1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 168 const NamedDecl *D) const { 169 // Internal definitions always have default visibility. 170 if (GV->hasLocalLinkage()) { 171 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 172 return; 173 } 174 175 // Set visibility for definitions. 176 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 177 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 178 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 179 } 180 181 /// Set the symbol visibility of type information (vtable and RTTI) 182 /// associated with the given type. 183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 184 const CXXRecordDecl *RD, 185 TypeVisibilityKind TVK) const { 186 setGlobalVisibility(GV, RD); 187 188 if (!CodeGenOpts.HiddenWeakVTables) 189 return; 190 191 // We never want to drop the visibility for RTTI names. 192 if (TVK == TVK_ForRTTIName) 193 return; 194 195 // We want to drop the visibility to hidden for weak type symbols. 196 // This isn't possible if there might be unresolved references 197 // elsewhere that rely on this symbol being visible. 198 199 // This should be kept roughly in sync with setThunkVisibility 200 // in CGVTables.cpp. 201 202 // Preconditions. 203 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 204 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 205 return; 206 207 // Don't override an explicit visibility attribute. 208 if (RD->hasAttr<VisibilityAttr>()) 209 return; 210 211 switch (RD->getTemplateSpecializationKind()) { 212 // We have to disable the optimization if this is an EI definition 213 // because there might be EI declarations in other shared objects. 214 case TSK_ExplicitInstantiationDefinition: 215 case TSK_ExplicitInstantiationDeclaration: 216 return; 217 218 // Every use of a non-template class's type information has to emit it. 219 case TSK_Undeclared: 220 break; 221 222 // In theory, implicit instantiations can ignore the possibility of 223 // an explicit instantiation declaration because there necessarily 224 // must be an EI definition somewhere with default visibility. In 225 // practice, it's possible to have an explicit instantiation for 226 // an arbitrary template class, and linkers aren't necessarily able 227 // to deal with mixed-visibility symbols. 228 case TSK_ExplicitSpecialization: 229 case TSK_ImplicitInstantiation: 230 if (!CodeGenOpts.HiddenWeakTemplateVTables) 231 return; 232 break; 233 } 234 235 // If there's a key function, there may be translation units 236 // that don't have the key function's definition. But ignore 237 // this if we're emitting RTTI under -fno-rtti. 238 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 239 if (Context.getKeyFunction(RD)) 240 return; 241 } 242 243 // Otherwise, drop the visibility to hidden. 244 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 245 GV->setUnnamedAddr(true); 246 } 247 248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 249 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 250 251 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 252 if (!Str.empty()) 253 return Str; 254 255 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 256 IdentifierInfo *II = ND->getIdentifier(); 257 assert(II && "Attempt to mangle unnamed decl."); 258 259 Str = II->getName(); 260 return Str; 261 } 262 263 llvm::SmallString<256> Buffer; 264 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 265 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 266 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 267 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 268 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 269 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 270 else 271 getCXXABI().getMangleContext().mangleName(ND, Buffer); 272 273 // Allocate space for the mangled name. 274 size_t Length = Buffer.size(); 275 char *Name = MangledNamesAllocator.Allocate<char>(Length); 276 std::copy(Buffer.begin(), Buffer.end(), Name); 277 278 Str = llvm::StringRef(Name, Length); 279 280 return Str; 281 } 282 283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 284 const BlockDecl *BD) { 285 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 286 const Decl *D = GD.getDecl(); 287 if (D == 0) 288 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 289 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 290 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 291 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 292 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 293 else 294 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 295 } 296 297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 298 return getModule().getNamedValue(Name); 299 } 300 301 /// AddGlobalCtor - Add a function to the list that will be called before 302 /// main() runs. 303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 304 // FIXME: Type coercion of void()* types. 305 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 306 } 307 308 /// AddGlobalDtor - Add a function to the list that will be called 309 /// when the module is unloaded. 310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 311 // FIXME: Type coercion of void()* types. 312 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 313 } 314 315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 316 // Ctor function type is void()*. 317 llvm::FunctionType* CtorFTy = 318 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 319 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 320 321 // Get the type of a ctor entry, { i32, void ()* }. 322 llvm::StructType* CtorStructTy = 323 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 324 llvm::PointerType::getUnqual(CtorFTy), NULL); 325 326 // Construct the constructor and destructor arrays. 327 std::vector<llvm::Constant*> Ctors; 328 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 329 std::vector<llvm::Constant*> S; 330 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 331 I->second, false)); 332 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 333 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 334 } 335 336 if (!Ctors.empty()) { 337 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 338 new llvm::GlobalVariable(TheModule, AT, false, 339 llvm::GlobalValue::AppendingLinkage, 340 llvm::ConstantArray::get(AT, Ctors), 341 GlobalName); 342 } 343 } 344 345 void CodeGenModule::EmitAnnotations() { 346 if (Annotations.empty()) 347 return; 348 349 // Create a new global variable for the ConstantStruct in the Module. 350 llvm::Constant *Array = 351 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 352 Annotations.size()), 353 Annotations); 354 llvm::GlobalValue *gv = 355 new llvm::GlobalVariable(TheModule, Array->getType(), false, 356 llvm::GlobalValue::AppendingLinkage, Array, 357 "llvm.global.annotations"); 358 gv->setSection("llvm.metadata"); 359 } 360 361 llvm::GlobalValue::LinkageTypes 362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 363 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 364 365 if (Linkage == GVA_Internal) 366 return llvm::Function::InternalLinkage; 367 368 if (D->hasAttr<DLLExportAttr>()) 369 return llvm::Function::DLLExportLinkage; 370 371 if (D->hasAttr<WeakAttr>()) 372 return llvm::Function::WeakAnyLinkage; 373 374 // In C99 mode, 'inline' functions are guaranteed to have a strong 375 // definition somewhere else, so we can use available_externally linkage. 376 if (Linkage == GVA_C99Inline) 377 return !Context.getLangOptions().AppleKext 378 ? llvm::Function::AvailableExternallyLinkage 379 : llvm::Function::InternalLinkage; 380 381 // In C++, the compiler has to emit a definition in every translation unit 382 // that references the function. We should use linkonce_odr because 383 // a) if all references in this translation unit are optimized away, we 384 // don't need to codegen it. b) if the function persists, it needs to be 385 // merged with other definitions. c) C++ has the ODR, so we know the 386 // definition is dependable. 387 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 388 return !Context.getLangOptions().AppleKext 389 ? llvm::Function::LinkOnceODRLinkage 390 : llvm::Function::InternalLinkage; 391 392 // An explicit instantiation of a template has weak linkage, since 393 // explicit instantiations can occur in multiple translation units 394 // and must all be equivalent. However, we are not allowed to 395 // throw away these explicit instantiations. 396 if (Linkage == GVA_ExplicitTemplateInstantiation) 397 return !Context.getLangOptions().AppleKext 398 ? llvm::Function::WeakODRLinkage 399 : llvm::Function::InternalLinkage; 400 401 // Otherwise, we have strong external linkage. 402 assert(Linkage == GVA_StrongExternal); 403 return llvm::Function::ExternalLinkage; 404 } 405 406 407 /// SetFunctionDefinitionAttributes - Set attributes for a global. 408 /// 409 /// FIXME: This is currently only done for aliases and functions, but not for 410 /// variables (these details are set in EmitGlobalVarDefinition for variables). 