1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CoverageMappingGen.h" 25 #include "CodeGenTBAA.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 113 114 if (LangOpts.ObjC1) 115 createObjCRuntime(); 116 if (LangOpts.OpenCL) 117 createOpenCLRuntime(); 118 if (LangOpts.OpenMP) 119 createOpenMPRuntime(); 120 if (LangOpts.CUDA) 121 createCUDARuntime(); 122 123 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 124 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 125 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 126 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 127 getCXXABI().getMangleContext()); 128 129 // If debug info or coverage generation is enabled, create the CGDebugInfo 130 // object. 131 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 132 CodeGenOpts.EmitGcovArcs || 133 CodeGenOpts.EmitGcovNotes) 134 DebugInfo = new CGDebugInfo(*this); 135 136 Block.GlobalUniqueCount = 0; 137 138 if (C.getLangOpts().ObjCAutoRefCount) 139 ARCData = new ARCEntrypoints(); 140 RRData = new RREntrypoints(); 141 142 if (!CodeGenOpts.InstrProfileInput.empty()) { 143 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 144 CodeGenOpts.InstrProfileInput, PGOReader)) { 145 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 146 "Could not read profile: %0"); 147 getDiags().Report(DiagID) << EC.message(); 148 } 149 } 150 151 // If coverage mapping generation is enabled, create the 152 // CoverageMappingModuleGen object. 153 if (CodeGenOpts.CoverageMapping) 154 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 155 } 156 157 CodeGenModule::~CodeGenModule() { 158 delete ObjCRuntime; 159 delete OpenCLRuntime; 160 delete OpenMPRuntime; 161 delete CUDARuntime; 162 delete TheTargetCodeGenInfo; 163 delete TBAA; 164 delete DebugInfo; 165 delete ARCData; 166 delete RRData; 167 } 168 169 void CodeGenModule::createObjCRuntime() { 170 // This is just isGNUFamily(), but we want to force implementors of 171 // new ABIs to decide how best to do this. 172 switch (LangOpts.ObjCRuntime.getKind()) { 173 case ObjCRuntime::GNUstep: 174 case ObjCRuntime::GCC: 175 case ObjCRuntime::ObjFW: 176 ObjCRuntime = CreateGNUObjCRuntime(*this); 177 return; 178 179 case ObjCRuntime::FragileMacOSX: 180 case ObjCRuntime::MacOSX: 181 case ObjCRuntime::iOS: 182 ObjCRuntime = CreateMacObjCRuntime(*this); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime = new CGOpenCLRuntime(*this); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 OpenMPRuntime = new CGOpenMPRuntime(*this); 194 } 195 196 void CodeGenModule::createCUDARuntime() { 197 CUDARuntime = CreateNVCUDARuntime(*this); 198 } 199 200 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 201 Replacements[Name] = C; 202 } 203 204 void CodeGenModule::applyReplacements() { 205 for (ReplacementsTy::iterator I = Replacements.begin(), 206 E = Replacements.end(); 207 I != E; ++I) { 208 StringRef MangledName = I->first(); 209 llvm::Constant *Replacement = I->second; 210 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 211 if (!Entry) 212 continue; 213 auto *OldF = cast<llvm::Function>(Entry); 214 auto *NewF = dyn_cast<llvm::Function>(Replacement); 215 if (!NewF) { 216 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 217 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 218 } else { 219 auto *CE = cast<llvm::ConstantExpr>(Replacement); 220 assert(CE->getOpcode() == llvm::Instruction::BitCast || 221 CE->getOpcode() == llvm::Instruction::GetElementPtr); 222 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 223 } 224 } 225 226 // Replace old with new, but keep the old order. 227 OldF->replaceAllUsesWith(Replacement); 228 if (NewF) { 229 NewF->removeFromParent(); 230 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 231 } 232 OldF->eraseFromParent(); 233 } 234 } 235 236 // This is only used in aliases that we created and we know they have a 237 // linear structure. 238 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 239 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 240 const llvm::Constant *C = &GA; 241 for (;;) { 242 C = C->stripPointerCasts(); 243 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 244 return GO; 245 // stripPointerCasts will not walk over weak aliases. 246 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 247 if (!GA2) 248 return nullptr; 249 if (!Visited.insert(GA2).second) 250 return nullptr; 251 C = GA2->getAliasee(); 252 } 253 } 254 255 void CodeGenModule::checkAliases() { 256 // Check if the constructed aliases are well formed. It is really unfortunate 257 // that we have to do this in CodeGen, but we only construct mangled names 258 // and aliases during codegen. 259 bool Error = false; 260 DiagnosticsEngine &Diags = getDiags(); 261 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 262 E = Aliases.end(); I != E; ++I) { 263 const GlobalDecl &GD = *I; 264 const auto *D = cast<ValueDecl>(GD.getDecl()); 265 const AliasAttr *AA = D->getAttr<AliasAttr>(); 266 StringRef MangledName = getMangledName(GD); 267 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 268 auto *Alias = cast<llvm::GlobalAlias>(Entry); 269 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 270 if (!GV) { 271 Error = true; 272 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 273 } else if (GV->isDeclaration()) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 276 } 277 278 llvm::Constant *Aliasee = Alias->getAliasee(); 279 llvm::GlobalValue *AliaseeGV; 280 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 281 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 282 else 283 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 284 285 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 286 StringRef AliasSection = SA->getName(); 287 if (AliasSection != AliaseeGV->getSection()) 288 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 289 << AliasSection; 290 } 291 292 // We have to handle alias to weak aliases in here. LLVM itself disallows 293 // this since the object semantics would not match the IL one. For 294 // compatibility with gcc we implement it by just pointing the alias 295 // to its aliasee's aliasee. We also warn, since the user is probably 296 // expecting the link to be weak. 297 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 298 if (GA->mayBeOverridden()) { 299 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 300 << GV->getName() << GA->getName(); 301 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 302 GA->getAliasee(), Alias->getType()); 303 Alias->setAliasee(Aliasee); 304 } 305 } 306 } 307 if (!Error) 308 return; 309 310 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 311 E = Aliases.end(); I != E; ++I) { 312 const GlobalDecl &GD = *I; 313 StringRef MangledName = getMangledName(GD); 314 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 315 auto *Alias = cast<llvm::GlobalAlias>(Entry); 316 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 317 Alias->eraseFromParent(); 318 } 319 } 320 321 void CodeGenModule::clear() { 322 DeferredDeclsToEmit.clear(); 323 } 324 325 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 326 StringRef MainFile) { 327 if (!hasDiagnostics()) 328 return; 329 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 330 if (MainFile.empty()) 331 MainFile = "<stdin>"; 332 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 333 } else 334 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 335 << Mismatched; 336 } 337 338 void CodeGenModule::Release() { 339 EmitDeferred(); 340 applyReplacements(); 341 checkAliases(); 342 EmitCXXGlobalInitFunc(); 343 EmitCXXGlobalDtorFunc(); 344 EmitCXXThreadLocalInitFunc(); 345 if (ObjCRuntime) 346 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 347 AddGlobalCtor(ObjCInitFunction); 348 if (PGOReader && PGOStats.hasDiagnostics()) 349 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 350 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 351 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 352 EmitGlobalAnnotations(); 353 EmitStaticExternCAliases(); 354 EmitDeferredUnusedCoverageMappings(); 355 if (CoverageMapping) 356 CoverageMapping->emit(); 357 emitLLVMUsed(); 358 359 if (CodeGenOpts.Autolink && 360 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 361 EmitModuleLinkOptions(); 362 } 363 if (CodeGenOpts.DwarfVersion) 364 // We actually want the latest version when there are conflicts. 365 // We can change from Warning to Latest if such mode is supported. 366 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 367 CodeGenOpts.DwarfVersion); 368 if (DebugInfo) 369 // We support a single version in the linked module. The LLVM 370 // parser will drop debug info with a different version number 371 // (and warn about it, too). 372 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 373 llvm::DEBUG_METADATA_VERSION); 374 375 // We need to record the widths of enums and wchar_t, so that we can generate 376 // the correct build attributes in the ARM backend. 377 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 378 if ( Arch == llvm::Triple::arm 379 || Arch == llvm::Triple::armeb 380 || Arch == llvm::Triple::thumb 381 || Arch == llvm::Triple::thumbeb) { 382 // Width of wchar_t in bytes 383 uint64_t WCharWidth = 384 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 385 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 386 387 // The minimum width of an enum in bytes 388 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 389 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 390 } 391 392 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 393 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 394 switch (PLevel) { 395 case 0: break; 396 case 1: PL = llvm::PICLevel::Small; break; 397 case 2: PL = llvm::PICLevel::Large; break; 398 default: llvm_unreachable("Invalid PIC Level"); 399 } 400 401 getModule().setPICLevel(PL); 402 } 403 404 SimplifyPersonality(); 405 406 if (getCodeGenOpts().EmitDeclMetadata) 407 EmitDeclMetadata(); 408 409 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 410 EmitCoverageFile(); 411 412 if (DebugInfo) 413 DebugInfo->finalize(); 414 415 EmitVersionIdentMetadata(); 416 417 EmitTargetMetadata(); 418 } 419 420 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 421 // Make sure that this type is translated. 422 Types.UpdateCompletedType(TD); 423 } 424 425 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 426 if (!TBAA) 427 return nullptr; 428 return TBAA->getTBAAInfo(QTy); 429 } 430 431 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 432 if (!TBAA) 433 return nullptr; 434 return TBAA->getTBAAInfoForVTablePtr(); 435 } 436 437 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 438 if (!TBAA) 439 return nullptr; 440 return TBAA->getTBAAStructInfo(QTy); 441 } 442 443 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 444 if (!TBAA) 445 return nullptr; 446 return TBAA->getTBAAStructTypeInfo(QTy); 447 } 448 449 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 450 llvm::MDNode *AccessN, 451 uint64_t O) { 452 if (!TBAA) 453 return nullptr; 454 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 455 } 456 457 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 458 /// and struct-path aware TBAA, the tag has the same format: 459 /// base type, access type and offset. 460 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 461 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 462 llvm::MDNode *TBAAInfo, 463 bool ConvertTypeToTag) { 464 if (ConvertTypeToTag && TBAA) 465 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 466 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 467 else 468 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 469 } 470 471 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 472 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 473 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 474 } 475 476 /// ErrorUnsupported - Print out an error that codegen doesn't support the 477 /// specified stmt yet. 478 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 479 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 480 "cannot compile this %0 yet"); 481 std::string Msg = Type; 482 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 483 << Msg << S->getSourceRange(); 484 } 485 486 /// ErrorUnsupported - Print out an error that codegen doesn't support the 487 /// specified decl yet. 488 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 489 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 490 "cannot compile this %0 yet"); 491 std::string Msg = Type; 492 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 493 } 494 495 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 496 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 497 } 498 499 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 500 const NamedDecl *D) const { 501 // Internal definitions always have default visibility. 502 if (GV->hasLocalLinkage()) { 503 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 504 return; 505 } 506 507 // Set visibility for definitions. 508 LinkageInfo LV = D->getLinkageAndVisibility(); 509 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 510 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 511 } 512 513 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 514 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 515 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 516 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 517 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 518 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 519 } 520 521 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 522 CodeGenOptions::TLSModel M) { 523 switch (M) { 524 case CodeGenOptions::GeneralDynamicTLSModel: 525 return llvm::GlobalVariable::GeneralDynamicTLSModel; 526 case CodeGenOptions::LocalDynamicTLSModel: 527 return llvm::GlobalVariable::LocalDynamicTLSModel; 528 case CodeGenOptions::InitialExecTLSModel: 529 return llvm::GlobalVariable::InitialExecTLSModel; 530 case CodeGenOptions::LocalExecTLSModel: 531 return llvm::GlobalVariable::LocalExecTLSModel; 532 } 533 llvm_unreachable("Invalid TLS model!"); 534 } 535 536 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 537 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 538 539 llvm::GlobalValue::ThreadLocalMode TLM; 540 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 541 542 // Override the TLS model if it is explicitly specified. 543 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 544 TLM = GetLLVMTLSModel(Attr->getModel()); 545 } 546 547 GV->setThreadLocalMode(TLM); 548 } 549 550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 551 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 552 if (!FoundStr.empty()) 553 return FoundStr; 554 555 const auto *ND = cast<NamedDecl>(GD.getDecl()); 556 SmallString<256> Buffer; 557 StringRef Str; 558 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 559 llvm::raw_svector_ostream Out(Buffer); 560 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 561 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 562 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 563 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 564 else 565 getCXXABI().getMangleContext().mangleName(ND, Out); 566 Str = Out.str(); 567 } else { 568 IdentifierInfo *II = ND->getIdentifier(); 569 assert(II && "Attempt to mangle unnamed decl."); 570 Str = II->getName(); 571 } 572 573 // Keep the first result in the case of a mangling collision. 