xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f6ce2b5f2e6ab7a01b61f68393c1bf6bd9a49909)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193   if (CodeGenOpts.DwarfVersion)
194     // We actually want the latest version when there are conflicts.
195     // We can change from Warning to Latest if such mode is supported.
196     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
197                               CodeGenOpts.DwarfVersion);
198 
199   SimplifyPersonality();
200 
201   if (getCodeGenOpts().EmitDeclMetadata)
202     EmitDeclMetadata();
203 
204   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
205     EmitCoverageFile();
206 
207   if (DebugInfo)
208     DebugInfo->finalize();
209 }
210 
211 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
212   // Make sure that this type is translated.
213   Types.UpdateCompletedType(TD);
214 }
215 
216 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
217   if (!TBAA)
218     return 0;
219   return TBAA->getTBAAInfo(QTy);
220 }
221 
222 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
223   if (!TBAA)
224     return 0;
225   return TBAA->getTBAAInfoForVTablePtr();
226 }
227 
228 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
229   if (!TBAA)
230     return 0;
231   return TBAA->getTBAAStructInfo(QTy);
232 }
233 
234 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
235   if (!TBAA)
236     return 0;
237   return TBAA->getTBAAStructTypeInfo(QTy);
238 }
239 
240 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
241                                                   llvm::MDNode *AccessN,
242                                                   uint64_t O) {
243   if (!TBAA)
244     return 0;
245   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
246 }
247 
248 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
249 /// is the same as the type. For struct-path aware TBAA, the tag
250 /// is different from the type: base type, access type and offset.
251 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
252 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
253                                         llvm::MDNode *TBAAInfo,
254                                         bool ConvertTypeToTag) {
255   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
256     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
257                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
258   else
259     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
260 }
261 
262 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
263   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
264   getDiags().Report(Context.getFullLoc(loc), diagID);
265 }
266 
267 /// ErrorUnsupported - Print out an error that codegen doesn't support the
268 /// specified stmt yet.
269 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
270                                      bool OmitOnError) {
271   if (OmitOnError && getDiags().hasErrorOccurred())
272     return;
273   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
274                                                "cannot compile this %0 yet");
275   std::string Msg = Type;
276   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
277     << Msg << S->getSourceRange();
278 }
279 
280 /// ErrorUnsupported - Print out an error that codegen doesn't support the
281 /// specified decl yet.
282 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
283                                      bool OmitOnError) {
284   if (OmitOnError && getDiags().hasErrorOccurred())
285     return;
286   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
287                                                "cannot compile this %0 yet");
288   std::string Msg = Type;
289   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
290 }
291 
292 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
293   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
294 }
295 
296 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
297                                         const NamedDecl *D) const {
298   // Internal definitions always have default visibility.
299   if (GV->hasLocalLinkage()) {
300     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
301     return;
302   }
303 
304   // Set visibility for definitions.
305   LinkageInfo LV = D->getLinkageAndVisibility();
306   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
307     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
308 }
309 
310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
311   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
312       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
313       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
314       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
315       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
316 }
317 
318 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
319     CodeGenOptions::TLSModel M) {
320   switch (M) {
321   case CodeGenOptions::GeneralDynamicTLSModel:
322     return llvm::GlobalVariable::GeneralDynamicTLSModel;
323   case CodeGenOptions::LocalDynamicTLSModel:
324     return llvm::GlobalVariable::LocalDynamicTLSModel;
325   case CodeGenOptions::InitialExecTLSModel:
326     return llvm::GlobalVariable::InitialExecTLSModel;
327   case CodeGenOptions::LocalExecTLSModel:
328     return llvm::GlobalVariable::LocalExecTLSModel;
329   }
330   llvm_unreachable("Invalid TLS model!");
331 }
332 
333 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
334                                const VarDecl &D) const {
335   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
336 
337   llvm::GlobalVariable::ThreadLocalMode TLM;
338   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
339 
340   // Override the TLS model if it is explicitly specified.
341   if (D.hasAttr<TLSModelAttr>()) {
342     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
343     TLM = GetLLVMTLSModel(Attr->getModel());
344   }
345 
346   GV->setThreadLocalMode(TLM);
347 }
348 
349 /// Set the symbol visibility of type information (vtable and RTTI)
350 /// associated with the given type.
351 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
352                                       const CXXRecordDecl *RD,
353                                       TypeVisibilityKind TVK) const {
354   setGlobalVisibility(GV, RD);
355 
356   if (!CodeGenOpts.HiddenWeakVTables)
357     return;
358 
359   // We never want to drop the visibility for RTTI names.
360   if (TVK == TVK_ForRTTIName)
361     return;
362 
363   // We want to drop the visibility to hidden for weak type symbols.
364   // This isn't possible if there might be unresolved references
365   // elsewhere that rely on this symbol being visible.
366 
367   // This should be kept roughly in sync with setThunkVisibility
368   // in CGVTables.cpp.
369 
370   // Preconditions.
371   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
372       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
373     return;
374 
375   // Don't override an explicit visibility attribute.
376   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
377     return;
378 
379   switch (RD->getTemplateSpecializationKind()) {
380   // We have to disable the optimization if this is an EI definition
381   // because there might be EI declarations in other shared objects.
382   case TSK_ExplicitInstantiationDefinition:
383   case TSK_ExplicitInstantiationDeclaration:
384     return;
385 
386   // Every use of a non-template class's type information has to emit it.
387   case TSK_Undeclared:
388     break;
389 
390   // In theory, implicit instantiations can ignore the possibility of
391   // an explicit instantiation declaration because there necessarily
392   // must be an EI definition somewhere with default visibility.  In
393   // practice, it's possible to have an explicit instantiation for
394   // an arbitrary template class, and linkers aren't necessarily able
395   // to deal with mixed-visibility symbols.
396   case TSK_ExplicitSpecialization:
397   case TSK_ImplicitInstantiation:
398     return;
399   }
400 
401   // If there's a key function, there may be translation units
402   // that don't have the key function's definition.  But ignore
403   // this if we're emitting RTTI under -fno-rtti.
404   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
405     // FIXME: what should we do if we "lose" the key function during
406     // the emission of the file?
407     if (Context.getCurrentKeyFunction(RD))
408       return;
409   }
410 
411   // Otherwise, drop the visibility to hidden.
412   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
413   GV->setUnnamedAddr(true);
414 }
415 
416 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
417   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
418 
419   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
420   if (!Str.empty())
421     return Str;
422 
423   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
424     IdentifierInfo *II = ND->getIdentifier();
425     assert(II && "Attempt to mangle unnamed decl.");
426 
427     Str = II->getName();
428     return Str;
429   }
430 
431   SmallString<256> Buffer;
432   llvm::raw_svector_ostream Out(Buffer);
433   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
434     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
435   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
436     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
437   else
438     getCXXABI().getMangleContext().mangleName(ND, Out);
439 
440   // Allocate space for the mangled name.
441   Out.flush();
442   size_t Length = Buffer.size();
443   char *Name = MangledNamesAllocator.Allocate<char>(Length);
444   std::copy(Buffer.begin(), Buffer.end(), Name);
445 
446   Str = StringRef(Name, Length);
447 
448   return Str;
449 }
450 
451 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
452                                         const BlockDecl *BD) {
453   MangleContext &MangleCtx = getCXXABI().getMangleContext();
454   const Decl *D = GD.getDecl();
455   llvm::raw_svector_ostream Out(Buffer.getBuffer());
456   if (D == 0)
457     MangleCtx.mangleGlobalBlock(BD,
458       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
459   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
460     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
461   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
462     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
463   else
464     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
465 }
466 
467 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
468   return getModule().getNamedValue(Name);
469 }
470 
471 /// AddGlobalCtor - Add a function to the list that will be called before
472 /// main() runs.
473 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
474   // FIXME: Type coercion of void()* types.
475   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
476 }
477 
478 /// AddGlobalDtor - Add a function to the list that will be called
479 /// when the module is unloaded.
480 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
481   // FIXME: Type coercion of void()* types.
482   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
483 }
484 
485 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
486   // Ctor function type is void()*.
487   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
488   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
489 
490   // Get the type of a ctor entry, { i32, void ()* }.
491   llvm::StructType *CtorStructTy =
492     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
493 
494   // Construct the constructor and destructor arrays.
495   SmallVector<llvm::Constant*, 8> Ctors;
496   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
497     llvm::Constant *S[] = {
498       llvm::ConstantInt::get(Int32Ty, I->second, false),
499       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
500     };
501     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
502   }
503 
504   if (!Ctors.empty()) {
505     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
506     new llvm::GlobalVariable(TheModule, AT, false,
507                              llvm::GlobalValue::AppendingLinkage,
508                              llvm::ConstantArray::get(AT, Ctors),
509                              GlobalName);
510   }
511 }
512 
513 llvm::GlobalValue::LinkageTypes
514 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
515   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
516   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
517 
518   if (Linkage == GVA_Internal)
519     return llvm::Function::InternalLinkage;
520 
521   if (D->hasAttr<DLLExportAttr>())
522     return llvm::Function::DLLExportLinkage;
523 
524   if (D->hasAttr<WeakAttr>())
525     return llvm::Function::WeakAnyLinkage;
526 
527   // In C99 mode, 'inline' functions are guaranteed to have a strong
528   // definition somewhere else, so we can use available_externally linkage.
529   if (Linkage == GVA_C99Inline)
530     return llvm::Function::AvailableExternallyLinkage;
531 
532   // Note that Apple's kernel linker doesn't support symbol
533   // coalescing, so we need to avoid linkonce and weak linkages there.
534   // Normally, this means we just map to internal, but for explicit
535   // instantiations we'll map to external.
536 
537   // In C++, the compiler has to emit a definition in every translation unit
538   // that references the function.  We should use linkonce_odr because
539   // a) if all references in this translation unit are optimized away, we
540   // don't need to codegen it.  b) if the function persists, it needs to be
541   // merged with other definitions. c) C++ has the ODR, so we know the
542   // definition is dependable.
543   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
544     return !Context.getLangOpts().AppleKext
545              ? llvm::Function::LinkOnceODRLinkage
546              : llvm::Function::InternalLinkage;
547 
548   // An explicit instantiation of a template has weak linkage, since
549   // explicit instantiations can occur in multiple translation units
550   // and must all be equivalent. However, we are not allowed to
551   // throw away these explicit instantiations.
552   if (Linkage == GVA_ExplicitTemplateInstantiation)
553     return !Context.getLangOpts().AppleKext
554              ? llvm::Function::WeakODRLinkage
555              : llvm::Function::ExternalLinkage;
556 
557   // Otherwise, we have strong external linkage.
558   assert(Linkage == GVA_StrongExternal);
559   return llvm::Function::ExternalLinkage;
560 }
561 
562 
563 /// SetFunctionDefinitionAttributes - Set attributes for a global.
564 ///
565 /// FIXME: This is currently only done for aliases and functions, but not for
566 /// variables (these details are set in EmitGlobalVarDefinition for variables).
567 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
568                                                     llvm::GlobalValue *GV) {
569   SetCommonAttributes(D, GV);
570 }
571 
572 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
573                                               const CGFunctionInfo &Info,
574                                               llvm::Function *F) {
575   unsigned CallingConv;
576   AttributeListType AttributeList;
577   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
578   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
579   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
580 }
581 
582 /// Determines whether the language options require us to model
583 /// unwind exceptions.  We treat -fexceptions as mandating this
584 /// except under the fragile ObjC ABI with only ObjC exceptions
585 /// enabled.  This means, for example, that C with -fexceptions
586 /// enables this.
