1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNU: 142 case ObjCRuntime::FragileGNU: 143 ObjCRuntime = CreateGNUObjCRuntime(*this); 144 return; 145 146 case ObjCRuntime::FragileMacOSX: 147 case ObjCRuntime::MacOSX: 148 case ObjCRuntime::iOS: 149 ObjCRuntime = CreateMacObjCRuntime(*this); 150 return; 151 } 152 llvm_unreachable("bad runtime kind"); 153 } 154 155 void CodeGenModule::createOpenCLRuntime() { 156 OpenCLRuntime = new CGOpenCLRuntime(*this); 157 } 158 159 void CodeGenModule::createCUDARuntime() { 160 CUDARuntime = CreateNVCUDARuntime(*this); 161 } 162 163 void CodeGenModule::Release() { 164 EmitDeferred(); 165 EmitCXXGlobalInitFunc(); 166 EmitCXXGlobalDtorFunc(); 167 if (ObjCRuntime) 168 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 169 AddGlobalCtor(ObjCInitFunction); 170 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 171 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 172 EmitGlobalAnnotations(); 173 EmitLLVMUsed(); 174 175 SimplifyPersonality(); 176 177 if (getCodeGenOpts().EmitDeclMetadata) 178 EmitDeclMetadata(); 179 180 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 181 EmitCoverageFile(); 182 183 if (DebugInfo) 184 DebugInfo->finalize(); 185 } 186 187 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 188 // Make sure that this type is translated. 189 Types.UpdateCompletedType(TD); 190 } 191 192 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 193 if (!TBAA) 194 return 0; 195 return TBAA->getTBAAInfo(QTy); 196 } 197 198 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 199 if (!TBAA) 200 return 0; 201 return TBAA->getTBAAInfoForVTablePtr(); 202 } 203 204 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 205 llvm::MDNode *TBAAInfo) { 206 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 207 } 208 209 bool CodeGenModule::isTargetDarwin() const { 210 return getContext().getTargetInfo().getTriple().isOSDarwin(); 211 } 212 213 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 214 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 215 getDiags().Report(Context.getFullLoc(loc), diagID); 216 } 217 218 /// ErrorUnsupported - Print out an error that codegen doesn't support the 219 /// specified stmt yet. 220 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 221 bool OmitOnError) { 222 if (OmitOnError && getDiags().hasErrorOccurred()) 223 return; 224 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 225 "cannot compile this %0 yet"); 226 std::string Msg = Type; 227 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 228 << Msg << S->getSourceRange(); 229 } 230 231 /// ErrorUnsupported - Print out an error that codegen doesn't support the 232 /// specified decl yet. 233 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 234 bool OmitOnError) { 235 if (OmitOnError && getDiags().hasErrorOccurred()) 236 return; 237 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 238 "cannot compile this %0 yet"); 239 std::string Msg = Type; 240 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 241 } 242 243 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 244 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 245 } 246 247 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 248 const NamedDecl *D) const { 249 // Internal definitions always have default visibility. 250 if (GV->hasLocalLinkage()) { 251 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 252 return; 253 } 254 255 // Set visibility for definitions. 256 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 257 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 258 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 259 } 260 261 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 262 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 263 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 264 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 265 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 266 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 267 } 268 269 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 270 CodeGenOptions::TLSModel M) { 271 switch (M) { 272 case CodeGenOptions::GeneralDynamicTLSModel: 273 return llvm::GlobalVariable::GeneralDynamicTLSModel; 274 case CodeGenOptions::LocalDynamicTLSModel: 275 return llvm::GlobalVariable::LocalDynamicTLSModel; 276 case CodeGenOptions::InitialExecTLSModel: 277 return llvm::GlobalVariable::InitialExecTLSModel; 278 case CodeGenOptions::LocalExecTLSModel: 279 return llvm::GlobalVariable::LocalExecTLSModel; 280 } 281 llvm_unreachable("Invalid TLS model!"); 282 } 283 284 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 285 const VarDecl &D) const { 286 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 287 288 llvm::GlobalVariable::ThreadLocalMode TLM; 289 TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel); 290 291 // Override the TLS model if it is explicitly specified. 292 if (D.hasAttr<TLSModelAttr>()) { 293 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 294 TLM = GetLLVMTLSModel(Attr->getModel()); 295 } 296 297 GV->setThreadLocalMode(TLM); 298 } 299 300 /// Set the symbol visibility of type information (vtable and RTTI) 301 /// associated with the given type. 302 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 303 const CXXRecordDecl *RD, 304 TypeVisibilityKind TVK) const { 305 setGlobalVisibility(GV, RD); 306 307 if (!CodeGenOpts.HiddenWeakVTables) 308 return; 309 310 // We never want to drop the visibility for RTTI names. 311 if (TVK == TVK_ForRTTIName) 312 return; 313 314 // We want to drop the visibility to hidden for weak type symbols. 315 // This isn't possible if there might be unresolved references 316 // elsewhere that rely on this symbol being visible. 317 318 // This should be kept roughly in sync with setThunkVisibility 319 // in CGVTables.cpp. 320 321 // Preconditions. 322 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 323 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 324 return; 325 326 // Don't override an explicit visibility attribute. 327 if (RD->getExplicitVisibility()) 328 return; 329 330 switch (RD->getTemplateSpecializationKind()) { 331 // We have to disable the optimization if this is an EI definition 332 // because there might be EI declarations in other shared objects. 333 case TSK_ExplicitInstantiationDefinition: 334 case TSK_ExplicitInstantiationDeclaration: 335 return; 336 337 // Every use of a non-template class's type information has to emit it. 338 case TSK_Undeclared: 339 break; 340 341 // In theory, implicit instantiations can ignore the possibility of 342 // an explicit instantiation declaration because there necessarily 343 // must be an EI definition somewhere with default visibility. In 344 // practice, it's possible to have an explicit instantiation for 345 // an arbitrary template class, and linkers aren't necessarily able 346 // to deal with mixed-visibility symbols. 347 case TSK_ExplicitSpecialization: 348 case TSK_ImplicitInstantiation: 349 if (!CodeGenOpts.HiddenWeakTemplateVTables) 350 return; 351 break; 352 } 353 354 // If there's a key function, there may be translation units 355 // that don't have the key function's definition. But ignore 356 // this if we're emitting RTTI under -fno-rtti. 357 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 358 if (Context.getKeyFunction(RD)) 359 return; 360 } 361 362 // Otherwise, drop the visibility to hidden. 363 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 364 GV->setUnnamedAddr(true); 365 } 366 367 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 368 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 369 370 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 371 if (!Str.empty()) 372 return Str; 373 374 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 375 IdentifierInfo *II = ND->getIdentifier(); 376 assert(II && "Attempt to mangle unnamed decl."); 377 378 Str = II->getName(); 379 return Str; 380 } 381 382 SmallString<256> Buffer; 383 llvm::raw_svector_ostream Out(Buffer); 384 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 385 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 386 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 387 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 388 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 389 getCXXABI().getMangleContext().mangleBlock(BD, Out, 390 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 391 else 392 getCXXABI().getMangleContext().mangleName(ND, Out); 393 394 // Allocate space for the mangled name. 395 Out.flush(); 396 size_t Length = Buffer.size(); 397 char *Name = MangledNamesAllocator.Allocate<char>(Length); 398 std::copy(Buffer.begin(), Buffer.end(), Name); 399 400 Str = StringRef(Name, Length); 401 402 return Str; 403 } 404 405 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 406 const BlockDecl *BD) { 407 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 408 const Decl *D = GD.getDecl(); 409 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 410 if (D == 0) 411 MangleCtx.mangleGlobalBlock(BD, 412 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 413 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 414 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 415 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 416 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 417 else 418 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 419 } 420 421 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 422 return getModule().getNamedValue(Name); 423 } 424 425 /// AddGlobalCtor - Add a function to the list that will be called before 426 /// main() runs. 427 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 428 // FIXME: Type coercion of void()* types. 429 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 430 } 431 432 /// AddGlobalDtor - Add a function to the list that will be called 433 /// when the module is unloaded. 434 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 435 // FIXME: Type coercion of void()* types. 436 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 437 } 438 439 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 440 // Ctor function type is void()*. 441 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 442 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 443 444 // Get the type of a ctor entry, { i32, void ()* }. 445 llvm::StructType *CtorStructTy = 446 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 447 448 // Construct the constructor and destructor arrays. 449 SmallVector<llvm::Constant*, 8> Ctors; 450 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 451 llvm::Constant *S[] = { 452 llvm::ConstantInt::get(Int32Ty, I->second, false), 453 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 454 }; 455 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 456 } 457 458 if (!Ctors.empty()) { 459 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 460 new llvm::GlobalVariable(TheModule, AT, false, 461 llvm::GlobalValue::AppendingLinkage, 462 llvm::ConstantArray::get(AT, Ctors), 463 GlobalName); 464 } 465 } 466 467 llvm::GlobalValue::LinkageTypes 468 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 469 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 470 471 if (Linkage == GVA_Internal) 472 return llvm::Function::InternalLinkage; 473 474 if (D->hasAttr<DLLExportAttr>()) 475 return llvm::Function::DLLExportLinkage; 476 477 if (D->hasAttr<WeakAttr>()) 478 return llvm::Function::WeakAnyLinkage; 479 480 // In C99 mode, 'inline' functions are guaranteed to have a strong 481 // definition somewhere else, so we can use available_externally linkage. 