574 auto Result = Manglings.insert(std::make_pair(Str, GD)); 575 return FoundStr = Result.first->first(); 576 } 577 578 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 579 const BlockDecl *BD) { 580 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 581 const Decl *D = GD.getDecl(); 582 583 SmallString<256> Buffer; 584 llvm::raw_svector_ostream Out(Buffer); 585 if (!D) 586 MangleCtx.mangleGlobalBlock(BD, 587 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 588 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 589 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 590 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 591 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 592 else 593 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 594 595 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 596 return Result.first->first(); 597 } 598 599 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 600 return getModule().getNamedValue(Name); 601 } 602 603 /// AddGlobalCtor - Add a function to the list that will be called before 604 /// main() runs. 605 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 606 llvm::Constant *AssociatedData) { 607 // FIXME: Type coercion of void()* types. 608 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 609 } 610 611 /// AddGlobalDtor - Add a function to the list that will be called 612 /// when the module is unloaded. 613 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 614 // FIXME: Type coercion of void()* types. 615 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 616 } 617 618 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 619 // Ctor function type is void()*. 620 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 621 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 622 623 // Get the type of a ctor entry, { i32, void ()*, i8* }. 624 llvm::StructType *CtorStructTy = llvm::StructType::get( 625 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 626 627 // Construct the constructor and destructor arrays. 628 SmallVector<llvm::Constant*, 8> Ctors; 629 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 630 llvm::Constant *S[] = { 631 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 632 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 633 (I->AssociatedData 634 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 635 : llvm::Constant::getNullValue(VoidPtrTy)) 636 }; 637 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 638 } 639 640 if (!Ctors.empty()) { 641 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 642 new llvm::GlobalVariable(TheModule, AT, false, 643 llvm::GlobalValue::AppendingLinkage, 644 llvm::ConstantArray::get(AT, Ctors), 645 GlobalName); 646 } 647 } 648 649 llvm::GlobalValue::LinkageTypes 650 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 651 const auto *D = cast<FunctionDecl>(GD.getDecl()); 652 653 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 654 655 if (isa<CXXDestructorDecl>(D) && 656 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 657 GD.getDtorType())) { 658 // Destructor variants in the Microsoft C++ ABI are always internal or 659 // linkonce_odr thunks emitted on an as-needed basis. 660 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 661 : llvm::GlobalValue::LinkOnceODRLinkage; 662 } 663 664 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 665 } 666 667 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 668 llvm::Function *F) { 669 setNonAliasAttributes(D, F); 670 } 671 672 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 673 const CGFunctionInfo &Info, 674 llvm::Function *F) { 675 unsigned CallingConv; 676 AttributeListType AttributeList; 677 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 678 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 679 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 680 } 681 682 /// Determines whether the language options require us to model 683 /// unwind exceptions. We treat -fexceptions as mandating this 684 /// except under the fragile ObjC ABI with only ObjC exceptions 685 /// enabled. This means, for example, that C with -fexceptions 686 /// enables this. 687 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 688 // If exceptions are completely disabled, obviously this is false. 689 if (!LangOpts.Exceptions) return false; 690 691 // If C++ exceptions are enabled, this is true. 692 if (LangOpts.CXXExceptions) return true; 693 694 // If ObjC exceptions are enabled, this depends on the ABI. 695 if (LangOpts.ObjCExceptions) { 696 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 697 } 698 699 return true; 700 } 701 702 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 703 llvm::Function *F) { 704 llvm::AttrBuilder B; 705 706 if (CodeGenOpts.UnwindTables) 707 B.addAttribute(llvm::Attribute::UWTable); 708 709 if (!hasUnwindExceptions(LangOpts)) 710 B.addAttribute(llvm::Attribute::NoUnwind); 711 712 if (D->hasAttr<NakedAttr>()) { 713 // Naked implies noinline: we should not be inlining such functions. 714 B.addAttribute(llvm::Attribute::Naked); 715 B.addAttribute(llvm::Attribute::NoInline); 716 } else if (D->hasAttr<NoDuplicateAttr>()) { 717 B.addAttribute(llvm::Attribute::NoDuplicate); 718 } else if (D->hasAttr<NoInlineAttr>()) { 719 B.addAttribute(llvm::Attribute::NoInline); 720 } else if (D->hasAttr<AlwaysInlineAttr>() && 721 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 722 llvm::Attribute::NoInline)) { 723 // (noinline wins over always_inline, and we can't specify both in IR) 724 B.addAttribute(llvm::Attribute::AlwaysInline); 725 } 726 727 if (D->hasAttr<ColdAttr>()) { 728 B.addAttribute(llvm::Attribute::OptimizeForSize); 729 B.addAttribute(llvm::Attribute::Cold); 730 } 731 732 if (D->hasAttr<MinSizeAttr>()) 733 B.addAttribute(llvm::Attribute::MinSize); 734 735 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 736 B.addAttribute(llvm::Attribute::StackProtect); 737 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 738 B.addAttribute(llvm::Attribute::StackProtectStrong); 739 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 740 B.addAttribute(llvm::Attribute::StackProtectReq); 741 742 // Add sanitizer attributes if function is not blacklisted. 743 if (!isInSanitizerBlacklist(F, D->getLocation())) { 744 // When AddressSanitizer is enabled, set SanitizeAddress attribute 745 // unless __attribute__((no_sanitize_address)) is used. 746 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 747 !D->hasAttr<NoSanitizeAddressAttr>()) 748 B.addAttribute(llvm::Attribute::SanitizeAddress); 749 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 750 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 751 !D->hasAttr<NoSanitizeThreadAttr>()) 752 B.addAttribute(llvm::Attribute::SanitizeThread); 753 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 754 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 755 !D->hasAttr<NoSanitizeMemoryAttr>()) 756 B.addAttribute(llvm::Attribute::SanitizeMemory); 757 } 758 759 F->addAttributes(llvm::AttributeSet::FunctionIndex, 760 llvm::AttributeSet::get( 761 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 762 763 if (D->hasAttr<OptimizeNoneAttr>()) { 764 // OptimizeNone implies noinline; we should not be inlining such functions. 765 F->addFnAttr(llvm::Attribute::OptimizeNone); 766 F->addFnAttr(llvm::Attribute::NoInline); 767 768 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 769 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 770 F->removeFnAttr(llvm::Attribute::MinSize); 771 F->removeFnAttr(llvm::Attribute::AlwaysInline); 772 773 // Attribute 'inlinehint' has no effect on 'optnone' functions. 774 // Explicitly remove it from the set of function attributes. 775 F->removeFnAttr(llvm::Attribute::InlineHint); 776 } 777 778 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 779 F->setUnnamedAddr(true); 780 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 781 if (MD->isVirtual()) 782 F->setUnnamedAddr(true); 783 784 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 785 if (alignment) 786 F->setAlignment(alignment); 787 788 // C++ ABI requires 2-byte alignment for member functions. 789 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 790 F->setAlignment(2); 791 } 792 793 void CodeGenModule::SetCommonAttributes(const Decl *D, 794 llvm::GlobalValue *GV) { 795 if (const auto *ND = dyn_cast<NamedDecl>(D)) 796 setGlobalVisibility(GV, ND); 797 else 798 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 799 800 if (D->hasAttr<UsedAttr>()) 801 addUsedGlobal(GV); 802 } 803 804 void CodeGenModule::setAliasAttributes(const Decl *D, 805 llvm::GlobalValue *GV) { 806 SetCommonAttributes(D, GV); 807 808 // Process the dllexport attribute based on whether the original definition 809 // (not necessarily the aliasee) was exported. 810 if (D->hasAttr<DLLExportAttr>()) 811 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 812 } 813 814 void CodeGenModule::setNonAliasAttributes(const Decl *D, 815 llvm::GlobalObject *GO) { 816 SetCommonAttributes(D, GO); 817 818 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 819 GO->setSection(SA->getName()); 820 821 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 822 } 823 824 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 825 llvm::Function *F, 826 const CGFunctionInfo &FI) { 827 SetLLVMFunctionAttributes(D, FI, F); 828 SetLLVMFunctionAttributesForDefinition(D, F); 829 830 F->setLinkage(llvm::Function::InternalLinkage); 831 832 setNonAliasAttributes(D, F); 833 } 834 835 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 836 const NamedDecl *ND) { 837 // Set linkage and visibility in case we never see a definition. 838 LinkageInfo LV = ND->getLinkageAndVisibility(); 839 if (LV.getLinkage() != ExternalLinkage) { 840 // Don't set internal linkage on declarations. 841 } else { 842 if (ND->hasAttr<DLLImportAttr>()) { 843 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 844 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 845 } else if (ND->hasAttr<DLLExportAttr>()) { 846 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 847 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 848 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 849 // "extern_weak" is overloaded in LLVM; we probably should have 850 // separate linkage types for this. 851 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 852 } 853 854 // Set visibility on a declaration only if it's explicit. 855 if (LV.isVisibilityExplicit()) 856 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 857 } 858 } 859 860 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 861 bool IsIncompleteFunction, 862 bool IsThunk) { 863 if (unsigned IID = F->getIntrinsicID()) { 864 // If this is an intrinsic function, set the function's attributes 865 // to the intrinsic's attributes. 866 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 867 (llvm::Intrinsic::ID)IID)); 868 return; 869 } 870 871 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 872 873 if (!IsIncompleteFunction) 874 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 875 876 // Add the Returned attribute for "this", except for iOS 5 and earlier 877 // where substantial code, including the libstdc++ dylib, was compiled with 878 // GCC and does not actually return "this". 879 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 880 !(getTarget().getTriple().isiOS() && 881 getTarget().getTriple().isOSVersionLT(6))) { 882 assert(!F->arg_empty() && 883 F->arg_begin()->getType() 884 ->canLosslesslyBitCastTo(F->getReturnType()) && 885 "unexpected this return"); 886 F->addAttribute(1, llvm::Attribute::Returned); 887 } 888 889 // Only a few attributes are set on declarations; these may later be 890 // overridden by a definition. 891 892 setLinkageAndVisibilityForGV(F, FD); 893 894 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 895 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 896 // Don't dllexport/import destructor thunks. 897 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 898 } 899 } 900 901 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 902 F->setSection(SA->getName()); 903 904 // A replaceable global allocation function does not act like a builtin by 905 // default, only if it is invoked by a new-expression or delete-expression. 906 if (FD->isReplaceableGlobalAllocationFunction()) 907 F->addAttribute(llvm::AttributeSet::FunctionIndex, 908 llvm::Attribute::NoBuiltin); 909 } 910 911 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 912 assert(!GV->isDeclaration() && 913 "Only globals with definition can force usage."); 914 LLVMUsed.push_back(GV); 915 } 916 917 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 918 assert(!GV->isDeclaration() && 919 "Only globals with definition can force usage."); 920 LLVMCompilerUsed.push_back(GV); 921 } 922 923 static void emitUsed(CodeGenModule &CGM, StringRef Name, 924 std::vector<llvm::WeakVH> &List) { 925 // Don't create llvm.used if there is no need. 926 if (List.empty()) 927 return; 928 929 // Convert List to what ConstantArray needs. 930 SmallVector<llvm::Constant*, 8> UsedArray; 931 UsedArray.resize(List.size()); 932 for (unsigned i = 0, e = List.size(); i != e; ++i) { 933 UsedArray[i] = 934 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 935 CGM.Int8PtrTy); 936 } 937 938 if (UsedArray.empty()) 939 return; 940 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 941 942 auto *GV = new llvm::GlobalVariable( 943 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 944 llvm::ConstantArray::get(ATy, UsedArray), Name); 945 946 GV->setSection("llvm.metadata"); 947 } 948 949 void CodeGenModule::emitLLVMUsed() { 950 emitUsed(*this, "llvm.used", LLVMUsed); 951 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 952 } 953 954 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 955 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 956 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 957 } 958 959 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 960 llvm::SmallString<32> Opt; 961 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 962 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 963 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 964 } 965 966 void CodeGenModule::AddDependentLib(StringRef Lib) { 967 llvm::SmallString<24> Opt; 968 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 969 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 970 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 971 } 972 973 /// \brief Add link options implied by the given module, including modules 974 /// it depends on, using a postorder walk. 975 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 976 SmallVectorImpl<llvm::Metadata *> &Metadata, 977 llvm::SmallPtrSet<Module *, 16> &Visited) { 978 // Import this module's parent. 979 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 980 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 981 } 982 983 // Import this module's dependencies. 984 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 985 if (Visited.insert(Mod->Imports[I - 1]).second) 986 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 987 } 988 989 // Add linker options to link against the libraries/frameworks 990 // described by this module. 991 llvm::LLVMContext &Context = CGM.getLLVMContext(); 992 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 993 // Link against a framework. Frameworks are currently Darwin only, so we 994 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 995 if (Mod->LinkLibraries[I-1].IsFramework) { 996 llvm::Metadata *Args[2] = { 997 llvm::MDString::get(Context, "-framework"), 998 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 999 1000 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1001 continue; 1002 } 1003 1004 // Link against a library. 