xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f61b5481fd2ce47c5891e856ab1a2a6e8c0e9538)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     if (llvm::Function *OpenMPRegistrationFunction =
418             OpenMPRuntime->emitRegistrationFunction()) {
419       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420         OpenMPRegistrationFunction : nullptr;
421       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422     }
423     OpenMPRuntime->clear();
424   }
425   if (PGOReader) {
426     getModule().setProfileSummary(
427         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428         llvm::ProfileSummary::PSK_Instr);
429     if (PGOStats.hasDiagnostics())
430       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431   }
432   EmitCtorList(GlobalCtors, "llvm.global_ctors");
433   EmitCtorList(GlobalDtors, "llvm.global_dtors");
434   EmitGlobalAnnotations();
435   EmitStaticExternCAliases();
436   EmitDeferredUnusedCoverageMappings();
437   if (CoverageMapping)
438     CoverageMapping->emit();
439   if (CodeGenOpts.SanitizeCfiCrossDso) {
440     CodeGenFunction(*this).EmitCfiCheckFail();
441     CodeGenFunction(*this).EmitCfiCheckStub();
442   }
443   emitAtAvailableLinkGuard();
444   emitLLVMUsed();
445   if (SanStats)
446     SanStats->finish();
447 
448   if (CodeGenOpts.Autolink &&
449       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450     EmitModuleLinkOptions();
451   }
452 
453   // On ELF we pass the dependent library specifiers directly to the linker
454   // without manipulating them. This is in contrast to other platforms where
455   // they are mapped to a specific linker option by the compiler. This
456   // difference is a result of the greater variety of ELF linkers and the fact
457   // that ELF linkers tend to handle libraries in a more complicated fashion
458   // than on other platforms. This forces us to defer handling the dependent
459   // libs to the linker.
460   //
461   // CUDA/HIP device and host libraries are different. Currently there is no
462   // way to differentiate dependent libraries for host or device. Existing
463   // usage of #pragma comment(lib, *) is intended for host libraries on
464   // Windows. Therefore emit llvm.dependent-libraries only for host.
465   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
466     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
467     for (auto *MD : ELFDependentLibraries)
468       NMD->addOperand(MD);
469   }
470 
471   // Record mregparm value now so it is visible through rest of codegen.
472   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
473     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
474                               CodeGenOpts.NumRegisterParameters);
475 
476   if (CodeGenOpts.DwarfVersion) {
477     // We actually want the latest version when there are conflicts.
478     // We can change from Warning to Latest if such mode is supported.
479     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
480                               CodeGenOpts.DwarfVersion);
481   }
482   if (CodeGenOpts.EmitCodeView) {
483     // Indicate that we want CodeView in the metadata.
484     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
485   }
486   if (CodeGenOpts.CodeViewGHash) {
487     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
488   }
489   if (CodeGenOpts.ControlFlowGuard) {
490     // We want function ID tables for Control Flow Guard.
491     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
492   }
493   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
494     // We don't support LTO with 2 with different StrictVTablePointers
495     // FIXME: we could support it by stripping all the information introduced
496     // by StrictVTablePointers.
497 
498     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
499 
500     llvm::Metadata *Ops[2] = {
501               llvm::MDString::get(VMContext, "StrictVTablePointers"),
502               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
503                   llvm::Type::getInt32Ty(VMContext), 1))};
504 
505     getModule().addModuleFlag(llvm::Module::Require,
506                               "StrictVTablePointersRequirement",
507                               llvm::MDNode::get(VMContext, Ops));
508   }
509   if (DebugInfo)
510     // We support a single version in the linked module. The LLVM
511     // parser will drop debug info with a different version number
512     // (and warn about it, too).
513     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
514                               llvm::DEBUG_METADATA_VERSION);
515 
516   // We need to record the widths of enums and wchar_t, so that we can generate
517   // the correct build attributes in the ARM backend. wchar_size is also used by
518   // TargetLibraryInfo.
519   uint64_t WCharWidth =
520       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
521   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
522 
523   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
524   if (   Arch == llvm::Triple::arm
525       || Arch == llvm::Triple::armeb
526       || Arch == llvm::Triple::thumb
527       || Arch == llvm::Triple::thumbeb) {
528     // The minimum width of an enum in bytes
529     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
530     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
531   }
532 
533   if (CodeGenOpts.SanitizeCfiCrossDso) {
534     // Indicate that we want cross-DSO control flow integrity checks.
535     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
536   }
537 
538   if (CodeGenOpts.CFProtectionReturn &&
539       Target.checkCFProtectionReturnSupported(getDiags())) {
540     // Indicate that we want to instrument return control flow protection.
541     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
542                               1);
543   }
544 
545   if (CodeGenOpts.CFProtectionBranch &&
546       Target.checkCFProtectionBranchSupported(getDiags())) {
547     // Indicate that we want to instrument branch control flow protection.
548     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
549                               1);
550   }
551 
552   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
553     // Indicate whether __nvvm_reflect should be configured to flush denormal
554     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
555     // property.)
556     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
557                               CodeGenOpts.FlushDenorm ? 1 : 0);
558   }
559 
560   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
561   if (LangOpts.OpenCL) {
562     EmitOpenCLMetadata();
563     // Emit SPIR version.
564     if (getTriple().isSPIR()) {
565       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
566       // opencl.spir.version named metadata.
567       // C++ is backwards compatible with OpenCL v2.0.
568       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
569       llvm::Metadata *SPIRVerElts[] = {
570           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
571               Int32Ty, Version / 100)),
572           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
573               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
574       llvm::NamedMDNode *SPIRVerMD =
575           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
576       llvm::LLVMContext &Ctx = TheModule.getContext();
577       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
578     }
579   }
580 
581   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
582     assert(PLevel < 3 && "Invalid PIC Level");
583     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
584     if (Context.getLangOpts().PIE)
585       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
586   }
587 
588   if (getCodeGenOpts().CodeModel.size() > 0) {
589     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
590                   .Case("tiny", llvm::CodeModel::Tiny)
591                   .Case("small", llvm::CodeModel::Small)
592                   .Case("kernel", llvm::CodeModel::Kernel)
593                   .Case("medium", llvm::CodeModel::Medium)
594                   .Case("large", llvm::CodeModel::Large)
595                   .Default(~0u);
596     if (CM != ~0u) {
597       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
598       getModule().setCodeModel(codeModel);
599     }
600   }
601 
602   if (CodeGenOpts.NoPLT)
603     getModule().setRtLibUseGOT();
604 
605   SimplifyPersonality();
606 
607   if (getCodeGenOpts().EmitDeclMetadata)
608     EmitDeclMetadata();
609 
610   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
611     EmitCoverageFile();
612 
613   if (DebugInfo)
614     DebugInfo->finalize();
615 
616   if (getCodeGenOpts().EmitVersionIdentMetadata)
617     EmitVersionIdentMetadata();
618 
619   if (!getCodeGenOpts().RecordCommandLine.empty())
620     EmitCommandLineMetadata();
621 
622   EmitTargetMetadata();
623 }
624 
625 void CodeGenModule::EmitOpenCLMetadata() {
626   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
627   // opencl.ocl.version named metadata node.
628   // C++ is backwards compatible with OpenCL v2.0.
629   // FIXME: We might need to add CXX version at some point too?
630   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
631   llvm::Metadata *OCLVerElts[] = {
632       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
633           Int32Ty, Version / 100)),
634       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
635           Int32Ty, (Version % 100) / 10))};
636   llvm::NamedMDNode *OCLVerMD =
637       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
638   llvm::LLVMContext &Ctx = TheModule.getContext();
639   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
640 }
641 
642 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
643   // Make sure that this type is translated.
644   Types.UpdateCompletedType(TD);
645 }
646 
647 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
648   // Make sure that this type is translated.
649   Types.RefreshTypeCacheForClass(RD);
650 }
651 
652 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
653   if (!TBAA)
654     return nullptr;
655   return TBAA->getTypeInfo(QTy);
656 }
657 
658 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
659   if (!TBAA)
660     return TBAAAccessInfo();
661   return TBAA->getAccessInfo(AccessType);
662 }
663 
664 TBAAAccessInfo
665 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
666   if (!TBAA)
667     return TBAAAccessInfo();
668   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
669 }
670 
671 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
672   if (!TBAA)
673     return nullptr;
674   return TBAA->getTBAAStructInfo(QTy);
675 }
676 
677 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
678   if (!TBAA)
679     return nullptr;
680   return TBAA->getBaseTypeInfo(QTy);
681 }
682 
683 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
684   if (!TBAA)
685     return nullptr;
686   return TBAA->getAccessTagInfo(Info);
687 }
688 
689 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
690                                                    TBAAAccessInfo TargetInfo) {
691   if (!TBAA)
692     return TBAAAccessInfo();
693   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
694 }
695 
696 TBAAAccessInfo
697 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
698                                                    TBAAAccessInfo InfoB) {
699   if (!TBAA)
700     return TBAAAccessInfo();
701   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
702 }
703 
704 TBAAAccessInfo
705 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
706                                               TBAAAccessInfo SrcInfo) {
707   if (!TBAA)
708     return TBAAAccessInfo();
709   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
710 }
711 
712 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
713                                                 TBAAAccessInfo TBAAInfo) {
714   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
715     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
716 }
717 
718 void CodeGenModule::DecorateInstructionWithInvariantGroup(
719     llvm::Instruction *I, const CXXRecordDecl *RD) {
720   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
721                  llvm::MDNode::get(getLLVMContext(), {}));
722 }
723 
724 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
725   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
726   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
727 }
728 
729 /// ErrorUnsupported - Print out an error that codegen doesn't support the
730 /// specified stmt yet.
731 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
732   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
733                                                "cannot compile this %0 yet");
734   std::string Msg = Type;
735   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
736       << Msg << S->getSourceRange();
737 }
738 
739 /// ErrorUnsupported - Print out an error that codegen doesn't support the
740 /// specified decl yet.
741 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
742   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
743                                                "cannot compile this %0 yet");
744   std::string Msg = Type;
745   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
746 }
747 
748 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
749   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
750 }
751 
752 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
753                                         const NamedDecl *D) const {
754   if (GV->hasDLLImportStorageClass())
755     return;
756   // Internal definitions always have default visibility.
757   if (GV->hasLocalLinkage()) {
758     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
759     return;
760   }
761   if (!D)
762     return;
763   // Set visibility for definitions, and for declarations if requested globally
764   // or set explicitly.
765   LinkageInfo LV = D->getLinkageAndVisibility();
766   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
767       !GV->isDeclarationForLinker())
768     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
769 }
770 
771 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
772                                  llvm::GlobalValue *GV) {
773   if (GV->hasLocalLinkage())
774     return true;
775 
776   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
777     return true;
778 
779   // DLLImport explicitly marks the GV as external.
780   if (GV->hasDLLImportStorageClass())
781     return false;
782 
783   const llvm::Triple &TT = CGM.getTriple();
784   if (TT.isWindowsGNUEnvironment()) {
785     // In MinGW, variables without DLLImport can still be automatically
786     // imported from a DLL by the linker; don't mark variables that
787     // potentially could come from another DLL as DSO local.
788     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
789         !GV->isThreadLocal())
790       return false;
791   }
792 
793   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
794   // remain unresolved in the link, they can be resolved to zero, which is
795   // outside the current DSO.
796   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
797     return false;
798 
799   // Every other GV is local on COFF.
800   // Make an exception for windows OS in the triple: Some firmware builds use
801   // *-win32-macho triples. This (accidentally?) produced windows relocations
802   // without GOT tables in older clang versions; Keep this behaviour.
803   // FIXME: even thread local variables?
804   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
805     return true;
806 
807   // Only handle COFF and ELF for now.
808   if (!TT.isOSBinFormatELF())
809     return false;
810 
811   // If this is not an executable, don't assume anything is local.
812   const auto &CGOpts = CGM.getCodeGenOpts();
813   llvm::Reloc::Model RM = CGOpts.RelocationModel;
814   const auto &LOpts = CGM.getLangOpts();
815   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
816     return false;
817 
818   // A definition cannot be preempted from an executable.
819   if (!GV->isDeclarationForLinker())
820     return true;
821 
822   // Most PIC code sequences that assume that a symbol is local cannot produce a
823   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
824   // depended, it seems worth it to handle it here.
825   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
826     return false;
827 
828   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
829   llvm::Triple::ArchType Arch = TT.getArch();
830   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
831       Arch == llvm::Triple::ppc64le)
832     return false;
833 
834   // If we can use copy relocations we can assume it is local.
835   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
836     if (!Var->isThreadLocal() &&
837         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
838       return true;
839 
840   // If we can use a plt entry as the symbol address we can assume it
841   // is local.
842   // FIXME: This should work for PIE, but the gold linker doesn't support it.
843   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
844     return true;
845 
846   // Otherwise don't assue it is local.
847   return false;
848 }
849 
850 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
851   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
852 }
853 
854 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
855                                           GlobalDecl GD) const {
856   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
857   // C++ destructors have a few C++ ABI specific special cases.
858   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
859     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
860     return;
861   }
862   setDLLImportDLLExport(GV, D);
863 }
864 
865 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
866                                           const NamedDecl *D) const {
867   if (D && D->isExternallyVisible()) {
868     if (D->hasAttr<DLLImportAttr>())
869       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
870     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
871       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
872   }
873 }
874 
875 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
876                                     GlobalDecl GD) const {
877   setDLLImportDLLExport(GV, GD);
878   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
879 }
880 
881 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
882                                     const NamedDecl *D) const {
883   setDLLImportDLLExport(GV, D);
884   setGlobalVisibilityAndLocal(GV, D);
885 }
886 
887 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
888                                                 const NamedDecl *D) const {
889   setGlobalVisibility(GV, D);
890   setDSOLocal(GV);
891 }
892 
893 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
894   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
895       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
896       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
897       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
898       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
899 }
900 
901 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
902     CodeGenOptions::TLSModel M) {
903   switch (M) {
904   case CodeGenOptions::GeneralDynamicTLSModel:
905     return llvm::GlobalVariable::GeneralDynamicTLSModel;
906   case CodeGenOptions::LocalDynamicTLSModel:
907     return llvm::GlobalVariable::LocalDynamicTLSModel;
908   case CodeGenOptions::InitialExecTLSModel:
909     return llvm::GlobalVariable::InitialExecTLSModel;
910   case CodeGenOptions::LocalExecTLSModel:
911     return llvm::GlobalVariable::LocalExecTLSModel;
912   }
913   llvm_unreachable("Invalid TLS model!");
914 }
915 
916 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
917   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
918 
919   llvm::GlobalValue::ThreadLocalMode TLM;
920   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
921 
922   // Override the TLS model if it is explicitly specified.
923   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
924     TLM = GetLLVMTLSModel(Attr->getModel());
925   }
926 
927   GV->setThreadLocalMode(TLM);
928 }
929 
930 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
931                                           StringRef Name) {
932   const TargetInfo &Target = CGM.getTarget();
933   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
934 }
935 
936 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
937                                                  const CPUSpecificAttr *Attr,
938                                                  unsigned CPUIndex,
939                                                  raw_ostream &Out) {
940   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
941   // supported.
942   if (Attr)
943     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
944   else if (CGM.getTarget().supportsIFunc())
945     Out << ".resolver";
946 }
947 
948 static void AppendTargetMangling(const CodeGenModule &CGM,
949                                  const TargetAttr *Attr, raw_ostream &Out) {
950   if (Attr->isDefaultVersion())
951     return;
952 
953   Out << '.';
954   const TargetInfo &Target = CGM.getTarget();
955   TargetAttr::ParsedTargetAttr Info =
956       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
957         // Multiversioning doesn't allow "no-${feature}", so we can
958         // only have "+" prefixes here.
959         assert(LHS.startswith("+") && RHS.startswith("+") &&
960                "Features should always have a prefix.");
961         return Target.multiVersionSortPriority(LHS.substr(1)) >
962                Target.multiVersionSortPriority(RHS.substr(1));
963       });
964 
965   bool IsFirst = true;
966 
967   if (!Info.Architecture.empty()) {
968     IsFirst = false;
969     Out << "arch_" << Info.Architecture;
970   }
971 
972   for (StringRef Feat : Info.Features) {
973     if (!IsFirst)
974       Out << '_';
975     IsFirst = false;
976     Out << Feat.substr(1);
977   }
978 }
979 
980 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
981                                       const NamedDecl *ND,
982                                       bool OmitMultiVersionMangling = false) {
983   SmallString<256> Buffer;
984   llvm::raw_svector_ostream Out(Buffer);
985   MangleContext &MC = CGM.getCXXABI().getMangleContext();
986   if (MC.shouldMangleDeclName(ND)) {
987     llvm::raw_svector_ostream Out(Buffer);
988     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
989       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
990     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
991       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
992     else
993       MC.mangleName(ND, Out);
994   } else {
995     IdentifierInfo *II = ND->getIdentifier();
996     assert(II && "Attempt to mangle unnamed decl.");
997     const auto *FD = dyn_cast<FunctionDecl>(ND);
998 
999     if (FD &&
1000         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1001       llvm::raw_svector_ostream Out(Buffer);
1002       Out << "__regcall3__" << II->getName();
1003     } else {
1004       Out << II->getName();
1005     }
1006   }
1007 
1008   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1009     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1010       switch (FD->getMultiVersionKind()) {
1011       case MultiVersionKind::CPUDispatch:
1012       case MultiVersionKind::CPUSpecific:
1013         AppendCPUSpecificCPUDispatchMangling(CGM,
1014                                              FD->getAttr<CPUSpecificAttr>(),
1015                                              GD.getMultiVersionIndex(), Out);
1016         break;
1017       case MultiVersionKind::Target:
1018         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1019         break;
1020       case MultiVersionKind::None:
1021         llvm_unreachable("None multiversion type isn't valid here");
1022       }
1023     }
1024 
1025   return Out.str();
1026 }
1027 
1028 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1029                                             const FunctionDecl *FD) {
1030   if (!FD->isMultiVersion())
1031     return;
1032 
1033   // Get the name of what this would be without the 'target' attribute.  This
1034   // allows us to lookup the version that was emitted when this wasn't a
1035   // multiversion function.
1036   std::string NonTargetName =
1037       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1038   GlobalDecl OtherGD;
1039   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1040     assert(OtherGD.getCanonicalDecl()
1041                .getDecl()
1042                ->getAsFunction()
1043                ->isMultiVersion() &&
1044            "Other GD should now be a multiversioned function");
1045     // OtherFD is the version of this function that was mangled BEFORE
1046     // becoming a MultiVersion function.  It potentially needs to be updated.
1047     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1048                                       .getDecl()
1049                                       ->getAsFunction()
1050                                       ->getMostRecentDecl();
1051     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1052     // This is so that if the initial version was already the 'default'
1053     // version, we don't try to update it.
1054     if (OtherName != NonTargetName) {
1055       // Remove instead of erase, since others may have stored the StringRef
1056       // to this.
1057       const auto ExistingRecord = Manglings.find(NonTargetName);
1058       if (ExistingRecord != std::end(Manglings))
1059         Manglings.remove(&(*ExistingRecord));
1060       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1061       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1062       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1063         Entry->setName(OtherName);
1064     }
1065   }
1066 }
1067 
1068 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1069   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1070 
1071   // Some ABIs don't have constructor variants.  Make sure that base and
1072   // complete constructors get mangled the same.
1073   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1074     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1075       CXXCtorType OrigCtorType = GD.getCtorType();
1076       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1077       if (OrigCtorType == Ctor_Base)
1078         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1079     }
1080   }
1081 
1082   auto FoundName = MangledDeclNames.find(CanonicalGD);
1083   if (FoundName != MangledDeclNames.end())
1084     return FoundName->second;
1085 
1086   // Keep the first result in the case of a mangling collision.
1087   const auto *ND = cast<NamedDecl>(GD.getDecl());
1088   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1089 
1090   // Postfix kernel stub names with .stub to differentiate them from kernel
1091   // names in device binaries. This is to facilitate the debugger to find
1092   // the correct symbols for kernels in the device binary.
1093   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1094     if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice &&
1095         FD->hasAttr<CUDAGlobalAttr>())
1096       MangledName = MangledName + ".stub";
1097 
1098   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1099   return MangledDeclNames[CanonicalGD] = Result.first->first();
1100 }
1101 
1102 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1103                                              const BlockDecl *BD) {
1104   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1105   const Decl *D = GD.getDecl();
1106 
1107   SmallString<256> Buffer;
1108   llvm::raw_svector_ostream Out(Buffer);
1109   if (!D)
1110     MangleCtx.mangleGlobalBlock(BD,
1111       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1112   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1113     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1114   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1115     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1116   else
1117     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1118 
1119   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1120   return Result.first->first();
1121 }
1122 
1123 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1124   return getModule().getNamedValue(Name);
1125 }
1126 
1127 /// AddGlobalCtor - Add a function to the list that will be called before
1128 /// main() runs.