411 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 412 llvm::GlobalValue *GV) { 413 SetCommonAttributes(D, GV); 414 } 415 416 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 417 const CGFunctionInfo &Info, 418 llvm::Function *F) { 419 unsigned CallingConv; 420 AttributeListType AttributeList; 421 ConstructAttributeList(Info, D, AttributeList, CallingConv); 422 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 423 AttributeList.size())); 424 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 425 } 426 427 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 428 llvm::Function *F) { 429 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 430 F->addFnAttr(llvm::Attribute::NoUnwind); 431 432 if (D->hasAttr<AlwaysInlineAttr>()) 433 F->addFnAttr(llvm::Attribute::AlwaysInline); 434 435 if (D->hasAttr<NakedAttr>()) 436 F->addFnAttr(llvm::Attribute::Naked); 437 438 if (D->hasAttr<NoInlineAttr>()) 439 F->addFnAttr(llvm::Attribute::NoInline); 440 441 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 442 F->setUnnamedAddr(true); 443 444 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 445 F->addFnAttr(llvm::Attribute::StackProtect); 446 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 447 F->addFnAttr(llvm::Attribute::StackProtectReq); 448 449 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 450 if (alignment) 451 F->setAlignment(alignment); 452 453 // C++ ABI requires 2-byte alignment for member functions. 454 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 455 F->setAlignment(2); 456 } 457 458 void CodeGenModule::SetCommonAttributes(const Decl *D, 459 llvm::GlobalValue *GV) { 460 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 461 setGlobalVisibility(GV, ND); 462 else 463 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 464 465 if (D->hasAttr<UsedAttr>()) 466 AddUsedGlobal(GV); 467 468 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 469 GV->setSection(SA->getName()); 470 471 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 472 } 473 474 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 475 llvm::Function *F, 476 const CGFunctionInfo &FI) { 477 SetLLVMFunctionAttributes(D, FI, F); 478 SetLLVMFunctionAttributesForDefinition(D, F); 479 480 F->setLinkage(llvm::Function::InternalLinkage); 481 482 SetCommonAttributes(D, F); 483 } 484 485 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 486 llvm::Function *F, 487 bool IsIncompleteFunction) { 488 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 489 490 if (!IsIncompleteFunction) 491 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 492 493 // Only a few attributes are set on declarations; these may later be 494 // overridden by a definition. 495 496 if (FD->hasAttr<DLLImportAttr>()) { 497 F->setLinkage(llvm::Function::DLLImportLinkage); 498 } else if (FD->hasAttr<WeakAttr>() || 499 FD->hasAttr<WeakImportAttr>()) { 500 // "extern_weak" is overloaded in LLVM; we probably should have 501 // separate linkage types for this. 502 F->setLinkage(llvm::Function::ExternalWeakLinkage); 503 } else { 504 F->setLinkage(llvm::Function::ExternalLinkage); 505 506 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 507 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 508 F->setVisibility(GetLLVMVisibility(LV.visibility())); 509 } 510 } 511 512 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 513 F->setSection(SA->getName()); 514 } 515 516 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 517 assert(!GV->isDeclaration() && 518 "Only globals with definition can force usage."); 519 LLVMUsed.push_back(GV); 520 } 521 522 void CodeGenModule::EmitLLVMUsed() { 523 // Don't create llvm.used if there is no need. 524 if (LLVMUsed.empty()) 525 return; 526 527 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 528 529 // Convert LLVMUsed to what ConstantArray needs. 530 std::vector<llvm::Constant*> UsedArray; 531 UsedArray.resize(LLVMUsed.size()); 532 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 533 UsedArray[i] = 534 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 535 i8PTy); 536 } 537 538 if (UsedArray.empty()) 539 return; 540 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 541 542 llvm::GlobalVariable *GV = 543 new llvm::GlobalVariable(getModule(), ATy, false, 544 llvm::GlobalValue::AppendingLinkage, 545 llvm::ConstantArray::get(ATy, UsedArray), 546 "llvm.used"); 547 548 GV->setSection("llvm.metadata"); 549 } 550 551 void CodeGenModule::EmitDeferred() { 552 // Emit code for any potentially referenced deferred decls. Since a 553 // previously unused static decl may become used during the generation of code 554 // for a static function, iterate until no changes are made. 555 556 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 557 if (!DeferredVTables.empty()) { 558 const CXXRecordDecl *RD = DeferredVTables.back(); 559 DeferredVTables.pop_back(); 560 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 561 continue; 562 } 563 564 GlobalDecl D = DeferredDeclsToEmit.back(); 565 DeferredDeclsToEmit.pop_back(); 566 567 // Check to see if we've already emitted this. This is necessary 568 // for a couple of reasons: first, decls can end up in the 569 // deferred-decls queue multiple times, and second, decls can end 570 // up with definitions in unusual ways (e.g. by an extern inline 571 // function acquiring a strong function redefinition). Just 572 // ignore these cases. 573 // 574 // TODO: That said, looking this up multiple times is very wasteful. 575 llvm::StringRef Name = getMangledName(D); 576 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 577 assert(CGRef && "Deferred decl wasn't referenced?"); 578 579 if (!CGRef->isDeclaration()) 580 continue; 581 582 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 583 // purposes an alias counts as a definition. 584 if (isa<llvm::GlobalAlias>(CGRef)) 585 continue; 586 587 // Otherwise, emit the definition and move on to the next one. 588 EmitGlobalDefinition(D); 589 } 590 } 591 592 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 593 /// annotation information for a given GlobalValue. The annotation struct is 594 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 595 /// GlobalValue being annotated. The second field is the constant string 596 /// created from the AnnotateAttr's annotation. The third field is a constant 597 /// string containing the name of the translation unit. The fourth field is 598 /// the line number in the file of the annotated value declaration. 599 /// 600 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 601 /// appears to. 602 /// 603 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 604 const AnnotateAttr *AA, 605 unsigned LineNo) { 606 llvm::Module *M = &getModule(); 607 608 // get [N x i8] constants for the annotation string, and the filename string 609 // which are the 2nd and 3rd elements of the global annotation structure. 610 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 611 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 612 AA->getAnnotation(), true); 613 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 614 M->getModuleIdentifier(), 615 true); 616 617 // Get the two global values corresponding to the ConstantArrays we just 618 // created to hold the bytes of the strings. 619 llvm::GlobalValue *annoGV = 620 new llvm::GlobalVariable(*M, anno->getType(), false, 621 llvm::GlobalValue::PrivateLinkage, anno, 622 GV->getName()); 623 // translation unit name string, emitted into the llvm.metadata section. 624 llvm::GlobalValue *unitGV = 625 new llvm::GlobalVariable(*M, unit->getType(), false, 626 llvm::GlobalValue::PrivateLinkage, unit, 627 ".str"); 628 unitGV->setUnnamedAddr(true); 629 630 // Create the ConstantStruct for the global annotation. 631 llvm::Constant *Fields[4] = { 632 llvm::ConstantExpr::getBitCast(GV, SBP), 633 llvm::ConstantExpr::getBitCast(annoGV, SBP), 634 llvm::ConstantExpr::getBitCast(unitGV, SBP), 635 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 636 }; 637 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 638 } 639 640 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 641 // Never defer when EmitAllDecls is specified. 642 if (Features.EmitAllDecls) 643 return false; 644 645 return !getContext().DeclMustBeEmitted(Global); 646 } 647 648 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 649 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 650 assert(AA && "No alias?"); 651 652 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 653 654 // See if there is already something with the target's name in the module. 655 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 656 657 llvm::Constant *Aliasee; 658 if (isa<llvm::FunctionType>(DeclTy)) 659 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 660 else 661 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 662 llvm::PointerType::getUnqual(DeclTy), 0); 663 if (!Entry) { 664 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 665 F->setLinkage(llvm::Function::ExternalWeakLinkage); 666 WeakRefReferences.insert(F); 667 } 668 669 return Aliasee; 670 } 671 672 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 673 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 674 675 // Weak references don't produce any output by themselves. 