1005 llvm::SmallString<24> Opt; 1006 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1007 Mod->LinkLibraries[I-1].Library, Opt); 1008 auto *OptString = llvm::MDString::get(Context, Opt); 1009 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1010 } 1011 } 1012 1013 void CodeGenModule::EmitModuleLinkOptions() { 1014 // Collect the set of all of the modules we want to visit to emit link 1015 // options, which is essentially the imported modules and all of their 1016 // non-explicit child modules. 1017 llvm::SetVector<clang::Module *> LinkModules; 1018 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1019 SmallVector<clang::Module *, 16> Stack; 1020 1021 // Seed the stack with imported modules. 1022 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1023 MEnd = ImportedModules.end(); 1024 M != MEnd; ++M) { 1025 if (Visited.insert(*M).second) 1026 Stack.push_back(*M); 1027 } 1028 1029 // Find all of the modules to import, making a little effort to prune 1030 // non-leaf modules. 1031 while (!Stack.empty()) { 1032 clang::Module *Mod = Stack.pop_back_val(); 1033 1034 bool AnyChildren = false; 1035 1036 // Visit the submodules of this module. 1037 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1038 SubEnd = Mod->submodule_end(); 1039 Sub != SubEnd; ++Sub) { 1040 // Skip explicit children; they need to be explicitly imported to be 1041 // linked against. 1042 if ((*Sub)->IsExplicit) 1043 continue; 1044 1045 if (Visited.insert(*Sub).second) { 1046 Stack.push_back(*Sub); 1047 AnyChildren = true; 1048 } 1049 } 1050 1051 // We didn't find any children, so add this module to the list of 1052 // modules to link against. 1053 if (!AnyChildren) { 1054 LinkModules.insert(Mod); 1055 } 1056 } 1057 1058 // Add link options for all of the imported modules in reverse topological 1059 // order. We don't do anything to try to order import link flags with respect 1060 // to linker options inserted by things like #pragma comment(). 1061 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1062 Visited.clear(); 1063 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1064 MEnd = LinkModules.end(); 1065 M != MEnd; ++M) { 1066 if (Visited.insert(*M).second) 1067 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1068 } 1069 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1070 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1071 1072 // Add the linker options metadata flag. 1073 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1074 llvm::MDNode::get(getLLVMContext(), 1075 LinkerOptionsMetadata)); 1076 } 1077 1078 void CodeGenModule::EmitDeferred() { 1079 // Emit code for any potentially referenced deferred decls. Since a 1080 // previously unused static decl may become used during the generation of code 1081 // for a static function, iterate until no changes are made. 1082 1083 while (true) { 1084 if (!DeferredVTables.empty()) { 1085 EmitDeferredVTables(); 1086 1087 // Emitting a v-table doesn't directly cause more v-tables to 1088 // become deferred, although it can cause functions to be 1089 // emitted that then need those v-tables. 1090 assert(DeferredVTables.empty()); 1091 } 1092 1093 // Stop if we're out of both deferred v-tables and deferred declarations. 1094 if (DeferredDeclsToEmit.empty()) break; 1095 1096 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1097 GlobalDecl D = G.GD; 1098 llvm::GlobalValue *GV = G.GV; 1099 DeferredDeclsToEmit.pop_back(); 1100 1101 assert(GV == GetGlobalValue(getMangledName(D))); 1102 // Check to see if we've already emitted this. This is necessary 1103 // for a couple of reasons: first, decls can end up in the 1104 // deferred-decls queue multiple times, and second, decls can end 1105 // up with definitions in unusual ways (e.g. by an extern inline 1106 // function acquiring a strong function redefinition). Just 1107 // ignore these cases. 1108 if(!GV->isDeclaration()) 1109 continue; 1110 1111 // Otherwise, emit the definition and move on to the next one. 1112 EmitGlobalDefinition(D, GV); 1113 } 1114 } 1115 1116 void CodeGenModule::EmitGlobalAnnotations() { 1117 if (Annotations.empty()) 1118 return; 1119 1120 // Create a new global variable for the ConstantStruct in the Module. 1121 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1122 Annotations[0]->getType(), Annotations.size()), Annotations); 1123 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1124 llvm::GlobalValue::AppendingLinkage, 1125 Array, "llvm.global.annotations"); 1126 gv->setSection(AnnotationSection); 1127 } 1128 1129 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1130 llvm::Constant *&AStr = AnnotationStrings[Str]; 1131 if (AStr) 1132 return AStr; 1133 1134 // Not found yet, create a new global. 1135 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1136 auto *gv = 1137 new llvm::GlobalVariable(getModule(), s->getType(), true, 1138 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1139 gv->setSection(AnnotationSection); 1140 gv->setUnnamedAddr(true); 1141 AStr = gv; 1142 return gv; 1143 } 1144 1145 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1146 SourceManager &SM = getContext().getSourceManager(); 1147 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1148 if (PLoc.isValid()) 1149 return EmitAnnotationString(PLoc.getFilename()); 1150 return EmitAnnotationString(SM.getBufferName(Loc)); 1151 } 1152 1153 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1154 SourceManager &SM = getContext().getSourceManager(); 1155 PresumedLoc PLoc = SM.getPresumedLoc(L); 1156 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1157 SM.getExpansionLineNumber(L); 1158 return llvm::ConstantInt::get(Int32Ty, LineNo); 1159 } 1160 1161 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1162 const AnnotateAttr *AA, 1163 SourceLocation L) { 1164 // Get the globals for file name, annotation, and the line number. 1165 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1166 *UnitGV = EmitAnnotationUnit(L), 1167 *LineNoCst = EmitAnnotationLineNo(L); 1168 1169 // Create the ConstantStruct for the global annotation. 1170 llvm::Constant *Fields[4] = { 1171 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1172 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1173 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1174 LineNoCst 1175 }; 1176 return llvm::ConstantStruct::getAnon(Fields); 1177 } 1178 1179 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1180 llvm::GlobalValue *GV) { 1181 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1182 // Get the struct elements for these annotations. 1183 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1184 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1185 } 1186 1187 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1188 SourceLocation Loc) const { 1189 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1190 // Blacklist by function name. 1191 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1192 return true; 1193 // Blacklist by location. 1194 if (!Loc.isInvalid()) 1195 return SanitizerBL.isBlacklistedLocation(Loc); 1196 // If location is unknown, this may be a compiler-generated function. Assume 1197 // it's located in the main file. 1198 auto &SM = Context.getSourceManager(); 1199 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1200 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1201 } 1202 return false; 1203 } 1204 1205 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1206 SourceLocation Loc, QualType Ty, 1207 StringRef Category) const { 1208 // For now globals can be blacklisted only in ASan. 1209 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1210 return false; 1211 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1212 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1213 return true; 1214 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1215 return true; 1216 // Check global type. 1217 if (!Ty.isNull()) { 1218 // Drill down the array types: if global variable of a fixed type is 1219 // blacklisted, we also don't instrument arrays of them. 1220 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1221 Ty = AT->getElementType(); 1222 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1223 // We allow to blacklist only record types (classes, structs etc.) 1224 if (Ty->isRecordType()) { 1225 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1226 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1227 return true; 1228 } 1229 } 1230 return false; 1231 } 1232 1233 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1234 // Never defer when EmitAllDecls is specified. 1235 if (LangOpts.EmitAllDecls) 1236 return false; 1237 1238 return !getContext().DeclMustBeEmitted(Global); 1239 } 1240 1241 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1242 const CXXUuidofExpr* E) { 1243 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1244 // well-formed. 1245 StringRef Uuid = E->getUuidAsStringRef(Context); 1246 std::string Name = "_GUID_" + Uuid.lower(); 1247 std::replace(Name.begin(), Name.end(), '-', '_'); 1248 1249 // Look for an existing global. 1250 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1251 return GV; 1252 1253 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1254 assert(Init && "failed to initialize as constant"); 1255 1256 auto *GV = new llvm::GlobalVariable( 1257 getModule(), Init->getType(), 1258 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1259 return GV; 1260 } 1261 1262 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1263 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1264 assert(AA && "No alias?"); 1265 1266 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1267 1268 // See if there is already something with the target's name in the module. 1269 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1270 if (Entry) { 1271 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1272 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1273 } 1274 1275 llvm::Constant *Aliasee; 1276 if (isa<llvm::FunctionType>(DeclTy)) 1277 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1278 GlobalDecl(cast<FunctionDecl>(VD)), 1279 /*ForVTable=*/false); 1280 else 1281 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1282 llvm::PointerType::getUnqual(DeclTy), 1283 nullptr); 1284 1285 auto *F = cast<llvm::GlobalValue>(Aliasee); 1286 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1287 WeakRefReferences.insert(F); 1288 1289 return Aliasee; 1290 } 1291 1292 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1293 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1294 1295 // Weak references don't produce any output by themselves. 1296 if (Global->hasAttr<WeakRefAttr>()) 1297 return; 1298 1299 // If this is an alias definition (which otherwise looks like a declaration) 1300 // emit it now. 1301 if (Global->hasAttr<AliasAttr>()) 1302 return EmitAliasDefinition(GD); 1303 1304 // If this is CUDA, be selective about which declarations we emit. 1305 if (LangOpts.CUDA) { 1306 if (CodeGenOpts.CUDAIsDevice) { 1307 if (!Global->hasAttr<CUDADeviceAttr>() && 1308 !Global->hasAttr<CUDAGlobalAttr>() && 1309 !Global->hasAttr<CUDAConstantAttr>() && 1310 !Global->hasAttr<CUDASharedAttr>()) 1311 return; 1312 } else { 1313 if (!Global->hasAttr<CUDAHostAttr>() && ( 1314 Global->hasAttr<CUDADeviceAttr>() || 1315 Global->hasAttr<CUDAConstantAttr>() || 1316 Global->hasAttr<CUDASharedAttr>())) 1317 return; 1318 } 1319 } 1320 1321 // Ignore declarations, they will be emitted on their first use. 1322 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1323 // Forward declarations are emitted lazily on first use. 1324 if (!FD->doesThisDeclarationHaveABody()) { 1325 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1326 return; 1327 1328 StringRef MangledName = getMangledName(GD); 1329 1330 // Compute the function info and LLVM type. 1331 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1332 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1333 1334 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1335 /*DontDefer=*/false); 1336 return; 1337 } 1338 } else { 1339 const auto *VD = cast<VarDecl>(Global); 1340 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1341 1342 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1343 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1344 return; 1345 } 1346 1347 // Defer code generation when possible if this is a static definition, inline 1348 // function etc. These we only want to emit if they are used. 1349 if (!MayDeferGeneration(Global)) { 1350 // Emit the definition if it can't be deferred. 1351 EmitGlobalDefinition(GD); 1352 return; 1353 } 1354 1355 // If we're deferring emission of a C++ variable with an 1356 // initializer, remember the order in which it appeared in the file. 1357 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1358 cast<VarDecl>(Global)->hasInit()) { 1359 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1360 CXXGlobalInits.push_back(nullptr); 1361 } 1362 1363 // If the value has already been used, add it directly to the 1364 // DeferredDeclsToEmit list. 1365 StringRef MangledName = getMangledName(GD); 1366 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1367 addDeferredDeclToEmit(GV, GD); 1368 else { 1369 // Otherwise, remember that we saw a deferred decl with this name. The 1370 // first use of the mangled name will cause it to move into 1371 // DeferredDeclsToEmit. 1372 DeferredDecls[MangledName] = GD; 1373 } 1374 } 1375 1376 namespace { 1377 struct FunctionIsDirectlyRecursive : 1378 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1379 const StringRef Name; 1380 const Builtin::Context &BI; 1381 bool Result; 1382 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1383 Name(N), BI(C), Result(false) { 1384 } 1385 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1386 1387 bool TraverseCallExpr(CallExpr *E) { 1388 const FunctionDecl *FD = E->getDirectCallee(); 1389 if (!FD) 1390 return true; 1391 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1392 if (Attr && Name == Attr->getLabel()) { 1393 Result = true; 1394 return false; 1395 } 1396 unsigned BuiltinID = FD->getBuiltinID(); 1397 if (!BuiltinID) 1398 return true; 1399 StringRef BuiltinName = BI.GetName(BuiltinID); 1400 if (BuiltinName.startswith("__builtin_") && 1401 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1402 Result = true; 1403 return false; 1404 } 1405 return true; 1406 } 1407 }; 1408 } 1409 1410 // isTriviallyRecursive - Check if this function calls another 1411 // decl that, because of the asm attribute or the other decl being a builtin, 1412 // ends up pointing to itself. 1413 bool 1414 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1415 StringRef Name; 1416 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1417 // asm labels are a special kind of mangling we have to support. 1418 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1419 if (!Attr) 1420 return false; 1421 Name = Attr->getLabel(); 1422 } else { 1423 Name = FD->getName(); 1424 } 1425 1426 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1427 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1428 return Walker.Result; 1429 } 1430 1431 bool 1432 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1433 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1434 return true; 1435 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1436 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1437 return false; 1438 // PR9614. Avoid cases where the source code is lying to us. An available 1439 // externally function should have an equivalent function somewhere else, 1440 // but a function that calls itself is clearly not equivalent to the real 1441 // implementation. 