1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 if (!LangOpts.NeXTRuntime) 139 ObjCRuntime = CreateGNUObjCRuntime(*this); 140 else 141 ObjCRuntime = CreateMacObjCRuntime(*this); 142 } 143 144 void CodeGenModule::createOpenCLRuntime() { 145 OpenCLRuntime = new CGOpenCLRuntime(*this); 146 } 147 148 void CodeGenModule::createCUDARuntime() { 149 CUDARuntime = CreateNVCUDARuntime(*this); 150 } 151 152 void CodeGenModule::Release() { 153 EmitDeferred(); 154 EmitCXXGlobalInitFunc(); 155 EmitCXXGlobalDtorFunc(); 156 if (ObjCRuntime) 157 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 158 AddGlobalCtor(ObjCInitFunction); 159 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 160 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 161 EmitGlobalAnnotations(); 162 EmitLLVMUsed(); 163 164 SimplifyPersonality(); 165 166 if (getCodeGenOpts().EmitDeclMetadata) 167 EmitDeclMetadata(); 168 169 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 170 EmitCoverageFile(); 171 172 if (DebugInfo) 173 DebugInfo->finalize(); 174 } 175 176 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 177 // Make sure that this type is translated. 178 Types.UpdateCompletedType(TD); 179 } 180 181 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 182 if (!TBAA) 183 return 0; 184 return TBAA->getTBAAInfo(QTy); 185 } 186 187 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 188 if (!TBAA) 189 return 0; 190 return TBAA->getTBAAInfoForVTablePtr(); 191 } 192 193 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 194 llvm::MDNode *TBAAInfo) { 195 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 196 } 197 198 bool CodeGenModule::isTargetDarwin() const { 199 return getContext().getTargetInfo().getTriple().isOSDarwin(); 200 } 201 202 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 203 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 204 getDiags().Report(Context.getFullLoc(loc), diagID); 205 } 206 207 /// ErrorUnsupported - Print out an error that codegen doesn't support the 208 /// specified stmt yet. 209 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 210 bool OmitOnError) { 211 if (OmitOnError && getDiags().hasErrorOccurred()) 212 return; 213 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 214 "cannot compile this %0 yet"); 215 std::string Msg = Type; 216 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 217 << Msg << S->getSourceRange(); 218 } 219 220 /// ErrorUnsupported - Print out an error that codegen doesn't support the 221 /// specified decl yet. 222 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 223 bool OmitOnError) { 224 if (OmitOnError && getDiags().hasErrorOccurred()) 225 return; 226 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 227 "cannot compile this %0 yet"); 228 std::string Msg = Type; 229 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 230 } 231 232 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 233 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 234 } 235 236 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 237 const NamedDecl *D) const { 238 // Internal definitions always have default visibility. 239 if (GV->hasLocalLinkage()) { 240 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 241 return; 242 } 243 244 // Set visibility for definitions. 245 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 246 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 247 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 248 } 249 250 /// Set the symbol visibility of type information (vtable and RTTI) 251 /// associated with the given type. 252 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 253 const CXXRecordDecl *RD, 254 TypeVisibilityKind TVK) const { 255 setGlobalVisibility(GV, RD); 256 257 if (!CodeGenOpts.HiddenWeakVTables) 258 return; 259 260 // We never want to drop the visibility for RTTI names. 261 if (TVK == TVK_ForRTTIName) 262 return; 263 264 // We want to drop the visibility to hidden for weak type symbols. 265 // This isn't possible if there might be unresolved references 266 // elsewhere that rely on this symbol being visible. 267 268 // This should be kept roughly in sync with setThunkVisibility 269 // in CGVTables.cpp. 270 271 // Preconditions. 272 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 273 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 274 return; 275 276 // Don't override an explicit visibility attribute. 277 if (RD->getExplicitVisibility()) 278 return; 279 280 switch (RD->getTemplateSpecializationKind()) { 281 // We have to disable the optimization if this is an EI definition 282 // because there might be EI declarations in other shared objects. 283 case TSK_ExplicitInstantiationDefinition: 284 case TSK_ExplicitInstantiationDeclaration: 285 return; 286 287 // Every use of a non-template class's type information has to emit it. 288 case TSK_Undeclared: 289 break; 290 291 // In theory, implicit instantiations can ignore the possibility of 292 // an explicit instantiation declaration because there necessarily 293 // must be an EI definition somewhere with default visibility. In 294 // practice, it's possible to have an explicit instantiation for 295 // an arbitrary template class, and linkers aren't necessarily able 296 // to deal with mixed-visibility symbols. 297 case TSK_ExplicitSpecialization: 298 case TSK_ImplicitInstantiation: 299 if (!CodeGenOpts.HiddenWeakTemplateVTables) 300 return; 301 break; 302 } 303 304 // If there's a key function, there may be translation units 305 // that don't have the key function's definition. But ignore 306 // this if we're emitting RTTI under -fno-rtti. 307 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 308 if (Context.getKeyFunction(RD)) 309 return; 310 } 311 312 // Otherwise, drop the visibility to hidden. 313 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 314 GV->setUnnamedAddr(true); 315 } 316 317 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 318 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 319 320 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 321 if (!Str.empty()) 322 return Str; 323 324 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 325 IdentifierInfo *II = ND->getIdentifier(); 326 assert(II && "Attempt to mangle unnamed decl."); 327 328 Str = II->getName(); 329 return Str; 330 } 331 332 SmallString<256> Buffer; 333 llvm::raw_svector_ostream Out(Buffer); 334 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 335 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 336 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 337 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 338 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 339 getCXXABI().getMangleContext().mangleBlock(BD, Out); 340 else 341 getCXXABI().getMangleContext().mangleName(ND, Out); 342 343 // Allocate space for the mangled name. 344 Out.flush(); 345 size_t Length = Buffer.size(); 346 char *Name = MangledNamesAllocator.Allocate<char>(Length); 347 std::copy(Buffer.begin(), Buffer.end(), Name); 348 349 Str = StringRef(Name, Length); 350 351 return Str; 352 } 353 354 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 355 const BlockDecl *BD) { 356 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 357 const Decl *D = GD.getDecl(); 358 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 359 if (D == 0) 360 MangleCtx.mangleGlobalBlock(BD, Out); 361 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 362 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 363 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 364 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 365 else 366 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 367 } 368 369 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 370 return getModule().getNamedValue(Name); 371 } 372 373 /// AddGlobalCtor - Add a function to the list that will be called before 374 /// main() runs. 375 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 376 // FIXME: Type coercion of void()* types. 377 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 378 } 379 380 /// AddGlobalDtor - Add a function to the list that will be called 381 /// when the module is unloaded. 382 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 383 // FIXME: Type coercion of void()* types. 384 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 385 } 386 387 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 388 // Ctor function type is void()*. 389 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 390 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 391 392 // Get the type of a ctor entry, { i32, void ()* }. 393 llvm::StructType *CtorStructTy = 394 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 395 396 // Construct the constructor and destructor arrays. 397 SmallVector<llvm::Constant*, 8> Ctors; 398 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 399 llvm::Constant *S[] = { 400 llvm::ConstantInt::get(Int32Ty, I->second, false), 401 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 402 }; 403 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 404 } 405 406 if (!Ctors.empty()) { 407 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 408 new llvm::GlobalVariable(TheModule, AT, false, 409 llvm::GlobalValue::AppendingLinkage, 410 llvm::ConstantArray::get(AT, Ctors), 411 GlobalName); 412 } 413 } 414 415 llvm::GlobalValue::LinkageTypes 416 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 417 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 418 419 if (Linkage == GVA_Internal) 420 return llvm::Function::InternalLinkage; 421 422 if (D->hasAttr<DLLExportAttr>()) 423 return llvm::Function::DLLExportLinkage; 424 425 if (D->hasAttr<WeakAttr>()) 426 return llvm::Function::WeakAnyLinkage; 427 428 // In C99 mode, 'inline' functions are guaranteed to have a strong 429 // definition somewhere else, so we can use available_externally linkage. 430 if (Linkage == GVA_C99Inline) 431 return llvm::Function::AvailableExternallyLinkage; 432 433 // Note that Apple's kernel linker doesn't support symbol 434 // coalescing, so we need to avoid linkonce and weak linkages there. 435 // Normally, this means we just map to internal, but for explicit 436 // instantiations we'll map to external. 437 438 // In C++, the compiler has to emit a definition in every translation unit 439 // that references the function. We should use linkonce_odr because 440 // a) if all references in this translation unit are optimized away, we 441 // don't need to codegen it. b) if the function persists, it needs to be 442 // merged with other definitions. c) C++ has the ODR, so we know the 443 // definition is dependable. 444 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 445 return !Context.getLangOpts().AppleKext 446 ? llvm::Function::LinkOnceODRLinkage 447 : llvm::Function::InternalLinkage; 448 449 // An explicit instantiation of a template has weak linkage, since 450 // explicit instantiations can occur in multiple translation units 451 // and must all be equivalent. However, we are not allowed to 452 // throw away these explicit instantiations. 453 if (Linkage == GVA_ExplicitTemplateInstantiation) 454 return !Context.getLangOpts().AppleKext 455 ? llvm::Function::WeakODRLinkage 456 : llvm::Function::ExternalLinkage; 457 458 // Otherwise, we have strong external linkage. 