1129 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1130                                   llvm::Constant *AssociatedData) {
1131   // FIXME: Type coercion of void()* types.
1132   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1133 }
1134 
1135 /// AddGlobalDtor - Add a function to the list that will be called
1136 /// when the module is unloaded.
1137 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1138   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1139     DtorsUsingAtExit[Priority].push_back(Dtor);
1140     return;
1141   }
1142 
1143   // FIXME: Type coercion of void()* types.
1144   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1145 }
1146 
1147 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1148   if (Fns.empty()) return;
1149 
1150   // Ctor function type is void()*.
1151   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1152   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1153       TheModule.getDataLayout().getProgramAddressSpace());
1154 
1155   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1156   llvm::StructType *CtorStructTy = llvm::StructType::get(
1157       Int32Ty, CtorPFTy, VoidPtrTy);
1158 
1159   // Construct the constructor and destructor arrays.
1160   ConstantInitBuilder builder(*this);
1161   auto ctors = builder.beginArray(CtorStructTy);
1162   for (const auto &I : Fns) {
1163     auto ctor = ctors.beginStruct(CtorStructTy);
1164     ctor.addInt(Int32Ty, I.Priority);
1165     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1166     if (I.AssociatedData)
1167       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1168     else
1169       ctor.addNullPointer(VoidPtrTy);
1170     ctor.finishAndAddTo(ctors);
1171   }
1172 
1173   auto list =
1174     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1175                                 /*constant*/ false,
1176                                 llvm::GlobalValue::AppendingLinkage);
1177 
1178   // The LTO linker doesn't seem to like it when we set an alignment
1179   // on appending variables.  Take it off as a workaround.
1180   list->setAlignment(0);
1181 
1182   Fns.clear();
1183 }
1184 
1185 llvm::GlobalValue::LinkageTypes
1186 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1187   const auto *D = cast<FunctionDecl>(GD.getDecl());
1188 
1189   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1190 
1191   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1192     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1193 
1194   if (isa<CXXConstructorDecl>(D) &&
1195       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1196       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1197     // Our approach to inheriting constructors is fundamentally different from
1198     // that used by the MS ABI, so keep our inheriting constructor thunks
1199     // internal rather than trying to pick an unambiguous mangling for them.
1200     return llvm::GlobalValue::InternalLinkage;
1201   }
1202 
1203   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1204 }
1205 
1206 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1207   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1208   if (!MDS) return nullptr;
1209 
1210   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1211 }
1212 
1213 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1214                                               const CGFunctionInfo &Info,
1215                                               llvm::Function *F) {
1216   unsigned CallingConv;
1217   llvm::AttributeList PAL;
1218   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1219   F->setAttributes(PAL);
1220   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1221 }
1222 
1223 static void removeImageAccessQualifier(std::string& TyName) {
1224   std::string ReadOnlyQual("__read_only");
1225   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1226   if (ReadOnlyPos != std::string::npos)
1227     // "+ 1" for the space after access qualifier.
1228     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1229   else {
1230     std::string WriteOnlyQual("__write_only");
1231     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1232     if (WriteOnlyPos != std::string::npos)
1233       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1234     else {
1235       std::string ReadWriteQual("__read_write");
1236       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1237       if (ReadWritePos != std::string::npos)
1238         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1239     }
1240   }
1241 }
1242 
1243 // Returns the address space id that should be produced to the
1244 // kernel_arg_addr_space metadata. This is always fixed to the ids
1245 // as specified in the SPIR 2.0 specification in order to differentiate
1246 // for example in clGetKernelArgInfo() implementation between the address
1247 // spaces with targets without unique mapping to the OpenCL address spaces
1248 // (basically all single AS CPUs).
1249 static unsigned ArgInfoAddressSpace(LangAS AS) {
1250   switch (AS) {
1251   case LangAS::opencl_global:   return 1;
1252   case LangAS::opencl_constant: return 2;
1253   case LangAS::opencl_local:    return 3;
1254   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1255   default:
1256     return 0; // Assume private.
1257   }
1258 }
1259 
1260 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1261                                          const FunctionDecl *FD,
1262                                          CodeGenFunction *CGF) {
1263   assert(((FD && CGF) || (!FD && !CGF)) &&
1264          "Incorrect use - FD and CGF should either be both null or not!");
1265   // Create MDNodes that represent the kernel arg metadata.
1266   // Each MDNode is a list in the form of "key", N number of values which is
1267   // the same number of values as their are kernel arguments.
1268 
1269   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1270 
1271   // MDNode for the kernel argument address space qualifiers.
1272   SmallVector<llvm::Metadata *, 8> addressQuals;
1273 
1274   // MDNode for the kernel argument access qualifiers (images only).
1275   SmallVector<llvm::Metadata *, 8> accessQuals;
1276 
1277   // MDNode for the kernel argument type names.
1278   SmallVector<llvm::Metadata *, 8> argTypeNames;
1279 
1280   // MDNode for the kernel argument base type names.
1281   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1282 
1283   // MDNode for the kernel argument type qualifiers.
1284   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1285 
1286   // MDNode for the kernel argument names.
1287   SmallVector<llvm::Metadata *, 8> argNames;
1288 
1289   if (FD && CGF)
1290     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1291       const ParmVarDecl *parm = FD->getParamDecl(i);
1292       QualType ty = parm->getType();
1293       std::string typeQuals;
1294 
1295       if (ty->isPointerType()) {
1296         QualType pointeeTy = ty->getPointeeType();
1297 
1298         // Get address qualifier.
1299         addressQuals.push_back(
1300             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1301                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1302 
1303         // Get argument type name.
1304         std::string typeName =
1305             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1306 
1307         // Turn "unsigned type" to "utype"
1308         std::string::size_type pos = typeName.find("unsigned");
1309         if (pointeeTy.isCanonical() && pos != std::string::npos)
1310           typeName.erase(pos + 1, 8);
1311 
1312         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1313 
1314         std::string baseTypeName =
1315             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1316                 Policy) +
1317             "*";
1318 
1319         // Turn "unsigned type" to "utype"
1320         pos = baseTypeName.find("unsigned");
1321         if (pos != std::string::npos)
1322           baseTypeName.erase(pos + 1, 8);
1323 
1324         argBaseTypeNames.push_back(
1325             llvm::MDString::get(VMContext, baseTypeName));
1326 
1327         // Get argument type qualifiers:
1328         if (ty.isRestrictQualified())
1329           typeQuals = "restrict";
1330         if (pointeeTy.isConstQualified() ||
1331             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1332           typeQuals += typeQuals.empty() ? "const" : " const";
1333         if (pointeeTy.isVolatileQualified())
1334           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1335       } else {
1336         uint32_t AddrSpc = 0;
1337         bool isPipe = ty->isPipeType();
1338         if (ty->isImageType() || isPipe)
1339           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1340 
1341         addressQuals.push_back(
1342             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1343 
1344         // Get argument type name.
1345         std::string typeName;
1346         if (isPipe)
1347           typeName = ty.getCanonicalType()
1348                          ->getAs<PipeType>()
1349                          ->getElementType()
1350                          .getAsString(Policy);
1351         else
1352           typeName = ty.getUnqualifiedType().getAsString(Policy);
1353 
1354         // Turn "unsigned type" to "utype"
1355         std::string::size_type pos = typeName.find("unsigned");
1356         if (ty.isCanonical() && pos != std::string::npos)
1357           typeName.erase(pos + 1, 8);
1358 
1359         std::string baseTypeName;
1360         if (isPipe)
1361           baseTypeName = ty.getCanonicalType()
1362                              ->getAs<PipeType>()
1363                              ->getElementType()
1364                              .getCanonicalType()
1365                              .getAsString(Policy);
1366         else
1367           baseTypeName =
1368               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1369 
1370         // Remove access qualifiers on images
1371         // (as they are inseparable from type in clang implementation,
1372         // but OpenCL spec provides a special query to get access qualifier
1373         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1374         if (ty->isImageType()) {
1375           removeImageAccessQualifier(typeName);
1376           removeImageAccessQualifier(baseTypeName);
1377         }
1378 
1379         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1380 
1381         // Turn "unsigned type" to "utype"
1382         pos = baseTypeName.find("unsigned");
1383         if (pos != std::string::npos)
1384           baseTypeName.erase(pos + 1, 8);
1385 
1386         argBaseTypeNames.push_back(
1387             llvm::MDString::get(VMContext, baseTypeName));
1388 
1389         if (isPipe)
1390           typeQuals = "pipe";
1391       }
1392 
1393       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1394 
1395       // Get image and pipe access qualifier:
1396       if (ty->isImageType() || ty->isPipeType()) {
1397         const Decl *PDecl = parm;
1398         if (auto *TD = dyn_cast<TypedefType>(ty))
1399           PDecl = TD->getDecl();
1400         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1401         if (A && A->isWriteOnly())
1402           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1403         else if (A && A->isReadWrite())
1404           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1405         else
1406           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1407       } else
1408         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1409 
1410       // Get argument name.
1411       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1412     }
1413 
1414   Fn->setMetadata("kernel_arg_addr_space",
1415                   llvm::MDNode::get(VMContext, addressQuals));
1416   Fn->setMetadata("kernel_arg_access_qual",
1417                   llvm::MDNode::get(VMContext, accessQuals));
1418   Fn->setMetadata("kernel_arg_type",
1419                   llvm::MDNode::get(VMContext, argTypeNames));
1420   Fn->setMetadata("kernel_arg_base_type",
1421                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1422   Fn->setMetadata("kernel_arg_type_qual",
1423                   llvm::MDNode::get(VMContext, argTypeQuals));
1424   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1425     Fn->setMetadata("kernel_arg_name",
1426                     llvm::MDNode::get(VMContext, argNames));
1427 }
1428 
1429 /// Determines whether the language options require us to model
1430 /// unwind exceptions.  We treat -fexceptions as mandating this
1431 /// except under the fragile ObjC ABI with only ObjC exceptions
1432 /// enabled.  This means, for example, that C with -fexceptions
1433 /// enables this.
1434 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1435   // If exceptions are completely disabled, obviously this is false.
1436   if (!LangOpts.Exceptions) return false;
1437 
1438   // If C++ exceptions are enabled, this is true.
1439   if (LangOpts.CXXExceptions) return true;
1440 
1441   // If ObjC exceptions are enabled, this depends on the ABI.
1442   if (LangOpts.ObjCExceptions) {
1443     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1444   }
1445 
1446   return true;
1447 }
1448 
1449 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1450                                                       const CXXMethodDecl *MD) {
1451   // Check that the type metadata can ever actually be used by a call.
1452   if (!CGM.getCodeGenOpts().LTOUnit ||
1453       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1454     return false;
1455 
1456   // Only functions whose address can be taken with a member function pointer
1457   // need this sort of type metadata.
1458   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1459          !isa<CXXDestructorDecl>(MD);
1460 }
1461 
1462 std::vector<const CXXRecordDecl *>
1463 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1464   llvm::SetVector<const CXXRecordDecl *> MostBases;
1465 
1466   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1467   CollectMostBases = [&](const CXXRecordDecl *RD) {
1468     if (RD->getNumBases() == 0)
1469       MostBases.insert(RD);
1470     for (const CXXBaseSpecifier &B : RD->bases())
1471       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1472   };
1473   CollectMostBases(RD);
1474   return MostBases.takeVector();
1475 }
1476 
1477 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1478                                                            llvm::Function *F) {
1479   llvm::AttrBuilder B;
1480 
1481   if (CodeGenOpts.UnwindTables)
1482     B.addAttribute(llvm::Attribute::UWTable);
1483 
1484   if (!hasUnwindExceptions(LangOpts))
1485     B.addAttribute(llvm::Attribute::NoUnwind);
1486 
1487   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1488     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1489       B.addAttribute(llvm::Attribute::StackProtect);
1490     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1491       B.addAttribute(llvm::Attribute::StackProtectStrong);
1492     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1493       B.addAttribute(llvm::Attribute::StackProtectReq);
1494   }
1495 
1496   if (!D) {
1497     // If we don't have a declaration to control inlining, the function isn't
1498     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1499     // disabled, mark the function as noinline.
1500     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1501         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1502       B.addAttribute(llvm::Attribute::NoInline);
1503 
1504     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1505     return;
1506   }
1507 
1508   // Track whether we need to add the optnone LLVM attribute,
1509   // starting with the default for this optimization level.
1510   bool ShouldAddOptNone =
1511       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1512   // We can't add optnone in the following cases, it won't pass the verifier.
1513   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1514   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1515   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1516 
1517   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1518     B.addAttribute(llvm::Attribute::OptimizeNone);
1519 
1520     // OptimizeNone implies noinline; we should not be inlining such functions.
1521     B.addAttribute(llvm::Attribute::NoInline);
1522     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1523            "OptimizeNone and AlwaysInline on same function!");
1524 
1525     // We still need to handle naked functions even though optnone subsumes
1526     // much of their semantics.
1527     if (D->hasAttr<NakedAttr>())
1528       B.addAttribute(llvm::Attribute::Naked);
1529 
1530     // OptimizeNone wins over OptimizeForSize and MinSize.
1531     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1532     F->removeFnAttr(llvm::Attribute::MinSize);
1533   } else if (D->hasAttr<NakedAttr>()) {
1534     // Naked implies noinline: we should not be inlining such functions.
1535     B.addAttribute(llvm::Attribute::Naked);
1536     B.addAttribute(llvm::Attribute::NoInline);
1537   } else if (D->hasAttr<NoDuplicateAttr>()) {
1538     B.addAttribute(llvm::Attribute::NoDuplicate);
1539   } else if (D->hasAttr<NoInlineAttr>()) {
1540     B.addAttribute(llvm::Attribute::NoInline);
1541   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1542              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1543     // (noinline wins over always_inline, and we can't specify both in IR)
1544     B.addAttribute(llvm::Attribute::AlwaysInline);
1545   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1546     // If we're not inlining, then force everything that isn't always_inline to
1547     // carry an explicit noinline attribute.
1548     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1549       B.addAttribute(llvm::Attribute::NoInline);
1550   } else {
1551     // Otherwise, propagate the inline hint attribute and potentially use its
1552     // absence to mark things as noinline.
1553     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1554       // Search function and template pattern redeclarations for inline.
1555       auto CheckForInline = [](const FunctionDecl *FD) {
1556         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1557           return Redecl->isInlineSpecified();
1558         };
1559         if (any_of(FD->redecls(), CheckRedeclForInline))
1560           return true;
1561         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1562         if (!Pattern)
1563           return false;
1564         return any_of(Pattern->redecls(), CheckRedeclForInline);
1565       };
1566       if (CheckForInline(FD)) {
1567         B.addAttribute(llvm::Attribute::InlineHint);
1568       } else if (CodeGenOpts.getInlining() ==
1569                      CodeGenOptions::OnlyHintInlining &&
1570                  !FD->isInlined() &&
1571                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1572         B.addAttribute(llvm::Attribute::NoInline);
1573       }
1574     }
1575   }
1576 
1577   // Add other optimization related attributes if we are optimizing this
1578   // function.
1579   if (!D->hasAttr<OptimizeNoneAttr>()) {
1580     if (D->hasAttr<ColdAttr>()) {
1581       if (!ShouldAddOptNone)
1582         B.addAttribute(llvm::Attribute::OptimizeForSize);
1583       B.addAttribute(llvm::Attribute::Cold);
1584     }
1585 
1586     if (D->hasAttr<MinSizeAttr>())
1587       B.addAttribute(llvm::Attribute::MinSize);
1588   }
1589 
1590   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1591 
1592   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1593   if (alignment)
1594     F->setAlignment(alignment);
1595 
1596   if (!D->hasAttr<AlignedAttr>())
1597     if (LangOpts.FunctionAlignment)
1598       F->setAlignment(1 << LangOpts.FunctionAlignment);
1599 
1600   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1601   // reserve a bit for differentiating between virtual and non-virtual member
1602   // functions. If the current target's C++ ABI requires this and this is a
1603   // member function, set its alignment accordingly.
1604   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1605     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1606       F->setAlignment(2);
1607   }
1608 
1609   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1610   if (CodeGenOpts.SanitizeCfiCrossDso)
1611     if (auto *FD = dyn_cast<FunctionDecl>(D))
1612       CreateFunctionTypeMetadataForIcall(FD, F);
1613 
1614   // Emit type metadata on member functions for member function pointer checks.
1615   // These are only ever necessary on definitions; we're guaranteed that the
1616   // definition will be present in the LTO unit as a result of LTO visibility.
1617   auto *MD = dyn_cast<CXXMethodDecl>(D);
1618   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1619     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1620       llvm::Metadata *Id =
1621           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1622               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1623       F->addTypeMetadata(0, Id);
1624     }
1625   }
1626 }
1627 
1628 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1629   const Decl *D = GD.getDecl();
1630   if (dyn_cast_or_null<NamedDecl>(D))
1631     setGVProperties(GV, GD);
1632   else
1633     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1634 
1635   if (D && D->hasAttr<UsedAttr>())
1636     addUsedGlobal(GV);
1637 
1638   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1639     const auto *VD = cast<VarDecl>(D);
1640     if (VD->getType().isConstQualified() &&
1641         VD->getStorageDuration() == SD_Static)
1642       addUsedGlobal(GV);
1643   }
1644 }
1645 
1646 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1647                                                 llvm::AttrBuilder &Attrs) {
1648   // Add target-cpu and target-features attributes to functions. If
1649   // we have a decl for the function and it has a target attribute then
1650   // parse that and add it to the feature set.
1651   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1652   std::vector<std::string> Features;
1653   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1654   FD = FD ? FD->getMostRecentDecl() : FD;
1655   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1656   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1657   bool AddedAttr = false;
1658   if (TD || SD) {
1659     llvm::StringMap<bool> FeatureMap;
1660     getFunctionFeatureMap(FeatureMap, GD);
1661 
1662     // Produce the canonical string for this set of features.
1663     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1664       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1665 
1666     // Now add the target-cpu and target-features to the function.
1667     // While we populated the feature map above, we still need to
1668     // get and parse the target attribute so we can get the cpu for
1669     // the function.
1670     if (TD) {
1671       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1672       if (ParsedAttr.Architecture != "" &&
1673           getTarget().isValidCPUName(ParsedAttr.Architecture))
1674         TargetCPU = ParsedAttr.Architecture;
1675     }
1676   } else {
1677     // Otherwise just add the existing target cpu and target features to the
1678     // function.
1679     Features = getTarget().getTargetOpts().Features;
1680   }
1681 
1682   if (TargetCPU != "") {
1683     Attrs.addAttribute("target-cpu", TargetCPU);
1684     AddedAttr = true;
1685   }
1686   if (!Features.empty()) {
1687     llvm::sort(Features);
1688     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1689     AddedAttr = true;
1690   }
1691 
1692   return AddedAttr;
1693 }
1694 
1695 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1696                                           llvm::GlobalObject *GO) {
1697   const Decl *D = GD.getDecl();
1698   SetCommonAttributes(GD, GO);
1699 
1700   if (D) {
1701     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1702       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1703         GV->addAttribute("bss-section", SA->getName());
1704       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1705         GV->addAttribute("data-section", SA->getName());
1706       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1707         GV->addAttribute("rodata-section", SA->getName());
1708     }
1709 
1710     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1711       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1712         if (!D->getAttr<SectionAttr>())
1713           F->addFnAttr("implicit-section-name", SA->getName());
1714 
1715       llvm::AttrBuilder Attrs;
1716       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1717         // We know that GetCPUAndFeaturesAttributes will always have the
1718         // newest set, since it has the newest possible FunctionDecl, so the
1719         // new ones should replace the old.
1720         F->removeFnAttr("target-cpu");
1721         F->removeFnAttr("target-features");
1722         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1723       }
1724     }
1725 
1726     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1727       GO->setSection(CSA->getName());
1728     else if (const auto *SA = D->getAttr<SectionAttr>())
1729       GO->setSection(SA->getName());
1730   }
1731 
1732   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1733 }
1734 
1735 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1736                                                   llvm::Function *F,
1737                                                   const CGFunctionInfo &FI) {
1738   const Decl *D = GD.getDecl();
1739   SetLLVMFunctionAttributes(GD, FI, F);
1740   SetLLVMFunctionAttributesForDefinition(D, F);
1741 
1742   F->setLinkage(llvm::Function::InternalLinkage);
1743 
1744   setNonAliasAttributes(GD, F);
1745 }
1746 
1747 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1748   // Set linkage and visibility in case we never see a definition.
1749   LinkageInfo LV = ND->getLinkageAndVisibility();
1750   // Don't set internal linkage on declarations.
1751   // "extern_weak" is overloaded in LLVM; we probably should have
1752   // separate linkage types for this.
1753   if (isExternallyVisible(LV.getLinkage()) &&
1754       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1755     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1756 }
1757 
1758 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1759                                                        llvm::Function *F) {
1760   // Only if we are checking indirect calls.