1442 // This happens in glibc's btowc and in some configure checks. 1443 return !isTriviallyRecursive(F); 1444 } 1445 1446 /// If the type for the method's class was generated by 1447 /// CGDebugInfo::createContextChain(), the cache contains only a 1448 /// limited DIType without any declarations. Since EmitFunctionStart() 1449 /// needs to find the canonical declaration for each method, we need 1450 /// to construct the complete type prior to emitting the method. 1451 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1452 if (!D->isInstance()) 1453 return; 1454 1455 if (CGDebugInfo *DI = getModuleDebugInfo()) 1456 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1457 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1458 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1459 } 1460 } 1461 1462 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1463 const auto *D = cast<ValueDecl>(GD.getDecl()); 1464 1465 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1466 Context.getSourceManager(), 1467 "Generating code for declaration"); 1468 1469 if (isa<FunctionDecl>(D)) { 1470 // At -O0, don't generate IR for functions with available_externally 1471 // linkage. 1472 if (!shouldEmitFunction(GD)) 1473 return; 1474 1475 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1476 CompleteDIClassType(Method); 1477 // Make sure to emit the definition(s) before we emit the thunks. 1478 // This is necessary for the generation of certain thunks. 1479 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1480 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1481 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1482 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1483 else 1484 EmitGlobalFunctionDefinition(GD, GV); 1485 1486 if (Method->isVirtual()) 1487 getVTables().EmitThunks(GD); 1488 1489 return; 1490 } 1491 1492 return EmitGlobalFunctionDefinition(GD, GV); 1493 } 1494 1495 if (const auto *VD = dyn_cast<VarDecl>(D)) 1496 return EmitGlobalVarDefinition(VD); 1497 1498 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1499 } 1500 1501 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1502 /// module, create and return an llvm Function with the specified type. If there 1503 /// is something in the module with the specified name, return it potentially 1504 /// bitcasted to the right type. 1505 /// 1506 /// If D is non-null, it specifies a decl that correspond to this. This is used 1507 /// to set the attributes on the function when it is first created. 1508 llvm::Constant * 1509 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1510 llvm::Type *Ty, 1511 GlobalDecl GD, bool ForVTable, 1512 bool DontDefer, bool IsThunk, 1513 llvm::AttributeSet ExtraAttrs) { 1514 const Decl *D = GD.getDecl(); 1515 1516 // Lookup the entry, lazily creating it if necessary. 1517 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1518 if (Entry) { 1519 if (WeakRefReferences.erase(Entry)) { 1520 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1521 if (FD && !FD->hasAttr<WeakAttr>()) 1522 Entry->setLinkage(llvm::Function::ExternalLinkage); 1523 } 1524 1525 // Handle dropped DLL attributes. 1526 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1527 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1528 1529 if (Entry->getType()->getElementType() == Ty) 1530 return Entry; 1531 1532 // Make sure the result is of the correct type. 1533 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1534 } 1535 1536 // This function doesn't have a complete type (for example, the return 1537 // type is an incomplete struct). Use a fake type instead, and make 1538 // sure not to try to set attributes. 1539 bool IsIncompleteFunction = false; 1540 1541 llvm::FunctionType *FTy; 1542 if (isa<llvm::FunctionType>(Ty)) { 1543 FTy = cast<llvm::FunctionType>(Ty); 1544 } else { 1545 FTy = llvm::FunctionType::get(VoidTy, false); 1546 IsIncompleteFunction = true; 1547 } 1548 1549 llvm::Function *F = llvm::Function::Create(FTy, 1550 llvm::Function::ExternalLinkage, 1551 MangledName, &getModule()); 1552 assert(F->getName() == MangledName && "name was uniqued!"); 1553 if (D) 1554 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1555 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1556 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1557 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1558 llvm::AttributeSet::get(VMContext, 1559 llvm::AttributeSet::FunctionIndex, 1560 B)); 1561 } 1562 1563 if (!DontDefer) { 1564 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1565 // each other bottoming out with the base dtor. Therefore we emit non-base 1566 // dtors on usage, even if there is no dtor definition in the TU. 1567 if (D && isa<CXXDestructorDecl>(D) && 1568 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1569 GD.getDtorType())) 1570 addDeferredDeclToEmit(F, GD); 1571 1572 // This is the first use or definition of a mangled name. If there is a 1573 // deferred decl with this name, remember that we need to emit it at the end 1574 // of the file. 1575 auto DDI = DeferredDecls.find(MangledName); 1576 if (DDI != DeferredDecls.end()) { 1577 // Move the potentially referenced deferred decl to the 1578 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1579 // don't need it anymore). 1580 addDeferredDeclToEmit(F, DDI->second); 1581 DeferredDecls.erase(DDI); 1582 1583 // Otherwise, if this is a sized deallocation function, emit a weak 1584 // definition 1585 // for it at the end of the translation unit. 1586 } else if (D && cast<FunctionDecl>(D) 1587 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1588 addDeferredDeclToEmit(F, GD); 1589 1590 // Otherwise, there are cases we have to worry about where we're 1591 // using a declaration for which we must emit a definition but where 1592 // we might not find a top-level definition: 1593 // - member functions defined inline in their classes 1594 // - friend functions defined inline in some class 1595 // - special member functions with implicit definitions 1596 // If we ever change our AST traversal to walk into class methods, 1597 // this will be unnecessary. 1598 // 1599 // We also don't emit a definition for a function if it's going to be an 1600 // entry in a vtable, unless it's already marked as used. 1601 } else if (getLangOpts().CPlusPlus && D) { 1602 // Look for a declaration that's lexically in a record. 1603 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1604 FD = FD->getPreviousDecl()) { 1605 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1606 if (FD->doesThisDeclarationHaveABody()) { 1607 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1608 break; 1609 } 1610 } 1611 } 1612 } 1613 } 1614 1615 // Make sure the result is of the requested type. 1616 if (!IsIncompleteFunction) { 1617 assert(F->getType()->getElementType() == Ty); 1618 return F; 1619 } 1620 1621 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1622 return llvm::ConstantExpr::getBitCast(F, PTy); 1623 } 1624 1625 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1626 /// non-null, then this function will use the specified type if it has to 1627 /// create it (this occurs when we see a definition of the function). 1628 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1629 llvm::Type *Ty, 1630 bool ForVTable, 1631 bool DontDefer) { 1632 // If there was no specific requested type, just convert it now. 1633 if (!Ty) 1634 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1635 1636 StringRef MangledName = getMangledName(GD); 1637 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1638 } 1639 1640 /// CreateRuntimeFunction - Create a new runtime function with the specified 1641 /// type and name. 1642 llvm::Constant * 1643 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1644 StringRef Name, 1645 llvm::AttributeSet ExtraAttrs) { 1646 llvm::Constant *C = 1647 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1648 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1649 if (auto *F = dyn_cast<llvm::Function>(C)) 1650 if (F->empty()) 1651 F->setCallingConv(getRuntimeCC()); 1652 return C; 1653 } 1654 1655 /// CreateBuiltinFunction - Create a new builtin function with the specified 1656 /// type and name. 1657 llvm::Constant * 1658 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1659 StringRef Name, 1660 llvm::AttributeSet ExtraAttrs) { 1661 llvm::Constant *C = 1662 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1663 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1664 if (auto *F = dyn_cast<llvm::Function>(C)) 1665 if (F->empty()) 1666 F->setCallingConv(getBuiltinCC()); 1667 return C; 1668 } 1669 1670 /// isTypeConstant - Determine whether an object of this type can be emitted 1671 /// as a constant. 1672 /// 1673 /// If ExcludeCtor is true, the duration when the object's constructor runs 1674 /// will not be considered. The caller will need to verify that the object is 1675 /// not written to during its construction. 1676 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1677 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1678 return false; 1679 1680 if (Context.getLangOpts().CPlusPlus) { 1681 if (const CXXRecordDecl *Record 1682 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1683 return ExcludeCtor && !Record->hasMutableFields() && 1684 Record->hasTrivialDestructor(); 1685 } 1686 1687 return true; 1688 } 1689 1690 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1691 /// create and return an llvm GlobalVariable with the specified type. If there 1692 /// is something in the module with the specified name, return it potentially 1693 /// bitcasted to the right type. 1694 /// 1695 /// If D is non-null, it specifies a decl that correspond to this. This is used 1696 /// to set the attributes on the global when it is first created. 1697 llvm::Constant * 1698 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1699 llvm::PointerType *Ty, 1700 const VarDecl *D) { 1701 // Lookup the entry, lazily creating it if necessary. 1702 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1703 if (Entry) { 1704 if (WeakRefReferences.erase(Entry)) { 1705 if (D && !D->hasAttr<WeakAttr>()) 1706 Entry->setLinkage(llvm::Function::ExternalLinkage); 1707 } 1708 1709 // Handle dropped DLL attributes. 1710 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1711 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1712 1713 if (Entry->getType() == Ty) 1714 return Entry; 1715 1716 // Make sure the result is of the correct type. 1717 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1718 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1719 1720 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1721 } 1722 1723 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1724 auto *GV = new llvm::GlobalVariable( 1725 getModule(), Ty->getElementType(), false, 1726 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1727 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1728 1729 // This is the first use or definition of a mangled name. If there is a 1730 // deferred decl with this name, remember that we need to emit it at the end 1731 // of the file. 1732 auto DDI = DeferredDecls.find(MangledName); 1733 if (DDI != DeferredDecls.end()) { 1734 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1735 // list, and remove it from DeferredDecls (since we don't need it anymore). 1736 addDeferredDeclToEmit(GV, DDI->second); 1737 DeferredDecls.erase(DDI); 1738 } 1739 1740 // Handle things which are present even on external declarations. 1741 if (D) { 1742 // FIXME: This code is overly simple and should be merged with other global 1743 // handling. 1744 GV->setConstant(isTypeConstant(D->getType(), false)); 1745 1746 setLinkageAndVisibilityForGV(GV, D); 1747 1748 if (D->getTLSKind()) { 1749 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1750 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1751 setTLSMode(GV, *D); 1752 } 1753 1754 // If required by the ABI, treat declarations of static data members with 1755 // inline initializers as definitions. 1756 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1757 EmitGlobalVarDefinition(D); 1758 } 1759 1760 // Handle XCore specific ABI requirements. 1761 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1762 D->getLanguageLinkage() == CLanguageLinkage && 1763 D->getType().isConstant(Context) && 1764 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1765 GV->setSection(".cp.rodata"); 1766 } 1767 1768 if (AddrSpace != Ty->getAddressSpace()) 1769 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1770 1771 return GV; 1772 } 1773 1774 1775 llvm::GlobalVariable * 1776 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1777 llvm::Type *Ty, 1778 llvm::GlobalValue::LinkageTypes Linkage) { 1779 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1780 llvm::GlobalVariable *OldGV = nullptr; 1781 1782 if (GV) { 1783 // Check if the variable has the right type. 1784 if (GV->getType()->getElementType() == Ty) 1785 return GV; 1786 1787 // Because C++ name mangling, the only way we can end up with an already 1788 // existing global with the same name is if it has been declared extern "C". 1789 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1790 OldGV = GV; 1791 } 1792 1793 // Create a new variable. 1794 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1795 Linkage, nullptr, Name); 1796 1797 if (OldGV) { 1798 // Replace occurrences of the old variable if needed. 1799 GV->takeName(OldGV); 1800 1801 if (!OldGV->use_empty()) { 1802 llvm::Constant *NewPtrForOldDecl = 1803 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1804 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1805 } 1806 1807 OldGV->eraseFromParent(); 1808 } 1809 1810 return GV; 1811 } 1812 1813 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1814 /// given global variable. If Ty is non-null and if the global doesn't exist, 1815 /// then it will be created with the specified type instead of whatever the 1816 /// normal requested type would be. 1817 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1818 llvm::Type *Ty) { 1819 assert(D->hasGlobalStorage() && "Not a global variable"); 1820 QualType ASTTy = D->getType(); 1821 if (!Ty) 1822 Ty = getTypes().ConvertTypeForMem(ASTTy); 1823 1824 llvm::PointerType *PTy = 1825 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1826 1827 StringRef MangledName = getMangledName(D); 1828 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1829 } 1830 1831 /// CreateRuntimeVariable - Create a new runtime global variable with the 1832 /// specified type and name. 1833 llvm::Constant * 1834 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1835 StringRef Name) { 1836 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1837 } 1838 1839 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1840 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1841 1842 if (MayDeferGeneration(D)) { 1843 // If we have not seen a reference to this variable yet, place it 1844 // into the deferred declarations table to be emitted if needed 1845 // later. 1846 StringRef MangledName = getMangledName(D); 1847 if (!GetGlobalValue(MangledName)) { 1848 DeferredDecls[MangledName] = D; 1849 return; 1850 } 1851 } 1852 1853 // The tentative definition is the only definition. 