482 if (Linkage == GVA_C99Inline) 483 return llvm::Function::AvailableExternallyLinkage; 484 485 // Note that Apple's kernel linker doesn't support symbol 486 // coalescing, so we need to avoid linkonce and weak linkages there. 487 // Normally, this means we just map to internal, but for explicit 488 // instantiations we'll map to external. 489 490 // In C++, the compiler has to emit a definition in every translation unit 491 // that references the function. We should use linkonce_odr because 492 // a) if all references in this translation unit are optimized away, we 493 // don't need to codegen it. b) if the function persists, it needs to be 494 // merged with other definitions. c) C++ has the ODR, so we know the 495 // definition is dependable. 496 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 497 return !Context.getLangOpts().AppleKext 498 ? llvm::Function::LinkOnceODRLinkage 499 : llvm::Function::InternalLinkage; 500 501 // An explicit instantiation of a template has weak linkage, since 502 // explicit instantiations can occur in multiple translation units 503 // and must all be equivalent. However, we are not allowed to 504 // throw away these explicit instantiations. 505 if (Linkage == GVA_ExplicitTemplateInstantiation) 506 return !Context.getLangOpts().AppleKext 507 ? llvm::Function::WeakODRLinkage 508 : llvm::Function::ExternalLinkage; 509 510 // Otherwise, we have strong external linkage. 511 assert(Linkage == GVA_StrongExternal); 512 return llvm::Function::ExternalLinkage; 513 } 514 515 516 /// SetFunctionDefinitionAttributes - Set attributes for a global. 517 /// 518 /// FIXME: This is currently only done for aliases and functions, but not for 519 /// variables (these details are set in EmitGlobalVarDefinition for variables). 520 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 521 llvm::GlobalValue *GV) { 522 SetCommonAttributes(D, GV); 523 } 524 525 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 526 const CGFunctionInfo &Info, 527 llvm::Function *F) { 528 unsigned CallingConv; 529 AttributeListType AttributeList; 530 ConstructAttributeList(Info, D, AttributeList, CallingConv); 531 F->setAttributes(llvm::AttrListPtr::get(AttributeList)); 532 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 533 } 534 535 /// Determines whether the language options require us to model 536 /// unwind exceptions. We treat -fexceptions as mandating this 537 /// except under the fragile ObjC ABI with only ObjC exceptions 538 /// enabled. This means, for example, that C with -fexceptions 539 /// enables this. 540 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 541 // If exceptions are completely disabled, obviously this is false. 542 if (!LangOpts.Exceptions) return false; 543 544 // If C++ exceptions are enabled, this is true. 545 if (LangOpts.CXXExceptions) return true; 546 547 // If ObjC exceptions are enabled, this depends on the ABI. 548 if (LangOpts.ObjCExceptions) { 549 if (LangOpts.ObjCRuntime.isFragile()) return false; 550 } 551 552 return true; 553 } 554 555 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 556 llvm::Function *F) { 557 if (CodeGenOpts.UnwindTables) 558 F->setHasUWTable(); 559 560 if (!hasUnwindExceptions(LangOpts)) 561 F->addFnAttr(llvm::Attribute::NoUnwind); 562 563 if (D->hasAttr<NakedAttr>()) { 564 // Naked implies noinline: we should not be inlining such functions. 565 F->addFnAttr(llvm::Attribute::Naked); 566 F->addFnAttr(llvm::Attribute::NoInline); 567 } 568 569 if (D->hasAttr<NoInlineAttr>()) 570 F->addFnAttr(llvm::Attribute::NoInline); 571 572 // (noinline wins over always_inline, and we can't specify both in IR) 573 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 574 !F->hasFnAttr(llvm::Attribute::NoInline)) 575 F->addFnAttr(llvm::Attribute::AlwaysInline); 576 577 // FIXME: Communicate hot and cold attributes to LLVM more directly. 578 if (D->hasAttr<ColdAttr>()) 579 F->addFnAttr(llvm::Attribute::OptimizeForSize); 580 581 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 582 F->setUnnamedAddr(true); 583 584 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 585 F->addFnAttr(llvm::Attribute::StackProtect); 586 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 587 F->addFnAttr(llvm::Attribute::StackProtectReq); 588 589 if (LangOpts.AddressSanitizer) { 590 // When AddressSanitizer is enabled, set AddressSafety attribute 591 // unless __attribute__((no_address_safety_analysis)) is used. 592 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 593 F->addFnAttr(llvm::Attribute::AddressSafety); 594 } 595 596 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 597 if (alignment) 598 F->setAlignment(alignment); 599 600 // C++ ABI requires 2-byte alignment for member functions. 601 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 602 F->setAlignment(2); 603 } 604 605 void CodeGenModule::SetCommonAttributes(const Decl *D, 606 llvm::GlobalValue *GV) { 607 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 608 setGlobalVisibility(GV, ND); 609 else 610 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 611 612 if (D->hasAttr<UsedAttr>()) 613 AddUsedGlobal(GV); 614 615 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 616 GV->setSection(SA->getName()); 617 618 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 619 } 620 621 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 622 llvm::Function *F, 623 const CGFunctionInfo &FI) { 624 SetLLVMFunctionAttributes(D, FI, F); 625 SetLLVMFunctionAttributesForDefinition(D, F); 626 627 F->setLinkage(llvm::Function::InternalLinkage); 628 629 SetCommonAttributes(D, F); 630 } 631 632 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 633 llvm::Function *F, 634 bool IsIncompleteFunction) { 635 if (unsigned IID = F->getIntrinsicID()) { 636 // If this is an intrinsic function, set the function's attributes 637 // to the intrinsic's attributes. 638 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 639 return; 640 } 641 642 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 643 644 if (!IsIncompleteFunction) 645 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 646 647 // Only a few attributes are set on declarations; these may later be 648 // overridden by a definition. 649 650 if (FD->hasAttr<DLLImportAttr>()) { 651 F->setLinkage(llvm::Function::DLLImportLinkage); 652 } else if (FD->hasAttr<WeakAttr>() || 653 FD->isWeakImported()) { 654 // "extern_weak" is overloaded in LLVM; we probably should have 655 // separate linkage types for this. 656 F->setLinkage(llvm::Function::ExternalWeakLinkage); 657 } else { 658 F->setLinkage(llvm::Function::ExternalLinkage); 659 660 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 661 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 662 F->setVisibility(GetLLVMVisibility(LV.visibility())); 663 } 664 } 665 666 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 667 F->setSection(SA->getName()); 668 } 669 670 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 671 assert(!GV->isDeclaration() && 672 "Only globals with definition can force usage."); 673 LLVMUsed.push_back(GV); 674 } 675 676 void CodeGenModule::EmitLLVMUsed() { 677 // Don't create llvm.used if there is no need. 678 if (LLVMUsed.empty()) 679 return; 680 681 // Convert LLVMUsed to what ConstantArray needs. 682 SmallVector<llvm::Constant*, 8> UsedArray; 683 UsedArray.resize(LLVMUsed.size()); 684 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 685 UsedArray[i] = 686 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 687 Int8PtrTy); 688 } 689 690 if (UsedArray.empty()) 691 return; 692 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 693 694 llvm::GlobalVariable *GV = 695 new llvm::GlobalVariable(getModule(), ATy, false, 696 llvm::GlobalValue::AppendingLinkage, 697 llvm::ConstantArray::get(ATy, UsedArray), 698 "llvm.used"); 699 700 GV->setSection("llvm.metadata"); 701 } 702 703 void CodeGenModule::EmitDeferred() { 704 // Emit code for any potentially referenced deferred decls. Since a 705 // previously unused static decl may become used during the generation of code 706 // for a static function, iterate until no changes are made. 707 708 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 709 if (!DeferredVTables.empty()) { 710 const CXXRecordDecl *RD = DeferredVTables.back(); 711 DeferredVTables.pop_back(); 712 getCXXABI().EmitVTables(RD); 713 continue; 714 } 715 716 GlobalDecl D = DeferredDeclsToEmit.back(); 717 DeferredDeclsToEmit.pop_back(); 718 719 // Check to see if we've already emitted this. This is necessary 720 // for a couple of reasons: first, decls can end up in the 721 // deferred-decls queue multiple times, and second, decls can end 722 // up with definitions in unusual ways (e.g. by an extern inline 723 // function acquiring a strong function redefinition). Just 724 // ignore these cases. 725 // 726 // TODO: That said, looking this up multiple times is very wasteful. 727 StringRef Name = getMangledName(D); 728 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 729 assert(CGRef && "Deferred decl wasn't referenced?"); 730 731 if (!CGRef->isDeclaration()) 732 continue; 733 734 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 735 // purposes an alias counts as a definition. 736 if (isa<llvm::GlobalAlias>(CGRef)) 737 continue; 738 739 // Otherwise, emit the definition and move on to the next one. 740 EmitGlobalDefinition(D); 741 } 742 } 743 744 void CodeGenModule::EmitGlobalAnnotations() { 745 if (Annotations.empty()) 746 return; 747 748 // Create a new global variable for the ConstantStruct in the Module. 749 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 750 Annotations[0]->getType(), Annotations.size()), Annotations); 751 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 752 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 753 "llvm.global.annotations"); 754 gv->setSection(AnnotationSection); 755 } 756 757 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 758 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 759 if (i != AnnotationStrings.end()) 760 return i->second; 761 762 // Not found yet, create a new global. 763 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 764 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 765 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 766 gv->setSection(AnnotationSection); 767 gv->setUnnamedAddr(true); 768 AnnotationStrings[Str] = gv; 769 return gv; 770 } 771 772 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 773 SourceManager &SM = getContext().getSourceManager(); 774 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 775 if (PLoc.isValid()) 776 return EmitAnnotationString(PLoc.getFilename()); 777 return EmitAnnotationString(SM.getBufferName(Loc)); 778 } 779 780 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 781 SourceManager &SM = getContext().getSourceManager(); 782 PresumedLoc PLoc = SM.getPresumedLoc(L); 783 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 784 SM.getExpansionLineNumber(L); 785 return llvm::ConstantInt::get(Int32Ty, LineNo); 786 } 787 788 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 789 const AnnotateAttr *AA, 790 SourceLocation L) { 791 // Get the globals for file name, annotation, and the line number. 792 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 793 *UnitGV = EmitAnnotationUnit(L), 794 *LineNoCst = EmitAnnotationLineNo(L); 795 796 // Create the ConstantStruct for the global annotation. 