xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f58a132eef205578081b448d0273d6ee5d8970f7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
212     break;
213   }
214 }
215 
216 void CodeGenModule::createCUDARuntime() {
217   CUDARuntime.reset(CreateNVCUDARuntime(*this));
218 }
219 
220 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
221   Replacements[Name] = C;
222 }
223 
224 void CodeGenModule::applyReplacements() {
225   for (auto &I : Replacements) {
226     StringRef MangledName = I.first();
227     llvm::Constant *Replacement = I.second;
228     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
229     if (!Entry)
230       continue;
231     auto *OldF = cast<llvm::Function>(Entry);
232     auto *NewF = dyn_cast<llvm::Function>(Replacement);
233     if (!NewF) {
234       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
235         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
236       } else {
237         auto *CE = cast<llvm::ConstantExpr>(Replacement);
238         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
239                CE->getOpcode() == llvm::Instruction::GetElementPtr);
240         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
241       }
242     }
243 
244     // Replace old with new, but keep the old order.
245     OldF->replaceAllUsesWith(Replacement);
246     if (NewF) {
247       NewF->removeFromParent();
248       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
249                                                        NewF);
250     }
251     OldF->eraseFromParent();
252   }
253 }
254 
255 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
256   GlobalValReplacements.push_back(std::make_pair(GV, C));
257 }
258 
259 void CodeGenModule::applyGlobalValReplacements() {
260   for (auto &I : GlobalValReplacements) {
261     llvm::GlobalValue *GV = I.first;
262     llvm::Constant *C = I.second;
263 
264     GV->replaceAllUsesWith(C);
265     GV->eraseFromParent();
266   }
267 }
268 
269 // This is only used in aliases that we created and we know they have a
270 // linear structure.
271 static const llvm::GlobalObject *getAliasedGlobal(
272     const llvm::GlobalIndirectSymbol &GIS) {
273   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
274   const llvm::Constant *C = &GIS;
275   for (;;) {
276     C = C->stripPointerCasts();
277     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
278       return GO;
279     // stripPointerCasts will not walk over weak aliases.
280     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
281     if (!GIS2)
282       return nullptr;
283     if (!Visited.insert(GIS2).second)
284       return nullptr;
285     C = GIS2->getIndirectSymbol();
286   }
287 }
288 
289 void CodeGenModule::checkAliases() {
290   // Check if the constructed aliases are well formed. It is really unfortunate
291   // that we have to do this in CodeGen, but we only construct mangled names
292   // and aliases during codegen.
293   bool Error = false;
294   DiagnosticsEngine &Diags = getDiags();
295   for (const GlobalDecl &GD : Aliases) {
296     const auto *D = cast<ValueDecl>(GD.getDecl());
297     SourceLocation Location;
298     bool IsIFunc = D->hasAttr<IFuncAttr>();
299     if (const Attr *A = D->getDefiningAttr())
300       Location = A->getLocation();
301     else
302       llvm_unreachable("Not an alias or ifunc?");
303     StringRef MangledName = getMangledName(GD);
304     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
305     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
306     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
307     if (!GV) {
308       Error = true;
309       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
310     } else if (GV->isDeclaration()) {
311       Error = true;
312       Diags.Report(Location, diag::err_alias_to_undefined)
313           << IsIFunc << IsIFunc;
314     } else if (IsIFunc) {
315       // Check resolver function type.
316       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
317           GV->getType()->getPointerElementType());
318       assert(FTy);
319       if (!FTy->getReturnType()->isPointerTy())
320         Diags.Report(Location, diag::err_ifunc_resolver_return);
321       if (FTy->getNumParams())
322         Diags.Report(Location, diag::err_ifunc_resolver_params);
323     }
324 
325     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
326     llvm::GlobalValue *AliaseeGV;
327     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
328       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
329     else
330       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
331 
332     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
333       StringRef AliasSection = SA->getName();
334       if (AliasSection != AliaseeGV->getSection())
335         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
336             << AliasSection << IsIFunc << IsIFunc;
337     }
338 
339     // We have to handle alias to weak aliases in here. LLVM itself disallows
340     // this since the object semantics would not match the IL one. For
341     // compatibility with gcc we implement it by just pointing the alias
342     // to its aliasee's aliasee. We also warn, since the user is probably
343     // expecting the link to be weak.
