GV); 4703 setGVProperties(GV, VD); 4704 GV->setAlignment(Align.getQuantity()); 4705 if (supportsCOMDAT() && GV->isWeakForLinker()) 4706 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4707 if (VD->getTLSKind()) 4708 setTLSMode(GV, *VD); 4709 llvm::Constant *CV = GV; 4710 if (AddrSpace != LangAS::Default) 4711 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4712 *this, GV, AddrSpace, LangAS::Default, 4713 Type->getPointerTo( 4714 getContext().getTargetAddressSpace(LangAS::Default))); 4715 MaterializedGlobalTemporaryMap[E] = CV; 4716 return ConstantAddress(CV, Align); 4717 } 4718 4719 /// EmitObjCPropertyImplementations - Emit information for synthesized 4720 /// properties for an implementation. 4721 void CodeGenModule::EmitObjCPropertyImplementations(const 4722 ObjCImplementationDecl *D) { 4723 for (const auto *PID : D->property_impls()) { 4724 // Dynamic is just for type-checking. 4725 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4726 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4727 4728 // Determine which methods need to be implemented, some may have 4729 // been overridden. Note that ::isPropertyAccessor is not the method 4730 // we want, that just indicates if the decl came from a 4731 // property. What we want to know is if the method is defined in 4732 // this implementation. 4733 if (!D->getInstanceMethod(PD->getGetterName())) 4734 CodeGenFunction(*this).GenerateObjCGetter( 4735 const_cast<ObjCImplementationDecl *>(D), PID); 4736 if (!PD->isReadOnly() && 4737 !D->getInstanceMethod(PD->getSetterName())) 4738 CodeGenFunction(*this).GenerateObjCSetter( 4739 const_cast<ObjCImplementationDecl *>(D), PID); 4740 } 4741 } 4742 } 4743 4744 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4745 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4746 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4747 ivar; ivar = ivar->getNextIvar()) 4748 if (ivar->getType().isDestructedType()) 4749 return true; 4750 4751 return false; 4752 } 4753 4754 static bool AllTrivialInitializers(CodeGenModule &CGM, 4755 ObjCImplementationDecl *D) { 4756 CodeGenFunction CGF(CGM); 4757 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4758 E = D->init_end(); B != E; ++B) { 4759 CXXCtorInitializer *CtorInitExp = *B; 4760 Expr *Init = CtorInitExp->getInit(); 4761 if (!CGF.isTrivialInitializer(Init)) 4762 return false; 4763 } 4764 return true; 4765 } 4766 4767 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4768 /// for an implementation. 4769 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4770 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4771 if (needsDestructMethod(D)) { 4772 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4773 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4774 ObjCMethodDecl *DTORMethod = 4775 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4776 cxxSelector, getContext().VoidTy, nullptr, D, 4777 /*isInstance=*/true, /*isVariadic=*/false, 4778 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4779 /*isDefined=*/false, ObjCMethodDecl::Required); 4780 D->addInstanceMethod(DTORMethod); 4781 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4782 D->setHasDestructors(true); 4783 } 4784 4785 // If the implementation doesn't have any ivar initializers, we don't need 4786 // a .cxx_construct. 4787 if (D->getNumIvarInitializers() == 0 || 4788 AllTrivialInitializers(*this, D)) 4789 return; 4790 4791 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4792 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4793 // The constructor returns 'self'. 4794 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4795 D->getLocation(), 4796 D->getLocation(), 4797 cxxSelector, 4798 getContext().getObjCIdType(), 4799 nullptr, D, /*isInstance=*/true, 4800 /*isVariadic=*/false, 4801 /*isPropertyAccessor=*/true, 4802 /*isImplicitlyDeclared=*/true, 4803 /*isDefined=*/false, 4804 ObjCMethodDecl::Required); 4805 D->addInstanceMethod(CTORMethod); 4806 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4807 D->setHasNonZeroConstructors(true); 4808 } 4809 4810 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4811 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4812 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4813 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4814 ErrorUnsupported(LSD, "linkage spec"); 4815 return; 4816 } 4817 4818 EmitDeclContext(LSD); 4819 } 4820 4821 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4822 for (auto *I : DC->decls()) { 4823 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4824 // are themselves considered "top-level", so EmitTopLevelDecl on an 4825 // ObjCImplDecl does not recursively visit them. We need to do that in 4826 // case they're nested inside another construct (LinkageSpecDecl / 4827 // ExportDecl) that does stop them from being considered "top-level". 