797 llvm::Constant *Fields[4] = { 798 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 799 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 800 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 801 LineNoCst 802 }; 803 return llvm::ConstantStruct::getAnon(Fields); 804 } 805 806 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 807 llvm::GlobalValue *GV) { 808 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 809 // Get the struct elements for these annotations. 810 for (specific_attr_iterator<AnnotateAttr> 811 ai = D->specific_attr_begin<AnnotateAttr>(), 812 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 813 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 814 } 815 816 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 817 // Never defer when EmitAllDecls is specified. 818 if (LangOpts.EmitAllDecls) 819 return false; 820 821 return !getContext().DeclMustBeEmitted(Global); 822 } 823 824 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 825 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 826 assert(AA && "No alias?"); 827 828 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 829 830 // See if there is already something with the target's name in the module. 831 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 832 833 llvm::Constant *Aliasee; 834 if (isa<llvm::FunctionType>(DeclTy)) 835 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 836 /*ForVTable=*/false); 837 else 838 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 839 llvm::PointerType::getUnqual(DeclTy), 0); 840 if (!Entry) { 841 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 842 F->setLinkage(llvm::Function::ExternalWeakLinkage); 843 WeakRefReferences.insert(F); 844 } 845 846 return Aliasee; 847 } 848 849 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 850 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 851 852 // Weak references don't produce any output by themselves. 853 if (Global->hasAttr<WeakRefAttr>()) 854 return; 855 856 // If this is an alias definition (which otherwise looks like a declaration) 857 // emit it now. 858 if (Global->hasAttr<AliasAttr>()) 859 return EmitAliasDefinition(GD); 860 861 // If this is CUDA, be selective about which declarations we emit. 862 if (LangOpts.CUDA) { 863 if (CodeGenOpts.CUDAIsDevice) { 864 if (!Global->hasAttr<CUDADeviceAttr>() && 865 !Global->hasAttr<CUDAGlobalAttr>() && 866 !Global->hasAttr<CUDAConstantAttr>() && 867 !Global->hasAttr<CUDASharedAttr>()) 868 return; 869 } else { 870 if (!Global->hasAttr<CUDAHostAttr>() && ( 871 Global->hasAttr<CUDADeviceAttr>() || 872 Global->hasAttr<CUDAConstantAttr>() || 873 Global->hasAttr<CUDASharedAttr>())) 874 return; 875 } 876 } 877 878 // Ignore declarations, they will be emitted on their first use. 879 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 880 // Forward declarations are emitted lazily on first use. 881 if (!FD->doesThisDeclarationHaveABody()) { 882 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 883 return; 884 885 const FunctionDecl *InlineDefinition = 0; 886 FD->getBody(InlineDefinition); 887 888 StringRef MangledName = getMangledName(GD); 889 DeferredDecls.erase(MangledName); 890 EmitGlobalDefinition(InlineDefinition); 891 return; 892 } 893 } else { 894 const VarDecl *VD = cast<VarDecl>(Global); 895 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 896 897 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 898 return; 899 } 900 901 // Defer code generation when possible if this is a static definition, inline 902 // function etc. These we only want to emit if they are used. 903 if (!MayDeferGeneration(Global)) { 904 // Emit the definition if it can't be deferred. 905 EmitGlobalDefinition(GD); 906 return; 907 } 908 909 // If we're deferring emission of a C++ variable with an 910 // initializer, remember the order in which it appeared in the file. 911 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 912 cast<VarDecl>(Global)->hasInit()) { 913 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 914 CXXGlobalInits.push_back(0); 915 } 916 917 // If the value has already been used, add it directly to the 918 // DeferredDeclsToEmit list. 919 StringRef MangledName = getMangledName(GD); 920 if (GetGlobalValue(MangledName)) 921 DeferredDeclsToEmit.push_back(GD); 922 else { 923 // Otherwise, remember that we saw a deferred decl with this name. The 924 // first use of the mangled name will cause it to move into 925 // DeferredDeclsToEmit. 926 DeferredDecls[MangledName] = GD; 927 } 928 } 929 930 namespace { 931 struct FunctionIsDirectlyRecursive : 932 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 933 const StringRef Name; 934 const Builtin::Context &BI; 935 bool Result; 936 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 937 Name(N), BI(C), Result(false) { 938 } 939 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 940 941 bool TraverseCallExpr(CallExpr *E) { 942 const FunctionDecl *FD = E->getDirectCallee(); 943 if (!FD) 944 return true; 945 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 946 if (Attr && Name == Attr->getLabel()) { 947 Result = true; 948 return false; 949 } 950 unsigned BuiltinID = FD->getBuiltinID(); 951 if (!BuiltinID) 952 return true; 953 StringRef BuiltinName = BI.GetName(BuiltinID); 954 if (BuiltinName.startswith("__builtin_") && 955 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 956 Result = true; 957 return false; 958 } 959 return true; 960 } 961 }; 962 } 963 964 // isTriviallyRecursive - Check if this function calls another 965 // decl that, because of the asm attribute or the other decl being a builtin, 966 // ends up pointing to itself. 967 bool 968 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 969 StringRef Name; 970 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 971 // asm labels are a special kind of mangling we have to support. 972 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 973 if (!Attr) 974 return false; 975 Name = Attr->getLabel(); 976 } else { 977 Name = FD->getName(); 978 } 979 980 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 981 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 982 return Walker.Result; 983 } 984 985 bool 986 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 987 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 988 return true; 989 if (CodeGenOpts.OptimizationLevel == 0 && 990 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 991 return false; 992 // PR9614. Avoid cases where the source code is lying to us. An available 993 // externally function should have an equivalent function somewhere else, 994 // but a function that calls itself is clearly not equivalent to the real 995 // implementation. 996 // This happens in glibc's btowc and in some configure checks. 997 return !isTriviallyRecursive(F); 998 } 999 1000 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1001 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1002 1003 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1004 Context.getSourceManager(), 1005 "Generating code for declaration"); 1006 1007 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1008 // At -O0, don't generate IR for functions with available_externally 1009 // linkage. 1010 if (!shouldEmitFunction(Function)) 1011 return; 1012 1013 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1014 // Make sure to emit the definition(s) before we emit the thunks. 1015 // This is necessary for the generation of certain thunks. 1016 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1017 EmitCXXConstructor(CD, GD.getCtorType()); 1018 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1019 EmitCXXDestructor(DD, GD.getDtorType()); 1020 else 1021 EmitGlobalFunctionDefinition(GD); 1022 1023 if (Method->isVirtual()) 1024 getVTables().EmitThunks(GD); 1025 1026 return; 1027 } 1028 1029 return EmitGlobalFunctionDefinition(GD); 1030 } 1031 1032 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1033 return EmitGlobalVarDefinition(VD); 1034 1035 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1036 } 1037 1038 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1039 /// module, create and return an llvm Function with the specified type. If there 1040 /// is something in the module with the specified name, return it potentially 1041 /// bitcasted to the right type. 1042 /// 1043 /// If D is non-null, it specifies a decl that correspond to this. This is used 1044 /// to set the attributes on the function when it is first created. 1045 llvm::Constant * 1046 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1047 llvm::Type *Ty, 1048 GlobalDecl D, bool ForVTable, 1049 llvm::Attributes ExtraAttrs) { 1050 // Lookup the entry, lazily creating it if necessary. 1051 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1052 if (Entry) { 1053 if (WeakRefReferences.count(Entry)) { 1054 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1055 if (FD && !FD->hasAttr<WeakAttr>()) 1056 Entry->setLinkage(llvm::Function::ExternalLinkage); 1057 1058 WeakRefReferences.erase(Entry); 1059 } 1060 1061 if (Entry->getType()->getElementType() == Ty) 1062 return Entry; 1063 1064 // Make sure the result is of the correct type. 1065 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1066 } 1067 1068 // This function doesn't have a complete type (for example, the return 1069 // type is an incomplete struct). Use a fake type instead, and make 1070 // sure not to try to set attributes. 1071 bool IsIncompleteFunction = false; 1072 1073 llvm::FunctionType *FTy; 1074 if (isa<llvm::FunctionType>(Ty)) { 1075 FTy = cast<llvm::FunctionType>(Ty); 1076 } else { 1077 FTy = llvm::FunctionType::get(VoidTy, false); 1078 IsIncompleteFunction = true; 1079 } 1080 1081 llvm::Function *F = llvm::Function::Create(FTy, 1082 llvm::Function::ExternalLinkage, 1083 MangledName, &getModule()); 1084 assert(F->getName() == MangledName && "name was uniqued!"); 1085 if (D.getDecl()) 1086 SetFunctionAttributes(D, F, IsIncompleteFunction); 1087 if (ExtraAttrs != llvm::Attribute::None) 1088 F->addFnAttr(ExtraAttrs); 1089 1090 // This is the first use or definition of a mangled name. If there is a 1091 // deferred decl with this name, remember that we need to emit it at the end 1092 // of the file. 1093 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1094 if (DDI != DeferredDecls.end()) { 1095 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1096 // list, and remove it from DeferredDecls (since we don't need it anymore). 1097 DeferredDeclsToEmit.push_back(DDI->second); 1098 DeferredDecls.erase(DDI); 1099 1100 // Otherwise, there are cases we have to worry about where we're 1101 // using a declaration for which we must emit a definition but where 1102 // we might not find a top-level definition: 1103 // - member functions defined inline in their classes 1104 // - friend functions defined inline in some class 1105 // - special member functions with implicit definitions 1106 // If we ever change our AST traversal to walk into class methods, 1107 // this will be unnecessary. 1108 // 1109 // We also don't emit a definition for a function if it's going to be an entry 1110 // in a vtable, unless it's already marked as used. 1111 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1112 // Look for a declaration that's lexically in a record. 