344     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
345       if (GA->isInterposable()) {
346         Diags.Report(Location, diag::warn_alias_to_weak_alias)
347             << GV->getName() << GA->getName() << IsIFunc;
348         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
349             GA->getIndirectSymbol(), Alias->getType());
350         Alias->setIndirectSymbol(Aliasee);
351       }
352     }
353   }
354   if (!Error)
355     return;
356 
357   for (const GlobalDecl &GD : Aliases) {
358     StringRef MangledName = getMangledName(GD);
359     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
360     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
361     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
362     Alias->eraseFromParent();
363   }
364 }
365 
366 void CodeGenModule::clear() {
367   DeferredDeclsToEmit.clear();
368   if (OpenMPRuntime)
369     OpenMPRuntime->clear();
370 }
371 
372 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
373                                        StringRef MainFile) {
374   if (!hasDiagnostics())
375     return;
376   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
377     if (MainFile.empty())
378       MainFile = "<stdin>";
379     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
380   } else {
381     if (Mismatched > 0)
382       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
383 
384     if (Missing > 0)
385       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
386   }
387 }
388 
389 void CodeGenModule::Release() {
390   EmitDeferred();
391   EmitVTablesOpportunistically();
392   applyGlobalValReplacements();
393   applyReplacements();
394   checkAliases();
395   EmitCXXGlobalInitFunc();
396   EmitCXXGlobalDtorFunc();
397   EmitCXXThreadLocalInitFunc();
398   if (ObjCRuntime)
399     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
400       AddGlobalCtor(ObjCInitFunction);
401   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
402       CUDARuntime) {
403     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
404       AddGlobalCtor(CudaCtorFunction);
405     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
406       AddGlobalDtor(CudaDtorFunction);
407   }
408   if (OpenMPRuntime)
409     if (llvm::Function *OpenMPRegistrationFunction =
410             OpenMPRuntime->emitRegistrationFunction()) {
411       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
412         OpenMPRegistrationFunction : nullptr;
413       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
414     }
415   if (PGOReader) {
416     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
417     if (PGOStats.hasDiagnostics())
418       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
419   }
420   EmitCtorList(GlobalCtors, "llvm.global_ctors");
421   EmitCtorList(GlobalDtors, "llvm.global_dtors");
422   EmitGlobalAnnotations();
423   EmitStaticExternCAliases();
424   EmitDeferredUnusedCoverageMappings();
425   if (CoverageMapping)
426     CoverageMapping->emit();
427   if (CodeGenOpts.SanitizeCfiCrossDso) {
428     CodeGenFunction(*this).EmitCfiCheckFail();
429     CodeGenFunction(*this).EmitCfiCheckStub();
430   }
431   emitAtAvailableLinkGuard();
432   emitLLVMUsed();
433   if (SanStats)
434     SanStats->finish();
435 
436   if (CodeGenOpts.Autolink &&
437       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
438     EmitModuleLinkOptions();
439   }
440 
441   // Record mregparm value now so it is visible through rest of codegen.
442   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
443     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
444                               CodeGenOpts.NumRegisterParameters);
445 
446   if (CodeGenOpts.DwarfVersion) {
447     // We actually want the latest version when there are conflicts.
448     // We can change from Warning to Latest if such mode is supported.
449     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
450                               CodeGenOpts.DwarfVersion);
451   }
452   if (CodeGenOpts.EmitCodeView) {
453     // Indicate that we want CodeView in the metadata.
454     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
455   }
456   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
457     // We don't support LTO with 2 with different StrictVTablePointers
458     // FIXME: we could support it by stripping all the information introduced
459     // by StrictVTablePointers.
460 
461     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
462 
463     llvm::Metadata *Ops[2] = {
464               llvm::MDString::get(VMContext, "StrictVTablePointers"),
465               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
466                   llvm::Type::getInt32Ty(VMContext), 1))};
467 
468     getModule().addModuleFlag(llvm::Module::Require,
469                               "StrictVTablePointersRequirement",
470                               llvm::MDNode::get(VMContext, Ops));
471   }
472   if (DebugInfo)
473     // We support a single version in the linked module. The LLVM
474     // parser will drop debug info with a different version number
475     // (and warn about it, too).
476     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
477                               llvm::DEBUG_METADATA_VERSION);
478 
479   // We need to record the widths of enums and wchar_t, so that we can generate
480   // the correct build attributes in the ARM backend. wchar_size is also used by
481   // TargetLibraryInfo.
482   uint64_t WCharWidth =
483       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
484   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
485 
486   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
487   if (   Arch == llvm::Triple::arm
488       || Arch == llvm::Triple::armeb
489       || Arch == llvm::Triple::thumb
490       || Arch == llvm::Triple::thumbeb) {
491     // The minimum width of an enum in bytes
492     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
493     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
494   }
495 
496   if (CodeGenOpts.SanitizeCfiCrossDso) {
497     // Indicate that we want cross-DSO control flow integrity checks.
498     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
499   }
500 
501   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
502     // Indicate whether __nvvm_reflect should be configured to flush denormal
503     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
504     // property.)
505     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
506                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
507   }
508 
509   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
510   if (LangOpts.OpenCL) {
511     EmitOpenCLMetadata();
512     // Emit SPIR version.
513     if (getTriple().getArch() == llvm::Triple::spir ||
514         getTriple().getArch() == llvm::Triple::spir64) {
515       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
516       // opencl.spir.version named metadata.
517       llvm::Metadata *SPIRVerElts[] = {
518           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
519               Int32Ty, LangOpts.OpenCLVersion / 100)),
520           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
521               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
522       llvm::NamedMDNode *SPIRVerMD =
523           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
524       llvm::LLVMContext &Ctx = TheModule.getContext();
525       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
526     }
527   }
528 
529   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
530     assert(PLevel < 3 && "Invalid PIC Level");
531     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
532     if (Context.getLangOpts().PIE)
533       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
534   }
535 
536   SimplifyPersonality();
537 
538   if (getCodeGenOpts().EmitDeclMetadata)
539     EmitDeclMetadata();
540 
541   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
542     EmitCoverageFile();
543 
544   if (DebugInfo)
545     DebugInfo->finalize();
546 
547   EmitVersionIdentMetadata();
548 
549   EmitTargetMetadata();
550 }
551 
552 void CodeGenModule::EmitOpenCLMetadata() {
553   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
554   // opencl.ocl.version named metadata node.
555   llvm::Metadata *OCLVerElts[] = {
556       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
557           Int32Ty, LangOpts.OpenCLVersion / 100)),
558       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
559           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
560   llvm::NamedMDNode *OCLVerMD =
561       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
562   llvm::LLVMContext &Ctx = TheModule.getContext();
563   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
564 }
565 
566 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
567   // Make sure that this type is translated.
568   Types.UpdateCompletedType(TD);
569 }
570 
571 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
572   // Make sure that this type is translated.