4828 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4829 for (auto *M : OID->methods()) 4830 EmitTopLevelDecl(M); 4831 } 4832 4833 EmitTopLevelDecl(I); 4834 } 4835 } 4836 4837 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4838 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4839 // Ignore dependent declarations. 4840 if (D->isTemplated()) 4841 return; 4842 4843 switch (D->getKind()) { 4844 case Decl::CXXConversion: 4845 case Decl::CXXMethod: 4846 case Decl::Function: 4847 EmitGlobal(cast<FunctionDecl>(D)); 4848 // Always provide some coverage mapping 4849 // even for the functions that aren't emitted. 4850 AddDeferredUnusedCoverageMapping(D); 4851 break; 4852 4853 case Decl::CXXDeductionGuide: 4854 // Function-like, but does not result in code emission. 4855 break; 4856 4857 case Decl::Var: 4858 case Decl::Decomposition: 4859 case Decl::VarTemplateSpecialization: 4860 EmitGlobal(cast<VarDecl>(D)); 4861 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4862 for (auto *B : DD->bindings()) 4863 if (auto *HD = B->getHoldingVar()) 4864 EmitGlobal(HD); 4865 break; 4866 4867 // Indirect fields from global anonymous structs and unions can be 4868 // ignored; only the actual variable requires IR gen support. 4869 case Decl::IndirectField: 4870 break; 4871 4872 // C++ Decls 4873 case Decl::Namespace: 4874 EmitDeclContext(cast<NamespaceDecl>(D)); 4875 break; 4876 case Decl::ClassTemplateSpecialization: { 4877 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4878 if (DebugInfo && 4879 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4880 Spec->hasDefinition()) 4881 DebugInfo->completeTemplateDefinition(*Spec); 4882 } LLVM_FALLTHROUGH; 4883 case Decl::CXXRecord: 4884 if (DebugInfo) { 4885 if (auto *ES = D->getASTContext().getExternalSource()) 4886 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4887 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4888 } 4889 // Emit any static data members, they may be definitions. 4890 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4891 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4892 EmitTopLevelDecl(I); 4893 break; 4894 // No code generation needed. 4895 case Decl::UsingShadow: 4896 case Decl::ClassTemplate: 4897 case Decl::VarTemplate: 4898 case Decl::VarTemplatePartialSpecialization: 4899 case Decl::FunctionTemplate: 4900 case Decl::TypeAliasTemplate: 4901 case Decl::Block: 4902 case Decl::Empty: 4903 case Decl::Binding: 4904 break; 4905 case Decl::Using: // using X; [C++] 4906 if (CGDebugInfo *DI = getModuleDebugInfo()) 4907 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4908 return; 4909 case Decl::NamespaceAlias: 4910 if (CGDebugInfo *DI = getModuleDebugInfo()) 4911 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4912 return; 4913 case Decl::UsingDirective: // using namespace X; [C++] 4914 if (CGDebugInfo *DI = getModuleDebugInfo()) 4915 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4916 return; 4917 case Decl::CXXConstructor: 4918 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4919 break; 4920 case Decl::CXXDestructor: 4921 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4922 break; 4923 4924 case Decl::StaticAssert: 4925 // Nothing to do. 4926 break; 4927 4928 // Objective-C Decls 4929 4930 // Forward declarations, no (immediate) code generation. 4931 case Decl::ObjCInterface: 4932 case Decl::ObjCCategory: 4933 break; 4934 4935 case Decl::ObjCProtocol: { 4936 auto *Proto = cast<ObjCProtocolDecl>(D); 4937 if (Proto->isThisDeclarationADefinition()) 4938 ObjCRuntime->GenerateProtocol(Proto); 4939 break; 4940 } 4941 4942 case Decl::ObjCCategoryImpl: 4943 // Categories have properties but don't support synthesize so we 4944 // can ignore them here. 4945 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4946 break; 4947 4948 case Decl::ObjCImplementation: { 4949 auto *OMD = cast<ObjCImplementationDecl>(D); 4950 EmitObjCPropertyImplementations(OMD); 4951 EmitObjCIvarInitializations(OMD); 4952 ObjCRuntime->GenerateClass(OMD); 4953 // Emit global variable debug information. 4954 if (CGDebugInfo *DI = getModuleDebugInfo()) 4955 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4956 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4957 OMD->getClassInterface()), OMD->getLocation()); 4958 break; 4959 } 4960 case Decl::ObjCMethod: { 4961 auto *OMD = cast<ObjCMethodDecl>(D); 4962 // If this is not a prototype, emit the body. 4963 if (OMD->getBody()) 4964 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4965 break; 4966 } 4967 case Decl::ObjCCompatibleAlias: 4968 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4969 break; 4970 4971 case Decl::PragmaComment: { 4972 const auto *PCD = cast<PragmaCommentDecl>(D); 4973 switch (PCD->getCommentKind()) { 4974 case PCK_Unknown: 4975 llvm_unreachable("unexpected pragma comment kind"); 4976 case PCK_Linker: 4977 AppendLinkerOptions(PCD->getArg()); 4978 break; 4979 case PCK_Lib: 4980 if (getTarget().getTriple().isOSBinFormatELF() && 4981 !getTarget().getTriple().isPS4()) 4982 AddELFLibDirective(PCD->getArg()); 4983 else 4984 AddDependentLib(PCD->getArg()); 4985 break; 4986 case PCK_Compiler: 4987 case PCK_ExeStr: 4988 case PCK_User: 4989 break; // We ignore all of these. 