459 assert(Linkage == GVA_StrongExternal); 460 return llvm::Function::ExternalLinkage; 461 } 462 463 464 /// SetFunctionDefinitionAttributes - Set attributes for a global. 465 /// 466 /// FIXME: This is currently only done for aliases and functions, but not for 467 /// variables (these details are set in EmitGlobalVarDefinition for variables). 468 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 469 llvm::GlobalValue *GV) { 470 SetCommonAttributes(D, GV); 471 } 472 473 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 474 const CGFunctionInfo &Info, 475 llvm::Function *F) { 476 unsigned CallingConv; 477 AttributeListType AttributeList; 478 ConstructAttributeList(Info, D, AttributeList, CallingConv); 479 F->setAttributes(llvm::AttrListPtr::get(AttributeList)); 480 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 481 } 482 483 /// Determines whether the language options require us to model 484 /// unwind exceptions. We treat -fexceptions as mandating this 485 /// except under the fragile ObjC ABI with only ObjC exceptions 486 /// enabled. This means, for example, that C with -fexceptions 487 /// enables this. 488 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 489 // If exceptions are completely disabled, obviously this is false. 490 if (!LangOpts.Exceptions) return false; 491 492 // If C++ exceptions are enabled, this is true. 493 if (LangOpts.CXXExceptions) return true; 494 495 // If ObjC exceptions are enabled, this depends on the ABI. 496 if (LangOpts.ObjCExceptions) { 497 if (!LangOpts.ObjCNonFragileABI) return false; 498 } 499 500 return true; 501 } 502 503 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 504 llvm::Function *F) { 505 if (CodeGenOpts.UnwindTables) 506 F->setHasUWTable(); 507 508 if (!hasUnwindExceptions(LangOpts)) 509 F->addFnAttr(llvm::Attribute::NoUnwind); 510 511 if (D->hasAttr<NakedAttr>()) { 512 // Naked implies noinline: we should not be inlining such functions. 513 F->addFnAttr(llvm::Attribute::Naked); 514 F->addFnAttr(llvm::Attribute::NoInline); 515 } 516 517 if (D->hasAttr<NoInlineAttr>()) 518 F->addFnAttr(llvm::Attribute::NoInline); 519 520 // (noinline wins over always_inline, and we can't specify both in IR) 521 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 522 !F->hasFnAttr(llvm::Attribute::NoInline)) 523 F->addFnAttr(llvm::Attribute::AlwaysInline); 524 525 // FIXME: Communicate hot and cold attributes to LLVM more directly. 526 if (D->hasAttr<ColdAttr>()) 527 F->addFnAttr(llvm::Attribute::OptimizeForSize); 528 529 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 530 F->setUnnamedAddr(true); 531 532 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 533 F->addFnAttr(llvm::Attribute::StackProtect); 534 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 535 F->addFnAttr(llvm::Attribute::StackProtectReq); 536 537 if (LangOpts.AddressSanitizer) { 538 // When AddressSanitizer is enabled, set AddressSafety attribute 539 // unless __attribute__((no_address_safety_analysis)) is used. 540 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 541 F->addFnAttr(llvm::Attribute::AddressSafety); 542 } 543 544 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 545 if (alignment) 546 F->setAlignment(alignment); 547 548 // C++ ABI requires 2-byte alignment for member functions. 549 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 550 F->setAlignment(2); 551 } 552 553 void CodeGenModule::SetCommonAttributes(const Decl *D, 554 llvm::GlobalValue *GV) { 555 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 556 setGlobalVisibility(GV, ND); 557 else 558 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 559 560 if (D->hasAttr<UsedAttr>()) 561 AddUsedGlobal(GV); 562 563 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 564 GV->setSection(SA->getName()); 565 566 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 567 } 568 569 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 570 llvm::Function *F, 571 const CGFunctionInfo &FI) { 572 SetLLVMFunctionAttributes(D, FI, F); 573 SetLLVMFunctionAttributesForDefinition(D, F); 574 575 F->setLinkage(llvm::Function::InternalLinkage); 576 577 SetCommonAttributes(D, F); 578 } 579 580 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 581 llvm::Function *F, 582 bool IsIncompleteFunction) { 583 if (unsigned IID = F->getIntrinsicID()) { 584 // If this is an intrinsic function, set the function's attributes 585 // to the intrinsic's attributes. 586 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 587 return; 588 } 589 590 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 591 592 if (!IsIncompleteFunction) 593 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 594 595 // Only a few attributes are set on declarations; these may later be 596 // overridden by a definition. 597 598 if (FD->hasAttr<DLLImportAttr>()) { 599 F->setLinkage(llvm::Function::DLLImportLinkage); 600 } else if (FD->hasAttr<WeakAttr>() || 601 FD->isWeakImported()) { 602 // "extern_weak" is overloaded in LLVM; we probably should have 603 // separate linkage types for this. 604 F->setLinkage(llvm::Function::ExternalWeakLinkage); 605 } else { 606 F->setLinkage(llvm::Function::ExternalLinkage); 607 608 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 609 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 610 F->setVisibility(GetLLVMVisibility(LV.visibility())); 611 } 612 } 613 614 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 615 F->setSection(SA->getName()); 616 } 617 618 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 619 assert(!GV->isDeclaration() && 620 "Only globals with definition can force usage."); 621 LLVMUsed.push_back(GV); 622 } 623 624 void CodeGenModule::EmitLLVMUsed() { 625 // Don't create llvm.used if there is no need. 626 if (LLVMUsed.empty()) 627 return; 628 629 // Convert LLVMUsed to what ConstantArray needs. 630 SmallVector<llvm::Constant*, 8> UsedArray; 631 UsedArray.resize(LLVMUsed.size()); 632 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 633 UsedArray[i] = 634 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 635 Int8PtrTy); 636 } 637 638 if (UsedArray.empty()) 639 return; 640 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 641 642 llvm::GlobalVariable *GV = 643 new llvm::GlobalVariable(getModule(), ATy, false, 644 llvm::GlobalValue::AppendingLinkage, 645 llvm::ConstantArray::get(ATy, UsedArray), 646 "llvm.used"); 647 648 GV->setSection("llvm.metadata"); 649 } 650 651 void CodeGenModule::EmitDeferred() { 652 // Emit code for any potentially referenced deferred decls. Since a 653 // previously unused static decl may become used during the generation of code 654 // for a static function, iterate until no changes are made. 655 656 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 657 if (!DeferredVTables.empty()) { 658 const CXXRecordDecl *RD = DeferredVTables.back(); 659 DeferredVTables.pop_back(); 660 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 661 continue; 662 } 663 664 GlobalDecl D = DeferredDeclsToEmit.back(); 665 DeferredDeclsToEmit.pop_back(); 666 667 // Check to see if we've already emitted this. This is necessary 668 // for a couple of reasons: first, decls can end up in the 669 // deferred-decls queue multiple times, and second, decls can end 670 // up with definitions in unusual ways (e.g. by an extern inline 671 // function acquiring a strong function redefinition). Just 672 // ignore these cases. 673 // 674 // TODO: That said, looking this up multiple times is very wasteful. 675 StringRef Name = getMangledName(D); 676 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 677 assert(CGRef && "Deferred decl wasn't referenced?"); 678 679 if (!CGRef->isDeclaration()) 680 continue; 681 682 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 683 // purposes an alias counts as a definition. 684 if (isa<llvm::GlobalAlias>(CGRef)) 685 continue; 686 687 // Otherwise, emit the definition and move on to the next one. 688 EmitGlobalDefinition(D); 689 } 690 } 691 692 void CodeGenModule::EmitGlobalAnnotations() { 693 if (Annotations.empty()) 694 return; 695 696 // Create a new global variable for the ConstantStruct in the Module. 697 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 698 Annotations[0]->getType(), Annotations.size()), Annotations); 699 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 700 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 701 "llvm.global.annotations"); 702 gv->setSection(AnnotationSection); 703 } 704 705 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 706 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 707 if (i != AnnotationStrings.end()) 708 return i->second; 709 710 // Not found yet, create a new global. 711 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 712 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 713 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 714 gv->setSection(AnnotationSection); 715 gv->setUnnamedAddr(true); 716 AnnotationStrings[Str] = gv; 717 return gv; 718 } 719 720 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 721 SourceManager &SM = getContext().getSourceManager(); 722 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 723 if (PLoc.isValid()) 724 return EmitAnnotationString(PLoc.getFilename()); 725 return EmitAnnotationString(SM.getBufferName(Loc)); 726 } 727 728 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 729 SourceManager &SM = getContext().getSourceManager(); 730 PresumedLoc PLoc = SM.getPresumedLoc(L); 731 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 732 SM.getExpansionLineNumber(L); 733 return llvm::ConstantInt::get(Int32Ty, LineNo); 734 } 735 736 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 737 const AnnotateAttr *AA, 738 SourceLocation L) { 739 // Get the globals for file name, annotation, and the line number. 740 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 741 *UnitGV = EmitAnnotationUnit(L), 742 *LineNoCst = EmitAnnotationLineNo(L); 743 744 // Create the ConstantStruct for the global annotation. 745 llvm::Constant *Fields[4] = { 746 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 747 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 748 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 749 LineNoCst 750 }; 751 return llvm::ConstantStruct::getAnon(Fields); 752 } 753 754 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 755 llvm::GlobalValue *GV) { 756 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 757 // Get the struct elements for these annotations. 758 for (specific_attr_iterator<AnnotateAttr> 759 ai = D->specific_attr_begin<AnnotateAttr>(), 760 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 761 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 762 } 763 764 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 765 // Never defer when EmitAllDecls is specified. 766 if (LangOpts.EmitAllDecls) 767 return false; 768 769 return !getContext().DeclMustBeEmitted(Global); 770 } 771 772 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 773 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 774 assert(AA && "No alias?"); 775 776 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 777 778 // See if there is already something with the target's name in the module. 