1761   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1762     return;
1763 
1764   // Non-static class methods are handled via vtable or member function pointer
1765   // checks elsewhere.
1766   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1767     return;
1768 
1769   // Additionally, if building with cross-DSO support...
1770   if (CodeGenOpts.SanitizeCfiCrossDso) {
1771     // Skip available_externally functions. They won't be codegen'ed in the
1772     // current module anyway.
1773     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1774       return;
1775   }
1776 
1777   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1778   F->addTypeMetadata(0, MD);
1779   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1780 
1781   // Emit a hash-based bit set entry for cross-DSO calls.
1782   if (CodeGenOpts.SanitizeCfiCrossDso)
1783     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1784       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1785 }
1786 
1787 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1788                                           bool IsIncompleteFunction,
1789                                           bool IsThunk) {
1790 
1791   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1792     // If this is an intrinsic function, set the function's attributes
1793     // to the intrinsic's attributes.
1794     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1795     return;
1796   }
1797 
1798   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1799 
1800   if (!IsIncompleteFunction)
1801     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1802 
1803   // Add the Returned attribute for "this", except for iOS 5 and earlier
1804   // where substantial code, including the libstdc++ dylib, was compiled with
1805   // GCC and does not actually return "this".
1806   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1807       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1808     assert(!F->arg_empty() &&
1809            F->arg_begin()->getType()
1810              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1811            "unexpected this return");
1812     F->addAttribute(1, llvm::Attribute::Returned);
1813   }
1814 
1815   // Only a few attributes are set on declarations; these may later be
1816   // overridden by a definition.
1817 
1818   setLinkageForGV(F, FD);
1819   setGVProperties(F, FD);
1820 
1821   // Setup target-specific attributes.
1822   if (!IsIncompleteFunction && F->isDeclaration())
1823     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1824 
1825   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1826     F->setSection(CSA->getName());
1827   else if (const auto *SA = FD->getAttr<SectionAttr>())
1828      F->setSection(SA->getName());
1829 
1830   if (FD->isReplaceableGlobalAllocationFunction()) {
1831     // A replaceable global allocation function does not act like a builtin by
1832     // default, only if it is invoked by a new-expression or delete-expression.
1833     F->addAttribute(llvm::AttributeList::FunctionIndex,
1834                     llvm::Attribute::NoBuiltin);
1835 
1836     // A sane operator new returns a non-aliasing pointer.
1837     // FIXME: Also add NonNull attribute to the return value
1838     // for the non-nothrow forms?
1839     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1840     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1841         (Kind == OO_New || Kind == OO_Array_New))
1842       F->addAttribute(llvm::AttributeList::ReturnIndex,
1843                       llvm::Attribute::NoAlias);
1844   }
1845 
1846   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1847     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1848   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1849     if (MD->isVirtual())
1850       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1851 
1852   // Don't emit entries for function declarations in the cross-DSO mode. This
1853   // is handled with better precision by the receiving DSO.
1854   if (!CodeGenOpts.SanitizeCfiCrossDso)
1855     CreateFunctionTypeMetadataForIcall(FD, F);
1856 
1857   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1858     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1859 
1860   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1861     // Annotate the callback behavior as metadata:
1862     //  - The callback callee (as argument number).
1863     //  - The callback payloads (as argument numbers).
1864     llvm::LLVMContext &Ctx = F->getContext();
1865     llvm::MDBuilder MDB(Ctx);
1866 
1867     // The payload indices are all but the first one in the encoding. The first
1868     // identifies the callback callee.
1869     int CalleeIdx = *CB->encoding_begin();
1870     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1871     F->addMetadata(llvm::LLVMContext::MD_callback,
1872                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1873                                                CalleeIdx, PayloadIndices,
1874                                                /* VarArgsArePassed */ false)}));
1875   }
1876 }
1877 
1878 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1879   assert(!GV->isDeclaration() &&
1880          "Only globals with definition can force usage.");
1881   LLVMUsed.emplace_back(GV);
1882 }
1883 
1884 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1885   assert(!GV->isDeclaration() &&
1886          "Only globals with definition can force usage.");
1887   LLVMCompilerUsed.emplace_back(GV);
1888 }
1889 
1890 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1891                      std::vector<llvm::WeakTrackingVH> &List) {
1892   // Don't create llvm.used if there is no need.
1893   if (List.empty())
1894     return;
1895 
1896   // Convert List to what ConstantArray needs.
1897   SmallVector<llvm::Constant*, 8> UsedArray;
1898   UsedArray.resize(List.size());
1899   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1900     UsedArray[i] =
1901         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1902             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1903   }
1904 
1905   if (UsedArray.empty())
1906     return;
1907   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1908 
1909   auto *GV = new llvm::GlobalVariable(
1910       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1911       llvm::ConstantArray::get(ATy, UsedArray), Name);
1912 
1913   GV->setSection("llvm.metadata");
1914 }
1915 
1916 void CodeGenModule::emitLLVMUsed() {
1917   emitUsed(*this, "llvm.used", LLVMUsed);
1918   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1919 }
1920 
1921 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1922   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1923   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1924 }
1925 
1926 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1927   llvm::SmallString<32> Opt;
1928   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1929   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1930   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1931 }
1932 
1933 void CodeGenModule::AddDependentLib(StringRef Lib) {
1934   auto &C = getLLVMContext();
1935   if (getTarget().getTriple().isOSBinFormatELF()) {
1936       ELFDependentLibraries.push_back(
1937         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1938     return;
1939   }
1940 
1941   llvm::SmallString<24> Opt;
1942   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1943   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1944   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1945 }
1946 
1947 /// Add link options implied by the given module, including modules
1948 /// it depends on, using a postorder walk.
1949 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1950                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1951                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1952   // Import this module's parent.
1953   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1954     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1955   }
1956 
1957   // Import this module's dependencies.
1958   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1959     if (Visited.insert(Mod->Imports[I - 1]).second)
1960       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1961   }
1962 
1963   // Add linker options to link against the libraries/frameworks
1964   // described by this module.
1965   llvm::LLVMContext &Context = CGM.getLLVMContext();
1966   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1967 
1968   // For modules that use export_as for linking, use that module
1969   // name instead.
1970   if (Mod->UseExportAsModuleLinkName)
1971     return;
1972 
1973   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1974     // Link against a framework.  Frameworks are currently Darwin only, so we
1975     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1976     if (Mod->LinkLibraries[I-1].IsFramework) {
1977       llvm::Metadata *Args[2] = {
1978           llvm::MDString::get(Context, "-framework"),
1979           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1980 
1981       Metadata.push_back(llvm::MDNode::get(Context, Args));
1982       continue;
1983     }
1984 
1985     // Link against a library.
1986     if (IsELF) {
1987       llvm::Metadata *Args[2] = {
1988           llvm::MDString::get(Context, "lib"),
1989           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1990       };
1991       Metadata.push_back(llvm::MDNode::get(Context, Args));
1992     } else {
1993       llvm::SmallString<24> Opt;
1994       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1995           Mod->LinkLibraries[I - 1].Library, Opt);
1996       auto *OptString = llvm::MDString::get(Context, Opt);
1997       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1998     }
1999   }
2000 }
2001 
2002 void CodeGenModule::EmitModuleLinkOptions() {
2003   // Collect the set of all of the modules we want to visit to emit link
2004   // options, which is essentially the imported modules and all of their
2005   // non-explicit child modules.
2006   llvm::SetVector<clang::Module *> LinkModules;
2007   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2008   SmallVector<clang::Module *, 16> Stack;
2009 
2010   // Seed the stack with imported modules.
2011   for (Module *M : ImportedModules) {
2012     // Do not add any link flags when an implementation TU of a module imports
2013     // a header of that same module.
2014     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2015         !getLangOpts().isCompilingModule())
2016       continue;
2017     if (Visited.insert(M).second)
2018       Stack.push_back(M);
2019   }
2020 
2021   // Find all of the modules to import, making a little effort to prune
2022   // non-leaf modules.
2023   while (!Stack.empty()) {
2024     clang::Module *Mod = Stack.pop_back_val();
2025 
2026     bool AnyChildren = false;
2027 
2028     // Visit the submodules of this module.
2029     for (const auto &SM : Mod->submodules()) {
2030       // Skip explicit children; they need to be explicitly imported to be
2031       // linked against.
2032       if (SM->IsExplicit)
2033         continue;
2034 
2035       if (Visited.insert(SM).second) {
2036         Stack.push_back(SM);
2037         AnyChildren = true;
2038       }
2039     }
2040 
2041     // We didn't find any children, so add this module to the list of
2042     // modules to link against.
2043     if (!AnyChildren) {
2044       LinkModules.insert(Mod);
2045     }
2046   }
2047 
2048   // Add link options for all of the imported modules in reverse topological
2049   // order.  We don't do anything to try to order import link flags with respect
2050   // to linker options inserted by things like #pragma comment().
2051   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2052   Visited.clear();
2053   for (Module *M : LinkModules)
2054     if (Visited.insert(M).second)
2055       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2056   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2057   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2058 
2059   // Add the linker options metadata flag.
2060   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2061   for (auto *MD : LinkerOptionsMetadata)
2062     NMD->addOperand(MD);
2063 }
2064 
2065 void CodeGenModule::EmitDeferred() {
2066   // Emit deferred declare target declarations.
2067   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2068     getOpenMPRuntime().emitDeferredTargetDecls();
2069 
2070   // Emit code for any potentially referenced deferred decls.  Since a
2071   // previously unused static decl may become used during the generation of code
2072   // for a static function, iterate until no changes are made.
2073 
2074   if (!DeferredVTables.empty()) {
2075     EmitDeferredVTables();
2076 
2077     // Emitting a vtable doesn't directly cause more vtables to
2078     // become deferred, although it can cause functions to be
2079     // emitted that then need those vtables.
2080     assert(DeferredVTables.empty());
2081   }
2082 
2083   // Stop if we're out of both deferred vtables and deferred declarations.
2084   if (DeferredDeclsToEmit.empty())
2085     return;
2086 
2087   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2088   // work, it will not interfere with this.
2089   std::vector<GlobalDecl> CurDeclsToEmit;
2090   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2091 
2092   for (GlobalDecl &D : CurDeclsToEmit) {
2093     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2094     // to get GlobalValue with exactly the type we need, not something that
2095     // might had been created for another decl with the same mangled name but
2096     // different type.
2097     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2098         GetAddrOfGlobal(D, ForDefinition));
2099 
2100     // In case of different address spaces, we may still get a cast, even with
2101     // IsForDefinition equal to true. Query mangled names table to get
2102     // GlobalValue.
2103     if (!GV)
2104       GV = GetGlobalValue(getMangledName(D));
2105 
2106     // Make sure GetGlobalValue returned non-null.
2107     assert(GV);
2108 
2109     // Check to see if we've already emitted this.  This is necessary
2110     // for a couple of reasons: first, decls can end up in the
2111     // deferred-decls queue multiple times, and second, decls can end
2112     // up with definitions in unusual ways (e.g. by an extern inline
2113     // function acquiring a strong function redefinition).  Just
2114     // ignore these cases.
2115     if (!GV->isDeclaration())
2116       continue;
2117 
2118     // Otherwise, emit the definition and move on to the next one.
2119     EmitGlobalDefinition(D, GV);
2120 
2121     // If we found out that we need to emit more decls, do that recursively.
2122     // This has the advantage that the decls are emitted in a DFS and related
2123     // ones are close together, which is convenient for testing.
2124     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2125       EmitDeferred();
2126       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2127     }
2128   }
2129 }
2130 
2131 void CodeGenModule::EmitVTablesOpportunistically() {
2132   // Try to emit external vtables as available_externally if they have emitted
2133   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2134   // is not allowed to create new references to things that need to be emitted
2135   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2136 
2137   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2138          && "Only emit opportunistic vtables with optimizations");
2139 
2140   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2141     assert(getVTables().isVTableExternal(RD) &&
2142            "This queue should only contain external vtables");
2143     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2144       VTables.GenerateClassData(RD);
2145   }
2146   OpportunisticVTables.clear();
2147 }
2148 
2149 void CodeGenModule::EmitGlobalAnnotations() {
2150   if (Annotations.empty())
2151     return;
2152 
2153   // Create a new global variable for the ConstantStruct in the Module.
2154   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2155     Annotations[0]->getType(), Annotations.size()), Annotations);
2156   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2157                                       llvm::GlobalValue::AppendingLinkage,
2158                                       Array, "llvm.global.annotations");
2159   gv->setSection(AnnotationSection);
2160 }
2161 
2162 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2163   llvm::Constant *&AStr = AnnotationStrings[Str];
2164   if (AStr)
2165     return AStr;
2166 
2167   // Not found yet, create a new global.
2168   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2169   auto *gv =
2170       new llvm::GlobalVariable(getModule(), s->getType(), true,
2171                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2172   gv->setSection(AnnotationSection);
2173   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2174   AStr = gv;
2175   return gv;
2176 }
2177 
2178 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2179   SourceManager &SM = getContext().getSourceManager();
2180   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2181   if (PLoc.isValid())
2182     return EmitAnnotationString(PLoc.getFilename());
2183   return EmitAnnotationString(SM.getBufferName(Loc));
2184 }
2185 
2186 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2187   SourceManager &SM = getContext().getSourceManager();
2188   PresumedLoc PLoc = SM.getPresumedLoc(L);
2189   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2190     SM.getExpansionLineNumber(L);
2191   return llvm::ConstantInt::get(Int32Ty, LineNo);
2192 }
2193 
2194 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2195                                                 const AnnotateAttr *AA,
2196                                                 SourceLocation L) {
2197   // Get the globals for file name, annotation, and the line number.
2198   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2199                  *UnitGV = EmitAnnotationUnit(L),
2200                  *LineNoCst = EmitAnnotationLineNo(L);
2201 
2202   // Create the ConstantStruct for the global annotation.
2203   llvm::Constant *Fields[4] = {
2204     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2205     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2206     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2207     LineNoCst
2208   };
2209   return llvm::ConstantStruct::getAnon(Fields);
2210 }
2211 
2212 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2213                                          llvm::GlobalValue *GV) {
2214   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2215   // Get the struct elements for these annotations.
2216   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2217     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2218 }
2219 
2220 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2221                                            llvm::Function *Fn,
2222                                            SourceLocation Loc) const {
2223   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2224   // Blacklist by function name.
2225   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2226     return true;
2227   // Blacklist by location.
2228   if (Loc.isValid())
2229     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2230   // If location is unknown, this may be a compiler-generated function. Assume
2231   // it's located in the main file.
2232   auto &SM = Context.getSourceManager();
2233   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2234     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2235   }
2236   return false;
2237 }
2238 
2239 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2240                                            SourceLocation Loc, QualType Ty,
2241                                            StringRef Category) const {
2242   // For now globals can be blacklisted only in ASan and KASan.
2243   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
2244       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2245        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
2246   if (!EnabledAsanMask)
2247     return false;
2248   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2249   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2250     return true;
2251   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2252     return true;
2253   // Check global type.
2254   if (!Ty.isNull()) {
2255     // Drill down the array types: if global variable of a fixed type is
2256     // blacklisted, we also don't instrument arrays of them.
2257     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2258       Ty = AT->getElementType();
2259     Ty = Ty.getCanonicalType().getUnqualifiedType();
2260     // We allow to blacklist only record types (classes, structs etc.)
2261     if (Ty->isRecordType()) {
2262       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2263       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2264         return true;
2265     }
2266   }
2267   return false;
2268 }
2269 
2270 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2271                                    StringRef Category) const {
2272   const auto &XRayFilter = getContext().getXRayFilter();
2273   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2274   auto Attr = ImbueAttr::NONE;
2275   if (Loc.isValid())
2276     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2277   if (Attr == ImbueAttr::NONE)
2278     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2279   switch (Attr) {
2280   case ImbueAttr::NONE:
2281     return false;
2282   case ImbueAttr::ALWAYS:
2283     Fn->addFnAttr("function-instrument", "xray-always");
2284     break;
2285   case ImbueAttr::ALWAYS_ARG1:
2286     Fn->addFnAttr("function-instrument", "xray-always");
2287     Fn->addFnAttr("xray-log-args", "1");
2288     break;
2289   case ImbueAttr::NEVER:
2290     Fn->addFnAttr("function-instrument", "xray-never");
2291     break;
2292   }
2293   return true;
2294 }
2295 
2296 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2297   // Never defer when EmitAllDecls is specified.
2298   if (LangOpts.EmitAllDecls)
2299     return true;
2300 
2301   if (CodeGenOpts.KeepStaticConsts) {
2302     const auto *VD = dyn_cast<VarDecl>(Global);
2303     if (VD && VD->getType().isConstQualified() &&
2304         VD->getStorageDuration() == SD_Static)
2305       return true;
2306   }
2307 
2308   return getContext().DeclMustBeEmitted(Global);
2309 }
2310 
2311 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2312   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2313     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2314       // Implicit template instantiations may change linkage if they are later
2315       // explicitly instantiated, so they should not be emitted eagerly.
2316       return false;
2317   if (const auto *VD = dyn_cast<VarDecl>(Global))
2318     if (Context.getInlineVariableDefinitionKind(VD) ==
2319         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2320       // A definition of an inline constexpr static data member may change
2321       // linkage later if it's redeclared outside the class.
2322       return false;
2323   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2324   // codegen for global variables, because they may be marked as threadprivate.
2325   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2326       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2327       !isTypeConstant(Global->getType(), false) &&
2328       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2329     return false;
2330 
2331   return true;
2332 }
2333 
2334 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2335     const CXXUuidofExpr* E) {
2336   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2337   // well-formed.
2338   StringRef Uuid = E->getUuidStr();
2339   std::string Name = "_GUID_" + Uuid.lower();
2340   std::replace(Name.begin(), Name.end(), '-', '_');
2341 
2342   // The UUID descriptor should be pointer aligned.
2343   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2344 
2345   // Look for an existing global.
2346   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2347     return ConstantAddress(GV, Alignment);
2348 
2349   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2350   assert(Init && "failed to initialize as constant");
2351 
2352   auto *GV = new llvm::GlobalVariable(
2353       getModule(), Init->getType(),
2354       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2355   if (supportsCOMDAT())
2356     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2357   setDSOLocal(GV);
2358   return ConstantAddress(GV, Alignment);
2359 }
2360 
2361 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2362   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2363   assert(AA && "No alias?");
2364 
2365   CharUnits Alignment = getContext().getDeclAlign(VD);
2366   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2367 
2368   // See if there is already something with the target's name in the module.
2369   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2370   if (Entry) {
2371     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2372     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2373     return ConstantAddress(Ptr, Alignment);
2374   }
2375 
2376   llvm::Constant *Aliasee;
2377   if (isa<llvm::FunctionType>(DeclTy))
2378     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2379                                       GlobalDecl(cast<FunctionDecl>(VD)),
2380                                       /*ForVTable=*/false);
2381   else
2382     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2383                                     llvm::PointerType::getUnqual(DeclTy),
2384                                     nullptr);
2385 
2386   auto *F = cast<llvm::GlobalValue>(Aliasee);
2387   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2388   WeakRefReferences.insert(F);
2389 
2390   return ConstantAddress(Aliasee, Alignment);
2391 }
2392 
2393 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2394   const auto *Global = cast<ValueDecl>(GD.getDecl());
2395 
2396   // Weak references don't produce any output by themselves.
2397   if (Global->hasAttr<WeakRefAttr>())
2398     return;
2399 
2400   // If this is an alias definition (which otherwise looks like a declaration)
2401   // emit it now.
2402   if (Global->hasAttr<AliasAttr>())
2403     return EmitAliasDefinition(GD);
2404 
2405   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2406   if (Global->hasAttr<IFuncAttr>())
2407     return emitIFuncDefinition(GD);
2408 
2409   // If this is a cpu_dispatch multiversion function, emit the resolver.
2410   if (Global->hasAttr<CPUDispatchAttr>())
2411     return emitCPUDispatchDefinition(GD);
2412 
2413   // If this is CUDA, be selective about which declarations we emit.
2414   if (LangOpts.CUDA) {
2415     if (LangOpts.CUDAIsDevice) {
2416       if (!Global->hasAttr<CUDADeviceAttr>() &&
2417           !Global->hasAttr<CUDAGlobalAttr>() &&
2418           !Global->hasAttr<CUDAConstantAttr>() &&
2419           !Global->hasAttr<CUDASharedAttr>())
2420         return;
2421     } else {
2422       // We need to emit host-side 'shadows' for all global
2423       // device-side variables because the CUDA runtime needs their
2424       // size and host-side address in order to provide access to
2425       // their device-side incarnations.
2426 
2427       // So device-only functions are the only things we skip.
2428       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2429           Global->hasAttr<CUDADeviceAttr>())
2430         return;
2431 
2432       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2433              "Expected Variable or Function");
2434     }
2435   }
2436 
2437   if (LangOpts.OpenMP) {
2438     // If this is OpenMP device, check if it is legal to emit this global
2439     // normally.
