1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), Types(*this), VTables(*this), 90 SanitizerMD(new SanitizerMetadata(*this)) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 SizeSizeInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 106 IntAlignInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 108 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 109 IntPtrTy = llvm::IntegerType::get(LLVMContext, 110 C.getTargetInfo().getMaxPointerWidth()); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext())); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 136 DebugInfo.reset(new CGDebugInfo(*this)); 137 138 Block.GlobalUniqueCount = 0; 139 140 if (C.getLangOpts().ObjC1) 141 ObjCData.reset(new ObjCEntrypoints()); 142 143 if (CodeGenOpts.hasProfileClangUse()) { 144 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.ProfileInstrumentUsePath); 146 if (auto E = ReaderOrErr.takeError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile %0: %1"); 149 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 150 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 151 << EI.message(); 152 }); 153 } else 154 PGOReader = std::move(ReaderOrErr.get()); 155 } 156 157 // If coverage mapping generation is enabled, create the 158 // CoverageMappingModuleGen object. 159 if (CodeGenOpts.CoverageMapping) 160 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 161 } 162 163 CodeGenModule::~CodeGenModule() {} 164 165 void CodeGenModule::createObjCRuntime() { 166 // This is just isGNUFamily(), but we want to force implementors of 167 // new ABIs to decide how best to do this. 168 switch (LangOpts.ObjCRuntime.getKind()) { 169 case ObjCRuntime::GNUstep: 170 case ObjCRuntime::GCC: 171 case ObjCRuntime::ObjFW: 172 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 173 return; 174 175 case ObjCRuntime::FragileMacOSX: 176 case ObjCRuntime::MacOSX: 177 case ObjCRuntime::iOS: 178 case ObjCRuntime::WatchOS: 179 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 180 return; 181 } 182 llvm_unreachable("bad runtime kind"); 183 } 184 185 void CodeGenModule::createOpenCLRuntime() { 186 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 187 } 188 189 void CodeGenModule::createOpenMPRuntime() { 190 // Select a specialized code generation class based on the target, if any. 191 // If it does not exist use the default implementation. 192 switch (getTriple().getArch()) { 193 case llvm::Triple::nvptx: 194 case llvm::Triple::nvptx64: 195 assert(getLangOpts().OpenMPIsDevice && 196 "OpenMP NVPTX is only prepared to deal with device code."); 197 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 198 break; 199 default: 200 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 201 break; 202 } 203 } 204 205 void CodeGenModule::createCUDARuntime() { 206 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 207 } 208 209 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 210 Replacements[Name] = C; 211 } 212 213 void CodeGenModule::applyReplacements() { 214 for (auto &I : Replacements) { 215 StringRef MangledName = I.first(); 216 llvm::Constant *Replacement = I.second; 217 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 218 if (!Entry) 219 continue; 220 auto *OldF = cast<llvm::Function>(Entry); 221 auto *NewF = dyn_cast<llvm::Function>(Replacement); 222 if (!NewF) { 223 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 224 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 225 } else { 226 auto *CE = cast<llvm::ConstantExpr>(Replacement); 227 assert(CE->getOpcode() == llvm::Instruction::BitCast || 228 CE->getOpcode() == llvm::Instruction::GetElementPtr); 229 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 230 } 231 } 232 233 // Replace old with new, but keep the old order. 234 OldF->replaceAllUsesWith(Replacement); 235 if (NewF) { 236 NewF->removeFromParent(); 237 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 238 NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal( 261 const llvm::GlobalIndirectSymbol &GIS) { 262 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 263 const llvm::Constant *C = &GIS; 264 for (;;) { 265 C = C->stripPointerCasts(); 266 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 267 return GO; 268 // stripPointerCasts will not walk over weak aliases. 269 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 270 if (!GIS2) 271 return nullptr; 272 if (!Visited.insert(GIS2).second) 273 return nullptr; 274 C = GIS2->getIndirectSymbol(); 275 } 276 } 277 278 void CodeGenModule::checkAliases() { 279 // Check if the constructed aliases are well formed. It is really unfortunate 280 // that we have to do this in CodeGen, but we only construct mangled names 281 // and aliases during codegen. 282 bool Error = false; 283 DiagnosticsEngine &Diags = getDiags(); 284 for (const GlobalDecl &GD : Aliases) { 285 const auto *D = cast<ValueDecl>(GD.getDecl()); 286 SourceLocation Location; 287 bool IsIFunc = D->hasAttr<IFuncAttr>(); 288 if (const Attr *A = D->getDefiningAttr()) 289 Location = A->getLocation(); 290 else 291 llvm_unreachable("Not an alias or ifunc?"); 292 StringRef MangledName = getMangledName(GD); 293 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 294 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 295 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 296 if (!GV) { 297 Error = true; 298 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 299 } else if (GV->isDeclaration()) { 300 Error = true; 301 Diags.Report(Location, diag::err_alias_to_undefined) 302 << IsIFunc << IsIFunc; 303 } else if (IsIFunc) { 304 // Check resolver function type. 305 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 306 GV->getType()->getPointerElementType()); 307 assert(FTy); 308 if (!FTy->getReturnType()->isPointerTy()) 309 Diags.Report(Location, diag::err_ifunc_resolver_return); 310 if (FTy->getNumParams()) 311 Diags.Report(Location, diag::err_ifunc_resolver_params); 312 } 313 314 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 315 llvm::GlobalValue *AliaseeGV; 316 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 317 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 318 else 319 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 320 321 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 322 StringRef AliasSection = SA->getName(); 323 if (AliasSection != AliaseeGV->getSection()) 324 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 325 << AliasSection << IsIFunc << IsIFunc; 326 } 327 328 // We have to handle alias to weak aliases in here. LLVM itself disallows 329 // this since the object semantics would not match the IL one. For 330 // compatibility with gcc we implement it by just pointing the alias 331 // to its aliasee's aliasee. We also warn, since the user is probably 332 // expecting the link to be weak. 333 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 334 if (GA->isInterposable()) { 335 Diags.Report(Location, diag::warn_alias_to_weak_alias) 336 << GV->getName() << GA->getName() << IsIFunc; 337 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 338 GA->getIndirectSymbol(), Alias->getType()); 339 Alias->setIndirectSymbol(Aliasee); 340 } 341 } 342 } 343 if (!Error) 344 return; 345 346 for (const GlobalDecl &GD : Aliases) { 347 StringRef MangledName = getMangledName(GD); 348 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 349 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 350 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 351 Alias->eraseFromParent(); 352 } 353 } 354 355 void CodeGenModule::clear() { 356 DeferredDeclsToEmit.clear(); 357 if (OpenMPRuntime) 358 OpenMPRuntime->clear(); 359 } 360 361 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 362 StringRef MainFile) { 363 if (!hasDiagnostics()) 364 return; 365 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 366 if (MainFile.empty()) 367 MainFile = "<stdin>"; 368 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 369 } else 370 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 371 << Mismatched; 372 } 373 374 void CodeGenModule::Release() { 375 EmitDeferred(); 376 applyGlobalValReplacements(); 377 applyReplacements(); 378 checkAliases(); 379 EmitCXXGlobalInitFunc(); 380 EmitCXXGlobalDtorFunc(); 381 EmitCXXThreadLocalInitFunc(); 382 if (ObjCRuntime) 383 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 384 AddGlobalCtor(ObjCInitFunction); 385 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 386 CUDARuntime) { 387 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 388 AddGlobalCtor(CudaCtorFunction); 389 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 390 AddGlobalDtor(CudaDtorFunction); 391 } 392 if (OpenMPRuntime) 393 if (llvm::Function *OpenMPRegistrationFunction = 394 OpenMPRuntime->emitRegistrationFunction()) 395 AddGlobalCtor(OpenMPRegistrationFunction, 0); 396 if (PGOReader) { 397 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 398 if (PGOStats.hasDiagnostics()) 399 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 400 } 401 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 402 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 403 EmitGlobalAnnotations(); 404 EmitStaticExternCAliases(); 405 EmitDeferredUnusedCoverageMappings(); 406 if (CoverageMapping) 407 CoverageMapping->emit(); 408 if (CodeGenOpts.SanitizeCfiCrossDso) 409 CodeGenFunction(*this).EmitCfiCheckFail(); 410 emitLLVMUsed(); 411 if (SanStats) 412 SanStats->finish(); 413 414 if (CodeGenOpts.Autolink && 415 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 416 EmitModuleLinkOptions(); 417 } 418 if (CodeGenOpts.DwarfVersion) { 419 // We actually want the latest version when there are conflicts. 420 // We can change from Warning to Latest if such mode is supported. 421 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 422 CodeGenOpts.DwarfVersion); 423 } 424 if (CodeGenOpts.EmitCodeView) { 425 // Indicate that we want CodeView in the metadata. 426 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 427 } 428 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 429 // We don't support LTO with 2 with different StrictVTablePointers 430 // FIXME: we could support it by stripping all the information introduced 431 // by StrictVTablePointers. 432 433 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 434 435 llvm::Metadata *Ops[2] = { 436 llvm::MDString::get(VMContext, "StrictVTablePointers"), 437 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 438 llvm::Type::getInt32Ty(VMContext), 1))}; 439 440 getModule().addModuleFlag(llvm::Module::Require, 441 "StrictVTablePointersRequirement", 442 llvm::MDNode::get(VMContext, Ops)); 443 } 444 if (DebugInfo) 445 // We support a single version in the linked module. The LLVM 446 // parser will drop debug info with a different version number 447 // (and warn about it, too). 448 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 449 llvm::DEBUG_METADATA_VERSION); 450 451 // We need to record the widths of enums and wchar_t, so that we can generate 452 // the correct build attributes in the ARM backend. 453 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 454 if ( Arch == llvm::Triple::arm 455 || Arch == llvm::Triple::armeb 456 || Arch == llvm::Triple::thumb 457 || Arch == llvm::Triple::thumbeb) { 458 // Width of wchar_t in bytes 459 uint64_t WCharWidth = 460 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 461 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 462 463 // The minimum width of an enum in bytes 464 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 465 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 466 } 467 468 if (CodeGenOpts.SanitizeCfiCrossDso) { 469 // Indicate that we want cross-DSO control flow integrity checks. 470 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 471 } 472 473 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 474 // Indicate whether __nvvm_reflect should be configured to flush denormal 475 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 476 // property.) 477 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 478 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 479 } 480 481 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 482 assert(PLevel < 3 && "Invalid PIC Level"); 483 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 484 if (Context.getLangOpts().PIE) 485 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 486 } 487 488 SimplifyPersonality(); 489 490 if (getCodeGenOpts().EmitDeclMetadata) 491 EmitDeclMetadata(); 492 493 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 494 EmitCoverageFile(); 495 496 if (DebugInfo) 497 DebugInfo->finalize(); 498 499 EmitVersionIdentMetadata(); 500 501 EmitTargetMetadata(); 502 } 503 504 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 505 // Make sure that this type is translated. 506 Types.UpdateCompletedType(TD); 507 } 508 509 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 510 // Make sure that this type is translated. 511 Types.RefreshTypeCacheForClass(RD); 512 } 513 514 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 515 if (!TBAA) 516 return nullptr; 517 return TBAA->getTBAAInfo(QTy); 518 } 519 520 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 521 if (!TBAA) 522 return nullptr; 523 return TBAA->getTBAAInfoForVTablePtr(); 524 } 525 526 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 527 if (!TBAA) 528 return nullptr; 529 return TBAA->getTBAAStructInfo(QTy); 530 } 531 532 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 533 llvm::MDNode *AccessN, 534 uint64_t O) { 535 if (!TBAA) 536 return nullptr; 537 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 538 } 539 540 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 541 /// and struct-path aware TBAA, the tag has the same format: 542 /// base type, access type and offset. 543 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 544 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 545 llvm::MDNode *TBAAInfo, 546 bool ConvertTypeToTag) { 547 if (ConvertTypeToTag && TBAA) 548 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 549 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 550 else 551 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 552 } 553 554 void CodeGenModule::DecorateInstructionWithInvariantGroup( 555 llvm::Instruction *I, const CXXRecordDecl *RD) { 556 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 557 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 558 // Check if we have to wrap MDString in MDNode. 559 if (!MetaDataNode) 560 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 561 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 562 } 563 564 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 565 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 566 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 567 } 568 569 /// ErrorUnsupported - Print out an error that codegen doesn't support the 570 /// specified stmt yet. 571 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 572 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 573 "cannot compile this %0 yet"); 574 std::string Msg = Type; 575 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 576 << Msg << S->getSourceRange(); 577 } 578 579 /// ErrorUnsupported - Print out an error that codegen doesn't support the 580 /// specified decl yet. 581 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 582 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 583 "cannot compile this %0 yet"); 584 std::string Msg = Type; 585 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 586 } 587 588 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 589 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 590 } 591 592 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 593 const NamedDecl *D) const { 594 // Internal definitions always have default visibility. 595 if (GV->hasLocalLinkage()) { 596 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 597 return; 598 } 599 600 // Set visibility for definitions. 601 LinkageInfo LV = D->getLinkageAndVisibility(); 602 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 603 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 604 } 605 606 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 607 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 608 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 609 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 610 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 611 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 612 } 613 614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 615 CodeGenOptions::TLSModel M) { 616 switch (M) { 617 case CodeGenOptions::GeneralDynamicTLSModel: 618 return llvm::GlobalVariable::GeneralDynamicTLSModel; 619 case CodeGenOptions::LocalDynamicTLSModel: 620 return llvm::GlobalVariable::LocalDynamicTLSModel; 621 case CodeGenOptions::InitialExecTLSModel: 622 return llvm::GlobalVariable::InitialExecTLSModel; 623 case CodeGenOptions::LocalExecTLSModel: 624 return llvm::GlobalVariable::LocalExecTLSModel; 625 } 626 llvm_unreachable("Invalid TLS model!"); 627 } 628 629 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 630 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 631 632 llvm::GlobalValue::ThreadLocalMode TLM; 633 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 634 635 // Override the TLS model if it is explicitly specified. 636 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 637 TLM = GetLLVMTLSModel(Attr->getModel()); 638 } 639 640 GV->setThreadLocalMode(TLM); 641 } 642 643 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 644 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 645 646 // Some ABIs don't have constructor variants. Make sure that base and 647 // complete constructors get mangled the same. 648 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 649 if (!getTarget().getCXXABI().hasConstructorVariants()) { 650 CXXCtorType OrigCtorType = GD.getCtorType(); 651 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 652 if (OrigCtorType == Ctor_Base) 653 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 654 } 655 } 656 657 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 658 if (!FoundStr.empty()) 659 return FoundStr; 660 661 const auto *ND = cast<NamedDecl>(GD.getDecl()); 662 SmallString<256> Buffer; 663 StringRef Str; 664 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 665 llvm::raw_svector_ostream Out(Buffer); 666 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 667 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 668 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 669 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 670 else 671 getCXXABI().getMangleContext().mangleName(ND, Out); 672 Str = Out.str(); 673 } else { 674 IdentifierInfo *II = ND->getIdentifier(); 675 assert(II && "Attempt to mangle unnamed decl."); 676 Str = II->getName(); 677 } 678 679 // Keep the first result in the case of a mangling collision. 