779 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 780 781 llvm::Constant *Aliasee; 782 if (isa<llvm::FunctionType>(DeclTy)) 783 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 784 /*ForVTable=*/false); 785 else 786 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 787 llvm::PointerType::getUnqual(DeclTy), 0); 788 if (!Entry) { 789 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 790 F->setLinkage(llvm::Function::ExternalWeakLinkage); 791 WeakRefReferences.insert(F); 792 } 793 794 return Aliasee; 795 } 796 797 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 798 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 799 800 // Weak references don't produce any output by themselves. 801 if (Global->hasAttr<WeakRefAttr>()) 802 return; 803 804 // If this is an alias definition (which otherwise looks like a declaration) 805 // emit it now. 806 if (Global->hasAttr<AliasAttr>()) 807 return EmitAliasDefinition(GD); 808 809 // If this is CUDA, be selective about which declarations we emit. 810 if (LangOpts.CUDA) { 811 if (CodeGenOpts.CUDAIsDevice) { 812 if (!Global->hasAttr<CUDADeviceAttr>() && 813 !Global->hasAttr<CUDAGlobalAttr>() && 814 !Global->hasAttr<CUDAConstantAttr>() && 815 !Global->hasAttr<CUDASharedAttr>()) 816 return; 817 } else { 818 if (!Global->hasAttr<CUDAHostAttr>() && ( 819 Global->hasAttr<CUDADeviceAttr>() || 820 Global->hasAttr<CUDAConstantAttr>() || 821 Global->hasAttr<CUDASharedAttr>())) 822 return; 823 } 824 } 825 826 // Ignore declarations, they will be emitted on their first use. 827 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 828 // Forward declarations are emitted lazily on first use. 829 if (!FD->doesThisDeclarationHaveABody()) { 830 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 831 return; 832 833 const FunctionDecl *InlineDefinition = 0; 834 FD->getBody(InlineDefinition); 835 836 StringRef MangledName = getMangledName(GD); 837 DeferredDecls.erase(MangledName); 838 EmitGlobalDefinition(InlineDefinition); 839 return; 840 } 841 } else { 842 const VarDecl *VD = cast<VarDecl>(Global); 843 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 844 845 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 846 return; 847 } 848 849 // Defer code generation when possible if this is a static definition, inline 850 // function etc. These we only want to emit if they are used. 851 if (!MayDeferGeneration(Global)) { 852 // Emit the definition if it can't be deferred. 853 EmitGlobalDefinition(GD); 854 return; 855 } 856 857 // If we're deferring emission of a C++ variable with an 858 // initializer, remember the order in which it appeared in the file. 859 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 860 cast<VarDecl>(Global)->hasInit()) { 861 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 862 CXXGlobalInits.push_back(0); 863 } 864 865 // If the value has already been used, add it directly to the 866 // DeferredDeclsToEmit list. 867 StringRef MangledName = getMangledName(GD); 868 if (GetGlobalValue(MangledName)) 869 DeferredDeclsToEmit.push_back(GD); 870 else { 871 // Otherwise, remember that we saw a deferred decl with this name. The 872 // first use of the mangled name will cause it to move into 873 // DeferredDeclsToEmit. 874 DeferredDecls[MangledName] = GD; 875 } 876 } 877 878 namespace { 879 struct FunctionIsDirectlyRecursive : 880 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 881 const StringRef Name; 882 const Builtin::Context &BI; 883 bool Result; 884 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 885 Name(N), BI(C), Result(false) { 886 } 887 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 888 889 bool TraverseCallExpr(CallExpr *E) { 890 const FunctionDecl *FD = E->getDirectCallee(); 891 if (!FD) 892 return true; 893 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 894 if (Attr && Name == Attr->getLabel()) { 895 Result = true; 896 return false; 897 } 898 unsigned BuiltinID = FD->getBuiltinID(); 899 if (!BuiltinID) 900 return true; 901 StringRef BuiltinName = BI.GetName(BuiltinID); 902 if (BuiltinName.startswith("__builtin_") && 903 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 904 Result = true; 905 return false; 906 } 907 return true; 908 } 909 }; 910 } 911 912 // isTriviallyRecursive - Check if this function calls another 913 // decl that, because of the asm attribute or the other decl being a builtin, 914 // ends up pointing to itself. 915 bool 916 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 917 StringRef Name; 918 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 919 // asm labels are a special kind of mangling we have to support. 920 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 921 if (!Attr) 922 return false; 923 Name = Attr->getLabel(); 924 } else { 925 Name = FD->getName(); 926 } 927 928 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 929 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 930 return Walker.Result; 931 } 932 933 bool 934 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 935 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 936 return true; 937 if (CodeGenOpts.OptimizationLevel == 0 && 938 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 939 return false; 940 // PR9614. Avoid cases where the source code is lying to us. An available 941 // externally function should have an equivalent function somewhere else, 942 // but a function that calls itself is clearly not equivalent to the real 943 // implementation. 944 // This happens in glibc's btowc and in some configure checks. 945 return !isTriviallyRecursive(F); 946 } 947 948 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 949 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 950 951 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 952 Context.getSourceManager(), 953 "Generating code for declaration"); 954 955 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 956 // At -O0, don't generate IR for functions with available_externally 957 // linkage. 958 if (!shouldEmitFunction(Function)) 959 return; 960 961 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 962 // Make sure to emit the definition(s) before we emit the thunks. 963 // This is necessary for the generation of certain thunks. 964 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 965 EmitCXXConstructor(CD, GD.getCtorType()); 966 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 967 EmitCXXDestructor(DD, GD.getDtorType()); 968 else 969 EmitGlobalFunctionDefinition(GD); 970 971 if (Method->isVirtual()) 972 getVTables().EmitThunks(GD); 973 974 return; 975 } 976 977 return EmitGlobalFunctionDefinition(GD); 978 } 979 980 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 981 return EmitGlobalVarDefinition(VD); 982 983 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 984 } 985 986 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 987 /// module, create and return an llvm Function with the specified type. If there 988 /// is something in the module with the specified name, return it potentially 989 /// bitcasted to the right type. 990 /// 991 /// If D is non-null, it specifies a decl that correspond to this. This is used 992 /// to set the attributes on the function when it is first created. 993 llvm::Constant * 994 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 995 llvm::Type *Ty, 996 GlobalDecl D, bool ForVTable, 997 llvm::Attributes ExtraAttrs) { 998 // Lookup the entry, lazily creating it if necessary. 999 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1000 if (Entry) { 1001 if (WeakRefReferences.count(Entry)) { 1002 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1003 if (FD && !FD->hasAttr<WeakAttr>()) 1004 Entry->setLinkage(llvm::Function::ExternalLinkage); 1005 1006 WeakRefReferences.erase(Entry); 1007 } 1008 1009 if (Entry->getType()->getElementType() == Ty) 1010 return Entry; 1011 1012 // Make sure the result is of the correct type. 1013 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1014 } 1015 1016 // This function doesn't have a complete type (for example, the return 1017 // type is an incomplete struct). Use a fake type instead, and make 1018 // sure not to try to set attributes. 1019 bool IsIncompleteFunction = false; 1020 1021 llvm::FunctionType *FTy; 1022 if (isa<llvm::FunctionType>(Ty)) { 1023 FTy = cast<llvm::FunctionType>(Ty); 1024 } else { 1025 FTy = llvm::FunctionType::get(VoidTy, false); 1026 IsIncompleteFunction = true; 1027 } 1028 1029 llvm::Function *F = llvm::Function::Create(FTy, 1030 llvm::Function::ExternalLinkage, 1031 MangledName, &getModule()); 1032 assert(F->getName() == MangledName && "name was uniqued!"); 1033 if (D.getDecl()) 1034 SetFunctionAttributes(D, F, IsIncompleteFunction); 1035 if (ExtraAttrs != llvm::Attribute::None) 1036 F->addFnAttr(ExtraAttrs); 1037 1038 // This is the first use or definition of a mangled name. If there is a 1039 // deferred decl with this name, remember that we need to emit it at the end 1040 // of the file. 1041 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1042 if (DDI != DeferredDecls.end()) { 1043 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1044 // list, and remove it from DeferredDecls (since we don't need it anymore). 1045 DeferredDeclsToEmit.push_back(DDI->second); 1046 DeferredDecls.erase(DDI); 1047 1048 // Otherwise, there are cases we have to worry about where we're 1049 // using a declaration for which we must emit a definition but where 1050 // we might not find a top-level definition: 1051 // - member functions defined inline in their classes 1052 // - friend functions defined inline in some class 1053 // - special member functions with implicit definitions 1054 // If we ever change our AST traversal to walk into class methods, 1055 // this will be unnecessary. 1056 // 1057 // We also don't emit a definition for a function if it's going to be an entry 1058 // in a vtable, unless it's already marked as used. 1059 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1060 // Look for a declaration that's lexically in a record. 1061 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1062 do { 1063 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1064 if (FD->isImplicit() && !ForVTable) { 1065 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1066 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1067 break; 1068 } else if (FD->doesThisDeclarationHaveABody()) { 1069 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1070 break; 1071 } 1072 } 1073 FD = FD->getPreviousDecl(); 1074 } while (FD); 1075 } 1076 1077 // Make sure the result is of the requested type. 1078 if (!IsIncompleteFunction) { 1079 assert(F->getType()->getElementType() == Ty); 1080 return F; 1081 } 1082 1083 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1084 return llvm::ConstantExpr::getBitCast(F, PTy); 1085 } 1086 1087 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1088 /// non-null, then this function will use the specified type if it has to 1089 /// create it (this occurs when we see a definition of the function). 1090 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1091 llvm::Type *Ty, 1092 bool ForVTable) { 1093 // If there was no specific requested type, just convert it now. 1094 if (!Ty) 1095 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1096 1097 StringRef MangledName = getMangledName(GD); 1098 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1099 } 1100 1101 /// CreateRuntimeFunction - Create a new runtime function with the specified 1102 /// type and name. 1103 llvm::Constant * 1104 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1105 StringRef Name, 1106 llvm::Attributes ExtraAttrs) { 1107 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1108 ExtraAttrs); 1109 } 1110 1111 /// isTypeConstant - Determine whether an object of this type can be emitted 1112 /// as a constant. 