676 if (Global->hasAttr<WeakRefAttr>()) 677 return; 678 679 // If this is an alias definition (which otherwise looks like a declaration) 680 // emit it now. 681 if (Global->hasAttr<AliasAttr>()) 682 return EmitAliasDefinition(GD); 683 684 // Ignore declarations, they will be emitted on their first use. 685 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 686 if (FD->getIdentifier()) { 687 llvm::StringRef Name = FD->getName(); 688 if (Name == "_Block_object_assign") { 689 BlockObjectAssignDecl = FD; 690 } else if (Name == "_Block_object_dispose") { 691 BlockObjectDisposeDecl = FD; 692 } 693 } 694 695 // Forward declarations are emitted lazily on first use. 696 if (!FD->isThisDeclarationADefinition()) 697 return; 698 } else { 699 const VarDecl *VD = cast<VarDecl>(Global); 700 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 701 702 if (VD->getIdentifier()) { 703 llvm::StringRef Name = VD->getName(); 704 if (Name == "_NSConcreteGlobalBlock") { 705 NSConcreteGlobalBlockDecl = VD; 706 } else if (Name == "_NSConcreteStackBlock") { 707 NSConcreteStackBlockDecl = VD; 708 } 709 } 710 711 712 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 713 return; 714 } 715 716 // Defer code generation when possible if this is a static definition, inline 717 // function etc. These we only want to emit if they are used. 718 if (!MayDeferGeneration(Global)) { 719 // Emit the definition if it can't be deferred. 720 EmitGlobalDefinition(GD); 721 return; 722 } 723 724 // If we're deferring emission of a C++ variable with an 725 // initializer, remember the order in which it appeared in the file. 726 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 727 cast<VarDecl>(Global)->hasInit()) { 728 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 729 CXXGlobalInits.push_back(0); 730 } 731 732 // If the value has already been used, add it directly to the 733 // DeferredDeclsToEmit list. 734 llvm::StringRef MangledName = getMangledName(GD); 735 if (GetGlobalValue(MangledName)) 736 DeferredDeclsToEmit.push_back(GD); 737 else { 738 // Otherwise, remember that we saw a deferred decl with this name. The 739 // first use of the mangled name will cause it to move into 740 // DeferredDeclsToEmit. 741 DeferredDecls[MangledName] = GD; 742 } 743 } 744 745 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 746 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 747 748 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 749 Context.getSourceManager(), 750 "Generating code for declaration"); 751 752 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 753 // At -O0, don't generate IR for functions with available_externally 754 // linkage. 755 if (CodeGenOpts.OptimizationLevel == 0 && 756 !Function->hasAttr<AlwaysInlineAttr>() && 757 getFunctionLinkage(Function) 758 == llvm::Function::AvailableExternallyLinkage) 759 return; 760 761 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 762 if (Method->isVirtual()) 763 getVTables().EmitThunks(GD); 764 765 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 766 return EmitCXXConstructor(CD, GD.getCtorType()); 767 768 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 769 return EmitCXXDestructor(DD, GD.getDtorType()); 770 } 771 772 return EmitGlobalFunctionDefinition(GD); 773 } 774 775 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 776 return EmitGlobalVarDefinition(VD); 777 778 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 779 } 780 781 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 782 /// module, create and return an llvm Function with the specified type. If there 783 /// is something in the module with the specified name, return it potentially 784 /// bitcasted to the right type. 785 /// 786 /// If D is non-null, it specifies a decl that correspond to this. This is used 787 /// to set the attributes on the function when it is first created. 788 llvm::Constant * 789 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 790 const llvm::Type *Ty, 791 GlobalDecl D) { 792 // Lookup the entry, lazily creating it if necessary. 793 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 794 if (Entry) { 795 if (WeakRefReferences.count(Entry)) { 796 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 797 if (FD && !FD->hasAttr<WeakAttr>()) 798 Entry->setLinkage(llvm::Function::ExternalLinkage); 799 800 WeakRefReferences.erase(Entry); 801 } 802 803 if (Entry->getType()->getElementType() == Ty) 804 return Entry; 805 806 // Make sure the result is of the correct type. 807 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 808 return llvm::ConstantExpr::getBitCast(Entry, PTy); 809 } 810 811 // This function doesn't have a complete type (for example, the return 812 // type is an incomplete struct). Use a fake type instead, and make 813 // sure not to try to set attributes. 814 bool IsIncompleteFunction = false; 815 816 const llvm::FunctionType *FTy; 817 if (isa<llvm::FunctionType>(Ty)) { 818 FTy = cast<llvm::FunctionType>(Ty); 819 } else { 820 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 821 IsIncompleteFunction = true; 822 } 823 824 llvm::Function *F = llvm::Function::Create(FTy, 825 llvm::Function::ExternalLinkage, 826 MangledName, &getModule()); 827 assert(F->getName() == MangledName && "name was uniqued!"); 828 if (D.getDecl()) 829 SetFunctionAttributes(D, F, IsIncompleteFunction); 830 831 // This is the first use or definition of a mangled name. If there is a 832 // deferred decl with this name, remember that we need to emit it at the end 833 // of the file. 834 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 835 if (DDI != DeferredDecls.end()) { 836 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 837 // list, and remove it from DeferredDecls (since we don't need it anymore). 838 DeferredDeclsToEmit.push_back(DDI->second); 839 DeferredDecls.erase(DDI); 840 841 // Otherwise, there are cases we have to worry about where we're 842 // using a declaration for which we must emit a definition but where 843 // we might not find a top-level definition: 844 // - member functions defined inline in their classes 845 // - friend functions defined inline in some class 846 // - special member functions with implicit definitions 847 // If we ever change our AST traversal to walk into class methods, 848 // this will be unnecessary. 849 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 850 // Look for a declaration that's lexically in a record. 851 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 852 do { 853 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 854 if (FD->isImplicit()) { 855 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 856 DeferredDeclsToEmit.push_back(D); 857 break; 858 } else if (FD->isThisDeclarationADefinition()) { 859 DeferredDeclsToEmit.push_back(D); 860 break; 861 } 862 } 863 FD = FD->getPreviousDeclaration(); 864 } while (FD); 865 } 866 867 // Make sure the result is of the requested type. 868 if (!IsIncompleteFunction) { 869 assert(F->getType()->getElementType() == Ty); 870 return F; 871 } 872 873 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 874 return llvm::ConstantExpr::getBitCast(F, PTy); 875 } 876 877 /// GetAddrOfFunction - Return the address of the given function. If Ty is 878 /// non-null, then this function will use the specified type if it has to 879 /// create it (this occurs when we see a definition of the function). 880 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 881 const llvm::Type *Ty) { 882 // If there was no specific requested type, just convert it now. 883 if (!Ty) 884 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 885 886 llvm::StringRef MangledName = getMangledName(GD); 887 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 888 } 889 890 /// CreateRuntimeFunction - Create a new runtime function with the specified 891 /// type and name. 892 llvm::Constant * 893 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 894 llvm::StringRef Name) { 895 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 896 } 897 898 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 899 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 900 return false; 901 if (Context.getLangOptions().CPlusPlus && 902 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 903 // FIXME: We should do something fancier here! 904 return false; 905 } 906 return true; 907 } 908 909 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 910 /// create and return an llvm GlobalVariable with the specified type. If there 911 /// is something in the module with the specified name, return it potentially 912 /// bitcasted to the right type. 913 /// 914 /// If D is non-null, it specifies a decl that correspond to this. This is used 915 /// to set the attributes on the global when it is first created. 916 llvm::Constant * 917 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 918 const llvm::PointerType *Ty, 919 const VarDecl *D, 920 bool UnnamedAddr) { 921 // Lookup the entry, lazily creating it if necessary. 