1854 EmitGlobalVarDefinition(D); 1855 } 1856 1857 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1858 return Context.toCharUnitsFromBits( 1859 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1860 } 1861 1862 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1863 unsigned AddrSpace) { 1864 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1865 if (D->hasAttr<CUDAConstantAttr>()) 1866 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1867 else if (D->hasAttr<CUDASharedAttr>()) 1868 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1869 else 1870 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1871 } 1872 1873 return AddrSpace; 1874 } 1875 1876 template<typename SomeDecl> 1877 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1878 llvm::GlobalValue *GV) { 1879 if (!getLangOpts().CPlusPlus) 1880 return; 1881 1882 // Must have 'used' attribute, or else inline assembly can't rely on 1883 // the name existing. 1884 if (!D->template hasAttr<UsedAttr>()) 1885 return; 1886 1887 // Must have internal linkage and an ordinary name. 1888 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1889 return; 1890 1891 // Must be in an extern "C" context. Entities declared directly within 1892 // a record are not extern "C" even if the record is in such a context. 1893 const SomeDecl *First = D->getFirstDecl(); 1894 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1895 return; 1896 1897 // OK, this is an internal linkage entity inside an extern "C" linkage 1898 // specification. Make a note of that so we can give it the "expected" 1899 // mangled name if nothing else is using that name. 1900 std::pair<StaticExternCMap::iterator, bool> R = 1901 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1902 1903 // If we have multiple internal linkage entities with the same name 1904 // in extern "C" regions, none of them gets that name. 1905 if (!R.second) 1906 R.first->second = nullptr; 1907 } 1908 1909 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1910 llvm::Constant *Init = nullptr; 1911 QualType ASTTy = D->getType(); 1912 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1913 bool NeedsGlobalCtor = false; 1914 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1915 1916 const VarDecl *InitDecl; 1917 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1918 1919 if (!InitExpr) { 1920 // This is a tentative definition; tentative definitions are 1921 // implicitly initialized with { 0 }. 1922 // 1923 // Note that tentative definitions are only emitted at the end of 1924 // a translation unit, so they should never have incomplete 1925 // type. In addition, EmitTentativeDefinition makes sure that we 1926 // never attempt to emit a tentative definition if a real one 1927 // exists. A use may still exists, however, so we still may need 1928 // to do a RAUW. 1929 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1930 Init = EmitNullConstant(D->getType()); 1931 } else { 1932 initializedGlobalDecl = GlobalDecl(D); 1933 Init = EmitConstantInit(*InitDecl); 1934 1935 if (!Init) { 1936 QualType T = InitExpr->getType(); 1937 if (D->getType()->isReferenceType()) 1938 T = D->getType(); 1939 1940 if (getLangOpts().CPlusPlus) { 1941 Init = EmitNullConstant(T); 1942 NeedsGlobalCtor = true; 1943 } else { 1944 ErrorUnsupported(D, "static initializer"); 1945 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1946 } 1947 } else { 1948 // We don't need an initializer, so remove the entry for the delayed 1949 // initializer position (just in case this entry was delayed) if we 1950 // also don't need to register a destructor. 1951 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1952 DelayedCXXInitPosition.erase(D); 1953 } 1954 } 1955 1956 llvm::Type* InitType = Init->getType(); 1957 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1958 1959 // Strip off a bitcast if we got one back. 1960 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1961 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1962 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1963 // All zero index gep. 1964 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1965 Entry = CE->getOperand(0); 1966 } 1967 1968 // Entry is now either a Function or GlobalVariable. 1969 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1970 1971 // We have a definition after a declaration with the wrong type. 1972 // We must make a new GlobalVariable* and update everything that used OldGV 1973 // (a declaration or tentative definition) with the new GlobalVariable* 1974 // (which will be a definition). 1975 // 1976 // This happens if there is a prototype for a global (e.g. 1977 // "extern int x[];") and then a definition of a different type (e.g. 1978 // "int x[10];"). This also happens when an initializer has a different type 1979 // from the type of the global (this happens with unions). 1980 if (!GV || 1981 GV->getType()->getElementType() != InitType || 1982 GV->getType()->getAddressSpace() != 1983 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1984 1985 // Move the old entry aside so that we'll create a new one. 1986 Entry->setName(StringRef()); 1987 1988 // Make a new global with the correct type, this is now guaranteed to work. 1989 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1990 1991 // Replace all uses of the old global with the new global 1992 llvm::Constant *NewPtrForOldDecl = 1993 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1994 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1995 1996 // Erase the old global, since it is no longer used. 1997 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1998 } 1999 2000 MaybeHandleStaticInExternC(D, GV); 2001 2002 if (D->hasAttr<AnnotateAttr>()) 2003 AddGlobalAnnotations(D, GV); 2004 2005 GV->setInitializer(Init); 2006 2007 // If it is safe to mark the global 'constant', do so now. 2008 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2009 isTypeConstant(D->getType(), true)); 2010 2011 // If it is in a read-only section, mark it 'constant'. 2012 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2013 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2014 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2015 GV->setConstant(true); 2016 } 2017 2018 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2019 2020 // Set the llvm linkage type as appropriate. 2021 llvm::GlobalValue::LinkageTypes Linkage = 2022 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2023 2024 // On Darwin, the backing variable for a C++11 thread_local variable always 2025 // has internal linkage; all accesses should just be calls to the 2026 // Itanium-specified entry point, which has the normal linkage of the 2027 // variable. 2028 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2029 Context.getTargetInfo().getTriple().isMacOSX()) 2030 Linkage = llvm::GlobalValue::InternalLinkage; 2031 2032 GV->setLinkage(Linkage); 2033 if (D->hasAttr<DLLImportAttr>()) 2034 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2035 else if (D->hasAttr<DLLExportAttr>()) 2036 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2037 else 2038 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2039 2040 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2041 // common vars aren't constant even if declared const. 2042 GV->setConstant(false); 2043 2044 setNonAliasAttributes(D, GV); 2045 2046 if (D->getTLSKind() && !GV->isThreadLocal()) { 2047 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2048 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2049 setTLSMode(GV, *D); 2050 } 2051 2052 // Emit the initializer function if necessary. 2053 if (NeedsGlobalCtor || NeedsGlobalDtor) 2054 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2055 2056 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2057 2058 // Emit global variable debug information. 2059 if (CGDebugInfo *DI = getModuleDebugInfo()) 2060 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2061 DI->EmitGlobalVariable(GV, D); 2062 } 2063 2064 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2065 const VarDecl *D, bool NoCommon) { 2066 // Don't give variables common linkage if -fno-common was specified unless it 2067 // was overridden by a NoCommon attribute. 2068 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2069 return true; 2070 2071 // C11 6.9.2/2: 2072 // A declaration of an identifier for an object that has file scope without 2073 // an initializer, and without a storage-class specifier or with the 2074 // storage-class specifier static, constitutes a tentative definition. 2075 if (D->getInit() || D->hasExternalStorage()) 2076 return true; 2077 2078 // A variable cannot be both common and exist in a section. 2079 if (D->hasAttr<SectionAttr>()) 2080 return true; 2081 2082 // Thread local vars aren't considered common linkage. 2083 if (D->getTLSKind()) 2084 return true; 2085 2086 // Tentative definitions marked with WeakImportAttr are true definitions. 2087 if (D->hasAttr<WeakImportAttr>()) 2088 return true; 2089 2090 // Declarations with a required alignment do not have common linakge in MSVC 2091 // mode. 2092 if (Context.getLangOpts().MSVCCompat && 2093 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2094 return true; 2095 2096 return false; 2097 } 2098 2099 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2100 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2101 if (Linkage == GVA_Internal) 2102 return llvm::Function::InternalLinkage; 2103 2104 if (D->hasAttr<WeakAttr>()) { 2105 if (IsConstantVariable) 2106 return llvm::GlobalVariable::WeakODRLinkage; 2107 else 2108 return llvm::GlobalVariable::WeakAnyLinkage; 2109 } 2110 2111 // We are guaranteed to have a strong definition somewhere else, 2112 // so we can use available_externally linkage. 2113 if (Linkage == GVA_AvailableExternally) 2114 return llvm::Function::AvailableExternallyLinkage; 2115 2116 // Note that Apple's kernel linker doesn't support symbol 2117 // coalescing, so we need to avoid linkonce and weak linkages there. 2118 // Normally, this means we just map to internal, but for explicit 2119 // instantiations we'll map to external. 2120 2121 // In C++, the compiler has to emit a definition in every translation unit 2122 // that references the function. We should use linkonce_odr because 2123 // a) if all references in this translation unit are optimized away, we 2124 // don't need to codegen it. b) if the function persists, it needs to be 2125 // merged with other definitions. c) C++ has the ODR, so we know the 2126 // definition is dependable. 2127 if (Linkage == GVA_DiscardableODR) 2128 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2129 : llvm::Function::InternalLinkage; 2130 2131 // An explicit instantiation of a template has weak linkage, since 2132 // explicit instantiations can occur in multiple translation units 2133 // and must all be equivalent. However, we are not allowed to 2134 // throw away these explicit instantiations. 2135 if (Linkage == GVA_StrongODR) 2136 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2137 : llvm::Function::ExternalLinkage; 2138 2139 // C++ doesn't have tentative definitions and thus cannot have common 2140 // linkage. 2141 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2142 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2143 CodeGenOpts.NoCommon)) 2144 return llvm::GlobalVariable::CommonLinkage; 2145 2146 // selectany symbols are externally visible, so use weak instead of 2147 // linkonce. MSVC optimizes away references to const selectany globals, so 2148 // all definitions should be the same and ODR linkage should be used. 2149 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2150 if (D->hasAttr<SelectAnyAttr>()) 2151 return llvm::GlobalVariable::WeakODRLinkage; 2152 2153 // Otherwise, we have strong external linkage. 2154 assert(Linkage == GVA_StrongExternal); 2155 return llvm::GlobalVariable::ExternalLinkage; 2156 } 2157 2158 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2159 const VarDecl *VD, bool IsConstant) { 2160 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2161 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2162 } 2163 2164 /// Replace the uses of a function that was declared with a non-proto type. 2165 /// We want to silently drop extra arguments from call sites 2166 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2167 llvm::Function *newFn) { 2168 // Fast path. 2169 if (old->use_empty()) return; 2170 2171 llvm::Type *newRetTy = newFn->getReturnType(); 2172 SmallVector<llvm::Value*, 4> newArgs; 2173 2174 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2175 ui != ue; ) { 2176 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2177 llvm::User *user = use->getUser(); 2178 2179 // Recognize and replace uses of bitcasts. Most calls to 2180 // unprototyped functions will use bitcasts. 2181 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2182 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2183 replaceUsesOfNonProtoConstant(bitcast, newFn); 2184 continue; 2185 } 2186 2187 // Recognize calls to the function. 2188 llvm::CallSite callSite(user); 2189 if (!callSite) continue; 2190 if (!callSite.isCallee(&*use)) continue; 2191 2192 // If the return types don't match exactly, then we can't 2193 // transform this call unless it's dead. 2194 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2195 continue; 2196 2197 // Get the call site's attribute list. 2198 SmallVector<llvm::AttributeSet, 8> newAttrs; 2199 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2200 2201 // Collect any return attributes from the call. 2202 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2203 newAttrs.push_back( 2204 llvm::AttributeSet::get(newFn->getContext(), 2205 oldAttrs.getRetAttributes())); 2206 2207 // If the function was passed too few arguments, don't transform. 2208 unsigned newNumArgs = newFn->arg_size(); 2209 if (callSite.arg_size() < newNumArgs) continue; 2210 2211 // If extra arguments were passed, we silently drop them. 2212 // If any of the types mismatch, we don't transform. 2213 unsigned argNo = 0; 2214 bool dontTransform = false; 2215 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2216 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2217 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2218 dontTransform = true; 2219 break; 2220 } 2221 2222 // Add any parameter attributes. 2223 if (oldAttrs.hasAttributes(argNo + 1)) 2224 newAttrs. 2225 push_back(llvm:: 2226 AttributeSet::get(newFn->getContext(), 2227 oldAttrs.getParamAttributes(argNo + 1))); 2228 } 2229 if (dontTransform) 2230 continue; 2231 2232 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2233 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2234 oldAttrs.getFnAttributes())); 2235 2236 // Okay, we can transform this. Create the new call instruction and copy 2237 // over the required information. 