680 auto Result = Manglings.insert(std::make_pair(Str, GD)); 681 return FoundStr = Result.first->first(); 682 } 683 684 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 685 const BlockDecl *BD) { 686 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 687 const Decl *D = GD.getDecl(); 688 689 SmallString<256> Buffer; 690 llvm::raw_svector_ostream Out(Buffer); 691 if (!D) 692 MangleCtx.mangleGlobalBlock(BD, 693 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 694 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 695 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 696 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 697 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 698 else 699 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 700 701 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 702 return Result.first->first(); 703 } 704 705 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 706 return getModule().getNamedValue(Name); 707 } 708 709 /// AddGlobalCtor - Add a function to the list that will be called before 710 /// main() runs. 711 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 712 llvm::Constant *AssociatedData) { 713 // FIXME: Type coercion of void()* types. 714 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 715 } 716 717 /// AddGlobalDtor - Add a function to the list that will be called 718 /// when the module is unloaded. 719 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 720 // FIXME: Type coercion of void()* types. 721 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 722 } 723 724 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 725 // Ctor function type is void()*. 726 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 727 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 728 729 // Get the type of a ctor entry, { i32, void ()*, i8* }. 730 llvm::StructType *CtorStructTy = llvm::StructType::get( 731 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 732 733 // Construct the constructor and destructor arrays. 734 SmallVector<llvm::Constant *, 8> Ctors; 735 for (const auto &I : Fns) { 736 llvm::Constant *S[] = { 737 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 738 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 739 (I.AssociatedData 740 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 741 : llvm::Constant::getNullValue(VoidPtrTy))}; 742 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 743 } 744 745 if (!Ctors.empty()) { 746 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 747 new llvm::GlobalVariable(TheModule, AT, false, 748 llvm::GlobalValue::AppendingLinkage, 749 llvm::ConstantArray::get(AT, Ctors), 750 GlobalName); 751 } 752 Fns.clear(); 753 } 754 755 llvm::GlobalValue::LinkageTypes 756 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 757 const auto *D = cast<FunctionDecl>(GD.getDecl()); 758 759 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 760 761 if (isa<CXXDestructorDecl>(D) && 762 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 763 GD.getDtorType())) { 764 // Destructor variants in the Microsoft C++ ABI are always internal or 765 // linkonce_odr thunks emitted on an as-needed basis. 766 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 767 : llvm::GlobalValue::LinkOnceODRLinkage; 768 } 769 770 if (isa<CXXConstructorDecl>(D) && 771 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 772 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 773 // Our approach to inheriting constructors is fundamentally different from 774 // that used by the MS ABI, so keep our inheriting constructor thunks 775 // internal rather than trying to pick an unambiguous mangling for them. 776 return llvm::GlobalValue::InternalLinkage; 777 } 778 779 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 780 } 781 782 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 783 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 784 785 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 786 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 787 // Don't dllexport/import destructor thunks. 788 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 789 return; 790 } 791 } 792 793 if (FD->hasAttr<DLLImportAttr>()) 794 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 795 else if (FD->hasAttr<DLLExportAttr>()) 796 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 797 else 798 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 799 } 800 801 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 802 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 803 if (!MDS) return nullptr; 804 805 llvm::MD5 md5; 806 llvm::MD5::MD5Result result; 807 md5.update(MDS->getString()); 808 md5.final(result); 809 uint64_t id = 0; 810 for (int i = 0; i < 8; ++i) 811 id |= static_cast<uint64_t>(result[i]) << (i * 8); 812 return llvm::ConstantInt::get(Int64Ty, id); 813 } 814 815 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 816 llvm::Function *F) { 817 setNonAliasAttributes(D, F); 818 } 819 820 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 821 const CGFunctionInfo &Info, 822 llvm::Function *F) { 823 unsigned CallingConv; 824 AttributeListType AttributeList; 825 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 826 false); 827 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 828 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 829 } 830 831 /// Determines whether the language options require us to model 832 /// unwind exceptions. We treat -fexceptions as mandating this 833 /// except under the fragile ObjC ABI with only ObjC exceptions 834 /// enabled. This means, for example, that C with -fexceptions 835 /// enables this. 836 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 837 // If exceptions are completely disabled, obviously this is false. 838 if (!LangOpts.Exceptions) return false; 839 840 // If C++ exceptions are enabled, this is true. 841 if (LangOpts.CXXExceptions) return true; 842 843 // If ObjC exceptions are enabled, this depends on the ABI. 844 if (LangOpts.ObjCExceptions) { 845 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 846 } 847 848 return true; 849 } 850 851 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 852 llvm::Function *F) { 853 llvm::AttrBuilder B; 854 855 if (CodeGenOpts.UnwindTables) 856 B.addAttribute(llvm::Attribute::UWTable); 857 858 if (!hasUnwindExceptions(LangOpts)) 859 B.addAttribute(llvm::Attribute::NoUnwind); 860 861 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 862 B.addAttribute(llvm::Attribute::StackProtect); 863 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 864 B.addAttribute(llvm::Attribute::StackProtectStrong); 865 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 866 B.addAttribute(llvm::Attribute::StackProtectReq); 867 868 if (!D) { 869 F->addAttributes(llvm::AttributeSet::FunctionIndex, 870 llvm::AttributeSet::get( 871 F->getContext(), 872 llvm::AttributeSet::FunctionIndex, B)); 873 return; 874 } 875 876 if (D->hasAttr<NakedAttr>()) { 877 // Naked implies noinline: we should not be inlining such functions. 878 B.addAttribute(llvm::Attribute::Naked); 879 B.addAttribute(llvm::Attribute::NoInline); 880 } else if (D->hasAttr<NoDuplicateAttr>()) { 881 B.addAttribute(llvm::Attribute::NoDuplicate); 882 } else if (D->hasAttr<NoInlineAttr>()) { 883 B.addAttribute(llvm::Attribute::NoInline); 884 } else if (D->hasAttr<AlwaysInlineAttr>() && 885 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 886 llvm::Attribute::NoInline)) { 887 // (noinline wins over always_inline, and we can't specify both in IR) 888 B.addAttribute(llvm::Attribute::AlwaysInline); 889 } 890 891 if (D->hasAttr<ColdAttr>()) { 892 if (!D->hasAttr<OptimizeNoneAttr>()) 893 B.addAttribute(llvm::Attribute::OptimizeForSize); 894 B.addAttribute(llvm::Attribute::Cold); 895 } 896 897 if (D->hasAttr<MinSizeAttr>()) 898 B.addAttribute(llvm::Attribute::MinSize); 899 900 F->addAttributes(llvm::AttributeSet::FunctionIndex, 901 llvm::AttributeSet::get( 902 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 903 904 if (D->hasAttr<OptimizeNoneAttr>()) { 905 // OptimizeNone implies noinline; we should not be inlining such functions. 906 F->addFnAttr(llvm::Attribute::OptimizeNone); 907 F->addFnAttr(llvm::Attribute::NoInline); 908 909 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 910 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 911 F->removeFnAttr(llvm::Attribute::MinSize); 912 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 913 "OptimizeNone and AlwaysInline on same function!"); 914 915 // Attribute 'inlinehint' has no effect on 'optnone' functions. 916 // Explicitly remove it from the set of function attributes. 917 F->removeFnAttr(llvm::Attribute::InlineHint); 918 } 919 920 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 921 if (alignment) 922 F->setAlignment(alignment); 923 924 // Some C++ ABIs require 2-byte alignment for member functions, in order to 925 // reserve a bit for differentiating between virtual and non-virtual member 926 // functions. If the current target's C++ ABI requires this and this is a 927 // member function, set its alignment accordingly. 928 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 929 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 930 F->setAlignment(2); 931 } 932 933 // In the cross-dso CFI mode, we want !type attributes on definitions only. 934 if (CodeGenOpts.SanitizeCfiCrossDso) 935 if (auto *FD = dyn_cast<FunctionDecl>(D)) 936 CreateFunctionTypeMetadata(FD, F); 937 } 938 939 void CodeGenModule::SetCommonAttributes(const Decl *D, 940 llvm::GlobalValue *GV) { 941 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 942 setGlobalVisibility(GV, ND); 943 else 944 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 945 946 if (D && D->hasAttr<UsedAttr>()) 947 addUsedGlobal(GV); 948 } 949 950 void CodeGenModule::setAliasAttributes(const Decl *D, 951 llvm::GlobalValue *GV) { 952 SetCommonAttributes(D, GV); 953 954 // Process the dllexport attribute based on whether the original definition 955 // (not necessarily the aliasee) was exported. 956 if (D->hasAttr<DLLExportAttr>()) 957 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 958 } 959 960 void CodeGenModule::setNonAliasAttributes(const Decl *D, 961 llvm::GlobalObject *GO) { 962 SetCommonAttributes(D, GO); 963 964 if (D) 965 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 966 GO->setSection(SA->getName()); 967 968 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 969 } 970 971 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 972 llvm::Function *F, 973 const CGFunctionInfo &FI) { 974 SetLLVMFunctionAttributes(D, FI, F); 975 SetLLVMFunctionAttributesForDefinition(D, F); 976 977 F->setLinkage(llvm::Function::InternalLinkage); 978 979 setNonAliasAttributes(D, F); 980 } 981 982 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 983 const NamedDecl *ND) { 984 // Set linkage and visibility in case we never see a definition. 985 LinkageInfo LV = ND->getLinkageAndVisibility(); 986 if (LV.getLinkage() != ExternalLinkage) { 987 // Don't set internal linkage on declarations. 988 } else { 989 if (ND->hasAttr<DLLImportAttr>()) { 990 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 991 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 992 } else if (ND->hasAttr<DLLExportAttr>()) { 993 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 994 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 995 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 996 // "extern_weak" is overloaded in LLVM; we probably should have 997 // separate linkage types for this. 998 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 999 } 1000 1001 // Set visibility on a declaration only if it's explicit. 1002 if (LV.isVisibilityExplicit()) 1003 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1004 } 1005 } 1006 1007 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1008 llvm::Function *F) { 1009 // Only if we are checking indirect calls. 1010 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1011 return; 1012 1013 // Non-static class methods are handled via vtable pointer checks elsewhere. 1014 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1015 return; 1016 1017 // Additionally, if building with cross-DSO support... 1018 if (CodeGenOpts.SanitizeCfiCrossDso) { 1019 // Skip available_externally functions. They won't be codegen'ed in the 1020 // current module anyway. 1021 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1022 return; 1023 } 1024 1025 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1026 F->addTypeMetadata(0, MD); 1027 1028 // Emit a hash-based bit set entry for cross-DSO calls. 1029 if (CodeGenOpts.SanitizeCfiCrossDso) 1030 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1031 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1032 } 1033 1034 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1035 bool IsIncompleteFunction, 1036 bool IsThunk) { 1037 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1038 // If this is an intrinsic function, set the function's attributes 1039 // to the intrinsic's attributes. 1040 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1041 return; 1042 } 1043 1044 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1045 1046 if (!IsIncompleteFunction) 1047 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1048 1049 // Add the Returned attribute for "this", except for iOS 5 and earlier 1050 // where substantial code, including the libstdc++ dylib, was compiled with 1051 // GCC and does not actually return "this". 1052 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1053 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1054 assert(!F->arg_empty() && 1055 F->arg_begin()->getType() 1056 ->canLosslesslyBitCastTo(F->getReturnType()) && 1057 "unexpected this return"); 1058 F->addAttribute(1, llvm::Attribute::Returned); 1059 } 1060 1061 // Only a few attributes are set on declarations; these may later be 1062 // overridden by a definition. 1063 1064 setLinkageAndVisibilityForGV(F, FD); 1065 1066 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1067 F->setSection(SA->getName()); 1068 1069 if (FD->isReplaceableGlobalAllocationFunction()) { 1070 // A replaceable global allocation function does not act like a builtin by 1071 // default, only if it is invoked by a new-expression or delete-expression. 1072 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1073 llvm::Attribute::NoBuiltin); 1074 1075 // A sane operator new returns a non-aliasing pointer. 1076 // FIXME: Also add NonNull attribute to the return value 1077 // for the non-nothrow forms? 1078 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1079 if (getCodeGenOpts().AssumeSaneOperatorNew && 1080 (Kind == OO_New || Kind == OO_Array_New)) 1081 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1082 llvm::Attribute::NoAlias); 1083 } 1084 1085 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1086 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1087 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1088 if (MD->isVirtual()) 1089 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1090 1091 // Don't emit entries for function declarations in the cross-DSO mode. This 1092 // is handled with better precision by the receiving DSO. 1093 if (!CodeGenOpts.SanitizeCfiCrossDso) 1094 CreateFunctionTypeMetadata(FD, F); 1095 } 1096 1097 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1098 assert(!GV->isDeclaration() && 1099 "Only globals with definition can force usage."); 1100 LLVMUsed.emplace_back(GV); 1101 } 1102 1103 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1104 assert(!GV->isDeclaration() && 1105 "Only globals with definition can force usage."); 1106 LLVMCompilerUsed.emplace_back(GV); 1107 } 1108 1109 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1110 std::vector<llvm::WeakVH> &List) { 1111 // Don't create llvm.used if there is no need. 1112 if (List.empty()) 1113 return; 1114 1115 // Convert List to what ConstantArray needs. 1116 SmallVector<llvm::Constant*, 8> UsedArray; 1117 UsedArray.resize(List.size()); 1118 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1119 UsedArray[i] = 1120 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1121 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1122 } 1123 1124 if (UsedArray.empty()) 1125 return; 1126 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1127 1128 auto *GV = new llvm::GlobalVariable( 1129 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1130 llvm::ConstantArray::get(ATy, UsedArray), Name); 1131 1132 GV->setSection("llvm.metadata"); 1133 } 1134 1135 void CodeGenModule::emitLLVMUsed() { 1136 emitUsed(*this, "llvm.used", LLVMUsed); 1137 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1138 } 1139 1140 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1141 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1142 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1143 } 1144 1145 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1146 llvm::SmallString<32> Opt; 1147 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1148 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1149 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1150 } 1151 1152 void CodeGenModule::AddDependentLib(StringRef Lib) { 1153 llvm::SmallString<24> Opt; 1154 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1155 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1156 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1157 } 1158 1159 /// \brief Add link options implied by the given module, including modules 1160 /// it depends on, using a postorder walk. 1161 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1162 SmallVectorImpl<llvm::Metadata *> &Metadata, 1163 llvm::SmallPtrSet<Module *, 16> &Visited) { 1164 // Import this module's parent. 1165 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1166 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1167 } 1168 1169 // Import this module's dependencies. 1170 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1171 if (Visited.insert(Mod->Imports[I - 1]).second) 1172 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1173 } 1174 1175 // Add linker options to link against the libraries/frameworks 1176 // described by this module. 1177 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1178 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1179 // Link against a framework. Frameworks are currently Darwin only, so we 1180 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1181 if (Mod->LinkLibraries[I-1].IsFramework) { 1182 llvm::Metadata *Args[2] = { 1183 llvm::MDString::get(Context, "-framework"), 1184 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1185 1186 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1187 continue; 1188 } 1189 1190 // Link against a library. 1191 llvm::SmallString<24> Opt; 1192 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1193 Mod->LinkLibraries[I-1].Library, Opt); 1194 auto *OptString = llvm::MDString::get(Context, Opt); 1195 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1196 } 1197 } 1198 1199 void CodeGenModule::EmitModuleLinkOptions() { 1200 // Collect the set of all of the modules we want to visit to emit link 1201 // options, which is essentially the imported modules and all of their 1202 // non-explicit child modules. 1203 llvm::SetVector<clang::Module *> LinkModules; 1204 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1205 SmallVector<clang::Module *, 16> Stack; 1206 1207 // Seed the stack with imported modules. 1208 for (Module *M : ImportedModules) 1209 if (Visited.insert(M).second) 1210 Stack.push_back(M); 1211 1212 // Find all of the modules to import, making a little effort to prune 1213 // non-leaf modules. 1214 while (!Stack.empty()) { 1215 clang::Module *Mod = Stack.pop_back_val(); 1216 1217 bool AnyChildren = false; 1218 1219 // Visit the submodules of this module. 1220 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1221 SubEnd = Mod->submodule_end(); 1222 Sub != SubEnd; ++Sub) { 1223 // Skip explicit children; they need to be explicitly imported to be 1224 // linked against. 