4990 } 4991 break; 4992 } 4993 4994 case Decl::PragmaDetectMismatch: { 4995 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4996 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4997 break; 4998 } 4999 5000 case Decl::LinkageSpec: 5001 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5002 break; 5003 5004 case Decl::FileScopeAsm: { 5005 // File-scope asm is ignored during device-side CUDA compilation. 5006 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5007 break; 5008 // File-scope asm is ignored during device-side OpenMP compilation. 5009 if (LangOpts.OpenMPIsDevice) 5010 break; 5011 auto *AD = cast<FileScopeAsmDecl>(D); 5012 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5013 break; 5014 } 5015 5016 case Decl::Import: { 5017 auto *Import = cast<ImportDecl>(D); 5018 5019 // If we've already imported this module, we're done. 5020 if (!ImportedModules.insert(Import->getImportedModule())) 5021 break; 5022 5023 // Emit debug information for direct imports. 5024 if (!Import->getImportedOwningModule()) { 5025 if (CGDebugInfo *DI = getModuleDebugInfo()) 5026 DI->EmitImportDecl(*Import); 5027 } 5028 5029 // Find all of the submodules and emit the module initializers. 5030 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5031 SmallVector<clang::Module *, 16> Stack; 5032 Visited.insert(Import->getImportedModule()); 5033 Stack.push_back(Import->getImportedModule()); 5034 5035 while (!Stack.empty()) { 5036 clang::Module *Mod = Stack.pop_back_val(); 5037 if (!EmittedModuleInitializers.insert(Mod).second) 5038 continue; 5039 5040 for (auto *D : Context.getModuleInitializers(Mod)) 5041 EmitTopLevelDecl(D); 5042 5043 // Visit the submodules of this module. 5044 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5045 SubEnd = Mod->submodule_end(); 5046 Sub != SubEnd; ++Sub) { 5047 // Skip explicit children; they need to be explicitly imported to emit 5048 // the initializers. 5049 if ((*Sub)->IsExplicit) 5050 continue; 5051 5052 if (Visited.insert(*Sub).second) 5053 Stack.push_back(*Sub); 5054 } 5055 } 5056 break; 5057 } 5058 5059 case Decl::Export: 5060 EmitDeclContext(cast<ExportDecl>(D)); 5061 break; 5062 5063 case Decl::OMPThreadPrivate: 5064 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5065 break; 5066 5067 case Decl::OMPAllocate: 5068 break; 5069 5070 case Decl::OMPDeclareReduction: 5071 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5072 break; 5073 5074 case Decl::OMPDeclareMapper: 5075 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5076 break; 5077 5078 case Decl::OMPRequires: 5079 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5080 break; 5081 5082 default: 5083 // Make sure we handled everything we should, every other kind is a 5084 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5085 // function. Need to recode Decl::Kind to do that easily. 5086 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5087 break; 5088 } 5089 } 5090 5091 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5092 // Do we need to generate coverage mapping? 5093 if (!CodeGenOpts.CoverageMapping) 5094 return; 5095 switch (D->getKind()) { 5096 case Decl::CXXConversion: 5097 case Decl::CXXMethod: 5098 case Decl::Function: 5099 case Decl::ObjCMethod: 5100 case Decl::CXXConstructor: 5101 case Decl::CXXDestructor: { 5102 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5103 return; 5104 SourceManager &SM = getContext().getSourceManager(); 5105 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5106 return; 5107 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5108 if (I == DeferredEmptyCoverageMappingDecls.end()) 5109 DeferredEmptyCoverageMappingDecls[D] = true; 5110 break; 5111 } 5112 default: 5113 break; 5114 }; 5115 } 5116 5117 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5118 // Do we need to generate coverage mapping? 5119 if (!CodeGenOpts.CoverageMapping) 5120 return; 5121 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5122 if (Fn->isTemplateInstantiation()) 5123 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5124 } 5125 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5126 if (I == DeferredEmptyCoverageMappingDecls.end()) 5127 DeferredEmptyCoverageMappingDecls[D] = false; 5128 else 5129 I->second = false; 5130 } 5131 5132 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5133 // We call takeVector() here to avoid use-after-free. 5134 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5135 // we deserialize function bodies to emit coverage info for them, and that 5136 // deserializes more declarations. How should we handle that case? 5137 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5138 if (!Entry.second) 5139 continue; 5140 const Decl *D = Entry.first; 5141 switch (D->getKind()) { 5142 case Decl::CXXConversion: 5143 case Decl::CXXMethod: 5144 case Decl::Function: 5145 case Decl::ObjCMethod: { 5146 CodeGenPGO PGO(*this); 5147 GlobalDecl GD(cast<FunctionDecl>(D)); 5148 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5149 getFunctionLinkage(GD)); 5150 break; 5151 } 5152 case Decl::CXXConstructor: { 5153 CodeGenPGO PGO(*this); 5154 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5155 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5156 getFunctionLinkage(GD)); 5157 break; 5158 } 5159 case Decl::CXXDestructor: { 5160 CodeGenPGO PGO(*this); 5161 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5162 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5163 getFunctionLinkage(GD)); 5164 break; 5165 } 5166 default: 5167 break; 5168 }; 5169 } 5170 } 5171 5172 /// Turns the given pointer into a constant. 