1113 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1114 do { 1115 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1116 if (FD->isImplicit() && !ForVTable) { 1117 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1118 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1119 break; 1120 } else if (FD->doesThisDeclarationHaveABody()) { 1121 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1122 break; 1123 } 1124 } 1125 FD = FD->getPreviousDecl(); 1126 } while (FD); 1127 } 1128 1129 // Make sure the result is of the requested type. 1130 if (!IsIncompleteFunction) { 1131 assert(F->getType()->getElementType() == Ty); 1132 return F; 1133 } 1134 1135 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1136 return llvm::ConstantExpr::getBitCast(F, PTy); 1137 } 1138 1139 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1140 /// non-null, then this function will use the specified type if it has to 1141 /// create it (this occurs when we see a definition of the function). 1142 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1143 llvm::Type *Ty, 1144 bool ForVTable) { 1145 // If there was no specific requested type, just convert it now. 1146 if (!Ty) 1147 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1148 1149 StringRef MangledName = getMangledName(GD); 1150 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1151 } 1152 1153 /// CreateRuntimeFunction - Create a new runtime function with the specified 1154 /// type and name. 1155 llvm::Constant * 1156 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1157 StringRef Name, 1158 llvm::Attributes ExtraAttrs) { 1159 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1160 ExtraAttrs); 1161 } 1162 1163 /// isTypeConstant - Determine whether an object of this type can be emitted 1164 /// as a constant. 1165 /// 1166 /// If ExcludeCtor is true, the duration when the object's constructor runs 1167 /// will not be considered. The caller will need to verify that the object is 1168 /// not written to during its construction. 1169 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1170 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1171 return false; 1172 1173 if (Context.getLangOpts().CPlusPlus) { 1174 if (const CXXRecordDecl *Record 1175 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1176 return ExcludeCtor && !Record->hasMutableFields() && 1177 Record->hasTrivialDestructor(); 1178 } 1179 1180 return true; 1181 } 1182 1183 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1184 /// create and return an llvm GlobalVariable with the specified type. If there 1185 /// is something in the module with the specified name, return it potentially 1186 /// bitcasted to the right type. 1187 /// 1188 /// If D is non-null, it specifies a decl that correspond to this. This is used 1189 /// to set the attributes on the global when it is first created. 1190 llvm::Constant * 1191 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1192 llvm::PointerType *Ty, 1193 const VarDecl *D, 1194 bool UnnamedAddr) { 1195 // Lookup the entry, lazily creating it if necessary. 1196 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1197 if (Entry) { 1198 if (WeakRefReferences.count(Entry)) { 1199 if (D && !D->hasAttr<WeakAttr>()) 1200 Entry->setLinkage(llvm::Function::ExternalLinkage); 1201 1202 WeakRefReferences.erase(Entry); 1203 } 1204 1205 if (UnnamedAddr) 1206 Entry->setUnnamedAddr(true); 1207 1208 if (Entry->getType() == Ty) 1209 return Entry; 1210 1211 // Make sure the result is of the correct type. 1212 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1213 } 1214 1215 // This is the first use or definition of a mangled name. If there is a 1216 // deferred decl with this name, remember that we need to emit it at the end 1217 // of the file. 1218 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1219 if (DDI != DeferredDecls.end()) { 1220 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1221 // list, and remove it from DeferredDecls (since we don't need it anymore). 1222 DeferredDeclsToEmit.push_back(DDI->second); 1223 DeferredDecls.erase(DDI); 1224 } 1225 1226 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1227 llvm::GlobalVariable *GV = 1228 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1229 llvm::GlobalValue::ExternalLinkage, 1230 0, MangledName, 0, 1231 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1232 1233 // Handle things which are present even on external declarations. 1234 if (D) { 1235 // FIXME: This code is overly simple and should be merged with other global 1236 // handling. 1237 GV->setConstant(isTypeConstant(D->getType(), false)); 1238 1239 // Set linkage and visibility in case we never see a definition. 1240 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1241 if (LV.linkage() != ExternalLinkage) { 1242 // Don't set internal linkage on declarations. 1243 } else { 1244 if (D->hasAttr<DLLImportAttr>()) 1245 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1246 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1247 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1248 1249 // Set visibility on a declaration only if it's explicit. 1250 if (LV.visibilityExplicit()) 1251 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1252 } 1253 1254 if (D->isThreadSpecified()) 1255 setTLSMode(GV, *D); 1256 } 1257 1258 if (AddrSpace != Ty->getAddressSpace()) 1259 return llvm::ConstantExpr::getBitCast(GV, Ty); 1260 else 1261 return GV; 1262 } 1263 1264 1265 llvm::GlobalVariable * 1266 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1267 llvm::Type *Ty, 1268 llvm::GlobalValue::LinkageTypes Linkage) { 1269 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1270 llvm::GlobalVariable *OldGV = 0; 1271 1272 1273 if (GV) { 1274 // Check if the variable has the right type. 1275 if (GV->getType()->getElementType() == Ty) 1276 return GV; 1277 1278 // Because C++ name mangling, the only way we can end up with an already 1279 // existing global with the same name is if it has been declared extern "C". 1280 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1281 OldGV = GV; 1282 } 1283 1284 // Create a new variable. 1285 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1286 Linkage, 0, Name); 1287 1288 if (OldGV) { 1289 // Replace occurrences of the old variable if needed. 1290 GV->takeName(OldGV); 1291 1292 if (!OldGV->use_empty()) { 1293 llvm::Constant *NewPtrForOldDecl = 1294 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1295 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1296 } 1297 1298 OldGV->eraseFromParent(); 1299 } 1300 1301 return GV; 1302 } 1303 1304 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1305 /// given global variable. If Ty is non-null and if the global doesn't exist, 1306 /// then it will be created with the specified type instead of whatever the 1307 /// normal requested type would be. 1308 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1309 llvm::Type *Ty) { 1310 assert(D->hasGlobalStorage() && "Not a global variable"); 1311 QualType ASTTy = D->getType(); 1312 if (Ty == 0) 1313 Ty = getTypes().ConvertTypeForMem(ASTTy); 1314 1315 llvm::PointerType *PTy = 1316 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1317 1318 StringRef MangledName = getMangledName(D); 1319 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1320 } 1321 1322 /// CreateRuntimeVariable - Create a new runtime global variable with the 1323 /// specified type and name. 1324 llvm::Constant * 1325 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1326 StringRef Name) { 1327 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1328 true); 1329 } 1330 1331 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1332 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1333 1334 if (MayDeferGeneration(D)) { 1335 // If we have not seen a reference to this variable yet, place it 1336 // into the deferred declarations table to be emitted if needed 1337 // later. 1338 StringRef MangledName = getMangledName(D); 1339 if (!GetGlobalValue(MangledName)) { 1340 DeferredDecls[MangledName] = D; 1341 return; 1342 } 1343 } 1344 1345 // The tentative definition is the only definition. 1346 EmitGlobalVarDefinition(D); 1347 } 1348 1349 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1350 if (DefinitionRequired) 1351 getCXXABI().EmitVTables(Class); 1352 } 1353 1354 llvm::GlobalVariable::LinkageTypes 1355 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1356 if (RD->getLinkage() != ExternalLinkage) 1357 return llvm::GlobalVariable::InternalLinkage; 1358 1359 if (const CXXMethodDecl *KeyFunction 1360 = RD->getASTContext().getKeyFunction(RD)) { 1361 // If this class has a key function, use that to determine the linkage of 1362 // the vtable. 1363 const FunctionDecl *Def = 0; 1364 if (KeyFunction->hasBody(Def)) 1365 KeyFunction = cast<CXXMethodDecl>(Def); 1366 1367 switch (KeyFunction->getTemplateSpecializationKind()) { 1368 case TSK_Undeclared: 1369 case TSK_ExplicitSpecialization: 1370 // When compiling with optimizations turned on, we emit all vtables, 1371 // even if the key function is not defined in the current translation 1372 // unit. If this is the case, use available_externally linkage. 1373 if (!Def && CodeGenOpts.OptimizationLevel) 1374 return llvm::GlobalVariable::AvailableExternallyLinkage; 1375 1376 if (KeyFunction->isInlined()) 1377 return !Context.getLangOpts().AppleKext ? 1378 llvm::GlobalVariable::LinkOnceODRLinkage : 1379 llvm::Function::InternalLinkage; 1380 1381 return llvm::GlobalVariable::ExternalLinkage; 1382 1383 case TSK_ImplicitInstantiation: 1384 return !Context.getLangOpts().AppleKext ? 1385 llvm::GlobalVariable::LinkOnceODRLinkage : 1386 llvm::Function::InternalLinkage; 1387 1388 case TSK_ExplicitInstantiationDefinition: 1389 return !Context.getLangOpts().AppleKext ? 1390 llvm::GlobalVariable::WeakODRLinkage : 1391 llvm::Function::InternalLinkage; 1392 1393 case TSK_ExplicitInstantiationDeclaration: 1394 // FIXME: Use available_externally linkage. However, this currently 1395 // breaks LLVM's build due to undefined symbols. 1396 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1397 return !Context.getLangOpts().AppleKext ? 1398 llvm::GlobalVariable::LinkOnceODRLinkage : 1399 llvm::Function::InternalLinkage; 1400 } 1401 } 1402 1403 if (Context.getLangOpts().AppleKext) 1404 return llvm::Function::InternalLinkage; 1405 1406 switch (RD->getTemplateSpecializationKind()) { 1407 case TSK_Undeclared: 1408 case TSK_ExplicitSpecialization: 1409 case TSK_ImplicitInstantiation: 1410 // FIXME: Use available_externally linkage. However, this currently 1411 // breaks LLVM's build due to undefined symbols. 1412 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1413 case TSK_ExplicitInstantiationDeclaration: 1414 return llvm::GlobalVariable::LinkOnceODRLinkage; 1415 1416 case TSK_ExplicitInstantiationDefinition: 1417 return llvm::GlobalVariable::WeakODRLinkage; 1418 } 1419 1420 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1421 } 1422 1423 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1424 return Context.toCharUnitsFromBits( 1425 TheTargetData.getTypeStoreSizeInBits(Ty)); 1426 } 1427 1428 llvm::Constant * 1429 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1430 const Expr *rawInit) { 1431 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1432 if (const ExprWithCleanups *withCleanups = 1433 dyn_cast<ExprWithCleanups>(rawInit)) { 1434 cleanups = withCleanups->getObjects(); 1435 rawInit = withCleanups->getSubExpr(); 1436 } 1437 1438 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1439 if (!init || !init->initializesStdInitializerList() || 1440 init->getNumInits() == 0) 1441 return 0; 1442 1443 ASTContext &ctx = getContext(); 1444 unsigned numInits = init->getNumInits(); 1445 // FIXME: This check is here because we would otherwise silently miscompile 1446 // nested global std::initializer_lists. Better would be to have a real 1447 // implementation. 