2440     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2441       return;
2442     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2443       if (MustBeEmitted(Global))
2444         EmitOMPDeclareReduction(DRD);
2445       return;
2446     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2447       if (MustBeEmitted(Global))
2448         EmitOMPDeclareMapper(DMD);
2449       return;
2450     }
2451   }
2452 
2453   // Ignore declarations, they will be emitted on their first use.
2454   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2455     // Forward declarations are emitted lazily on first use.
2456     if (!FD->doesThisDeclarationHaveABody()) {
2457       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2458         return;
2459 
2460       StringRef MangledName = getMangledName(GD);
2461 
2462       // Compute the function info and LLVM type.
2463       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2464       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2465 
2466       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2467                               /*DontDefer=*/false);
2468       return;
2469     }
2470   } else {
2471     const auto *VD = cast<VarDecl>(Global);
2472     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2473     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2474         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2475       if (LangOpts.OpenMP) {
2476         // Emit declaration of the must-be-emitted declare target variable.
2477         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2478                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2479           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2480             (void)GetAddrOfGlobalVar(VD);
2481           } else {
2482             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2483                    "link claue expected.");
2484             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2485           }
2486           return;
2487         }
2488       }
2489       // If this declaration may have caused an inline variable definition to
2490       // change linkage, make sure that it's emitted.
2491       if (Context.getInlineVariableDefinitionKind(VD) ==
2492           ASTContext::InlineVariableDefinitionKind::Strong)
2493         GetAddrOfGlobalVar(VD);
2494       return;
2495     }
2496   }
2497 
2498   // Defer code generation to first use when possible, e.g. if this is an inline
2499   // function. If the global must always be emitted, do it eagerly if possible
2500   // to benefit from cache locality.
2501   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2502     // Emit the definition if it can't be deferred.
2503     EmitGlobalDefinition(GD);
2504     return;
2505   }
2506 
2507   // If we're deferring emission of a C++ variable with an
2508   // initializer, remember the order in which it appeared in the file.
2509   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2510       cast<VarDecl>(Global)->hasInit()) {
2511     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2512     CXXGlobalInits.push_back(nullptr);
2513   }
2514 
2515   StringRef MangledName = getMangledName(GD);
2516   if (GetGlobalValue(MangledName) != nullptr) {
2517     // The value has already been used and should therefore be emitted.
2518     addDeferredDeclToEmit(GD);
2519   } else if (MustBeEmitted(Global)) {
2520     // The value must be emitted, but cannot be emitted eagerly.
2521     assert(!MayBeEmittedEagerly(Global));
2522     addDeferredDeclToEmit(GD);
2523   } else {
2524     // Otherwise, remember that we saw a deferred decl with this name.  The
2525     // first use of the mangled name will cause it to move into
2526     // DeferredDeclsToEmit.
2527     DeferredDecls[MangledName] = GD;
2528   }
2529 }
2530 
2531 // Check if T is a class type with a destructor that's not dllimport.
2532 static bool HasNonDllImportDtor(QualType T) {
2533   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2534     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2535       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2536         return true;
2537 
2538   return false;
2539 }
2540 
2541 namespace {
2542   struct FunctionIsDirectlyRecursive
2543       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2544     const StringRef Name;
2545     const Builtin::Context &BI;
2546     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2547         : Name(N), BI(C) {}
2548 
2549     bool VisitCallExpr(const CallExpr *E) {
2550       const FunctionDecl *FD = E->getDirectCallee();
2551       if (!FD)
2552         return false;
2553       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2554       if (Attr && Name == Attr->getLabel())
2555         return true;
2556       unsigned BuiltinID = FD->getBuiltinID();
2557       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2558         return false;
2559       StringRef BuiltinName = BI.getName(BuiltinID);
2560       if (BuiltinName.startswith("__builtin_") &&
2561           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2562         return true;
2563       }
2564       return false;
2565     }
2566 
2567     bool VisitStmt(const Stmt *S) {
2568       for (const Stmt *Child : S->children())
2569         if (Child && this->Visit(Child))
2570           return true;
2571       return false;
2572     }
2573   };
2574 
2575   // Make sure we're not referencing non-imported vars or functions.
2576   struct DLLImportFunctionVisitor
2577       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2578     bool SafeToInline = true;
2579 
2580     bool shouldVisitImplicitCode() const { return true; }
2581 
2582     bool VisitVarDecl(VarDecl *VD) {
2583       if (VD->getTLSKind()) {
2584         // A thread-local variable cannot be imported.
2585         SafeToInline = false;
2586         return SafeToInline;
2587       }
2588 
2589       // A variable definition might imply a destructor call.
2590       if (VD->isThisDeclarationADefinition())
2591         SafeToInline = !HasNonDllImportDtor(VD->getType());
2592 
2593       return SafeToInline;
2594     }
2595 
2596     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2597       if (const auto *D = E->getTemporary()->getDestructor())
2598         SafeToInline = D->hasAttr<DLLImportAttr>();
2599       return SafeToInline;
2600     }
2601 
2602     bool VisitDeclRefExpr(DeclRefExpr *E) {
2603       ValueDecl *VD = E->getDecl();
2604       if (isa<FunctionDecl>(VD))
2605         SafeToInline = VD->hasAttr<DLLImportAttr>();
2606       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2607         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2608       return SafeToInline;
2609     }
2610 
2611     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2612       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2613       return SafeToInline;
2614     }
2615 
2616     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2617       CXXMethodDecl *M = E->getMethodDecl();
2618       if (!M) {
2619         // Call through a pointer to member function. This is safe to inline.
2620         SafeToInline = true;
2621       } else {
2622         SafeToInline = M->hasAttr<DLLImportAttr>();
2623       }
2624       return SafeToInline;
2625     }
2626 
2627     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2628       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2629       return SafeToInline;
2630     }
2631 
2632     bool VisitCXXNewExpr(CXXNewExpr *E) {
2633       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2634       return SafeToInline;
2635     }
2636   };
2637 }
2638 
2639 // isTriviallyRecursive - Check if this function calls another
2640 // decl that, because of the asm attribute or the other decl being a builtin,
2641 // ends up pointing to itself.
2642 bool
2643 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2644   StringRef Name;
2645   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2646     // asm labels are a special kind of mangling we have to support.
2647     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2648     if (!Attr)
2649       return false;
2650     Name = Attr->getLabel();
2651   } else {
2652     Name = FD->getName();
2653   }
2654 
2655   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2656   const Stmt *Body = FD->getBody();
2657   return Body ? Walker.Visit(Body) : false;
2658 }
2659 
2660 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2661   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2662     return true;
2663   const auto *F = cast<FunctionDecl>(GD.getDecl());
2664   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2665     return false;
2666 
2667   if (F->hasAttr<DLLImportAttr>()) {
2668     // Check whether it would be safe to inline this dllimport function.
2669     DLLImportFunctionVisitor Visitor;
2670     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2671     if (!Visitor.SafeToInline)
2672       return false;
2673 
2674     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2675       // Implicit destructor invocations aren't captured in the AST, so the
2676       // check above can't see them. Check for them manually here.
2677       for (const Decl *Member : Dtor->getParent()->decls())
2678         if (isa<FieldDecl>(Member))
2679           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2680             return false;
2681       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2682         if (HasNonDllImportDtor(B.getType()))
2683           return false;
2684     }
2685   }
2686 
2687   // PR9614. Avoid cases where the source code is lying to us. An available
2688   // externally function should have an equivalent function somewhere else,
2689   // but a function that calls itself is clearly not equivalent to the real
2690   // implementation.
2691   // This happens in glibc's btowc and in some configure checks.
2692   return !isTriviallyRecursive(F);
2693 }
2694 
2695 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2696   return CodeGenOpts.OptimizationLevel > 0;
2697 }
2698 
2699 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2700                                                        llvm::GlobalValue *GV) {
2701   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2702 
2703   if (FD->isCPUSpecificMultiVersion()) {
2704     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2705     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2706       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2707     // Requires multiple emits.
2708   } else
2709     EmitGlobalFunctionDefinition(GD, GV);
2710 }
2711 
2712 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2713   const auto *D = cast<ValueDecl>(GD.getDecl());
2714 
2715   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2716                                  Context.getSourceManager(),
2717                                  "Generating code for declaration");
2718 
2719   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2720     // At -O0, don't generate IR for functions with available_externally
2721     // linkage.
2722     if (!shouldEmitFunction(GD))
2723       return;
2724 
2725     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2726       std::string Name;
2727       llvm::raw_string_ostream OS(Name);
2728       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2729                                /*Qualified=*/true);
2730       return Name;
2731     });
2732 
2733     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2734       // Make sure to emit the definition(s) before we emit the thunks.
2735       // This is necessary for the generation of certain thunks.
2736       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2737         ABI->emitCXXStructor(GD);
2738       else if (FD->isMultiVersion())
2739         EmitMultiVersionFunctionDefinition(GD, GV);
2740       else
2741         EmitGlobalFunctionDefinition(GD, GV);
2742 
2743       if (Method->isVirtual())
2744         getVTables().EmitThunks(GD);
2745 
2746       return;
2747     }
2748 
2749     if (FD->isMultiVersion())
2750       return EmitMultiVersionFunctionDefinition(GD, GV);
2751     return EmitGlobalFunctionDefinition(GD, GV);
2752   }
2753 
2754   if (const auto *VD = dyn_cast<VarDecl>(D))
2755     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2756 
2757   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2758 }
2759 
2760 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2761                                                       llvm::Function *NewFn);
2762 
2763 static unsigned
2764 TargetMVPriority(const TargetInfo &TI,
2765                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2766   unsigned Priority = 0;
2767   for (StringRef Feat : RO.Conditions.Features)
2768     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2769 
2770   if (!RO.Conditions.Architecture.empty())
2771     Priority = std::max(
2772         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2773   return Priority;
2774 }
2775 
2776 void CodeGenModule::emitMultiVersionFunctions() {
2777   for (GlobalDecl GD : MultiVersionFuncs) {
2778     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2779     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2780     getContext().forEachMultiversionedFunctionVersion(
2781         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2782           GlobalDecl CurGD{
2783               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2784           StringRef MangledName = getMangledName(CurGD);
2785           llvm::Constant *Func = GetGlobalValue(MangledName);
2786           if (!Func) {
2787             if (CurFD->isDefined()) {
2788               EmitGlobalFunctionDefinition(CurGD, nullptr);
2789               Func = GetGlobalValue(MangledName);
2790             } else {
2791               const CGFunctionInfo &FI =
2792                   getTypes().arrangeGlobalDeclaration(GD);
2793               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2794               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2795                                        /*DontDefer=*/false, ForDefinition);
2796             }
2797             assert(Func && "This should have just been created");
2798           }
2799 
2800           const auto *TA = CurFD->getAttr<TargetAttr>();
2801           llvm::SmallVector<StringRef, 8> Feats;
2802           TA->getAddedFeatures(Feats);
2803 
2804           Options.emplace_back(cast<llvm::Function>(Func),
2805                                TA->getArchitecture(), Feats);
2806         });
2807 
2808     llvm::Function *ResolverFunc;
2809     const TargetInfo &TI = getTarget();
2810 
2811     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2812       ResolverFunc = cast<llvm::Function>(
2813           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2814     else
2815       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2816 
2817     if (supportsCOMDAT())
2818       ResolverFunc->setComdat(
2819           getModule().getOrInsertComdat(ResolverFunc->getName()));
2820 
2821     llvm::stable_sort(
2822         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2823                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2824           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2825         });
2826     CodeGenFunction CGF(*this);
2827     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2828   }
2829 }
2830 
2831 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2832   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2833   assert(FD && "Not a FunctionDecl?");
2834   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2835   assert(DD && "Not a cpu_dispatch Function?");
2836   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2837 
2838   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2839     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2840     DeclTy = getTypes().GetFunctionType(FInfo);
2841   }
2842 
2843   StringRef ResolverName = getMangledName(GD);
2844 
2845   llvm::Type *ResolverType;
2846   GlobalDecl ResolverGD;
2847   if (getTarget().supportsIFunc())
2848     ResolverType = llvm::FunctionType::get(
2849         llvm::PointerType::get(DeclTy,
2850                                Context.getTargetAddressSpace(FD->getType())),
2851         false);
2852   else {
2853     ResolverType = DeclTy;
2854     ResolverGD = GD;
2855   }
2856 
2857   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2858       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2859 
2860   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2861   const TargetInfo &Target = getTarget();
2862   unsigned Index = 0;
2863   for (const IdentifierInfo *II : DD->cpus()) {
2864     // Get the name of the target function so we can look it up/create it.
2865     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2866                               getCPUSpecificMangling(*this, II->getName());
2867 
2868     llvm::Constant *Func = GetGlobalValue(MangledName);
2869 
2870     if (!Func) {
2871       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2872       if (ExistingDecl.getDecl() &&
2873           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2874         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2875         Func = GetGlobalValue(MangledName);
2876       } else {
2877         if (!ExistingDecl.getDecl())
2878           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2879 
2880       Func = GetOrCreateLLVMFunction(
2881           MangledName, DeclTy, ExistingDecl,
2882           /*ForVTable=*/false, /*DontDefer=*/true,
2883           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2884       }
2885     }
2886 
2887     llvm::SmallVector<StringRef, 32> Features;
2888     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2889     llvm::transform(Features, Features.begin(),
2890                     [](StringRef Str) { return Str.substr(1); });
2891     Features.erase(std::remove_if(
2892         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2893           return !Target.validateCpuSupports(Feat);
2894         }), Features.end());
2895     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2896     ++Index;
2897   }
2898 
2899   llvm::sort(
2900       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2901                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2902         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2903                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2904       });
2905 
2906   // If the list contains multiple 'default' versions, such as when it contains
2907   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2908   // always run on at least a 'pentium'). We do this by deleting the 'least
2909   // advanced' (read, lowest mangling letter).
2910   while (Options.size() > 1 &&
2911          CodeGenFunction::GetX86CpuSupportsMask(
2912              (Options.end() - 2)->Conditions.Features) == 0) {
2913     StringRef LHSName = (Options.end() - 2)->Function->getName();
2914     StringRef RHSName = (Options.end() - 1)->Function->getName();
2915     if (LHSName.compare(RHSName) < 0)
2916       Options.erase(Options.end() - 2);
2917     else
2918       Options.erase(Options.end() - 1);
2919   }
2920 
2921   CodeGenFunction CGF(*this);
2922   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2923 }
2924 
2925 /// If a dispatcher for the specified mangled name is not in the module, create
2926 /// and return an llvm Function with the specified type.
2927 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2928     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2929   std::string MangledName =
2930       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2931 
2932   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2933   // a separate resolver).
2934   std::string ResolverName = MangledName;
2935   if (getTarget().supportsIFunc())
2936     ResolverName += ".ifunc";
2937   else if (FD->isTargetMultiVersion())
2938     ResolverName += ".resolver";
2939 
2940   // If this already exists, just return that one.
2941   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2942     return ResolverGV;
2943 
2944   // Since this is the first time we've created this IFunc, make sure
2945   // that we put this multiversioned function into the list to be
2946   // replaced later if necessary (target multiversioning only).
2947   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2948     MultiVersionFuncs.push_back(GD);
2949 
2950   if (getTarget().supportsIFunc()) {
2951     llvm::Type *ResolverType = llvm::FunctionType::get(
2952         llvm::PointerType::get(
2953             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2954         false);
2955     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2956         MangledName + ".resolver", ResolverType, GlobalDecl{},
2957         /*ForVTable=*/false);
2958     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2959         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2960     GIF->setName(ResolverName);
2961     SetCommonAttributes(FD, GIF);
2962 
2963     return GIF;
2964   }
2965 
2966   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2967       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2968   assert(isa<llvm::GlobalValue>(Resolver) &&
2969          "Resolver should be created for the first time");
2970   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2971   return Resolver;
2972 }
2973 
2974 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2975 /// module, create and return an llvm Function with the specified type. If there
2976 /// is something in the module with the specified name, return it potentially
2977 /// bitcasted to the right type.
2978 ///
2979 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2980 /// to set the attributes on the function when it is first created.
2981 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2982     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2983     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2984     ForDefinition_t IsForDefinition) {
2985   const Decl *D = GD.getDecl();
2986 
2987   // Any attempts to use a MultiVersion function should result in retrieving
2988   // the iFunc instead. Name Mangling will handle the rest of the changes.
2989   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2990     // For the device mark the function as one that should be emitted.
2991     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2992         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2993         !DontDefer && !IsForDefinition) {
2994       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2995         GlobalDecl GDDef;
2996         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2997           GDDef = GlobalDecl(CD, GD.getCtorType());
2998         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2999           GDDef = GlobalDecl(DD, GD.getDtorType());
3000         else
3001           GDDef = GlobalDecl(FDDef);
3002         EmitGlobal(GDDef);
3003       }
3004     }
3005 
3006     if (FD->isMultiVersion()) {
3007       const auto *TA = FD->getAttr<TargetAttr>();
3008       if (TA && TA->isDefaultVersion())
3009         UpdateMultiVersionNames(GD, FD);
3010       if (!IsForDefinition)
3011         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3012     }
3013   }
3014 
3015   // Lookup the entry, lazily creating it if necessary.
3016   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3017   if (Entry) {
3018     if (WeakRefReferences.erase(Entry)) {
3019       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3020       if (FD && !FD->hasAttr<WeakAttr>())
3021         Entry->setLinkage(llvm::Function::ExternalLinkage);
3022     }
3023 
3024     // Handle dropped DLL attributes.
3025     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3026       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3027       setDSOLocal(Entry);
3028     }
3029 
3030     // If there are two attempts to define the same mangled name, issue an
3031     // error.
3032     if (IsForDefinition && !Entry->isDeclaration()) {
3033       GlobalDecl OtherGD;
3034       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3035       // to make sure that we issue an error only once.
3036       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3037           (GD.getCanonicalDecl().getDecl() !=
3038            OtherGD.getCanonicalDecl().getDecl()) &&
3039           DiagnosedConflictingDefinitions.insert(GD).second) {
3040         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3041             << MangledName;
3042         getDiags().Report(OtherGD.getDecl()->getLocation(),
3043                           diag::note_previous_definition);
3044       }
3045     }
3046 
3047     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3048         (Entry->getType()->getElementType() == Ty)) {
3049       return Entry;
3050     }
3051 
3052     // Make sure the result is of the correct type.
3053     // (If function is requested for a definition, we always need to create a new
3054     // function, not just return a bitcast.)
3055     if (!IsForDefinition)
3056       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3057   }
3058 
3059   // This function doesn't have a complete type (for example, the return
3060   // type is an incomplete struct). Use a fake type instead, and make
3061   // sure not to try to set attributes.
3062   bool IsIncompleteFunction = false;
3063 
3064   llvm::FunctionType *FTy;
3065   if (isa<llvm::FunctionType>(Ty)) {
3066     FTy = cast<llvm::FunctionType>(Ty);
3067   } else {
3068     FTy = llvm::FunctionType::get(VoidTy, false);
3069     IsIncompleteFunction = true;
3070   }
3071 
3072   llvm::Function *F =
3073       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3074                              Entry ? StringRef() : MangledName, &getModule());
3075 
3076   // If we already created a function with the same mangled name (but different
3077   // type) before, take its name and add it to the list of functions to be
3078   // replaced with F at the end of CodeGen.
3079   //
3080   // This happens if there is a prototype for a function (e.g. "int f()") and
3081   // then a definition of a different type (e.g. "int f(int x)").
3082   if (Entry) {
3083     F->takeName(Entry);
3084 
3085     // This might be an implementation of a function without a prototype, in
3086     // which case, try to do special replacement of calls which match the new
3087     // prototype.  The really key thing here is that we also potentially drop
3088     // arguments from the call site so as to make a direct call, which makes the
3089     // inliner happier and suppresses a number of optimizer warnings (!) about
3090     // dropping arguments.
3091     if (!Entry->use_empty()) {
3092       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3093       Entry->removeDeadConstantUsers();
3094     }
3095 
3096     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3097         F, Entry->getType()->getElementType()->getPointerTo());
3098     addGlobalValReplacement(Entry, BC);
3099   }
3100 
3101   assert(F->getName() == MangledName && "name was uniqued!");
3102   if (D)
3103     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3104   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3105     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3106     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3107   }
3108 
3109   if (!DontDefer) {
3110     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3111     // each other bottoming out with the base dtor.  Therefore we emit non-base
3112     // dtors on usage, even if there is no dtor definition in the TU.
3113     if (D && isa<CXXDestructorDecl>(D) &&
3114         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3115                                            GD.getDtorType()))
3116       addDeferredDeclToEmit(GD);
3117 
3118     // This is the first use or definition of a mangled name.  If there is a
3119     // deferred decl with this name, remember that we need to emit it at the end
3120     // of the file.