5173 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5174 const void *Ptr) { 5175 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5176 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5177 return llvm::ConstantInt::get(i64, PtrInt); 5178 } 5179 5180 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5181 llvm::NamedMDNode *&GlobalMetadata, 5182 GlobalDecl D, 5183 llvm::GlobalValue *Addr) { 5184 if (!GlobalMetadata) 5185 GlobalMetadata = 5186 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5187 5188 // TODO: should we report variant information for ctors/dtors? 5189 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5190 llvm::ConstantAsMetadata::get(GetPointerConstant( 5191 CGM.getLLVMContext(), D.getDecl()))}; 5192 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5193 } 5194 5195 /// For each function which is declared within an extern "C" region and marked 5196 /// as 'used', but has internal linkage, create an alias from the unmangled 5197 /// name to the mangled name if possible. People expect to be able to refer 5198 /// to such functions with an unmangled name from inline assembly within the 5199 /// same translation unit. 5200 void CodeGenModule::EmitStaticExternCAliases() { 5201 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5202 return; 5203 for (auto &I : StaticExternCValues) { 5204 IdentifierInfo *Name = I.first; 5205 llvm::GlobalValue *Val = I.second; 5206 if (Val && !getModule().getNamedValue(Name->getName())) 5207 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5208 } 5209 } 5210 5211 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5212 GlobalDecl &Result) const { 5213 auto Res = Manglings.find(MangledName); 5214 if (Res == Manglings.end()) 5215 return false; 5216 Result = Res->getValue(); 5217 return true; 5218 } 5219 5220 /// Emits metadata nodes associating all the global values in the 5221 /// current module with the Decls they came from. This is useful for 5222 /// projects using IR gen as a subroutine. 5223 /// 5224 /// Since there's currently no way to associate an MDNode directly 5225 /// with an llvm::GlobalValue, we create a global named metadata 5226 /// with the name 'clang.global.decl.ptrs'. 5227 void CodeGenModule::EmitDeclMetadata() { 5228 llvm::NamedMDNode *GlobalMetadata = nullptr; 5229 5230 for (auto &I : MangledDeclNames) { 5231 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5232 // Some mangled names don't necessarily have an associated GlobalValue 5233 // in this module, e.g. if we mangled it for DebugInfo. 5234 if (Addr) 5235 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5236 } 5237 } 5238 5239 /// Emits metadata nodes for all the local variables in the current 5240 /// function. 5241 void CodeGenFunction::EmitDeclMetadata() { 5242 if (LocalDeclMap.empty()) return; 5243 5244 llvm::LLVMContext &Context = getLLVMContext(); 5245 5246 // Find the unique metadata ID for this name. 5247 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5248 5249 llvm::NamedMDNode *GlobalMetadata = nullptr; 5250 5251 for (auto &I : LocalDeclMap) { 5252 const Decl *D = I.first; 5253 llvm::Value *Addr = I.second.getPointer(); 5254 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5255 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5256 Alloca->setMetadata( 5257 DeclPtrKind, llvm::MDNode::get( 5258 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5259 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5260 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5261 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5262 } 5263 } 5264 } 5265 5266 void CodeGenModule::EmitVersionIdentMetadata() { 5267 llvm::NamedMDNode *IdentMetadata = 5268 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5269 std::string Version = getClangFullVersion(); 5270 llvm::LLVMContext &Ctx = TheModule.getContext(); 5271 5272 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5273 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5274 } 5275 5276 void CodeGenModule::EmitCommandLineMetadata() { 5277 llvm::NamedMDNode *CommandLineMetadata = 5278 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5279 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5280 llvm::LLVMContext &Ctx = TheModule.getContext(); 5281 5282 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5283 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5284 } 5285 5286 void CodeGenModule::EmitTargetMetadata() { 5287 // Warning, new MangledDeclNames may be appended within this loop. 5288 // We rely on MapVector insertions adding new elements to the end 5289 // of the container. 