573   Types.RefreshTypeCacheForClass(RD);
574 }
575 
576 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
577   if (!TBAA)
578     return nullptr;
579   return TBAA->getTypeInfo(QTy);
580 }
581 
582 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
583   // Pointee values may have incomplete types, but they shall never be
584   // dereferenced.
585   if (AccessType->isIncompleteType())
586     return TBAAAccessInfo::getIncompleteInfo();
587 
588   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
589   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
590 }
591 
592 TBAAAccessInfo
593 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
594   if (!TBAA)
595     return TBAAAccessInfo();
596   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
597 }
598 
599 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
600   if (!TBAA)
601     return nullptr;
602   return TBAA->getTBAAStructInfo(QTy);
603 }
604 
605 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
606   if (!TBAA)
607     return nullptr;
608   return TBAA->getBaseTypeInfo(QTy);
609 }
610 
611 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
612   if (!TBAA)
613     return nullptr;
614   return TBAA->getAccessTagInfo(Info);
615 }
616 
617 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
618                                                    TBAAAccessInfo TargetInfo) {
619   if (!TBAA)
620     return TBAAAccessInfo();
621   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
622 }
623 
624 TBAAAccessInfo
625 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
626                                                    TBAAAccessInfo InfoB) {
627   if (!TBAA)
628     return TBAAAccessInfo();
629   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
630 }
631 
632 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
633                                                 TBAAAccessInfo TBAAInfo) {
634   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
635     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
636 }
637 
638 void CodeGenModule::DecorateInstructionWithInvariantGroup(
639     llvm::Instruction *I, const CXXRecordDecl *RD) {
640   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
641                  llvm::MDNode::get(getLLVMContext(), {}));
642 }
643 
644 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
645   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
646   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
647 }
648 
649 /// ErrorUnsupported - Print out an error that codegen doesn't support the
650 /// specified stmt yet.
651 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
652   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
653                                                "cannot compile this %0 yet");
654   std::string Msg = Type;
655   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
656     << Msg << S->getSourceRange();
657 }
658 
659 /// ErrorUnsupported - Print out an error that codegen doesn't support the
660 /// specified decl yet.
661 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
662   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
663                                                "cannot compile this %0 yet");
664   std::string Msg = Type;
665   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
666 }
667 
668 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
669   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
670 }
671 
672 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
673                                         const NamedDecl *D,
674                                         ForDefinition_t IsForDefinition) const {
675   // Internal definitions always have default visibility.
676   if (GV->hasLocalLinkage()) {
677     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
678     return;
679   }
680 
681   // Set visibility for definitions.
682   LinkageInfo LV = D->getLinkageAndVisibility();
683   if (LV.isVisibilityExplicit() ||
684       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
685     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
686 }
687 
688 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
689   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
690       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
691       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
692       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
693       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
694 }
695 
696 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
697     CodeGenOptions::TLSModel M) {
698   switch (M) {
699   case CodeGenOptions::GeneralDynamicTLSModel:
700     return llvm::GlobalVariable::GeneralDynamicTLSModel;
701   case CodeGenOptions::LocalDynamicTLSModel:
702     return llvm::GlobalVariable::LocalDynamicTLSModel;
703   case CodeGenOptions::InitialExecTLSModel:
704     return llvm::GlobalVariable::InitialExecTLSModel;
705   case CodeGenOptions::LocalExecTLSModel:
706     return llvm::GlobalVariable::LocalExecTLSModel;
707   }
708   llvm_unreachable("Invalid TLS model!");
709 }
710 
711 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
712   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
713 
714   llvm::GlobalValue::ThreadLocalMode TLM;
715   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
716 
717   // Override the TLS model if it is explicitly specified.
718   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
719     TLM = GetLLVMTLSModel(Attr->getModel());
720   }
721 
722   GV->setThreadLocalMode(TLM);
723 }
724 
725 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
726   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
727 
728   // Some ABIs don't have constructor variants.  Make sure that base and
729   // complete constructors get mangled the same.
730   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
731     if (!getTarget().getCXXABI().hasConstructorVariants()) {
732       CXXCtorType OrigCtorType = GD.getCtorType();
733       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
734       if (OrigCtorType == Ctor_Base)
735         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
736     }
737   }
738 
739   auto FoundName = MangledDeclNames.find(CanonicalGD);
740   if (FoundName != MangledDeclNames.end())
741     return FoundName->second;
742 
743   const auto *ND = cast<NamedDecl>(GD.getDecl());
744   SmallString<256> Buffer;
745   StringRef Str;
746   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
747     llvm::raw_svector_ostream Out(Buffer);
748     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
749       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
750     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
751       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
752     else
753       getCXXABI().getMangleContext().mangleName(ND, Out);
754     Str = Out.str();
755   } else {
756     IdentifierInfo *II = ND->getIdentifier();
757     assert(II && "Attempt to mangle unnamed decl.");
758     const auto *FD = dyn_cast<FunctionDecl>(ND);
759 
760     if (FD &&
761         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
762       llvm::raw_svector_ostream Out(Buffer);
763       Out << "__regcall3__" << II->getName();
764       Str = Out.str();
765     } else {
766       Str = II->getName();
767     }
768   }
769 
770   // Keep the first result in the case of a mangling collision.
771   auto Result = Manglings.insert(std::make_pair(Str, GD));
772   return MangledDeclNames[CanonicalGD] = Result.first->first();
773 }
774 
775 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
776                                              const BlockDecl *BD) {
777   MangleContext &MangleCtx = getCXXABI().getMangleContext();
778   const Decl *D = GD.getDecl();
779 
780   SmallString<256> Buffer;
781   llvm::raw_svector_ostream Out(Buffer);
782   if (!D)
783     MangleCtx.mangleGlobalBlock(BD,
784       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
785   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
786     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
787   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
788     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
789   else
790     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
791 
792   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
793   return Result.first->first();
794 }
795 
796 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
797   return getModule().getNamedValue(Name);
798 }
799 
800 /// AddGlobalCtor - Add a function to the list that will be called before
801 /// main() runs.