1113 /// 1114 /// If ExcludeCtor is true, the duration when the object's constructor runs 1115 /// will not be considered. The caller will need to verify that the object is 1116 /// not written to during its construction. 1117 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1118 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1119 return false; 1120 1121 if (Context.getLangOpts().CPlusPlus) { 1122 if (const CXXRecordDecl *Record 1123 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1124 return ExcludeCtor && !Record->hasMutableFields() && 1125 Record->hasTrivialDestructor(); 1126 } 1127 1128 return true; 1129 } 1130 1131 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1132 /// create and return an llvm GlobalVariable with the specified type. If there 1133 /// is something in the module with the specified name, return it potentially 1134 /// bitcasted to the right type. 1135 /// 1136 /// If D is non-null, it specifies a decl that correspond to this. This is used 1137 /// to set the attributes on the global when it is first created. 1138 llvm::Constant * 1139 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1140 llvm::PointerType *Ty, 1141 const VarDecl *D, 1142 bool UnnamedAddr) { 1143 // Lookup the entry, lazily creating it if necessary. 1144 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1145 if (Entry) { 1146 if (WeakRefReferences.count(Entry)) { 1147 if (D && !D->hasAttr<WeakAttr>()) 1148 Entry->setLinkage(llvm::Function::ExternalLinkage); 1149 1150 WeakRefReferences.erase(Entry); 1151 } 1152 1153 if (UnnamedAddr) 1154 Entry->setUnnamedAddr(true); 1155 1156 if (Entry->getType() == Ty) 1157 return Entry; 1158 1159 // Make sure the result is of the correct type. 1160 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1161 } 1162 1163 // This is the first use or definition of a mangled name. If there is a 1164 // deferred decl with this name, remember that we need to emit it at the end 1165 // of the file. 1166 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1167 if (DDI != DeferredDecls.end()) { 1168 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1169 // list, and remove it from DeferredDecls (since we don't need it anymore). 1170 DeferredDeclsToEmit.push_back(DDI->second); 1171 DeferredDecls.erase(DDI); 1172 } 1173 1174 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1175 llvm::GlobalVariable *GV = 1176 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1177 llvm::GlobalValue::ExternalLinkage, 1178 0, MangledName, 0, 1179 false, AddrSpace); 1180 1181 // Handle things which are present even on external declarations. 1182 if (D) { 1183 // FIXME: This code is overly simple and should be merged with other global 1184 // handling. 1185 GV->setConstant(isTypeConstant(D->getType(), false)); 1186 1187 // Set linkage and visibility in case we never see a definition. 1188 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1189 if (LV.linkage() != ExternalLinkage) { 1190 // Don't set internal linkage on declarations. 1191 } else { 1192 if (D->hasAttr<DLLImportAttr>()) 1193 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1194 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1195 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1196 1197 // Set visibility on a declaration only if it's explicit. 1198 if (LV.visibilityExplicit()) 1199 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1200 } 1201 1202 GV->setThreadLocal(D->isThreadSpecified()); 1203 } 1204 1205 if (AddrSpace != Ty->getAddressSpace()) 1206 return llvm::ConstantExpr::getBitCast(GV, Ty); 1207 else 1208 return GV; 1209 } 1210 1211 1212 llvm::GlobalVariable * 1213 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1214 llvm::Type *Ty, 1215 llvm::GlobalValue::LinkageTypes Linkage) { 1216 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1217 llvm::GlobalVariable *OldGV = 0; 1218 1219 1220 if (GV) { 1221 // Check if the variable has the right type. 1222 if (GV->getType()->getElementType() == Ty) 1223 return GV; 1224 1225 // Because C++ name mangling, the only way we can end up with an already 1226 // existing global with the same name is if it has been declared extern "C". 1227 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1228 OldGV = GV; 1229 } 1230 1231 // Create a new variable. 1232 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1233 Linkage, 0, Name); 1234 1235 if (OldGV) { 1236 // Replace occurrences of the old variable if needed. 1237 GV->takeName(OldGV); 1238 1239 if (!OldGV->use_empty()) { 1240 llvm::Constant *NewPtrForOldDecl = 1241 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1242 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1243 } 1244 1245 OldGV->eraseFromParent(); 1246 } 1247 1248 return GV; 1249 } 1250 1251 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1252 /// given global variable. If Ty is non-null and if the global doesn't exist, 1253 /// then it will be created with the specified type instead of whatever the 1254 /// normal requested type would be. 1255 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1256 llvm::Type *Ty) { 1257 assert(D->hasGlobalStorage() && "Not a global variable"); 1258 QualType ASTTy = D->getType(); 1259 if (Ty == 0) 1260 Ty = getTypes().ConvertTypeForMem(ASTTy); 1261 1262 llvm::PointerType *PTy = 1263 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1264 1265 StringRef MangledName = getMangledName(D); 1266 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1267 } 1268 1269 /// CreateRuntimeVariable - Create a new runtime global variable with the 1270 /// specified type and name. 1271 llvm::Constant * 1272 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1273 StringRef Name) { 1274 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1275 true); 1276 } 1277 1278 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1279 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1280 1281 if (MayDeferGeneration(D)) { 1282 // If we have not seen a reference to this variable yet, place it 1283 // into the deferred declarations table to be emitted if needed 1284 // later. 1285 StringRef MangledName = getMangledName(D); 1286 if (!GetGlobalValue(MangledName)) { 1287 DeferredDecls[MangledName] = D; 1288 return; 1289 } 1290 } 1291 1292 // The tentative definition is the only definition. 1293 EmitGlobalVarDefinition(D); 1294 } 1295 1296 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1297 if (DefinitionRequired) 1298 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1299 } 1300 1301 llvm::GlobalVariable::LinkageTypes 1302 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1303 if (RD->getLinkage() != ExternalLinkage) 1304 return llvm::GlobalVariable::InternalLinkage; 1305 1306 if (const CXXMethodDecl *KeyFunction 1307 = RD->getASTContext().getKeyFunction(RD)) { 1308 // If this class has a key function, use that to determine the linkage of 1309 // the vtable. 1310 const FunctionDecl *Def = 0; 1311 if (KeyFunction->hasBody(Def)) 1312 KeyFunction = cast<CXXMethodDecl>(Def); 1313 1314 switch (KeyFunction->getTemplateSpecializationKind()) { 1315 case TSK_Undeclared: 1316 case TSK_ExplicitSpecialization: 1317 // When compiling with optimizations turned on, we emit all vtables, 1318 // even if the key function is not defined in the current translation 1319 // unit. If this is the case, use available_externally linkage. 1320 if (!Def && CodeGenOpts.OptimizationLevel) 1321 return llvm::GlobalVariable::AvailableExternallyLinkage; 1322 1323 if (KeyFunction->isInlined()) 1324 return !Context.getLangOpts().AppleKext ? 1325 llvm::GlobalVariable::LinkOnceODRLinkage : 1326 llvm::Function::InternalLinkage; 1327 1328 return llvm::GlobalVariable::ExternalLinkage; 1329 1330 case TSK_ImplicitInstantiation: 1331 return !Context.getLangOpts().AppleKext ? 1332 llvm::GlobalVariable::LinkOnceODRLinkage : 1333 llvm::Function::InternalLinkage; 1334 1335 case TSK_ExplicitInstantiationDefinition: 1336 return !Context.getLangOpts().AppleKext ? 1337 llvm::GlobalVariable::WeakODRLinkage : 1338 llvm::Function::InternalLinkage; 1339 1340 case TSK_ExplicitInstantiationDeclaration: 1341 // FIXME: Use available_externally linkage. However, this currently 1342 // breaks LLVM's build due to undefined symbols. 1343 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1344 return !Context.getLangOpts().AppleKext ? 1345 llvm::GlobalVariable::LinkOnceODRLinkage : 1346 llvm::Function::InternalLinkage; 1347 } 1348 } 1349 1350 if (Context.getLangOpts().AppleKext) 1351 return llvm::Function::InternalLinkage; 1352 1353 switch (RD->getTemplateSpecializationKind()) { 1354 case TSK_Undeclared: 1355 case TSK_ExplicitSpecialization: 1356 case TSK_ImplicitInstantiation: 1357 // FIXME: Use available_externally linkage. However, this currently 1358 // breaks LLVM's build due to undefined symbols. 1359 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1360 case TSK_ExplicitInstantiationDeclaration: 1361 return llvm::GlobalVariable::LinkOnceODRLinkage; 1362 1363 case TSK_ExplicitInstantiationDefinition: 1364 return llvm::GlobalVariable::WeakODRLinkage; 1365 } 1366 1367 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1368 } 1369 1370 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1371 return Context.toCharUnitsFromBits( 1372 TheTargetData.getTypeStoreSizeInBits(Ty)); 1373 } 1374 1375 llvm::Constant * 1376 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1377 const Expr *rawInit) { 1378 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1379 if (const ExprWithCleanups *withCleanups = 1380 dyn_cast<ExprWithCleanups>(rawInit)) { 1381 cleanups = withCleanups->getObjects(); 1382 rawInit = withCleanups->getSubExpr(); 1383 } 1384 1385 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1386 if (!init || !init->initializesStdInitializerList() || 1387 init->getNumInits() == 0) 1388 return 0; 1389 1390 ASTContext &ctx = getContext(); 1391 unsigned numInits = init->getNumInits(); 1392 // FIXME: This check is here because we would otherwise silently miscompile 1393 // nested global std::initializer_lists. Better would be to have a real 1394 // implementation. 1395 for (unsigned i = 0; i < numInits; ++i) { 1396 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1397 if (inner && inner->initializesStdInitializerList()) { 1398 ErrorUnsupported(inner, "nested global std::initializer_list"); 1399 return 0; 1400 } 1401 } 1402 1403 // Synthesize a fake VarDecl for the array and initialize that. 1404 QualType elementType = init->getInit(0)->getType(); 1405 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1406 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1407 ArrayType::Normal, 0); 1408 1409 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1410 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1411 arrayType, D->getLocation()); 1412 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1413 D->getDeclContext()), 1414 D->getLocStart(), D->getLocation(), 1415 name, arrayType, sourceInfo, 1416 SC_Static, SC_Static); 1417 1418 // Now clone the InitListExpr to initialize the array instead. 