922 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 923 if (Entry) { 924 if (WeakRefReferences.count(Entry)) { 925 if (D && !D->hasAttr<WeakAttr>()) 926 Entry->setLinkage(llvm::Function::ExternalLinkage); 927 928 WeakRefReferences.erase(Entry); 929 } 930 931 if (UnnamedAddr) 932 Entry->setUnnamedAddr(true); 933 934 if (Entry->getType() == Ty) 935 return Entry; 936 937 // Make sure the result is of the correct type. 938 return llvm::ConstantExpr::getBitCast(Entry, Ty); 939 } 940 941 // This is the first use or definition of a mangled name. If there is a 942 // deferred decl with this name, remember that we need to emit it at the end 943 // of the file. 944 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 945 if (DDI != DeferredDecls.end()) { 946 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 947 // list, and remove it from DeferredDecls (since we don't need it anymore). 948 DeferredDeclsToEmit.push_back(DDI->second); 949 DeferredDecls.erase(DDI); 950 } 951 952 llvm::GlobalVariable *GV = 953 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 954 llvm::GlobalValue::ExternalLinkage, 955 0, MangledName, 0, 956 false, Ty->getAddressSpace()); 957 958 // Handle things which are present even on external declarations. 959 if (D) { 960 // FIXME: This code is overly simple and should be merged with other global 961 // handling. 962 GV->setConstant(DeclIsConstantGlobal(Context, D)); 963 964 // Set linkage and visibility in case we never see a definition. 965 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 966 if (LV.linkage() != ExternalLinkage) { 967 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 968 } else { 969 if (D->hasAttr<DLLImportAttr>()) 970 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 971 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 972 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 973 974 // Set visibility on a declaration only if it's explicit. 975 if (LV.visibilityExplicit()) 976 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 977 } 978 979 GV->setThreadLocal(D->isThreadSpecified()); 980 } 981 982 return GV; 983 } 984 985 986 llvm::GlobalVariable * 987 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 988 const llvm::Type *Ty, 989 llvm::GlobalValue::LinkageTypes Linkage) { 990 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 991 llvm::GlobalVariable *OldGV = 0; 992 993 994 if (GV) { 995 // Check if the variable has the right type. 996 if (GV->getType()->getElementType() == Ty) 997 return GV; 998 999 // Because C++ name mangling, the only way we can end up with an already 1000 // existing global with the same name is if it has been declared extern "C". 1001 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1002 OldGV = GV; 1003 } 1004 1005 // Create a new variable. 1006 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1007 Linkage, 0, Name); 1008 1009 if (OldGV) { 1010 // Replace occurrences of the old variable if needed. 1011 GV->takeName(OldGV); 1012 1013 if (!OldGV->use_empty()) { 1014 llvm::Constant *NewPtrForOldDecl = 1015 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1016 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1017 } 1018 1019 OldGV->eraseFromParent(); 1020 } 1021 1022 return GV; 1023 } 1024 1025 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1026 /// given global variable. If Ty is non-null and if the global doesn't exist, 1027 /// then it will be greated with the specified type instead of whatever the 1028 /// normal requested type would be. 1029 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1030 const llvm::Type *Ty) { 1031 assert(D->hasGlobalStorage() && "Not a global variable"); 1032 QualType ASTTy = D->getType(); 1033 if (Ty == 0) 1034 Ty = getTypes().ConvertTypeForMem(ASTTy); 1035 1036 const llvm::PointerType *PTy = 1037 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1038 1039 llvm::StringRef MangledName = getMangledName(D); 1040 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1041 } 1042 1043 /// CreateRuntimeVariable - Create a new runtime global variable with the 1044 /// specified type and name. 1045 llvm::Constant * 1046 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1047 llvm::StringRef Name) { 1048 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1049 true); 1050 } 1051 1052 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1053 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1054 1055 if (MayDeferGeneration(D)) { 1056 // If we have not seen a reference to this variable yet, place it 1057 // into the deferred declarations table to be emitted if needed 1058 // later. 1059 llvm::StringRef MangledName = getMangledName(D); 1060 if (!GetGlobalValue(MangledName)) { 1061 DeferredDecls[MangledName] = D; 1062 return; 1063 } 1064 } 1065 1066 // The tentative definition is the only definition. 1067 EmitGlobalVarDefinition(D); 1068 } 1069 1070 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1071 if (DefinitionRequired) 1072 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1073 } 1074 1075 llvm::GlobalVariable::LinkageTypes 1076 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1077 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1078 return llvm::GlobalVariable::InternalLinkage; 1079 1080 if (const CXXMethodDecl *KeyFunction 1081 = RD->getASTContext().getKeyFunction(RD)) { 1082 // If this class has a key function, use that to determine the linkage of 1083 // the vtable. 1084 const FunctionDecl *Def = 0; 1085 if (KeyFunction->hasBody(Def)) 1086 KeyFunction = cast<CXXMethodDecl>(Def); 1087 1088 switch (KeyFunction->getTemplateSpecializationKind()) { 1089 case TSK_Undeclared: 1090 case TSK_ExplicitSpecialization: 1091 // When compiling with optimizations turned on, we emit all vtables, 1092 // even if the key function is not defined in the current translation 1093 // unit. If this is the case, use available_externally linkage. 1094 if (!Def && CodeGenOpts.OptimizationLevel) 1095 return llvm::GlobalVariable::AvailableExternallyLinkage; 1096 1097 if (KeyFunction->isInlined()) 1098 return !Context.getLangOptions().AppleKext ? 1099 llvm::GlobalVariable::LinkOnceODRLinkage : 1100 llvm::Function::InternalLinkage; 1101 1102 return llvm::GlobalVariable::ExternalLinkage; 1103 1104 case TSK_ImplicitInstantiation: 1105 return !Context.getLangOptions().AppleKext ? 1106 llvm::GlobalVariable::LinkOnceODRLinkage : 1107 llvm::Function::InternalLinkage; 1108 1109 case TSK_ExplicitInstantiationDefinition: 1110 return !Context.getLangOptions().AppleKext ? 1111 llvm::GlobalVariable::WeakODRLinkage : 1112 llvm::Function::InternalLinkage; 1113 1114 case TSK_ExplicitInstantiationDeclaration: 1115 // FIXME: Use available_externally linkage. However, this currently 1116 // breaks LLVM's build due to undefined symbols. 1117 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1118 return !Context.getLangOptions().AppleKext ? 1119 llvm::GlobalVariable::LinkOnceODRLinkage : 1120 llvm::Function::InternalLinkage; 1121 } 1122 } 1123 1124 switch (RD->getTemplateSpecializationKind()) { 1125 case TSK_Undeclared: 1126 case TSK_ExplicitSpecialization: 1127 case TSK_ImplicitInstantiation: 1128 // FIXME: Use available_externally linkage. However, this currently 1129 // breaks LLVM's build due to undefined symbols. 1130 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1131 case TSK_ExplicitInstantiationDeclaration: 1132 break; 1133 1134 case TSK_ExplicitInstantiationDefinition: 1135 return !Context.getLangOptions().AppleKext ? 1136 llvm::GlobalVariable::WeakODRLinkage : 1137 llvm::Function::InternalLinkage; 1138 1139 } 1140 1141 // Silence GCC warning. 1142 return !Context.getLangOptions().AppleKext ? 1143 llvm::GlobalVariable::LinkOnceODRLinkage : 1144 llvm::Function::InternalLinkage; 1145 } 1146 1147 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1148 return Context.toCharUnitsFromBits( 1149 TheTargetData.getTypeStoreSizeInBits(Ty)); 1150 } 1151 1152 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1153 llvm::Constant *Init = 0; 1154 QualType ASTTy = D->getType(); 1155 bool NonConstInit = false; 1156 1157 const Expr *InitExpr = D->getAnyInitializer(); 1158 1159 if (!InitExpr) { 1160 // This is a tentative definition; tentative definitions are 1161 // implicitly initialized with { 0 }. 1162 // 1163 // Note that tentative definitions are only emitted at the end of 1164 // a translation unit, so they should never have incomplete 1165 // type. In addition, EmitTentativeDefinition makes sure that we 1166 // never attempt to emit a tentative definition if a real one 1167 // exists. A use may still exists, however, so we still may need 1168 // to do a RAUW. 1169 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1170 Init = EmitNullConstant(D->getType()); 1171 } else { 1172 Init = EmitConstantExpr(InitExpr, D->getType()); 1173 if (!Init) { 1174 QualType T = InitExpr->getType(); 1175 if (D->getType()->isReferenceType()) 1176 T = D->getType(); 1177 1178 if (getLangOptions().CPlusPlus) { 1179 Init = EmitNullConstant(T); 1180 NonConstInit = true; 1181 } else { 1182 ErrorUnsupported(D, "static initializer"); 1183 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1184 } 1185 } else { 1186 // We don't need an initializer, so remove the entry for the delayed 1187 // initializer position (just in case this entry was delayed). 