1225 if ((*Sub)->IsExplicit) 1226 continue; 1227 1228 if (Visited.insert(*Sub).second) { 1229 Stack.push_back(*Sub); 1230 AnyChildren = true; 1231 } 1232 } 1233 1234 // We didn't find any children, so add this module to the list of 1235 // modules to link against. 1236 if (!AnyChildren) { 1237 LinkModules.insert(Mod); 1238 } 1239 } 1240 1241 // Add link options for all of the imported modules in reverse topological 1242 // order. We don't do anything to try to order import link flags with respect 1243 // to linker options inserted by things like #pragma comment(). 1244 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1245 Visited.clear(); 1246 for (Module *M : LinkModules) 1247 if (Visited.insert(M).second) 1248 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1249 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1250 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1251 1252 // Add the linker options metadata flag. 1253 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1254 llvm::MDNode::get(getLLVMContext(), 1255 LinkerOptionsMetadata)); 1256 } 1257 1258 void CodeGenModule::EmitDeferred() { 1259 // Emit code for any potentially referenced deferred decls. Since a 1260 // previously unused static decl may become used during the generation of code 1261 // for a static function, iterate until no changes are made. 1262 1263 if (!DeferredVTables.empty()) { 1264 EmitDeferredVTables(); 1265 1266 // Emitting a vtable doesn't directly cause more vtables to 1267 // become deferred, although it can cause functions to be 1268 // emitted that then need those vtables. 1269 assert(DeferredVTables.empty()); 1270 } 1271 1272 // Stop if we're out of both deferred vtables and deferred declarations. 1273 if (DeferredDeclsToEmit.empty()) 1274 return; 1275 1276 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1277 // work, it will not interfere with this. 1278 std::vector<DeferredGlobal> CurDeclsToEmit; 1279 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1280 1281 for (DeferredGlobal &G : CurDeclsToEmit) { 1282 GlobalDecl D = G.GD; 1283 G.GV = nullptr; 1284 1285 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1286 // to get GlobalValue with exactly the type we need, not something that 1287 // might had been created for another decl with the same mangled name but 1288 // different type. 1289 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1290 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1291 1292 // In case of different address spaces, we may still get a cast, even with 1293 // IsForDefinition equal to true. Query mangled names table to get 1294 // GlobalValue. 1295 if (!GV) 1296 GV = GetGlobalValue(getMangledName(D)); 1297 1298 // Make sure GetGlobalValue returned non-null. 1299 assert(GV); 1300 1301 // Check to see if we've already emitted this. This is necessary 1302 // for a couple of reasons: first, decls can end up in the 1303 // deferred-decls queue multiple times, and second, decls can end 1304 // up with definitions in unusual ways (e.g. by an extern inline 1305 // function acquiring a strong function redefinition). Just 1306 // ignore these cases. 1307 if (!GV->isDeclaration()) 1308 continue; 1309 1310 // Otherwise, emit the definition and move on to the next one. 1311 EmitGlobalDefinition(D, GV); 1312 1313 // If we found out that we need to emit more decls, do that recursively. 1314 // This has the advantage that the decls are emitted in a DFS and related 1315 // ones are close together, which is convenient for testing. 1316 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1317 EmitDeferred(); 1318 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1319 } 1320 } 1321 } 1322 1323 void CodeGenModule::EmitGlobalAnnotations() { 1324 if (Annotations.empty()) 1325 return; 1326 1327 // Create a new global variable for the ConstantStruct in the Module. 1328 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1329 Annotations[0]->getType(), Annotations.size()), Annotations); 1330 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1331 llvm::GlobalValue::AppendingLinkage, 1332 Array, "llvm.global.annotations"); 1333 gv->setSection(AnnotationSection); 1334 } 1335 1336 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1337 llvm::Constant *&AStr = AnnotationStrings[Str]; 1338 if (AStr) 1339 return AStr; 1340 1341 // Not found yet, create a new global. 1342 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1343 auto *gv = 1344 new llvm::GlobalVariable(getModule(), s->getType(), true, 1345 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1346 gv->setSection(AnnotationSection); 1347 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1348 AStr = gv; 1349 return gv; 1350 } 1351 1352 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1353 SourceManager &SM = getContext().getSourceManager(); 1354 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1355 if (PLoc.isValid()) 1356 return EmitAnnotationString(PLoc.getFilename()); 1357 return EmitAnnotationString(SM.getBufferName(Loc)); 1358 } 1359 1360 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1361 SourceManager &SM = getContext().getSourceManager(); 1362 PresumedLoc PLoc = SM.getPresumedLoc(L); 1363 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1364 SM.getExpansionLineNumber(L); 1365 return llvm::ConstantInt::get(Int32Ty, LineNo); 1366 } 1367 1368 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1369 const AnnotateAttr *AA, 1370 SourceLocation L) { 1371 // Get the globals for file name, annotation, and the line number. 1372 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1373 *UnitGV = EmitAnnotationUnit(L), 1374 *LineNoCst = EmitAnnotationLineNo(L); 1375 1376 // Create the ConstantStruct for the global annotation. 1377 llvm::Constant *Fields[4] = { 1378 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1379 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1380 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1381 LineNoCst 1382 }; 1383 return llvm::ConstantStruct::getAnon(Fields); 1384 } 1385 1386 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1387 llvm::GlobalValue *GV) { 1388 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1389 // Get the struct elements for these annotations. 1390 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1391 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1392 } 1393 1394 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1395 SourceLocation Loc) const { 1396 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1397 // Blacklist by function name. 1398 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1399 return true; 1400 // Blacklist by location. 1401 if (Loc.isValid()) 1402 return SanitizerBL.isBlacklistedLocation(Loc); 1403 // If location is unknown, this may be a compiler-generated function. Assume 1404 // it's located in the main file. 1405 auto &SM = Context.getSourceManager(); 1406 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1407 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1408 } 1409 return false; 1410 } 1411 1412 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1413 SourceLocation Loc, QualType Ty, 1414 StringRef Category) const { 1415 // For now globals can be blacklisted only in ASan and KASan. 1416 if (!LangOpts.Sanitize.hasOneOf( 1417 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1418 return false; 1419 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1420 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1421 return true; 1422 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1423 return true; 1424 // Check global type. 1425 if (!Ty.isNull()) { 1426 // Drill down the array types: if global variable of a fixed type is 1427 // blacklisted, we also don't instrument arrays of them. 1428 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1429 Ty = AT->getElementType(); 1430 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1431 // We allow to blacklist only record types (classes, structs etc.) 1432 if (Ty->isRecordType()) { 1433 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1434 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1435 return true; 1436 } 1437 } 1438 return false; 1439 } 1440 1441 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1442 // Never defer when EmitAllDecls is specified. 1443 if (LangOpts.EmitAllDecls) 1444 return true; 1445 1446 return getContext().DeclMustBeEmitted(Global); 1447 } 1448 1449 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1450 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1451 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1452 // Implicit template instantiations may change linkage if they are later 1453 // explicitly instantiated, so they should not be emitted eagerly. 1454 return false; 1455 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1456 if (Context.getInlineVariableDefinitionKind(VD) == 1457 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1458 // A definition of an inline constexpr static data member may change 1459 // linkage later if it's redeclared outside the class. 1460 return false; 1461 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1462 // codegen for global variables, because they may be marked as threadprivate. 1463 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1464 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1465 return false; 1466 1467 return true; 1468 } 1469 1470 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1471 const CXXUuidofExpr* E) { 1472 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1473 // well-formed. 1474 StringRef Uuid = E->getUuidStr(); 1475 std::string Name = "_GUID_" + Uuid.lower(); 1476 std::replace(Name.begin(), Name.end(), '-', '_'); 1477 1478 // The UUID descriptor should be pointer aligned. 1479 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1480 1481 // Look for an existing global. 1482 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1483 return ConstantAddress(GV, Alignment); 1484 1485 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1486 assert(Init && "failed to initialize as constant"); 1487 1488 auto *GV = new llvm::GlobalVariable( 1489 getModule(), Init->getType(), 1490 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1491 if (supportsCOMDAT()) 1492 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1493 return ConstantAddress(GV, Alignment); 1494 } 1495 1496 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1497 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1498 assert(AA && "No alias?"); 1499 1500 CharUnits Alignment = getContext().getDeclAlign(VD); 1501 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1502 1503 // See if there is already something with the target's name in the module. 1504 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1505 if (Entry) { 1506 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1507 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1508 return ConstantAddress(Ptr, Alignment); 1509 } 1510 1511 llvm::Constant *Aliasee; 1512 if (isa<llvm::FunctionType>(DeclTy)) 1513 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1514 GlobalDecl(cast<FunctionDecl>(VD)), 1515 /*ForVTable=*/false); 1516 else 1517 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1518 llvm::PointerType::getUnqual(DeclTy), 1519 nullptr); 1520 1521 auto *F = cast<llvm::GlobalValue>(Aliasee); 1522 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1523 WeakRefReferences.insert(F); 1524 1525 return ConstantAddress(Aliasee, Alignment); 1526 } 1527 1528 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1529 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1530 1531 // Weak references don't produce any output by themselves. 1532 if (Global->hasAttr<WeakRefAttr>()) 1533 return; 1534 1535 // If this is an alias definition (which otherwise looks like a declaration) 1536 // emit it now. 1537 if (Global->hasAttr<AliasAttr>()) 1538 return EmitAliasDefinition(GD); 1539 1540 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1541 if (Global->hasAttr<IFuncAttr>()) 1542 return emitIFuncDefinition(GD); 1543 1544 // If this is CUDA, be selective about which declarations we emit. 1545 if (LangOpts.CUDA) { 1546 if (LangOpts.CUDAIsDevice) { 1547 if (!Global->hasAttr<CUDADeviceAttr>() && 1548 !Global->hasAttr<CUDAGlobalAttr>() && 1549 !Global->hasAttr<CUDAConstantAttr>() && 1550 !Global->hasAttr<CUDASharedAttr>()) 1551 return; 1552 } else { 1553 // We need to emit host-side 'shadows' for all global 1554 // device-side variables because the CUDA runtime needs their 1555 // size and host-side address in order to provide access to 1556 // their device-side incarnations. 1557 1558 // So device-only functions are the only things we skip. 1559 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1560 Global->hasAttr<CUDADeviceAttr>()) 1561 return; 1562 1563 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1564 "Expected Variable or Function"); 1565 } 1566 } 1567 1568 if (LangOpts.OpenMP) { 1569 // If this is OpenMP device, check if it is legal to emit this global 1570 // normally. 1571 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1572 return; 1573 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1574 if (MustBeEmitted(Global)) 1575 EmitOMPDeclareReduction(DRD); 1576 return; 1577 } 1578 } 1579 1580 // Ignore declarations, they will be emitted on their first use. 1581 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1582 // Forward declarations are emitted lazily on first use. 1583 if (!FD->doesThisDeclarationHaveABody()) { 1584 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1585 return; 1586 1587 StringRef MangledName = getMangledName(GD); 1588 1589 // Compute the function info and LLVM type. 1590 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1591 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1592 1593 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1594 /*DontDefer=*/false); 1595 return; 1596 } 1597 } else { 1598 const auto *VD = cast<VarDecl>(Global); 1599 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1600 // We need to emit device-side global CUDA variables even if a 1601 // variable does not have a definition -- we still need to define 1602 // host-side shadow for it. 1603 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1604 !VD->hasDefinition() && 1605 (VD->hasAttr<CUDAConstantAttr>() || 1606 VD->hasAttr<CUDADeviceAttr>()); 1607 if (!MustEmitForCuda && 1608 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1609 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1610 // If this declaration may have caused an inline variable definition to 1611 // change linkage, make sure that it's emitted. 1612 if (Context.getInlineVariableDefinitionKind(VD) == 1613 ASTContext::InlineVariableDefinitionKind::Strong) 1614 GetAddrOfGlobalVar(VD); 1615 return; 1616 } 1617 } 1618 1619 // Defer code generation to first use when possible, e.g. if this is an inline 1620 // function. If the global must always be emitted, do it eagerly if possible 1621 // to benefit from cache locality. 1622 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1623 // Emit the definition if it can't be deferred. 1624 EmitGlobalDefinition(GD); 1625 return; 1626 } 1627 1628 // If we're deferring emission of a C++ variable with an 1629 // initializer, remember the order in which it appeared in the file. 1630 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1631 cast<VarDecl>(Global)->hasInit()) { 1632 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1633 CXXGlobalInits.push_back(nullptr); 1634 } 1635 1636 StringRef MangledName = getMangledName(GD); 1637 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1638 // The value has already been used and should therefore be emitted. 1639 addDeferredDeclToEmit(GV, GD); 1640 } else if (MustBeEmitted(Global)) { 1641 // The value must be emitted, but cannot be emitted eagerly. 1642 assert(!MayBeEmittedEagerly(Global)); 1643 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1644 } else { 1645 // Otherwise, remember that we saw a deferred decl with this name. The 1646 // first use of the mangled name will cause it to move into 1647 // DeferredDeclsToEmit. 1648 DeferredDecls[MangledName] = GD; 1649 } 1650 } 1651 1652 namespace { 1653 struct FunctionIsDirectlyRecursive : 1654 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1655 const StringRef Name; 1656 const Builtin::Context &BI; 1657 bool Result; 1658 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1659 Name(N), BI(C), Result(false) { 1660 } 1661 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1662 1663 bool TraverseCallExpr(CallExpr *E) { 1664 const FunctionDecl *FD = E->getDirectCallee(); 1665 if (!FD) 1666 return true; 1667 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1668 if (Attr && Name == Attr->getLabel()) { 1669 Result = true; 1670 return false; 1671 } 1672 unsigned BuiltinID = FD->getBuiltinID(); 1673 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1674 return true; 1675 StringRef BuiltinName = BI.getName(BuiltinID); 1676 if (BuiltinName.startswith("__builtin_") && 1677 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1678 Result = true; 1679 return false; 1680 } 1681 return true; 1682 } 1683 }; 1684 1685 struct DLLImportFunctionVisitor 1686 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1687 bool SafeToInline = true; 1688 1689 bool shouldVisitImplicitCode() const { return true; } 1690 1691 bool VisitVarDecl(VarDecl *VD) { 1692 // A thread-local variable cannot be imported. 1693 SafeToInline = !VD->getTLSKind(); 1694 return SafeToInline; 1695 } 1696 1697 // Make sure we're not referencing non-imported vars or functions. 1698 bool VisitDeclRefExpr(DeclRefExpr *E) { 1699 ValueDecl *VD = E->getDecl(); 1700 if (isa<FunctionDecl>(VD)) 1701 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1702 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1703 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1704 return SafeToInline; 1705 } 1706 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1707 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1708 return SafeToInline; 1709 } 1710 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1711 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1712 return SafeToInline; 1713 } 1714 bool VisitCXXNewExpr(CXXNewExpr *E) { 1715 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1716 return SafeToInline; 1717 } 1718 }; 1719 } 1720 1721 // isTriviallyRecursive - Check if this function calls another 1722 // decl that, because of the asm attribute or the other decl being a builtin, 1723 // ends up pointing to itself. 1724 bool 1725 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1726 StringRef Name; 1727 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1728 // asm labels are a special kind of mangling we have to support. 1729 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1730 if (!Attr) 1731 return false; 1732 Name = Attr->getLabel(); 1733 } else { 1734 Name = FD->getName(); 1735 } 1736 1737 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1738 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1739 return Walker.Result; 1740 } 1741 1742 // Check if T is a class type with a destructor that's not dllimport. 