1419 // Incredible hack: we want to use the existing InitListExpr here, so we need 1420 // to tell it that it no longer initializes a std::initializer_list. 1421 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1422 const_cast<InitListExpr*>(init)->getInits(), 1423 init->getNumInits(), 1424 init->getRBraceLoc()); 1425 arrayInit->setType(arrayType); 1426 1427 if (!cleanups.empty()) 1428 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1429 1430 backingArray->setInit(arrayInit); 1431 1432 // Emit the definition of the array. 1433 EmitGlobalVarDefinition(backingArray); 1434 1435 // Inspect the initializer list to validate it and determine its type. 1436 // FIXME: doing this every time is probably inefficient; caching would be nice 1437 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1438 RecordDecl::field_iterator field = record->field_begin(); 1439 if (field == record->field_end()) { 1440 ErrorUnsupported(D, "weird std::initializer_list"); 1441 return 0; 1442 } 1443 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1444 // Start pointer. 1445 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1446 ErrorUnsupported(D, "weird std::initializer_list"); 1447 return 0; 1448 } 1449 ++field; 1450 if (field == record->field_end()) { 1451 ErrorUnsupported(D, "weird std::initializer_list"); 1452 return 0; 1453 } 1454 bool isStartEnd = false; 1455 if (ctx.hasSameType(field->getType(), elementPtr)) { 1456 // End pointer. 1457 isStartEnd = true; 1458 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1459 ErrorUnsupported(D, "weird std::initializer_list"); 1460 return 0; 1461 } 1462 1463 // Now build an APValue representing the std::initializer_list. 1464 APValue initListValue(APValue::UninitStruct(), 0, 2); 1465 APValue &startField = initListValue.getStructField(0); 1466 APValue::LValuePathEntry startOffsetPathEntry; 1467 startOffsetPathEntry.ArrayIndex = 0; 1468 startField = APValue(APValue::LValueBase(backingArray), 1469 CharUnits::fromQuantity(0), 1470 llvm::makeArrayRef(startOffsetPathEntry), 1471 /*IsOnePastTheEnd=*/false, 0); 1472 1473 if (isStartEnd) { 1474 APValue &endField = initListValue.getStructField(1); 1475 APValue::LValuePathEntry endOffsetPathEntry; 1476 endOffsetPathEntry.ArrayIndex = numInits; 1477 endField = APValue(APValue::LValueBase(backingArray), 1478 ctx.getTypeSizeInChars(elementType) * numInits, 1479 llvm::makeArrayRef(endOffsetPathEntry), 1480 /*IsOnePastTheEnd=*/true, 0); 1481 } else { 1482 APValue &sizeField = initListValue.getStructField(1); 1483 sizeField = APValue(llvm::APSInt(numElements)); 1484 } 1485 1486 // Emit the constant for the initializer_list. 1487 llvm::Constant *llvmInit = 1488 EmitConstantValueForMemory(initListValue, D->getType()); 1489 assert(llvmInit && "failed to initialize as constant"); 1490 return llvmInit; 1491 } 1492 1493 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1494 unsigned AddrSpace) { 1495 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1496 if (D->hasAttr<CUDAConstantAttr>()) 1497 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1498 else if (D->hasAttr<CUDASharedAttr>()) 1499 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1500 else 1501 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1502 } 1503 1504 return AddrSpace; 1505 } 1506 1507 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1508 llvm::Constant *Init = 0; 1509 QualType ASTTy = D->getType(); 1510 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1511 bool NeedsGlobalCtor = false; 1512 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1513 1514 const VarDecl *InitDecl; 1515 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1516 1517 if (!InitExpr) { 1518 // This is a tentative definition; tentative definitions are 1519 // implicitly initialized with { 0 }. 1520 // 1521 // Note that tentative definitions are only emitted at the end of 1522 // a translation unit, so they should never have incomplete 1523 // type. In addition, EmitTentativeDefinition makes sure that we 1524 // never attempt to emit a tentative definition if a real one 1525 // exists. A use may still exists, however, so we still may need 1526 // to do a RAUW. 1527 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1528 Init = EmitNullConstant(D->getType()); 1529 } else { 1530 // If this is a std::initializer_list, emit the special initializer. 1531 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1532 // An empty init list will perform zero-initialization, which happens 1533 // to be exactly what we want. 1534 // FIXME: It does so in a global constructor, which is *not* what we 1535 // want. 1536 1537 if (!Init) 1538 Init = EmitConstantInit(*InitDecl); 1539 if (!Init) { 1540 QualType T = InitExpr->getType(); 1541 if (D->getType()->isReferenceType()) 1542 T = D->getType(); 1543 1544 if (getLangOpts().CPlusPlus) { 1545 Init = EmitNullConstant(T); 1546 NeedsGlobalCtor = true; 1547 } else { 1548 ErrorUnsupported(D, "static initializer"); 1549 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1550 } 1551 } else { 1552 // We don't need an initializer, so remove the entry for the delayed 1553 // initializer position (just in case this entry was delayed) if we 1554 // also don't need to register a destructor. 1555 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1556 DelayedCXXInitPosition.erase(D); 1557 } 1558 } 1559 1560 llvm::Type* InitType = Init->getType(); 1561 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1562 1563 // Strip off a bitcast if we got one back. 1564 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1565 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1566 // all zero index gep. 1567 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1568 Entry = CE->getOperand(0); 1569 } 1570 1571 // Entry is now either a Function or GlobalVariable. 1572 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1573 1574 // We have a definition after a declaration with the wrong type. 1575 // We must make a new GlobalVariable* and update everything that used OldGV 1576 // (a declaration or tentative definition) with the new GlobalVariable* 1577 // (which will be a definition). 1578 // 1579 // This happens if there is a prototype for a global (e.g. 1580 // "extern int x[];") and then a definition of a different type (e.g. 1581 // "int x[10];"). This also happens when an initializer has a different type 1582 // from the type of the global (this happens with unions). 1583 if (GV == 0 || 1584 GV->getType()->getElementType() != InitType || 1585 GV->getType()->getAddressSpace() != 1586 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1587 1588 // Move the old entry aside so that we'll create a new one. 1589 Entry->setName(StringRef()); 1590 1591 // Make a new global with the correct type, this is now guaranteed to work. 1592 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1593 1594 // Replace all uses of the old global with the new global 1595 llvm::Constant *NewPtrForOldDecl = 1596 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1597 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1598 1599 // Erase the old global, since it is no longer used. 1600 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1601 } 1602 1603 if (D->hasAttr<AnnotateAttr>()) 1604 AddGlobalAnnotations(D, GV); 1605 1606 GV->setInitializer(Init); 1607 1608 // If it is safe to mark the global 'constant', do so now. 1609 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1610 isTypeConstant(D->getType(), true)); 1611 1612 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1613 1614 // Set the llvm linkage type as appropriate. 1615 llvm::GlobalValue::LinkageTypes Linkage = 1616 GetLLVMLinkageVarDefinition(D, GV); 1617 GV->setLinkage(Linkage); 1618 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1619 // common vars aren't constant even if declared const. 1620 GV->setConstant(false); 1621 1622 SetCommonAttributes(D, GV); 1623 1624 // Emit the initializer function if necessary. 1625 if (NeedsGlobalCtor || NeedsGlobalDtor) 1626 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1627 1628 // Emit global variable debug information. 1629 if (CGDebugInfo *DI = getModuleDebugInfo()) 1630 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1631 DI->EmitGlobalVariable(GV, D); 1632 } 1633 1634 llvm::GlobalValue::LinkageTypes 1635 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1636 llvm::GlobalVariable *GV) { 1637 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1638 if (Linkage == GVA_Internal) 1639 return llvm::Function::InternalLinkage; 1640 else if (D->hasAttr<DLLImportAttr>()) 1641 return llvm::Function::DLLImportLinkage; 1642 else if (D->hasAttr<DLLExportAttr>()) 1643 return llvm::Function::DLLExportLinkage; 1644 else if (D->hasAttr<WeakAttr>()) { 1645 if (GV->isConstant()) 1646 return llvm::GlobalVariable::WeakODRLinkage; 1647 else 1648 return llvm::GlobalVariable::WeakAnyLinkage; 1649 } else if (Linkage == GVA_TemplateInstantiation || 1650 Linkage == GVA_ExplicitTemplateInstantiation) 1651 return llvm::GlobalVariable::WeakODRLinkage; 1652 else if (!getLangOpts().CPlusPlus && 1653 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1654 D->getAttr<CommonAttr>()) && 1655 !D->hasExternalStorage() && !D->getInit() && 1656 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1657 !D->getAttr<WeakImportAttr>()) { 1658 // Thread local vars aren't considered common linkage. 1659 return llvm::GlobalVariable::CommonLinkage; 1660 } 1661 return llvm::GlobalVariable::ExternalLinkage; 1662 } 1663 1664 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1665 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1666 /// existing call uses of the old function in the module, this adjusts them to 1667 /// call the new function directly. 1668 /// 1669 /// This is not just a cleanup: the always_inline pass requires direct calls to 1670 /// functions to be able to inline them. If there is a bitcast in the way, it 1671 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1672 /// run at -O0. 1673 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1674 llvm::Function *NewFn) { 1675 // If we're redefining a global as a function, don't transform it. 1676 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1677 if (OldFn == 0) return; 1678 1679 llvm::Type *NewRetTy = NewFn->getReturnType(); 1680 SmallVector<llvm::Value*, 4> ArgList; 1681 1682 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1683 UI != E; ) { 1684 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1685 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1686 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1687 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1688 llvm::CallSite CS(CI); 1689 if (!CI || !CS.isCallee(I)) continue; 1690 1691 // If the return types don't match exactly, and if the call isn't dead, then 1692 // we can't transform this call. 1693 if (CI->getType() != NewRetTy && !CI->use_empty()) 1694 continue; 1695 1696 // Get the attribute list. 1697 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1698 llvm::AttrListPtr AttrList = CI->getAttributes(); 1699 1700 // Get any return attributes. 1701 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1702 1703 // Add the return attributes. 1704 if (RAttrs) 1705 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1706 1707 // If the function was passed too few arguments, don't transform. If extra 1708 // arguments were passed, we silently drop them. If any of the types 1709 // mismatch, we don't transform. 