802 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
803                                   llvm::Constant *AssociatedData) {
804   // FIXME: Type coercion of void()* types.
805   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
806 }
807 
808 /// AddGlobalDtor - Add a function to the list that will be called
809 /// when the module is unloaded.
810 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
811   // FIXME: Type coercion of void()* types.
812   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
813 }
814 
815 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
816   if (Fns.empty()) return;
817 
818   // Ctor function type is void()*.
819   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
820   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
821 
822   // Get the type of a ctor entry, { i32, void ()*, i8* }.
823   llvm::StructType *CtorStructTy = llvm::StructType::get(
824       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
825 
826   // Construct the constructor and destructor arrays.
827   ConstantInitBuilder builder(*this);
828   auto ctors = builder.beginArray(CtorStructTy);
829   for (const auto &I : Fns) {
830     auto ctor = ctors.beginStruct(CtorStructTy);
831     ctor.addInt(Int32Ty, I.Priority);
832     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
833     if (I.AssociatedData)
834       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
835     else
836       ctor.addNullPointer(VoidPtrTy);
837     ctor.finishAndAddTo(ctors);
838   }
839 
840   auto list =
841     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
842                                 /*constant*/ false,
843                                 llvm::GlobalValue::AppendingLinkage);
844 
845   // The LTO linker doesn't seem to like it when we set an alignment
846   // on appending variables.  Take it off as a workaround.
847   list->setAlignment(0);
848 
849   Fns.clear();
850 }
851 
852 llvm::GlobalValue::LinkageTypes
853 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
854   const auto *D = cast<FunctionDecl>(GD.getDecl());
855 
856   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
857 
858   if (isa<CXXDestructorDecl>(D) &&
859       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
860     switch (GD.getDtorType()) {
861     case CXXDtorType::Dtor_Base:
862       break;
863     case CXXDtorType::Dtor_Comdat:
864     case CXXDtorType::Dtor_Complete:
865       if (D->hasAttr<DLLImportAttr>() &&
866 	  (cast<CXXDestructorDecl>(D)->getParent()->getNumVBases() ||
867 	   (Linkage == GVA_AvailableExternally ||
868 	    Linkage == GVA_StrongExternal)))
869 	return llvm::Function::AvailableExternallyLinkage;
870       else
871         return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
872                                        : llvm::GlobalValue::LinkOnceODRLinkage;
873     case CXXDtorType::Dtor_Deleting:
874       return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
875                                      : llvm::GlobalValue::LinkOnceODRLinkage;
876     }
877   }
878   if (isa<CXXConstructorDecl>(D) &&
879       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
880       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
881     // Our approach to inheriting constructors is fundamentally different from
882     // that used by the MS ABI, so keep our inheriting constructor thunks
883     // internal rather than trying to pick an unambiguous mangling for them.
884     return llvm::GlobalValue::InternalLinkage;
885   }
886 
887   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
888 }
889 
890 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
891   const auto *FD = cast<FunctionDecl>(GD.getDecl());
892 
893   if (dyn_cast_or_null<CXXDestructorDecl>(FD)) {
894     switch (GD.getDtorType()) {
895     case CXXDtorType::Dtor_Comdat:
896     case CXXDtorType::Dtor_Deleting: {
897       // Don't dllexport/import destructor thunks.
898       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
899       return;
900     }
901     case CXXDtorType::Dtor_Complete:
902       if (FD->hasAttr<DLLImportAttr>())
903         F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
904       else if (FD->hasAttr<DLLExportAttr>())
905         F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
906       else
907         F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
908       return;
909     case CXXDtorType::Dtor_Base:
910       break;
911     }
912   }
913 
914   if (FD->hasAttr<DLLImportAttr>())
915     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
916   else if (FD->hasAttr<DLLExportAttr>())
917     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
918   else
919     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
920 }
921 
922 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
923   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
924   if (!MDS) return nullptr;
925 
926   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
927 }
928 
929 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
930                                                     llvm::Function *F) {
931   setNonAliasAttributes(D, F);
932 }
933 
934 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
935                                               const CGFunctionInfo &Info,
936                                               llvm::Function *F) {
937   unsigned CallingConv;
938   llvm::AttributeList PAL;
939   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
940   F->setAttributes(PAL);
941   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
942 }
943 
944 /// Determines whether the language options require us to model
945 /// unwind exceptions.  We treat -fexceptions as mandating this
946 /// except under the fragile ObjC ABI with only ObjC exceptions
947 /// enabled.  This means, for example, that C with -fexceptions
948 /// enables this.
949 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
950   // If exceptions are completely disabled, obviously this is false.
951   if (!LangOpts.Exceptions) return false;
952 
953   // If C++ exceptions are enabled, this is true.
954   if (LangOpts.CXXExceptions) return true;
955 
956   // If ObjC exceptions are enabled, this depends on the ABI.