587 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
588   // If exceptions are completely disabled, obviously this is false.
589   if (!LangOpts.Exceptions) return false;
590 
591   // If C++ exceptions are enabled, this is true.
592   if (LangOpts.CXXExceptions) return true;
593 
594   // If ObjC exceptions are enabled, this depends on the ABI.
595   if (LangOpts.ObjCExceptions) {
596     return LangOpts.ObjCRuntime.hasUnwindExceptions();
597   }
598 
599   return true;
600 }
601 
602 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
603                                                            llvm::Function *F) {
604   llvm::AttrBuilder B;
605 
606   if (CodeGenOpts.UnwindTables)
607     B.addAttribute(llvm::Attribute::UWTable);
608 
609   if (!hasUnwindExceptions(LangOpts))
610     B.addAttribute(llvm::Attribute::NoUnwind);
611 
612   if (D->hasAttr<NakedAttr>()) {
613     // Naked implies noinline: we should not be inlining such functions.
614     B.addAttribute(llvm::Attribute::Naked);
615     B.addAttribute(llvm::Attribute::NoInline);
616   } else if (D->hasAttr<NoInlineAttr>()) {
617     B.addAttribute(llvm::Attribute::NoInline);
618   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
619               D->hasAttr<ForceInlineAttr>()) &&
620              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
621                                               llvm::Attribute::NoInline)) {
622     // (noinline wins over always_inline, and we can't specify both in IR)
623     B.addAttribute(llvm::Attribute::AlwaysInline);
624   }
625 
626   if (D->hasAttr<ColdAttr>()) {
627     B.addAttribute(llvm::Attribute::OptimizeForSize);
628     B.addAttribute(llvm::Attribute::Cold);
629   }
630 
631   if (D->hasAttr<MinSizeAttr>())
632     B.addAttribute(llvm::Attribute::MinSize);
633 
634   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
635     B.addAttribute(llvm::Attribute::StackProtect);
636   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
637     B.addAttribute(llvm::Attribute::StackProtectReq);
638 
639   // Add sanitizer attributes if function is not blacklisted.
640   if (!SanitizerBlacklist.isIn(*F)) {
641     // When AddressSanitizer is enabled, set SanitizeAddress attribute
642     // unless __attribute__((no_sanitize_address)) is used.
643     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
644       B.addAttribute(llvm::Attribute::SanitizeAddress);
645     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
646     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
647       B.addAttribute(llvm::Attribute::SanitizeThread);
648     }
649     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
650     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
651       B.addAttribute(llvm::Attribute::SanitizeMemory);
652   }
653 
654   F->addAttributes(llvm::AttributeSet::FunctionIndex,
655                    llvm::AttributeSet::get(
656                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
657 
658   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
659     F->setUnnamedAddr(true);
660   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
661     if (MD->isVirtual())
662       F->setUnnamedAddr(true);
663 
664   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
665   if (alignment)
666     F->setAlignment(alignment);
667 
668   // C++ ABI requires 2-byte alignment for member functions.
669   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
670     F->setAlignment(2);
671 }
672 
673 void CodeGenModule::SetCommonAttributes(const Decl *D,
674                                         llvm::GlobalValue *GV) {
675   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
676     setGlobalVisibility(GV, ND);
677   else
678     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
679 
680   if (D->hasAttr<UsedAttr>())
681     AddUsedGlobal(GV);
682 
683   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
684     GV->setSection(SA->getName());
685 
686   // Alias cannot have attributes. Filter them here.
687   if (!isa<llvm::GlobalAlias>(GV))
688     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
689 }
690 
691 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
692                                                   llvm::Function *F,
693                                                   const CGFunctionInfo &FI) {
694   SetLLVMFunctionAttributes(D, FI, F);
695   SetLLVMFunctionAttributesForDefinition(D, F);
696 
697   F->setLinkage(llvm::Function::InternalLinkage);
698 
699   SetCommonAttributes(D, F);
700 }
701 
702 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
703                                           llvm::Function *F,
704                                           bool IsIncompleteFunction) {
705   if (unsigned IID = F->getIntrinsicID()) {
706     // If this is an intrinsic function, set the function's attributes
707     // to the intrinsic's attributes.
708     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
709                                                     (llvm::Intrinsic::ID)IID));
710     return;
711   }
712 
713   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
714 
715   if (!IsIncompleteFunction)
716     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
717 
718   if (getCXXABI().HasThisReturn(GD)) {
719     assert(!F->arg_empty() &&
720            F->arg_begin()->getType()
721              ->canLosslesslyBitCastTo(F->getReturnType()) &&
722            "unexpected this return");
723     F->addAttribute(1, llvm::Attribute::Returned);
724   }
725 
726   // Only a few attributes are set on declarations; these may later be
727   // overridden by a definition.
728 
729   if (FD->hasAttr<DLLImportAttr>()) {
730     F->setLinkage(llvm::Function::DLLImportLinkage);
731   } else if (FD->hasAttr<WeakAttr>() ||
732              FD->isWeakImported()) {
733     // "extern_weak" is overloaded in LLVM; we probably should have
734     // separate linkage types for this.
735     F->setLinkage(llvm::Function::ExternalWeakLinkage);
736   } else {
737     F->setLinkage(llvm::Function::ExternalLinkage);
738 
739     LinkageInfo LV = FD->getLinkageAndVisibility();
740     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
741       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
742     }
743   }
744 
745   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
746     F->setSection(SA->getName());
747 
748   // A replaceable global allocation function does not act like a builtin by
749   // default, only if it is invoked by a new-expression or delete-expression.
750   if (FD->isReplaceableGlobalAllocationFunction())
751     F->addAttribute(llvm::AttributeSet::FunctionIndex,
752                     llvm::Attribute::NoBuiltin);
753 }
754 
755 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
756   assert(!GV->isDeclaration() &&
757          "Only globals with definition can force usage.");
758   LLVMUsed.push_back(GV);
759 }
760 
761 void CodeGenModule::EmitLLVMUsed() {
762   // Don't create llvm.used if there is no need.
763   if (LLVMUsed.empty())
764     return;
765 
766   // Convert LLVMUsed to what ConstantArray needs.
767   SmallVector<llvm::Constant*, 8> UsedArray;
768   UsedArray.resize(LLVMUsed.size());
769   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
770     UsedArray[i] =
771      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
772                                     Int8PtrTy);
773   }
774 
775   if (UsedArray.empty())
776     return;
777   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
778 
779   llvm::GlobalVariable *GV =
780     new llvm::GlobalVariable(getModule(), ATy, false,
781                              llvm::GlobalValue::AppendingLinkage,
782                              llvm::ConstantArray::get(ATy, UsedArray),
783                              "llvm.used");
784 
785   GV->setSection("llvm.metadata");
786 }
787 
788 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
789   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
790   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
791 }
792 
793 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
794   llvm::SmallString<32> Opt;
795   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
796   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
797   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
798 }
799 
800 void CodeGenModule::AddDependentLib(StringRef Lib) {
801   llvm::SmallString<24> Opt;
802   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
803   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
804   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
805 }
806 
807 /// \brief Add link options implied by the given module, including modules
808 /// it depends on, using a postorder walk.
809 static void addLinkOptionsPostorder(CodeGenModule &CGM,
810                                     Module *Mod,
811                                     SmallVectorImpl<llvm::Value *> &Metadata,
812                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
813   // Import this module's parent.
814   if (Mod->Parent && Visited.insert(Mod->Parent)) {
815     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
816   }
817 
818   // Import this module's dependencies.
819   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
820     if (Visited.insert(Mod->Imports[I-1]))
821       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
822   }
823 
824   // Add linker options to link against the libraries/frameworks
825   // described by this module.
826   llvm::LLVMContext &Context = CGM.getLLVMContext();
827   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
828     // Link against a framework.  Frameworks are currently Darwin only, so we
829     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
830     if (Mod->LinkLibraries[I-1].IsFramework) {
831       llvm::Value *Args[2] = {
832         llvm::MDString::get(Context, "-framework"),
833         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
834       };
835 
836       Metadata.push_back(llvm::MDNode::get(Context, Args));
837       continue;
838     }
839 
840     // Link against a library.
841     llvm::SmallString<24> Opt;
842     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
843       Mod->LinkLibraries[I-1].Library, Opt);
844     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
845     Metadata.push_back(llvm::MDNode::get(Context, OptString));
846   }
847 }
848 
849 void CodeGenModule::EmitModuleLinkOptions() {
850   // Collect the set of all of the modules we want to visit to emit link
851   // options, which is essentially the imported modules and all of their
852   // non-explicit child modules.
853   llvm::SetVector<clang::Module *> LinkModules;
854   llvm::SmallPtrSet<clang::Module *, 16> Visited;
855   SmallVector<clang::Module *, 16> Stack;
856 
857   // Seed the stack with imported modules.
858   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
859                                                MEnd = ImportedModules.end();
860        M != MEnd; ++M) {
861     if (Visited.insert(*M))
862       Stack.push_back(*M);
863   }
864 
865   // Find all of the modules to import, making a little effort to prune
866   // non-leaf modules.
867   while (!Stack.empty()) {
868     clang::Module *Mod = Stack.back();
869     Stack.pop_back();
870 
871     bool AnyChildren = false;
872 
873     // Visit the submodules of this module.
874     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
875                                         SubEnd = Mod->submodule_end();
876          Sub != SubEnd; ++Sub) {
877       // Skip explicit children; they need to be explicitly imported to be
878       // linked against.
879       if ((*Sub)->IsExplicit)
880         continue;
881 
882       if (Visited.insert(*Sub)) {
883         Stack.push_back(*Sub);
884         AnyChildren = true;
885       }
886     }
887 
888     // We didn't find any children, so add this module to the list of
889     // modules to link against.
890     if (!AnyChildren) {
891       LinkModules.insert(Mod);
892     }
893   }
894 
895   // Add link options for all of the imported modules in reverse topological
896   // order.  We don't do anything to try to order import link flags with respect
897   // to linker options inserted by things like #pragma comment().
898   SmallVector<llvm::Value *, 16> MetadataArgs;
899   Visited.clear();
900   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
901                                                MEnd = LinkModules.end();
902        M != MEnd; ++M) {
903     if (Visited.insert(*M))
904       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
905   }
906   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
907   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
908 
909   // Add the linker options metadata flag.
910   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
911                             llvm::MDNode::get(getLLVMContext(),
912                                               LinkerOptionsMetadata));
913 }
914 
915 void CodeGenModule::EmitDeferred() {
916   // Emit code for any potentially referenced deferred decls.  Since a
917   // previously unused static decl may become used during the generation of code
918   // for a static function, iterate until no changes are made.
919 
920   while (true) {
921     if (!DeferredVTables.empty()) {
922       EmitDeferredVTables();
923 
924       // Emitting a v-table doesn't directly cause more v-tables to
925       // become deferred, although it can cause functions to be
926       // emitted that then need those v-tables.
927       assert(DeferredVTables.empty());
928     }
929 
930     // Stop if we're out of both deferred v-tables and deferred declarations.
931     if (DeferredDeclsToEmit.empty()) break;
932 
933     GlobalDecl D = DeferredDeclsToEmit.back();
934     DeferredDeclsToEmit.pop_back();
935 
936     // Check to see if we've already emitted this.  This is necessary
937     // for a couple of reasons: first, decls can end up in the
938     // deferred-decls queue multiple times, and second, decls can end
939     // up with definitions in unusual ways (e.g. by an extern inline
940     // function acquiring a strong function redefinition).  Just
941     // ignore these cases.