1188 if (getLangOptions().CPlusPlus) 1189 DelayedCXXInitPosition.erase(D); 1190 } 1191 } 1192 1193 const llvm::Type* InitType = Init->getType(); 1194 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1195 1196 // Strip off a bitcast if we got one back. 1197 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1198 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1199 // all zero index gep. 1200 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1201 Entry = CE->getOperand(0); 1202 } 1203 1204 // Entry is now either a Function or GlobalVariable. 1205 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1206 1207 // We have a definition after a declaration with the wrong type. 1208 // We must make a new GlobalVariable* and update everything that used OldGV 1209 // (a declaration or tentative definition) with the new GlobalVariable* 1210 // (which will be a definition). 1211 // 1212 // This happens if there is a prototype for a global (e.g. 1213 // "extern int x[];") and then a definition of a different type (e.g. 1214 // "int x[10];"). This also happens when an initializer has a different type 1215 // from the type of the global (this happens with unions). 1216 if (GV == 0 || 1217 GV->getType()->getElementType() != InitType || 1218 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1219 1220 // Move the old entry aside so that we'll create a new one. 1221 Entry->setName(llvm::StringRef()); 1222 1223 // Make a new global with the correct type, this is now guaranteed to work. 1224 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1225 1226 // Replace all uses of the old global with the new global 1227 llvm::Constant *NewPtrForOldDecl = 1228 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1229 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1230 1231 // Erase the old global, since it is no longer used. 1232 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1233 } 1234 1235 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1236 SourceManager &SM = Context.getSourceManager(); 1237 AddAnnotation(EmitAnnotateAttr(GV, AA, 1238 SM.getInstantiationLineNumber(D->getLocation()))); 1239 } 1240 1241 GV->setInitializer(Init); 1242 1243 // If it is safe to mark the global 'constant', do so now. 1244 GV->setConstant(false); 1245 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1246 GV->setConstant(true); 1247 1248 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1249 1250 // Set the llvm linkage type as appropriate. 1251 llvm::GlobalValue::LinkageTypes Linkage = 1252 GetLLVMLinkageVarDefinition(D, GV); 1253 GV->setLinkage(Linkage); 1254 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1255 // common vars aren't constant even if declared const. 1256 GV->setConstant(false); 1257 1258 SetCommonAttributes(D, GV); 1259 1260 // Emit the initializer function if necessary. 1261 if (NonConstInit) 1262 EmitCXXGlobalVarDeclInitFunc(D, GV); 1263 1264 // Emit global variable debug information. 1265 if (CGDebugInfo *DI = getDebugInfo()) { 1266 DI->setLocation(D->getLocation()); 1267 DI->EmitGlobalVariable(GV, D); 1268 } 1269 } 1270 1271 llvm::GlobalValue::LinkageTypes 1272 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1273 llvm::GlobalVariable *GV) { 1274 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1275 if (Linkage == GVA_Internal) 1276 return llvm::Function::InternalLinkage; 1277 else if (D->hasAttr<DLLImportAttr>()) 1278 return llvm::Function::DLLImportLinkage; 1279 else if (D->hasAttr<DLLExportAttr>()) 1280 return llvm::Function::DLLExportLinkage; 1281 else if (D->hasAttr<WeakAttr>()) { 1282 if (GV->isConstant()) 1283 return llvm::GlobalVariable::WeakODRLinkage; 1284 else 1285 return llvm::GlobalVariable::WeakAnyLinkage; 1286 } else if (Linkage == GVA_TemplateInstantiation || 1287 Linkage == GVA_ExplicitTemplateInstantiation) 1288 // FIXME: It seems like we can provide more specific linkage here 1289 // (LinkOnceODR, WeakODR). 1290 return llvm::GlobalVariable::WeakAnyLinkage; 1291 else if (!getLangOptions().CPlusPlus && 1292 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1293 D->getAttr<CommonAttr>()) && 1294 !D->hasExternalStorage() && !D->getInit() && 1295 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1296 // Thread local vars aren't considered common linkage. 1297 return llvm::GlobalVariable::CommonLinkage; 1298 } 1299 return llvm::GlobalVariable::ExternalLinkage; 1300 } 1301 1302 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1303 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1304 /// existing call uses of the old function in the module, this adjusts them to 1305 /// call the new function directly. 1306 /// 1307 /// This is not just a cleanup: the always_inline pass requires direct calls to 1308 /// functions to be able to inline them. If there is a bitcast in the way, it 1309 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1310 /// run at -O0. 1311 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1312 llvm::Function *NewFn) { 1313 // If we're redefining a global as a function, don't transform it. 1314 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1315 if (OldFn == 0) return; 1316 1317 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1318 llvm::SmallVector<llvm::Value*, 4> ArgList; 1319 1320 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1321 UI != E; ) { 1322 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1323 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1324 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1325 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1326 llvm::CallSite CS(CI); 1327 if (!CI || !CS.isCallee(I)) continue; 1328 1329 // If the return types don't match exactly, and if the call isn't dead, then 1330 // we can't transform this call. 1331 if (CI->getType() != NewRetTy && !CI->use_empty()) 1332 continue; 1333 1334 // If the function was passed too few arguments, don't transform. If extra 1335 // arguments were passed, we silently drop them. If any of the types 1336 // mismatch, we don't transform. 1337 unsigned ArgNo = 0; 1338 bool DontTransform = false; 1339 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1340 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1341 if (CS.arg_size() == ArgNo || 1342 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1343 DontTransform = true; 1344 break; 1345 } 1346 } 1347 if (DontTransform) 1348 continue; 1349 1350 // Okay, we can transform this. Create the new call instruction and copy 1351 // over the required information. 1352 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1353 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1354 ArgList.end(), "", CI); 1355 ArgList.clear(); 1356 if (!NewCall->getType()->isVoidTy()) 1357 NewCall->takeName(CI); 1358 NewCall->setAttributes(CI->getAttributes()); 1359 NewCall->setCallingConv(CI->getCallingConv()); 1360 1361 // Finally, remove the old call, replacing any uses with the new one. 1362 if (!CI->use_empty()) 1363 CI->replaceAllUsesWith(NewCall); 1364 1365 // Copy debug location attached to CI. 1366 if (!CI->getDebugLoc().isUnknown()) 1367 NewCall->setDebugLoc(CI->getDebugLoc()); 1368 CI->eraseFromParent(); 1369 } 1370 } 1371 1372 1373 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1374 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1375 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1376 // Get or create the prototype for the function. 1377 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1378 1379 // Strip off a bitcast if we got one back. 1380 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1381 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1382 Entry = CE->getOperand(0); 1383 } 1384 1385 1386 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1387 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1388 1389 // If the types mismatch then we have to rewrite the definition. 1390 assert(OldFn->isDeclaration() && 1391 "Shouldn't replace non-declaration"); 1392 1393 // F is the Function* for the one with the wrong type, we must make a new 1394 // Function* and update everything that used F (a declaration) with the new 1395 // Function* (which will be a definition). 1396 // 1397 // This happens if there is a prototype for a function 1398 // (e.g. "int f()") and then a definition of a different type 1399 // (e.g. "int f(int x)"). Move the old function aside so that it 1400 // doesn't interfere with GetAddrOfFunction. 1401 OldFn->setName(llvm::StringRef()); 1402 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1403 1404 // If this is an implementation of a function without a prototype, try to 1405 // replace any existing uses of the function (which may be calls) with uses 1406 // of the new function 1407 if (D->getType()->isFunctionNoProtoType()) { 1408 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1409 OldFn->removeDeadConstantUsers(); 1410 } 1411 1412 // Replace uses of F with the Function we will endow with a body. 1413 if (!Entry->use_empty()) { 1414 llvm::Constant *NewPtrForOldDecl = 1415 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1416 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1417 } 1418 1419 // Ok, delete the old function now, which is dead. 1420 OldFn->eraseFromParent(); 1421 1422 Entry = NewFn; 1423 } 1424 1425 // We need to set linkage and visibility on the function before 1426 // generating code for it because various parts of IR generation 1427 // want to propagate this information down (e.g. to local static 1428 // declarations). 