1448 for (unsigned i = 0; i < numInits; ++i) { 1449 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1450 if (inner && inner->initializesStdInitializerList()) { 1451 ErrorUnsupported(inner, "nested global std::initializer_list"); 1452 return 0; 1453 } 1454 } 1455 1456 // Synthesize a fake VarDecl for the array and initialize that. 1457 QualType elementType = init->getInit(0)->getType(); 1458 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1459 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1460 ArrayType::Normal, 0); 1461 1462 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1463 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1464 arrayType, D->getLocation()); 1465 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1466 D->getDeclContext()), 1467 D->getLocStart(), D->getLocation(), 1468 name, arrayType, sourceInfo, 1469 SC_Static, SC_Static); 1470 1471 // Now clone the InitListExpr to initialize the array instead. 1472 // Incredible hack: we want to use the existing InitListExpr here, so we need 1473 // to tell it that it no longer initializes a std::initializer_list. 1474 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1475 const_cast<InitListExpr*>(init)->getInits(), 1476 init->getNumInits(), 1477 init->getRBraceLoc()); 1478 arrayInit->setType(arrayType); 1479 1480 if (!cleanups.empty()) 1481 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1482 1483 backingArray->setInit(arrayInit); 1484 1485 // Emit the definition of the array. 1486 EmitGlobalVarDefinition(backingArray); 1487 1488 // Inspect the initializer list to validate it and determine its type. 1489 // FIXME: doing this every time is probably inefficient; caching would be nice 1490 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1491 RecordDecl::field_iterator field = record->field_begin(); 1492 if (field == record->field_end()) { 1493 ErrorUnsupported(D, "weird std::initializer_list"); 1494 return 0; 1495 } 1496 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1497 // Start pointer. 1498 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1499 ErrorUnsupported(D, "weird std::initializer_list"); 1500 return 0; 1501 } 1502 ++field; 1503 if (field == record->field_end()) { 1504 ErrorUnsupported(D, "weird std::initializer_list"); 1505 return 0; 1506 } 1507 bool isStartEnd = false; 1508 if (ctx.hasSameType(field->getType(), elementPtr)) { 1509 // End pointer. 1510 isStartEnd = true; 1511 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1512 ErrorUnsupported(D, "weird std::initializer_list"); 1513 return 0; 1514 } 1515 1516 // Now build an APValue representing the std::initializer_list. 1517 APValue initListValue(APValue::UninitStruct(), 0, 2); 1518 APValue &startField = initListValue.getStructField(0); 1519 APValue::LValuePathEntry startOffsetPathEntry; 1520 startOffsetPathEntry.ArrayIndex = 0; 1521 startField = APValue(APValue::LValueBase(backingArray), 1522 CharUnits::fromQuantity(0), 1523 llvm::makeArrayRef(startOffsetPathEntry), 1524 /*IsOnePastTheEnd=*/false, 0); 1525 1526 if (isStartEnd) { 1527 APValue &endField = initListValue.getStructField(1); 1528 APValue::LValuePathEntry endOffsetPathEntry; 1529 endOffsetPathEntry.ArrayIndex = numInits; 1530 endField = APValue(APValue::LValueBase(backingArray), 1531 ctx.getTypeSizeInChars(elementType) * numInits, 1532 llvm::makeArrayRef(endOffsetPathEntry), 1533 /*IsOnePastTheEnd=*/true, 0); 1534 } else { 1535 APValue &sizeField = initListValue.getStructField(1); 1536 sizeField = APValue(llvm::APSInt(numElements)); 1537 } 1538 1539 // Emit the constant for the initializer_list. 1540 llvm::Constant *llvmInit = 1541 EmitConstantValueForMemory(initListValue, D->getType()); 1542 assert(llvmInit && "failed to initialize as constant"); 1543 return llvmInit; 1544 } 1545 1546 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1547 unsigned AddrSpace) { 1548 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1549 if (D->hasAttr<CUDAConstantAttr>()) 1550 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1551 else if (D->hasAttr<CUDASharedAttr>()) 1552 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1553 else 1554 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1555 } 1556 1557 return AddrSpace; 1558 } 1559 1560 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1561 llvm::Constant *Init = 0; 1562 QualType ASTTy = D->getType(); 1563 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1564 bool NeedsGlobalCtor = false; 1565 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1566 1567 const VarDecl *InitDecl; 1568 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1569 1570 if (!InitExpr) { 1571 // This is a tentative definition; tentative definitions are 1572 // implicitly initialized with { 0 }. 1573 // 1574 // Note that tentative definitions are only emitted at the end of 1575 // a translation unit, so they should never have incomplete 1576 // type. In addition, EmitTentativeDefinition makes sure that we 1577 // never attempt to emit a tentative definition if a real one 1578 // exists. A use may still exists, however, so we still may need 1579 // to do a RAUW. 1580 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1581 Init = EmitNullConstant(D->getType()); 1582 } else { 1583 // If this is a std::initializer_list, emit the special initializer. 1584 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1585 // An empty init list will perform zero-initialization, which happens 1586 // to be exactly what we want. 1587 // FIXME: It does so in a global constructor, which is *not* what we 1588 // want. 1589 1590 if (!Init) { 1591 initializedGlobalDecl = GlobalDecl(D); 1592 Init = EmitConstantInit(*InitDecl); 1593 } 1594 if (!Init) { 1595 QualType T = InitExpr->getType(); 1596 if (D->getType()->isReferenceType()) 1597 T = D->getType(); 1598 1599 if (getLangOpts().CPlusPlus) { 1600 Init = EmitNullConstant(T); 1601 NeedsGlobalCtor = true; 1602 } else { 1603 ErrorUnsupported(D, "static initializer"); 1604 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1605 } 1606 } else { 1607 // We don't need an initializer, so remove the entry for the delayed 1608 // initializer position (just in case this entry was delayed) if we 1609 // also don't need to register a destructor. 1610 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1611 DelayedCXXInitPosition.erase(D); 1612 } 1613 } 1614 1615 llvm::Type* InitType = Init->getType(); 1616 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1617 1618 // Strip off a bitcast if we got one back. 1619 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1620 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1621 // all zero index gep. 1622 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1623 Entry = CE->getOperand(0); 1624 } 1625 1626 // Entry is now either a Function or GlobalVariable. 1627 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1628 1629 // We have a definition after a declaration with the wrong type. 1630 // We must make a new GlobalVariable* and update everything that used OldGV 1631 // (a declaration or tentative definition) with the new GlobalVariable* 1632 // (which will be a definition). 1633 // 1634 // This happens if there is a prototype for a global (e.g. 1635 // "extern int x[];") and then a definition of a different type (e.g. 1636 // "int x[10];"). This also happens when an initializer has a different type 1637 // from the type of the global (this happens with unions). 1638 if (GV == 0 || 1639 GV->getType()->getElementType() != InitType || 1640 GV->getType()->getAddressSpace() != 1641 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1642 1643 // Move the old entry aside so that we'll create a new one. 1644 Entry->setName(StringRef()); 1645 1646 // Make a new global with the correct type, this is now guaranteed to work. 1647 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1648 1649 // Replace all uses of the old global with the new global 1650 llvm::Constant *NewPtrForOldDecl = 1651 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1652 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1653 1654 // Erase the old global, since it is no longer used. 1655 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1656 } 1657 1658 if (D->hasAttr<AnnotateAttr>()) 1659 AddGlobalAnnotations(D, GV); 1660 1661 GV->setInitializer(Init); 1662 1663 // If it is safe to mark the global 'constant', do so now. 1664 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1665 isTypeConstant(D->getType(), true)); 1666 1667 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1668 1669 // Set the llvm linkage type as appropriate. 1670 llvm::GlobalValue::LinkageTypes Linkage = 1671 GetLLVMLinkageVarDefinition(D, GV); 1672 GV->setLinkage(Linkage); 1673 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1674 // common vars aren't constant even if declared const. 1675 GV->setConstant(false); 1676 1677 SetCommonAttributes(D, GV); 1678 1679 // Emit the initializer function if necessary. 1680 if (NeedsGlobalCtor || NeedsGlobalDtor) 1681 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1682 1683 // Emit global variable debug information. 1684 if (CGDebugInfo *DI = getModuleDebugInfo()) 1685 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1686 DI->EmitGlobalVariable(GV, D); 1687 } 1688 1689 llvm::GlobalValue::LinkageTypes 1690 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1691 llvm::GlobalVariable *GV) { 1692 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1693 if (Linkage == GVA_Internal) 1694 return llvm::Function::InternalLinkage; 1695 else if (D->hasAttr<DLLImportAttr>()) 1696 return llvm::Function::DLLImportLinkage; 1697 else if (D->hasAttr<DLLExportAttr>()) 1698 return llvm::Function::DLLExportLinkage; 1699 else if (D->hasAttr<WeakAttr>()) { 1700 if (GV->isConstant()) 1701 return llvm::GlobalVariable::WeakODRLinkage; 1702 else 1703 return llvm::GlobalVariable::WeakAnyLinkage; 1704 } else if (Linkage == GVA_TemplateInstantiation || 1705 Linkage == GVA_ExplicitTemplateInstantiation) 1706 return llvm::GlobalVariable::WeakODRLinkage; 1707 else if (!getLangOpts().CPlusPlus && 1708 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1709 D->getAttr<CommonAttr>()) && 1710 !D->hasExternalStorage() && !D->getInit() && 1711 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1712 !D->getAttr<WeakImportAttr>()) { 1713 // Thread local vars aren't considered common linkage. 1714 return llvm::GlobalVariable::CommonLinkage; 1715 } 1716 return llvm::GlobalVariable::ExternalLinkage; 1717 } 1718 1719 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1720 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1721 /// existing call uses of the old function in the module, this adjusts them to 1722 /// call the new function directly. 1723 /// 1724 /// This is not just a cleanup: the always_inline pass requires direct calls to 1725 /// functions to be able to inline them. If there is a bitcast in the way, it 1726 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1727 /// run at -O0. 1728 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1729 llvm::Function *NewFn) { 1730 // If we're redefining a global as a function, don't transform it. 1731 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1732 if (OldFn == 0) return; 1733 1734 llvm::Type *NewRetTy = NewFn->getReturnType(); 1735 SmallVector<llvm::Value*, 4> ArgList; 1736 1737 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1738 UI != E; ) { 1739 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1740 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1741 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1742 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1743 llvm::CallSite CS(CI); 1744 if (!CI || !CS.isCallee(I)) continue; 1745 1746 // If the return types don't match exactly, and if the call isn't dead, then 1747 // we can't transform this call. 1748 if (CI->getType() != NewRetTy && !CI->use_empty()) 1749 continue; 1750 1751 // Get the attribute list. 1752 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1753 llvm::AttrListPtr AttrList = CI->getAttributes(); 1754 1755 // Get any return attributes. 