942     //
943     // TODO: That said, looking this up multiple times is very wasteful.
944     StringRef Name = getMangledName(D);
945     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
946     assert(CGRef && "Deferred decl wasn't referenced?");
947 
948     if (!CGRef->isDeclaration())
949       continue;
950 
951     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
952     // purposes an alias counts as a definition.
953     if (isa<llvm::GlobalAlias>(CGRef))
954       continue;
955 
956     // Otherwise, emit the definition and move on to the next one.
957     EmitGlobalDefinition(D);
958   }
959 }
960 
961 void CodeGenModule::EmitGlobalAnnotations() {
962   if (Annotations.empty())
963     return;
964 
965   // Create a new global variable for the ConstantStruct in the Module.
966   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
967     Annotations[0]->getType(), Annotations.size()), Annotations);
968   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
969     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
970     "llvm.global.annotations");
971   gv->setSection(AnnotationSection);
972 }
973 
974 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
975   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
976   if (i != AnnotationStrings.end())
977     return i->second;
978 
979   // Not found yet, create a new global.
980   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
981   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
982     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
983   gv->setSection(AnnotationSection);
984   gv->setUnnamedAddr(true);
985   AnnotationStrings[Str] = gv;
986   return gv;
987 }
988 
989 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
990   SourceManager &SM = getContext().getSourceManager();
991   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
992   if (PLoc.isValid())
993     return EmitAnnotationString(PLoc.getFilename());
994   return EmitAnnotationString(SM.getBufferName(Loc));
995 }
996 
997 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
998   SourceManager &SM = getContext().getSourceManager();
999   PresumedLoc PLoc = SM.getPresumedLoc(L);
1000   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1001     SM.getExpansionLineNumber(L);
1002   return llvm::ConstantInt::get(Int32Ty, LineNo);
1003 }
1004 
1005 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1006                                                 const AnnotateAttr *AA,
1007                                                 SourceLocation L) {
1008   // Get the globals for file name, annotation, and the line number.
1009   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1010                  *UnitGV = EmitAnnotationUnit(L),
1011                  *LineNoCst = EmitAnnotationLineNo(L);
1012 
1013   // Create the ConstantStruct for the global annotation.
1014   llvm::Constant *Fields[4] = {
1015     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1016     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1017     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1018     LineNoCst
1019   };
1020   return llvm::ConstantStruct::getAnon(Fields);
1021 }
1022 
1023 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1024                                          llvm::GlobalValue *GV) {
1025   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1026   // Get the struct elements for these annotations.
1027   for (specific_attr_iterator<AnnotateAttr>
1028        ai = D->specific_attr_begin<AnnotateAttr>(),
1029        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1030     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1031 }
1032 
1033 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1034   // Never defer when EmitAllDecls is specified.
1035   if (LangOpts.EmitAllDecls)
1036     return false;
1037 
1038   return !getContext().DeclMustBeEmitted(Global);
1039 }
1040 
1041 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1042     const CXXUuidofExpr* E) {
1043   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1044   // well-formed.
1045   StringRef Uuid;
1046   if (E->isTypeOperand())
1047     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1048   else {
1049     // Special case: __uuidof(0) means an all-zero GUID.
1050     Expr *Op = E->getExprOperand();
1051     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1052       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1053     else
1054       Uuid = "00000000-0000-0000-0000-000000000000";
1055   }
1056   std::string Name = "__uuid_" + Uuid.str();
1057 
1058   // Look for an existing global.
1059   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1060     return GV;
1061 
1062   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1063   assert(Init && "failed to initialize as constant");
1064 
1065   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1066   // first field is declared as "long", which for many targets is 8 bytes.
1067   // Those architectures are not supported. (With the MS abi, long is always 4
1068   // bytes.)
1069   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1070   if (Init->getType() != GuidType) {
1071     DiagnosticsEngine &Diags = getDiags();
1072     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1073         "__uuidof codegen is not supported on this architecture");
1074     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1075     Init = llvm::UndefValue::get(GuidType);
1076   }
1077 
1078   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1079       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1080   GV->setUnnamedAddr(true);
1081   return GV;
1082 }
1083 
1084 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1085   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1086   assert(AA && "No alias?");
1087 
1088   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1089 
1090   // See if there is already something with the target's name in the module.
1091   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1092   if (Entry) {
1093     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1094     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1095   }
1096 
1097   llvm::Constant *Aliasee;
1098   if (isa<llvm::FunctionType>(DeclTy))
1099     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1100                                       GlobalDecl(cast<FunctionDecl>(VD)),
1101                                       /*ForVTable=*/false);
1102   else
1103     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1104                                     llvm::PointerType::getUnqual(DeclTy), 0);
1105 
1106   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1107   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1108   WeakRefReferences.insert(F);
1109 
1110   return Aliasee;
1111 }
1112 
1113 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1114   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1115 
1116   // Weak references don't produce any output by themselves.
1117   if (Global->hasAttr<WeakRefAttr>())
1118     return;
1119 
1120   // If this is an alias definition (which otherwise looks like a declaration)
1121   // emit it now.
1122   if (Global->hasAttr<AliasAttr>())
1123     return EmitAliasDefinition(GD);
1124 
1125   // If this is CUDA, be selective about which declarations we emit.
1126   if (LangOpts.CUDA) {
1127     if (CodeGenOpts.CUDAIsDevice) {
1128       if (!Global->hasAttr<CUDADeviceAttr>() &&
1129           !Global->hasAttr<CUDAGlobalAttr>() &&
1130           !Global->hasAttr<CUDAConstantAttr>() &&
1131           !Global->hasAttr<CUDASharedAttr>())
1132         return;
1133     } else {
1134       if (!Global->hasAttr<CUDAHostAttr>() && (
1135             Global->hasAttr<CUDADeviceAttr>() ||
1136             Global->hasAttr<CUDAConstantAttr>() ||
1137             Global->hasAttr<CUDASharedAttr>()))
1138         return;
1139     }
1140   }
1141 
1142   // Ignore declarations, they will be emitted on their first use.
1143   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1144     // Forward declarations are emitted lazily on first use.
1145     if (!FD->doesThisDeclarationHaveABody()) {
1146       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1147         return;
1148 
1149       const FunctionDecl *InlineDefinition = 0;
1150       FD->getBody(InlineDefinition);
1151 
1152       StringRef MangledName = getMangledName(GD);
1153       DeferredDecls.erase(MangledName);
1154       EmitGlobalDefinition(InlineDefinition);
1155       return;
1156     }
1157   } else {
1158     const VarDecl *VD = cast<VarDecl>(Global);
1159     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1160 
1161     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1162       return;
1163   }
1164 
1165   // Defer code generation when possible if this is a static definition, inline
1166   // function etc.  These we only want to emit if they are used.
1167   if (!MayDeferGeneration(Global)) {
1168     // Emit the definition if it can't be deferred.
1169     EmitGlobalDefinition(GD);
1170     return;
1171   }
1172 
1173   // If we're deferring emission of a C++ variable with an
1174   // initializer, remember the order in which it appeared in the file.
1175   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1176       cast<VarDecl>(Global)->hasInit()) {
1177     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1178     CXXGlobalInits.push_back(0);
1179   }
1180 
1181   // If the value has already been used, add it directly to the
1182   // DeferredDeclsToEmit list.
1183   StringRef MangledName = getMangledName(GD);
1184   if (GetGlobalValue(MangledName))
1185     DeferredDeclsToEmit.push_back(GD);
1186   else {
1187     // Otherwise, remember that we saw a deferred decl with this name.  The
1188     // first use of the mangled name will cause it to move into
1189     // DeferredDeclsToEmit.
1190     DeferredDecls[MangledName] = GD;
1191   }
1192 }
1193 
1194 namespace {
1195   struct FunctionIsDirectlyRecursive :
1196     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1197     const StringRef Name;
1198     const Builtin::Context &BI;
1199     bool Result;
1200     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1201       Name(N), BI(C), Result(false) {
1202     }
1203     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1204 
1205     bool TraverseCallExpr(CallExpr *E) {
1206       const FunctionDecl *FD = E->getDirectCallee();
1207       if (!FD)
1208         return true;
1209       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1210       if (Attr && Name == Attr->getLabel()) {
1211         Result = true;
1212         return false;
1213       }
1214       unsigned BuiltinID = FD->getBuiltinID();
1215       if (!BuiltinID)
1216         return true;
1217       StringRef BuiltinName = BI.GetName(BuiltinID);
1218       if (BuiltinName.startswith("__builtin_") &&
1219           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1220         Result = true;
1221         return false;
1222       }
1223       return true;
1224     }
1225   };
1226 }
1227 
1228 // isTriviallyRecursive - Check if this function calls another
1229 // decl that, because of the asm attribute or the other decl being a builtin,
1230 // ends up pointing to itself.
1231 bool
1232 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1233   StringRef Name;
1234   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1235     // asm labels are a special kind of mangling we have to support.
1236     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1237     if (!Attr)
1238       return false;
1239     Name = Attr->getLabel();
1240   } else {
1241     Name = FD->getName();
1242   }
1243 
1244   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1245   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1246   return Walker.Result;
1247 }
1248 
1249 bool
1250 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1251   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1252     return true;
1253   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1254   if (CodeGenOpts.OptimizationLevel == 0 &&
1255       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1256     return false;
1257   // PR9614. Avoid cases where the source code is lying to us. An available
1258   // externally function should have an equivalent function somewhere else,
1259   // but a function that calls itself is clearly not equivalent to the real
1260   // implementation.
1261   // This happens in glibc's btowc and in some configure checks.
1262   return !isTriviallyRecursive(F);
1263 }
1264 
1265 /// If the type for the method's class was generated by
1266 /// CGDebugInfo::createContextChain(), the cache contains only a
1267 /// limited DIType without any declarations. Since EmitFunctionStart()
1268 /// needs to find the canonical declaration for each method, we need
1269 /// to construct the complete type prior to emitting the method.
1270 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1271   if (!D->isInstance())
1272     return;
1273 
1274   if (CGDebugInfo *DI = getModuleDebugInfo())
1275     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1276       const PointerType *ThisPtr =
1277         cast<PointerType>(D->getThisType(getContext()));
1278       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1279     }
1280 }
1281 
1282 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1283   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1284 
1285   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1286                                  Context.getSourceManager(),
1287                                  "Generating code for declaration");
1288 
1289   if (isa<FunctionDecl>(D)) {
1290     // At -O0, don't generate IR for functions with available_externally
1291     // linkage.
1292     if (!shouldEmitFunction(GD))
1293       return;
1294 
1295     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1296       CompleteDIClassType(Method);
1297       // Make sure to emit the definition(s) before we emit the thunks.
1298       // This is necessary for the generation of certain thunks.
1299       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1300         EmitCXXConstructor(CD, GD.getCtorType());
1301       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1302         EmitCXXDestructor(DD, GD.getDtorType());
1303       else
1304         EmitGlobalFunctionDefinition(GD);
1305 
1306       if (Method->isVirtual())
1307         getVTables().EmitThunks(GD);
1308 
1309       return;
1310     }
1311 
1312     return EmitGlobalFunctionDefinition(GD);
1313   }
1314 
1315   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1316     return EmitGlobalVarDefinition(VD);
1317 
1318   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1319 }
1320 
1321 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1322 /// module, create and return an llvm Function with the specified type. If there
1323 /// is something in the module with the specified name, return it potentially
1324 /// bitcasted to the right type.