1429 llvm::Function *Fn = cast<llvm::Function>(Entry); 1430 setFunctionLinkage(D, Fn); 1431 1432 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1433 setGlobalVisibility(Fn, D); 1434 1435 CodeGenFunction(*this).GenerateCode(D, Fn); 1436 1437 SetFunctionDefinitionAttributes(D, Fn); 1438 SetLLVMFunctionAttributesForDefinition(D, Fn); 1439 1440 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1441 AddGlobalCtor(Fn, CA->getPriority()); 1442 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1443 AddGlobalDtor(Fn, DA->getPriority()); 1444 } 1445 1446 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1447 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1448 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1449 assert(AA && "Not an alias?"); 1450 1451 llvm::StringRef MangledName = getMangledName(GD); 1452 1453 // If there is a definition in the module, then it wins over the alias. 1454 // This is dubious, but allow it to be safe. Just ignore the alias. 1455 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1456 if (Entry && !Entry->isDeclaration()) 1457 return; 1458 1459 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1460 1461 // Create a reference to the named value. This ensures that it is emitted 1462 // if a deferred decl. 1463 llvm::Constant *Aliasee; 1464 if (isa<llvm::FunctionType>(DeclTy)) 1465 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1466 else 1467 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1468 llvm::PointerType::getUnqual(DeclTy), 0); 1469 1470 // Create the new alias itself, but don't set a name yet. 1471 llvm::GlobalValue *GA = 1472 new llvm::GlobalAlias(Aliasee->getType(), 1473 llvm::Function::ExternalLinkage, 1474 "", Aliasee, &getModule()); 1475 1476 if (Entry) { 1477 assert(Entry->isDeclaration()); 1478 1479 // If there is a declaration in the module, then we had an extern followed 1480 // by the alias, as in: 1481 // extern int test6(); 1482 // ... 1483 // int test6() __attribute__((alias("test7"))); 1484 // 1485 // Remove it and replace uses of it with the alias. 1486 GA->takeName(Entry); 1487 1488 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1489 Entry->getType())); 1490 Entry->eraseFromParent(); 1491 } else { 1492 GA->setName(MangledName); 1493 } 1494 1495 // Set attributes which are particular to an alias; this is a 1496 // specialization of the attributes which may be set on a global 1497 // variable/function. 1498 if (D->hasAttr<DLLExportAttr>()) { 1499 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1500 // The dllexport attribute is ignored for undefined symbols. 1501 if (FD->hasBody()) 1502 GA->setLinkage(llvm::Function::DLLExportLinkage); 1503 } else { 1504 GA->setLinkage(llvm::Function::DLLExportLinkage); 1505 } 1506 } else if (D->hasAttr<WeakAttr>() || 1507 D->hasAttr<WeakRefAttr>() || 1508 D->hasAttr<WeakImportAttr>()) { 1509 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1510 } 1511 1512 SetCommonAttributes(D, GA); 1513 } 1514 1515 /// getBuiltinLibFunction - Given a builtin id for a function like 1516 /// "__builtin_fabsf", return a Function* for "fabsf". 1517 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1518 unsigned BuiltinID) { 1519 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1520 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1521 "isn't a lib fn"); 1522 1523 // Get the name, skip over the __builtin_ prefix (if necessary). 1524 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1525 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1526 Name += 10; 1527 1528 const llvm::FunctionType *Ty = 1529 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1530 1531 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1532 } 1533 1534 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1535 unsigned NumTys) { 1536 return llvm::Intrinsic::getDeclaration(&getModule(), 1537 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1538 } 1539 1540 static llvm::StringMapEntry<llvm::Constant*> & 1541 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1542 const StringLiteral *Literal, 1543 bool TargetIsLSB, 1544 bool &IsUTF16, 1545 unsigned &StringLength) { 1546 llvm::StringRef String = Literal->getString(); 1547 unsigned NumBytes = String.size(); 1548 1549 // Check for simple case. 1550 if (!Literal->containsNonAsciiOrNull()) { 1551 StringLength = NumBytes; 1552 return Map.GetOrCreateValue(String); 1553 } 1554 1555 // Otherwise, convert the UTF8 literals into a byte string. 1556 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1557 const UTF8 *FromPtr = (UTF8 *)String.data(); 1558 UTF16 *ToPtr = &ToBuf[0]; 1559 1560 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1561 &ToPtr, ToPtr + NumBytes, 1562 strictConversion); 1563 1564 // ConvertUTF8toUTF16 returns the length in ToPtr. 1565 StringLength = ToPtr - &ToBuf[0]; 1566 1567 // Render the UTF-16 string into a byte array and convert to the target byte 1568 // order. 1569 // 1570 // FIXME: This isn't something we should need to do here. 1571 llvm::SmallString<128> AsBytes; 1572 AsBytes.reserve(StringLength * 2); 1573 for (unsigned i = 0; i != StringLength; ++i) { 1574 unsigned short Val = ToBuf[i]; 1575 if (TargetIsLSB) { 1576 AsBytes.push_back(Val & 0xFF); 1577 AsBytes.push_back(Val >> 8); 1578 } else { 1579 AsBytes.push_back(Val >> 8); 1580 AsBytes.push_back(Val & 0xFF); 1581 } 1582 } 1583 // Append one extra null character, the second is automatically added by our 1584 // caller. 1585 AsBytes.push_back(0); 1586 1587 IsUTF16 = true; 1588 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1589 } 1590 1591 llvm::Constant * 1592 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1593 unsigned StringLength = 0; 1594 bool isUTF16 = false; 1595 llvm::StringMapEntry<llvm::Constant*> &Entry = 1596 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1597 getTargetData().isLittleEndian(), 1598 isUTF16, StringLength); 1599 1600 if (llvm::Constant *C = Entry.getValue()) 1601 return C; 1602 1603 llvm::Constant *Zero = 1604 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1605 llvm::Constant *Zeros[] = { Zero, Zero }; 1606 1607 // If we don't already have it, get __CFConstantStringClassReference. 1608 if (!CFConstantStringClassRef) { 1609 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1610 Ty = llvm::ArrayType::get(Ty, 0); 1611 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1612 "__CFConstantStringClassReference"); 1613 // Decay array -> ptr 1614 CFConstantStringClassRef = 1615 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1616 } 1617 1618 QualType CFTy = getContext().getCFConstantStringType(); 1619 1620 const llvm::StructType *STy = 1621 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1622 1623 std::vector<llvm::Constant*> Fields(4); 1624 1625 // Class pointer. 1626 Fields[0] = CFConstantStringClassRef; 1627 1628 // Flags. 1629 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1630 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1631 llvm::ConstantInt::get(Ty, 0x07C8); 1632 1633 // String pointer. 1634 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1635 1636 llvm::GlobalValue::LinkageTypes Linkage; 1637 bool isConstant; 1638 if (isUTF16) { 1639 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1640 Linkage = llvm::GlobalValue::InternalLinkage; 1641 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1642 // does make plain ascii ones writable. 1643 isConstant = true; 1644 } else { 1645 Linkage = llvm::GlobalValue::PrivateLinkage; 1646 isConstant = !Features.WritableStrings; 1647 } 1648 1649 llvm::GlobalVariable *GV = 1650 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1651 ".str"); 1652 GV->setUnnamedAddr(true); 1653 if (isUTF16) { 1654 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1655 GV->setAlignment(Align.getQuantity()); 1656 } 1657 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1658 1659 // String length. 1660 Ty = getTypes().ConvertType(getContext().LongTy); 1661 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1662 1663 // The struct. 1664 C = llvm::ConstantStruct::get(STy, Fields); 1665 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1666 llvm::GlobalVariable::PrivateLinkage, C, 1667 "_unnamed_cfstring_"); 1668 if (const char *Sect = getContext().Target.getCFStringSection()) 1669 GV->setSection(Sect); 1670 Entry.setValue(GV); 1671 1672 return GV; 1673 } 1674 1675 llvm::Constant * 1676 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1677 unsigned StringLength = 0; 1678 bool isUTF16 = false; 1679 llvm::StringMapEntry<llvm::Constant*> &Entry = 1680 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1681 getTargetData().isLittleEndian(), 1682 isUTF16, StringLength); 1683 1684 if (llvm::Constant *C = Entry.getValue()) 1685 return C; 1686 1687 llvm::Constant *Zero = 1688 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1689 llvm::Constant *Zeros[] = { Zero, Zero }; 1690 1691 // If we don't already have it, get _NSConstantStringClassReference. 1692 if (!ConstantStringClassRef) { 1693 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1694 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1695 Ty = llvm::ArrayType::get(Ty, 0); 1696 llvm::Constant *GV; 1697 if (StringClass.empty()) 1698 GV = CreateRuntimeVariable(Ty, 1699 Features.ObjCNonFragileABI ? 