1710 unsigned ArgNo = 0; 1711 bool DontTransform = false; 1712 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1713 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1714 if (CS.arg_size() == ArgNo || 1715 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1716 DontTransform = true; 1717 break; 1718 } 1719 1720 // Add any parameter attributes. 1721 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1722 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1723 } 1724 if (DontTransform) 1725 continue; 1726 1727 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1728 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1729 1730 // Okay, we can transform this. Create the new call instruction and copy 1731 // over the required information. 1732 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1733 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1734 ArgList.clear(); 1735 if (!NewCall->getType()->isVoidTy()) 1736 NewCall->takeName(CI); 1737 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec)); 1738 NewCall->setCallingConv(CI->getCallingConv()); 1739 1740 // Finally, remove the old call, replacing any uses with the new one. 1741 if (!CI->use_empty()) 1742 CI->replaceAllUsesWith(NewCall); 1743 1744 // Copy debug location attached to CI. 1745 if (!CI->getDebugLoc().isUnknown()) 1746 NewCall->setDebugLoc(CI->getDebugLoc()); 1747 CI->eraseFromParent(); 1748 } 1749 } 1750 1751 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1752 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1753 // If we have a definition, this might be a deferred decl. If the 1754 // instantiation is explicit, make sure we emit it at the end. 1755 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1756 GetAddrOfGlobalVar(VD); 1757 } 1758 1759 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1760 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1761 1762 // Compute the function info and LLVM type. 1763 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1764 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1765 1766 // Get or create the prototype for the function. 1767 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1768 1769 // Strip off a bitcast if we got one back. 1770 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1771 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1772 Entry = CE->getOperand(0); 1773 } 1774 1775 1776 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1777 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1778 1779 // If the types mismatch then we have to rewrite the definition. 1780 assert(OldFn->isDeclaration() && 1781 "Shouldn't replace non-declaration"); 1782 1783 // F is the Function* for the one with the wrong type, we must make a new 1784 // Function* and update everything that used F (a declaration) with the new 1785 // Function* (which will be a definition). 1786 // 1787 // This happens if there is a prototype for a function 1788 // (e.g. "int f()") and then a definition of a different type 1789 // (e.g. "int f(int x)"). Move the old function aside so that it 1790 // doesn't interfere with GetAddrOfFunction. 1791 OldFn->setName(StringRef()); 1792 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1793 1794 // If this is an implementation of a function without a prototype, try to 1795 // replace any existing uses of the function (which may be calls) with uses 1796 // of the new function 1797 if (D->getType()->isFunctionNoProtoType()) { 1798 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1799 OldFn->removeDeadConstantUsers(); 1800 } 1801 1802 // Replace uses of F with the Function we will endow with a body. 1803 if (!Entry->use_empty()) { 1804 llvm::Constant *NewPtrForOldDecl = 1805 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1806 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1807 } 1808 1809 // Ok, delete the old function now, which is dead. 1810 OldFn->eraseFromParent(); 1811 1812 Entry = NewFn; 1813 } 1814 1815 // We need to set linkage and visibility on the function before 1816 // generating code for it because various parts of IR generation 1817 // want to propagate this information down (e.g. to local static 1818 // declarations). 1819 llvm::Function *Fn = cast<llvm::Function>(Entry); 1820 setFunctionLinkage(D, Fn); 1821 1822 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1823 setGlobalVisibility(Fn, D); 1824 1825 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1826 1827 SetFunctionDefinitionAttributes(D, Fn); 1828 SetLLVMFunctionAttributesForDefinition(D, Fn); 1829 1830 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1831 AddGlobalCtor(Fn, CA->getPriority()); 1832 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1833 AddGlobalDtor(Fn, DA->getPriority()); 1834 if (D->hasAttr<AnnotateAttr>()) 1835 AddGlobalAnnotations(D, Fn); 1836 } 1837 1838 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1839 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1840 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1841 assert(AA && "Not an alias?"); 1842 1843 StringRef MangledName = getMangledName(GD); 1844 1845 // If there is a definition in the module, then it wins over the alias. 1846 // This is dubious, but allow it to be safe. Just ignore the alias. 1847 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1848 if (Entry && !Entry->isDeclaration()) 1849 return; 1850 1851 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1852 1853 // Create a reference to the named value. This ensures that it is emitted 1854 // if a deferred decl. 1855 llvm::Constant *Aliasee; 1856 if (isa<llvm::FunctionType>(DeclTy)) 1857 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1858 /*ForVTable=*/false); 1859 else 1860 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1861 llvm::PointerType::getUnqual(DeclTy), 0); 1862 1863 // Create the new alias itself, but don't set a name yet. 1864 llvm::GlobalValue *GA = 1865 new llvm::GlobalAlias(Aliasee->getType(), 1866 llvm::Function::ExternalLinkage, 1867 "", Aliasee, &getModule()); 1868 1869 if (Entry) { 1870 assert(Entry->isDeclaration()); 1871 1872 // If there is a declaration in the module, then we had an extern followed 1873 // by the alias, as in: 1874 // extern int test6(); 1875 // ... 1876 // int test6() __attribute__((alias("test7"))); 1877 // 1878 // Remove it and replace uses of it with the alias. 1879 GA->takeName(Entry); 1880 1881 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1882 Entry->getType())); 1883 Entry->eraseFromParent(); 1884 } else { 1885 GA->setName(MangledName); 1886 } 1887 1888 // Set attributes which are particular to an alias; this is a 1889 // specialization of the attributes which may be set on a global 1890 // variable/function. 1891 if (D->hasAttr<DLLExportAttr>()) { 1892 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1893 // The dllexport attribute is ignored for undefined symbols. 1894 if (FD->hasBody()) 1895 GA->setLinkage(llvm::Function::DLLExportLinkage); 1896 } else { 1897 GA->setLinkage(llvm::Function::DLLExportLinkage); 1898 } 1899 } else if (D->hasAttr<WeakAttr>() || 1900 D->hasAttr<WeakRefAttr>() || 1901 D->isWeakImported()) { 1902 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1903 } 1904 1905 SetCommonAttributes(D, GA); 1906 } 1907 1908 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1909 ArrayRef<llvm::Type*> Tys) { 1910 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1911 Tys); 1912 } 1913 1914 static llvm::StringMapEntry<llvm::Constant*> & 1915 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1916 const StringLiteral *Literal, 1917 bool TargetIsLSB, 1918 bool &IsUTF16, 1919 unsigned &StringLength) { 1920 StringRef String = Literal->getString(); 1921 unsigned NumBytes = String.size(); 1922 1923 // Check for simple case. 1924 if (!Literal->containsNonAsciiOrNull()) { 1925 StringLength = NumBytes; 1926 return Map.GetOrCreateValue(String); 1927 } 1928 1929 // Otherwise, convert the UTF8 literals into a string of shorts. 1930 IsUTF16 = true; 1931 1932 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1933 const UTF8 *FromPtr = (UTF8 *)String.data(); 1934 UTF16 *ToPtr = &ToBuf[0]; 1935 1936 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1937 &ToPtr, ToPtr + NumBytes, 1938 strictConversion); 1939 1940 // ConvertUTF8toUTF16 returns the length in ToPtr. 1941 StringLength = ToPtr - &ToBuf[0]; 1942 1943 // Add an explicit null. 1944 *ToPtr = 0; 1945 return Map. 1946 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1947 (StringLength + 1) * 2)); 1948 } 1949 1950 static llvm::StringMapEntry<llvm::Constant*> & 1951 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1952 const StringLiteral *Literal, 1953 unsigned &StringLength) { 1954 StringRef String = Literal->getString(); 1955 StringLength = String.size(); 1956 return Map.GetOrCreateValue(String); 1957 } 1958 1959 llvm::Constant * 1960 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1961 unsigned StringLength = 0; 1962 bool isUTF16 = false; 1963 llvm::StringMapEntry<llvm::Constant*> &Entry = 1964 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1965 getTargetData().isLittleEndian(), 1966 isUTF16, StringLength); 1967 1968 if (llvm::Constant *C = Entry.getValue()) 1969 return C; 1970 1971 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1972 llvm::Constant *Zeros[] = { Zero, Zero }; 1973 1974 // If we don't already have it, get __CFConstantStringClassReference. 1975 if (!CFConstantStringClassRef) { 1976 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1977 Ty = llvm::ArrayType::get(Ty, 0); 1978 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1979 "__CFConstantStringClassReference"); 1980 // Decay array -> ptr 1981 CFConstantStringClassRef = 1982 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1983 } 1984 1985 QualType CFTy = getContext().getCFConstantStringType(); 1986 1987 llvm::StructType *STy = 1988 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1989 1990 llvm::Constant *Fields[4]; 1991 1992 // Class pointer. 1993 Fields[0] = CFConstantStringClassRef; 1994 1995 // Flags. 1996 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1997 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1998 llvm::ConstantInt::get(Ty, 0x07C8); 1999 2000 // String pointer. 2001 llvm::Constant *C = 0; 2002 if (isUTF16) { 2003 ArrayRef<uint16_t> Arr = 2004 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2005 Entry.getKey().size() / 2); 2006 C = llvm::ConstantDataArray::get(VMContext, Arr); 2007 } else { 2008 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2009 } 2010 2011 llvm::GlobalValue::LinkageTypes Linkage; 2012 if (isUTF16) 2013 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2014 Linkage = llvm::GlobalValue::InternalLinkage; 2015 else 2016 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2017 // when using private linkage. It is not clear if this is a bug in ld 2018 // or a reasonable new restriction. 2019 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2020 2021 // Note: -fwritable-strings doesn't make the backing store strings of 2022 // CFStrings writable. (See <rdar://problem/10657500>) 2023 llvm::GlobalVariable *GV = 2024 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2025 Linkage, C, ".str"); 2026 GV->setUnnamedAddr(true); 2027 if (isUTF16) { 2028 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2029 GV->setAlignment(Align.getQuantity()); 2030 } else { 2031 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2032 GV->setAlignment(Align.getQuantity()); 2033 } 2034 2035 // String. 