2238 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2239 2240 llvm::CallSite newCall; 2241 if (callSite.isCall()) { 2242 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2243 callSite.getInstruction()); 2244 } else { 2245 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2246 newCall = llvm::InvokeInst::Create(newFn, 2247 oldInvoke->getNormalDest(), 2248 oldInvoke->getUnwindDest(), 2249 newArgs, "", 2250 callSite.getInstruction()); 2251 } 2252 newArgs.clear(); // for the next iteration 2253 2254 if (!newCall->getType()->isVoidTy()) 2255 newCall->takeName(callSite.getInstruction()); 2256 newCall.setAttributes( 2257 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2258 newCall.setCallingConv(callSite.getCallingConv()); 2259 2260 // Finally, remove the old call, replacing any uses with the new one. 2261 if (!callSite->use_empty()) 2262 callSite->replaceAllUsesWith(newCall.getInstruction()); 2263 2264 // Copy debug location attached to CI. 2265 if (!callSite->getDebugLoc().isUnknown()) 2266 newCall->setDebugLoc(callSite->getDebugLoc()); 2267 callSite->eraseFromParent(); 2268 } 2269 } 2270 2271 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2272 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2273 /// existing call uses of the old function in the module, this adjusts them to 2274 /// call the new function directly. 2275 /// 2276 /// This is not just a cleanup: the always_inline pass requires direct calls to 2277 /// functions to be able to inline them. If there is a bitcast in the way, it 2278 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2279 /// run at -O0. 2280 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2281 llvm::Function *NewFn) { 2282 // If we're redefining a global as a function, don't transform it. 2283 if (!isa<llvm::Function>(Old)) return; 2284 2285 replaceUsesOfNonProtoConstant(Old, NewFn); 2286 } 2287 2288 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2289 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2290 // If we have a definition, this might be a deferred decl. If the 2291 // instantiation is explicit, make sure we emit it at the end. 2292 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2293 GetAddrOfGlobalVar(VD); 2294 2295 EmitTopLevelDecl(VD); 2296 } 2297 2298 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2299 llvm::GlobalValue *GV) { 2300 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2301 2302 // Compute the function info and LLVM type. 2303 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2304 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2305 2306 // Get or create the prototype for the function. 2307 if (!GV) { 2308 llvm::Constant *C = 2309 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2310 2311 // Strip off a bitcast if we got one back. 2312 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2313 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2314 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2315 } else { 2316 GV = cast<llvm::GlobalValue>(C); 2317 } 2318 } 2319 2320 if (!GV->isDeclaration()) { 2321 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2322 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2323 if (auto *Prev = OldGD.getDecl()) 2324 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2325 return; 2326 } 2327 2328 if (GV->getType()->getElementType() != Ty) { 2329 // If the types mismatch then we have to rewrite the definition. 2330 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2331 2332 // F is the Function* for the one with the wrong type, we must make a new 2333 // Function* and update everything that used F (a declaration) with the new 2334 // Function* (which will be a definition). 2335 // 2336 // This happens if there is a prototype for a function 2337 // (e.g. "int f()") and then a definition of a different type 2338 // (e.g. "int f(int x)"). Move the old function aside so that it 2339 // doesn't interfere with GetAddrOfFunction. 2340 GV->setName(StringRef()); 2341 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2342 2343 // This might be an implementation of a function without a 2344 // prototype, in which case, try to do special replacement of 2345 // calls which match the new prototype. The really key thing here 2346 // is that we also potentially drop arguments from the call site 2347 // so as to make a direct call, which makes the inliner happier 2348 // and suppresses a number of optimizer warnings (!) about 2349 // dropping arguments. 2350 if (!GV->use_empty()) { 2351 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2352 GV->removeDeadConstantUsers(); 2353 } 2354 2355 // Replace uses of F with the Function we will endow with a body. 2356 if (!GV->use_empty()) { 2357 llvm::Constant *NewPtrForOldDecl = 2358 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2359 GV->replaceAllUsesWith(NewPtrForOldDecl); 2360 } 2361 2362 // Ok, delete the old function now, which is dead. 2363 GV->eraseFromParent(); 2364 2365 GV = NewFn; 2366 } 2367 2368 // We need to set linkage and visibility on the function before 2369 // generating code for it because various parts of IR generation 2370 // want to propagate this information down (e.g. to local static 2371 // declarations). 2372 auto *Fn = cast<llvm::Function>(GV); 2373 setFunctionLinkage(GD, Fn); 2374 if (D->hasAttr<DLLImportAttr>()) 2375 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2376 else if (D->hasAttr<DLLExportAttr>()) 2377 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2378 else 2379 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2380 2381 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2382 setGlobalVisibility(Fn, D); 2383 2384 MaybeHandleStaticInExternC(D, Fn); 2385 2386 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2387 2388 setFunctionDefinitionAttributes(D, Fn); 2389 SetLLVMFunctionAttributesForDefinition(D, Fn); 2390 2391 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2392 AddGlobalCtor(Fn, CA->getPriority()); 2393 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2394 AddGlobalDtor(Fn, DA->getPriority()); 2395 if (D->hasAttr<AnnotateAttr>()) 2396 AddGlobalAnnotations(D, Fn); 2397 } 2398 2399 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2400 const auto *D = cast<ValueDecl>(GD.getDecl()); 2401 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2402 assert(AA && "Not an alias?"); 2403 2404 StringRef MangledName = getMangledName(GD); 2405 2406 // If there is a definition in the module, then it wins over the alias. 2407 // This is dubious, but allow it to be safe. Just ignore the alias. 2408 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2409 if (Entry && !Entry->isDeclaration()) 2410 return; 2411 2412 Aliases.push_back(GD); 2413 2414 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2415 2416 // Create a reference to the named value. This ensures that it is emitted 2417 // if a deferred decl. 2418 llvm::Constant *Aliasee; 2419 if (isa<llvm::FunctionType>(DeclTy)) 2420 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2421 /*ForVTable=*/false); 2422 else 2423 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2424 llvm::PointerType::getUnqual(DeclTy), 2425 /*D=*/nullptr); 2426 2427 // Create the new alias itself, but don't set a name yet. 2428 auto *GA = llvm::GlobalAlias::create( 2429 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2430 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2431 2432 if (Entry) { 2433 if (GA->getAliasee() == Entry) { 2434 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2435 return; 2436 } 2437 2438 assert(Entry->isDeclaration()); 2439 2440 // If there is a declaration in the module, then we had an extern followed 2441 // by the alias, as in: 2442 // extern int test6(); 2443 // ... 2444 // int test6() __attribute__((alias("test7"))); 2445 // 2446 // Remove it and replace uses of it with the alias. 2447 GA->takeName(Entry); 2448 2449 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2450 Entry->getType())); 2451 Entry->eraseFromParent(); 2452 } else { 2453 GA->setName(MangledName); 2454 } 2455 2456 // Set attributes which are particular to an alias; this is a 2457 // specialization of the attributes which may be set on a global 2458 // variable/function. 2459 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2460 D->isWeakImported()) { 2461 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2462 } 2463 2464 if (const auto *VD = dyn_cast<VarDecl>(D)) 2465 if (VD->getTLSKind()) 2466 setTLSMode(GA, *VD); 2467 2468 setAliasAttributes(D, GA); 2469 } 2470 2471 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2472 ArrayRef<llvm::Type*> Tys) { 2473 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2474 Tys); 2475 } 2476 2477 static llvm::StringMapEntry<llvm::Constant*> & 2478 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2479 const StringLiteral *Literal, 2480 bool TargetIsLSB, 2481 bool &IsUTF16, 2482 unsigned &StringLength) { 2483 StringRef String = Literal->getString(); 2484 unsigned NumBytes = String.size(); 2485 2486 // Check for simple case. 2487 if (!Literal->containsNonAsciiOrNull()) { 2488 StringLength = NumBytes; 2489 return *Map.insert(std::make_pair(String, nullptr)).first; 2490 } 2491 2492 // Otherwise, convert the UTF8 literals into a string of shorts. 2493 IsUTF16 = true; 2494 2495 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2496 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2497 UTF16 *ToPtr = &ToBuf[0]; 2498 2499 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2500 &ToPtr, ToPtr + NumBytes, 2501 strictConversion); 2502 2503 // ConvertUTF8toUTF16 returns the length in ToPtr. 2504 StringLength = ToPtr - &ToBuf[0]; 2505 2506 // Add an explicit null. 2507 *ToPtr = 0; 2508 return *Map.insert(std::make_pair( 2509 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2510 (StringLength + 1) * 2), 2511 nullptr)).first; 2512 } 2513 2514 static llvm::StringMapEntry<llvm::Constant*> & 2515 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2516 const StringLiteral *Literal, 2517 unsigned &StringLength) { 2518 StringRef String = Literal->getString(); 2519 StringLength = String.size(); 2520 return *Map.insert(std::make_pair(String, nullptr)).first; 2521 } 2522 2523 llvm::Constant * 2524 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2525 unsigned StringLength = 0; 2526 bool isUTF16 = false; 2527 llvm::StringMapEntry<llvm::Constant*> &Entry = 2528 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2529 getDataLayout().isLittleEndian(), 2530 isUTF16, StringLength); 2531 2532 if (auto *C = Entry.second) 2533 return C; 2534 2535 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2536 llvm::Constant *Zeros[] = { Zero, Zero }; 2537 llvm::Value *V; 2538 2539 // If we don't already have it, get __CFConstantStringClassReference. 2540 if (!CFConstantStringClassRef) { 2541 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2542 Ty = llvm::ArrayType::get(Ty, 0); 2543 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2544 "__CFConstantStringClassReference"); 2545 // Decay array -> ptr 2546 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2547 CFConstantStringClassRef = V; 2548 } 2549 else 2550 V = CFConstantStringClassRef; 2551 2552 QualType CFTy = getContext().getCFConstantStringType(); 2553 2554 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2555 2556 llvm::Constant *Fields[4]; 2557 2558 // Class pointer. 2559 Fields[0] = cast<llvm::ConstantExpr>(V); 2560 2561 // Flags. 2562 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2563 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2564 llvm::ConstantInt::get(Ty, 0x07C8); 2565 2566 // String pointer. 2567 llvm::Constant *C = nullptr; 2568 if (isUTF16) { 2569 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2570 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2571 Entry.first().size() / 2); 2572 C = llvm::ConstantDataArray::get(VMContext, Arr); 2573 } else { 2574 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2575 } 2576 2577 // Note: -fwritable-strings doesn't make the backing store strings of 2578 // CFStrings writable. (See <rdar://problem/10657500>) 2579 auto *GV = 2580 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2581 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2582 GV->setUnnamedAddr(true); 2583 // Don't enforce the target's minimum global alignment, since the only use 2584 // of the string is via this class initializer. 2585 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2586 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2587 // that changes the section it ends in, which surprises ld64. 2588 if (isUTF16) { 2589 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2590 GV->setAlignment(Align.getQuantity()); 2591 GV->setSection("__TEXT,__ustring"); 2592 } else { 2593 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2594 GV->setAlignment(Align.getQuantity()); 2595 GV->setSection("__TEXT,__cstring,cstring_literals"); 2596 } 2597 2598 // String. 2599 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2600 2601 if (isUTF16) 2602 // Cast the UTF16 string to the correct type. 2603 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2604 2605 // String length. 2606 Ty = getTypes().ConvertType(getContext().LongTy); 2607 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2608 2609 // The struct. 2610 C = llvm::ConstantStruct::get(STy, Fields); 2611 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2612 llvm::GlobalVariable::PrivateLinkage, C, 2613 "_unnamed_cfstring_"); 2614 GV->setSection("__DATA,__cfstring"); 2615 Entry.second = GV; 2616 2617 return GV; 2618 } 2619 2620 llvm::Constant * 2621 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2622 unsigned StringLength = 0; 2623 llvm::StringMapEntry<llvm::Constant*> &Entry = 2624 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2625 2626 if (auto *C = Entry.second) 2627 return C; 2628 2629 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2630 llvm::Constant *Zeros[] = { Zero, Zero }; 2631 llvm::Value *V; 2632 // If we don't already have it, get _NSConstantStringClassReference. 2633 if (!ConstantStringClassRef) { 2634 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2635 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2636 llvm::Constant *GV; 2637 if (LangOpts.ObjCRuntime.isNonFragile()) { 2638 std::string str = 2639 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2640 : "OBJC_CLASS_$_" + StringClass; 2641 GV = getObjCRuntime().GetClassGlobal(str); 2642 // Make sure the result is of the correct type. 2643 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2644 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2645 ConstantStringClassRef = V; 2646 } else { 2647 std::string str = 2648 StringClass.empty() ? "_NSConstantStringClassReference" 2649 : "_" + StringClass + "ClassReference"; 2650 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2651 GV = CreateRuntimeVariable(PTy, str); 2652 // Decay array -> ptr 2653 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2654 ConstantStringClassRef = V; 2655 } 2656 } 2657 else 2658 V = ConstantStringClassRef; 2659 2660 if (!NSConstantStringType) { 2661 // Construct the type for a constant NSString. 2662 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2663 D->startDefinition(); 2664 2665 QualType FieldTypes[3]; 2666 2667 // const int *isa; 2668 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2669 // const char *str; 2670 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2671 // unsigned int length; 2672 FieldTypes[2] = Context.UnsignedIntTy; 2673 2674 // Create fields 2675 for (unsigned i = 0; i < 3; ++i) { 2676 FieldDecl *Field = FieldDecl::Create(Context, D, 2677 SourceLocation(), 2678 SourceLocation(), nullptr, 2679 FieldTypes[i], /*TInfo=*/nullptr, 2680 /*BitWidth=*/nullptr, 2681 /*Mutable=*/false, 2682 ICIS_NoInit); 2683 Field->setAccess(AS_public); 2684 D->addDecl(Field); 2685 } 2686 2687 D->completeDefinition(); 2688 QualType NSTy = Context.getTagDeclType(D); 2689 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2690 } 2691 2692 llvm::Constant *Fields[3]; 2693 2694 // Class pointer. 