1325 ///
1326 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1327 /// to set the attributes on the function when it is first created.
1328 llvm::Constant *
1329 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1330                                        llvm::Type *Ty,
1331                                        GlobalDecl GD, bool ForVTable,
1332                                        llvm::AttributeSet ExtraAttrs) {
1333   const Decl *D = GD.getDecl();
1334 
1335   // Lookup the entry, lazily creating it if necessary.
1336   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1337   if (Entry) {
1338     if (WeakRefReferences.erase(Entry)) {
1339       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1340       if (FD && !FD->hasAttr<WeakAttr>())
1341         Entry->setLinkage(llvm::Function::ExternalLinkage);
1342     }
1343 
1344     if (Entry->getType()->getElementType() == Ty)
1345       return Entry;
1346 
1347     // Make sure the result is of the correct type.
1348     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1349   }
1350 
1351   // This function doesn't have a complete type (for example, the return
1352   // type is an incomplete struct). Use a fake type instead, and make
1353   // sure not to try to set attributes.
1354   bool IsIncompleteFunction = false;
1355 
1356   llvm::FunctionType *FTy;
1357   if (isa<llvm::FunctionType>(Ty)) {
1358     FTy = cast<llvm::FunctionType>(Ty);
1359   } else {
1360     FTy = llvm::FunctionType::get(VoidTy, false);
1361     IsIncompleteFunction = true;
1362   }
1363 
1364   llvm::Function *F = llvm::Function::Create(FTy,
1365                                              llvm::Function::ExternalLinkage,
1366                                              MangledName, &getModule());
1367   assert(F->getName() == MangledName && "name was uniqued!");
1368   if (D)
1369     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1370   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1371     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1372     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1373                      llvm::AttributeSet::get(VMContext,
1374                                              llvm::AttributeSet::FunctionIndex,
1375                                              B));
1376   }
1377 
1378   // This is the first use or definition of a mangled name.  If there is a
1379   // deferred decl with this name, remember that we need to emit it at the end
1380   // of the file.
1381   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1382   if (DDI != DeferredDecls.end()) {
1383     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1384     // list, and remove it from DeferredDecls (since we don't need it anymore).
1385     DeferredDeclsToEmit.push_back(DDI->second);
1386     DeferredDecls.erase(DDI);
1387 
1388   // Otherwise, there are cases we have to worry about where we're
1389   // using a declaration for which we must emit a definition but where
1390   // we might not find a top-level definition:
1391   //   - member functions defined inline in their classes
1392   //   - friend functions defined inline in some class
1393   //   - special member functions with implicit definitions
1394   // If we ever change our AST traversal to walk into class methods,
1395   // this will be unnecessary.
1396   //
1397   // We also don't emit a definition for a function if it's going to be an entry
1398   // in a vtable, unless it's already marked as used.
1399   } else if (getLangOpts().CPlusPlus && D) {
1400     // Look for a declaration that's lexically in a record.
1401     const FunctionDecl *FD = cast<FunctionDecl>(D);
1402     FD = FD->getMostRecentDecl();
1403     do {
1404       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1405         if (FD->isImplicit() && !ForVTable) {
1406           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1407           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1408           break;
1409         } else if (FD->doesThisDeclarationHaveABody()) {
1410           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1411           break;
1412         }
1413       }
1414       FD = FD->getPreviousDecl();
1415     } while (FD);
1416   }
1417 
1418   // Make sure the result is of the requested type.
1419   if (!IsIncompleteFunction) {
1420     assert(F->getType()->getElementType() == Ty);
1421     return F;
1422   }
1423 
1424   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1425   return llvm::ConstantExpr::getBitCast(F, PTy);
1426 }
1427 
1428 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1429 /// non-null, then this function will use the specified type if it has to
1430 /// create it (this occurs when we see a definition of the function).
1431 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1432                                                  llvm::Type *Ty,
1433                                                  bool ForVTable) {
1434   // If there was no specific requested type, just convert it now.
1435   if (!Ty)
1436     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1437 
1438   StringRef MangledName = getMangledName(GD);
1439   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1440 }
1441 
1442 /// CreateRuntimeFunction - Create a new runtime function with the specified
1443 /// type and name.
1444 llvm::Constant *
1445 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1446                                      StringRef Name,
1447                                      llvm::AttributeSet ExtraAttrs) {
1448   llvm::Constant *C
1449     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1450                               ExtraAttrs);
1451   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1452     if (F->empty())
1453       F->setCallingConv(getRuntimeCC());
1454   return C;
1455 }
1456 
1457 /// isTypeConstant - Determine whether an object of this type can be emitted
1458 /// as a constant.
1459 ///
1460 /// If ExcludeCtor is true, the duration when the object's constructor runs
1461 /// will not be considered. The caller will need to verify that the object is
1462 /// not written to during its construction.
1463 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1464   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1465     return false;
1466 
1467   if (Context.getLangOpts().CPlusPlus) {
1468     if (const CXXRecordDecl *Record
1469           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1470       return ExcludeCtor && !Record->hasMutableFields() &&
1471              Record->hasTrivialDestructor();
1472   }
1473 
1474   return true;
1475 }
1476 
1477 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1478 /// create and return an llvm GlobalVariable with the specified type.  If there
1479 /// is something in the module with the specified name, return it potentially
1480 /// bitcasted to the right type.
1481 ///
1482 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1483 /// to set the attributes on the global when it is first created.
1484 llvm::Constant *
1485 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1486                                      llvm::PointerType *Ty,
1487                                      const VarDecl *D,
1488                                      bool UnnamedAddr) {
1489   // Lookup the entry, lazily creating it if necessary.
1490   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1491   if (Entry) {
1492     if (WeakRefReferences.erase(Entry)) {
1493       if (D && !D->hasAttr<WeakAttr>())
1494         Entry->setLinkage(llvm::Function::ExternalLinkage);
1495     }
1496 
1497     if (UnnamedAddr)
1498       Entry->setUnnamedAddr(true);
1499 
1500     if (Entry->getType() == Ty)
1501       return Entry;
1502 
1503     // Make sure the result is of the correct type.
1504     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1505   }
1506 
1507   // This is the first use or definition of a mangled name.  If there is a
1508   // deferred decl with this name, remember that we need to emit it at the end
1509   // of the file.
1510   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1511   if (DDI != DeferredDecls.end()) {
1512     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1513     // list, and remove it from DeferredDecls (since we don't need it anymore).
1514     DeferredDeclsToEmit.push_back(DDI->second);
1515     DeferredDecls.erase(DDI);
1516   }
1517 
1518   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1519   llvm::GlobalVariable *GV =
1520     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1521                              llvm::GlobalValue::ExternalLinkage,
1522                              0, MangledName, 0,
1523                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1524 
1525   // Handle things which are present even on external declarations.
1526   if (D) {
1527     // FIXME: This code is overly simple and should be merged with other global
1528     // handling.
1529     GV->setConstant(isTypeConstant(D->getType(), false));
1530 
1531     // Set linkage and visibility in case we never see a definition.
1532     LinkageInfo LV = D->getLinkageAndVisibility();
1533     if (LV.getLinkage() != ExternalLinkage) {
1534       // Don't set internal linkage on declarations.
1535     } else {
1536       if (D->hasAttr<DLLImportAttr>())
1537         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1538       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1539         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1540 
1541       // Set visibility on a declaration only if it's explicit.
1542       if (LV.isVisibilityExplicit())
1543         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1544     }
1545 
1546     if (D->getTLSKind()) {
1547       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1548         CXXThreadLocals.push_back(std::make_pair(D, GV));
1549       setTLSMode(GV, *D);
1550     }
1551   }
1552 
1553   if (AddrSpace != Ty->getAddressSpace())
1554     return llvm::ConstantExpr::getBitCast(GV, Ty);
1555   else
1556     return GV;
1557 }
1558 
1559 
1560 llvm::GlobalVariable *
1561 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1562                                       llvm::Type *Ty,
1563                                       llvm::GlobalValue::LinkageTypes Linkage) {
1564   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1565   llvm::GlobalVariable *OldGV = 0;
1566 
1567 
1568   if (GV) {
1569     // Check if the variable has the right type.
1570     if (GV->getType()->getElementType() == Ty)
1571       return GV;
1572 
1573     // Because C++ name mangling, the only way we can end up with an already
1574     // existing global with the same name is if it has been declared extern "C".
1575     assert(GV->isDeclaration() && "Declaration has wrong type!");
1576     OldGV = GV;
1577   }
1578 
1579   // Create a new variable.
1580   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1581                                 Linkage, 0, Name);
1582 
1583   if (OldGV) {
1584     // Replace occurrences of the old variable if needed.
1585     GV->takeName(OldGV);
1586 
1587     if (!OldGV->use_empty()) {
1588       llvm::Constant *NewPtrForOldDecl =
1589       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1590       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1591     }
1592 
1593     OldGV->eraseFromParent();
1594   }
1595 
1596   return GV;
1597 }
1598 
1599 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1600 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1601 /// then it will be created with the specified type instead of whatever the
1602 /// normal requested type would be.
1603 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1604                                                   llvm::Type *Ty) {
1605   assert(D->hasGlobalStorage() && "Not a global variable");
1606   QualType ASTTy = D->getType();
1607   if (Ty == 0)
1608     Ty = getTypes().ConvertTypeForMem(ASTTy);
1609 
1610   llvm::PointerType *PTy =
1611     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1612 
1613   StringRef MangledName = getMangledName(D);
1614   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1615 }
1616 
1617 /// CreateRuntimeVariable - Create a new runtime global variable with the
1618 /// specified type and name.
1619 llvm::Constant *
1620 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1621                                      StringRef Name) {
1622   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1623                                true);
1624 }
1625 
1626 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1627   assert(!D->getInit() && "Cannot emit definite definitions here!");
1628 
1629   if (MayDeferGeneration(D)) {
1630     // If we have not seen a reference to this variable yet, place it
1631     // into the deferred declarations table to be emitted if needed
1632     // later.
1633     StringRef MangledName = getMangledName(D);
1634     if (!GetGlobalValue(MangledName)) {
1635       DeferredDecls[MangledName] = D;
1636       return;
1637     }
1638   }
1639 
1640   // The tentative definition is the only definition.
1641   EmitGlobalVarDefinition(D);
1642 }
1643 
1644 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1645     return Context.toCharUnitsFromBits(
1646       TheDataLayout.getTypeStoreSizeInBits(Ty));
1647 }
1648 
1649 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1650                                                  unsigned AddrSpace) {
1651   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1652     if (D->hasAttr<CUDAConstantAttr>())
1653       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1654     else if (D->hasAttr<CUDASharedAttr>())
1655       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1656     else
1657       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1658   }
1659 
1660   return AddrSpace;
1661 }
1662 
1663 template<typename SomeDecl>
1664 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1665                                                llvm::GlobalValue *GV) {
1666   if (!getLangOpts().CPlusPlus)
1667     return;
1668 
1669   // Must have 'used' attribute, or else inline assembly can't rely on
1670   // the name existing.
1671   if (!D->template hasAttr<UsedAttr>())
1672     return;
1673 
1674   // Must have internal linkage and an ordinary name.
1675   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1676     return;
1677 
1678   // Must be in an extern "C" context. Entities declared directly within
1679   // a record are not extern "C" even if the record is in such a context.