3121     auto DDI = DeferredDecls.find(MangledName);
3122     if (DDI != DeferredDecls.end()) {
3123       // Move the potentially referenced deferred decl to the
3124       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3125       // don't need it anymore).
3126       addDeferredDeclToEmit(DDI->second);
3127       DeferredDecls.erase(DDI);
3128 
3129       // Otherwise, there are cases we have to worry about where we're
3130       // using a declaration for which we must emit a definition but where
3131       // we might not find a top-level definition:
3132       //   - member functions defined inline in their classes
3133       //   - friend functions defined inline in some class
3134       //   - special member functions with implicit definitions
3135       // If we ever change our AST traversal to walk into class methods,
3136       // this will be unnecessary.
3137       //
3138       // We also don't emit a definition for a function if it's going to be an
3139       // entry in a vtable, unless it's already marked as used.
3140     } else if (getLangOpts().CPlusPlus && D) {
3141       // Look for a declaration that's lexically in a record.
3142       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3143            FD = FD->getPreviousDecl()) {
3144         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3145           if (FD->doesThisDeclarationHaveABody()) {
3146             addDeferredDeclToEmit(GD.getWithDecl(FD));
3147             break;
3148           }
3149         }
3150       }
3151     }
3152   }
3153 
3154   // Make sure the result is of the requested type.
3155   if (!IsIncompleteFunction) {
3156     assert(F->getType()->getElementType() == Ty);
3157     return F;
3158   }
3159 
3160   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3161   return llvm::ConstantExpr::getBitCast(F, PTy);
3162 }
3163 
3164 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3165 /// non-null, then this function will use the specified type if it has to
3166 /// create it (this occurs when we see a definition of the function).
3167 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3168                                                  llvm::Type *Ty,
3169                                                  bool ForVTable,
3170                                                  bool DontDefer,
3171                                               ForDefinition_t IsForDefinition) {
3172   // If there was no specific requested type, just convert it now.
3173   if (!Ty) {
3174     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3175     Ty = getTypes().ConvertType(FD->getType());
3176   }
3177 
3178   // Devirtualized destructor calls may come through here instead of via
3179   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3180   // of the complete destructor when necessary.
3181   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3182     if (getTarget().getCXXABI().isMicrosoft() &&
3183         GD.getDtorType() == Dtor_Complete &&
3184         DD->getParent()->getNumVBases() == 0)
3185       GD = GlobalDecl(DD, Dtor_Base);
3186   }
3187 
3188   StringRef MangledName = getMangledName(GD);
3189   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3190                                  /*IsThunk=*/false, llvm::AttributeList(),
3191                                  IsForDefinition);
3192 }
3193 
3194 static const FunctionDecl *
3195 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3196   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3197   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3198 
3199   IdentifierInfo &CII = C.Idents.get(Name);
3200   for (const auto &Result : DC->lookup(&CII))
3201     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3202       return FD;
3203 
3204   if (!C.getLangOpts().CPlusPlus)
3205     return nullptr;
3206 
3207   // Demangle the premangled name from getTerminateFn()
3208   IdentifierInfo &CXXII =
3209       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3210           ? C.Idents.get("terminate")
3211           : C.Idents.get(Name);
3212 
3213   for (const auto &N : {"__cxxabiv1", "std"}) {
3214     IdentifierInfo &NS = C.Idents.get(N);
3215     for (const auto &Result : DC->lookup(&NS)) {
3216       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3217       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3218         for (const auto &Result : LSD->lookup(&NS))
3219           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3220             break;
3221 
3222       if (ND)
3223         for (const auto &Result : ND->lookup(&CXXII))
3224           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3225             return FD;
3226     }
3227   }
3228 
3229   return nullptr;
3230 }
3231 
3232 /// CreateRuntimeFunction - Create a new runtime function with the specified
3233 /// type and name.
3234 llvm::FunctionCallee
3235 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3236                                      llvm::AttributeList ExtraAttrs,
3237                                      bool Local) {
3238   llvm::Constant *C =
3239       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3240                               /*DontDefer=*/false, /*IsThunk=*/false,
3241                               ExtraAttrs);
3242 
3243   if (auto *F = dyn_cast<llvm::Function>(C)) {
3244     if (F->empty()) {
3245       F->setCallingConv(getRuntimeCC());
3246 
3247       // In Windows Itanium environments, try to mark runtime functions
3248       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3249       // will link their standard library statically or dynamically. Marking
3250       // functions imported when they are not imported can cause linker errors
3251       // and warnings.
3252       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3253           !getCodeGenOpts().LTOVisibilityPublicStd) {
3254         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3255         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3256           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3257           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3258         }
3259       }
3260       setDSOLocal(F);
3261     }
3262   }
3263 
3264   return {FTy, C};
3265 }
3266 
3267 /// isTypeConstant - Determine whether an object of this type can be emitted
3268 /// as a constant.
3269 ///
3270 /// If ExcludeCtor is true, the duration when the object's constructor runs
3271 /// will not be considered. The caller will need to verify that the object is
3272 /// not written to during its construction.
3273 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3274   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3275     return false;
3276 
3277   if (Context.getLangOpts().CPlusPlus) {
3278     if (const CXXRecordDecl *Record
3279           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3280       return ExcludeCtor && !Record->hasMutableFields() &&
3281              Record->hasTrivialDestructor();
3282   }
3283 
3284   return true;
3285 }
3286 
3287 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3288 /// create and return an llvm GlobalVariable with the specified type.  If there
3289 /// is something in the module with the specified name, return it potentially
3290 /// bitcasted to the right type.
3291 ///
3292 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3293 /// to set the attributes on the global when it is first created.
3294 ///
3295 /// If IsForDefinition is true, it is guaranteed that an actual global with
3296 /// type Ty will be returned, not conversion of a variable with the same
3297 /// mangled name but some other type.
3298 llvm::Constant *
3299 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3300                                      llvm::PointerType *Ty,
3301                                      const VarDecl *D,
3302                                      ForDefinition_t IsForDefinition) {
3303   // Lookup the entry, lazily creating it if necessary.
3304   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3305   if (Entry) {
3306     if (WeakRefReferences.erase(Entry)) {
3307       if (D && !D->hasAttr<WeakAttr>())
3308         Entry->setLinkage(llvm::Function::ExternalLinkage);
3309     }
3310 
3311     // Handle dropped DLL attributes.
3312     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3313       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3314 
3315     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3316       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3317 
3318     if (Entry->getType() == Ty)
3319       return Entry;
3320 
3321     // If there are two attempts to define the same mangled name, issue an
3322     // error.
3323     if (IsForDefinition && !Entry->isDeclaration()) {
3324       GlobalDecl OtherGD;
3325       const VarDecl *OtherD;
3326 
3327       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3328       // to make sure that we issue an error only once.
3329       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3330           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3331           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3332           OtherD->hasInit() &&
3333           DiagnosedConflictingDefinitions.insert(D).second) {
3334         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3335             << MangledName;
3336         getDiags().Report(OtherGD.getDecl()->getLocation(),
3337                           diag::note_previous_definition);
3338       }
3339     }
3340 
3341     // Make sure the result is of the correct type.
3342     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3343       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3344 
3345     // (If global is requested for a definition, we always need to create a new
3346     // global, not just return a bitcast.)
3347     if (!IsForDefinition)
3348       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3349   }
3350 
3351   auto AddrSpace = GetGlobalVarAddressSpace(D);
3352   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3353 
3354   auto *GV = new llvm::GlobalVariable(
3355       getModule(), Ty->getElementType(), false,
3356       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3357       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3358 
3359   // If we already created a global with the same mangled name (but different
3360   // type) before, take its name and remove it from its parent.
3361   if (Entry) {
3362     GV->takeName(Entry);
3363 
3364     if (!Entry->use_empty()) {
3365       llvm::Constant *NewPtrForOldDecl =
3366           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3367       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3368     }
3369 
3370     Entry->eraseFromParent();
3371   }
3372 
3373   // This is the first use or definition of a mangled name.  If there is a
3374   // deferred decl with this name, remember that we need to emit it at the end
3375   // of the file.
3376   auto DDI = DeferredDecls.find(MangledName);
3377   if (DDI != DeferredDecls.end()) {
3378     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3379     // list, and remove it from DeferredDecls (since we don't need it anymore).
3380     addDeferredDeclToEmit(DDI->second);
3381     DeferredDecls.erase(DDI);
3382   }
3383 
3384   // Handle things which are present even on external declarations.
3385   if (D) {
3386     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3387       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3388 
3389     // FIXME: This code is overly simple and should be merged with other global
3390     // handling.
3391     GV->setConstant(isTypeConstant(D->getType(), false));
3392 
3393     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3394 
3395     setLinkageForGV(GV, D);
3396 
3397     if (D->getTLSKind()) {
3398       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3399         CXXThreadLocals.push_back(D);
3400       setTLSMode(GV, *D);
3401     }
3402 
3403     setGVProperties(GV, D);
3404 
3405     // If required by the ABI, treat declarations of static data members with
3406     // inline initializers as definitions.
3407     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3408       EmitGlobalVarDefinition(D);
3409     }
3410 
3411     // Emit section information for extern variables.
3412     if (D->hasExternalStorage()) {
3413       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3414         GV->setSection(SA->getName());
3415     }
3416 
3417     // Handle XCore specific ABI requirements.
3418     if (getTriple().getArch() == llvm::Triple::xcore &&
3419         D->getLanguageLinkage() == CLanguageLinkage &&
3420         D->getType().isConstant(Context) &&
3421         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3422       GV->setSection(".cp.rodata");
3423 
3424     // Check if we a have a const declaration with an initializer, we may be
3425     // able to emit it as available_externally to expose it's value to the
3426     // optimizer.
3427     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3428         D->getType().isConstQualified() && !GV->hasInitializer() &&
3429         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3430       const auto *Record =
3431           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3432       bool HasMutableFields = Record && Record->hasMutableFields();
3433       if (!HasMutableFields) {
3434         const VarDecl *InitDecl;
3435         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3436         if (InitExpr) {
3437           ConstantEmitter emitter(*this);
3438           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3439           if (Init) {
3440             auto *InitType = Init->getType();
3441             if (GV->getType()->getElementType() != InitType) {
3442               // The type of the initializer does not match the definition.
3443               // This happens when an initializer has a different type from
3444               // the type of the global (because of padding at the end of a
3445               // structure for instance).
3446               GV->setName(StringRef());
3447               // Make a new global with the correct type, this is now guaranteed
3448               // to work.
3449               auto *NewGV = cast<llvm::GlobalVariable>(
3450                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3451 
3452               // Erase the old global, since it is no longer used.
3453               GV->eraseFromParent();
3454               GV = NewGV;
3455             } else {
3456               GV->setInitializer(Init);
3457               GV->setConstant(true);
3458               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3459             }
3460             emitter.finalize(GV);
3461           }
3462         }
3463       }
3464     }
3465   }
3466 
3467   LangAS ExpectedAS =
3468       D ? D->getType().getAddressSpace()
3469         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3470   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3471          Ty->getPointerAddressSpace());
3472   if (AddrSpace != ExpectedAS)
3473     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3474                                                        ExpectedAS, Ty);
3475 
3476   if (GV->isDeclaration())
3477     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3478 
3479   return GV;
3480 }
3481 
3482 llvm::Constant *
3483 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3484                                ForDefinition_t IsForDefinition) {
3485   const Decl *D = GD.getDecl();
3486   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3487     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3488                                 /*DontDefer=*/false, IsForDefinition);
3489   else if (isa<CXXMethodDecl>(D)) {
3490     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3491         cast<CXXMethodDecl>(D));
3492     auto Ty = getTypes().GetFunctionType(*FInfo);
3493     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3494                              IsForDefinition);
3495   } else if (isa<FunctionDecl>(D)) {
3496     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3497     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3498     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3499                              IsForDefinition);
3500   } else
3501     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3502                               IsForDefinition);
3503 }
3504 
3505 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3506     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3507     unsigned Alignment) {
3508   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3509   llvm::GlobalVariable *OldGV = nullptr;
3510 
3511   if (GV) {
3512     // Check if the variable has the right type.
3513     if (GV->getType()->getElementType() == Ty)
3514       return GV;
3515 
3516     // Because C++ name mangling, the only way we can end up with an already
3517     // existing global with the same name is if it has been declared extern "C".
3518     assert(GV->isDeclaration() && "Declaration has wrong type!");
3519     OldGV = GV;
3520   }
3521 
3522   // Create a new variable.
3523   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3524                                 Linkage, nullptr, Name);
3525 
3526   if (OldGV) {
3527     // Replace occurrences of the old variable if needed.
3528     GV->takeName(OldGV);
3529 
3530     if (!OldGV->use_empty()) {
3531       llvm::Constant *NewPtrForOldDecl =
3532       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3533       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3534     }
3535 
3536     OldGV->eraseFromParent();
3537   }
3538 
3539   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3540       !GV->hasAvailableExternallyLinkage())
3541     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3542 
3543   GV->setAlignment(Alignment);
3544 
3545   return GV;
3546 }
3547 
3548 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3549 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3550 /// then it will be created with the specified type instead of whatever the
3551 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3552 /// that an actual global with type Ty will be returned, not conversion of a
3553 /// variable with the same mangled name but some other type.
3554 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3555                                                   llvm::Type *Ty,
3556                                            ForDefinition_t IsForDefinition) {
3557   assert(D->hasGlobalStorage() && "Not a global variable");
3558   QualType ASTTy = D->getType();
3559   if (!Ty)
3560     Ty = getTypes().ConvertTypeForMem(ASTTy);
3561 
3562   llvm::PointerType *PTy =
3563     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3564 
3565   StringRef MangledName = getMangledName(D);
3566   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3567 }
3568 
3569 /// CreateRuntimeVariable - Create a new runtime global variable with the
3570 /// specified type and name.
3571 llvm::Constant *
3572 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3573                                      StringRef Name) {
3574   auto *Ret =
3575       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3576   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3577   return Ret;
3578 }
3579 
3580 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3581   assert(!D->getInit() && "Cannot emit definite definitions here!");
3582 
3583   StringRef MangledName = getMangledName(D);
3584   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3585 
3586   // We already have a definition, not declaration, with the same mangled name.
3587   // Emitting of declaration is not required (and actually overwrites emitted
3588   // definition).
3589   if (GV && !GV->isDeclaration())
3590     return;
3591 
3592   // If we have not seen a reference to this variable yet, place it into the
3593   // deferred declarations table to be emitted if needed later.
3594   if (!MustBeEmitted(D) && !GV) {
3595       DeferredDecls[MangledName] = D;
3596       return;
3597   }
3598 
3599   // The tentative definition is the only definition.
3600   EmitGlobalVarDefinition(D);
3601 }
3602 
3603 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3604   return Context.toCharUnitsFromBits(
3605       getDataLayout().getTypeStoreSizeInBits(Ty));
3606 }
3607 
3608 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3609   LangAS AddrSpace = LangAS::Default;
3610   if (LangOpts.OpenCL) {
3611     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3612     assert(AddrSpace == LangAS::opencl_global ||
3613            AddrSpace == LangAS::opencl_constant ||
3614            AddrSpace == LangAS::opencl_local ||
3615            AddrSpace >= LangAS::FirstTargetAddressSpace);
3616     return AddrSpace;
3617   }
3618 
3619   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3620     if (D && D->hasAttr<CUDAConstantAttr>())
3621       return LangAS::cuda_constant;
3622     else if (D && D->hasAttr<CUDASharedAttr>())
3623       return LangAS::cuda_shared;
3624     else if (D && D->hasAttr<CUDADeviceAttr>())
3625       return LangAS::cuda_device;
3626     else if (D && D->getType().isConstQualified())
3627       return LangAS::cuda_constant;
3628     else
3629       return LangAS::cuda_device;
3630   }
3631 
3632   if (LangOpts.OpenMP) {
3633     LangAS AS;
3634     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3635       return AS;
3636   }
3637   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3638 }
3639 
3640 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3641   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3642   if (LangOpts.OpenCL)
3643     return LangAS::opencl_constant;
3644   if (auto AS = getTarget().getConstantAddressSpace())
3645     return AS.getValue();
3646   return LangAS::Default;
3647 }
3648 
3649 // In address space agnostic languages, string literals are in default address
3650 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3651 // emitted in constant address space in LLVM IR. To be consistent with other
3652 // parts of AST, string literal global variables in constant address space
3653 // need to be casted to default address space before being put into address
3654 // map and referenced by other part of CodeGen.
3655 // In OpenCL, string literals are in constant address space in AST, therefore
3656 // they should not be casted to default address space.
3657 static llvm::Constant *
3658 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3659                                        llvm::GlobalVariable *GV) {
3660   llvm::Constant *Cast = GV;
3661   if (!CGM.getLangOpts().OpenCL) {
3662     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3663       if (AS != LangAS::Default)
3664         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3665             CGM, GV, AS.getValue(), LangAS::Default,
3666             GV->getValueType()->getPointerTo(
3667                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3668     }
3669   }
3670   return Cast;
3671 }
3672 
3673 template<typename SomeDecl>
3674 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3675                                                llvm::GlobalValue *GV) {
3676   if (!getLangOpts().CPlusPlus)
3677     return;
3678 
3679   // Must have 'used' attribute, or else inline assembly can't rely on
3680   // the name existing.
3681   if (!D->template hasAttr<UsedAttr>())
3682     return;
3683 
3684   // Must have internal linkage and an ordinary name.
3685   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3686     return;
3687 
3688   // Must be in an extern "C" context. Entities declared directly within
3689   // a record are not extern "C" even if the record is in such a context.
3690   const SomeDecl *First = D->getFirstDecl();
3691   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3692     return;
3693 
3694   // OK, this is an internal linkage entity inside an extern "C" linkage
3695   // specification. Make a note of that so we can give it the "expected"
3696   // mangled name if nothing else is using that name.
3697   std::pair<StaticExternCMap::iterator, bool> R =
3698       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3699 
3700   // If we have multiple internal linkage entities with the same name
3701   // in extern "C" regions, none of them gets that name.
3702   if (!R.second)
3703     R.first->second = nullptr;
3704 }
3705 
3706 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3707   if (!CGM.supportsCOMDAT())
3708     return false;
3709 
3710   if (D.hasAttr<SelectAnyAttr>())
3711     return true;
3712 
3713   GVALinkage Linkage;
3714   if (auto *VD = dyn_cast<VarDecl>(&D))
3715     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3716   else
3717     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3718 
3719   switch (Linkage) {
3720   case GVA_Internal:
3721   case GVA_AvailableExternally:
3722   case GVA_StrongExternal:
3723     return false;
3724   case GVA_DiscardableODR:
3725   case GVA_StrongODR:
3726     return true;
3727   }
3728   llvm_unreachable("No such linkage");
3729 }
3730 
3731 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3732                                           llvm::GlobalObject &GO) {
3733   if (!shouldBeInCOMDAT(*this, D))
3734     return;
3735   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3736 }
3737 
3738 /// Pass IsTentative as true if you want to create a tentative definition.
3739 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3740                                             bool IsTentative) {
3741   // OpenCL global variables of sampler type are translated to function calls,
3742   // therefore no need to be translated.
3743   QualType ASTTy = D->getType();
3744   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3745     return;
3746 
3747   // If this is OpenMP device, check if it is legal to emit this global
3748   // normally.
3749   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3750       OpenMPRuntime->emitTargetGlobalVariable(D))
3751     return;
3752 
3753   llvm::Constant *Init = nullptr;
3754   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3755   bool NeedsGlobalCtor = false;
3756   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3757 
3758   const VarDecl *InitDecl;
3759   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3760 
3761   Optional<ConstantEmitter> emitter;
3762 
3763   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3764   // as part of their declaration."  Sema has already checked for
3765   // error cases, so we just need to set Init to UndefValue.
3766   bool IsCUDASharedVar =
3767       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3768   // Shadows of initialized device-side global variables are also left
3769   // undefined.
3770   bool IsCUDAShadowVar =
3771       !getLangOpts().CUDAIsDevice &&
3772       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3773        D->hasAttr<CUDASharedAttr>());
3774   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3775     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3776   else if (!InitExpr) {
3777     // This is a tentative definition; tentative definitions are
3778     // implicitly initialized with { 0 }.
3779     //
3780     // Note that tentative definitions are only emitted at the end of
3781     // a translation unit, so they should never have incomplete
3782     // type. In addition, EmitTentativeDefinition makes sure that we
3783     // never attempt to emit a tentative definition if a real one
3784     // exists. A use may still exists, however, so we still may need
3785     // to do a RAUW.