5290 // FIXME: Move this loop into the one target that needs it, and only 5291 // loop over those declarations for which we couldn't emit the target 5292 // metadata when we emitted the declaration. 5293 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5294 auto Val = *(MangledDeclNames.begin() + I); 5295 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5296 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5297 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5298 } 5299 } 5300 5301 void CodeGenModule::EmitCoverageFile() { 5302 if (getCodeGenOpts().CoverageDataFile.empty() && 5303 getCodeGenOpts().CoverageNotesFile.empty()) 5304 return; 5305 5306 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5307 if (!CUNode) 5308 return; 5309 5310 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5311 llvm::LLVMContext &Ctx = TheModule.getContext(); 5312 auto *CoverageDataFile = 5313 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5314 auto *CoverageNotesFile = 5315 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5316 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5317 llvm::MDNode *CU = CUNode->getOperand(i); 5318 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5319 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5320 } 5321 } 5322 5323 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5324 // Sema has checked that all uuid strings are of the form 5325 // "12345678-1234-1234-1234-1234567890ab". 5326 assert(Uuid.size() == 36); 5327 for (unsigned i = 0; i < 36; ++i) { 5328 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5329 else assert(isHexDigit(Uuid[i])); 5330 } 5331 5332 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5333 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5334 5335 llvm::Constant *Field3[8]; 5336 for (unsigned Idx = 0; Idx < 8; ++Idx) 5337 Field3[Idx] = llvm::ConstantInt::get( 5338 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5339 5340 llvm::Constant *Fields[4] = { 5341 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5342 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5343 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5344 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5345 }; 5346 5347 return llvm::ConstantStruct::getAnon(Fields); 5348 } 5349 5350 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5351 bool ForEH) { 5352 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5353 // FIXME: should we even be calling this method if RTTI is disabled 5354 // and it's not for EH? 5355 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5356 return llvm::Constant::getNullValue(Int8PtrTy); 5357 5358 if (ForEH && Ty->isObjCObjectPointerType() && 5359 LangOpts.ObjCRuntime.isGNUFamily()) 5360 return ObjCRuntime->GetEHType(Ty); 5361 5362 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5363 } 5364 5365 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5366 // Do not emit threadprivates in simd-only mode. 5367 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5368 return; 5369 for (auto RefExpr : D->varlists()) { 5370 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5371 bool PerformInit = 5372 VD->getAnyInitializer() && 5373 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5374 /*ForRef=*/false); 5375 5376 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5377 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5378 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5379 CXXGlobalInits.push_back(InitFunction); 5380 } 5381 } 5382 5383 llvm::Metadata * 5384 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5385 StringRef Suffix) { 5386 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5387 if (InternalId) 5388 return InternalId; 5389 5390 if (isExternallyVisible(T->getLinkage())) { 5391 std::string OutName; 5392 llvm::raw_string_ostream Out(OutName); 5393 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5394 Out << Suffix; 5395 5396 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5397 } else { 5398 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5399 llvm::ArrayRef<llvm::Metadata *>()); 5400 } 5401 5402 return InternalId; 5403 } 5404 5405 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5406 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5407 } 5408 5409 llvm::Metadata * 5410 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5411 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5412 } 5413 5414 // Generalize pointer types to a void pointer with the qualifiers of the 5415 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5416 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5417 // 'void *'. 