1743 static bool HasNonDllImportDtor(QualType T) { 1744 if (const RecordType *RT = dyn_cast<RecordType>(T)) 1745 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1746 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1747 return true; 1748 1749 return false; 1750 } 1751 1752 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1753 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1754 return true; 1755 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1756 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1757 return false; 1758 1759 if (F->hasAttr<DLLImportAttr>()) { 1760 // Check whether it would be safe to inline this dllimport function. 1761 DLLImportFunctionVisitor Visitor; 1762 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1763 if (!Visitor.SafeToInline) 1764 return false; 1765 1766 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1767 // Implicit destructor invocations aren't captured in the AST, so the 1768 // check above can't see them. Check for them manually here. 1769 for (const Decl *Member : Dtor->getParent()->decls()) 1770 if (isa<FieldDecl>(Member)) 1771 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1772 return false; 1773 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1774 if (HasNonDllImportDtor(B.getType())) 1775 return false; 1776 } 1777 } 1778 1779 // PR9614. Avoid cases where the source code is lying to us. An available 1780 // externally function should have an equivalent function somewhere else, 1781 // but a function that calls itself is clearly not equivalent to the real 1782 // implementation. 1783 // This happens in glibc's btowc and in some configure checks. 1784 return !isTriviallyRecursive(F); 1785 } 1786 1787 /// If the type for the method's class was generated by 1788 /// CGDebugInfo::createContextChain(), the cache contains only a 1789 /// limited DIType without any declarations. Since EmitFunctionStart() 1790 /// needs to find the canonical declaration for each method, we need 1791 /// to construct the complete type prior to emitting the method. 1792 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1793 if (!D->isInstance()) 1794 return; 1795 1796 if (CGDebugInfo *DI = getModuleDebugInfo()) 1797 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1798 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1799 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1800 } 1801 } 1802 1803 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1804 const auto *D = cast<ValueDecl>(GD.getDecl()); 1805 1806 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1807 Context.getSourceManager(), 1808 "Generating code for declaration"); 1809 1810 if (isa<FunctionDecl>(D)) { 1811 // At -O0, don't generate IR for functions with available_externally 1812 // linkage. 1813 if (!shouldEmitFunction(GD)) 1814 return; 1815 1816 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1817 CompleteDIClassType(Method); 1818 // Make sure to emit the definition(s) before we emit the thunks. 1819 // This is necessary for the generation of certain thunks. 1820 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1821 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1822 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1823 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1824 else 1825 EmitGlobalFunctionDefinition(GD, GV); 1826 1827 if (Method->isVirtual()) 1828 getVTables().EmitThunks(GD); 1829 1830 return; 1831 } 1832 1833 return EmitGlobalFunctionDefinition(GD, GV); 1834 } 1835 1836 if (const auto *VD = dyn_cast<VarDecl>(D)) 1837 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1838 1839 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1840 } 1841 1842 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1843 llvm::Function *NewFn); 1844 1845 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1846 /// module, create and return an llvm Function with the specified type. If there 1847 /// is something in the module with the specified name, return it potentially 1848 /// bitcasted to the right type. 1849 /// 1850 /// If D is non-null, it specifies a decl that correspond to this. This is used 1851 /// to set the attributes on the function when it is first created. 1852 llvm::Constant * 1853 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1854 llvm::Type *Ty, 1855 GlobalDecl GD, bool ForVTable, 1856 bool DontDefer, bool IsThunk, 1857 llvm::AttributeSet ExtraAttrs, 1858 bool IsForDefinition) { 1859 const Decl *D = GD.getDecl(); 1860 1861 // Lookup the entry, lazily creating it if necessary. 1862 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1863 if (Entry) { 1864 if (WeakRefReferences.erase(Entry)) { 1865 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1866 if (FD && !FD->hasAttr<WeakAttr>()) 1867 Entry->setLinkage(llvm::Function::ExternalLinkage); 1868 } 1869 1870 // Handle dropped DLL attributes. 1871 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1872 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1873 1874 // If there are two attempts to define the same mangled name, issue an 1875 // error. 1876 if (IsForDefinition && !Entry->isDeclaration()) { 1877 GlobalDecl OtherGD; 1878 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1879 // to make sure that we issue an error only once. 1880 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1881 (GD.getCanonicalDecl().getDecl() != 1882 OtherGD.getCanonicalDecl().getDecl()) && 1883 DiagnosedConflictingDefinitions.insert(GD).second) { 1884 getDiags().Report(D->getLocation(), 1885 diag::err_duplicate_mangled_name); 1886 getDiags().Report(OtherGD.getDecl()->getLocation(), 1887 diag::note_previous_definition); 1888 } 1889 } 1890 1891 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1892 (Entry->getType()->getElementType() == Ty)) { 1893 return Entry; 1894 } 1895 1896 // Make sure the result is of the correct type. 1897 // (If function is requested for a definition, we always need to create a new 1898 // function, not just return a bitcast.) 1899 if (!IsForDefinition) 1900 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1901 } 1902 1903 // This function doesn't have a complete type (for example, the return 1904 // type is an incomplete struct). Use a fake type instead, and make 1905 // sure not to try to set attributes. 1906 bool IsIncompleteFunction = false; 1907 1908 llvm::FunctionType *FTy; 1909 if (isa<llvm::FunctionType>(Ty)) { 1910 FTy = cast<llvm::FunctionType>(Ty); 1911 } else { 1912 FTy = llvm::FunctionType::get(VoidTy, false); 1913 IsIncompleteFunction = true; 1914 } 1915 1916 llvm::Function *F = 1917 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1918 Entry ? StringRef() : MangledName, &getModule()); 1919 1920 // If we already created a function with the same mangled name (but different 1921 // type) before, take its name and add it to the list of functions to be 1922 // replaced with F at the end of CodeGen. 1923 // 1924 // This happens if there is a prototype for a function (e.g. "int f()") and 1925 // then a definition of a different type (e.g. "int f(int x)"). 1926 if (Entry) { 1927 F->takeName(Entry); 1928 1929 // This might be an implementation of a function without a prototype, in 1930 // which case, try to do special replacement of calls which match the new 1931 // prototype. The really key thing here is that we also potentially drop 1932 // arguments from the call site so as to make a direct call, which makes the 1933 // inliner happier and suppresses a number of optimizer warnings (!) about 1934 // dropping arguments. 1935 if (!Entry->use_empty()) { 1936 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1937 Entry->removeDeadConstantUsers(); 1938 } 1939 1940 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1941 F, Entry->getType()->getElementType()->getPointerTo()); 1942 addGlobalValReplacement(Entry, BC); 1943 } 1944 1945 assert(F->getName() == MangledName && "name was uniqued!"); 1946 if (D) 1947 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1948 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1949 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1950 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1951 llvm::AttributeSet::get(VMContext, 1952 llvm::AttributeSet::FunctionIndex, 1953 B)); 1954 } 1955 1956 if (!DontDefer) { 1957 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1958 // each other bottoming out with the base dtor. Therefore we emit non-base 1959 // dtors on usage, even if there is no dtor definition in the TU. 1960 if (D && isa<CXXDestructorDecl>(D) && 1961 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1962 GD.getDtorType())) 1963 addDeferredDeclToEmit(F, GD); 1964 1965 // This is the first use or definition of a mangled name. If there is a 1966 // deferred decl with this name, remember that we need to emit it at the end 1967 // of the file. 1968 auto DDI = DeferredDecls.find(MangledName); 1969 if (DDI != DeferredDecls.end()) { 1970 // Move the potentially referenced deferred decl to the 1971 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1972 // don't need it anymore). 1973 addDeferredDeclToEmit(F, DDI->second); 1974 DeferredDecls.erase(DDI); 1975 1976 // Otherwise, there are cases we have to worry about where we're 1977 // using a declaration for which we must emit a definition but where 1978 // we might not find a top-level definition: 1979 // - member functions defined inline in their classes 1980 // - friend functions defined inline in some class 1981 // - special member functions with implicit definitions 1982 // If we ever change our AST traversal to walk into class methods, 1983 // this will be unnecessary. 1984 // 1985 // We also don't emit a definition for a function if it's going to be an 1986 // entry in a vtable, unless it's already marked as used. 1987 } else if (getLangOpts().CPlusPlus && D) { 1988 // Look for a declaration that's lexically in a record. 1989 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1990 FD = FD->getPreviousDecl()) { 1991 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1992 if (FD->doesThisDeclarationHaveABody()) { 1993 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1994 break; 1995 } 1996 } 1997 } 1998 } 1999 } 2000 2001 // Make sure the result is of the requested type. 2002 if (!IsIncompleteFunction) { 2003 assert(F->getType()->getElementType() == Ty); 2004 return F; 2005 } 2006 2007 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2008 return llvm::ConstantExpr::getBitCast(F, PTy); 2009 } 2010 2011 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2012 /// non-null, then this function will use the specified type if it has to 2013 /// create it (this occurs when we see a definition of the function). 2014 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2015 llvm::Type *Ty, 2016 bool ForVTable, 2017 bool DontDefer, 2018 bool IsForDefinition) { 2019 // If there was no specific requested type, just convert it now. 2020 if (!Ty) { 2021 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2022 auto CanonTy = Context.getCanonicalType(FD->getType()); 2023 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2024 } 2025 2026 StringRef MangledName = getMangledName(GD); 2027 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2028 /*IsThunk=*/false, llvm::AttributeSet(), 2029 IsForDefinition); 2030 } 2031 2032 /// CreateRuntimeFunction - Create a new runtime function with the specified 2033 /// type and name. 2034 llvm::Constant * 2035 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2036 StringRef Name, 2037 llvm::AttributeSet ExtraAttrs) { 2038 llvm::Constant *C = 2039 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2040 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2041 if (auto *F = dyn_cast<llvm::Function>(C)) 2042 if (F->empty()) 2043 F->setCallingConv(getRuntimeCC()); 2044 return C; 2045 } 2046 2047 /// CreateBuiltinFunction - Create a new builtin function with the specified 2048 /// type and name. 2049 llvm::Constant * 2050 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2051 StringRef Name, 2052 llvm::AttributeSet ExtraAttrs) { 2053 llvm::Constant *C = 2054 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2055 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2056 if (auto *F = dyn_cast<llvm::Function>(C)) 2057 if (F->empty()) 2058 F->setCallingConv(getBuiltinCC()); 2059 return C; 2060 } 2061 2062 /// isTypeConstant - Determine whether an object of this type can be emitted 2063 /// as a constant. 2064 /// 2065 /// If ExcludeCtor is true, the duration when the object's constructor runs 2066 /// will not be considered. The caller will need to verify that the object is 2067 /// not written to during its construction. 2068 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2069 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2070 return false; 2071 2072 if (Context.getLangOpts().CPlusPlus) { 2073 if (const CXXRecordDecl *Record 2074 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2075 return ExcludeCtor && !Record->hasMutableFields() && 2076 Record->hasTrivialDestructor(); 2077 } 2078 2079 return true; 2080 } 2081 2082 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2083 /// create and return an llvm GlobalVariable with the specified type. If there 2084 /// is something in the module with the specified name, return it potentially 2085 /// bitcasted to the right type. 2086 /// 2087 /// If D is non-null, it specifies a decl that correspond to this. This is used 2088 /// to set the attributes on the global when it is first created. 2089 /// 2090 /// If IsForDefinition is true, it is guranteed that an actual global with 2091 /// type Ty will be returned, not conversion of a variable with the same 2092 /// mangled name but some other type. 2093 llvm::Constant * 2094 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2095 llvm::PointerType *Ty, 2096 const VarDecl *D, 2097 bool IsForDefinition) { 2098 // Lookup the entry, lazily creating it if necessary. 2099 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2100 if (Entry) { 2101 if (WeakRefReferences.erase(Entry)) { 2102 if (D && !D->hasAttr<WeakAttr>()) 2103 Entry->setLinkage(llvm::Function::ExternalLinkage); 2104 } 2105 2106 // Handle dropped DLL attributes. 2107 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2108 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2109 2110 if (Entry->getType() == Ty) 2111 return Entry; 2112 2113 // If there are two attempts to define the same mangled name, issue an 2114 // error. 2115 if (IsForDefinition && !Entry->isDeclaration()) { 2116 GlobalDecl OtherGD; 2117 const VarDecl *OtherD; 2118 2119 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2120 // to make sure that we issue an error only once. 2121 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2122 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2123 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2124 OtherD->hasInit() && 2125 DiagnosedConflictingDefinitions.insert(D).second) { 2126 getDiags().Report(D->getLocation(), 2127 diag::err_duplicate_mangled_name); 2128 getDiags().Report(OtherGD.getDecl()->getLocation(), 2129 diag::note_previous_definition); 2130 } 2131 } 2132 2133 // Make sure the result is of the correct type. 2134 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2135 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2136 2137 // (If global is requested for a definition, we always need to create a new 2138 // global, not just return a bitcast.) 2139 if (!IsForDefinition) 2140 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2141 } 2142 2143 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2144 auto *GV = new llvm::GlobalVariable( 2145 getModule(), Ty->getElementType(), false, 2146 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2147 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2148 2149 // If we already created a global with the same mangled name (but different 2150 // type) before, take its name and remove it from its parent. 2151 if (Entry) { 2152 GV->takeName(Entry); 2153 2154 if (!Entry->use_empty()) { 2155 llvm::Constant *NewPtrForOldDecl = 2156 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2157 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2158 } 2159 2160 Entry->eraseFromParent(); 2161 } 2162 2163 // This is the first use or definition of a mangled name. If there is a 2164 // deferred decl with this name, remember that we need to emit it at the end 2165 // of the file. 2166 auto DDI = DeferredDecls.find(MangledName); 2167 if (DDI != DeferredDecls.end()) { 2168 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2169 // list, and remove it from DeferredDecls (since we don't need it anymore). 2170 addDeferredDeclToEmit(GV, DDI->second); 2171 DeferredDecls.erase(DDI); 2172 } 2173 2174 // Handle things which are present even on external declarations. 2175 if (D) { 2176 // FIXME: This code is overly simple and should be merged with other global 2177 // handling. 2178 GV->setConstant(isTypeConstant(D->getType(), false)); 2179 2180 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2181 2182 setLinkageAndVisibilityForGV(GV, D); 2183 2184 if (D->getTLSKind()) { 2185 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2186 CXXThreadLocals.push_back(D); 2187 setTLSMode(GV, *D); 2188 } 2189 2190 // If required by the ABI, treat declarations of static data members with 2191 // inline initializers as definitions. 2192 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2193 EmitGlobalVarDefinition(D); 2194 } 2195 2196 // Handle XCore specific ABI requirements. 2197 if (getTriple().getArch() == llvm::Triple::xcore && 2198 D->getLanguageLinkage() == CLanguageLinkage && 2199 D->getType().isConstant(Context) && 2200 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2201 GV->setSection(".cp.rodata"); 2202 } 2203 2204 if (AddrSpace != Ty->getAddressSpace()) 2205 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2206 2207 return GV; 2208 } 2209 2210 llvm::Constant * 2211 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2212 bool IsForDefinition) { 2213 if (isa<CXXConstructorDecl>(GD.getDecl())) 2214 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2215 getFromCtorType(GD.getCtorType()), 2216 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2217 /*DontDefer=*/false, IsForDefinition); 2218 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2219 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2220 getFromDtorType(GD.getDtorType()), 2221 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2222 /*DontDefer=*/false, IsForDefinition); 2223 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2224 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2225 cast<CXXMethodDecl>(GD.getDecl())); 2226 auto Ty = getTypes().GetFunctionType(*FInfo); 2227 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2228 IsForDefinition); 2229 } else if (isa<FunctionDecl>(GD.getDecl())) { 2230 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2231 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2232 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2233 IsForDefinition); 2234 } else 2235 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2236 IsForDefinition); 2237 } 2238 2239 llvm::GlobalVariable * 2240 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2241 llvm::Type *Ty, 2242 llvm::GlobalValue::LinkageTypes Linkage) { 2243 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2244 llvm::GlobalVariable *OldGV = nullptr; 2245 2246 if (GV) { 2247 // Check if the variable has the right type. 2248 if (GV->getType()->getElementType() == Ty) 2249 return GV; 2250 2251 // Because C++ name mangling, the only way we can end up with an already 2252 // existing global with the same name is if it has been declared extern "C". 