1700 "OBJC_CLASS_$_NSConstantString" : 1701 "_NSConstantStringClassReference"); 1702 else { 1703 std::string str; 1704 if (Features.ObjCNonFragileABI) 1705 str = "OBJC_CLASS_$_" + StringClass; 1706 else 1707 str = "_" + StringClass + "ClassReference"; 1708 GV = CreateRuntimeVariable(Ty, str); 1709 } 1710 // Decay array -> ptr 1711 ConstantStringClassRef = 1712 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1713 } 1714 1715 QualType NSTy = getContext().getNSConstantStringType(); 1716 1717 const llvm::StructType *STy = 1718 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1719 1720 std::vector<llvm::Constant*> Fields(3); 1721 1722 // Class pointer. 1723 Fields[0] = ConstantStringClassRef; 1724 1725 // String pointer. 1726 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1727 1728 llvm::GlobalValue::LinkageTypes Linkage; 1729 bool isConstant; 1730 if (isUTF16) { 1731 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1732 Linkage = llvm::GlobalValue::InternalLinkage; 1733 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1734 // does make plain ascii ones writable. 1735 isConstant = true; 1736 } else { 1737 Linkage = llvm::GlobalValue::PrivateLinkage; 1738 isConstant = !Features.WritableStrings; 1739 } 1740 1741 llvm::GlobalVariable *GV = 1742 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1743 ".str"); 1744 GV->setUnnamedAddr(true); 1745 if (isUTF16) { 1746 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1747 GV->setAlignment(Align.getQuantity()); 1748 } 1749 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1750 1751 // String length. 1752 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1753 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1754 1755 // The struct. 1756 C = llvm::ConstantStruct::get(STy, Fields); 1757 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1758 llvm::GlobalVariable::PrivateLinkage, C, 1759 "_unnamed_nsstring_"); 1760 // FIXME. Fix section. 1761 if (const char *Sect = 1762 Features.ObjCNonFragileABI 1763 ? getContext().Target.getNSStringNonFragileABISection() 1764 : getContext().Target.getNSStringSection()) 1765 GV->setSection(Sect); 1766 Entry.setValue(GV); 1767 1768 return GV; 1769 } 1770 1771 /// GetStringForStringLiteral - Return the appropriate bytes for a 1772 /// string literal, properly padded to match the literal type. 1773 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1774 const ASTContext &Context = getContext(); 1775 const ConstantArrayType *CAT = 1776 Context.getAsConstantArrayType(E->getType()); 1777 assert(CAT && "String isn't pointer or array!"); 1778 1779 // Resize the string to the right size. 1780 uint64_t RealLen = CAT->getSize().getZExtValue(); 1781 1782 if (E->isWide()) 1783 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1784 1785 std::string Str = E->getString().str(); 1786 Str.resize(RealLen, '\0'); 1787 1788 return Str; 1789 } 1790 1791 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1792 /// constant array for the given string literal. 1793 llvm::Constant * 1794 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1795 // FIXME: This can be more efficient. 1796 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1797 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1798 if (S->isWide()) { 1799 llvm::Type *DestTy = 1800 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1801 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1802 } 1803 return C; 1804 } 1805 1806 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1807 /// array for the given ObjCEncodeExpr node. 1808 llvm::Constant * 1809 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1810 std::string Str; 1811 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1812 1813 return GetAddrOfConstantCString(Str); 1814 } 1815 1816 1817 /// GenerateWritableString -- Creates storage for a string literal. 1818 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1819 bool constant, 1820 CodeGenModule &CGM, 1821 const char *GlobalName) { 1822 // Create Constant for this string literal. Don't add a '\0'. 1823 llvm::Constant *C = 1824 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1825 1826 // Create a global variable for this string 1827 llvm::GlobalVariable *GV = 1828 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1829 llvm::GlobalValue::PrivateLinkage, 1830 C, GlobalName); 1831 GV->setUnnamedAddr(true); 1832 return GV; 1833 } 1834 1835 /// GetAddrOfConstantString - Returns a pointer to a character array 1836 /// containing the literal. This contents are exactly that of the 1837 /// given string, i.e. it will not be null terminated automatically; 1838 /// see GetAddrOfConstantCString. Note that whether the result is 1839 /// actually a pointer to an LLVM constant depends on 1840 /// Feature.WriteableStrings. 1841 /// 1842 /// The result has pointer to array type. 1843 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1844 const char *GlobalName) { 1845 bool IsConstant = !Features.WritableStrings; 1846 1847 // Get the default prefix if a name wasn't specified. 1848 if (!GlobalName) 1849 GlobalName = ".str"; 1850 1851 // Don't share any string literals if strings aren't constant. 1852 if (!IsConstant) 1853 return GenerateStringLiteral(str, false, *this, GlobalName); 1854 1855 llvm::StringMapEntry<llvm::Constant *> &Entry = 1856 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1857 1858 if (Entry.getValue()) 1859 return Entry.getValue(); 1860 1861 // Create a global variable for this. 1862 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1863 Entry.setValue(C); 1864 return C; 1865 } 1866 1867 /// GetAddrOfConstantCString - Returns a pointer to a character 1868 /// array containing the literal and a terminating '\-' 1869 /// character. The result has pointer to array type. 1870 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1871 const char *GlobalName){ 1872 return GetAddrOfConstantString(str + '\0', GlobalName); 1873 } 1874 1875 /// EmitObjCPropertyImplementations - Emit information for synthesized 1876 /// properties for an implementation. 1877 void CodeGenModule::EmitObjCPropertyImplementations(const 1878 ObjCImplementationDecl *D) { 1879 for (ObjCImplementationDecl::propimpl_iterator 1880 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1881 ObjCPropertyImplDecl *PID = *i; 1882 1883 // Dynamic is just for type-checking. 1884 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1885 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1886 1887 // Determine which methods need to be implemented, some may have 1888 // been overridden. Note that ::isSynthesized is not the method 1889 // we want, that just indicates if the decl came from a 1890 // property. What we want to know is if the method is defined in 1891 // this implementation. 1892 if (!D->getInstanceMethod(PD->getGetterName())) 1893 CodeGenFunction(*this).GenerateObjCGetter( 1894 const_cast<ObjCImplementationDecl *>(D), PID); 1895 if (!PD->isReadOnly() && 1896 !D->getInstanceMethod(PD->getSetterName())) 1897 CodeGenFunction(*this).GenerateObjCSetter( 1898 const_cast<ObjCImplementationDecl *>(D), PID); 1899 } 1900 } 1901 } 1902 1903 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1904 /// for an implementation. 1905 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1906 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1907 return; 1908 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1909 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1910 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1911 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1912 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1913 D->getLocation(), 1914 D->getLocation(), cxxSelector, 1915 getContext().VoidTy, 0, 1916 DC, true, false, true, false, 1917 ObjCMethodDecl::Required); 1918 D->addInstanceMethod(DTORMethod); 1919 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1920 1921 II = &getContext().Idents.get(".cxx_construct"); 1922 cxxSelector = getContext().Selectors.getSelector(0, &II); 1923 // The constructor returns 'self'. 1924 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1925 D->getLocation(), 1926 D->getLocation(), cxxSelector, 1927 getContext().getObjCIdType(), 0, 1928 DC, true, false, true, false, 1929 ObjCMethodDecl::Required); 1930 D->addInstanceMethod(CTORMethod); 1931 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1932 1933 1934 } 1935 1936 /// EmitNamespace - Emit all declarations in a namespace. 1937 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1938 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1939 I != E; ++I) 1940 EmitTopLevelDecl(*I); 1941 } 1942 1943 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1944 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1945 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1946 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1947 ErrorUnsupported(LSD, "linkage spec"); 1948 return; 1949 } 1950 1951 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1952 I != E; ++I) 1953 EmitTopLevelDecl(*I); 1954 } 1955 1956 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1957 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1958 // If an error has occurred, stop code generation, but continue 1959 // parsing and semantic analysis (to ensure all warnings and errors 1960 // are emitted). 