957   if (LangOpts.ObjCExceptions) {
958     return LangOpts.ObjCRuntime.hasUnwindExceptions();
959   }
960 
961   return true;
962 }
963 
964 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
965                                                            llvm::Function *F) {
966   llvm::AttrBuilder B;
967 
968   if (CodeGenOpts.UnwindTables)
969     B.addAttribute(llvm::Attribute::UWTable);
970 
971   if (!hasUnwindExceptions(LangOpts))
972     B.addAttribute(llvm::Attribute::NoUnwind);
973 
974   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
975     B.addAttribute(llvm::Attribute::StackProtect);
976   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
977     B.addAttribute(llvm::Attribute::StackProtectStrong);
978   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
979     B.addAttribute(llvm::Attribute::StackProtectReq);
980 
981   if (!D) {
982     // If we don't have a declaration to control inlining, the function isn't
983     // explicitly marked as alwaysinline for semantic reasons, and inlining is
984     // disabled, mark the function as noinline.
985     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
986         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
987       B.addAttribute(llvm::Attribute::NoInline);
988 
989     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
990     return;
991   }
992 
993   // Track whether we need to add the optnone LLVM attribute,
994   // starting with the default for this optimization level.
995   bool ShouldAddOptNone =
996       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
997   // We can't add optnone in the following cases, it won't pass the verifier.
998   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
999   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1000   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1001 
1002   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1003     B.addAttribute(llvm::Attribute::OptimizeNone);
1004 
1005     // OptimizeNone implies noinline; we should not be inlining such functions.
1006     B.addAttribute(llvm::Attribute::NoInline);
1007     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1008            "OptimizeNone and AlwaysInline on same function!");
1009 
1010     // We still need to handle naked functions even though optnone subsumes
1011     // much of their semantics.
1012     if (D->hasAttr<NakedAttr>())
1013       B.addAttribute(llvm::Attribute::Naked);
1014 
1015     // OptimizeNone wins over OptimizeForSize and MinSize.
1016     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1017     F->removeFnAttr(llvm::Attribute::MinSize);
1018   } else if (D->hasAttr<NakedAttr>()) {
1019     // Naked implies noinline: we should not be inlining such functions.
1020     B.addAttribute(llvm::Attribute::Naked);
1021     B.addAttribute(llvm::Attribute::NoInline);
1022   } else if (D->hasAttr<NoDuplicateAttr>()) {
1023     B.addAttribute(llvm::Attribute::NoDuplicate);
1024   } else if (D->hasAttr<NoInlineAttr>()) {
1025     B.addAttribute(llvm::Attribute::NoInline);
1026   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1027              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1028     // (noinline wins over always_inline, and we can't specify both in IR)
1029     B.addAttribute(llvm::Attribute::AlwaysInline);
1030   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1031     // If we're not inlining, then force everything that isn't always_inline to
1032     // carry an explicit noinline attribute.
1033     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1034       B.addAttribute(llvm::Attribute::NoInline);
1035   } else {
1036     // Otherwise, propagate the inline hint attribute and potentially use its
1037     // absence to mark things as noinline.
1038     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1039       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1040             return Redecl->isInlineSpecified();
1041           })) {
1042         B.addAttribute(llvm::Attribute::InlineHint);
1043       } else if (CodeGenOpts.getInlining() ==
1044                      CodeGenOptions::OnlyHintInlining &&
1045                  !FD->isInlined() &&
1046                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1047         B.addAttribute(llvm::Attribute::NoInline);
1048       }
1049     }
1050   }
1051 
1052   // Add other optimization related attributes if we are optimizing this
1053   // function.
1054   if (!D->hasAttr<OptimizeNoneAttr>()) {
1055     if (D->hasAttr<ColdAttr>()) {
1056       if (!ShouldAddOptNone)
1057         B.addAttribute(llvm::Attribute::OptimizeForSize);
1058       B.addAttribute(llvm::Attribute::Cold);
1059     }
1060 
1061     if (D->hasAttr<MinSizeAttr>())
1062       B.addAttribute(llvm::Attribute::MinSize);
1063   }
1064 
1065   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1066 
1067   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1068   if (alignment)
1069     F->setAlignment(alignment);
1070 
1071   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1072   // reserve a bit for differentiating between virtual and non-virtual member
1073   // functions. If the current target's C++ ABI requires this and this is a
1074   // member function, set its alignment accordingly.
1075   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1076     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1077       F->setAlignment(2);
1078   }
1079 
1080   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1081   if (CodeGenOpts.SanitizeCfiCrossDso)
1082     if (auto *FD = dyn_cast<FunctionDecl>(D))
1083       CreateFunctionTypeMetadata(FD, F);
1084 }
1085 
1086 void CodeGenModule::SetCommonAttributes(const Decl *D,
1087                                         llvm::GlobalValue *GV) {
1088   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1089     setGlobalVisibility(GV, ND, ForDefinition);
1090   else
1091     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1092 
1093   if (D && D->hasAttr<UsedAttr>())
1094     addUsedGlobal(GV);
1095 }
1096 
1097 void CodeGenModule::setAliasAttributes(const Decl *D,
1098                                        llvm::GlobalValue *GV) {
1099   SetCommonAttributes(D, GV);
1100 
1101   // Process the dllexport attribute based on whether the original definition
1102   // (not necessarily the aliasee) was exported.
1103   if (D->hasAttr<DLLExportAttr>())
1104     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1105 }
1106 
1107 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1108                                           llvm::GlobalObject *GO) {
1109   SetCommonAttributes(D, GO);
1110 
1111   if (D) {
1112     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1113       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1114         GV->addAttribute("bss-section", SA->getName());
1115       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1116         GV->addAttribute("data-section", SA->getName());
1117       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1118         GV->addAttribute("rodata-section", SA->getName());
1119     }
1120 
1121     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1122       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1123        if (!D->getAttr<SectionAttr>())
1124          F->addFnAttr("implicit-section-name", SA->getName());
1125     }
1126 
1127     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1128       GO->setSection(SA->getName());
1129   }
1130 
1131   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1132 }
1133 
1134 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1135                                                   llvm::Function *F,
1136                                                   const CGFunctionInfo &FI) {
1137   SetLLVMFunctionAttributes(D, FI, F);
1138   SetLLVMFunctionAttributesForDefinition(D, F);
1139 
1140   F->setLinkage(llvm::Function::InternalLinkage);
1141 
1142   setNonAliasAttributes(D, F);
1143 }
1144 
1145 static void setLinkageForGV(llvm::GlobalValue *GV,
1146                             const NamedDecl *ND) {
1147   // Set linkage and visibility in case we never see a definition.