3786     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3787     Init = EmitNullConstant(D->getType());
3788   } else {
3789     initializedGlobalDecl = GlobalDecl(D);
3790     emitter.emplace(*this);
3791     Init = emitter->tryEmitForInitializer(*InitDecl);
3792 
3793     if (!Init) {
3794       QualType T = InitExpr->getType();
3795       if (D->getType()->isReferenceType())
3796         T = D->getType();
3797 
3798       if (getLangOpts().CPlusPlus) {
3799         Init = EmitNullConstant(T);
3800         NeedsGlobalCtor = true;
3801       } else {
3802         ErrorUnsupported(D, "static initializer");
3803         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3804       }
3805     } else {
3806       // We don't need an initializer, so remove the entry for the delayed
3807       // initializer position (just in case this entry was delayed) if we
3808       // also don't need to register a destructor.
3809       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3810         DelayedCXXInitPosition.erase(D);
3811     }
3812   }
3813 
3814   llvm::Type* InitType = Init->getType();
3815   llvm::Constant *Entry =
3816       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3817 
3818   // Strip off a bitcast if we got one back.
3819   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3820     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3821            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3822            // All zero index gep.
3823            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3824     Entry = CE->getOperand(0);
3825   }
3826 
3827   // Entry is now either a Function or GlobalVariable.
3828   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3829 
3830   // We have a definition after a declaration with the wrong type.
3831   // We must make a new GlobalVariable* and update everything that used OldGV
3832   // (a declaration or tentative definition) with the new GlobalVariable*
3833   // (which will be a definition).
3834   //
3835   // This happens if there is a prototype for a global (e.g.
3836   // "extern int x[];") and then a definition of a different type (e.g.
3837   // "int x[10];"). This also happens when an initializer has a different type
3838   // from the type of the global (this happens with unions).
3839   if (!GV || GV->getType()->getElementType() != InitType ||
3840       GV->getType()->getAddressSpace() !=
3841           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3842 
3843     // Move the old entry aside so that we'll create a new one.
3844     Entry->setName(StringRef());
3845 
3846     // Make a new global with the correct type, this is now guaranteed to work.
3847     GV = cast<llvm::GlobalVariable>(
3848         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3849 
3850     // Replace all uses of the old global with the new global
3851     llvm::Constant *NewPtrForOldDecl =
3852         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3853     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3854 
3855     // Erase the old global, since it is no longer used.
3856     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3857   }
3858 
3859   MaybeHandleStaticInExternC(D, GV);
3860 
3861   if (D->hasAttr<AnnotateAttr>())
3862     AddGlobalAnnotations(D, GV);
3863 
3864   // Set the llvm linkage type as appropriate.
3865   llvm::GlobalValue::LinkageTypes Linkage =
3866       getLLVMLinkageVarDefinition(D, GV->isConstant());
3867 
3868   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3869   // the device. [...]"
3870   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3871   // __device__, declares a variable that: [...]
3872   // Is accessible from all the threads within the grid and from the host
3873   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3874   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3875   if (GV && LangOpts.CUDA) {
3876     if (LangOpts.CUDAIsDevice) {
3877       if (Linkage != llvm::GlobalValue::InternalLinkage &&
3878           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3879         GV->setExternallyInitialized(true);
3880     } else {
3881       // Host-side shadows of external declarations of device-side
3882       // global variables become internal definitions. These have to
3883       // be internal in order to prevent name conflicts with global
3884       // host variables with the same name in a different TUs.
3885       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3886         Linkage = llvm::GlobalValue::InternalLinkage;
3887 
3888         // Shadow variables and their properties must be registered
3889         // with CUDA runtime.
3890         unsigned Flags = 0;
3891         if (!D->hasDefinition())
3892           Flags |= CGCUDARuntime::ExternDeviceVar;
3893         if (D->hasAttr<CUDAConstantAttr>())
3894           Flags |= CGCUDARuntime::ConstantDeviceVar;
3895         // Extern global variables will be registered in the TU where they are
3896         // defined.
3897         if (!D->hasExternalStorage())
3898           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3899       } else if (D->hasAttr<CUDASharedAttr>())
3900         // __shared__ variables are odd. Shadows do get created, but
3901         // they are not registered with the CUDA runtime, so they
3902         // can't really be used to access their device-side
3903         // counterparts. It's not clear yet whether it's nvcc's bug or
3904         // a feature, but we've got to do the same for compatibility.
3905         Linkage = llvm::GlobalValue::InternalLinkage;
3906     }
3907   }
3908 
3909   GV->setInitializer(Init);
3910   if (emitter) emitter->finalize(GV);
3911 
3912   // If it is safe to mark the global 'constant', do so now.
3913   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3914                   isTypeConstant(D->getType(), true));
3915 
3916   // If it is in a read-only section, mark it 'constant'.
3917   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3918     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3919     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3920       GV->setConstant(true);
3921   }
3922 
3923   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3924 
3925 
3926   // On Darwin, if the normal linkage of a C++ thread_local variable is
3927   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3928   // copies within a linkage unit; otherwise, the backing variable has
3929   // internal linkage and all accesses should just be calls to the
3930   // Itanium-specified entry point, which has the normal linkage of the
3931   // variable. This is to preserve the ability to change the implementation
3932   // behind the scenes.
3933   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3934       Context.getTargetInfo().getTriple().isOSDarwin() &&
3935       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3936       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3937     Linkage = llvm::GlobalValue::InternalLinkage;
3938 
3939   GV->setLinkage(Linkage);
3940   if (D->hasAttr<DLLImportAttr>())
3941     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3942   else if (D->hasAttr<DLLExportAttr>())
3943     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3944   else
3945     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3946 
3947   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3948     // common vars aren't constant even if declared const.
3949     GV->setConstant(false);
3950     // Tentative definition of global variables may be initialized with
3951     // non-zero null pointers. In this case they should have weak linkage
3952     // since common linkage must have zero initializer and must not have
3953     // explicit section therefore cannot have non-zero initial value.
3954     if (!GV->getInitializer()->isNullValue())
3955       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3956   }
3957 
3958   setNonAliasAttributes(D, GV);
3959 
3960   if (D->getTLSKind() && !GV->isThreadLocal()) {
3961     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3962       CXXThreadLocals.push_back(D);
3963     setTLSMode(GV, *D);
3964   }
3965 
3966   maybeSetTrivialComdat(*D, *GV);
3967 
3968   // Emit the initializer function if necessary.
3969   if (NeedsGlobalCtor || NeedsGlobalDtor)
3970     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3971 
3972   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3973 
3974   // Emit global variable debug information.
3975   if (CGDebugInfo *DI = getModuleDebugInfo())
3976     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3977       DI->EmitGlobalVariable(GV, D);
3978 }
3979 
3980 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3981                                       CodeGenModule &CGM, const VarDecl *D,
3982                                       bool NoCommon) {
3983   // Don't give variables common linkage if -fno-common was specified unless it
3984   // was overridden by a NoCommon attribute.
3985   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3986     return true;
3987 
3988   // C11 6.9.2/2:
3989   //   A declaration of an identifier for an object that has file scope without
3990   //   an initializer, and without a storage-class specifier or with the
3991   //   storage-class specifier static, constitutes a tentative definition.
3992   if (D->getInit() || D->hasExternalStorage())
3993     return true;
3994 
3995   // A variable cannot be both common and exist in a section.
3996   if (D->hasAttr<SectionAttr>())
3997     return true;
3998 
3999   // A variable cannot be both common and exist in a section.
4000   // We don't try to determine which is the right section in the front-end.
4001   // If no specialized section name is applicable, it will resort to default.
4002   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4003       D->hasAttr<PragmaClangDataSectionAttr>() ||
4004       D->hasAttr<PragmaClangRodataSectionAttr>())
4005     return true;
4006 
4007   // Thread local vars aren't considered common linkage.
4008   if (D->getTLSKind())
4009     return true;
4010 
4011   // Tentative definitions marked with WeakImportAttr are true definitions.
4012   if (D->hasAttr<WeakImportAttr>())
4013     return true;
4014 
4015   // A variable cannot be both common and exist in a comdat.
4016   if (shouldBeInCOMDAT(CGM, *D))
4017     return true;
4018 
4019   // Declarations with a required alignment do not have common linkage in MSVC
4020   // mode.
4021   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4022     if (D->hasAttr<AlignedAttr>())
4023       return true;
4024     QualType VarType = D->getType();
4025     if (Context.isAlignmentRequired(VarType))
4026       return true;
4027 
4028     if (const auto *RT = VarType->getAs<RecordType>()) {
4029       const RecordDecl *RD = RT->getDecl();
4030       for (const FieldDecl *FD : RD->fields()) {
4031         if (FD->isBitField())
4032           continue;
4033         if (FD->hasAttr<AlignedAttr>())
4034           return true;
4035         if (Context.isAlignmentRequired(FD->getType()))
4036           return true;
4037       }
4038     }
4039   }
4040 
4041   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4042   // common symbols, so symbols with greater alignment requirements cannot be
4043   // common.
4044   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4045   // alignments for common symbols via the aligncomm directive, so this
4046   // restriction only applies to MSVC environments.
4047   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4048       Context.getTypeAlignIfKnown(D->getType()) >
4049           Context.toBits(CharUnits::fromQuantity(32)))
4050     return true;
4051 
4052   return false;
4053 }
4054 
4055 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4056     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4057   if (Linkage == GVA_Internal)
4058     return llvm::Function::InternalLinkage;
4059 
4060   if (D->hasAttr<WeakAttr>()) {
4061     if (IsConstantVariable)
4062       return llvm::GlobalVariable::WeakODRLinkage;
4063     else
4064       return llvm::GlobalVariable::WeakAnyLinkage;
4065   }
4066 
4067   if (const auto *FD = D->getAsFunction())
4068     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4069       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4070 
4071   // We are guaranteed to have a strong definition somewhere else,
4072   // so we can use available_externally linkage.
4073   if (Linkage == GVA_AvailableExternally)
4074     return llvm::GlobalValue::AvailableExternallyLinkage;
4075 
4076   // Note that Apple's kernel linker doesn't support symbol
4077   // coalescing, so we need to avoid linkonce and weak linkages there.
4078   // Normally, this means we just map to internal, but for explicit
4079   // instantiations we'll map to external.
4080 
4081   // In C++, the compiler has to emit a definition in every translation unit
4082   // that references the function.  We should use linkonce_odr because
4083   // a) if all references in this translation unit are optimized away, we
4084   // don't need to codegen it.  b) if the function persists, it needs to be
4085   // merged with other definitions. c) C++ has the ODR, so we know the
4086   // definition is dependable.
4087   if (Linkage == GVA_DiscardableODR)
4088     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4089                                             : llvm::Function::InternalLinkage;
4090 
4091   // An explicit instantiation of a template has weak linkage, since
4092   // explicit instantiations can occur in multiple translation units
4093   // and must all be equivalent. However, we are not allowed to
4094   // throw away these explicit instantiations.
4095   //
4096   // We don't currently support CUDA device code spread out across multiple TUs,
4097   // so say that CUDA templates are either external (for kernels) or internal.
4098   // This lets llvm perform aggressive inter-procedural optimizations.
4099   if (Linkage == GVA_StrongODR) {
4100     if (Context.getLangOpts().AppleKext)
4101       return llvm::Function::ExternalLinkage;
4102     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4103       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4104                                           : llvm::Function::InternalLinkage;
4105     return llvm::Function::WeakODRLinkage;
4106   }
4107 
4108   // C++ doesn't have tentative definitions and thus cannot have common
4109   // linkage.
4110   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4111       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4112                                  CodeGenOpts.NoCommon))
4113     return llvm::GlobalVariable::CommonLinkage;
4114 
4115   // selectany symbols are externally visible, so use weak instead of
4116   // linkonce.  MSVC optimizes away references to const selectany globals, so
4117   // all definitions should be the same and ODR linkage should be used.
4118   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4119   if (D->hasAttr<SelectAnyAttr>())
4120     return llvm::GlobalVariable::WeakODRLinkage;
4121 
4122   // Otherwise, we have strong external linkage.
4123   assert(Linkage == GVA_StrongExternal);
4124   return llvm::GlobalVariable::ExternalLinkage;
4125 }
4126 
4127 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4128     const VarDecl *VD, bool IsConstant) {
4129   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4130   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4131 }
4132 
4133 /// Replace the uses of a function that was declared with a non-proto type.
4134 /// We want to silently drop extra arguments from call sites
4135 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4136                                           llvm::Function *newFn) {
4137   // Fast path.
4138   if (old->use_empty()) return;
4139 
4140   llvm::Type *newRetTy = newFn->getReturnType();
4141   SmallVector<llvm::Value*, 4> newArgs;
4142   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4143 
4144   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4145          ui != ue; ) {
4146     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4147     llvm::User *user = use->getUser();
4148 
4149     // Recognize and replace uses of bitcasts.  Most calls to
4150     // unprototyped functions will use bitcasts.
4151     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4152       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4153         replaceUsesOfNonProtoConstant(bitcast, newFn);
4154       continue;
4155     }
4156 
4157     // Recognize calls to the function.
4158     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4159     if (!callSite) continue;
4160     if (!callSite->isCallee(&*use))
4161       continue;
4162 
4163     // If the return types don't match exactly, then we can't
4164     // transform this call unless it's dead.
4165     if (callSite->getType() != newRetTy && !callSite->use_empty())
4166       continue;
4167 
4168     // Get the call site's attribute list.
4169     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4170     llvm::AttributeList oldAttrs = callSite->getAttributes();
4171 
4172     // If the function was passed too few arguments, don't transform.
4173     unsigned newNumArgs = newFn->arg_size();
4174     if (callSite->arg_size() < newNumArgs)
4175       continue;
4176 
4177     // If extra arguments were passed, we silently drop them.
4178     // If any of the types mismatch, we don't transform.
4179     unsigned argNo = 0;
4180     bool dontTransform = false;
4181     for (llvm::Argument &A : newFn->args()) {
4182       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4183         dontTransform = true;
4184         break;
4185       }
4186 
4187       // Add any parameter attributes.
4188       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4189       argNo++;
4190     }
4191     if (dontTransform)
4192       continue;
4193 
4194     // Okay, we can transform this.  Create the new call instruction and copy
4195     // over the required information.
4196     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4197 
4198     // Copy over any operand bundles.
4199     callSite->getOperandBundlesAsDefs(newBundles);
4200 
4201     llvm::CallBase *newCall;
4202     if (dyn_cast<llvm::CallInst>(callSite)) {
4203       newCall =
4204           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4205     } else {
4206       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4207       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4208                                          oldInvoke->getUnwindDest(), newArgs,
4209                                          newBundles, "", callSite);
4210     }
4211     newArgs.clear(); // for the next iteration
4212 
4213     if (!newCall->getType()->isVoidTy())
4214       newCall->takeName(callSite);
4215     newCall->setAttributes(llvm::AttributeList::get(
4216         newFn->getContext(), oldAttrs.getFnAttributes(),
4217         oldAttrs.getRetAttributes(), newArgAttrs));
4218     newCall->setCallingConv(callSite->getCallingConv());
4219 
4220     // Finally, remove the old call, replacing any uses with the new one.
4221     if (!callSite->use_empty())
4222       callSite->replaceAllUsesWith(newCall);
4223 
4224     // Copy debug location attached to CI.
4225     if (callSite->getDebugLoc())
4226       newCall->setDebugLoc(callSite->getDebugLoc());
4227 
4228     callSite->eraseFromParent();
4229   }
4230 }
4231 
4232 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4233 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4234 /// existing call uses of the old function in the module, this adjusts them to
4235 /// call the new function directly.
4236 ///
4237 /// This is not just a cleanup: the always_inline pass requires direct calls to
4238 /// functions to be able to inline them.  If there is a bitcast in the way, it
4239 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4240 /// run at -O0.
4241 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4242                                                       llvm::Function *NewFn) {
4243   // If we're redefining a global as a function, don't transform it.
4244   if (!isa<llvm::Function>(Old)) return;
4245 
4246   replaceUsesOfNonProtoConstant(Old, NewFn);
4247 }
4248 
4249 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4250   auto DK = VD->isThisDeclarationADefinition();
4251   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4252     return;
4253 
4254   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4255   // If we have a definition, this might be a deferred decl. If the
4256   // instantiation is explicit, make sure we emit it at the end.
4257   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4258     GetAddrOfGlobalVar(VD);
4259 
4260   EmitTopLevelDecl(VD);
4261 }
4262 
4263 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4264                                                  llvm::GlobalValue *GV) {
4265   const auto *D = cast<FunctionDecl>(GD.getDecl());
4266 
4267   // Compute the function info and LLVM type.
4268   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4269   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4270 
4271   // Get or create the prototype for the function.
4272   if (!GV || (GV->getType()->getElementType() != Ty))
4273     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4274                                                    /*DontDefer=*/true,
4275                                                    ForDefinition));
4276 
4277   // Already emitted.
4278   if (!GV->isDeclaration())
4279     return;
4280 
4281   // We need to set linkage and visibility on the function before
4282   // generating code for it because various parts of IR generation
4283   // want to propagate this information down (e.g. to local static
4284   // declarations).
4285   auto *Fn = cast<llvm::Function>(GV);
4286   setFunctionLinkage(GD, Fn);
4287 
4288   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4289   setGVProperties(Fn, GD);
4290 
4291   MaybeHandleStaticInExternC(D, Fn);
4292 
4293 
4294   maybeSetTrivialComdat(*D, *Fn);
4295 
4296   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4297 
4298   setNonAliasAttributes(GD, Fn);
4299   SetLLVMFunctionAttributesForDefinition(D, Fn);
4300 
4301   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4302     AddGlobalCtor(Fn, CA->getPriority());
4303   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4304     AddGlobalDtor(Fn, DA->getPriority());
4305   if (D->hasAttr<AnnotateAttr>())
4306     AddGlobalAnnotations(D, Fn);
4307 }
4308 
4309 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4310   const auto *D = cast<ValueDecl>(GD.getDecl());
4311   const AliasAttr *AA = D->getAttr<AliasAttr>();
4312   assert(AA && "Not an alias?");
4313 
4314   StringRef MangledName = getMangledName(GD);
4315 
4316   if (AA->getAliasee() == MangledName) {
4317     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4318     return;
4319   }
4320 
4321   // If there is a definition in the module, then it wins over the alias.
4322   // This is dubious, but allow it to be safe.  Just ignore the alias.
4323   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4324   if (Entry && !Entry->isDeclaration())
4325     return;
4326 
4327   Aliases.push_back(GD);
4328 
4329   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4330 
4331   // Create a reference to the named value.  This ensures that it is emitted
4332   // if a deferred decl.
4333   llvm::Constant *Aliasee;
4334   if (isa<llvm::FunctionType>(DeclTy))
4335     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4336                                       /*ForVTable=*/false);
4337   else
4338     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4339                                     llvm::PointerType::getUnqual(DeclTy),
4340                                     /*D=*/nullptr);
4341 
4342   // Create the new alias itself, but don't set a name yet.
4343   auto *GA = llvm::GlobalAlias::create(
4344       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4345 
4346   if (Entry) {
4347     if (GA->getAliasee() == Entry) {
4348       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4349       return;
4350     }
4351 
4352     assert(Entry->isDeclaration());
4353 
4354     // If there is a declaration in the module, then we had an extern followed
4355     // by the alias, as in:
4356     //   extern int test6();
4357     //   ...
4358     //   int test6() __attribute__((alias("test7")));
4359     //
4360     // Remove it and replace uses of it with the alias.
4361     GA->takeName(Entry);
4362 
4363     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4364                                                           Entry->getType()));
4365     Entry->eraseFromParent();
4366   } else {
4367     GA->setName(MangledName);
4368   }
4369 
4370   // Set attributes which are particular to an alias; this is a
4371   // specialization of the attributes which may be set on a global
4372   // variable/function.
4373   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4374       D->isWeakImported()) {
4375     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4376   }
4377 
4378   if (const auto *VD = dyn_cast<VarDecl>(D))
4379     if (VD->getTLSKind())
4380       setTLSMode(GA, *VD);
4381 
4382   SetCommonAttributes(GD, GA);
4383 }
4384 
4385 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4386   const auto *D = cast<ValueDecl>(GD.getDecl());
4387   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4388   assert(IFA && "Not an ifunc?");
4389 
4390   StringRef MangledName = getMangledName(GD);
4391 
4392   if (IFA->getResolver() == MangledName) {
4393     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4394     return;
4395   }
4396 
4397   // Report an error if some definition overrides ifunc.
4398   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4399   if (Entry && !Entry->isDeclaration()) {
4400     GlobalDecl OtherGD;
4401     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4402         DiagnosedConflictingDefinitions.insert(GD).second) {
4403       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4404           << MangledName;
4405       Diags.Report(OtherGD.getDecl()->getLocation(),
4406                    diag::note_previous_definition);
4407     }
4408     return;
4409   }
4410 
4411   Aliases.push_back(GD);
4412 
4413   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4414   llvm::Constant *Resolver =
4415       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4416                               /*ForVTable=*/false);
4417   llvm::GlobalIFunc *GIF =
4418       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4419                                 "", Resolver, &getModule());
4420   if (Entry) {
4421     if (GIF->getResolver() == Entry) {
4422       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4423       return;
4424     }
4425     assert(Entry->isDeclaration());
4426 
4427     // If there is a declaration in the module, then we had an extern followed
4428     // by the ifunc, as in:
4429     //   extern int test();
4430     //   ...