1961 if (Diags.hasErrorOccurred()) 1962 return; 1963 1964 // Ignore dependent declarations. 1965 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1966 return; 1967 1968 switch (D->getKind()) { 1969 case Decl::CXXConversion: 1970 case Decl::CXXMethod: 1971 case Decl::Function: 1972 // Skip function templates 1973 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1974 return; 1975 1976 EmitGlobal(cast<FunctionDecl>(D)); 1977 break; 1978 1979 case Decl::Var: 1980 EmitGlobal(cast<VarDecl>(D)); 1981 break; 1982 1983 // C++ Decls 1984 case Decl::Namespace: 1985 EmitNamespace(cast<NamespaceDecl>(D)); 1986 break; 1987 // No code generation needed. 1988 case Decl::UsingShadow: 1989 case Decl::Using: 1990 case Decl::UsingDirective: 1991 case Decl::ClassTemplate: 1992 case Decl::FunctionTemplate: 1993 case Decl::NamespaceAlias: 1994 break; 1995 case Decl::CXXConstructor: 1996 // Skip function templates 1997 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1998 return; 1999 2000 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2001 break; 2002 case Decl::CXXDestructor: 2003 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2004 break; 2005 2006 case Decl::StaticAssert: 2007 // Nothing to do. 2008 break; 2009 2010 // Objective-C Decls 2011 2012 // Forward declarations, no (immediate) code generation. 2013 case Decl::ObjCClass: 2014 case Decl::ObjCForwardProtocol: 2015 case Decl::ObjCInterface: 2016 break; 2017 2018 case Decl::ObjCCategory: { 2019 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2020 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2021 Context.ResetObjCLayout(CD->getClassInterface()); 2022 break; 2023 } 2024 2025 2026 case Decl::ObjCProtocol: 2027 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2028 break; 2029 2030 case Decl::ObjCCategoryImpl: 2031 // Categories have properties but don't support synthesize so we 2032 // can ignore them here. 2033 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2034 break; 2035 2036 case Decl::ObjCImplementation: { 2037 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2038 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2039 Context.ResetObjCLayout(OMD->getClassInterface()); 2040 EmitObjCPropertyImplementations(OMD); 2041 EmitObjCIvarInitializations(OMD); 2042 Runtime->GenerateClass(OMD); 2043 break; 2044 } 2045 case Decl::ObjCMethod: { 2046 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2047 // If this is not a prototype, emit the body. 2048 if (OMD->getBody()) 2049 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2050 break; 2051 } 2052 case Decl::ObjCCompatibleAlias: 2053 // compatibility-alias is a directive and has no code gen. 2054 break; 2055 2056 case Decl::LinkageSpec: 2057 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2058 break; 2059 2060 case Decl::FileScopeAsm: { 2061 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2062 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2063 2064 const std::string &S = getModule().getModuleInlineAsm(); 2065 if (S.empty()) 2066 getModule().setModuleInlineAsm(AsmString); 2067 else 2068 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2069 break; 2070 } 2071 2072 default: 2073 // Make sure we handled everything we should, every other kind is a 2074 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2075 // function. Need to recode Decl::Kind to do that easily. 2076 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2077 } 2078 } 2079 2080 /// Turns the given pointer into a constant. 2081 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2082 const void *Ptr) { 2083 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2084 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2085 return llvm::ConstantInt::get(i64, PtrInt); 2086 } 2087 2088 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2089 llvm::NamedMDNode *&GlobalMetadata, 2090 GlobalDecl D, 2091 llvm::GlobalValue *Addr) { 2092 if (!GlobalMetadata) 2093 GlobalMetadata = 2094 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2095 2096 // TODO: should we report variant information for ctors/dtors? 2097 llvm::Value *Ops[] = { 2098 Addr, 2099 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2100 }; 2101 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2102 } 2103 2104 /// Emits metadata nodes associating all the global values in the 2105 /// current module with the Decls they came from. This is useful for 2106 /// projects using IR gen as a subroutine. 2107 /// 2108 /// Since there's currently no way to associate an MDNode directly 2109 /// with an llvm::GlobalValue, we create a global named metadata 2110 /// with the name 'clang.global.decl.ptrs'. 2111 void CodeGenModule::EmitDeclMetadata() { 2112 llvm::NamedMDNode *GlobalMetadata = 0; 2113 2114 // StaticLocalDeclMap 2115 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2116 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2117 I != E; ++I) { 2118 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2119 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2120 } 2121 } 2122 2123 /// Emits metadata nodes for all the local variables in the current 2124 /// function. 2125 void CodeGenFunction::EmitDeclMetadata() { 2126 if (LocalDeclMap.empty()) return; 2127 2128 llvm::LLVMContext &Context = getLLVMContext(); 2129 2130 // Find the unique metadata ID for this name. 2131 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2132 2133 llvm::NamedMDNode *GlobalMetadata = 0; 2134 2135 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2136 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2137 const Decl *D = I->first; 2138 llvm::Value *Addr = I->second; 2139 2140 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2141 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2142 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2143 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2144 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2145 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2146 } 2147 } 2148 } 2149 2150 ///@name Custom Runtime Function Interfaces 2151 ///@{ 2152 // 2153 // FIXME: These can be eliminated once we can have clients just get the required 2154 // AST nodes from the builtin tables. 2155 2156 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2157 if (BlockObjectDispose) 2158 return BlockObjectDispose; 2159 2160 // If we saw an explicit decl, use that. 2161 if (BlockObjectDisposeDecl) { 2162 return BlockObjectDispose = GetAddrOfFunction( 2163 BlockObjectDisposeDecl, 2164 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2165 } 2166 2167 // Otherwise construct the function by hand. 2168 const llvm::FunctionType *FTy; 2169 std::vector<const llvm::Type*> ArgTys; 2170 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2171 ArgTys.push_back(PtrToInt8Ty); 2172 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2173 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2174 return BlockObjectDispose = 2175 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2176 } 2177 2178 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2179 if (BlockObjectAssign) 2180 return BlockObjectAssign; 2181 2182 // If we saw an explicit decl, use that. 2183 if (BlockObjectAssignDecl) { 2184 return BlockObjectAssign = GetAddrOfFunction( 2185 BlockObjectAssignDecl, 2186 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2187 } 2188 2189 // Otherwise construct the function by hand. 2190 const llvm::FunctionType *FTy; 2191 std::vector<const llvm::Type*> ArgTys; 2192 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2193 ArgTys.push_back(PtrToInt8Ty); 2194 ArgTys.push_back(PtrToInt8Ty); 2195 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2196 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2197 return BlockObjectAssign = 2198 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2199 } 2200 2201 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2202 if (NSConcreteGlobalBlock) 2203 return NSConcreteGlobalBlock; 2204 2205 // If we saw an explicit decl, use that. 2206 if (NSConcreteGlobalBlockDecl) { 2207 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2208 NSConcreteGlobalBlockDecl, 2209 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2210 } 2211 2212 // Otherwise construct the variable by hand. 2213 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2214 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2215 } 2216 2217 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2218 if (NSConcreteStackBlock) 2219 return NSConcreteStackBlock; 2220 2221 // If we saw an explicit decl, use that. 2222 if (NSConcreteStackBlockDecl) { 2223 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2224 NSConcreteStackBlockDecl, 2225 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2226 } 2227 2228 // Otherwise construct the variable by hand. 2229 return NSConcreteStackBlock = CreateRuntimeVariable( 2230 PtrToInt8Ty, "_NSConcreteStackBlock"); 2231 } 2232 2233 ///@} 2234