1148   LinkageInfo LV = ND->getLinkageAndVisibility();
1149   if (!isExternallyVisible(LV.getLinkage())) {
1150     // Don't set internal linkage on declarations.
1151   } else {
1152     if (ND->hasAttr<DLLImportAttr>()) {
1153       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1154       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1155     } else if (ND->hasAttr<DLLExportAttr>()) {
1156       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1157     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1158       // "extern_weak" is overloaded in LLVM; we probably should have
1159       // separate linkage types for this.
1160       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1161     }
1162   }
1163 }
1164 
1165 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1166                                                llvm::Function *F) {
1167   // Only if we are checking indirect calls.
1168   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1169     return;
1170 
1171   // Non-static class methods are handled via vtable pointer checks elsewhere.
1172   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1173     return;
1174 
1175   // Additionally, if building with cross-DSO support...
1176   if (CodeGenOpts.SanitizeCfiCrossDso) {
1177     // Skip available_externally functions. They won't be codegen'ed in the
1178     // current module anyway.
1179     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1180       return;
1181   }
1182 
1183   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1184   F->addTypeMetadata(0, MD);
1185   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1186 
1187   // Emit a hash-based bit set entry for cross-DSO calls.
1188   if (CodeGenOpts.SanitizeCfiCrossDso)
1189     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1190       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1191 }
1192 
1193 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1194                                           bool IsIncompleteFunction,
1195                                           bool IsThunk,
1196                                           ForDefinition_t IsForDefinition) {
1197 
1198   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1199     // If this is an intrinsic function, set the function's attributes
1200     // to the intrinsic's attributes.
1201     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1202     return;
1203   }
1204 
1205   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1206 
1207   if (!IsIncompleteFunction) {
1208     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1209     // Setup target-specific attributes.
1210     if (!IsForDefinition)
1211       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1212                                                  NotForDefinition);
1213   }
1214 
1215   // Add the Returned attribute for "this", except for iOS 5 and earlier
1216   // where substantial code, including the libstdc++ dylib, was compiled with
1217   // GCC and does not actually return "this".
1218   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1219       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1220     assert(!F->arg_empty() &&
1221            F->arg_begin()->getType()
1222              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1223            "unexpected this return");
1224     F->addAttribute(1, llvm::Attribute::Returned);
1225   }
1226 
1227   // Only a few attributes are set on declarations; these may later be
1228   // overridden by a definition.
1229 
1230   setLinkageForGV(F, FD);
1231   setGlobalVisibility(F, FD, NotForDefinition);
1232 
1233   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1234     F->addFnAttr("implicit-section-name");
1235   }
1236 
1237   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1238     F->setSection(SA->getName());
1239 
1240   if (FD->isReplaceableGlobalAllocationFunction()) {
1241     // A replaceable global allocation function does not act like a builtin by
1242     // default, only if it is invoked by a new-expression or delete-expression.
1243     F->addAttribute(llvm::AttributeList::FunctionIndex,
1244                     llvm::Attribute::NoBuiltin);
1245 
1246     // A sane operator new returns a non-aliasing pointer.
1247     // FIXME: Also add NonNull attribute to the return value
1248     // for the non-nothrow forms?
1249     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1250     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1251         (Kind == OO_New || Kind == OO_Array_New))
1252       F->addAttribute(llvm::AttributeList::ReturnIndex,
1253                       llvm::Attribute::NoAlias);
1254   }
1255 
1256   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1257     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1258   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1259     if (MD->isVirtual())
1260       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1261 
1262   // Don't emit entries for function declarations in the cross-DSO mode. This
1263   // is handled with better precision by the receiving DSO.
1264   if (!CodeGenOpts.SanitizeCfiCrossDso)
1265     CreateFunctionTypeMetadata(FD, F);
1266 
1267   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1268     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1269 }
1270 
1271 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1272   assert(!GV->isDeclaration() &&
1273          "Only globals with definition can force usage.");
1274   LLVMUsed.emplace_back(GV);
1275 }
1276 
1277 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1278   assert(!GV->isDeclaration() &&
1279          "Only globals with definition can force usage.");
1280   LLVMCompilerUsed.emplace_back(GV);
1281 }
1282 
1283 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1284                      std::vector<llvm::WeakTrackingVH> &List) {
1285   // Don't create llvm.used if there is no need.
1286   if (List.empty())
1287     return;
1288 
1289   // Convert List to what ConstantArray needs.
1290   SmallVector<llvm::Constant*, 8> UsedArray;
1291   UsedArray.resize(List.size());
1292   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1293     UsedArray[i] =
1294         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1295             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1296   }
1297 
1298   if (UsedArray.empty())
1299     return;
1300   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1301 
1302   auto *GV = new llvm::GlobalVariable(
1303       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1304       llvm::ConstantArray::get(ATy, UsedArray), Name);
1305 
1306   GV->setSection("llvm.metadata");
1307 }
1308 
1309 void CodeGenModule::emitLLVMUsed() {
1310   emitUsed(*this, "llvm.used", LLVMUsed);
1311   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1312 }
1313 
1314 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1315   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1316   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1317 }
1318 
1319 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1320   llvm::SmallString<32> Opt;
1321   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1322   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1323   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1324 }
1325 
1326 void CodeGenModule::AddDependentLib(StringRef Lib) {
1327   llvm::SmallString<24> Opt;
1328   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1329   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1330   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1331 }
1332 
1333 /// \brief Add link options implied by the given module, including modules
1334 /// it depends on, using a postorder walk.