2695 Fields[0] = cast<llvm::ConstantExpr>(V); 2696 2697 // String pointer. 2698 llvm::Constant *C = 2699 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2700 2701 llvm::GlobalValue::LinkageTypes Linkage; 2702 bool isConstant; 2703 Linkage = llvm::GlobalValue::PrivateLinkage; 2704 isConstant = !LangOpts.WritableStrings; 2705 2706 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2707 Linkage, C, ".str"); 2708 GV->setUnnamedAddr(true); 2709 // Don't enforce the target's minimum global alignment, since the only use 2710 // of the string is via this class initializer. 2711 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2712 GV->setAlignment(Align.getQuantity()); 2713 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2714 2715 // String length. 2716 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2717 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2718 2719 // The struct. 2720 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2721 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2722 llvm::GlobalVariable::PrivateLinkage, C, 2723 "_unnamed_nsstring_"); 2724 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2725 const char *NSStringNonFragileABISection = 2726 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2727 // FIXME. Fix section. 2728 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2729 ? NSStringNonFragileABISection 2730 : NSStringSection); 2731 Entry.second = GV; 2732 2733 return GV; 2734 } 2735 2736 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2737 if (ObjCFastEnumerationStateType.isNull()) { 2738 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2739 D->startDefinition(); 2740 2741 QualType FieldTypes[] = { 2742 Context.UnsignedLongTy, 2743 Context.getPointerType(Context.getObjCIdType()), 2744 Context.getPointerType(Context.UnsignedLongTy), 2745 Context.getConstantArrayType(Context.UnsignedLongTy, 2746 llvm::APInt(32, 5), ArrayType::Normal, 0) 2747 }; 2748 2749 for (size_t i = 0; i < 4; ++i) { 2750 FieldDecl *Field = FieldDecl::Create(Context, 2751 D, 2752 SourceLocation(), 2753 SourceLocation(), nullptr, 2754 FieldTypes[i], /*TInfo=*/nullptr, 2755 /*BitWidth=*/nullptr, 2756 /*Mutable=*/false, 2757 ICIS_NoInit); 2758 Field->setAccess(AS_public); 2759 D->addDecl(Field); 2760 } 2761 2762 D->completeDefinition(); 2763 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2764 } 2765 2766 return ObjCFastEnumerationStateType; 2767 } 2768 2769 llvm::Constant * 2770 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2771 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2772 2773 // Don't emit it as the address of the string, emit the string data itself 2774 // as an inline array. 2775 if (E->getCharByteWidth() == 1) { 2776 SmallString<64> Str(E->getString()); 2777 2778 // Resize the string to the right size, which is indicated by its type. 2779 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2780 Str.resize(CAT->getSize().getZExtValue()); 2781 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2782 } 2783 2784 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2785 llvm::Type *ElemTy = AType->getElementType(); 2786 unsigned NumElements = AType->getNumElements(); 2787 2788 // Wide strings have either 2-byte or 4-byte elements. 2789 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2790 SmallVector<uint16_t, 32> Elements; 2791 Elements.reserve(NumElements); 2792 2793 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2794 Elements.push_back(E->getCodeUnit(i)); 2795 Elements.resize(NumElements); 2796 return llvm::ConstantDataArray::get(VMContext, Elements); 2797 } 2798 2799 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2800 SmallVector<uint32_t, 32> Elements; 2801 Elements.reserve(NumElements); 2802 2803 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2804 Elements.push_back(E->getCodeUnit(i)); 2805 Elements.resize(NumElements); 2806 return llvm::ConstantDataArray::get(VMContext, Elements); 2807 } 2808 2809 static llvm::GlobalVariable * 2810 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2811 CodeGenModule &CGM, StringRef GlobalName, 2812 unsigned Alignment) { 2813 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2814 unsigned AddrSpace = 0; 2815 if (CGM.getLangOpts().OpenCL) 2816 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2817 2818 // Create a global variable for this string 2819 auto *GV = new llvm::GlobalVariable( 2820 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2821 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2822 GV->setAlignment(Alignment); 2823 GV->setUnnamedAddr(true); 2824 return GV; 2825 } 2826 2827 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2828 /// constant array for the given string literal. 2829 llvm::GlobalVariable * 2830 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2831 StringRef Name) { 2832 auto Alignment = 2833 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2834 2835 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2836 llvm::GlobalVariable **Entry = nullptr; 2837 if (!LangOpts.WritableStrings) { 2838 Entry = &ConstantStringMap[C]; 2839 if (auto GV = *Entry) { 2840 if (Alignment > GV->getAlignment()) 2841 GV->setAlignment(Alignment); 2842 return GV; 2843 } 2844 } 2845 2846 SmallString<256> MangledNameBuffer; 2847 StringRef GlobalVariableName; 2848 llvm::GlobalValue::LinkageTypes LT; 2849 2850 // Mangle the string literal if the ABI allows for it. However, we cannot 2851 // do this if we are compiling with ASan or -fwritable-strings because they 2852 // rely on strings having normal linkage. 2853 if (!LangOpts.WritableStrings && 2854 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2855 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2856 llvm::raw_svector_ostream Out(MangledNameBuffer); 2857 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2858 Out.flush(); 2859 2860 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2861 GlobalVariableName = MangledNameBuffer; 2862 } else { 2863 LT = llvm::GlobalValue::PrivateLinkage; 2864 GlobalVariableName = Name; 2865 } 2866 2867 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2868 if (Entry) 2869 *Entry = GV; 2870 2871 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2872 QualType()); 2873 return GV; 2874 } 2875 2876 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2877 /// array for the given ObjCEncodeExpr node. 2878 llvm::GlobalVariable * 2879 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2880 std::string Str; 2881 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2882 2883 return GetAddrOfConstantCString(Str); 2884 } 2885 2886 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2887 /// the literal and a terminating '\0' character. 2888 /// The result has pointer to array type. 2889 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2890 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2891 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2892 if (Alignment == 0) { 2893 Alignment = getContext() 2894 .getAlignOfGlobalVarInChars(getContext().CharTy) 2895 .getQuantity(); 2896 } 2897 2898 llvm::Constant *C = 2899 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2900 2901 // Don't share any string literals if strings aren't constant. 2902 llvm::GlobalVariable **Entry = nullptr; 2903 if (!LangOpts.WritableStrings) { 2904 Entry = &ConstantStringMap[C]; 2905 if (auto GV = *Entry) { 2906 if (Alignment > GV->getAlignment()) 2907 GV->setAlignment(Alignment); 2908 return GV; 2909 } 2910 } 2911 2912 // Get the default prefix if a name wasn't specified. 2913 if (!GlobalName) 2914 GlobalName = ".str"; 2915 // Create a global variable for this. 2916 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2917 GlobalName, Alignment); 2918 if (Entry) 2919 *Entry = GV; 2920 return GV; 2921 } 2922 2923 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2924 const MaterializeTemporaryExpr *E, const Expr *Init) { 2925 assert((E->getStorageDuration() == SD_Static || 2926 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2927 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2928 2929 // If we're not materializing a subobject of the temporary, keep the 2930 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2931 QualType MaterializedType = Init->getType(); 2932 if (Init == E->GetTemporaryExpr()) 2933 MaterializedType = E->getType(); 2934 2935 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2936 if (Slot) 2937 return Slot; 2938 2939 // FIXME: If an externally-visible declaration extends multiple temporaries, 2940 // we need to give each temporary the same name in every translation unit (and 2941 // we also need to make the temporaries externally-visible). 2942 SmallString<256> Name; 2943 llvm::raw_svector_ostream Out(Name); 2944 getCXXABI().getMangleContext().mangleReferenceTemporary( 2945 VD, E->getManglingNumber(), Out); 2946 Out.flush(); 2947 2948 APValue *Value = nullptr; 2949 if (E->getStorageDuration() == SD_Static) { 2950 // We might have a cached constant initializer for this temporary. Note 2951 // that this might have a different value from the value computed by 2952 // evaluating the initializer if the surrounding constant expression 2953 // modifies the temporary. 2954 Value = getContext().getMaterializedTemporaryValue(E, false); 2955 if (Value && Value->isUninit()) 2956 Value = nullptr; 2957 } 2958 2959 // Try evaluating it now, it might have a constant initializer. 2960 Expr::EvalResult EvalResult; 2961 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2962 !EvalResult.hasSideEffects()) 2963 Value = &EvalResult.Val; 2964 2965 llvm::Constant *InitialValue = nullptr; 2966 bool Constant = false; 2967 llvm::Type *Type; 2968 if (Value) { 2969 // The temporary has a constant initializer, use it. 2970 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2971 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2972 Type = InitialValue->getType(); 2973 } else { 2974 // No initializer, the initialization will be provided when we 2975 // initialize the declaration which performed lifetime extension. 2976 Type = getTypes().ConvertTypeForMem(MaterializedType); 2977 } 2978 2979 // Create a global variable for this lifetime-extended temporary. 2980 llvm::GlobalValue::LinkageTypes Linkage = 2981 getLLVMLinkageVarDefinition(VD, Constant); 2982 // There is no need for this temporary to have global linkage if the global 2983 // variable has external linkage. 2984 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2985 Linkage = llvm::GlobalVariable::PrivateLinkage; 2986 unsigned AddrSpace = GetGlobalVarAddressSpace( 2987 VD, getContext().getTargetAddressSpace(MaterializedType)); 2988 auto *GV = new llvm::GlobalVariable( 2989 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2990 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2991 AddrSpace); 2992 setGlobalVisibility(GV, VD); 2993 GV->setAlignment( 2994 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2995 if (VD->getTLSKind()) 2996 setTLSMode(GV, *VD); 2997 Slot = GV; 2998 return GV; 2999 } 3000 3001 /// EmitObjCPropertyImplementations - Emit information for synthesized 3002 /// properties for an implementation. 3003 void CodeGenModule::EmitObjCPropertyImplementations(const 3004 ObjCImplementationDecl *D) { 3005 for (const auto *PID : D->property_impls()) { 3006 // Dynamic is just for type-checking. 3007 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3008 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3009 3010 // Determine which methods need to be implemented, some may have 3011 // been overridden. Note that ::isPropertyAccessor is not the method 3012 // we want, that just indicates if the decl came from a 3013 // property. What we want to know is if the method is defined in 3014 // this implementation. 3015 if (!D->getInstanceMethod(PD->getGetterName())) 3016 CodeGenFunction(*this).GenerateObjCGetter( 3017 const_cast<ObjCImplementationDecl *>(D), PID); 3018 if (!PD->isReadOnly() && 3019 !D->getInstanceMethod(PD->getSetterName())) 3020 CodeGenFunction(*this).GenerateObjCSetter( 3021 const_cast<ObjCImplementationDecl *>(D), PID); 3022 } 3023 } 3024 } 3025 3026 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3027 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3028 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3029 ivar; ivar = ivar->getNextIvar()) 3030 if (ivar->getType().isDestructedType()) 3031 return true; 3032 3033 return false; 3034 } 3035 3036 static bool AllTrivialInitializers(CodeGenModule &CGM, 3037 ObjCImplementationDecl *D) { 3038 CodeGenFunction CGF(CGM); 3039 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3040 E = D->init_end(); B != E; ++B) { 3041 CXXCtorInitializer *CtorInitExp = *B; 3042 Expr *Init = CtorInitExp->getInit(); 3043 if (!CGF.isTrivialInitializer(Init)) 3044 return false; 3045 } 3046 return true; 3047 } 3048 3049 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3050 /// for an implementation. 3051 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3052 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3053 if (needsDestructMethod(D)) { 3054 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3055 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3056 ObjCMethodDecl *DTORMethod = 3057 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3058 cxxSelector, getContext().VoidTy, nullptr, D, 3059 /*isInstance=*/true, /*isVariadic=*/false, 3060 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3061 /*isDefined=*/false, ObjCMethodDecl::Required); 3062 D->addInstanceMethod(DTORMethod); 3063 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3064 D->setHasDestructors(true); 3065 } 3066 3067 // If the implementation doesn't have any ivar initializers, we don't need 3068 // a .cxx_construct. 3069 if (D->getNumIvarInitializers() == 0 || 3070 AllTrivialInitializers(*this, D)) 3071 return; 3072 3073 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3074 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3075 // The constructor returns 'self'. 3076 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3077 D->getLocation(), 3078 D->getLocation(), 3079 cxxSelector, 3080 getContext().getObjCIdType(), 3081 nullptr, D, /*isInstance=*/true, 3082 /*isVariadic=*/false, 3083 /*isPropertyAccessor=*/true, 3084 /*isImplicitlyDeclared=*/true, 3085 /*isDefined=*/false, 3086 ObjCMethodDecl::Required); 3087 D->addInstanceMethod(CTORMethod); 3088 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3089 D->setHasNonZeroConstructors(true); 3090 } 3091 3092 /// EmitNamespace - Emit all declarations in a namespace. 3093 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3094 for (auto *I : ND->decls()) { 3095 if (const auto *VD = dyn_cast<VarDecl>(I)) 3096 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3097 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3098 continue; 3099 EmitTopLevelDecl(I); 3100 } 3101 } 3102 3103 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3104 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3105 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3106 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3107 ErrorUnsupported(LSD, "linkage spec"); 3108 return; 3109 } 3110 3111 for (auto *I : LSD->decls()) { 3112 // Meta-data for ObjC class includes references to implemented methods. 3113 // Generate class's method definitions first. 3114 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3115 for (auto *M : OID->methods()) 3116 EmitTopLevelDecl(M); 3117 } 3118 EmitTopLevelDecl(I); 3119 } 3120 } 3121 3122 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3123 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3124 // Ignore dependent declarations. 