4431     //   int test() __attribute__((ifunc("resolver")));
4432     //
4433     // Remove it and replace uses of it with the ifunc.
4434     GIF->takeName(Entry);
4435 
4436     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4437                                                           Entry->getType()));
4438     Entry->eraseFromParent();
4439   } else
4440     GIF->setName(MangledName);
4441 
4442   SetCommonAttributes(GD, GIF);
4443 }
4444 
4445 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4446                                             ArrayRef<llvm::Type*> Tys) {
4447   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4448                                          Tys);
4449 }
4450 
4451 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4452 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4453                          const StringLiteral *Literal, bool TargetIsLSB,
4454                          bool &IsUTF16, unsigned &StringLength) {
4455   StringRef String = Literal->getString();
4456   unsigned NumBytes = String.size();
4457 
4458   // Check for simple case.
4459   if (!Literal->containsNonAsciiOrNull()) {
4460     StringLength = NumBytes;
4461     return *Map.insert(std::make_pair(String, nullptr)).first;
4462   }
4463 
4464   // Otherwise, convert the UTF8 literals into a string of shorts.
4465   IsUTF16 = true;
4466 
4467   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4468   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4469   llvm::UTF16 *ToPtr = &ToBuf[0];
4470 
4471   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4472                                  ToPtr + NumBytes, llvm::strictConversion);
4473 
4474   // ConvertUTF8toUTF16 returns the length in ToPtr.
4475   StringLength = ToPtr - &ToBuf[0];
4476 
4477   // Add an explicit null.
4478   *ToPtr = 0;
4479   return *Map.insert(std::make_pair(
4480                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4481                                    (StringLength + 1) * 2),
4482                          nullptr)).first;
4483 }
4484 
4485 ConstantAddress
4486 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4487   unsigned StringLength = 0;
4488   bool isUTF16 = false;
4489   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4490       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4491                                getDataLayout().isLittleEndian(), isUTF16,
4492                                StringLength);
4493 
4494   if (auto *C = Entry.second)
4495     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4496 
4497   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4498   llvm::Constant *Zeros[] = { Zero, Zero };
4499 
4500   const ASTContext &Context = getContext();
4501   const llvm::Triple &Triple = getTriple();
4502 
4503   const auto CFRuntime = getLangOpts().CFRuntime;
4504   const bool IsSwiftABI =
4505       static_cast<unsigned>(CFRuntime) >=
4506       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4507   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4508 
4509   // If we don't already have it, get __CFConstantStringClassReference.
4510   if (!CFConstantStringClassRef) {
4511     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4512     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4513     Ty = llvm::ArrayType::get(Ty, 0);
4514 
4515     switch (CFRuntime) {
4516     default: break;
4517     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4518     case LangOptions::CoreFoundationABI::Swift5_0:
4519       CFConstantStringClassName =
4520           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4521                               : "$s10Foundation19_NSCFConstantStringCN";
4522       Ty = IntPtrTy;
4523       break;
4524     case LangOptions::CoreFoundationABI::Swift4_2:
4525       CFConstantStringClassName =
4526           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4527                               : "$S10Foundation19_NSCFConstantStringCN";
4528       Ty = IntPtrTy;
4529       break;
4530     case LangOptions::CoreFoundationABI::Swift4_1:
4531       CFConstantStringClassName =
4532           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4533                               : "__T010Foundation19_NSCFConstantStringCN";
4534       Ty = IntPtrTy;
4535       break;
4536     }
4537 
4538     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4539 
4540     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4541       llvm::GlobalValue *GV = nullptr;
4542 
4543       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4544         IdentifierInfo &II = Context.Idents.get(GV->getName());
4545         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4546         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4547 
4548         const VarDecl *VD = nullptr;
4549         for (const auto &Result : DC->lookup(&II))
4550           if ((VD = dyn_cast<VarDecl>(Result)))
4551             break;
4552 
4553         if (Triple.isOSBinFormatELF()) {
4554           if (!VD)
4555             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4556         } else {
4557           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4558           if (!VD || !VD->hasAttr<DLLExportAttr>())
4559             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4560           else
4561             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4562         }
4563 
4564         setDSOLocal(GV);
4565       }
4566     }
4567 
4568     // Decay array -> ptr
4569     CFConstantStringClassRef =
4570         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4571                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4572   }
4573 
4574   QualType CFTy = Context.getCFConstantStringType();
4575 
4576   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4577 
4578   ConstantInitBuilder Builder(*this);
4579   auto Fields = Builder.beginStruct(STy);
4580 
4581   // Class pointer.
4582   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4583 
4584   // Flags.
4585   if (IsSwiftABI) {
4586     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4587     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4588   } else {
4589     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4590   }
4591 
4592   // String pointer.
4593   llvm::Constant *C = nullptr;
4594   if (isUTF16) {
4595     auto Arr = llvm::makeArrayRef(
4596         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4597         Entry.first().size() / 2);
4598     C = llvm::ConstantDataArray::get(VMContext, Arr);
4599   } else {
4600     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4601   }
4602 
4603   // Note: -fwritable-strings doesn't make the backing store strings of
4604   // CFStrings writable. (See <rdar://problem/10657500>)
4605   auto *GV =
4606       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4607                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4608   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4609   // Don't enforce the target's minimum global alignment, since the only use
4610   // of the string is via this class initializer.
4611   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4612                             : Context.getTypeAlignInChars(Context.CharTy);
4613   GV->setAlignment(Align.getQuantity());
4614 
4615   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4616   // Without it LLVM can merge the string with a non unnamed_addr one during
4617   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4618   if (Triple.isOSBinFormatMachO())
4619     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4620                            : "__TEXT,__cstring,cstring_literals");
4621   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4622   // the static linker to adjust permissions to read-only later on.
4623   else if (Triple.isOSBinFormatELF())
4624     GV->setSection(".rodata");
4625 
4626   // String.
4627   llvm::Constant *Str =
4628       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4629 
4630   if (isUTF16)
4631     // Cast the UTF16 string to the correct type.
4632     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4633   Fields.add(Str);
4634 
4635   // String length.
4636   llvm::IntegerType *LengthTy =
4637       llvm::IntegerType::get(getModule().getContext(),
4638                              Context.getTargetInfo().getLongWidth());
4639   if (IsSwiftABI) {
4640     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4641         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4642       LengthTy = Int32Ty;
4643     else
4644       LengthTy = IntPtrTy;
4645   }
4646   Fields.addInt(LengthTy, StringLength);
4647 
4648   CharUnits Alignment = getPointerAlign();
4649 
4650   // The struct.
4651   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4652                                     /*isConstant=*/false,
4653                                     llvm::GlobalVariable::PrivateLinkage);
4654   switch (Triple.getObjectFormat()) {
4655   case llvm::Triple::UnknownObjectFormat:
4656     llvm_unreachable("unknown file format");
4657   case llvm::Triple::XCOFF:
4658     llvm_unreachable("XCOFF is not yet implemented");
4659   case llvm::Triple::COFF:
4660   case llvm::Triple::ELF:
4661   case llvm::Triple::Wasm:
4662     GV->setSection("cfstring");
4663     break;
4664   case llvm::Triple::MachO:
4665     GV->setSection("__DATA,__cfstring");
4666     break;
4667   }
4668   Entry.second = GV;
4669 
4670   return ConstantAddress(GV, Alignment);
4671 }
4672 
4673 bool CodeGenModule::getExpressionLocationsEnabled() const {
4674   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4675 }
4676 
4677 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4678   if (ObjCFastEnumerationStateType.isNull()) {
4679     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4680     D->startDefinition();
4681 
4682     QualType FieldTypes[] = {
4683       Context.UnsignedLongTy,
4684       Context.getPointerType(Context.getObjCIdType()),
4685       Context.getPointerType(Context.UnsignedLongTy),
4686       Context.getConstantArrayType(Context.UnsignedLongTy,
4687                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4688     };
4689 
4690     for (size_t i = 0; i < 4; ++i) {
4691       FieldDecl *Field = FieldDecl::Create(Context,
4692                                            D,
4693                                            SourceLocation(),
4694                                            SourceLocation(), nullptr,
4695                                            FieldTypes[i], /*TInfo=*/nullptr,
4696                                            /*BitWidth=*/nullptr,
4697                                            /*Mutable=*/false,
4698                                            ICIS_NoInit);
4699       Field->setAccess(AS_public);
4700       D->addDecl(Field);
4701     }
4702 
4703     D->completeDefinition();
4704     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4705   }
4706 
4707   return ObjCFastEnumerationStateType;
4708 }
4709 
4710 llvm::Constant *
4711 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4712   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4713 
4714   // Don't emit it as the address of the string, emit the string data itself
4715   // as an inline array.
4716   if (E->getCharByteWidth() == 1) {
4717     SmallString<64> Str(E->getString());
4718 
4719     // Resize the string to the right size, which is indicated by its type.
4720     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4721     Str.resize(CAT->getSize().getZExtValue());
4722     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4723   }
4724 
4725   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4726   llvm::Type *ElemTy = AType->getElementType();
4727   unsigned NumElements = AType->getNumElements();
4728 
4729   // Wide strings have either 2-byte or 4-byte elements.
4730   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4731     SmallVector<uint16_t, 32> Elements;
4732     Elements.reserve(NumElements);
4733 
4734     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4735       Elements.push_back(E->getCodeUnit(i));
4736     Elements.resize(NumElements);
4737     return llvm::ConstantDataArray::get(VMContext, Elements);
4738   }
4739 
4740   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4741   SmallVector<uint32_t, 32> Elements;
4742   Elements.reserve(NumElements);
4743 
4744   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4745     Elements.push_back(E->getCodeUnit(i));
4746   Elements.resize(NumElements);
4747   return llvm::ConstantDataArray::get(VMContext, Elements);
4748 }
4749 
4750 static llvm::GlobalVariable *
4751 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4752                       CodeGenModule &CGM, StringRef GlobalName,
4753                       CharUnits Alignment) {
4754   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4755       CGM.getStringLiteralAddressSpace());
4756 
4757   llvm::Module &M = CGM.getModule();
4758   // Create a global variable for this string
4759   auto *GV = new llvm::GlobalVariable(
4760       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4761       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4762   GV->setAlignment(Alignment.getQuantity());
4763   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4764   if (GV->isWeakForLinker()) {
4765     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4766     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4767   }
4768   CGM.setDSOLocal(GV);
4769 
4770   return GV;
4771 }
4772 
4773 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4774 /// constant array for the given string literal.
4775 ConstantAddress
4776 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4777                                                   StringRef Name) {
4778   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4779 
4780   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4781   llvm::GlobalVariable **Entry = nullptr;
4782   if (!LangOpts.WritableStrings) {
4783     Entry = &ConstantStringMap[C];
4784     if (auto GV = *Entry) {
4785       if (Alignment.getQuantity() > GV->getAlignment())
4786         GV->setAlignment(Alignment.getQuantity());
4787       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4788                              Alignment);
4789     }
4790   }
4791 
4792   SmallString<256> MangledNameBuffer;
4793   StringRef GlobalVariableName;
4794   llvm::GlobalValue::LinkageTypes LT;
4795 
4796   // Mangle the string literal if that's how the ABI merges duplicate strings.
4797   // Don't do it if they are writable, since we don't want writes in one TU to
4798   // affect strings in another.
4799   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4800       !LangOpts.WritableStrings) {
4801     llvm::raw_svector_ostream Out(MangledNameBuffer);
4802     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4803     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4804     GlobalVariableName = MangledNameBuffer;
4805   } else {
4806     LT = llvm::GlobalValue::PrivateLinkage;
4807     GlobalVariableName = Name;
4808   }
4809 
4810   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4811   if (Entry)
4812     *Entry = GV;
4813 
4814   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4815                                   QualType());
4816 
4817   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4818                          Alignment);
4819 }
4820 
4821 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4822 /// array for the given ObjCEncodeExpr node.
4823 ConstantAddress
4824 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4825   std::string Str;
4826   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4827 
4828   return GetAddrOfConstantCString(Str);
4829 }
4830 
4831 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4832 /// the literal and a terminating '\0' character.
4833 /// The result has pointer to array type.
4834 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4835     const std::string &Str, const char *GlobalName) {
4836   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4837   CharUnits Alignment =
4838     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4839 
4840   llvm::Constant *C =
4841       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4842 
4843   // Don't share any string literals if strings aren't constant.
4844   llvm::GlobalVariable **Entry = nullptr;
4845   if (!LangOpts.WritableStrings) {
4846     Entry = &ConstantStringMap[C];
4847     if (auto GV = *Entry) {
4848       if (Alignment.getQuantity() > GV->getAlignment())
4849         GV->setAlignment(Alignment.getQuantity());
4850       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4851                              Alignment);
4852     }
4853   }
4854 
4855   // Get the default prefix if a name wasn't specified.
4856   if (!GlobalName)
4857     GlobalName = ".str";
4858   // Create a global variable for this.
4859   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4860                                   GlobalName, Alignment);
4861   if (Entry)
4862     *Entry = GV;
4863 
4864   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4865                          Alignment);
4866 }
4867 
4868 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4869     const MaterializeTemporaryExpr *E, const Expr *Init) {
4870   assert((E->getStorageDuration() == SD_Static ||
4871           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4872   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4873 
4874   // If we're not materializing a subobject of the temporary, keep the
4875   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4876   QualType MaterializedType = Init->getType();
4877   if (Init == E->GetTemporaryExpr())
4878     MaterializedType = E->getType();
4879 
4880   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4881 
4882   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4883     return ConstantAddress(Slot, Align);
4884 
4885   // FIXME: If an externally-visible declaration extends multiple temporaries,
4886   // we need to give each temporary the same name in every translation unit (and
4887   // we also need to make the temporaries externally-visible).
4888   SmallString<256> Name;
4889   llvm::raw_svector_ostream Out(Name);
4890   getCXXABI().getMangleContext().mangleReferenceTemporary(
4891       VD, E->getManglingNumber(), Out);
4892 
4893   APValue *Value = nullptr;
4894   if (E->getStorageDuration() == SD_Static) {
4895     // We might have a cached constant initializer for this temporary. Note
4896     // that this might have a different value from the value computed by
4897     // evaluating the initializer if the surrounding constant expression
4898     // modifies the temporary.
4899     Value = getContext().getMaterializedTemporaryValue(E, false);
4900     if (Value && Value->isAbsent())
4901       Value = nullptr;
4902   }
4903 
4904   // Try evaluating it now, it might have a constant initializer.
4905   Expr::EvalResult EvalResult;
4906   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4907       !EvalResult.hasSideEffects())
4908     Value = &EvalResult.Val;
4909 
4910   LangAS AddrSpace =
4911       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4912 
4913   Optional<ConstantEmitter> emitter;
4914   llvm::Constant *InitialValue = nullptr;
4915   bool Constant = false;
4916   llvm::Type *Type;
4917   if (Value) {
4918     // The temporary has a constant initializer, use it.
4919     emitter.emplace(*this);
4920     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4921                                                MaterializedType);
4922     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4923     Type = InitialValue->getType();
4924   } else {
4925     // No initializer, the initialization will be provided when we
4926     // initialize the declaration which performed lifetime extension.
4927     Type = getTypes().ConvertTypeForMem(MaterializedType);
4928   }
4929 
4930   // Create a global variable for this lifetime-extended temporary.
4931   llvm::GlobalValue::LinkageTypes Linkage =
4932       getLLVMLinkageVarDefinition(VD, Constant);
4933   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4934     const VarDecl *InitVD;
4935     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4936         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4937       // Temporaries defined inside a class get linkonce_odr linkage because the
4938       // class can be defined in multiple translation units.
4939       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4940     } else {
4941       // There is no need for this temporary to have external linkage if the
4942       // VarDecl has external linkage.
4943       Linkage = llvm::GlobalVariable::InternalLinkage;
4944     }
4945   }
4946   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4947   auto *GV = new llvm::GlobalVariable(
4948       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4949       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4950   if (emitter) emitter->finalize(GV);
4951   setGVProperties(GV, VD);
4952   GV->setAlignment(Align.getQuantity());
4953   if (supportsCOMDAT() && GV->isWeakForLinker())
4954     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4955   if (VD->getTLSKind())
4956     setTLSMode(GV, *VD);
4957   llvm::Constant *CV = GV;
4958   if (AddrSpace != LangAS::Default)
4959     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4960         *this, GV, AddrSpace, LangAS::Default,
4961         Type->getPointerTo(
4962             getContext().getTargetAddressSpace(LangAS::Default)));
4963   MaterializedGlobalTemporaryMap[E] = CV;
4964   return ConstantAddress(CV, Align);
4965 }
4966 
4967 /// EmitObjCPropertyImplementations - Emit information for synthesized
4968 /// properties for an implementation.
4969 void CodeGenModule::EmitObjCPropertyImplementations(const
4970                                                     ObjCImplementationDecl *D) {
4971   for (const auto *PID : D->property_impls()) {
4972     // Dynamic is just for type-checking.
4973     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4974       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4975 
4976       // Determine which methods need to be implemented, some may have
4977       // been overridden. Note that ::isPropertyAccessor is not the method
4978       // we want, that just indicates if the decl came from a
4979       // property. What we want to know is if the method is defined in
4980       // this implementation.
4981       if (!D->getInstanceMethod(PD->getGetterName()))
4982         CodeGenFunction(*this).GenerateObjCGetter(
4983                                  const_cast<ObjCImplementationDecl *>(D), PID);
4984       if (!PD->isReadOnly() &&
4985           !D->getInstanceMethod(PD->getSetterName()))
4986         CodeGenFunction(*this).GenerateObjCSetter(
4987                                  const_cast<ObjCImplementationDecl *>(D), PID);
4988     }
4989   }
4990 }
4991 
4992 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4993   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4994   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4995        ivar; ivar = ivar->getNextIvar())
4996     if (ivar->getType().isDestructedType())
4997       return true;
4998 
4999   return false;
5000 }
5001 
5002 static bool AllTrivialInitializers(CodeGenModule &CGM,
5003                                    ObjCImplementationDecl *D) {
5004   CodeGenFunction CGF(CGM);
5005   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5006        E = D->init_end(); B != E; ++B) {
5007     CXXCtorInitializer *CtorInitExp = *B;
5008     Expr *Init = CtorInitExp->getInit();
5009     if (!CGF.isTrivialInitializer(Init))
5010       return false;
5011   }
5012   return true;
5013 }
5014 
5015 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5016 /// for an implementation.
5017 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5018   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5019   if (needsDestructMethod(D)) {
5020     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5021     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5022     ObjCMethodDecl *DTORMethod =
5023       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5024                              cxxSelector, getContext().VoidTy, nullptr, D,
5025                              /*isInstance=*/true, /*isVariadic=*/false,
5026                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5027                              /*isDefined=*/false, ObjCMethodDecl::Required);
5028     D->addInstanceMethod(DTORMethod);
5029     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5030     D->setHasDestructors(true);
5031   }
5032 
5033   // If the implementation doesn't have any ivar initializers, we don't need
5034   // a .cxx_construct.
5035   if (D->getNumIvarInitializers() == 0 ||
5036       AllTrivialInitializers(*this, D))
5037     return;
5038 
5039   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5040   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5041   // The constructor returns 'self'.
5042   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5043                                                 D->getLocation(),
5044                                                 D->getLocation(),
5045                                                 cxxSelector,
5046                                                 getContext().getObjCIdType(),
5047                                                 nullptr, D, /*isInstance=*/true,
5048                                                 /*isVariadic=*/false,
5049                                                 /*isPropertyAccessor=*/true,
5050                                                 /*isImplicitlyDeclared=*/true,
5051                                                 /*isDefined=*/false,
5052                                                 ObjCMethodDecl::Required);
5053   D->addInstanceMethod(CTORMethod);
5054   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5055   D->setHasNonZeroConstructors(true);
5056 }
5057 
5058 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5059 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5060   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5061       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5062     ErrorUnsupported(LSD, "linkage spec");
5063     return;
5064   }
5065 
5066   EmitDeclContext(LSD);
5067 }
5068 
5069 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5070   for (auto *I : DC->decls()) {
5071     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5072     // are themselves considered "top-level", so EmitTopLevelDecl on an
5073     // ObjCImplDecl does not recursively visit them. We need to do that in
5074     // case they're nested inside another construct (LinkageSpecDecl /
5075     // ExportDecl) that does stop them from being considered "top-level".
5076     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5077       for (auto *M : OID->methods())
5078         EmitTopLevelDecl(M);
5079     }
5080 
5081     EmitTopLevelDecl(I);
5082   }
5083 }
5084 
5085 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5086 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5087   // Ignore dependent declarations.