1335 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1336                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1337                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1338   // Import this module's parent.
1339   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1340     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1341   }
1342 
1343   // Import this module's dependencies.
1344   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1345     if (Visited.insert(Mod->Imports[I - 1]).second)
1346       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1347   }
1348 
1349   // Add linker options to link against the libraries/frameworks
1350   // described by this module.
1351   llvm::LLVMContext &Context = CGM.getLLVMContext();
1352   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1353     // Link against a framework.  Frameworks are currently Darwin only, so we
1354     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1355     if (Mod->LinkLibraries[I-1].IsFramework) {
1356       llvm::Metadata *Args[2] = {
1357           llvm::MDString::get(Context, "-framework"),
1358           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1359 
1360       Metadata.push_back(llvm::MDNode::get(Context, Args));
1361       continue;
1362     }
1363 
1364     // Link against a library.
1365     llvm::SmallString<24> Opt;
1366     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1367       Mod->LinkLibraries[I-1].Library, Opt);
1368     auto *OptString = llvm::MDString::get(Context, Opt);
1369     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1370   }
1371 }
1372 
1373 void CodeGenModule::EmitModuleLinkOptions() {
1374   // Collect the set of all of the modules we want to visit to emit link
1375   // options, which is essentially the imported modules and all of their
1376   // non-explicit child modules.
1377   llvm::SetVector<clang::Module *> LinkModules;
1378   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1379   SmallVector<clang::Module *, 16> Stack;
1380 
1381   // Seed the stack with imported modules.
1382   for (Module *M : ImportedModules) {
1383     // Do not add any link flags when an implementation TU of a module imports
1384     // a header of that same module.
1385     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1386         !getLangOpts().isCompilingModule())
1387       continue;
1388     if (Visited.insert(M).second)
1389       Stack.push_back(M);
1390   }
1391 
1392   // Find all of the modules to import, making a little effort to prune
1393   // non-leaf modules.
1394   while (!Stack.empty()) {
1395     clang::Module *Mod = Stack.pop_back_val();
1396 
1397     bool AnyChildren = false;
1398 
1399     // Visit the submodules of this module.
1400     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1401                                         SubEnd = Mod->submodule_end();
1402          Sub != SubEnd; ++Sub) {
1403       // Skip explicit children; they need to be explicitly imported to be
1404       // linked against.
1405       if ((*Sub)->IsExplicit)
1406         continue;
1407 
1408       if (Visited.insert(*Sub).second) {
1409         Stack.push_back(*Sub);
1410         AnyChildren = true;
1411       }
1412     }
1413 
1414     // We didn't find any children, so add this module to the list of
1415     // modules to link against.
1416     if (!AnyChildren) {
1417       LinkModules.insert(Mod);
1418     }
1419   }
1420 
1421   // Add link options for all of the imported modules in reverse topological
1422   // order.  We don't do anything to try to order import link flags with respect
1423   // to linker options inserted by things like #pragma comment().
1424   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1425   Visited.clear();
1426   for (Module *M : LinkModules)
1427     if (Visited.insert(M).second)
1428       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1429   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1430   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1431 
1432   // Add the linker options metadata flag.
1433   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1434   for (auto *MD : LinkerOptionsMetadata)
1435     NMD->addOperand(MD);
1436 }
1437 
1438 void CodeGenModule::EmitDeferred() {
1439   // Emit code for any potentially referenced deferred decls.  Since a
1440   // previously unused static decl may become used during the generation of code
1441   // for a static function, iterate until no changes are made.
1442 
1443   if (!DeferredVTables.empty()) {
1444     EmitDeferredVTables();
1445 
1446     // Emitting a vtable doesn't directly cause more vtables to
1447     // become deferred, although it can cause functions to be
1448     // emitted that then need those vtables.
1449     assert(DeferredVTables.empty());
1450   }
1451 
1452   // Stop if we're out of both deferred vtables and deferred declarations.
1453   if (DeferredDeclsToEmit.empty())
1454     return;
1455 
1456   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1457   // work, it will not interfere with this.
1458   std::vector<GlobalDecl> CurDeclsToEmit;
1459   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1460 
1461   for (GlobalDecl &D : CurDeclsToEmit) {
1462     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1463     // to get GlobalValue with exactly the type we need, not something that
1464     // might had been created for another decl with the same mangled name but
1465     // different type.
1466     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1467         GetAddrOfGlobal(D, ForDefinition));
1468 
1469     // In case of different address spaces, we may still get a cast, even with
1470     // IsForDefinition equal to true. Query mangled names table to get
1471     // GlobalValue.
1472     if (!GV)
1473       GV = GetGlobalValue(getMangledName(D));
1474 
1475     // Make sure GetGlobalValue returned non-null.
1476     assert(GV);
1477 
1478     // Check to see if we've already emitted this.  This is necessary
1479     // for a couple of reasons: first, decls can end up in the
1480     // deferred-decls queue multiple times, and second, decls can end
1481     // up with definitions in unusual ways (e.g. by an extern inline
1482     // function acquiring a strong function redefinition).  Just
1483     // ignore these cases.
1484     if (!GV->isDeclaration())
1485       continue;
1486 
1487     // Otherwise, emit the definition and move on to the next one.