2253 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2254 OldGV = GV; 2255 } 2256 2257 // Create a new variable. 2258 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2259 Linkage, nullptr, Name); 2260 2261 if (OldGV) { 2262 // Replace occurrences of the old variable if needed. 2263 GV->takeName(OldGV); 2264 2265 if (!OldGV->use_empty()) { 2266 llvm::Constant *NewPtrForOldDecl = 2267 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2268 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2269 } 2270 2271 OldGV->eraseFromParent(); 2272 } 2273 2274 if (supportsCOMDAT() && GV->isWeakForLinker() && 2275 !GV->hasAvailableExternallyLinkage()) 2276 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2277 2278 return GV; 2279 } 2280 2281 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2282 /// given global variable. If Ty is non-null and if the global doesn't exist, 2283 /// then it will be created with the specified type instead of whatever the 2284 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2285 /// that an actual global with type Ty will be returned, not conversion of a 2286 /// variable with the same mangled name but some other type. 2287 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2288 llvm::Type *Ty, 2289 bool IsForDefinition) { 2290 assert(D->hasGlobalStorage() && "Not a global variable"); 2291 QualType ASTTy = D->getType(); 2292 if (!Ty) 2293 Ty = getTypes().ConvertTypeForMem(ASTTy); 2294 2295 llvm::PointerType *PTy = 2296 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2297 2298 StringRef MangledName = getMangledName(D); 2299 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2300 } 2301 2302 /// CreateRuntimeVariable - Create a new runtime global variable with the 2303 /// specified type and name. 2304 llvm::Constant * 2305 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2306 StringRef Name) { 2307 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2308 } 2309 2310 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2311 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2312 2313 StringRef MangledName = getMangledName(D); 2314 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2315 2316 // We already have a definition, not declaration, with the same mangled name. 2317 // Emitting of declaration is not required (and actually overwrites emitted 2318 // definition). 2319 if (GV && !GV->isDeclaration()) 2320 return; 2321 2322 // If we have not seen a reference to this variable yet, place it into the 2323 // deferred declarations table to be emitted if needed later. 2324 if (!MustBeEmitted(D) && !GV) { 2325 DeferredDecls[MangledName] = D; 2326 return; 2327 } 2328 2329 // The tentative definition is the only definition. 2330 EmitGlobalVarDefinition(D); 2331 } 2332 2333 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2334 return Context.toCharUnitsFromBits( 2335 getDataLayout().getTypeStoreSizeInBits(Ty)); 2336 } 2337 2338 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2339 unsigned AddrSpace) { 2340 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2341 if (D->hasAttr<CUDAConstantAttr>()) 2342 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2343 else if (D->hasAttr<CUDASharedAttr>()) 2344 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2345 else 2346 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2347 } 2348 2349 return AddrSpace; 2350 } 2351 2352 template<typename SomeDecl> 2353 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2354 llvm::GlobalValue *GV) { 2355 if (!getLangOpts().CPlusPlus) 2356 return; 2357 2358 // Must have 'used' attribute, or else inline assembly can't rely on 2359 // the name existing. 2360 if (!D->template hasAttr<UsedAttr>()) 2361 return; 2362 2363 // Must have internal linkage and an ordinary name. 2364 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2365 return; 2366 2367 // Must be in an extern "C" context. Entities declared directly within 2368 // a record are not extern "C" even if the record is in such a context. 2369 const SomeDecl *First = D->getFirstDecl(); 2370 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2371 return; 2372 2373 // OK, this is an internal linkage entity inside an extern "C" linkage 2374 // specification. Make a note of that so we can give it the "expected" 2375 // mangled name if nothing else is using that name. 2376 std::pair<StaticExternCMap::iterator, bool> R = 2377 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2378 2379 // If we have multiple internal linkage entities with the same name 2380 // in extern "C" regions, none of them gets that name. 2381 if (!R.second) 2382 R.first->second = nullptr; 2383 } 2384 2385 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2386 if (!CGM.supportsCOMDAT()) 2387 return false; 2388 2389 if (D.hasAttr<SelectAnyAttr>()) 2390 return true; 2391 2392 GVALinkage Linkage; 2393 if (auto *VD = dyn_cast<VarDecl>(&D)) 2394 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2395 else 2396 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2397 2398 switch (Linkage) { 2399 case GVA_Internal: 2400 case GVA_AvailableExternally: 2401 case GVA_StrongExternal: 2402 return false; 2403 case GVA_DiscardableODR: 2404 case GVA_StrongODR: 2405 return true; 2406 } 2407 llvm_unreachable("No such linkage"); 2408 } 2409 2410 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2411 llvm::GlobalObject &GO) { 2412 if (!shouldBeInCOMDAT(*this, D)) 2413 return; 2414 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2415 } 2416 2417 /// Pass IsTentative as true if you want to create a tentative definition. 2418 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2419 bool IsTentative) { 2420 // OpenCL global variables of sampler type are translated to function calls, 2421 // therefore no need to be translated. 2422 QualType ASTTy = D->getType(); 2423 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2424 return; 2425 2426 llvm::Constant *Init = nullptr; 2427 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2428 bool NeedsGlobalCtor = false; 2429 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2430 2431 const VarDecl *InitDecl; 2432 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2433 2434 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2435 // as part of their declaration." Sema has already checked for 2436 // error cases, so we just need to set Init to UndefValue. 2437 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2438 D->hasAttr<CUDASharedAttr>()) 2439 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2440 else if (!InitExpr) { 2441 // This is a tentative definition; tentative definitions are 2442 // implicitly initialized with { 0 }. 2443 // 2444 // Note that tentative definitions are only emitted at the end of 2445 // a translation unit, so they should never have incomplete 2446 // type. In addition, EmitTentativeDefinition makes sure that we 2447 // never attempt to emit a tentative definition if a real one 2448 // exists. A use may still exists, however, so we still may need 2449 // to do a RAUW. 2450 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2451 Init = EmitNullConstant(D->getType()); 2452 } else { 2453 initializedGlobalDecl = GlobalDecl(D); 2454 Init = EmitConstantInit(*InitDecl); 2455 2456 if (!Init) { 2457 QualType T = InitExpr->getType(); 2458 if (D->getType()->isReferenceType()) 2459 T = D->getType(); 2460 2461 if (getLangOpts().CPlusPlus) { 2462 Init = EmitNullConstant(T); 2463 NeedsGlobalCtor = true; 2464 } else { 2465 ErrorUnsupported(D, "static initializer"); 2466 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2467 } 2468 } else { 2469 // We don't need an initializer, so remove the entry for the delayed 2470 // initializer position (just in case this entry was delayed) if we 2471 // also don't need to register a destructor. 2472 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2473 DelayedCXXInitPosition.erase(D); 2474 } 2475 } 2476 2477 llvm::Type* InitType = Init->getType(); 2478 llvm::Constant *Entry = 2479 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2480 2481 // Strip off a bitcast if we got one back. 2482 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2483 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2484 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2485 // All zero index gep. 2486 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2487 Entry = CE->getOperand(0); 2488 } 2489 2490 // Entry is now either a Function or GlobalVariable. 2491 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2492 2493 // We have a definition after a declaration with the wrong type. 2494 // We must make a new GlobalVariable* and update everything that used OldGV 2495 // (a declaration or tentative definition) with the new GlobalVariable* 2496 // (which will be a definition). 2497 // 2498 // This happens if there is a prototype for a global (e.g. 2499 // "extern int x[];") and then a definition of a different type (e.g. 2500 // "int x[10];"). This also happens when an initializer has a different type 2501 // from the type of the global (this happens with unions). 2502 if (!GV || 2503 GV->getType()->getElementType() != InitType || 2504 GV->getType()->getAddressSpace() != 2505 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2506 2507 // Move the old entry aside so that we'll create a new one. 2508 Entry->setName(StringRef()); 2509 2510 // Make a new global with the correct type, this is now guaranteed to work. 2511 GV = cast<llvm::GlobalVariable>( 2512 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2513 2514 // Replace all uses of the old global with the new global 2515 llvm::Constant *NewPtrForOldDecl = 2516 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2517 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2518 2519 // Erase the old global, since it is no longer used. 2520 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2521 } 2522 2523 MaybeHandleStaticInExternC(D, GV); 2524 2525 if (D->hasAttr<AnnotateAttr>()) 2526 AddGlobalAnnotations(D, GV); 2527 2528 // Set the llvm linkage type as appropriate. 2529 llvm::GlobalValue::LinkageTypes Linkage = 2530 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2531 2532 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2533 // the device. [...]" 2534 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2535 // __device__, declares a variable that: [...] 2536 // Is accessible from all the threads within the grid and from the host 2537 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2538 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2539 if (GV && LangOpts.CUDA) { 2540 if (LangOpts.CUDAIsDevice) { 2541 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2542 GV->setExternallyInitialized(true); 2543 } else { 2544 // Host-side shadows of external declarations of device-side 2545 // global variables become internal definitions. These have to 2546 // be internal in order to prevent name conflicts with global 2547 // host variables with the same name in a different TUs. 2548 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2549 Linkage = llvm::GlobalValue::InternalLinkage; 2550 2551 // Shadow variables and their properties must be registered 2552 // with CUDA runtime. 2553 unsigned Flags = 0; 2554 if (!D->hasDefinition()) 2555 Flags |= CGCUDARuntime::ExternDeviceVar; 2556 if (D->hasAttr<CUDAConstantAttr>()) 2557 Flags |= CGCUDARuntime::ConstantDeviceVar; 2558 getCUDARuntime().registerDeviceVar(*GV, Flags); 2559 } else if (D->hasAttr<CUDASharedAttr>()) 2560 // __shared__ variables are odd. Shadows do get created, but 2561 // they are not registered with the CUDA runtime, so they 2562 // can't really be used to access their device-side 2563 // counterparts. It's not clear yet whether it's nvcc's bug or 2564 // a feature, but we've got to do the same for compatibility. 2565 Linkage = llvm::GlobalValue::InternalLinkage; 2566 } 2567 } 2568 GV->setInitializer(Init); 2569 2570 // If it is safe to mark the global 'constant', do so now. 2571 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2572 isTypeConstant(D->getType(), true)); 2573 2574 // If it is in a read-only section, mark it 'constant'. 2575 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2576 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2577 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2578 GV->setConstant(true); 2579 } 2580 2581 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2582 2583 2584 // On Darwin, if the normal linkage of a C++ thread_local variable is 2585 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2586 // copies within a linkage unit; otherwise, the backing variable has 2587 // internal linkage and all accesses should just be calls to the 2588 // Itanium-specified entry point, which has the normal linkage of the 2589 // variable. This is to preserve the ability to change the implementation 2590 // behind the scenes. 2591 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2592 Context.getTargetInfo().getTriple().isOSDarwin() && 2593 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2594 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2595 Linkage = llvm::GlobalValue::InternalLinkage; 2596 2597 GV->setLinkage(Linkage); 2598 if (D->hasAttr<DLLImportAttr>()) 2599 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2600 else if (D->hasAttr<DLLExportAttr>()) 2601 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2602 else 2603 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2604 2605 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2606 // common vars aren't constant even if declared const. 2607 GV->setConstant(false); 2608 2609 setNonAliasAttributes(D, GV); 2610 2611 if (D->getTLSKind() && !GV->isThreadLocal()) { 2612 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2613 CXXThreadLocals.push_back(D); 2614 setTLSMode(GV, *D); 2615 } 2616 2617 maybeSetTrivialComdat(*D, *GV); 2618 2619 // Emit the initializer function if necessary. 2620 if (NeedsGlobalCtor || NeedsGlobalDtor) 2621 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2622 2623 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2624 2625 // Emit global variable debug information. 2626 if (CGDebugInfo *DI = getModuleDebugInfo()) 2627 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2628 DI->EmitGlobalVariable(GV, D); 2629 } 2630 2631 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2632 CodeGenModule &CGM, const VarDecl *D, 2633 bool NoCommon) { 2634 // Don't give variables common linkage if -fno-common was specified unless it 2635 // was overridden by a NoCommon attribute. 2636 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2637 return true; 2638 2639 // C11 6.9.2/2: 2640 // A declaration of an identifier for an object that has file scope without 2641 // an initializer, and without a storage-class specifier or with the 2642 // storage-class specifier static, constitutes a tentative definition. 2643 if (D->getInit() || D->hasExternalStorage()) 2644 return true; 2645 2646 // A variable cannot be both common and exist in a section. 2647 if (D->hasAttr<SectionAttr>()) 2648 return true; 2649 2650 // Thread local vars aren't considered common linkage. 2651 if (D->getTLSKind()) 2652 return true; 2653 2654 // Tentative definitions marked with WeakImportAttr are true definitions. 2655 if (D->hasAttr<WeakImportAttr>()) 2656 return true; 2657 2658 // A variable cannot be both common and exist in a comdat. 2659 if (shouldBeInCOMDAT(CGM, *D)) 2660 return true; 2661 2662 // Declarations with a required alignment do not have common linkage in MSVC 2663 // mode. 2664 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2665 if (D->hasAttr<AlignedAttr>()) 2666 return true; 2667 QualType VarType = D->getType(); 2668 if (Context.isAlignmentRequired(VarType)) 2669 return true; 2670 2671 if (const auto *RT = VarType->getAs<RecordType>()) { 2672 const RecordDecl *RD = RT->getDecl(); 2673 for (const FieldDecl *FD : RD->fields()) { 2674 if (FD->isBitField()) 2675 continue; 2676 if (FD->hasAttr<AlignedAttr>()) 2677 return true; 2678 if (Context.isAlignmentRequired(FD->getType())) 2679 return true; 2680 } 2681 } 2682 } 2683 2684 return false; 2685 } 2686 2687 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2688 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2689 if (Linkage == GVA_Internal) 2690 return llvm::Function::InternalLinkage; 2691 2692 if (D->hasAttr<WeakAttr>()) { 2693 if (IsConstantVariable) 2694 return llvm::GlobalVariable::WeakODRLinkage; 2695 else 2696 return llvm::GlobalVariable::WeakAnyLinkage; 2697 } 2698 2699 // We are guaranteed to have a strong definition somewhere else, 2700 // so we can use available_externally linkage. 2701 if (Linkage == GVA_AvailableExternally) 2702 return llvm::Function::AvailableExternallyLinkage; 2703 2704 // Note that Apple's kernel linker doesn't support symbol 2705 // coalescing, so we need to avoid linkonce and weak linkages there. 2706 // Normally, this means we just map to internal, but for explicit 2707 // instantiations we'll map to external. 2708 2709 // In C++, the compiler has to emit a definition in every translation unit 2710 // that references the function. We should use linkonce_odr because 2711 // a) if all references in this translation unit are optimized away, we 2712 // don't need to codegen it. b) if the function persists, it needs to be 2713 // merged with other definitions. c) C++ has the ODR, so we know the 2714 // definition is dependable. 2715 if (Linkage == GVA_DiscardableODR) 2716 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2717 : llvm::Function::InternalLinkage; 2718 2719 // An explicit instantiation of a template has weak linkage, since 2720 // explicit instantiations can occur in multiple translation units 2721 // and must all be equivalent. However, we are not allowed to 2722 // throw away these explicit instantiations. 2723 // 2724 // We don't currently support CUDA device code spread out across multiple TUs, 2725 // so say that CUDA templates are either external (for kernels) or internal. 2726 // This lets llvm perform aggressive inter-procedural optimizations. 2727 if (Linkage == GVA_StrongODR) { 2728 if (Context.getLangOpts().AppleKext) 2729 return llvm::Function::ExternalLinkage; 2730 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2731 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2732 : llvm::Function::InternalLinkage; 2733 return llvm::Function::WeakODRLinkage; 2734 } 2735 2736 // C++ doesn't have tentative definitions and thus cannot have common 2737 // linkage. 2738 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2739 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2740 CodeGenOpts.NoCommon)) 2741 return llvm::GlobalVariable::CommonLinkage; 2742 2743 // selectany symbols are externally visible, so use weak instead of 2744 // linkonce. MSVC optimizes away references to const selectany globals, so 2745 // all definitions should be the same and ODR linkage should be used. 2746 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2747 if (D->hasAttr<SelectAnyAttr>()) 2748 return llvm::GlobalVariable::WeakODRLinkage; 2749 2750 // Otherwise, we have strong external linkage. 