1680   const SomeDecl *First = D->getFirstDeclaration();
1681   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1682     return;
1683 
1684   // OK, this is an internal linkage entity inside an extern "C" linkage
1685   // specification. Make a note of that so we can give it the "expected"
1686   // mangled name if nothing else is using that name.
1687   std::pair<StaticExternCMap::iterator, bool> R =
1688       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1689 
1690   // If we have multiple internal linkage entities with the same name
1691   // in extern "C" regions, none of them gets that name.
1692   if (!R.second)
1693     R.first->second = 0;
1694 }
1695 
1696 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1697   llvm::Constant *Init = 0;
1698   QualType ASTTy = D->getType();
1699   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1700   bool NeedsGlobalCtor = false;
1701   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1702 
1703   const VarDecl *InitDecl;
1704   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1705 
1706   if (!InitExpr) {
1707     // This is a tentative definition; tentative definitions are
1708     // implicitly initialized with { 0 }.
1709     //
1710     // Note that tentative definitions are only emitted at the end of
1711     // a translation unit, so they should never have incomplete
1712     // type. In addition, EmitTentativeDefinition makes sure that we
1713     // never attempt to emit a tentative definition if a real one
1714     // exists. A use may still exists, however, so we still may need
1715     // to do a RAUW.
1716     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1717     Init = EmitNullConstant(D->getType());
1718   } else {
1719     initializedGlobalDecl = GlobalDecl(D);
1720     Init = EmitConstantInit(*InitDecl);
1721 
1722     if (!Init) {
1723       QualType T = InitExpr->getType();
1724       if (D->getType()->isReferenceType())
1725         T = D->getType();
1726 
1727       if (getLangOpts().CPlusPlus) {
1728         Init = EmitNullConstant(T);
1729         NeedsGlobalCtor = true;
1730       } else {
1731         ErrorUnsupported(D, "static initializer");
1732         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1733       }
1734     } else {
1735       // We don't need an initializer, so remove the entry for the delayed
1736       // initializer position (just in case this entry was delayed) if we
1737       // also don't need to register a destructor.
1738       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1739         DelayedCXXInitPosition.erase(D);
1740     }
1741   }
1742 
1743   llvm::Type* InitType = Init->getType();
1744   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1745 
1746   // Strip off a bitcast if we got one back.
1747   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1748     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1749            // all zero index gep.
1750            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1751     Entry = CE->getOperand(0);
1752   }
1753 
1754   // Entry is now either a Function or GlobalVariable.
1755   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1756 
1757   // We have a definition after a declaration with the wrong type.
1758   // We must make a new GlobalVariable* and update everything that used OldGV
1759   // (a declaration or tentative definition) with the new GlobalVariable*
1760   // (which will be a definition).
1761   //
1762   // This happens if there is a prototype for a global (e.g.
1763   // "extern int x[];") and then a definition of a different type (e.g.
1764   // "int x[10];"). This also happens when an initializer has a different type
1765   // from the type of the global (this happens with unions).
1766   if (GV == 0 ||
1767       GV->getType()->getElementType() != InitType ||
1768       GV->getType()->getAddressSpace() !=
1769        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1770 
1771     // Move the old entry aside so that we'll create a new one.
1772     Entry->setName(StringRef());
1773 
1774     // Make a new global with the correct type, this is now guaranteed to work.
1775     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1776 
1777     // Replace all uses of the old global with the new global
1778     llvm::Constant *NewPtrForOldDecl =
1779         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1780     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1781 
1782     // Erase the old global, since it is no longer used.
1783     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1784   }
1785 
1786   MaybeHandleStaticInExternC(D, GV);
1787 
1788   if (D->hasAttr<AnnotateAttr>())
1789     AddGlobalAnnotations(D, GV);
1790 
1791   GV->setInitializer(Init);
1792 
1793   // If it is safe to mark the global 'constant', do so now.
1794   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1795                   isTypeConstant(D->getType(), true));
1796 
1797   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1798 
1799   // Set the llvm linkage type as appropriate.
1800   llvm::GlobalValue::LinkageTypes Linkage =
1801     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1802   GV->setLinkage(Linkage);
1803   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1804     // common vars aren't constant even if declared const.
1805     GV->setConstant(false);
1806 
1807   SetCommonAttributes(D, GV);
1808 
1809   // Emit the initializer function if necessary.
1810   if (NeedsGlobalCtor || NeedsGlobalDtor)
1811     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1812 
1813   // If we are compiling with ASan, add metadata indicating dynamically
1814   // initialized globals.
1815   if (SanOpts.Address && NeedsGlobalCtor) {
1816     llvm::Module &M = getModule();
1817 
1818     llvm::NamedMDNode *DynamicInitializers =
1819         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1820     llvm::Value *GlobalToAdd[] = { GV };
1821     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1822     DynamicInitializers->addOperand(ThisGlobal);
1823   }
1824 
1825   // Emit global variable debug information.
1826   if (CGDebugInfo *DI = getModuleDebugInfo())
1827     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1828       DI->EmitGlobalVariable(GV, D);
1829 }
1830 
1831 llvm::GlobalValue::LinkageTypes
1832 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1833   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1834   if (Linkage == GVA_Internal)
1835     return llvm::Function::InternalLinkage;
1836   else if (D->hasAttr<DLLImportAttr>())
1837     return llvm::Function::DLLImportLinkage;
1838   else if (D->hasAttr<DLLExportAttr>())
1839     return llvm::Function::DLLExportLinkage;
1840   else if (D->hasAttr<SelectAnyAttr>()) {
1841     // selectany symbols are externally visible, so use weak instead of
1842     // linkonce.  MSVC optimizes away references to const selectany globals, so
1843     // all definitions should be the same and ODR linkage should be used.
1844     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1845     return llvm::GlobalVariable::WeakODRLinkage;
1846   } else if (D->hasAttr<WeakAttr>()) {
1847     if (isConstant)
1848       return llvm::GlobalVariable::WeakODRLinkage;
1849     else
1850       return llvm::GlobalVariable::WeakAnyLinkage;
1851   } else if (Linkage == GVA_TemplateInstantiation ||
1852              Linkage == GVA_ExplicitTemplateInstantiation)
1853     return llvm::GlobalVariable::WeakODRLinkage;
1854   else if (!getLangOpts().CPlusPlus &&
1855            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1856              D->getAttr<CommonAttr>()) &&
1857            !D->hasExternalStorage() && !D->getInit() &&
1858            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1859            !D->getAttr<WeakImportAttr>()) {
1860     // Thread local vars aren't considered common linkage.
1861     return llvm::GlobalVariable::CommonLinkage;
1862   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1863              getTarget().getTriple().isMacOSX())
1864     // On Darwin, the backing variable for a C++11 thread_local variable always
1865     // has internal linkage; all accesses should just be calls to the
1866     // Itanium-specified entry point, which has the normal linkage of the
1867     // variable.
1868     return llvm::GlobalValue::InternalLinkage;
1869   return llvm::GlobalVariable::ExternalLinkage;
1870 }
1871 
1872 /// Replace the uses of a function that was declared with a non-proto type.
1873 /// We want to silently drop extra arguments from call sites
1874 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1875                                           llvm::Function *newFn) {
1876   // Fast path.
1877   if (old->use_empty()) return;
1878 
1879   llvm::Type *newRetTy = newFn->getReturnType();
1880   SmallVector<llvm::Value*, 4> newArgs;
1881 
1882   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1883          ui != ue; ) {
1884     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1885     llvm::User *user = *use;
1886 
1887     // Recognize and replace uses of bitcasts.  Most calls to
1888     // unprototyped functions will use bitcasts.
1889     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1890       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1891         replaceUsesOfNonProtoConstant(bitcast, newFn);
1892       continue;
1893     }
1894 
1895     // Recognize calls to the function.
1896     llvm::CallSite callSite(user);
1897     if (!callSite) continue;
1898     if (!callSite.isCallee(use)) continue;
1899 
1900     // If the return types don't match exactly, then we can't
1901     // transform this call unless it's dead.
1902     if (callSite->getType() != newRetTy && !callSite->use_empty())
1903       continue;
1904 
1905     // Get the call site's attribute list.
1906     SmallVector<llvm::AttributeSet, 8> newAttrs;
1907     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1908 
1909     // Collect any return attributes from the call.
1910     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1911       newAttrs.push_back(
1912         llvm::AttributeSet::get(newFn->getContext(),
1913                                 oldAttrs.getRetAttributes()));
1914 
1915     // If the function was passed too few arguments, don't transform.
1916     unsigned newNumArgs = newFn->arg_size();
1917     if (callSite.arg_size() < newNumArgs) continue;
1918 
1919     // If extra arguments were passed, we silently drop them.
1920     // If any of the types mismatch, we don't transform.
1921     unsigned argNo = 0;
1922     bool dontTransform = false;
1923     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1924            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1925       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1926         dontTransform = true;
1927         break;
1928       }
1929 
1930       // Add any parameter attributes.
1931       if (oldAttrs.hasAttributes(argNo + 1))
1932         newAttrs.
1933           push_back(llvm::
1934                     AttributeSet::get(newFn->getContext(),
1935                                       oldAttrs.getParamAttributes(argNo + 1)));
1936     }
1937     if (dontTransform)
1938       continue;
1939 
1940     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1941       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1942                                                  oldAttrs.getFnAttributes()));
1943 
1944     // Okay, we can transform this.  Create the new call instruction and copy
1945     // over the required information.
1946     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1947 
1948     llvm::CallSite newCall;
1949     if (callSite.isCall()) {
1950       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1951                                        callSite.getInstruction());
1952     } else {
1953       llvm::InvokeInst *oldInvoke =
1954         cast<llvm::InvokeInst>(callSite.getInstruction());
1955       newCall = llvm::InvokeInst::Create(newFn,
1956                                          oldInvoke->getNormalDest(),
1957                                          oldInvoke->getUnwindDest(),
1958                                          newArgs, "",
1959                                          callSite.getInstruction());
1960     }
1961     newArgs.clear(); // for the next iteration
1962 
1963     if (!newCall->getType()->isVoidTy())
1964       newCall->takeName(callSite.getInstruction());
1965     newCall.setAttributes(
1966                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1967     newCall.setCallingConv(callSite.getCallingConv());
1968 
1969     // Finally, remove the old call, replacing any uses with the new one.
1970     if (!callSite->use_empty())
1971       callSite->replaceAllUsesWith(newCall.getInstruction());
1972 
1973     // Copy debug location attached to CI.
1974     if (!callSite->getDebugLoc().isUnknown())
1975       newCall->setDebugLoc(callSite->getDebugLoc());
1976     callSite->eraseFromParent();
1977   }
1978 }
1979 
1980 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1981 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1982 /// existing call uses of the old function in the module, this adjusts them to
1983 /// call the new function directly.
1984 ///
1985 /// This is not just a cleanup: the always_inline pass requires direct calls to
1986 /// functions to be able to inline them.  If there is a bitcast in the way, it
1987 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1988 /// run at -O0.
1989 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1990                                                       llvm::Function *NewFn) {
1991   // If we're redefining a global as a function, don't transform it.
1992   if (!isa<llvm::Function>(Old)) return;
1993 
1994   replaceUsesOfNonProtoConstant(Old, NewFn);
1995 }
1996 
1997 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1998   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1999   // If we have a definition, this might be a deferred decl. If the
2000   // instantiation is explicit, make sure we emit it at the end.