5418 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5419 if (!Ty->isPointerType()) 5420 return Ty; 5421 5422 return Ctx.getPointerType( 5423 QualType(Ctx.VoidTy).withCVRQualifiers( 5424 Ty->getPointeeType().getCVRQualifiers())); 5425 } 5426 5427 // Apply type generalization to a FunctionType's return and argument types 5428 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5429 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5430 SmallVector<QualType, 8> GeneralizedParams; 5431 for (auto &Param : FnType->param_types()) 5432 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5433 5434 return Ctx.getFunctionType( 5435 GeneralizeType(Ctx, FnType->getReturnType()), 5436 GeneralizedParams, FnType->getExtProtoInfo()); 5437 } 5438 5439 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5440 return Ctx.getFunctionNoProtoType( 5441 GeneralizeType(Ctx, FnType->getReturnType())); 5442 5443 llvm_unreachable("Encountered unknown FunctionType"); 5444 } 5445 5446 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5447 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5448 GeneralizedMetadataIdMap, ".generalized"); 5449 } 5450 5451 /// Returns whether this module needs the "all-vtables" type identifier. 5452 bool CodeGenModule::NeedAllVtablesTypeId() const { 5453 // Returns true if at least one of vtable-based CFI checkers is enabled and 5454 // is not in the trapping mode. 5455 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5456 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5457 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5458 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5459 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5460 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5461 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5462 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5463 } 5464 5465 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5466 CharUnits Offset, 5467 const CXXRecordDecl *RD) { 5468 llvm::Metadata *MD = 5469 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5470 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5471 5472 if (CodeGenOpts.SanitizeCfiCrossDso) 5473 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5474 VTable->addTypeMetadata(Offset.getQuantity(), 5475 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5476 5477 if (NeedAllVtablesTypeId()) { 5478 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5479 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5480 } 5481 } 5482 5483 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5484 assert(TD != nullptr); 5485 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5486 5487 ParsedAttr.Features.erase( 5488 llvm::remove_if(ParsedAttr.Features, 5489 [&](const std::string &Feat) { 5490 return !Target.isValidFeatureName( 5491 StringRef{Feat}.substr(1)); 5492 }), 5493 ParsedAttr.Features.end()); 5494 return ParsedAttr; 5495 } 5496 5497 5498 // Fills in the supplied string map with the set of target features for the 5499 // passed in function. 5500 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5501 GlobalDecl GD) { 5502 StringRef TargetCPU = Target.getTargetOpts().CPU; 5503 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5504 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5505 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5506 5507 // Make a copy of the features as passed on the command line into the 5508 // beginning of the additional features from the function to override. 5509 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5510 Target.getTargetOpts().FeaturesAsWritten.begin(), 5511 Target.getTargetOpts().FeaturesAsWritten.end()); 5512 5513 if (ParsedAttr.Architecture != "" && 5514 Target.isValidCPUName(ParsedAttr.Architecture)) 5515 TargetCPU = ParsedAttr.Architecture; 5516 5517 // Now populate the feature map, first with the TargetCPU which is either 5518 // the default or a new one from the target attribute string. Then we'll use 5519 // the passed in features (FeaturesAsWritten) along with the new ones from 5520 // the attribute. 5521 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5522 ParsedAttr.Features); 5523 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5524 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5525 Target.getCPUSpecificCPUDispatchFeatures( 5526 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5527 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5528 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5529 } else { 5530 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5531 Target.getTargetOpts().Features); 5532 } 5533 } 5534 5535 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5536 if (!SanStats) 5537 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5538 5539 return *SanStats; 5540 } 5541 llvm::Value * 5542 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5543 CodeGenFunction &CGF) { 5544 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5545 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5546 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5547 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5548 "__translate_sampler_initializer"), 5549 {C}); 5550 } 5551