1756 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1757 1758 // Add the return attributes. 1759 if (RAttrs) 1760 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1761 1762 // If the function was passed too few arguments, don't transform. If extra 1763 // arguments were passed, we silently drop them. If any of the types 1764 // mismatch, we don't transform. 1765 unsigned ArgNo = 0; 1766 bool DontTransform = false; 1767 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1768 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1769 if (CS.arg_size() == ArgNo || 1770 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1771 DontTransform = true; 1772 break; 1773 } 1774 1775 // Add any parameter attributes. 1776 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1777 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1778 } 1779 if (DontTransform) 1780 continue; 1781 1782 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1783 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1784 1785 // Okay, we can transform this. Create the new call instruction and copy 1786 // over the required information. 1787 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1788 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1789 ArgList.clear(); 1790 if (!NewCall->getType()->isVoidTy()) 1791 NewCall->takeName(CI); 1792 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec)); 1793 NewCall->setCallingConv(CI->getCallingConv()); 1794 1795 // Finally, remove the old call, replacing any uses with the new one. 1796 if (!CI->use_empty()) 1797 CI->replaceAllUsesWith(NewCall); 1798 1799 // Copy debug location attached to CI. 1800 if (!CI->getDebugLoc().isUnknown()) 1801 NewCall->setDebugLoc(CI->getDebugLoc()); 1802 CI->eraseFromParent(); 1803 } 1804 } 1805 1806 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1807 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1808 // If we have a definition, this might be a deferred decl. If the 1809 // instantiation is explicit, make sure we emit it at the end. 1810 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1811 GetAddrOfGlobalVar(VD); 1812 } 1813 1814 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1815 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1816 1817 // Compute the function info and LLVM type. 1818 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1819 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1820 1821 // Get or create the prototype for the function. 1822 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1823 1824 // Strip off a bitcast if we got one back. 1825 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1826 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1827 Entry = CE->getOperand(0); 1828 } 1829 1830 1831 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1832 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1833 1834 // If the types mismatch then we have to rewrite the definition. 1835 assert(OldFn->isDeclaration() && 1836 "Shouldn't replace non-declaration"); 1837 1838 // F is the Function* for the one with the wrong type, we must make a new 1839 // Function* and update everything that used F (a declaration) with the new 1840 // Function* (which will be a definition). 1841 // 1842 // This happens if there is a prototype for a function 1843 // (e.g. "int f()") and then a definition of a different type 1844 // (e.g. "int f(int x)"). Move the old function aside so that it 1845 // doesn't interfere with GetAddrOfFunction. 1846 OldFn->setName(StringRef()); 1847 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1848 1849 // If this is an implementation of a function without a prototype, try to 1850 // replace any existing uses of the function (which may be calls) with uses 1851 // of the new function 1852 if (D->getType()->isFunctionNoProtoType()) { 1853 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1854 OldFn->removeDeadConstantUsers(); 1855 } 1856 1857 // Replace uses of F with the Function we will endow with a body. 1858 if (!Entry->use_empty()) { 1859 llvm::Constant *NewPtrForOldDecl = 1860 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1861 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1862 } 1863 1864 // Ok, delete the old function now, which is dead. 1865 OldFn->eraseFromParent(); 1866 1867 Entry = NewFn; 1868 } 1869 1870 // We need to set linkage and visibility on the function before 1871 // generating code for it because various parts of IR generation 1872 // want to propagate this information down (e.g. to local static 1873 // declarations). 1874 llvm::Function *Fn = cast<llvm::Function>(Entry); 1875 setFunctionLinkage(D, Fn); 1876 1877 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1878 setGlobalVisibility(Fn, D); 1879 1880 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1881 1882 SetFunctionDefinitionAttributes(D, Fn); 1883 SetLLVMFunctionAttributesForDefinition(D, Fn); 1884 1885 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1886 AddGlobalCtor(Fn, CA->getPriority()); 1887 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1888 AddGlobalDtor(Fn, DA->getPriority()); 1889 if (D->hasAttr<AnnotateAttr>()) 1890 AddGlobalAnnotations(D, Fn); 1891 } 1892 1893 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1894 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1895 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1896 assert(AA && "Not an alias?"); 1897 1898 StringRef MangledName = getMangledName(GD); 1899 1900 // If there is a definition in the module, then it wins over the alias. 1901 // This is dubious, but allow it to be safe. Just ignore the alias. 1902 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1903 if (Entry && !Entry->isDeclaration()) 1904 return; 1905 1906 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1907 1908 // Create a reference to the named value. This ensures that it is emitted 1909 // if a deferred decl. 1910 llvm::Constant *Aliasee; 1911 if (isa<llvm::FunctionType>(DeclTy)) 1912 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1913 /*ForVTable=*/false); 1914 else 1915 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1916 llvm::PointerType::getUnqual(DeclTy), 0); 1917 1918 // Create the new alias itself, but don't set a name yet. 1919 llvm::GlobalValue *GA = 1920 new llvm::GlobalAlias(Aliasee->getType(), 1921 llvm::Function::ExternalLinkage, 1922 "", Aliasee, &getModule()); 1923 1924 if (Entry) { 1925 assert(Entry->isDeclaration()); 1926 1927 // If there is a declaration in the module, then we had an extern followed 1928 // by the alias, as in: 1929 // extern int test6(); 1930 // ... 1931 // int test6() __attribute__((alias("test7"))); 1932 // 1933 // Remove it and replace uses of it with the alias. 1934 GA->takeName(Entry); 1935 1936 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1937 Entry->getType())); 1938 Entry->eraseFromParent(); 1939 } else { 1940 GA->setName(MangledName); 1941 } 1942 1943 // Set attributes which are particular to an alias; this is a 1944 // specialization of the attributes which may be set on a global 1945 // variable/function. 1946 if (D->hasAttr<DLLExportAttr>()) { 1947 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1948 // The dllexport attribute is ignored for undefined symbols. 1949 if (FD->hasBody()) 1950 GA->setLinkage(llvm::Function::DLLExportLinkage); 1951 } else { 1952 GA->setLinkage(llvm::Function::DLLExportLinkage); 1953 } 1954 } else if (D->hasAttr<WeakAttr>() || 1955 D->hasAttr<WeakRefAttr>() || 1956 D->isWeakImported()) { 1957 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1958 } 1959 1960 SetCommonAttributes(D, GA); 1961 } 1962 1963 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1964 ArrayRef<llvm::Type*> Tys) { 1965 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1966 Tys); 1967 } 1968 1969 static llvm::StringMapEntry<llvm::Constant*> & 1970 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1971 const StringLiteral *Literal, 1972 bool TargetIsLSB, 1973 bool &IsUTF16, 1974 unsigned &StringLength) { 1975 StringRef String = Literal->getString(); 1976 unsigned NumBytes = String.size(); 1977 1978 // Check for simple case. 1979 if (!Literal->containsNonAsciiOrNull()) { 1980 StringLength = NumBytes; 1981 return Map.GetOrCreateValue(String); 1982 } 1983 1984 // Otherwise, convert the UTF8 literals into a string of shorts. 1985 IsUTF16 = true; 1986 1987 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1988 const UTF8 *FromPtr = (UTF8 *)String.data(); 1989 UTF16 *ToPtr = &ToBuf[0]; 1990 1991 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1992 &ToPtr, ToPtr + NumBytes, 1993 strictConversion); 1994 1995 // ConvertUTF8toUTF16 returns the length in ToPtr. 1996 StringLength = ToPtr - &ToBuf[0]; 1997 1998 // Add an explicit null. 1999 *ToPtr = 0; 2000 return Map. 2001 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2002 (StringLength + 1) * 2)); 2003 } 2004 2005 static llvm::StringMapEntry<llvm::Constant*> & 2006 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2007 const StringLiteral *Literal, 2008 unsigned &StringLength) { 2009 StringRef String = Literal->getString(); 2010 StringLength = String.size(); 2011 return Map.GetOrCreateValue(String); 2012 } 2013 2014 llvm::Constant * 2015 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2016 unsigned StringLength = 0; 2017 bool isUTF16 = false; 2018 llvm::StringMapEntry<llvm::Constant*> &Entry = 2019 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2020 getTargetData().isLittleEndian(), 2021 isUTF16, StringLength); 2022 2023 if (llvm::Constant *C = Entry.getValue()) 2024 return C; 2025 2026 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2027 llvm::Constant *Zeros[] = { Zero, Zero }; 2028 2029 // If we don't already have it, get __CFConstantStringClassReference. 2030 if (!CFConstantStringClassRef) { 2031 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2032 Ty = llvm::ArrayType::get(Ty, 0); 2033 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2034 "__CFConstantStringClassReference"); 2035 // Decay array -> ptr 2036 CFConstantStringClassRef = 2037 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2038 } 2039 2040 QualType CFTy = getContext().getCFConstantStringType(); 2041 2042 llvm::StructType *STy = 2043 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2044 2045 llvm::Constant *Fields[4]; 2046 2047 // Class pointer. 2048 Fields[0] = CFConstantStringClassRef; 2049 2050 // Flags. 2051 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2052 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2053 llvm::ConstantInt::get(Ty, 0x07C8); 2054 2055 // String pointer. 2056 llvm::Constant *C = 0; 2057 if (isUTF16) { 2058 ArrayRef<uint16_t> Arr = 2059 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2060 Entry.getKey().size() / 2); 2061 C = llvm::ConstantDataArray::get(VMContext, Arr); 2062 } else { 2063 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2064 } 2065 2066 llvm::GlobalValue::LinkageTypes Linkage; 2067 if (isUTF16) 2068 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2069 Linkage = llvm::GlobalValue::InternalLinkage; 2070 else 2071 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2072 // when using private linkage. It is not clear if this is a bug in ld 2073 // or a reasonable new restriction. 