2751 assert(Linkage == GVA_StrongExternal); 2752 return llvm::GlobalVariable::ExternalLinkage; 2753 } 2754 2755 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2756 const VarDecl *VD, bool IsConstant) { 2757 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2758 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2759 } 2760 2761 /// Replace the uses of a function that was declared with a non-proto type. 2762 /// We want to silently drop extra arguments from call sites 2763 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2764 llvm::Function *newFn) { 2765 // Fast path. 2766 if (old->use_empty()) return; 2767 2768 llvm::Type *newRetTy = newFn->getReturnType(); 2769 SmallVector<llvm::Value*, 4> newArgs; 2770 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2771 2772 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2773 ui != ue; ) { 2774 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2775 llvm::User *user = use->getUser(); 2776 2777 // Recognize and replace uses of bitcasts. Most calls to 2778 // unprototyped functions will use bitcasts. 2779 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2780 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2781 replaceUsesOfNonProtoConstant(bitcast, newFn); 2782 continue; 2783 } 2784 2785 // Recognize calls to the function. 2786 llvm::CallSite callSite(user); 2787 if (!callSite) continue; 2788 if (!callSite.isCallee(&*use)) continue; 2789 2790 // If the return types don't match exactly, then we can't 2791 // transform this call unless it's dead. 2792 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2793 continue; 2794 2795 // Get the call site's attribute list. 2796 SmallVector<llvm::AttributeSet, 8> newAttrs; 2797 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2798 2799 // Collect any return attributes from the call. 2800 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2801 newAttrs.push_back( 2802 llvm::AttributeSet::get(newFn->getContext(), 2803 oldAttrs.getRetAttributes())); 2804 2805 // If the function was passed too few arguments, don't transform. 2806 unsigned newNumArgs = newFn->arg_size(); 2807 if (callSite.arg_size() < newNumArgs) continue; 2808 2809 // If extra arguments were passed, we silently drop them. 2810 // If any of the types mismatch, we don't transform. 2811 unsigned argNo = 0; 2812 bool dontTransform = false; 2813 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2814 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2815 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2816 dontTransform = true; 2817 break; 2818 } 2819 2820 // Add any parameter attributes. 2821 if (oldAttrs.hasAttributes(argNo + 1)) 2822 newAttrs. 2823 push_back(llvm:: 2824 AttributeSet::get(newFn->getContext(), 2825 oldAttrs.getParamAttributes(argNo + 1))); 2826 } 2827 if (dontTransform) 2828 continue; 2829 2830 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2831 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2832 oldAttrs.getFnAttributes())); 2833 2834 // Okay, we can transform this. Create the new call instruction and copy 2835 // over the required information. 2836 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2837 2838 // Copy over any operand bundles. 2839 callSite.getOperandBundlesAsDefs(newBundles); 2840 2841 llvm::CallSite newCall; 2842 if (callSite.isCall()) { 2843 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2844 callSite.getInstruction()); 2845 } else { 2846 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2847 newCall = llvm::InvokeInst::Create(newFn, 2848 oldInvoke->getNormalDest(), 2849 oldInvoke->getUnwindDest(), 2850 newArgs, newBundles, "", 2851 callSite.getInstruction()); 2852 } 2853 newArgs.clear(); // for the next iteration 2854 2855 if (!newCall->getType()->isVoidTy()) 2856 newCall->takeName(callSite.getInstruction()); 2857 newCall.setAttributes( 2858 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2859 newCall.setCallingConv(callSite.getCallingConv()); 2860 2861 // Finally, remove the old call, replacing any uses with the new one. 2862 if (!callSite->use_empty()) 2863 callSite->replaceAllUsesWith(newCall.getInstruction()); 2864 2865 // Copy debug location attached to CI. 2866 if (callSite->getDebugLoc()) 2867 newCall->setDebugLoc(callSite->getDebugLoc()); 2868 2869 callSite->eraseFromParent(); 2870 } 2871 } 2872 2873 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2874 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2875 /// existing call uses of the old function in the module, this adjusts them to 2876 /// call the new function directly. 2877 /// 2878 /// This is not just a cleanup: the always_inline pass requires direct calls to 2879 /// functions to be able to inline them. If there is a bitcast in the way, it 2880 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2881 /// run at -O0. 2882 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2883 llvm::Function *NewFn) { 2884 // If we're redefining a global as a function, don't transform it. 2885 if (!isa<llvm::Function>(Old)) return; 2886 2887 replaceUsesOfNonProtoConstant(Old, NewFn); 2888 } 2889 2890 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2891 auto DK = VD->isThisDeclarationADefinition(); 2892 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2893 return; 2894 2895 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2896 // If we have a definition, this might be a deferred decl. If the 2897 // instantiation is explicit, make sure we emit it at the end. 2898 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2899 GetAddrOfGlobalVar(VD); 2900 2901 EmitTopLevelDecl(VD); 2902 } 2903 2904 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2905 llvm::GlobalValue *GV) { 2906 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2907 2908 // Compute the function info and LLVM type. 2909 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2910 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2911 2912 // Get or create the prototype for the function. 2913 if (!GV || (GV->getType()->getElementType() != Ty)) 2914 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2915 /*DontDefer=*/true, 2916 /*IsForDefinition=*/true)); 2917 2918 // Already emitted. 2919 if (!GV->isDeclaration()) 2920 return; 2921 2922 // We need to set linkage and visibility on the function before 2923 // generating code for it because various parts of IR generation 2924 // want to propagate this information down (e.g. to local static 2925 // declarations). 2926 auto *Fn = cast<llvm::Function>(GV); 2927 setFunctionLinkage(GD, Fn); 2928 setFunctionDLLStorageClass(GD, Fn); 2929 2930 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2931 setGlobalVisibility(Fn, D); 2932 2933 MaybeHandleStaticInExternC(D, Fn); 2934 2935 maybeSetTrivialComdat(*D, *Fn); 2936 2937 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2938 2939 setFunctionDefinitionAttributes(D, Fn); 2940 SetLLVMFunctionAttributesForDefinition(D, Fn); 2941 2942 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2943 AddGlobalCtor(Fn, CA->getPriority()); 2944 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2945 AddGlobalDtor(Fn, DA->getPriority()); 2946 if (D->hasAttr<AnnotateAttr>()) 2947 AddGlobalAnnotations(D, Fn); 2948 } 2949 2950 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2951 const auto *D = cast<ValueDecl>(GD.getDecl()); 2952 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2953 assert(AA && "Not an alias?"); 2954 2955 StringRef MangledName = getMangledName(GD); 2956 2957 if (AA->getAliasee() == MangledName) { 2958 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2959 return; 2960 } 2961 2962 // If there is a definition in the module, then it wins over the alias. 2963 // This is dubious, but allow it to be safe. Just ignore the alias. 2964 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2965 if (Entry && !Entry->isDeclaration()) 2966 return; 2967 2968 Aliases.push_back(GD); 2969 2970 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2971 2972 // Create a reference to the named value. This ensures that it is emitted 2973 // if a deferred decl. 2974 llvm::Constant *Aliasee; 2975 if (isa<llvm::FunctionType>(DeclTy)) 2976 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2977 /*ForVTable=*/false); 2978 else 2979 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2980 llvm::PointerType::getUnqual(DeclTy), 2981 /*D=*/nullptr); 2982 2983 // Create the new alias itself, but don't set a name yet. 2984 auto *GA = llvm::GlobalAlias::create( 2985 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2986 2987 if (Entry) { 2988 if (GA->getAliasee() == Entry) { 2989 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2990 return; 2991 } 2992 2993 assert(Entry->isDeclaration()); 2994 2995 // If there is a declaration in the module, then we had an extern followed 2996 // by the alias, as in: 2997 // extern int test6(); 2998 // ... 2999 // int test6() __attribute__((alias("test7"))); 3000 // 3001 // Remove it and replace uses of it with the alias. 3002 GA->takeName(Entry); 3003 3004 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3005 Entry->getType())); 3006 Entry->eraseFromParent(); 3007 } else { 3008 GA->setName(MangledName); 3009 } 3010 3011 // Set attributes which are particular to an alias; this is a 3012 // specialization of the attributes which may be set on a global 3013 // variable/function. 3014 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3015 D->isWeakImported()) { 3016 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3017 } 3018 3019 if (const auto *VD = dyn_cast<VarDecl>(D)) 3020 if (VD->getTLSKind()) 3021 setTLSMode(GA, *VD); 3022 3023 setAliasAttributes(D, GA); 3024 } 3025 3026 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3027 const auto *D = cast<ValueDecl>(GD.getDecl()); 3028 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3029 assert(IFA && "Not an ifunc?"); 3030 3031 StringRef MangledName = getMangledName(GD); 3032 3033 if (IFA->getResolver() == MangledName) { 3034 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3035 return; 3036 } 3037 3038 // Report an error if some definition overrides ifunc. 3039 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3040 if (Entry && !Entry->isDeclaration()) { 3041 GlobalDecl OtherGD; 3042 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3043 DiagnosedConflictingDefinitions.insert(GD).second) { 3044 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3045 Diags.Report(OtherGD.getDecl()->getLocation(), 3046 diag::note_previous_definition); 3047 } 3048 return; 3049 } 3050 3051 Aliases.push_back(GD); 3052 3053 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3054 llvm::Constant *Resolver = 3055 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3056 /*ForVTable=*/false); 3057 llvm::GlobalIFunc *GIF = 3058 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3059 "", Resolver, &getModule()); 3060 if (Entry) { 3061 if (GIF->getResolver() == Entry) { 3062 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3063 return; 3064 } 3065 assert(Entry->isDeclaration()); 3066 3067 // If there is a declaration in the module, then we had an extern followed 3068 // by the ifunc, as in: 3069 // extern int test(); 3070 // ... 3071 // int test() __attribute__((ifunc("resolver"))); 3072 // 3073 // Remove it and replace uses of it with the ifunc. 3074 GIF->takeName(Entry); 3075 3076 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3077 Entry->getType())); 3078 Entry->eraseFromParent(); 3079 } else 3080 GIF->setName(MangledName); 3081 3082 SetCommonAttributes(D, GIF); 3083 } 3084 3085 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3086 ArrayRef<llvm::Type*> Tys) { 3087 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3088 Tys); 3089 } 3090 3091 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3092 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3093 const StringLiteral *Literal, bool TargetIsLSB, 3094 bool &IsUTF16, unsigned &StringLength) { 3095 StringRef String = Literal->getString(); 3096 unsigned NumBytes = String.size(); 3097 3098 // Check for simple case. 3099 if (!Literal->containsNonAsciiOrNull()) { 3100 StringLength = NumBytes; 3101 return *Map.insert(std::make_pair(String, nullptr)).first; 3102 } 3103 3104 // Otherwise, convert the UTF8 literals into a string of shorts. 3105 IsUTF16 = true; 3106 3107 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3108 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3109 llvm::UTF16 *ToPtr = &ToBuf[0]; 3110 3111 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3112 ToPtr + NumBytes, llvm::strictConversion); 3113 3114 // ConvertUTF8toUTF16 returns the length in ToPtr. 3115 StringLength = ToPtr - &ToBuf[0]; 3116 3117 // Add an explicit null. 3118 *ToPtr = 0; 3119 return *Map.insert(std::make_pair( 3120 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3121 (StringLength + 1) * 2), 3122 nullptr)).first; 3123 } 3124 3125 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3126 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3127 const StringLiteral *Literal, unsigned &StringLength) { 3128 StringRef String = Literal->getString(); 3129 StringLength = String.size(); 3130 return *Map.insert(std::make_pair(String, nullptr)).first; 3131 } 3132 3133 ConstantAddress 3134 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3135 unsigned StringLength = 0; 3136 bool isUTF16 = false; 3137 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3138 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3139 getDataLayout().isLittleEndian(), isUTF16, 3140 StringLength); 3141 3142 if (auto *C = Entry.second) 3143 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3144 3145 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3146 llvm::Constant *Zeros[] = { Zero, Zero }; 3147 3148 // If we don't already have it, get __CFConstantStringClassReference. 3149 if (!CFConstantStringClassRef) { 3150 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3151 Ty = llvm::ArrayType::get(Ty, 0); 3152 llvm::Constant *GV = 3153 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3154 3155 if (getTriple().isOSBinFormatCOFF()) { 3156 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3157 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3158 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3159 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3160 3161 const VarDecl *VD = nullptr; 3162 for (const auto &Result : DC->lookup(&II)) 3163 if ((VD = dyn_cast<VarDecl>(Result))) 3164 break; 3165 3166 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3167 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3168 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3169 } else { 3170 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3171 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3172 } 3173 } 3174 3175 // Decay array -> ptr 3176 CFConstantStringClassRef = 3177 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3178 } 3179 3180 QualType CFTy = getContext().getCFConstantStringType(); 3181 3182 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3183 3184 llvm::Constant *Fields[4]; 3185 3186 // Class pointer. 3187 Fields[0] = cast<llvm::ConstantExpr>(CFConstantStringClassRef); 3188 3189 // Flags. 3190 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3191 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 3192 : llvm::ConstantInt::get(Ty, 0x07C8); 3193 3194 // String pointer. 3195 llvm::Constant *C = nullptr; 3196 if (isUTF16) { 3197 auto Arr = llvm::makeArrayRef( 3198 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3199 Entry.first().size() / 2); 3200 C = llvm::ConstantDataArray::get(VMContext, Arr); 3201 } else { 3202 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3203 } 3204 3205 // Note: -fwritable-strings doesn't make the backing store strings of 3206 // CFStrings writable. (See <rdar://problem/10657500>) 3207 auto *GV = 3208 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3209 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3210 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3211 // Don't enforce the target's minimum global alignment, since the only use 3212 // of the string is via this class initializer. 3213 CharUnits Align = isUTF16 3214 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3215 : getContext().getTypeAlignInChars(getContext().CharTy); 3216 GV->setAlignment(Align.getQuantity()); 3217 3218 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3219 // Without it LLVM can merge the string with a non unnamed_addr one during 3220 // LTO. Doing that changes the section it ends in, which surprises ld64. 3221 if (getTriple().isOSBinFormatMachO()) 3222 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3223 : "__TEXT,__cstring,cstring_literals"); 3224 3225 // String. 3226 Fields[2] = 3227 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3228 3229 if (isUTF16) 3230 // Cast the UTF16 string to the correct type. 3231 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3232 3233 // String length. 3234 Ty = getTypes().ConvertType(getContext().LongTy); 3235 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3236 3237 CharUnits Alignment = getPointerAlign(); 3238 3239 // The struct. 3240 C = llvm::ConstantStruct::get(STy, Fields); 3241 GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false, 3242 llvm::GlobalVariable::PrivateLinkage, C, 3243 "_unnamed_cfstring_"); 3244 GV->setAlignment(Alignment.getQuantity()); 3245 switch (getTriple().getObjectFormat()) { 3246 case llvm::Triple::UnknownObjectFormat: 3247 llvm_unreachable("unknown file format"); 3248 case llvm::Triple::COFF: 3249 case llvm::Triple::ELF: 3250 GV->setSection("cfstring"); 3251 break; 3252 case llvm::Triple::MachO: 3253 GV->setSection("__DATA,__cfstring"); 3254 break; 3255 } 3256 Entry.second = GV; 3257 3258 return ConstantAddress(GV, Alignment); 3259 } 3260 3261 ConstantAddress 3262 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3263 unsigned StringLength = 0; 3264 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3265 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3266 3267 if (auto *C = Entry.second) 3268 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3269 3270 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3271 llvm::Constant *Zeros[] = { Zero, Zero }; 3272 llvm::Value *V; 3273 // If we don't already have it, get _NSConstantStringClassReference. 3274 if (!ConstantStringClassRef) { 3275 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3276 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3277 llvm::Constant *GV; 3278 if (LangOpts.ObjCRuntime.isNonFragile()) { 3279 std::string str = 3280 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3281 : "OBJC_CLASS_$_" + StringClass; 3282 GV = getObjCRuntime().GetClassGlobal(str); 3283 // Make sure the result is of the correct type. 3284 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3285 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3286 ConstantStringClassRef = V; 3287 } else { 3288 std::string str = 3289 StringClass.empty() ? "_NSConstantStringClassReference" 3290 : "_" + StringClass + "ClassReference"; 3291 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3292 GV = CreateRuntimeVariable(PTy, str); 3293 // Decay array -> ptr 3294 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3295 ConstantStringClassRef = V; 3296 } 3297 } else 3298 V = ConstantStringClassRef; 3299 3300 if (!NSConstantStringType) { 3301 // Construct the type for a constant NSString. 