2036 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2037 2038 if (isUTF16) 2039 // Cast the UTF16 string to the correct type. 2040 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2041 2042 // String length. 2043 Ty = getTypes().ConvertType(getContext().LongTy); 2044 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2045 2046 // The struct. 2047 C = llvm::ConstantStruct::get(STy, Fields); 2048 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2049 llvm::GlobalVariable::PrivateLinkage, C, 2050 "_unnamed_cfstring_"); 2051 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2052 GV->setSection(Sect); 2053 Entry.setValue(GV); 2054 2055 return GV; 2056 } 2057 2058 static RecordDecl * 2059 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2060 DeclContext *DC, IdentifierInfo *Id) { 2061 SourceLocation Loc; 2062 if (Ctx.getLangOpts().CPlusPlus) 2063 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2064 else 2065 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2066 } 2067 2068 llvm::Constant * 2069 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2070 unsigned StringLength = 0; 2071 llvm::StringMapEntry<llvm::Constant*> &Entry = 2072 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2073 2074 if (llvm::Constant *C = Entry.getValue()) 2075 return C; 2076 2077 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2078 llvm::Constant *Zeros[] = { Zero, Zero }; 2079 2080 // If we don't already have it, get _NSConstantStringClassReference. 2081 if (!ConstantStringClassRef) { 2082 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2083 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2084 llvm::Constant *GV; 2085 if (LangOpts.ObjCNonFragileABI) { 2086 std::string str = 2087 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2088 : "OBJC_CLASS_$_" + StringClass; 2089 GV = getObjCRuntime().GetClassGlobal(str); 2090 // Make sure the result is of the correct type. 2091 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2092 ConstantStringClassRef = 2093 llvm::ConstantExpr::getBitCast(GV, PTy); 2094 } else { 2095 std::string str = 2096 StringClass.empty() ? "_NSConstantStringClassReference" 2097 : "_" + StringClass + "ClassReference"; 2098 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2099 GV = CreateRuntimeVariable(PTy, str); 2100 // Decay array -> ptr 2101 ConstantStringClassRef = 2102 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2103 } 2104 } 2105 2106 if (!NSConstantStringType) { 2107 // Construct the type for a constant NSString. 2108 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2109 Context.getTranslationUnitDecl(), 2110 &Context.Idents.get("__builtin_NSString")); 2111 D->startDefinition(); 2112 2113 QualType FieldTypes[3]; 2114 2115 // const int *isa; 2116 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2117 // const char *str; 2118 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2119 // unsigned int length; 2120 FieldTypes[2] = Context.UnsignedIntTy; 2121 2122 // Create fields 2123 for (unsigned i = 0; i < 3; ++i) { 2124 FieldDecl *Field = FieldDecl::Create(Context, D, 2125 SourceLocation(), 2126 SourceLocation(), 0, 2127 FieldTypes[i], /*TInfo=*/0, 2128 /*BitWidth=*/0, 2129 /*Mutable=*/false, 2130 ICIS_NoInit); 2131 Field->setAccess(AS_public); 2132 D->addDecl(Field); 2133 } 2134 2135 D->completeDefinition(); 2136 QualType NSTy = Context.getTagDeclType(D); 2137 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2138 } 2139 2140 llvm::Constant *Fields[3]; 2141 2142 // Class pointer. 2143 Fields[0] = ConstantStringClassRef; 2144 2145 // String pointer. 2146 llvm::Constant *C = 2147 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2148 2149 llvm::GlobalValue::LinkageTypes Linkage; 2150 bool isConstant; 2151 Linkage = llvm::GlobalValue::PrivateLinkage; 2152 isConstant = !LangOpts.WritableStrings; 2153 2154 llvm::GlobalVariable *GV = 2155 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2156 ".str"); 2157 GV->setUnnamedAddr(true); 2158 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2159 GV->setAlignment(Align.getQuantity()); 2160 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2161 2162 // String length. 2163 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2164 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2165 2166 // The struct. 2167 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2168 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2169 llvm::GlobalVariable::PrivateLinkage, C, 2170 "_unnamed_nsstring_"); 2171 // FIXME. Fix section. 2172 if (const char *Sect = 2173 LangOpts.ObjCNonFragileABI 2174 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2175 : getContext().getTargetInfo().getNSStringSection()) 2176 GV->setSection(Sect); 2177 Entry.setValue(GV); 2178 2179 return GV; 2180 } 2181 2182 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2183 if (ObjCFastEnumerationStateType.isNull()) { 2184 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2185 Context.getTranslationUnitDecl(), 2186 &Context.Idents.get("__objcFastEnumerationState")); 2187 D->startDefinition(); 2188 2189 QualType FieldTypes[] = { 2190 Context.UnsignedLongTy, 2191 Context.getPointerType(Context.getObjCIdType()), 2192 Context.getPointerType(Context.UnsignedLongTy), 2193 Context.getConstantArrayType(Context.UnsignedLongTy, 2194 llvm::APInt(32, 5), ArrayType::Normal, 0) 2195 }; 2196 2197 for (size_t i = 0; i < 4; ++i) { 2198 FieldDecl *Field = FieldDecl::Create(Context, 2199 D, 2200 SourceLocation(), 2201 SourceLocation(), 0, 2202 FieldTypes[i], /*TInfo=*/0, 2203 /*BitWidth=*/0, 2204 /*Mutable=*/false, 2205 ICIS_NoInit); 2206 Field->setAccess(AS_public); 2207 D->addDecl(Field); 2208 } 2209 2210 D->completeDefinition(); 2211 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2212 } 2213 2214 return ObjCFastEnumerationStateType; 2215 } 2216 2217 llvm::Constant * 2218 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2219 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2220 2221 // Don't emit it as the address of the string, emit the string data itself 2222 // as an inline array. 2223 if (E->getCharByteWidth() == 1) { 2224 SmallString<64> Str(E->getString()); 2225 2226 // Resize the string to the right size, which is indicated by its type. 2227 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2228 Str.resize(CAT->getSize().getZExtValue()); 2229 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2230 } 2231 2232 llvm::ArrayType *AType = 2233 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2234 llvm::Type *ElemTy = AType->getElementType(); 2235 unsigned NumElements = AType->getNumElements(); 2236 2237 // Wide strings have either 2-byte or 4-byte elements. 2238 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2239 SmallVector<uint16_t, 32> Elements; 2240 Elements.reserve(NumElements); 2241 2242 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2243 Elements.push_back(E->getCodeUnit(i)); 2244 Elements.resize(NumElements); 2245 return llvm::ConstantDataArray::get(VMContext, Elements); 2246 } 2247 2248 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2249 SmallVector<uint32_t, 32> Elements; 2250 Elements.reserve(NumElements); 2251 2252 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2253 Elements.push_back(E->getCodeUnit(i)); 2254 Elements.resize(NumElements); 2255 return llvm::ConstantDataArray::get(VMContext, Elements); 2256 } 2257 2258 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2259 /// constant array for the given string literal. 2260 llvm::Constant * 2261 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2262 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2263 if (S->isAscii() || S->isUTF8()) { 2264 SmallString<64> Str(S->getString()); 2265 2266 // Resize the string to the right size, which is indicated by its type. 2267 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2268 Str.resize(CAT->getSize().getZExtValue()); 2269 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2270 } 2271 2272 // FIXME: the following does not memoize wide strings. 2273 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2274 llvm::GlobalVariable *GV = 2275 new llvm::GlobalVariable(getModule(),C->getType(), 2276 !LangOpts.WritableStrings, 2277 llvm::GlobalValue::PrivateLinkage, 2278 C,".str"); 2279 2280 GV->setAlignment(Align.getQuantity()); 2281 GV->setUnnamedAddr(true); 2282 return GV; 2283 } 2284 2285 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2286 /// array for the given ObjCEncodeExpr node. 2287 llvm::Constant * 2288 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2289 std::string Str; 2290 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2291 2292 return GetAddrOfConstantCString(Str); 2293 } 2294 2295 2296 /// GenerateWritableString -- Creates storage for a string literal. 2297 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2298 bool constant, 2299 CodeGenModule &CGM, 2300 const char *GlobalName, 2301 unsigned Alignment) { 2302 // Create Constant for this string literal. Don't add a '\0'. 2303 llvm::Constant *C = 2304 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2305 2306 // Create a global variable for this string 2307 llvm::GlobalVariable *GV = 2308 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2309 llvm::GlobalValue::PrivateLinkage, 2310 C, GlobalName); 2311 GV->setAlignment(Alignment); 2312 GV->setUnnamedAddr(true); 2313 return GV; 2314 } 2315 2316 /// GetAddrOfConstantString - Returns a pointer to a character array 2317 /// containing the literal. This contents are exactly that of the 2318 /// given string, i.e. it will not be null terminated automatically; 2319 /// see GetAddrOfConstantCString. Note that whether the result is 2320 /// actually a pointer to an LLVM constant depends on 2321 /// Feature.WriteableStrings. 2322 /// 2323 /// The result has pointer to array type. 2324 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2325 const char *GlobalName, 2326 unsigned Alignment) { 2327 // Get the default prefix if a name wasn't specified. 2328 if (!GlobalName) 2329 GlobalName = ".str"; 2330 2331 // Don't share any string literals if strings aren't constant. 2332 if (LangOpts.WritableStrings) 2333 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2334 2335 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2336 ConstantStringMap.GetOrCreateValue(Str); 2337 2338 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2339 if (Alignment > GV->getAlignment()) { 2340 GV->setAlignment(Alignment); 2341 } 2342 return GV; 2343 } 2344 2345 // Create a global variable for this. 2346 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2347 Alignment); 2348 Entry.setValue(GV); 2349 return GV; 2350 } 2351 2352 /// GetAddrOfConstantCString - Returns a pointer to a character 2353 /// array containing the literal and a terminating '\0' 2354 /// character. The result has pointer to array type. 2355 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2356 const char *GlobalName, 2357 unsigned Alignment) { 2358 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2359 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2360 } 2361 2362 /// EmitObjCPropertyImplementations - Emit information for synthesized 2363 /// properties for an implementation. 