3125 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3126 return; 3127 3128 switch (D->getKind()) { 3129 case Decl::CXXConversion: 3130 case Decl::CXXMethod: 3131 case Decl::Function: 3132 // Skip function templates 3133 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3134 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3135 return; 3136 3137 EmitGlobal(cast<FunctionDecl>(D)); 3138 // Always provide some coverage mapping 3139 // even for the functions that aren't emitted. 3140 AddDeferredUnusedCoverageMapping(D); 3141 break; 3142 3143 case Decl::Var: 3144 // Skip variable templates 3145 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3146 return; 3147 case Decl::VarTemplateSpecialization: 3148 EmitGlobal(cast<VarDecl>(D)); 3149 break; 3150 3151 // Indirect fields from global anonymous structs and unions can be 3152 // ignored; only the actual variable requires IR gen support. 3153 case Decl::IndirectField: 3154 break; 3155 3156 // C++ Decls 3157 case Decl::Namespace: 3158 EmitNamespace(cast<NamespaceDecl>(D)); 3159 break; 3160 // No code generation needed. 3161 case Decl::UsingShadow: 3162 case Decl::ClassTemplate: 3163 case Decl::VarTemplate: 3164 case Decl::VarTemplatePartialSpecialization: 3165 case Decl::FunctionTemplate: 3166 case Decl::TypeAliasTemplate: 3167 case Decl::Block: 3168 case Decl::Empty: 3169 break; 3170 case Decl::Using: // using X; [C++] 3171 if (CGDebugInfo *DI = getModuleDebugInfo()) 3172 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3173 return; 3174 case Decl::NamespaceAlias: 3175 if (CGDebugInfo *DI = getModuleDebugInfo()) 3176 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3177 return; 3178 case Decl::UsingDirective: // using namespace X; [C++] 3179 if (CGDebugInfo *DI = getModuleDebugInfo()) 3180 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3181 return; 3182 case Decl::CXXConstructor: 3183 // Skip function templates 3184 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3185 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3186 return; 3187 3188 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3189 break; 3190 case Decl::CXXDestructor: 3191 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3192 return; 3193 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3194 break; 3195 3196 case Decl::StaticAssert: 3197 // Nothing to do. 3198 break; 3199 3200 // Objective-C Decls 3201 3202 // Forward declarations, no (immediate) code generation. 3203 case Decl::ObjCInterface: 3204 case Decl::ObjCCategory: 3205 break; 3206 3207 case Decl::ObjCProtocol: { 3208 auto *Proto = cast<ObjCProtocolDecl>(D); 3209 if (Proto->isThisDeclarationADefinition()) 3210 ObjCRuntime->GenerateProtocol(Proto); 3211 break; 3212 } 3213 3214 case Decl::ObjCCategoryImpl: 3215 // Categories have properties but don't support synthesize so we 3216 // can ignore them here. 3217 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3218 break; 3219 3220 case Decl::ObjCImplementation: { 3221 auto *OMD = cast<ObjCImplementationDecl>(D); 3222 EmitObjCPropertyImplementations(OMD); 3223 EmitObjCIvarInitializations(OMD); 3224 ObjCRuntime->GenerateClass(OMD); 3225 // Emit global variable debug information. 3226 if (CGDebugInfo *DI = getModuleDebugInfo()) 3227 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3228 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3229 OMD->getClassInterface()), OMD->getLocation()); 3230 break; 3231 } 3232 case Decl::ObjCMethod: { 3233 auto *OMD = cast<ObjCMethodDecl>(D); 3234 // If this is not a prototype, emit the body. 3235 if (OMD->getBody()) 3236 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3237 break; 3238 } 3239 case Decl::ObjCCompatibleAlias: 3240 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3241 break; 3242 3243 case Decl::LinkageSpec: 3244 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3245 break; 3246 3247 case Decl::FileScopeAsm: { 3248 auto *AD = cast<FileScopeAsmDecl>(D); 3249 StringRef AsmString = AD->getAsmString()->getString(); 3250 3251 const std::string &S = getModule().getModuleInlineAsm(); 3252 if (S.empty()) 3253 getModule().setModuleInlineAsm(AsmString); 3254 else if (S.end()[-1] == '\n') 3255 getModule().setModuleInlineAsm(S + AsmString.str()); 3256 else 3257 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3258 break; 3259 } 3260 3261 case Decl::Import: { 3262 auto *Import = cast<ImportDecl>(D); 3263 3264 // Ignore import declarations that come from imported modules. 3265 if (clang::Module *Owner = Import->getOwningModule()) { 3266 if (getLangOpts().CurrentModule.empty() || 3267 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3268 break; 3269 } 3270 3271 ImportedModules.insert(Import->getImportedModule()); 3272 break; 3273 } 3274 3275 case Decl::OMPThreadPrivate: 3276 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3277 break; 3278 3279 case Decl::ClassTemplateSpecialization: { 3280 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3281 if (DebugInfo && 3282 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3283 DebugInfo->completeTemplateDefinition(*Spec); 3284 break; 3285 } 3286 3287 default: 3288 // Make sure we handled everything we should, every other kind is a 3289 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3290 // function. Need to recode Decl::Kind to do that easily. 3291 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3292 break; 3293 } 3294 } 3295 3296 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3297 // Do we need to generate coverage mapping? 3298 if (!CodeGenOpts.CoverageMapping) 3299 return; 3300 switch (D->getKind()) { 3301 case Decl::CXXConversion: 3302 case Decl::CXXMethod: 3303 case Decl::Function: 3304 case Decl::ObjCMethod: 3305 case Decl::CXXConstructor: 3306 case Decl::CXXDestructor: { 3307 if (!cast<FunctionDecl>(D)->hasBody()) 3308 return; 3309 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3310 if (I == DeferredEmptyCoverageMappingDecls.end()) 3311 DeferredEmptyCoverageMappingDecls[D] = true; 3312 break; 3313 } 3314 default: 3315 break; 3316 }; 3317 } 3318 3319 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3320 // Do we need to generate coverage mapping? 3321 if (!CodeGenOpts.CoverageMapping) 3322 return; 3323 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3324 if (Fn->isTemplateInstantiation()) 3325 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3326 } 3327 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3328 if (I == DeferredEmptyCoverageMappingDecls.end()) 3329 DeferredEmptyCoverageMappingDecls[D] = false; 3330 else 3331 I->second = false; 3332 } 3333 3334 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3335 std::vector<const Decl *> DeferredDecls; 3336 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3337 if (!I.second) 3338 continue; 3339 DeferredDecls.push_back(I.first); 3340 } 3341 // Sort the declarations by their location to make sure that the tests get a 3342 // predictable order for the coverage mapping for the unused declarations. 3343 if (CodeGenOpts.DumpCoverageMapping) 3344 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3345 [] (const Decl *LHS, const Decl *RHS) { 3346 return LHS->getLocStart() < RHS->getLocStart(); 3347 }); 3348 for (const auto *D : DeferredDecls) { 3349 switch (D->getKind()) { 3350 case Decl::CXXConversion: 3351 case Decl::CXXMethod: 3352 case Decl::Function: 3353 case Decl::ObjCMethod: { 3354 CodeGenPGO PGO(*this); 3355 GlobalDecl GD(cast<FunctionDecl>(D)); 3356 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3357 getFunctionLinkage(GD)); 3358 break; 3359 } 3360 case Decl::CXXConstructor: { 3361 CodeGenPGO PGO(*this); 3362 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3363 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3364 getFunctionLinkage(GD)); 3365 break; 3366 } 3367 case Decl::CXXDestructor: { 3368 CodeGenPGO PGO(*this); 3369 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3370 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3371 getFunctionLinkage(GD)); 3372 break; 3373 } 3374 default: 3375 break; 3376 }; 3377 } 3378 } 3379 3380 /// Turns the given pointer into a constant. 3381 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3382 const void *Ptr) { 3383 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3384 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3385 return llvm::ConstantInt::get(i64, PtrInt); 3386 } 3387 3388 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3389 llvm::NamedMDNode *&GlobalMetadata, 3390 GlobalDecl D, 3391 llvm::GlobalValue *Addr) { 3392 if (!GlobalMetadata) 3393 GlobalMetadata = 3394 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3395 3396 // TODO: should we report variant information for ctors/dtors? 3397 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3398 llvm::ConstantAsMetadata::get(GetPointerConstant( 3399 CGM.getLLVMContext(), D.getDecl()))}; 3400 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3401 } 3402 3403 /// For each function which is declared within an extern "C" region and marked 3404 /// as 'used', but has internal linkage, create an alias from the unmangled 3405 /// name to the mangled name if possible. People expect to be able to refer 3406 /// to such functions with an unmangled name from inline assembly within the 3407 /// same translation unit. 3408 void CodeGenModule::EmitStaticExternCAliases() { 3409 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3410 E = StaticExternCValues.end(); 3411 I != E; ++I) { 3412 IdentifierInfo *Name = I->first; 3413 llvm::GlobalValue *Val = I->second; 3414 if (Val && !getModule().getNamedValue(Name->getName())) 3415 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3416 } 3417 } 3418 3419 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3420 GlobalDecl &Result) const { 3421 auto Res = Manglings.find(MangledName); 3422 if (Res == Manglings.end()) 3423 return false; 3424 Result = Res->getValue(); 3425 return true; 3426 } 3427 3428 /// Emits metadata nodes associating all the global values in the 3429 /// current module with the Decls they came from. This is useful for 3430 /// projects using IR gen as a subroutine. 3431 /// 3432 /// Since there's currently no way to associate an MDNode directly 3433 /// with an llvm::GlobalValue, we create a global named metadata 3434 /// with the name 'clang.global.decl.ptrs'. 3435 void CodeGenModule::EmitDeclMetadata() { 3436 llvm::NamedMDNode *GlobalMetadata = nullptr; 3437 3438 // StaticLocalDeclMap 3439 for (auto &I : MangledDeclNames) { 3440 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3441 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3442 } 3443 } 3444 3445 /// Emits metadata nodes for all the local variables in the current 3446 /// function. 3447 void CodeGenFunction::EmitDeclMetadata() { 3448 if (LocalDeclMap.empty()) return; 3449 3450 llvm::LLVMContext &Context = getLLVMContext(); 3451 3452 // Find the unique metadata ID for this name. 3453 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3454 3455 llvm::NamedMDNode *GlobalMetadata = nullptr; 3456 3457 for (auto &I : LocalDeclMap) { 3458 const Decl *D = I.first; 3459 llvm::Value *Addr = I.second; 3460 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3461 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3462 Alloca->setMetadata( 3463 DeclPtrKind, llvm::MDNode::get( 3464 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3465 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3466 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3467 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3468 } 3469 } 3470 } 3471 3472 void CodeGenModule::EmitVersionIdentMetadata() { 3473 llvm::NamedMDNode *IdentMetadata = 3474 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3475 std::string Version = getClangFullVersion(); 3476 llvm::LLVMContext &Ctx = TheModule.getContext(); 3477 3478 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3479 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3480 } 3481 3482 void CodeGenModule::EmitTargetMetadata() { 3483 // Warning, new MangledDeclNames may be appended within this loop. 3484 // We rely on MapVector insertions adding new elements to the end 3485 // of the container. 3486 // FIXME: Move this loop into the one target that needs it, and only 3487 // loop over those declarations for which we couldn't emit the target 3488 // metadata when we emitted the declaration. 3489 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3490 auto Val = *(MangledDeclNames.begin() + I); 3491 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3492 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3493 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3494 } 3495 } 3496 3497 void CodeGenModule::EmitCoverageFile() { 3498 if (!getCodeGenOpts().CoverageFile.empty()) { 3499 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3500 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3501 llvm::LLVMContext &Ctx = TheModule.getContext(); 3502 llvm::MDString *CoverageFile = 3503 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3504 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3505 llvm::MDNode *CU = CUNode->getOperand(i); 3506 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3507 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3508 } 3509 } 3510 } 3511 } 3512 3513 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3514 // Sema has checked that all uuid strings are of the form 3515 // "12345678-1234-1234-1234-1234567890ab". 3516 assert(Uuid.size() == 36); 3517 for (unsigned i = 0; i < 36; ++i) { 3518 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3519 else assert(isHexDigit(Uuid[i])); 3520 } 3521 3522 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3523 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3524 3525 llvm::Constant *Field3[8]; 3526 for (unsigned Idx = 0; Idx < 8; ++Idx) 3527 Field3[Idx] = llvm::ConstantInt::get( 3528 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3529 3530 llvm::Constant *Fields[4] = { 3531 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3532 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3533 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3534 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3535 }; 3536 3537 return llvm::ConstantStruct::getAnon(Fields); 3538 } 3539 3540 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3541 bool ForEH) { 3542 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3543 // FIXME: should we even be calling this method if RTTI is disabled 3544 // and it's not for EH? 3545 if (!ForEH && !getLangOpts().RTTI) 3546 return llvm::Constant::getNullValue(Int8PtrTy); 3547 3548 if (ForEH && Ty->isObjCObjectPointerType() && 3549 LangOpts.ObjCRuntime.isGNUFamily()) 3550 return ObjCRuntime->GetEHType(Ty); 3551 3552 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3553 } 3554 3555 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3556 for (auto RefExpr : D->varlists()) { 3557 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3558 bool PerformInit = 3559 VD->getAnyInitializer() && 3560 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3561 /*ForRef=*/false); 3562 if (auto InitFunction = 3563 getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition( 3564 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), 3565 PerformInit)) 3566 CXXGlobalInits.push_back(InitFunction); 3567 } 3568 } 3569 3570