3302 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3303 D->startDefinition(); 3304 3305 QualType FieldTypes[3]; 3306 3307 // const int *isa; 3308 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3309 // const char *str; 3310 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3311 // unsigned int length; 3312 FieldTypes[2] = Context.UnsignedIntTy; 3313 3314 // Create fields 3315 for (unsigned i = 0; i < 3; ++i) { 3316 FieldDecl *Field = FieldDecl::Create(Context, D, 3317 SourceLocation(), 3318 SourceLocation(), nullptr, 3319 FieldTypes[i], /*TInfo=*/nullptr, 3320 /*BitWidth=*/nullptr, 3321 /*Mutable=*/false, 3322 ICIS_NoInit); 3323 Field->setAccess(AS_public); 3324 D->addDecl(Field); 3325 } 3326 3327 D->completeDefinition(); 3328 QualType NSTy = Context.getTagDeclType(D); 3329 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3330 } 3331 3332 llvm::Constant *Fields[3]; 3333 3334 // Class pointer. 3335 Fields[0] = cast<llvm::ConstantExpr>(V); 3336 3337 // String pointer. 3338 llvm::Constant *C = 3339 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3340 3341 llvm::GlobalValue::LinkageTypes Linkage; 3342 bool isConstant; 3343 Linkage = llvm::GlobalValue::PrivateLinkage; 3344 isConstant = !LangOpts.WritableStrings; 3345 3346 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3347 Linkage, C, ".str"); 3348 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3349 // Don't enforce the target's minimum global alignment, since the only use 3350 // of the string is via this class initializer. 3351 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3352 GV->setAlignment(Align.getQuantity()); 3353 Fields[1] = 3354 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3355 3356 // String length. 3357 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3358 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3359 3360 // The struct. 3361 CharUnits Alignment = getPointerAlign(); 3362 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3363 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3364 llvm::GlobalVariable::PrivateLinkage, C, 3365 "_unnamed_nsstring_"); 3366 GV->setAlignment(Alignment.getQuantity()); 3367 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3368 const char *NSStringNonFragileABISection = 3369 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3370 // FIXME. Fix section. 3371 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3372 ? NSStringNonFragileABISection 3373 : NSStringSection); 3374 Entry.second = GV; 3375 3376 return ConstantAddress(GV, Alignment); 3377 } 3378 3379 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3380 if (ObjCFastEnumerationStateType.isNull()) { 3381 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3382 D->startDefinition(); 3383 3384 QualType FieldTypes[] = { 3385 Context.UnsignedLongTy, 3386 Context.getPointerType(Context.getObjCIdType()), 3387 Context.getPointerType(Context.UnsignedLongTy), 3388 Context.getConstantArrayType(Context.UnsignedLongTy, 3389 llvm::APInt(32, 5), ArrayType::Normal, 0) 3390 }; 3391 3392 for (size_t i = 0; i < 4; ++i) { 3393 FieldDecl *Field = FieldDecl::Create(Context, 3394 D, 3395 SourceLocation(), 3396 SourceLocation(), nullptr, 3397 FieldTypes[i], /*TInfo=*/nullptr, 3398 /*BitWidth=*/nullptr, 3399 /*Mutable=*/false, 3400 ICIS_NoInit); 3401 Field->setAccess(AS_public); 3402 D->addDecl(Field); 3403 } 3404 3405 D->completeDefinition(); 3406 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3407 } 3408 3409 return ObjCFastEnumerationStateType; 3410 } 3411 3412 llvm::Constant * 3413 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3414 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3415 3416 // Don't emit it as the address of the string, emit the string data itself 3417 // as an inline array. 3418 if (E->getCharByteWidth() == 1) { 3419 SmallString<64> Str(E->getString()); 3420 3421 // Resize the string to the right size, which is indicated by its type. 3422 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3423 Str.resize(CAT->getSize().getZExtValue()); 3424 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3425 } 3426 3427 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3428 llvm::Type *ElemTy = AType->getElementType(); 3429 unsigned NumElements = AType->getNumElements(); 3430 3431 // Wide strings have either 2-byte or 4-byte elements. 3432 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3433 SmallVector<uint16_t, 32> Elements; 3434 Elements.reserve(NumElements); 3435 3436 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3437 Elements.push_back(E->getCodeUnit(i)); 3438 Elements.resize(NumElements); 3439 return llvm::ConstantDataArray::get(VMContext, Elements); 3440 } 3441 3442 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3443 SmallVector<uint32_t, 32> Elements; 3444 Elements.reserve(NumElements); 3445 3446 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3447 Elements.push_back(E->getCodeUnit(i)); 3448 Elements.resize(NumElements); 3449 return llvm::ConstantDataArray::get(VMContext, Elements); 3450 } 3451 3452 static llvm::GlobalVariable * 3453 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3454 CodeGenModule &CGM, StringRef GlobalName, 3455 CharUnits Alignment) { 3456 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3457 unsigned AddrSpace = 0; 3458 if (CGM.getLangOpts().OpenCL) 3459 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3460 3461 llvm::Module &M = CGM.getModule(); 3462 // Create a global variable for this string 3463 auto *GV = new llvm::GlobalVariable( 3464 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3465 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3466 GV->setAlignment(Alignment.getQuantity()); 3467 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3468 if (GV->isWeakForLinker()) { 3469 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3470 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3471 } 3472 3473 return GV; 3474 } 3475 3476 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3477 /// constant array for the given string literal. 3478 ConstantAddress 3479 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3480 StringRef Name) { 3481 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3482 3483 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3484 llvm::GlobalVariable **Entry = nullptr; 3485 if (!LangOpts.WritableStrings) { 3486 Entry = &ConstantStringMap[C]; 3487 if (auto GV = *Entry) { 3488 if (Alignment.getQuantity() > GV->getAlignment()) 3489 GV->setAlignment(Alignment.getQuantity()); 3490 return ConstantAddress(GV, Alignment); 3491 } 3492 } 3493 3494 SmallString<256> MangledNameBuffer; 3495 StringRef GlobalVariableName; 3496 llvm::GlobalValue::LinkageTypes LT; 3497 3498 // Mangle the string literal if the ABI allows for it. However, we cannot 3499 // do this if we are compiling with ASan or -fwritable-strings because they 3500 // rely on strings having normal linkage. 3501 if (!LangOpts.WritableStrings && 3502 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3503 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3504 llvm::raw_svector_ostream Out(MangledNameBuffer); 3505 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3506 3507 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3508 GlobalVariableName = MangledNameBuffer; 3509 } else { 3510 LT = llvm::GlobalValue::PrivateLinkage; 3511 GlobalVariableName = Name; 3512 } 3513 3514 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3515 if (Entry) 3516 *Entry = GV; 3517 3518 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3519 QualType()); 3520 return ConstantAddress(GV, Alignment); 3521 } 3522 3523 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3524 /// array for the given ObjCEncodeExpr node. 3525 ConstantAddress 3526 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3527 std::string Str; 3528 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3529 3530 return GetAddrOfConstantCString(Str); 3531 } 3532 3533 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3534 /// the literal and a terminating '\0' character. 3535 /// The result has pointer to array type. 3536 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3537 const std::string &Str, const char *GlobalName) { 3538 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3539 CharUnits Alignment = 3540 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3541 3542 llvm::Constant *C = 3543 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3544 3545 // Don't share any string literals if strings aren't constant. 3546 llvm::GlobalVariable **Entry = nullptr; 3547 if (!LangOpts.WritableStrings) { 3548 Entry = &ConstantStringMap[C]; 3549 if (auto GV = *Entry) { 3550 if (Alignment.getQuantity() > GV->getAlignment()) 3551 GV->setAlignment(Alignment.getQuantity()); 3552 return ConstantAddress(GV, Alignment); 3553 } 3554 } 3555 3556 // Get the default prefix if a name wasn't specified. 3557 if (!GlobalName) 3558 GlobalName = ".str"; 3559 // Create a global variable for this. 3560 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3561 GlobalName, Alignment); 3562 if (Entry) 3563 *Entry = GV; 3564 return ConstantAddress(GV, Alignment); 3565 } 3566 3567 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3568 const MaterializeTemporaryExpr *E, const Expr *Init) { 3569 assert((E->getStorageDuration() == SD_Static || 3570 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3571 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3572 3573 // If we're not materializing a subobject of the temporary, keep the 3574 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3575 QualType MaterializedType = Init->getType(); 3576 if (Init == E->GetTemporaryExpr()) 3577 MaterializedType = E->getType(); 3578 3579 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3580 3581 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3582 return ConstantAddress(Slot, Align); 3583 3584 // FIXME: If an externally-visible declaration extends multiple temporaries, 3585 // we need to give each temporary the same name in every translation unit (and 3586 // we also need to make the temporaries externally-visible). 3587 SmallString<256> Name; 3588 llvm::raw_svector_ostream Out(Name); 3589 getCXXABI().getMangleContext().mangleReferenceTemporary( 3590 VD, E->getManglingNumber(), Out); 3591 3592 APValue *Value = nullptr; 3593 if (E->getStorageDuration() == SD_Static) { 3594 // We might have a cached constant initializer for this temporary. Note 3595 // that this might have a different value from the value computed by 3596 // evaluating the initializer if the surrounding constant expression 3597 // modifies the temporary. 3598 Value = getContext().getMaterializedTemporaryValue(E, false); 3599 if (Value && Value->isUninit()) 3600 Value = nullptr; 3601 } 3602 3603 // Try evaluating it now, it might have a constant initializer. 3604 Expr::EvalResult EvalResult; 3605 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3606 !EvalResult.hasSideEffects()) 3607 Value = &EvalResult.Val; 3608 3609 llvm::Constant *InitialValue = nullptr; 3610 bool Constant = false; 3611 llvm::Type *Type; 3612 if (Value) { 3613 // The temporary has a constant initializer, use it. 3614 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3615 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3616 Type = InitialValue->getType(); 3617 } else { 3618 // No initializer, the initialization will be provided when we 3619 // initialize the declaration which performed lifetime extension. 3620 Type = getTypes().ConvertTypeForMem(MaterializedType); 3621 } 3622 3623 // Create a global variable for this lifetime-extended temporary. 3624 llvm::GlobalValue::LinkageTypes Linkage = 3625 getLLVMLinkageVarDefinition(VD, Constant); 3626 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3627 const VarDecl *InitVD; 3628 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3629 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3630 // Temporaries defined inside a class get linkonce_odr linkage because the 3631 // class can be defined in multipe translation units. 3632 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3633 } else { 3634 // There is no need for this temporary to have external linkage if the 3635 // VarDecl has external linkage. 3636 Linkage = llvm::GlobalVariable::InternalLinkage; 3637 } 3638 } 3639 unsigned AddrSpace = GetGlobalVarAddressSpace( 3640 VD, getContext().getTargetAddressSpace(MaterializedType)); 3641 auto *GV = new llvm::GlobalVariable( 3642 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3643 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3644 AddrSpace); 3645 setGlobalVisibility(GV, VD); 3646 GV->setAlignment(Align.getQuantity()); 3647 if (supportsCOMDAT() && GV->isWeakForLinker()) 3648 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3649 if (VD->getTLSKind()) 3650 setTLSMode(GV, *VD); 3651 MaterializedGlobalTemporaryMap[E] = GV; 3652 return ConstantAddress(GV, Align); 3653 } 3654 3655 /// EmitObjCPropertyImplementations - Emit information for synthesized 3656 /// properties for an implementation. 3657 void CodeGenModule::EmitObjCPropertyImplementations(const 3658 ObjCImplementationDecl *D) { 3659 for (const auto *PID : D->property_impls()) { 3660 // Dynamic is just for type-checking. 3661 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3662 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3663 3664 // Determine which methods need to be implemented, some may have 3665 // been overridden. Note that ::isPropertyAccessor is not the method 3666 // we want, that just indicates if the decl came from a 3667 // property. What we want to know is if the method is defined in 3668 // this implementation. 3669 if (!D->getInstanceMethod(PD->getGetterName())) 3670 CodeGenFunction(*this).GenerateObjCGetter( 3671 const_cast<ObjCImplementationDecl *>(D), PID); 3672 if (!PD->isReadOnly() && 3673 !D->getInstanceMethod(PD->getSetterName())) 3674 CodeGenFunction(*this).GenerateObjCSetter( 3675 const_cast<ObjCImplementationDecl *>(D), PID); 3676 } 3677 } 3678 } 3679 3680 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3681 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3682 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3683 ivar; ivar = ivar->getNextIvar()) 3684 if (ivar->getType().isDestructedType()) 3685 return true; 3686 3687 return false; 3688 } 3689 3690 static bool AllTrivialInitializers(CodeGenModule &CGM, 3691 ObjCImplementationDecl *D) { 3692 CodeGenFunction CGF(CGM); 3693 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3694 E = D->init_end(); B != E; ++B) { 3695 CXXCtorInitializer *CtorInitExp = *B; 3696 Expr *Init = CtorInitExp->getInit(); 3697 if (!CGF.isTrivialInitializer(Init)) 3698 return false; 3699 } 3700 return true; 3701 } 3702 3703 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3704 /// for an implementation. 3705 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3706 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3707 if (needsDestructMethod(D)) { 3708 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3709 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3710 ObjCMethodDecl *DTORMethod = 3711 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3712 cxxSelector, getContext().VoidTy, nullptr, D, 3713 /*isInstance=*/true, /*isVariadic=*/false, 3714 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3715 /*isDefined=*/false, ObjCMethodDecl::Required); 3716 D->addInstanceMethod(DTORMethod); 3717 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3718 D->setHasDestructors(true); 3719 } 3720 3721 // If the implementation doesn't have any ivar initializers, we don't need 3722 // a .cxx_construct. 3723 if (D->getNumIvarInitializers() == 0 || 3724 AllTrivialInitializers(*this, D)) 3725 return; 3726 3727 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3728 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3729 // The constructor returns 'self'. 3730 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3731 D->getLocation(), 3732 D->getLocation(), 3733 cxxSelector, 3734 getContext().getObjCIdType(), 3735 nullptr, D, /*isInstance=*/true, 3736 /*isVariadic=*/false, 3737 /*isPropertyAccessor=*/true, 3738 /*isImplicitlyDeclared=*/true, 3739 /*isDefined=*/false, 3740 ObjCMethodDecl::Required); 3741 D->addInstanceMethod(CTORMethod); 3742 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3743 D->setHasNonZeroConstructors(true); 3744 } 3745 3746 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3747 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3748 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3749 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3750 ErrorUnsupported(LSD, "linkage spec"); 3751 return; 3752 } 3753 3754 EmitDeclContext(LSD); 3755 } 3756 3757 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3758 for (auto *I : DC->decls()) { 3759 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3760 // are themselves considered "top-level", so EmitTopLevelDecl on an 3761 // ObjCImplDecl does not recursively visit them. We need to do that in 3762 // case they're nested inside another construct (LinkageSpecDecl / 3763 // ExportDecl) that does stop them from being considered "top-level". 3764 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3765 for (auto *M : OID->methods()) 3766 EmitTopLevelDecl(M); 3767 } 3768 3769 EmitTopLevelDecl(I); 3770 } 3771 } 3772 3773 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3774 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3775 // Ignore dependent declarations. 3776 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3777 return; 3778 3779 switch (D->getKind()) { 3780 case Decl::CXXConversion: 3781 case Decl::CXXMethod: 3782 case Decl::Function: 3783 // Skip function templates 3784 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3785 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3786 return; 3787 3788 EmitGlobal(cast<FunctionDecl>(D)); 3789 // Always provide some coverage mapping 3790 // even for the functions that aren't emitted. 3791 AddDeferredUnusedCoverageMapping(D); 3792 break; 3793 3794 case Decl::Var: 3795 case Decl::Decomposition: 3796 // Skip variable templates 3797 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3798 return; 3799 case Decl::VarTemplateSpecialization: 3800 EmitGlobal(cast<VarDecl>(D)); 3801 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3802 for (auto *B : DD->bindings()) 3803 if (auto *HD = B->getHoldingVar()) 3804 EmitGlobal(HD); 3805 break; 3806 3807 // Indirect fields from global anonymous structs and unions can be 3808 // ignored; only the actual variable requires IR gen support. 3809 case Decl::IndirectField: 3810 break; 3811 3812 // C++ Decls 3813 case Decl::Namespace: 3814 EmitDeclContext(cast<NamespaceDecl>(D)); 3815 break; 3816 case Decl::CXXRecord: 3817 // Emit any static data members, they may be definitions. 3818 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3819 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3820 EmitTopLevelDecl(I); 3821 break; 3822 // No code generation needed. 3823 case Decl::UsingShadow: 3824 case Decl::ClassTemplate: 3825 case Decl::VarTemplate: 3826 case Decl::VarTemplatePartialSpecialization: 3827 case Decl::FunctionTemplate: 3828 case Decl::TypeAliasTemplate: 3829 case Decl::Block: 3830 case Decl::Empty: 3831 break; 3832 case Decl::Using: // using X; [C++] 3833 if (CGDebugInfo *DI = getModuleDebugInfo()) 3834 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3835 return; 3836 case Decl::NamespaceAlias: 3837 if (CGDebugInfo *DI = getModuleDebugInfo()) 3838 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3839 return; 3840 case Decl::UsingDirective: // using namespace X; [C++] 3841 if (CGDebugInfo *DI = getModuleDebugInfo()) 3842 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3843 return; 3844 case Decl::CXXConstructor: 3845 // Skip function templates 3846 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3847 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3848 return; 3849 3850 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3851 break; 3852 case Decl::CXXDestructor: 3853 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3854 return; 3855 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3856 break; 3857 3858 case Decl::StaticAssert: 3859 // Nothing to do. 3860 break; 3861 3862 // Objective-C Decls 3863 3864 // Forward declarations, no (immediate) code generation. 