2074 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2075 2076 // Note: -fwritable-strings doesn't make the backing store strings of 2077 // CFStrings writable. (See <rdar://problem/10657500>) 2078 llvm::GlobalVariable *GV = 2079 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2080 Linkage, C, ".str"); 2081 GV->setUnnamedAddr(true); 2082 if (isUTF16) { 2083 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2084 GV->setAlignment(Align.getQuantity()); 2085 } else { 2086 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2087 GV->setAlignment(Align.getQuantity()); 2088 } 2089 2090 // String. 2091 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2092 2093 if (isUTF16) 2094 // Cast the UTF16 string to the correct type. 2095 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2096 2097 // String length. 2098 Ty = getTypes().ConvertType(getContext().LongTy); 2099 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2100 2101 // The struct. 2102 C = llvm::ConstantStruct::get(STy, Fields); 2103 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2104 llvm::GlobalVariable::PrivateLinkage, C, 2105 "_unnamed_cfstring_"); 2106 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2107 GV->setSection(Sect); 2108 Entry.setValue(GV); 2109 2110 return GV; 2111 } 2112 2113 static RecordDecl * 2114 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2115 DeclContext *DC, IdentifierInfo *Id) { 2116 SourceLocation Loc; 2117 if (Ctx.getLangOpts().CPlusPlus) 2118 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2119 else 2120 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2121 } 2122 2123 llvm::Constant * 2124 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2125 unsigned StringLength = 0; 2126 llvm::StringMapEntry<llvm::Constant*> &Entry = 2127 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2128 2129 if (llvm::Constant *C = Entry.getValue()) 2130 return C; 2131 2132 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2133 llvm::Constant *Zeros[] = { Zero, Zero }; 2134 2135 // If we don't already have it, get _NSConstantStringClassReference. 2136 if (!ConstantStringClassRef) { 2137 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2138 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2139 llvm::Constant *GV; 2140 if (LangOpts.ObjCRuntime.isNonFragile()) { 2141 std::string str = 2142 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2143 : "OBJC_CLASS_$_" + StringClass; 2144 GV = getObjCRuntime().GetClassGlobal(str); 2145 // Make sure the result is of the correct type. 2146 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2147 ConstantStringClassRef = 2148 llvm::ConstantExpr::getBitCast(GV, PTy); 2149 } else { 2150 std::string str = 2151 StringClass.empty() ? "_NSConstantStringClassReference" 2152 : "_" + StringClass + "ClassReference"; 2153 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2154 GV = CreateRuntimeVariable(PTy, str); 2155 // Decay array -> ptr 2156 ConstantStringClassRef = 2157 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2158 } 2159 } 2160 2161 if (!NSConstantStringType) { 2162 // Construct the type for a constant NSString. 2163 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2164 Context.getTranslationUnitDecl(), 2165 &Context.Idents.get("__builtin_NSString")); 2166 D->startDefinition(); 2167 2168 QualType FieldTypes[3]; 2169 2170 // const int *isa; 2171 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2172 // const char *str; 2173 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2174 // unsigned int length; 2175 FieldTypes[2] = Context.UnsignedIntTy; 2176 2177 // Create fields 2178 for (unsigned i = 0; i < 3; ++i) { 2179 FieldDecl *Field = FieldDecl::Create(Context, D, 2180 SourceLocation(), 2181 SourceLocation(), 0, 2182 FieldTypes[i], /*TInfo=*/0, 2183 /*BitWidth=*/0, 2184 /*Mutable=*/false, 2185 ICIS_NoInit); 2186 Field->setAccess(AS_public); 2187 D->addDecl(Field); 2188 } 2189 2190 D->completeDefinition(); 2191 QualType NSTy = Context.getTagDeclType(D); 2192 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2193 } 2194 2195 llvm::Constant *Fields[3]; 2196 2197 // Class pointer. 2198 Fields[0] = ConstantStringClassRef; 2199 2200 // String pointer. 2201 llvm::Constant *C = 2202 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2203 2204 llvm::GlobalValue::LinkageTypes Linkage; 2205 bool isConstant; 2206 Linkage = llvm::GlobalValue::PrivateLinkage; 2207 isConstant = !LangOpts.WritableStrings; 2208 2209 llvm::GlobalVariable *GV = 2210 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2211 ".str"); 2212 GV->setUnnamedAddr(true); 2213 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2214 GV->setAlignment(Align.getQuantity()); 2215 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2216 2217 // String length. 2218 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2219 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2220 2221 // The struct. 2222 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2223 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2224 llvm::GlobalVariable::PrivateLinkage, C, 2225 "_unnamed_nsstring_"); 2226 // FIXME. Fix section. 2227 if (const char *Sect = 2228 LangOpts.ObjCRuntime.isNonFragile() 2229 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2230 : getContext().getTargetInfo().getNSStringSection()) 2231 GV->setSection(Sect); 2232 Entry.setValue(GV); 2233 2234 return GV; 2235 } 2236 2237 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2238 if (ObjCFastEnumerationStateType.isNull()) { 2239 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2240 Context.getTranslationUnitDecl(), 2241 &Context.Idents.get("__objcFastEnumerationState")); 2242 D->startDefinition(); 2243 2244 QualType FieldTypes[] = { 2245 Context.UnsignedLongTy, 2246 Context.getPointerType(Context.getObjCIdType()), 2247 Context.getPointerType(Context.UnsignedLongTy), 2248 Context.getConstantArrayType(Context.UnsignedLongTy, 2249 llvm::APInt(32, 5), ArrayType::Normal, 0) 2250 }; 2251 2252 for (size_t i = 0; i < 4; ++i) { 2253 FieldDecl *Field = FieldDecl::Create(Context, 2254 D, 2255 SourceLocation(), 2256 SourceLocation(), 0, 2257 FieldTypes[i], /*TInfo=*/0, 2258 /*BitWidth=*/0, 2259 /*Mutable=*/false, 2260 ICIS_NoInit); 2261 Field->setAccess(AS_public); 2262 D->addDecl(Field); 2263 } 2264 2265 D->completeDefinition(); 2266 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2267 } 2268 2269 return ObjCFastEnumerationStateType; 2270 } 2271 2272 llvm::Constant * 2273 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2274 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2275 2276 // Don't emit it as the address of the string, emit the string data itself 2277 // as an inline array. 2278 if (E->getCharByteWidth() == 1) { 2279 SmallString<64> Str(E->getString()); 2280 2281 // Resize the string to the right size, which is indicated by its type. 2282 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2283 Str.resize(CAT->getSize().getZExtValue()); 2284 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2285 } 2286 2287 llvm::ArrayType *AType = 2288 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2289 llvm::Type *ElemTy = AType->getElementType(); 2290 unsigned NumElements = AType->getNumElements(); 2291 2292 // Wide strings have either 2-byte or 4-byte elements. 2293 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2294 SmallVector<uint16_t, 32> Elements; 2295 Elements.reserve(NumElements); 2296 2297 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2298 Elements.push_back(E->getCodeUnit(i)); 2299 Elements.resize(NumElements); 2300 return llvm::ConstantDataArray::get(VMContext, Elements); 2301 } 2302 2303 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2304 SmallVector<uint32_t, 32> Elements; 2305 Elements.reserve(NumElements); 2306 2307 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2308 Elements.push_back(E->getCodeUnit(i)); 2309 Elements.resize(NumElements); 2310 return llvm::ConstantDataArray::get(VMContext, Elements); 2311 } 2312 2313 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2314 /// constant array for the given string literal. 2315 llvm::Constant * 2316 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2317 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2318 if (S->isAscii() || S->isUTF8()) { 2319 SmallString<64> Str(S->getString()); 2320 2321 // Resize the string to the right size, which is indicated by its type. 2322 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2323 Str.resize(CAT->getSize().getZExtValue()); 2324 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2325 } 2326 2327 // FIXME: the following does not memoize wide strings. 2328 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2329 llvm::GlobalVariable *GV = 2330 new llvm::GlobalVariable(getModule(),C->getType(), 2331 !LangOpts.WritableStrings, 2332 llvm::GlobalValue::PrivateLinkage, 2333 C,".str"); 2334 2335 GV->setAlignment(Align.getQuantity()); 2336 GV->setUnnamedAddr(true); 2337 return GV; 2338 } 2339 2340 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2341 /// array for the given ObjCEncodeExpr node. 2342 llvm::Constant * 2343 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2344 std::string Str; 2345 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2346 2347 return GetAddrOfConstantCString(Str); 2348 } 2349 2350 2351 /// GenerateWritableString -- Creates storage for a string literal. 2352 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2353 bool constant, 2354 CodeGenModule &CGM, 2355 const char *GlobalName, 2356 unsigned Alignment) { 2357 // Create Constant for this string literal. Don't add a '\0'. 2358 llvm::Constant *C = 2359 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2360 2361 // Create a global variable for this string 2362 llvm::GlobalVariable *GV = 2363 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2364 llvm::GlobalValue::PrivateLinkage, 2365 C, GlobalName); 2366 GV->setAlignment(Alignment); 2367 GV->setUnnamedAddr(true); 2368 return GV; 2369 } 2370 2371 /// GetAddrOfConstantString - Returns a pointer to a character array 2372 /// containing the literal. This contents are exactly that of the 2373 /// given string, i.e. it will not be null terminated automatically; 2374 /// see GetAddrOfConstantCString. Note that whether the result is 2375 /// actually a pointer to an LLVM constant depends on 2376 /// Feature.WriteableStrings. 2377 /// 2378 /// The result has pointer to array type. 2379 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2380 const char *GlobalName, 2381 unsigned Alignment) { 2382 // Get the default prefix if a name wasn't specified. 2383 if (!GlobalName) 2384 GlobalName = ".str"; 2385 2386 // Don't share any string literals if strings aren't constant. 2387 if (LangOpts.WritableStrings) 2388 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2389 2390 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2391 ConstantStringMap.GetOrCreateValue(Str); 2392 2393 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2394 if (Alignment > GV->getAlignment()) { 2395 GV->setAlignment(Alignment); 2396 } 2397 return GV; 2398 } 2399 2400 // Create a global variable for this. 2401 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2402 Alignment); 2403 Entry.setValue(GV); 2404 return GV; 2405 } 2406 2407 /// GetAddrOfConstantCString - Returns a pointer to a character 2408 /// array containing the literal and a terminating '\0' 2409 /// character. The result has pointer to array type. 2410 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2411 const char *GlobalName, 2412 unsigned Alignment) { 2413 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2414 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2415 } 2416 2417 /// EmitObjCPropertyImplementations - Emit information for synthesized 2418 /// properties for an implementation. 