2001   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2002     GetAddrOfGlobalVar(VD);
2003 
2004   EmitTopLevelDecl(VD);
2005 }
2006 
2007 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2008   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2009 
2010   // Compute the function info and LLVM type.
2011   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2012   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2013 
2014   // Get or create the prototype for the function.
2015   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2016 
2017   // Strip off a bitcast if we got one back.
2018   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2019     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2020     Entry = CE->getOperand(0);
2021   }
2022 
2023 
2024   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2025     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2026 
2027     // If the types mismatch then we have to rewrite the definition.
2028     assert(OldFn->isDeclaration() &&
2029            "Shouldn't replace non-declaration");
2030 
2031     // F is the Function* for the one with the wrong type, we must make a new
2032     // Function* and update everything that used F (a declaration) with the new
2033     // Function* (which will be a definition).
2034     //
2035     // This happens if there is a prototype for a function
2036     // (e.g. "int f()") and then a definition of a different type
2037     // (e.g. "int f(int x)").  Move the old function aside so that it
2038     // doesn't interfere with GetAddrOfFunction.
2039     OldFn->setName(StringRef());
2040     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2041 
2042     // This might be an implementation of a function without a
2043     // prototype, in which case, try to do special replacement of
2044     // calls which match the new prototype.  The really key thing here
2045     // is that we also potentially drop arguments from the call site
2046     // so as to make a direct call, which makes the inliner happier
2047     // and suppresses a number of optimizer warnings (!) about
2048     // dropping arguments.
2049     if (!OldFn->use_empty()) {
2050       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2051       OldFn->removeDeadConstantUsers();
2052     }
2053 
2054     // Replace uses of F with the Function we will endow with a body.
2055     if (!Entry->use_empty()) {
2056       llvm::Constant *NewPtrForOldDecl =
2057         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2058       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2059     }
2060 
2061     // Ok, delete the old function now, which is dead.
2062     OldFn->eraseFromParent();
2063 
2064     Entry = NewFn;
2065   }
2066 
2067   // We need to set linkage and visibility on the function before
2068   // generating code for it because various parts of IR generation
2069   // want to propagate this information down (e.g. to local static
2070   // declarations).
2071   llvm::Function *Fn = cast<llvm::Function>(Entry);
2072   setFunctionLinkage(GD, Fn);
2073 
2074   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2075   setGlobalVisibility(Fn, D);
2076 
2077   MaybeHandleStaticInExternC(D, Fn);
2078 
2079   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2080 
2081   SetFunctionDefinitionAttributes(D, Fn);
2082   SetLLVMFunctionAttributesForDefinition(D, Fn);
2083 
2084   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2085     AddGlobalCtor(Fn, CA->getPriority());
2086   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2087     AddGlobalDtor(Fn, DA->getPriority());
2088   if (D->hasAttr<AnnotateAttr>())
2089     AddGlobalAnnotations(D, Fn);
2090 }
2091 
2092 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2093   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2094   const AliasAttr *AA = D->getAttr<AliasAttr>();
2095   assert(AA && "Not an alias?");
2096 
2097   StringRef MangledName = getMangledName(GD);
2098 
2099   // If there is a definition in the module, then it wins over the alias.
2100   // This is dubious, but allow it to be safe.  Just ignore the alias.
2101   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2102   if (Entry && !Entry->isDeclaration())
2103     return;
2104 
2105   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2106 
2107   // Create a reference to the named value.  This ensures that it is emitted
2108   // if a deferred decl.
2109   llvm::Constant *Aliasee;
2110   if (isa<llvm::FunctionType>(DeclTy))
2111     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2112                                       /*ForVTable=*/false);
2113   else
2114     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2115                                     llvm::PointerType::getUnqual(DeclTy), 0);
2116 
2117   // Create the new alias itself, but don't set a name yet.
2118   llvm::GlobalValue *GA =
2119     new llvm::GlobalAlias(Aliasee->getType(),
2120                           llvm::Function::ExternalLinkage,
2121                           "", Aliasee, &getModule());
2122 
2123   if (Entry) {
2124     assert(Entry->isDeclaration());
2125 
2126     // If there is a declaration in the module, then we had an extern followed
2127     // by the alias, as in:
2128     //   extern int test6();
2129     //   ...
2130     //   int test6() __attribute__((alias("test7")));
2131     //
2132     // Remove it and replace uses of it with the alias.
2133     GA->takeName(Entry);
2134 
2135     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2136                                                           Entry->getType()));
2137     Entry->eraseFromParent();
2138   } else {
2139     GA->setName(MangledName);
2140   }
2141 
2142   // Set attributes which are particular to an alias; this is a
2143   // specialization of the attributes which may be set on a global
2144   // variable/function.
2145   if (D->hasAttr<DLLExportAttr>()) {
2146     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2147       // The dllexport attribute is ignored for undefined symbols.
2148       if (FD->hasBody())
2149         GA->setLinkage(llvm::Function::DLLExportLinkage);
2150     } else {
2151       GA->setLinkage(llvm::Function::DLLExportLinkage);
2152     }
2153   } else if (D->hasAttr<WeakAttr>() ||
2154              D->hasAttr<WeakRefAttr>() ||
2155              D->isWeakImported()) {
2156     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2157   }
2158 
2159   SetCommonAttributes(D, GA);
2160 }
2161 
2162 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2163                                             ArrayRef<llvm::Type*> Tys) {
2164   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2165                                          Tys);
2166 }
2167 
2168 static llvm::StringMapEntry<llvm::Constant*> &
2169 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2170                          const StringLiteral *Literal,
2171                          bool TargetIsLSB,
2172                          bool &IsUTF16,
2173                          unsigned &StringLength) {
2174   StringRef String = Literal->getString();
2175   unsigned NumBytes = String.size();
2176 
2177   // Check for simple case.
2178   if (!Literal->containsNonAsciiOrNull()) {
2179     StringLength = NumBytes;
2180     return Map.GetOrCreateValue(String);
2181   }
2182 
2183   // Otherwise, convert the UTF8 literals into a string of shorts.
2184   IsUTF16 = true;
2185 
2186   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2187   const UTF8 *FromPtr = (const UTF8 *)String.data();
2188   UTF16 *ToPtr = &ToBuf[0];
2189 
2190   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2191                            &ToPtr, ToPtr + NumBytes,
2192                            strictConversion);
2193 
2194   // ConvertUTF8toUTF16 returns the length in ToPtr.
2195   StringLength = ToPtr - &ToBuf[0];
2196 
2197   // Add an explicit null.
2198   *ToPtr = 0;
2199   return Map.
2200     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2201                                (StringLength + 1) * 2));
2202 }
2203 
2204 static llvm::StringMapEntry<llvm::Constant*> &
2205 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2206                        const StringLiteral *Literal,
2207                        unsigned &StringLength) {
2208   StringRef String = Literal->getString();
2209   StringLength = String.size();
2210   return Map.GetOrCreateValue(String);
2211 }
2212 
2213 llvm::Constant *
2214 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2215   unsigned StringLength = 0;
2216   bool isUTF16 = false;
2217   llvm::StringMapEntry<llvm::Constant*> &Entry =
2218     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2219                              getDataLayout().isLittleEndian(),
2220                              isUTF16, StringLength);
2221 
2222   if (llvm::Constant *C = Entry.getValue())
2223     return C;
2224 
2225   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2226   llvm::Constant *Zeros[] = { Zero, Zero };
2227   llvm::Value *V;
2228 
2229   // If we don't already have it, get __CFConstantStringClassReference.
2230   if (!CFConstantStringClassRef) {
2231     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2232     Ty = llvm::ArrayType::get(Ty, 0);
2233     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2234                                            "__CFConstantStringClassReference");
2235     // Decay array -> ptr
2236     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2237     CFConstantStringClassRef = V;
2238   }
2239   else
2240     V = CFConstantStringClassRef;
2241 
2242   QualType CFTy = getContext().getCFConstantStringType();
2243 
2244   llvm::StructType *STy =
2245     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2246 
2247   llvm::Constant *Fields[4];
2248 
2249   // Class pointer.
2250   Fields[0] = cast<llvm::ConstantExpr>(V);
2251 
2252   // Flags.
2253   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2254   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2255     llvm::ConstantInt::get(Ty, 0x07C8);
2256 
2257   // String pointer.
2258   llvm::Constant *C = 0;
2259   if (isUTF16) {
2260     ArrayRef<uint16_t> Arr =
2261       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2262                                      const_cast<char *>(Entry.getKey().data())),
2263                                    Entry.getKey().size() / 2);
2264     C = llvm::ConstantDataArray::get(VMContext, Arr);
2265   } else {
2266     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2267   }
2268 
2269   llvm::GlobalValue::LinkageTypes Linkage;
2270   if (isUTF16)
2271     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2272     Linkage = llvm::GlobalValue::InternalLinkage;
2273   else
2274     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2275     // when using private linkage. It is not clear if this is a bug in ld
2276     // or a reasonable new restriction.
2277     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2278 
2279   // Note: -fwritable-strings doesn't make the backing store strings of
2280   // CFStrings writable. (See <rdar://problem/10657500>)
2281   llvm::GlobalVariable *GV =
2282     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2283                              Linkage, C, ".str");
2284   GV->setUnnamedAddr(true);
2285   // Don't enforce the target's minimum global alignment, since the only use
2286   // of the string is via this class initializer.
2287   if (isUTF16) {
2288     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2289     GV->setAlignment(Align.getQuantity());
2290   } else {
2291     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2292     GV->setAlignment(Align.getQuantity());
2293   }
2294 
2295   // String.
2296   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2297 
2298   if (isUTF16)
2299     // Cast the UTF16 string to the correct type.
2300     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2301 
2302   // String length.
2303   Ty = getTypes().ConvertType(getContext().LongTy);
2304   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2305 
2306   // The struct.
2307   C = llvm::ConstantStruct::get(STy, Fields);
2308   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2309                                 llvm::GlobalVariable::PrivateLinkage, C,
2310                                 "_unnamed_cfstring_");
2311   if (const char *Sect = getTarget().getCFStringSection())
2312     GV->setSection(Sect);
2313   Entry.setValue(GV);
2314 
2315   return GV;
2316 }
2317 
2318 static RecordDecl *
2319 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2320                  DeclContext *DC, IdentifierInfo *Id) {
2321   SourceLocation Loc;
2322   if (Ctx.getLangOpts().CPlusPlus)
2323     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2324   else
2325     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2326 }
2327 
2328 llvm::Constant *
2329 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2330   unsigned StringLength = 0;
2331   llvm::StringMapEntry<llvm::Constant*> &Entry =
2332     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2333 
2334   if (llvm::Constant *C = Entry.getValue())
2335     return C;
2336 
2337   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2338   llvm::Constant *Zeros[] = { Zero, Zero };
2339   llvm::Value *V;
2340   // If we don't already have it, get _NSConstantStringClassReference.
2341   if (!ConstantStringClassRef) {
2342     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2343     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2344     llvm::Constant *GV;
2345     if (LangOpts.ObjCRuntime.isNonFragile()) {
2346       std::string str =
2347         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2348                             : "OBJC_CLASS_$_" + StringClass;
2349       GV = getObjCRuntime().GetClassGlobal(str);
2350       // Make sure the result is of the correct type.