5088   if (D->isTemplated())
5089     return;
5090 
5091   switch (D->getKind()) {
5092   case Decl::CXXConversion:
5093   case Decl::CXXMethod:
5094   case Decl::Function:
5095     EmitGlobal(cast<FunctionDecl>(D));
5096     // Always provide some coverage mapping
5097     // even for the functions that aren't emitted.
5098     AddDeferredUnusedCoverageMapping(D);
5099     break;
5100 
5101   case Decl::CXXDeductionGuide:
5102     // Function-like, but does not result in code emission.
5103     break;
5104 
5105   case Decl::Var:
5106   case Decl::Decomposition:
5107   case Decl::VarTemplateSpecialization:
5108     EmitGlobal(cast<VarDecl>(D));
5109     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5110       for (auto *B : DD->bindings())
5111         if (auto *HD = B->getHoldingVar())
5112           EmitGlobal(HD);
5113     break;
5114 
5115   // Indirect fields from global anonymous structs and unions can be
5116   // ignored; only the actual variable requires IR gen support.
5117   case Decl::IndirectField:
5118     break;
5119 
5120   // C++ Decls
5121   case Decl::Namespace:
5122     EmitDeclContext(cast<NamespaceDecl>(D));
5123     break;
5124   case Decl::ClassTemplateSpecialization: {
5125     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5126     if (DebugInfo &&
5127         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5128         Spec->hasDefinition())
5129       DebugInfo->completeTemplateDefinition(*Spec);
5130   } LLVM_FALLTHROUGH;
5131   case Decl::CXXRecord:
5132     if (DebugInfo) {
5133       if (auto *ES = D->getASTContext().getExternalSource())
5134         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5135           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5136     }
5137     // Emit any static data members, they may be definitions.
5138     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5139       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5140         EmitTopLevelDecl(I);
5141     break;
5142     // No code generation needed.
5143   case Decl::UsingShadow:
5144   case Decl::ClassTemplate:
5145   case Decl::VarTemplate:
5146   case Decl::VarTemplatePartialSpecialization:
5147   case Decl::FunctionTemplate:
5148   case Decl::TypeAliasTemplate:
5149   case Decl::Block:
5150   case Decl::Empty:
5151   case Decl::Binding:
5152     break;
5153   case Decl::Using:          // using X; [C++]
5154     if (CGDebugInfo *DI = getModuleDebugInfo())
5155         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5156     return;
5157   case Decl::NamespaceAlias:
5158     if (CGDebugInfo *DI = getModuleDebugInfo())
5159         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5160     return;
5161   case Decl::UsingDirective: // using namespace X; [C++]
5162     if (CGDebugInfo *DI = getModuleDebugInfo())
5163       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5164     return;
5165   case Decl::CXXConstructor:
5166     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5167     break;
5168   case Decl::CXXDestructor:
5169     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5170     break;
5171 
5172   case Decl::StaticAssert:
5173     // Nothing to do.
5174     break;
5175 
5176   // Objective-C Decls
5177 
5178   // Forward declarations, no (immediate) code generation.
5179   case Decl::ObjCInterface:
5180   case Decl::ObjCCategory:
5181     break;
5182 
5183   case Decl::ObjCProtocol: {
5184     auto *Proto = cast<ObjCProtocolDecl>(D);
5185     if (Proto->isThisDeclarationADefinition())
5186       ObjCRuntime->GenerateProtocol(Proto);
5187     break;
5188   }
5189 
5190   case Decl::ObjCCategoryImpl:
5191     // Categories have properties but don't support synthesize so we
5192     // can ignore them here.
5193     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5194     break;
5195 
5196   case Decl::ObjCImplementation: {
5197     auto *OMD = cast<ObjCImplementationDecl>(D);
5198     EmitObjCPropertyImplementations(OMD);
5199     EmitObjCIvarInitializations(OMD);
5200     ObjCRuntime->GenerateClass(OMD);
5201     // Emit global variable debug information.
5202     if (CGDebugInfo *DI = getModuleDebugInfo())
5203       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5204         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5205             OMD->getClassInterface()), OMD->getLocation());
5206     break;
5207   }
5208   case Decl::ObjCMethod: {
5209     auto *OMD = cast<ObjCMethodDecl>(D);
5210     // If this is not a prototype, emit the body.
5211     if (OMD->getBody())
5212       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5213     break;
5214   }
5215   case Decl::ObjCCompatibleAlias:
5216     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5217     break;
5218 
5219   case Decl::PragmaComment: {
5220     const auto *PCD = cast<PragmaCommentDecl>(D);
5221     switch (PCD->getCommentKind()) {
5222     case PCK_Unknown:
5223       llvm_unreachable("unexpected pragma comment kind");
5224     case PCK_Linker:
5225       AppendLinkerOptions(PCD->getArg());
5226       break;
5227     case PCK_Lib:
5228         AddDependentLib(PCD->getArg());
5229       break;
5230     case PCK_Compiler:
5231     case PCK_ExeStr:
5232     case PCK_User:
5233       break; // We ignore all of these.
5234     }
5235     break;
5236   }
5237 
5238   case Decl::PragmaDetectMismatch: {
5239     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5240     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5241     break;
5242   }
5243 
5244   case Decl::LinkageSpec:
5245     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5246     break;
5247 
5248   case Decl::FileScopeAsm: {
5249     // File-scope asm is ignored during device-side CUDA compilation.
5250     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5251       break;
5252     // File-scope asm is ignored during device-side OpenMP compilation.
5253     if (LangOpts.OpenMPIsDevice)
5254       break;
5255     auto *AD = cast<FileScopeAsmDecl>(D);
5256     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5257     break;
5258   }
5259 
5260   case Decl::Import: {
5261     auto *Import = cast<ImportDecl>(D);
5262 
5263     // If we've already imported this module, we're done.
5264     if (!ImportedModules.insert(Import->getImportedModule()))
5265       break;
5266 
5267     // Emit debug information for direct imports.
5268     if (!Import->getImportedOwningModule()) {
5269       if (CGDebugInfo *DI = getModuleDebugInfo())
5270         DI->EmitImportDecl(*Import);
5271     }
5272 
5273     // Find all of the submodules and emit the module initializers.
5274     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5275     SmallVector<clang::Module *, 16> Stack;
5276     Visited.insert(Import->getImportedModule());
5277     Stack.push_back(Import->getImportedModule());
5278 
5279     while (!Stack.empty()) {
5280       clang::Module *Mod = Stack.pop_back_val();
5281       if (!EmittedModuleInitializers.insert(Mod).second)
5282         continue;
5283 
5284       for (auto *D : Context.getModuleInitializers(Mod))
5285         EmitTopLevelDecl(D);
5286 
5287       // Visit the submodules of this module.
5288       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5289                                              SubEnd = Mod->submodule_end();
5290            Sub != SubEnd; ++Sub) {
5291         // Skip explicit children; they need to be explicitly imported to emit
5292         // the initializers.
5293         if ((*Sub)->IsExplicit)
5294           continue;
5295 
5296         if (Visited.insert(*Sub).second)
5297           Stack.push_back(*Sub);
5298       }
5299     }
5300     break;
5301   }
5302 
5303   case Decl::Export:
5304     EmitDeclContext(cast<ExportDecl>(D));
5305     break;
5306 
5307   case Decl::OMPThreadPrivate:
5308     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5309     break;
5310 
5311   case Decl::OMPAllocate:
5312     break;
5313 
5314   case Decl::OMPDeclareReduction:
5315     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5316     break;
5317 
5318   case Decl::OMPDeclareMapper:
5319     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5320     break;
5321 
5322   case Decl::OMPRequires:
5323     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5324     break;
5325 
5326   default:
5327     // Make sure we handled everything we should, every other kind is a
5328     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5329     // function. Need to recode Decl::Kind to do that easily.
5330     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5331     break;
5332   }
5333 }
5334 
5335 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5336   // Do we need to generate coverage mapping?
5337   if (!CodeGenOpts.CoverageMapping)
5338     return;
5339   switch (D->getKind()) {
5340   case Decl::CXXConversion:
5341   case Decl::CXXMethod:
5342   case Decl::Function:
5343   case Decl::ObjCMethod:
5344   case Decl::CXXConstructor:
5345   case Decl::CXXDestructor: {
5346     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5347       return;
5348     SourceManager &SM = getContext().getSourceManager();
5349     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5350       return;
5351     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5352     if (I == DeferredEmptyCoverageMappingDecls.end())
5353       DeferredEmptyCoverageMappingDecls[D] = true;
5354     break;
5355   }
5356   default:
5357     break;
5358   };
5359 }
5360 
5361 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5362   // Do we need to generate coverage mapping?
5363   if (!CodeGenOpts.CoverageMapping)
5364     return;
5365   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5366     if (Fn->isTemplateInstantiation())
5367       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5368   }
5369   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5370   if (I == DeferredEmptyCoverageMappingDecls.end())
5371     DeferredEmptyCoverageMappingDecls[D] = false;
5372   else
5373     I->second = false;
5374 }
5375 
5376 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5377   // We call takeVector() here to avoid use-after-free.
5378   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5379   // we deserialize function bodies to emit coverage info for them, and that
5380   // deserializes more declarations. How should we handle that case?
5381   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5382     if (!Entry.second)
5383       continue;
5384     const Decl *D = Entry.first;
5385     switch (D->getKind()) {
5386     case Decl::CXXConversion:
5387     case Decl::CXXMethod:
5388     case Decl::Function:
5389     case Decl::ObjCMethod: {
5390       CodeGenPGO PGO(*this);
5391       GlobalDecl GD(cast<FunctionDecl>(D));
5392       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5393                                   getFunctionLinkage(GD));
5394       break;
5395     }
5396     case Decl::CXXConstructor: {
5397       CodeGenPGO PGO(*this);
5398       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5399       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5400                                   getFunctionLinkage(GD));
5401       break;
5402     }
5403     case Decl::CXXDestructor: {
5404       CodeGenPGO PGO(*this);
5405       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5406       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5407                                   getFunctionLinkage(GD));
5408       break;
5409     }
5410     default:
5411       break;
5412     };
5413   }
5414 }
5415 
5416 /// Turns the given pointer into a constant.
5417 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5418                                           const void *Ptr) {
5419   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5420   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5421   return llvm::ConstantInt::get(i64, PtrInt);
5422 }
5423 
5424 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5425                                    llvm::NamedMDNode *&GlobalMetadata,
5426                                    GlobalDecl D,
5427                                    llvm::GlobalValue *Addr) {
5428   if (!GlobalMetadata)
5429     GlobalMetadata =
5430       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5431 
5432   // TODO: should we report variant information for ctors/dtors?
5433   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5434                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5435                                CGM.getLLVMContext(), D.getDecl()))};
5436   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5437 }
5438 
5439 /// For each function which is declared within an extern "C" region and marked
5440 /// as 'used', but has internal linkage, create an alias from the unmangled
5441 /// name to the mangled name if possible. People expect to be able to refer
5442 /// to such functions with an unmangled name from inline assembly within the
5443 /// same translation unit.
5444 void CodeGenModule::EmitStaticExternCAliases() {
5445   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5446     return;
5447   for (auto &I : StaticExternCValues) {
5448     IdentifierInfo *Name = I.first;
5449     llvm::GlobalValue *Val = I.second;
5450     if (Val && !getModule().getNamedValue(Name->getName()))
5451       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5452   }
5453 }
5454 
5455 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5456                                              GlobalDecl &Result) const {
5457   auto Res = Manglings.find(MangledName);
5458   if (Res == Manglings.end())
5459     return false;
5460   Result = Res->getValue();
5461   return true;
5462 }
5463 
5464 /// Emits metadata nodes associating all the global values in the
5465 /// current module with the Decls they came from.  This is useful for
5466 /// projects using IR gen as a subroutine.
5467 ///
5468 /// Since there's currently no way to associate an MDNode directly
5469 /// with an llvm::GlobalValue, we create a global named metadata
5470 /// with the name 'clang.global.decl.ptrs'.
5471 void CodeGenModule::EmitDeclMetadata() {
5472   llvm::NamedMDNode *GlobalMetadata = nullptr;
5473 
5474   for (auto &I : MangledDeclNames) {
5475     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5476     // Some mangled names don't necessarily have an associated GlobalValue
5477     // in this module, e.g. if we mangled it for DebugInfo.
5478     if (Addr)
5479       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5480   }
5481 }
5482 
5483 /// Emits metadata nodes for all the local variables in the current
5484 /// function.
5485 void CodeGenFunction::EmitDeclMetadata() {
5486   if (LocalDeclMap.empty()) return;
5487 
5488   llvm::LLVMContext &Context = getLLVMContext();
5489 
5490   // Find the unique metadata ID for this name.
5491   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5492 
5493   llvm::NamedMDNode *GlobalMetadata = nullptr;
5494 
5495   for (auto &I : LocalDeclMap) {
5496     const Decl *D = I.first;
5497     llvm::Value *Addr = I.second.getPointer();
5498     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5499       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5500       Alloca->setMetadata(
5501           DeclPtrKind, llvm::MDNode::get(
5502                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5503     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5504       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5505       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5506     }
5507   }
5508 }
5509 
5510 void CodeGenModule::EmitVersionIdentMetadata() {
5511   llvm::NamedMDNode *IdentMetadata =
5512     TheModule.getOrInsertNamedMetadata("llvm.ident");
5513   std::string Version = getClangFullVersion();
5514   llvm::LLVMContext &Ctx = TheModule.getContext();
5515 
5516   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5517   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5518 }
5519 
5520 void CodeGenModule::EmitCommandLineMetadata() {
5521   llvm::NamedMDNode *CommandLineMetadata =
5522     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5523   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5524   llvm::LLVMContext &Ctx = TheModule.getContext();
5525 
5526   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5527   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5528 }
5529 
5530 void CodeGenModule::EmitTargetMetadata() {
5531   // Warning, new MangledDeclNames may be appended within this loop.
5532   // We rely on MapVector insertions adding new elements to the end
5533   // of the container.
5534   // FIXME: Move this loop into the one target that needs it, and only
5535   // loop over those declarations for which we couldn't emit the target
5536   // metadata when we emitted the declaration.
5537   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5538     auto Val = *(MangledDeclNames.begin() + I);
5539     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5540     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5541     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5542   }
5543 }
5544 
5545 void CodeGenModule::EmitCoverageFile() {
5546   if (getCodeGenOpts().CoverageDataFile.empty() &&
5547       getCodeGenOpts().CoverageNotesFile.empty())
5548     return;
5549 
5550   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5551   if (!CUNode)
5552     return;
5553 
5554   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5555   llvm::LLVMContext &Ctx = TheModule.getContext();
5556   auto *CoverageDataFile =
5557       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5558   auto *CoverageNotesFile =
5559       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5560   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5561     llvm::MDNode *CU = CUNode->getOperand(i);
5562     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5563     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5564   }
5565 }
5566 
5567 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5568   // Sema has checked that all uuid strings are of the form
5569   // "12345678-1234-1234-1234-1234567890ab".
5570   assert(Uuid.size() == 36);
5571   for (unsigned i = 0; i < 36; ++i) {
5572     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5573     else                                         assert(isHexDigit(Uuid[i]));
5574   }
5575 
5576   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5577   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5578 
5579   llvm::Constant *Field3[8];
5580   for (unsigned Idx = 0; Idx < 8; ++Idx)
5581     Field3[Idx] = llvm::ConstantInt::get(
5582         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5583 
5584   llvm::Constant *Fields[4] = {
5585     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5586     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5587     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5588     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5589   };
5590 
5591   return llvm::ConstantStruct::getAnon(Fields);
5592 }
5593 
5594 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5595                                                        bool ForEH) {
5596   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5597   // FIXME: should we even be calling this method if RTTI is disabled
5598   // and it's not for EH?
5599   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5600     return llvm::Constant::getNullValue(Int8PtrTy);
5601 
5602   if (ForEH && Ty->isObjCObjectPointerType() &&
5603       LangOpts.ObjCRuntime.isGNUFamily())
5604     return ObjCRuntime->GetEHType(Ty);
5605 
5606   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5607 }
5608 
5609 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5610   // Do not emit threadprivates in simd-only mode.
5611   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5612     return;
5613   for (auto RefExpr : D->varlists()) {
5614     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5615     bool PerformInit =
5616         VD->getAnyInitializer() &&
5617         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5618                                                         /*ForRef=*/false);
5619 
5620     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5621     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5622             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5623       CXXGlobalInits.push_back(InitFunction);
5624   }
5625 }
5626 
5627 llvm::Metadata *
5628 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5629                                             StringRef Suffix) {
5630   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5631   if (InternalId)
5632     return InternalId;
5633 
5634   if (isExternallyVisible(T->getLinkage())) {
5635     std::string OutName;
5636     llvm::raw_string_ostream Out(OutName);
5637     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5638     Out << Suffix;
5639 
5640     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5641   } else {
5642     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5643                                            llvm::ArrayRef<llvm::Metadata *>());
5644   }
5645 
5646   return InternalId;
5647 }
5648 
5649 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5650   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5651 }
5652 
5653 llvm::Metadata *
5654 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5655   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5656 }
5657 
5658 // Generalize pointer types to a void pointer with the qualifiers of the
5659 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5660 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5661 // 'void *'.
5662 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5663   if (!Ty->isPointerType())
5664     return Ty;
5665 
5666   return Ctx.getPointerType(
5667       QualType(Ctx.VoidTy).withCVRQualifiers(
5668           Ty->getPointeeType().getCVRQualifiers()));
5669 }
5670 
5671 // Apply type generalization to a FunctionType's return and argument types
5672 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5673   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5674     SmallVector<QualType, 8> GeneralizedParams;
5675     for (auto &Param : FnType->param_types())
5676       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5677 
5678     return Ctx.getFunctionType(
5679         GeneralizeType(Ctx, FnType->getReturnType()),
5680         GeneralizedParams, FnType->getExtProtoInfo());
5681   }
5682 
5683   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5684     return Ctx.getFunctionNoProtoType(
5685         GeneralizeType(Ctx, FnType->getReturnType()));
5686 
5687   llvm_unreachable("Encountered unknown FunctionType");
5688 }
5689 
5690 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5691   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5692                                       GeneralizedMetadataIdMap, ".generalized");
5693 }
5694 
5695 /// Returns whether this module needs the "all-vtables" type identifier.
5696 bool CodeGenModule::NeedAllVtablesTypeId() const {
5697   // Returns true if at least one of vtable-based CFI checkers is enabled and
5698   // is not in the trapping mode.
5699   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5700            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5701           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5702            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5703           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5704            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5705           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5706            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5707 }
5708 
5709 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5710                                           CharUnits Offset,
5711                                           const CXXRecordDecl *RD) {
5712   llvm::Metadata *MD =
5713       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5714   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5715 
5716   if (CodeGenOpts.SanitizeCfiCrossDso)
5717     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5718       VTable->addTypeMetadata(Offset.getQuantity(),
5719                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5720 
5721   if (NeedAllVtablesTypeId()) {
5722     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5723     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5724   }
5725 }
5726 
5727 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5728   assert(TD != nullptr);
5729   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5730 
5731   ParsedAttr.Features.erase(
5732       llvm::remove_if(ParsedAttr.Features,
5733                       [&](const std::string &Feat) {
5734                         return !Target.isValidFeatureName(
5735                             StringRef{Feat}.substr(1));
5736                       }),
5737       ParsedAttr.Features.end());
5738   return ParsedAttr;
5739 }
5740 
5741 
5742 // Fills in the supplied string map with the set of target features for the
5743 // passed in function.
5744 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5745                                           GlobalDecl GD) {
5746   StringRef TargetCPU = Target.getTargetOpts().CPU;
5747   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5748   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5749     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5750 
5751     // Make a copy of the features as passed on the command line into the
5752     // beginning of the additional features from the function to override.
5753     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5754                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5755                             Target.getTargetOpts().FeaturesAsWritten.end());
5756 
5757     if (ParsedAttr.Architecture != "" &&
5758         Target.isValidCPUName(ParsedAttr.Architecture))
5759       TargetCPU = ParsedAttr.Architecture;
5760 
5761     // Now populate the feature map, first with the TargetCPU which is either
5762     // the default or a new one from the target attribute string. Then we'll use
5763     // the passed in features (FeaturesAsWritten) along with the new ones from
5764     // the attribute.
5765     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5766                           ParsedAttr.Features);
5767   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5768     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5769     Target.getCPUSpecificCPUDispatchFeatures(
5770         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5771     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5772     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5773   } else {
5774     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5775                           Target.getTargetOpts().Features);
5776   }
5777 }
5778 
5779 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5780   if (!SanStats)
5781     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5782 
5783   return *SanStats;
5784 }
5785 llvm::Value *
5786 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5787                                                   CodeGenFunction &CGF) {
5788   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5789   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5790   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5791   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5792                                 "__translate_sampler_initializer"),
5793                                 {C});
5794 }
5795