2419 void CodeGenModule::EmitObjCPropertyImplementations(const 2420 ObjCImplementationDecl *D) { 2421 for (ObjCImplementationDecl::propimpl_iterator 2422 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2423 ObjCPropertyImplDecl *PID = *i; 2424 2425 // Dynamic is just for type-checking. 2426 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2427 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2428 2429 // Determine which methods need to be implemented, some may have 2430 // been overridden. Note that ::isSynthesized is not the method 2431 // we want, that just indicates if the decl came from a 2432 // property. What we want to know is if the method is defined in 2433 // this implementation. 2434 if (!D->getInstanceMethod(PD->getGetterName())) 2435 CodeGenFunction(*this).GenerateObjCGetter( 2436 const_cast<ObjCImplementationDecl *>(D), PID); 2437 if (!PD->isReadOnly() && 2438 !D->getInstanceMethod(PD->getSetterName())) 2439 CodeGenFunction(*this).GenerateObjCSetter( 2440 const_cast<ObjCImplementationDecl *>(D), PID); 2441 } 2442 } 2443 } 2444 2445 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2446 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2447 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2448 ivar; ivar = ivar->getNextIvar()) 2449 if (ivar->getType().isDestructedType()) 2450 return true; 2451 2452 return false; 2453 } 2454 2455 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2456 /// for an implementation. 2457 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2458 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2459 if (needsDestructMethod(D)) { 2460 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2461 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2462 ObjCMethodDecl *DTORMethod = 2463 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2464 cxxSelector, getContext().VoidTy, 0, D, 2465 /*isInstance=*/true, /*isVariadic=*/false, 2466 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2467 /*isDefined=*/false, ObjCMethodDecl::Required); 2468 D->addInstanceMethod(DTORMethod); 2469 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2470 D->setHasCXXStructors(true); 2471 } 2472 2473 // If the implementation doesn't have any ivar initializers, we don't need 2474 // a .cxx_construct. 2475 if (D->getNumIvarInitializers() == 0) 2476 return; 2477 2478 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2479 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2480 // The constructor returns 'self'. 2481 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2482 D->getLocation(), 2483 D->getLocation(), 2484 cxxSelector, 2485 getContext().getObjCIdType(), 0, 2486 D, /*isInstance=*/true, 2487 /*isVariadic=*/false, 2488 /*isSynthesized=*/true, 2489 /*isImplicitlyDeclared=*/true, 2490 /*isDefined=*/false, 2491 ObjCMethodDecl::Required); 2492 D->addInstanceMethod(CTORMethod); 2493 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2494 D->setHasCXXStructors(true); 2495 } 2496 2497 /// EmitNamespace - Emit all declarations in a namespace. 2498 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2499 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2500 I != E; ++I) 2501 EmitTopLevelDecl(*I); 2502 } 2503 2504 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2505 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2506 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2507 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2508 ErrorUnsupported(LSD, "linkage spec"); 2509 return; 2510 } 2511 2512 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2513 I != E; ++I) 2514 EmitTopLevelDecl(*I); 2515 } 2516 2517 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2518 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2519 // If an error has occurred, stop code generation, but continue 2520 // parsing and semantic analysis (to ensure all warnings and errors 2521 // are emitted). 2522 if (Diags.hasErrorOccurred()) 2523 return; 2524 2525 // Ignore dependent declarations. 2526 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2527 return; 2528 2529 switch (D->getKind()) { 2530 case Decl::CXXConversion: 2531 case Decl::CXXMethod: 2532 case Decl::Function: 2533 // Skip function templates 2534 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2535 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2536 return; 2537 2538 EmitGlobal(cast<FunctionDecl>(D)); 2539 break; 2540 2541 case Decl::Var: 2542 EmitGlobal(cast<VarDecl>(D)); 2543 break; 2544 2545 // Indirect fields from global anonymous structs and unions can be 2546 // ignored; only the actual variable requires IR gen support. 2547 case Decl::IndirectField: 2548 break; 2549 2550 // C++ Decls 2551 case Decl::Namespace: 2552 EmitNamespace(cast<NamespaceDecl>(D)); 2553 break; 2554 // No code generation needed. 2555 case Decl::UsingShadow: 2556 case Decl::Using: 2557 case Decl::UsingDirective: 2558 case Decl::ClassTemplate: 2559 case Decl::FunctionTemplate: 2560 case Decl::TypeAliasTemplate: 2561 case Decl::NamespaceAlias: 2562 case Decl::Block: 2563 case Decl::Import: 2564 break; 2565 case Decl::CXXConstructor: 2566 // Skip function templates 2567 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2568 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2569 return; 2570 2571 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2572 break; 2573 case Decl::CXXDestructor: 2574 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2575 return; 2576 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2577 break; 2578 2579 case Decl::StaticAssert: 2580 // Nothing to do. 2581 break; 2582 2583 // Objective-C Decls 2584 2585 // Forward declarations, no (immediate) code generation. 2586 case Decl::ObjCInterface: 2587 break; 2588 2589 case Decl::ObjCCategory: { 2590 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2591 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2592 Context.ResetObjCLayout(CD->getClassInterface()); 2593 break; 2594 } 2595 2596 case Decl::ObjCProtocol: { 2597 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2598 if (Proto->isThisDeclarationADefinition()) 2599 ObjCRuntime->GenerateProtocol(Proto); 2600 break; 2601 } 2602 2603 case Decl::ObjCCategoryImpl: 2604 // Categories have properties but don't support synthesize so we 2605 // can ignore them here. 2606 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2607 break; 2608 2609 case Decl::ObjCImplementation: { 2610 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2611 if (LangOpts.ObjCRuntime.isNonFragile() && OMD->hasSynthBitfield()) 2612 Context.ResetObjCLayout(OMD->getClassInterface()); 2613 EmitObjCPropertyImplementations(OMD); 2614 EmitObjCIvarInitializations(OMD); 2615 ObjCRuntime->GenerateClass(OMD); 2616 // Emit global variable debug information. 2617 if (CGDebugInfo *DI = getModuleDebugInfo()) 2618 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2619 OMD->getLocation()); 2620 2621 break; 2622 } 2623 case Decl::ObjCMethod: { 2624 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2625 // If this is not a prototype, emit the body. 2626 if (OMD->getBody()) 2627 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2628 break; 2629 } 2630 case Decl::ObjCCompatibleAlias: 2631 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2632 break; 2633 2634 case Decl::LinkageSpec: 2635 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2636 break; 2637 2638 case Decl::FileScopeAsm: { 2639 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2640 StringRef AsmString = AD->getAsmString()->getString(); 2641 2642 const std::string &S = getModule().getModuleInlineAsm(); 2643 if (S.empty()) 2644 getModule().setModuleInlineAsm(AsmString); 2645 else if (*--S.end() == '\n') 2646 getModule().setModuleInlineAsm(S + AsmString.str()); 2647 else 2648 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2649 break; 2650 } 2651 2652 default: 2653 // Make sure we handled everything we should, every other kind is a 2654 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2655 // function. Need to recode Decl::Kind to do that easily. 2656 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2657 } 2658 } 2659 2660 /// Turns the given pointer into a constant. 2661 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2662 const void *Ptr) { 2663 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2664 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2665 return llvm::ConstantInt::get(i64, PtrInt); 2666 } 2667 2668 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2669 llvm::NamedMDNode *&GlobalMetadata, 2670 GlobalDecl D, 2671 llvm::GlobalValue *Addr) { 2672 if (!GlobalMetadata) 2673 GlobalMetadata = 2674 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2675 2676 // TODO: should we report variant information for ctors/dtors? 2677 llvm::Value *Ops[] = { 2678 Addr, 2679 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2680 }; 2681 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2682 } 2683 2684 /// Emits metadata nodes associating all the global values in the 2685 /// current module with the Decls they came from. This is useful for 2686 /// projects using IR gen as a subroutine. 2687 /// 2688 /// Since there's currently no way to associate an MDNode directly 2689 /// with an llvm::GlobalValue, we create a global named metadata 2690 /// with the name 'clang.global.decl.ptrs'. 2691 void CodeGenModule::EmitDeclMetadata() { 2692 llvm::NamedMDNode *GlobalMetadata = 0; 2693 2694 // StaticLocalDeclMap 2695 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2696 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2697 I != E; ++I) { 2698 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2699 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2700 } 2701 } 2702 2703 /// Emits metadata nodes for all the local variables in the current 2704 /// function. 2705 void CodeGenFunction::EmitDeclMetadata() { 2706 if (LocalDeclMap.empty()) return; 2707 2708 llvm::LLVMContext &Context = getLLVMContext(); 2709 2710 // Find the unique metadata ID for this name. 2711 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2712 2713 llvm::NamedMDNode *GlobalMetadata = 0; 2714 2715 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2716 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2717 const Decl *D = I->first; 2718 llvm::Value *Addr = I->second; 2719 2720 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2721 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2722 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2723 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2724 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2725 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2726 } 2727 } 2728 } 2729 2730 void CodeGenModule::EmitCoverageFile() { 2731 if (!getCodeGenOpts().CoverageFile.empty()) { 2732 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2733 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2734 llvm::LLVMContext &Ctx = TheModule.getContext(); 2735 llvm::MDString *CoverageFile = 2736 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2737 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2738 llvm::MDNode *CU = CUNode->getOperand(i); 2739 llvm::Value *node[] = { CoverageFile, CU }; 2740 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2741 GCov->addOperand(N); 2742 } 2743 } 2744 } 2745 } 2746