2351       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2352       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2353       ConstantStringClassRef = V;
2354     } else {
2355       std::string str =
2356         StringClass.empty() ? "_NSConstantStringClassReference"
2357                             : "_" + StringClass + "ClassReference";
2358       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2359       GV = CreateRuntimeVariable(PTy, str);
2360       // Decay array -> ptr
2361       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2362       ConstantStringClassRef = V;
2363     }
2364   }
2365   else
2366     V = ConstantStringClassRef;
2367 
2368   if (!NSConstantStringType) {
2369     // Construct the type for a constant NSString.
2370     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2371                                      Context.getTranslationUnitDecl(),
2372                                    &Context.Idents.get("__builtin_NSString"));
2373     D->startDefinition();
2374 
2375     QualType FieldTypes[3];
2376 
2377     // const int *isa;
2378     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2379     // const char *str;
2380     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2381     // unsigned int length;
2382     FieldTypes[2] = Context.UnsignedIntTy;
2383 
2384     // Create fields
2385     for (unsigned i = 0; i < 3; ++i) {
2386       FieldDecl *Field = FieldDecl::Create(Context, D,
2387                                            SourceLocation(),
2388                                            SourceLocation(), 0,
2389                                            FieldTypes[i], /*TInfo=*/0,
2390                                            /*BitWidth=*/0,
2391                                            /*Mutable=*/false,
2392                                            ICIS_NoInit);
2393       Field->setAccess(AS_public);
2394       D->addDecl(Field);
2395     }
2396 
2397     D->completeDefinition();
2398     QualType NSTy = Context.getTagDeclType(D);
2399     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2400   }
2401 
2402   llvm::Constant *Fields[3];
2403 
2404   // Class pointer.
2405   Fields[0] = cast<llvm::ConstantExpr>(V);
2406 
2407   // String pointer.
2408   llvm::Constant *C =
2409     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2410 
2411   llvm::GlobalValue::LinkageTypes Linkage;
2412   bool isConstant;
2413   Linkage = llvm::GlobalValue::PrivateLinkage;
2414   isConstant = !LangOpts.WritableStrings;
2415 
2416   llvm::GlobalVariable *GV =
2417   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2418                            ".str");
2419   GV->setUnnamedAddr(true);
2420   // Don't enforce the target's minimum global alignment, since the only use
2421   // of the string is via this class initializer.
2422   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2423   GV->setAlignment(Align.getQuantity());
2424   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2425 
2426   // String length.
2427   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2428   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2429 
2430   // The struct.
2431   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2432   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2433                                 llvm::GlobalVariable::PrivateLinkage, C,
2434                                 "_unnamed_nsstring_");
2435   // FIXME. Fix section.
2436   if (const char *Sect =
2437         LangOpts.ObjCRuntime.isNonFragile()
2438           ? getTarget().getNSStringNonFragileABISection()
2439           : getTarget().getNSStringSection())
2440     GV->setSection(Sect);
2441   Entry.setValue(GV);
2442 
2443   return GV;
2444 }
2445 
2446 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2447   if (ObjCFastEnumerationStateType.isNull()) {
2448     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2449                                      Context.getTranslationUnitDecl(),
2450                       &Context.Idents.get("__objcFastEnumerationState"));
2451     D->startDefinition();
2452 
2453     QualType FieldTypes[] = {
2454       Context.UnsignedLongTy,
2455       Context.getPointerType(Context.getObjCIdType()),
2456       Context.getPointerType(Context.UnsignedLongTy),
2457       Context.getConstantArrayType(Context.UnsignedLongTy,
2458                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2459     };
2460 
2461     for (size_t i = 0; i < 4; ++i) {
2462       FieldDecl *Field = FieldDecl::Create(Context,
2463                                            D,
2464                                            SourceLocation(),
2465                                            SourceLocation(), 0,
2466                                            FieldTypes[i], /*TInfo=*/0,
2467                                            /*BitWidth=*/0,
2468                                            /*Mutable=*/false,
2469                                            ICIS_NoInit);
2470       Field->setAccess(AS_public);
2471       D->addDecl(Field);
2472     }
2473 
2474     D->completeDefinition();
2475     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2476   }
2477 
2478   return ObjCFastEnumerationStateType;
2479 }
2480 
2481 llvm::Constant *
2482 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2483   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2484 
2485   // Don't emit it as the address of the string, emit the string data itself
2486   // as an inline array.
2487   if (E->getCharByteWidth() == 1) {
2488     SmallString<64> Str(E->getString());
2489 
2490     // Resize the string to the right size, which is indicated by its type.
2491     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2492     Str.resize(CAT->getSize().getZExtValue());
2493     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2494   }
2495 
2496   llvm::ArrayType *AType =
2497     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2498   llvm::Type *ElemTy = AType->getElementType();
2499   unsigned NumElements = AType->getNumElements();
2500 
2501   // Wide strings have either 2-byte or 4-byte elements.
2502   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2503     SmallVector<uint16_t, 32> Elements;
2504     Elements.reserve(NumElements);
2505 
2506     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2507       Elements.push_back(E->getCodeUnit(i));
2508     Elements.resize(NumElements);
2509     return llvm::ConstantDataArray::get(VMContext, Elements);
2510   }
2511 
2512   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2513   SmallVector<uint32_t, 32> Elements;
2514   Elements.reserve(NumElements);
2515 
2516   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2517     Elements.push_back(E->getCodeUnit(i));
2518   Elements.resize(NumElements);
2519   return llvm::ConstantDataArray::get(VMContext, Elements);
2520 }
2521 
2522 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2523 /// constant array for the given string literal.
2524 llvm::Constant *
2525 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2526   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2527   if (S->isAscii() || S->isUTF8()) {
2528     SmallString<64> Str(S->getString());
2529 
2530     // Resize the string to the right size, which is indicated by its type.
2531     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2532     Str.resize(CAT->getSize().getZExtValue());
2533     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2534   }
2535 
2536   // FIXME: the following does not memoize wide strings.
2537   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2538   llvm::GlobalVariable *GV =
2539     new llvm::GlobalVariable(getModule(),C->getType(),
2540                              !LangOpts.WritableStrings,
2541                              llvm::GlobalValue::PrivateLinkage,
2542                              C,".str");
2543 
2544   GV->setAlignment(Align.getQuantity());
2545   GV->setUnnamedAddr(true);
2546   return GV;
2547 }
2548 
2549 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2550 /// array for the given ObjCEncodeExpr node.
2551 llvm::Constant *
2552 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2553   std::string Str;
2554   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2555 
2556   return GetAddrOfConstantCString(Str);
2557 }
2558 
2559 
2560 /// GenerateWritableString -- Creates storage for a string literal.
2561 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2562                                              bool constant,
2563                                              CodeGenModule &CGM,
2564                                              const char *GlobalName,
2565                                              unsigned Alignment) {
2566   // Create Constant for this string literal. Don't add a '\0'.
2567   llvm::Constant *C =
2568       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2569 
2570   // Create a global variable for this string
2571   llvm::GlobalVariable *GV =
2572     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2573                              llvm::GlobalValue::PrivateLinkage,
2574                              C, GlobalName);
2575   GV->setAlignment(Alignment);
2576   GV->setUnnamedAddr(true);
2577   return GV;
2578 }
2579 
2580 /// GetAddrOfConstantString - Returns a pointer to a character array
2581 /// containing the literal. This contents are exactly that of the
2582 /// given string, i.e. it will not be null terminated automatically;
2583 /// see GetAddrOfConstantCString. Note that whether the result is
2584 /// actually a pointer to an LLVM constant depends on
2585 /// Feature.WriteableStrings.
2586 ///
2587 /// The result has pointer to array type.
2588 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2589                                                        const char *GlobalName,
2590                                                        unsigned Alignment) {
2591   // Get the default prefix if a name wasn't specified.
2592   if (!GlobalName)
2593     GlobalName = ".str";
2594 
2595   if (Alignment == 0)
2596     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2597       .getQuantity();
2598 
2599   // Don't share any string literals if strings aren't constant.
2600   if (LangOpts.WritableStrings)
2601     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2602 
2603   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2604     ConstantStringMap.GetOrCreateValue(Str);
2605 
2606   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2607     if (Alignment > GV->getAlignment()) {
2608       GV->setAlignment(Alignment);
2609     }
2610     return GV;
2611   }
2612 
2613   // Create a global variable for this.
2614   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2615                                                    Alignment);
2616   Entry.setValue(GV);
2617   return GV;
2618 }
2619 
2620 /// GetAddrOfConstantCString - Returns a pointer to a character
2621 /// array containing the literal and a terminating '\0'
2622 /// character. The result has pointer to array type.
2623 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2624                                                         const char *GlobalName,
2625                                                         unsigned Alignment) {
2626   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2627   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2628 }
2629 
2630 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2631     const MaterializeTemporaryExpr *E, const Expr *Init) {
2632   assert((E->getStorageDuration() == SD_Static ||
2633           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2634   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2635 
2636   // If we're not materializing a subobject of the temporary, keep the
2637   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2638   QualType MaterializedType = Init->getType();
2639   if (Init == E->GetTemporaryExpr())
2640     MaterializedType = E->getType();
2641 
2642   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2643   if (Slot)
2644     return Slot;
2645 
2646   // FIXME: If an externally-visible declaration extends multiple temporaries,
2647   // we need to give each temporary the same name in every translation unit (and
2648   // we also need to make the temporaries externally-visible).
2649   SmallString<256> Name;
2650   llvm::raw_svector_ostream Out(Name);
2651   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2652   Out.flush();
2653 
2654   APValue *Value = 0;
2655   if (E->getStorageDuration() == SD_Static) {
2656     // We might have a cached constant initializer for this temporary. Note
2657     // that this might have a different value from the value computed by
2658     // evaluating the initializer if the surrounding constant expression
2659     // modifies the temporary.
2660     Value = getContext().getMaterializedTemporaryValue(E, false);
2661     if (Value && Value->isUninit())
2662       Value = 0;
2663   }
2664 
2665   // Try evaluating it now, it might have a constant initializer.
2666   Expr::EvalResult EvalResult;
2667   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2668       !EvalResult.hasSideEffects())
2669     Value = &EvalResult.Val;
2670 
2671   llvm::Constant *InitialValue = 0;
2672   bool Constant = false;
2673   llvm::Type *Type;
2674   if (Value) {
2675     // The temporary has a constant initializer, use it.
2676     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2677     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2678     Type = InitialValue->getType();
2679   } else {
2680     // No initializer, the initialization will be provided when we
2681     // initialize the declaration which performed lifetime extension.
2682     Type = getTypes().ConvertTypeForMem(MaterializedType);
2683   }
2684 
2685   // Create a global variable for this lifetime-extended temporary.
2686   llvm::GlobalVariable *GV =
2687     new llvm::GlobalVariable(getModule(), Type, Constant,
2688                              llvm::GlobalValue::PrivateLinkage,
2689                              InitialValue, Name.c_str());
2690   GV->setAlignment(
2691       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2692   if (VD->getTLSKind())
2693     setTLSMode(GV, *VD);
2694   Slot = GV;
2695   return GV;
2696 }
2697 
2698 /// EmitObjCPropertyImplementations - Emit information for synthesized
2699 /// properties for an implementation.
2700 void CodeGenModule::EmitObjCPropertyImplementations(const
2701                                                     ObjCImplementationDecl *D) {
2702   for (ObjCImplementationDecl::propimpl_iterator
2703          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2704     ObjCPropertyImplDecl *PID = *i;
2705 
2706     // Dynamic is just for type-checking.
2707     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2708       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2709 
2710       // Determine which methods need to be implemented, some may have
2711       // been overridden. Note that ::isPropertyAccessor is not the method
2712       // we want, that just indicates if the decl came from a
2713       // property. What we want to know is if the method is defined in
2714       // this implementation.