3865 case Decl::ObjCInterface: 3866 case Decl::ObjCCategory: 3867 break; 3868 3869 case Decl::ObjCProtocol: { 3870 auto *Proto = cast<ObjCProtocolDecl>(D); 3871 if (Proto->isThisDeclarationADefinition()) 3872 ObjCRuntime->GenerateProtocol(Proto); 3873 break; 3874 } 3875 3876 case Decl::ObjCCategoryImpl: 3877 // Categories have properties but don't support synthesize so we 3878 // can ignore them here. 3879 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3880 break; 3881 3882 case Decl::ObjCImplementation: { 3883 auto *OMD = cast<ObjCImplementationDecl>(D); 3884 EmitObjCPropertyImplementations(OMD); 3885 EmitObjCIvarInitializations(OMD); 3886 ObjCRuntime->GenerateClass(OMD); 3887 // Emit global variable debug information. 3888 if (CGDebugInfo *DI = getModuleDebugInfo()) 3889 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3890 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3891 OMD->getClassInterface()), OMD->getLocation()); 3892 break; 3893 } 3894 case Decl::ObjCMethod: { 3895 auto *OMD = cast<ObjCMethodDecl>(D); 3896 // If this is not a prototype, emit the body. 3897 if (OMD->getBody()) 3898 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3899 break; 3900 } 3901 case Decl::ObjCCompatibleAlias: 3902 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3903 break; 3904 3905 case Decl::PragmaComment: { 3906 const auto *PCD = cast<PragmaCommentDecl>(D); 3907 switch (PCD->getCommentKind()) { 3908 case PCK_Unknown: 3909 llvm_unreachable("unexpected pragma comment kind"); 3910 case PCK_Linker: 3911 AppendLinkerOptions(PCD->getArg()); 3912 break; 3913 case PCK_Lib: 3914 AddDependentLib(PCD->getArg()); 3915 break; 3916 case PCK_Compiler: 3917 case PCK_ExeStr: 3918 case PCK_User: 3919 break; // We ignore all of these. 3920 } 3921 break; 3922 } 3923 3924 case Decl::PragmaDetectMismatch: { 3925 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3926 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3927 break; 3928 } 3929 3930 case Decl::LinkageSpec: 3931 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3932 break; 3933 3934 case Decl::FileScopeAsm: { 3935 // File-scope asm is ignored during device-side CUDA compilation. 3936 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3937 break; 3938 // File-scope asm is ignored during device-side OpenMP compilation. 3939 if (LangOpts.OpenMPIsDevice) 3940 break; 3941 auto *AD = cast<FileScopeAsmDecl>(D); 3942 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3943 break; 3944 } 3945 3946 case Decl::Import: { 3947 auto *Import = cast<ImportDecl>(D); 3948 3949 // If we've already imported this module, we're done. 3950 if (!ImportedModules.insert(Import->getImportedModule())) 3951 break; 3952 3953 // Emit debug information for direct imports. 3954 if (!Import->getImportedOwningModule()) { 3955 if (CGDebugInfo *DI = getModuleDebugInfo()) 3956 DI->EmitImportDecl(*Import); 3957 } 3958 3959 // Find all of the submodules and emit the module initializers. 3960 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3961 SmallVector<clang::Module *, 16> Stack; 3962 Visited.insert(Import->getImportedModule()); 3963 Stack.push_back(Import->getImportedModule()); 3964 3965 while (!Stack.empty()) { 3966 clang::Module *Mod = Stack.pop_back_val(); 3967 if (!EmittedModuleInitializers.insert(Mod).second) 3968 continue; 3969 3970 for (auto *D : Context.getModuleInitializers(Mod)) 3971 EmitTopLevelDecl(D); 3972 3973 // Visit the submodules of this module. 3974 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3975 SubEnd = Mod->submodule_end(); 3976 Sub != SubEnd; ++Sub) { 3977 // Skip explicit children; they need to be explicitly imported to emit 3978 // the initializers. 3979 if ((*Sub)->IsExplicit) 3980 continue; 3981 3982 if (Visited.insert(*Sub).second) 3983 Stack.push_back(*Sub); 3984 } 3985 } 3986 break; 3987 } 3988 3989 case Decl::Export: 3990 EmitDeclContext(cast<ExportDecl>(D)); 3991 break; 3992 3993 case Decl::OMPThreadPrivate: 3994 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3995 break; 3996 3997 case Decl::ClassTemplateSpecialization: { 3998 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3999 if (DebugInfo && 4000 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4001 Spec->hasDefinition()) 4002 DebugInfo->completeTemplateDefinition(*Spec); 4003 break; 4004 } 4005 4006 case Decl::OMPDeclareReduction: 4007 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4008 break; 4009 4010 default: 4011 // Make sure we handled everything we should, every other kind is a 4012 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4013 // function. Need to recode Decl::Kind to do that easily. 4014 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4015 break; 4016 } 4017 } 4018 4019 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4020 // Do we need to generate coverage mapping? 4021 if (!CodeGenOpts.CoverageMapping) 4022 return; 4023 switch (D->getKind()) { 4024 case Decl::CXXConversion: 4025 case Decl::CXXMethod: 4026 case Decl::Function: 4027 case Decl::ObjCMethod: 4028 case Decl::CXXConstructor: 4029 case Decl::CXXDestructor: { 4030 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4031 return; 4032 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4033 if (I == DeferredEmptyCoverageMappingDecls.end()) 4034 DeferredEmptyCoverageMappingDecls[D] = true; 4035 break; 4036 } 4037 default: 4038 break; 4039 }; 4040 } 4041 4042 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4043 // Do we need to generate coverage mapping? 4044 if (!CodeGenOpts.CoverageMapping) 4045 return; 4046 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4047 if (Fn->isTemplateInstantiation()) 4048 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4049 } 4050 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4051 if (I == DeferredEmptyCoverageMappingDecls.end()) 4052 DeferredEmptyCoverageMappingDecls[D] = false; 4053 else 4054 I->second = false; 4055 } 4056 4057 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4058 std::vector<const Decl *> DeferredDecls; 4059 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4060 if (!I.second) 4061 continue; 4062 DeferredDecls.push_back(I.first); 4063 } 4064 // Sort the declarations by their location to make sure that the tests get a 4065 // predictable order for the coverage mapping for the unused declarations. 4066 if (CodeGenOpts.DumpCoverageMapping) 4067 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4068 [] (const Decl *LHS, const Decl *RHS) { 4069 return LHS->getLocStart() < RHS->getLocStart(); 4070 }); 4071 for (const auto *D : DeferredDecls) { 4072 switch (D->getKind()) { 4073 case Decl::CXXConversion: 4074 case Decl::CXXMethod: 4075 case Decl::Function: 4076 case Decl::ObjCMethod: { 4077 CodeGenPGO PGO(*this); 4078 GlobalDecl GD(cast<FunctionDecl>(D)); 4079 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4080 getFunctionLinkage(GD)); 4081 break; 4082 } 4083 case Decl::CXXConstructor: { 4084 CodeGenPGO PGO(*this); 4085 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4086 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4087 getFunctionLinkage(GD)); 4088 break; 4089 } 4090 case Decl::CXXDestructor: { 4091 CodeGenPGO PGO(*this); 4092 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4093 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4094 getFunctionLinkage(GD)); 4095 break; 4096 } 4097 default: 4098 break; 4099 }; 4100 } 4101 } 4102 4103 /// Turns the given pointer into a constant. 4104 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4105 const void *Ptr) { 4106 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4107 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4108 return llvm::ConstantInt::get(i64, PtrInt); 4109 } 4110 4111 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4112 llvm::NamedMDNode *&GlobalMetadata, 4113 GlobalDecl D, 4114 llvm::GlobalValue *Addr) { 4115 if (!GlobalMetadata) 4116 GlobalMetadata = 4117 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4118 4119 // TODO: should we report variant information for ctors/dtors? 4120 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4121 llvm::ConstantAsMetadata::get(GetPointerConstant( 4122 CGM.getLLVMContext(), D.getDecl()))}; 4123 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4124 } 4125 4126 /// For each function which is declared within an extern "C" region and marked 4127 /// as 'used', but has internal linkage, create an alias from the unmangled 4128 /// name to the mangled name if possible. People expect to be able to refer 4129 /// to such functions with an unmangled name from inline assembly within the 4130 /// same translation unit. 4131 void CodeGenModule::EmitStaticExternCAliases() { 4132 // Don't do anything if we're generating CUDA device code -- the NVPTX 4133 // assembly target doesn't support aliases. 4134 if (Context.getTargetInfo().getTriple().isNVPTX()) 4135 return; 4136 for (auto &I : StaticExternCValues) { 4137 IdentifierInfo *Name = I.first; 4138 llvm::GlobalValue *Val = I.second; 4139 if (Val && !getModule().getNamedValue(Name->getName())) 4140 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4141 } 4142 } 4143 4144 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4145 GlobalDecl &Result) const { 4146 auto Res = Manglings.find(MangledName); 4147 if (Res == Manglings.end()) 4148 return false; 4149 Result = Res->getValue(); 4150 return true; 4151 } 4152 4153 /// Emits metadata nodes associating all the global values in the 4154 /// current module with the Decls they came from. This is useful for 4155 /// projects using IR gen as a subroutine. 4156 /// 4157 /// Since there's currently no way to associate an MDNode directly 4158 /// with an llvm::GlobalValue, we create a global named metadata 4159 /// with the name 'clang.global.decl.ptrs'. 4160 void CodeGenModule::EmitDeclMetadata() { 4161 llvm::NamedMDNode *GlobalMetadata = nullptr; 4162 4163 for (auto &I : MangledDeclNames) { 4164 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4165 // Some mangled names don't necessarily have an associated GlobalValue 4166 // in this module, e.g. if we mangled it for DebugInfo. 4167 if (Addr) 4168 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4169 } 4170 } 4171 4172 /// Emits metadata nodes for all the local variables in the current 4173 /// function. 4174 void CodeGenFunction::EmitDeclMetadata() { 4175 if (LocalDeclMap.empty()) return; 4176 4177 llvm::LLVMContext &Context = getLLVMContext(); 4178 4179 // Find the unique metadata ID for this name. 4180 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4181 4182 llvm::NamedMDNode *GlobalMetadata = nullptr; 4183 4184 for (auto &I : LocalDeclMap) { 4185 const Decl *D = I.first; 4186 llvm::Value *Addr = I.second.getPointer(); 4187 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4188 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4189 Alloca->setMetadata( 4190 DeclPtrKind, llvm::MDNode::get( 4191 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4192 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4193 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4194 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4195 } 4196 } 4197 } 4198 4199 void CodeGenModule::EmitVersionIdentMetadata() { 4200 llvm::NamedMDNode *IdentMetadata = 4201 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4202 std::string Version = getClangFullVersion(); 4203 llvm::LLVMContext &Ctx = TheModule.getContext(); 4204 4205 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4206 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4207 } 4208 4209 void CodeGenModule::EmitTargetMetadata() { 4210 // Warning, new MangledDeclNames may be appended within this loop. 4211 // We rely on MapVector insertions adding new elements to the end 4212 // of the container. 4213 // FIXME: Move this loop into the one target that needs it, and only 4214 // loop over those declarations for which we couldn't emit the target 4215 // metadata when we emitted the declaration. 4216 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4217 auto Val = *(MangledDeclNames.begin() + I); 4218 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4219 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4220 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4221 } 4222 } 4223 4224 void CodeGenModule::EmitCoverageFile() { 4225 if (getCodeGenOpts().CoverageDataFile.empty() && 4226 getCodeGenOpts().CoverageNotesFile.empty()) 4227 return; 4228 4229 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4230 if (!CUNode) 4231 return; 4232 4233 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4234 llvm::LLVMContext &Ctx = TheModule.getContext(); 4235 auto *CoverageDataFile = 4236 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4237 auto *CoverageNotesFile = 4238 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4239 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4240 llvm::MDNode *CU = CUNode->getOperand(i); 4241 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4242 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4243 } 4244 } 4245 4246 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4247 // Sema has checked that all uuid strings are of the form 4248 // "12345678-1234-1234-1234-1234567890ab". 4249 assert(Uuid.size() == 36); 4250 for (unsigned i = 0; i < 36; ++i) { 4251 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4252 else assert(isHexDigit(Uuid[i])); 4253 } 4254 4255 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4256 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4257 4258 llvm::Constant *Field3[8]; 4259 for (unsigned Idx = 0; Idx < 8; ++Idx) 4260 Field3[Idx] = llvm::ConstantInt::get( 4261 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4262 4263 llvm::Constant *Fields[4] = { 4264 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4265 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4266 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4267 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4268 }; 4269 4270 return llvm::ConstantStruct::getAnon(Fields); 4271 } 4272 4273 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4274 bool ForEH) { 4275 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4276 // FIXME: should we even be calling this method if RTTI is disabled 4277 // and it's not for EH? 4278 if (!ForEH && !getLangOpts().RTTI) 4279 return llvm::Constant::getNullValue(Int8PtrTy); 4280 4281 if (ForEH && Ty->isObjCObjectPointerType() && 4282 LangOpts.ObjCRuntime.isGNUFamily()) 4283 return ObjCRuntime->GetEHType(Ty); 4284 4285 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4286 } 4287 4288 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4289 for (auto RefExpr : D->varlists()) { 4290 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4291 bool PerformInit = 4292 VD->getAnyInitializer() && 4293 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4294 /*ForRef=*/false); 4295 4296 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4297 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4298 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4299 CXXGlobalInits.push_back(InitFunction); 4300 } 4301 } 4302 4303 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4304 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4305 if (InternalId) 4306 return InternalId; 4307 4308 if (isExternallyVisible(T->getLinkage())) { 4309 std::string OutName; 4310 llvm::raw_string_ostream Out(OutName); 4311 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4312 4313 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4314 } else { 4315 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4316 llvm::ArrayRef<llvm::Metadata *>()); 4317 } 4318 4319 return InternalId; 4320 } 4321 4322 /// Returns whether this module needs the "all-vtables" type identifier. 4323 bool CodeGenModule::NeedAllVtablesTypeId() const { 4324 // Returns true if at least one of vtable-based CFI checkers is enabled and 4325 // is not in the trapping mode. 4326 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4327 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4328 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4329 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4330 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4331 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4332 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4333 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4334 } 4335 4336 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4337 CharUnits Offset, 4338 const CXXRecordDecl *RD) { 4339 llvm::Metadata *MD = 4340 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4341 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4342 4343 if (CodeGenOpts.SanitizeCfiCrossDso) 4344 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4345 VTable->addTypeMetadata(Offset.getQuantity(), 4346 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4347 4348 if (NeedAllVtablesTypeId()) { 4349 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4350 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4351 } 4352 } 4353 4354 // Fills in the supplied string map with the set of target features for the 4355 // passed in function. 4356 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4357 const FunctionDecl *FD) { 4358 StringRef TargetCPU = Target.getTargetOpts().CPU; 4359 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4360 // If we have a TargetAttr build up the feature map based on that. 4361 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4362 4363 // Make a copy of the features as passed on the command line into the 4364 // beginning of the additional features from the function to override. 4365 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4366 Target.getTargetOpts().FeaturesAsWritten.begin(), 4367 Target.getTargetOpts().FeaturesAsWritten.end()); 4368 4369 if (ParsedAttr.second != "") 4370 TargetCPU = ParsedAttr.second; 4371 4372 // Now populate the feature map, first with the TargetCPU which is either 4373 // the default or a new one from the target attribute string. Then we'll use 4374 // the passed in features (FeaturesAsWritten) along with the new ones from 4375 // the attribute. 4376 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4377 } else { 4378 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4379 Target.getTargetOpts().Features); 4380 } 4381 } 4382 4383 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4384 if (!SanStats) 4385 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4386 4387 return *SanStats; 4388 } 4389 llvm::Value * 4390 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4391 CodeGenFunction &CGF) { 4392 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4393 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4394 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4395 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4396 "__translate_sampler_initializer"), 4397 {C}); 4398 } 4399