2364 void CodeGenModule::EmitObjCPropertyImplementations(const 2365 ObjCImplementationDecl *D) { 2366 for (ObjCImplementationDecl::propimpl_iterator 2367 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2368 ObjCPropertyImplDecl *PID = *i; 2369 2370 // Dynamic is just for type-checking. 2371 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2372 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2373 2374 // Determine which methods need to be implemented, some may have 2375 // been overridden. Note that ::isSynthesized is not the method 2376 // we want, that just indicates if the decl came from a 2377 // property. What we want to know is if the method is defined in 2378 // this implementation. 2379 if (!D->getInstanceMethod(PD->getGetterName())) 2380 CodeGenFunction(*this).GenerateObjCGetter( 2381 const_cast<ObjCImplementationDecl *>(D), PID); 2382 if (!PD->isReadOnly() && 2383 !D->getInstanceMethod(PD->getSetterName())) 2384 CodeGenFunction(*this).GenerateObjCSetter( 2385 const_cast<ObjCImplementationDecl *>(D), PID); 2386 } 2387 } 2388 } 2389 2390 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2391 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2392 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2393 ivar; ivar = ivar->getNextIvar()) 2394 if (ivar->getType().isDestructedType()) 2395 return true; 2396 2397 return false; 2398 } 2399 2400 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2401 /// for an implementation. 2402 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2403 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2404 if (needsDestructMethod(D)) { 2405 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2406 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2407 ObjCMethodDecl *DTORMethod = 2408 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2409 cxxSelector, getContext().VoidTy, 0, D, 2410 /*isInstance=*/true, /*isVariadic=*/false, 2411 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2412 /*isDefined=*/false, ObjCMethodDecl::Required); 2413 D->addInstanceMethod(DTORMethod); 2414 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2415 D->setHasCXXStructors(true); 2416 } 2417 2418 // If the implementation doesn't have any ivar initializers, we don't need 2419 // a .cxx_construct. 2420 if (D->getNumIvarInitializers() == 0) 2421 return; 2422 2423 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2424 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2425 // The constructor returns 'self'. 2426 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2427 D->getLocation(), 2428 D->getLocation(), 2429 cxxSelector, 2430 getContext().getObjCIdType(), 0, 2431 D, /*isInstance=*/true, 2432 /*isVariadic=*/false, 2433 /*isSynthesized=*/true, 2434 /*isImplicitlyDeclared=*/true, 2435 /*isDefined=*/false, 2436 ObjCMethodDecl::Required); 2437 D->addInstanceMethod(CTORMethod); 2438 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2439 D->setHasCXXStructors(true); 2440 } 2441 2442 /// EmitNamespace - Emit all declarations in a namespace. 2443 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2444 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2445 I != E; ++I) 2446 EmitTopLevelDecl(*I); 2447 } 2448 2449 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2450 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2451 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2452 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2453 ErrorUnsupported(LSD, "linkage spec"); 2454 return; 2455 } 2456 2457 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2458 I != E; ++I) 2459 EmitTopLevelDecl(*I); 2460 } 2461 2462 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2463 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2464 // If an error has occurred, stop code generation, but continue 2465 // parsing and semantic analysis (to ensure all warnings and errors 2466 // are emitted). 2467 if (Diags.hasErrorOccurred()) 2468 return; 2469 2470 // Ignore dependent declarations. 2471 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2472 return; 2473 2474 switch (D->getKind()) { 2475 case Decl::CXXConversion: 2476 case Decl::CXXMethod: 2477 case Decl::Function: 2478 // Skip function templates 2479 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2480 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2481 return; 2482 2483 EmitGlobal(cast<FunctionDecl>(D)); 2484 break; 2485 2486 case Decl::Var: 2487 EmitGlobal(cast<VarDecl>(D)); 2488 break; 2489 2490 // Indirect fields from global anonymous structs and unions can be 2491 // ignored; only the actual variable requires IR gen support. 2492 case Decl::IndirectField: 2493 break; 2494 2495 // C++ Decls 2496 case Decl::Namespace: 2497 EmitNamespace(cast<NamespaceDecl>(D)); 2498 break; 2499 // No code generation needed. 2500 case Decl::UsingShadow: 2501 case Decl::Using: 2502 case Decl::UsingDirective: 2503 case Decl::ClassTemplate: 2504 case Decl::FunctionTemplate: 2505 case Decl::TypeAliasTemplate: 2506 case Decl::NamespaceAlias: 2507 case Decl::Block: 2508 case Decl::Import: 2509 break; 2510 case Decl::CXXConstructor: 2511 // Skip function templates 2512 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2513 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2514 return; 2515 2516 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2517 break; 2518 case Decl::CXXDestructor: 2519 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2520 return; 2521 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2522 break; 2523 2524 case Decl::StaticAssert: 2525 // Nothing to do. 2526 break; 2527 2528 // Objective-C Decls 2529 2530 // Forward declarations, no (immediate) code generation. 2531 case Decl::ObjCInterface: 2532 break; 2533 2534 case Decl::ObjCCategory: { 2535 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2536 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2537 Context.ResetObjCLayout(CD->getClassInterface()); 2538 break; 2539 } 2540 2541 case Decl::ObjCProtocol: { 2542 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2543 if (Proto->isThisDeclarationADefinition()) 2544 ObjCRuntime->GenerateProtocol(Proto); 2545 break; 2546 } 2547 2548 case Decl::ObjCCategoryImpl: 2549 // Categories have properties but don't support synthesize so we 2550 // can ignore them here. 2551 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2552 break; 2553 2554 case Decl::ObjCImplementation: { 2555 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2556 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2557 Context.ResetObjCLayout(OMD->getClassInterface()); 2558 EmitObjCPropertyImplementations(OMD); 2559 EmitObjCIvarInitializations(OMD); 2560 ObjCRuntime->GenerateClass(OMD); 2561 // Emit global variable debug information. 2562 if (CGDebugInfo *DI = getModuleDebugInfo()) 2563 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2564 OMD->getLocation()); 2565 2566 break; 2567 } 2568 case Decl::ObjCMethod: { 2569 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2570 // If this is not a prototype, emit the body. 2571 if (OMD->getBody()) 2572 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2573 break; 2574 } 2575 case Decl::ObjCCompatibleAlias: 2576 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2577 break; 2578 2579 case Decl::LinkageSpec: 2580 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2581 break; 2582 2583 case Decl::FileScopeAsm: { 2584 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2585 StringRef AsmString = AD->getAsmString()->getString(); 2586 2587 const std::string &S = getModule().getModuleInlineAsm(); 2588 if (S.empty()) 2589 getModule().setModuleInlineAsm(AsmString); 2590 else if (*--S.end() == '\n') 2591 getModule().setModuleInlineAsm(S + AsmString.str()); 2592 else 2593 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2594 break; 2595 } 2596 2597 default: 2598 // Make sure we handled everything we should, every other kind is a 2599 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2600 // function. Need to recode Decl::Kind to do that easily. 2601 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2602 } 2603 } 2604 2605 /// Turns the given pointer into a constant. 2606 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2607 const void *Ptr) { 2608 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2609 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2610 return llvm::ConstantInt::get(i64, PtrInt); 2611 } 2612 2613 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2614 llvm::NamedMDNode *&GlobalMetadata, 2615 GlobalDecl D, 2616 llvm::GlobalValue *Addr) { 2617 if (!GlobalMetadata) 2618 GlobalMetadata = 2619 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2620 2621 // TODO: should we report variant information for ctors/dtors? 2622 llvm::Value *Ops[] = { 2623 Addr, 2624 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2625 }; 2626 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2627 } 2628 2629 /// Emits metadata nodes associating all the global values in the 2630 /// current module with the Decls they came from. This is useful for 2631 /// projects using IR gen as a subroutine. 2632 /// 2633 /// Since there's currently no way to associate an MDNode directly 2634 /// with an llvm::GlobalValue, we create a global named metadata 2635 /// with the name 'clang.global.decl.ptrs'. 2636 void CodeGenModule::EmitDeclMetadata() { 2637 llvm::NamedMDNode *GlobalMetadata = 0; 2638 2639 // StaticLocalDeclMap 2640 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2641 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2642 I != E; ++I) { 2643 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2644 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2645 } 2646 } 2647 2648 /// Emits metadata nodes for all the local variables in the current 2649 /// function. 2650 void CodeGenFunction::EmitDeclMetadata() { 2651 if (LocalDeclMap.empty()) return; 2652 2653 llvm::LLVMContext &Context = getLLVMContext(); 2654 2655 // Find the unique metadata ID for this name. 2656 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2657 2658 llvm::NamedMDNode *GlobalMetadata = 0; 2659 2660 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2661 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2662 const Decl *D = I->first; 2663 llvm::Value *Addr = I->second; 2664 2665 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2666 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2667 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2668 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2669 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2670 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2671 } 2672 } 2673 } 2674 2675 void CodeGenModule::EmitCoverageFile() { 2676 if (!getCodeGenOpts().CoverageFile.empty()) { 2677 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2678 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2679 llvm::LLVMContext &Ctx = TheModule.getContext(); 2680 llvm::MDString *CoverageFile = 2681 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2682 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2683 llvm::MDNode *CU = CUNode->getOperand(i); 2684 llvm::Value *node[] = { CoverageFile, CU }; 2685 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2686 GCov->addOperand(N); 2687 } 2688 } 2689 } 2690 } 2691