2715       if (!D->getInstanceMethod(PD->getGetterName()))
2716         CodeGenFunction(*this).GenerateObjCGetter(
2717                                  const_cast<ObjCImplementationDecl *>(D), PID);
2718       if (!PD->isReadOnly() &&
2719           !D->getInstanceMethod(PD->getSetterName()))
2720         CodeGenFunction(*this).GenerateObjCSetter(
2721                                  const_cast<ObjCImplementationDecl *>(D), PID);
2722     }
2723   }
2724 }
2725 
2726 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2727   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2728   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2729        ivar; ivar = ivar->getNextIvar())
2730     if (ivar->getType().isDestructedType())
2731       return true;
2732 
2733   return false;
2734 }
2735 
2736 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2737 /// for an implementation.
2738 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2739   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2740   if (needsDestructMethod(D)) {
2741     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2742     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2743     ObjCMethodDecl *DTORMethod =
2744       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2745                              cxxSelector, getContext().VoidTy, 0, D,
2746                              /*isInstance=*/true, /*isVariadic=*/false,
2747                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2748                              /*isDefined=*/false, ObjCMethodDecl::Required);
2749     D->addInstanceMethod(DTORMethod);
2750     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2751     D->setHasDestructors(true);
2752   }
2753 
2754   // If the implementation doesn't have any ivar initializers, we don't need
2755   // a .cxx_construct.
2756   if (D->getNumIvarInitializers() == 0)
2757     return;
2758 
2759   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2760   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2761   // The constructor returns 'self'.
2762   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2763                                                 D->getLocation(),
2764                                                 D->getLocation(),
2765                                                 cxxSelector,
2766                                                 getContext().getObjCIdType(), 0,
2767                                                 D, /*isInstance=*/true,
2768                                                 /*isVariadic=*/false,
2769                                                 /*isPropertyAccessor=*/true,
2770                                                 /*isImplicitlyDeclared=*/true,
2771                                                 /*isDefined=*/false,
2772                                                 ObjCMethodDecl::Required);
2773   D->addInstanceMethod(CTORMethod);
2774   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2775   D->setHasNonZeroConstructors(true);
2776 }
2777 
2778 /// EmitNamespace - Emit all declarations in a namespace.
2779 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2780   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2781        I != E; ++I)
2782     EmitTopLevelDecl(*I);
2783 }
2784 
2785 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2786 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2787   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2788       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2789     ErrorUnsupported(LSD, "linkage spec");
2790     return;
2791   }
2792 
2793   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2794        I != E; ++I) {
2795     // Meta-data for ObjC class includes references to implemented methods.
2796     // Generate class's method definitions first.
2797     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2798       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2799            MEnd = OID->meth_end();
2800            M != MEnd; ++M)
2801         EmitTopLevelDecl(*M);
2802     }
2803     EmitTopLevelDecl(*I);
2804   }
2805 }
2806 
2807 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2808 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2809   // If an error has occurred, stop code generation, but continue
2810   // parsing and semantic analysis (to ensure all warnings and errors
2811   // are emitted).
2812   if (Diags.hasErrorOccurred())
2813     return;
2814 
2815   // Ignore dependent declarations.
2816   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2817     return;
2818 
2819   switch (D->getKind()) {
2820   case Decl::CXXConversion:
2821   case Decl::CXXMethod:
2822   case Decl::Function:
2823     // Skip function templates
2824     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2825         cast<FunctionDecl>(D)->isLateTemplateParsed())
2826       return;
2827 
2828     EmitGlobal(cast<FunctionDecl>(D));
2829     break;
2830 
2831   case Decl::Var:
2832     EmitGlobal(cast<VarDecl>(D));
2833     break;
2834 
2835   // Indirect fields from global anonymous structs and unions can be
2836   // ignored; only the actual variable requires IR gen support.
2837   case Decl::IndirectField:
2838     break;
2839 
2840   // C++ Decls
2841   case Decl::Namespace:
2842     EmitNamespace(cast<NamespaceDecl>(D));
2843     break;
2844     // No code generation needed.
2845   case Decl::UsingShadow:
2846   case Decl::Using:
2847   case Decl::ClassTemplate:
2848   case Decl::FunctionTemplate:
2849   case Decl::TypeAliasTemplate:
2850   case Decl::Block:
2851   case Decl::Empty:
2852     break;
2853   case Decl::NamespaceAlias:
2854     if (CGDebugInfo *DI = getModuleDebugInfo())
2855         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2856     return;
2857   case Decl::UsingDirective: // using namespace X; [C++]
2858     if (CGDebugInfo *DI = getModuleDebugInfo())
2859       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2860     return;
2861   case Decl::CXXConstructor:
2862     // Skip function templates
2863     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2864         cast<FunctionDecl>(D)->isLateTemplateParsed())
2865       return;
2866 
2867     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2868     break;
2869   case Decl::CXXDestructor:
2870     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2871       return;
2872     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2873     break;
2874 
2875   case Decl::StaticAssert:
2876     // Nothing to do.
2877     break;
2878 
2879   // Objective-C Decls
2880 
2881   // Forward declarations, no (immediate) code generation.
2882   case Decl::ObjCInterface:
2883   case Decl::ObjCCategory:
2884     break;
2885 
2886   case Decl::ObjCProtocol: {
2887     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2888     if (Proto->isThisDeclarationADefinition())
2889       ObjCRuntime->GenerateProtocol(Proto);
2890     break;
2891   }
2892 
2893   case Decl::ObjCCategoryImpl:
2894     // Categories have properties but don't support synthesize so we
2895     // can ignore them here.
2896     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2897     break;
2898 
2899   case Decl::ObjCImplementation: {
2900     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2901     EmitObjCPropertyImplementations(OMD);
2902     EmitObjCIvarInitializations(OMD);
2903     ObjCRuntime->GenerateClass(OMD);
2904     // Emit global variable debug information.
2905     if (CGDebugInfo *DI = getModuleDebugInfo())
2906       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2907         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2908             OMD->getClassInterface()), OMD->getLocation());
2909     break;
2910   }
2911   case Decl::ObjCMethod: {
2912     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2913     // If this is not a prototype, emit the body.
2914     if (OMD->getBody())
2915       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2916     break;
2917   }
2918   case Decl::ObjCCompatibleAlias:
2919     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2920     break;
2921 
2922   case Decl::LinkageSpec:
2923     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2924     break;
2925 
2926   case Decl::FileScopeAsm: {
2927     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2928     StringRef AsmString = AD->getAsmString()->getString();
2929 
2930     const std::string &S = getModule().getModuleInlineAsm();
2931     if (S.empty())
2932       getModule().setModuleInlineAsm(AsmString);
2933     else if (S.end()[-1] == '\n')
2934       getModule().setModuleInlineAsm(S + AsmString.str());
2935     else
2936       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2937     break;
2938   }
2939 
2940   case Decl::Import: {
2941     ImportDecl *Import = cast<ImportDecl>(D);
2942 
2943     // Ignore import declarations that come from imported modules.
2944     if (clang::Module *Owner = Import->getOwningModule()) {
2945       if (getLangOpts().CurrentModule.empty() ||
2946           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2947         break;
2948     }
2949 
2950     ImportedModules.insert(Import->getImportedModule());
2951     break;
2952  }
2953 
2954   default:
2955     // Make sure we handled everything we should, every other kind is a
2956     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2957     // function. Need to recode Decl::Kind to do that easily.
2958     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2959   }
2960 }
2961 
2962 /// Turns the given pointer into a constant.
2963 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2964                                           const void *Ptr) {
2965   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2966   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2967   return llvm::ConstantInt::get(i64, PtrInt);
2968 }
2969 
2970 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2971                                    llvm::NamedMDNode *&GlobalMetadata,
2972                                    GlobalDecl D,
2973                                    llvm::GlobalValue *Addr) {
2974   if (!GlobalMetadata)
2975     GlobalMetadata =
2976       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2977 
2978   // TODO: should we report variant information for ctors/dtors?
2979   llvm::Value *Ops[] = {
2980     Addr,
2981     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2982   };
2983   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2984 }
2985 
2986 /// For each function which is declared within an extern "C" region and marked
2987 /// as 'used', but has internal linkage, create an alias from the unmangled
2988 /// name to the mangled name if possible. People expect to be able to refer
2989 /// to such functions with an unmangled name from inline assembly within the
2990 /// same translation unit.
2991 void CodeGenModule::EmitStaticExternCAliases() {
2992   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2993                                   E = StaticExternCValues.end();
2994        I != E; ++I) {
2995     IdentifierInfo *Name = I->first;
2996     llvm::GlobalValue *Val = I->second;
2997     if (Val && !getModule().getNamedValue(Name->getName()))
2998       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2999                                           Name->getName(), Val, &getModule()));
3000   }
3001 }
3002 
3003 /// Emits metadata nodes associating all the global values in the
3004 /// current module with the Decls they came from.  This is useful for
3005 /// projects using IR gen as a subroutine.
3006 ///
3007 /// Since there's currently no way to associate an MDNode directly
3008 /// with an llvm::GlobalValue, we create a global named metadata
3009 /// with the name 'clang.global.decl.ptrs'.
3010 void CodeGenModule::EmitDeclMetadata() {
3011   llvm::NamedMDNode *GlobalMetadata = 0;
3012 
3013   // StaticLocalDeclMap
3014   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3015          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3016        I != E; ++I) {
3017     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3018     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3019   }
3020 }
3021 
3022 /// Emits metadata nodes for all the local variables in the current
3023 /// function.
3024 void CodeGenFunction::EmitDeclMetadata() {
3025   if (LocalDeclMap.empty()) return;
3026 
3027   llvm::LLVMContext &Context = getLLVMContext();
3028 
3029   // Find the unique metadata ID for this name.
3030   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3031 
3032   llvm::NamedMDNode *GlobalMetadata = 0;
3033 
3034   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3035          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3036     const Decl *D = I->first;
3037     llvm::Value *Addr = I->second;
3038 
3039     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3040       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3041       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3042     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3043       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3044       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3045     }
3046   }
3047 }
3048 
3049 void CodeGenModule::EmitCoverageFile() {
3050   if (!getCodeGenOpts().CoverageFile.empty()) {
3051     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3052       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3053       llvm::LLVMContext &Ctx = TheModule.getContext();
3054       llvm::MDString *CoverageFile =
3055           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3056       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3057         llvm::MDNode *CU = CUNode->getOperand(i);
3058         llvm::Value *node[] = { CoverageFile, CU };
3059         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3060         GCov->addOperand(N);
3061       }
3062     }
3063   }
3064 }
3065 
3066 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3067                                                      QualType GuidType) {
3068   // Sema has checked that all uuid strings are of the form
3069   // "12345678-1234-1234-1234-1234567890ab".
3070   assert(Uuid.size() == 36);
3071   const char *Uuidstr = Uuid.data();
3072   for (int i = 0; i < 36; ++i) {
3073     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3074     else                                         assert(isHexDigit(Uuidstr[i]));
3075   }
3076 
3077   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3078   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3079   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3080   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3081 
3082   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3083   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3084   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3085   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3086   APValue& Arr = InitStruct.getStructField(3);
3087   Arr = APValue(APValue::UninitArray(), 8, 8);
3088   for (int t = 0; t < 8; ++t)
3089     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3090           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3091 
3092   return EmitConstantValue(InitStruct, GuidType);
3093 }
3094