1488     EmitGlobalDefinition(D, GV);
1489 
1490     // If we found out that we need to emit more decls, do that recursively.
1491     // This has the advantage that the decls are emitted in a DFS and related
1492     // ones are close together, which is convenient for testing.
1493     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1494       EmitDeferred();
1495       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1496     }
1497   }
1498 }
1499 
1500 void CodeGenModule::EmitVTablesOpportunistically() {
1501   // Try to emit external vtables as available_externally if they have emitted
1502   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1503   // is not allowed to create new references to things that need to be emitted
1504   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1505 
1506   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1507          && "Only emit opportunistic vtables with optimizations");
1508 
1509   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1510     assert(getVTables().isVTableExternal(RD) &&
1511            "This queue should only contain external vtables");
1512     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1513       VTables.GenerateClassData(RD);
1514   }
1515   OpportunisticVTables.clear();
1516 }
1517 
1518 void CodeGenModule::EmitGlobalAnnotations() {
1519   if (Annotations.empty())
1520     return;
1521 
1522   // Create a new global variable for the ConstantStruct in the Module.
1523   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1524     Annotations[0]->getType(), Annotations.size()), Annotations);
1525   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1526                                       llvm::GlobalValue::AppendingLinkage,
1527                                       Array, "llvm.global.annotations");
1528   gv->setSection(AnnotationSection);
1529 }
1530 
1531 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1532   llvm::Constant *&AStr = AnnotationStrings[Str];
1533   if (AStr)
1534     return AStr;
1535 
1536   // Not found yet, create a new global.
1537   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1538   auto *gv =
1539       new llvm::GlobalVariable(getModule(), s->getType(), true,
1540                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1541   gv->setSection(AnnotationSection);
1542   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1543   AStr = gv;
1544   return gv;
1545 }
1546 
1547 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1548   SourceManager &SM = getContext().getSourceManager();
1549   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1550   if (PLoc.isValid())
1551     return EmitAnnotationString(PLoc.getFilename());
1552   return EmitAnnotationString(SM.getBufferName(Loc));
1553 }
1554 
1555 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1556   SourceManager &SM = getContext().getSourceManager();
1557   PresumedLoc PLoc = SM.getPresumedLoc(L);
1558   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1559     SM.getExpansionLineNumber(L);
1560   return llvm::ConstantInt::get(Int32Ty, LineNo);
1561 }
1562 
1563 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1564                                                 const AnnotateAttr *AA,
1565                                                 SourceLocation L) {
1566   // Get the globals for file name, annotation, and the line number.
1567   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1568                  *UnitGV = EmitAnnotationUnit(L),
1569                  *LineNoCst = EmitAnnotationLineNo(L);
1570 
1571   // Create the ConstantStruct for the global annotation.
1572   llvm::Constant *Fields[4] = {
1573     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1574     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1575     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1576     LineNoCst
1577   };
1578   return llvm::ConstantStruct::getAnon(Fields);
1579 }
1580 
1581 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1582                                          llvm::GlobalValue *GV) {
1583   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1584   // Get the struct elements for these annotations.
1585   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1586     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1587 }
1588 
1589 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1590                                            llvm::Function *Fn,
1591                                            SourceLocation Loc) const {
1592   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1593   // Blacklist by function name.
1594   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1595     return true;
1596   // Blacklist by location.
1597   if (Loc.isValid())
1598     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1599   // If location is unknown, this may be a compiler-generated function. Assume
1600   // it's located in the main file.
1601   auto &SM = Context.getSourceManager();
1602   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1603     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1604   }
1605   return false;
1606 }
1607 
1608 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1609                                            SourceLocation Loc, QualType Ty,
1610                                            StringRef Category) const {
1611   // For now globals can be blacklisted only in ASan and KASan.
1612   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1613       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1614   if (!EnabledAsanMask)
1615     return false;
1616   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1617   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1618     return true;
1619   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1620     return true;
1621   // Check global type.
1622   if (!Ty.isNull()) {
1623     // Drill down the array types: if global variable of a fixed type is
1624     // blacklisted, we also don't instrument arrays of them.
1625     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1626       Ty = AT->getElementType();
1627     Ty = Ty.getCanonicalType().getUnqualifiedType();
1628     // We allow to blacklist only record types (classes, structs etc.)
1629     if (Ty->isRecordType()) {
1630       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1631       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1632         return true;
1633     }
1634   }
1635   return false;
1636 }
1637 
1638 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1639                                    StringRef Category) const {
1640   if (!LangOpts.XRayInstrument)
1641     return false;
1642   const auto &XRayFilter = getContext().getXRayFilter();
1643   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1644   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1645   if (Loc.isValid())
1646     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1647   if (Attr == ImbueAttr::NONE)
1648     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1649   switch (Attr) {
1650   case ImbueAttr::NONE:
1651     return false;
1652   case ImbueAttr::ALWAYS:
1653     Fn->addFnAttr("function-instrument", "xray-always");
1654     break;
1655   case ImbueAttr::ALWAYS_ARG1:
1656     Fn->addFnAttr("function-instrument", "xray-always");
1657     Fn->addFnAttr("xray-log-args", "1");
1658     break;
1659   case ImbueAttr::NEVER:
1660     Fn->addFnAttr("function-instrument", "xray-never");
1661     break;
1662   }
1663   return true;
1664 }
1665 
1666 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1667   // Never defer when EmitAllDecls is specified.
1668   if (LangOpts.EmitAllDecls)
1669     return true;
1670 
1671   return getContext().DeclMustBeEmitted(Global);
1672 }
1673 
1674 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1675   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1676     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1677       // Implicit template instantiations may change linkage if they are later
1678       // explicitly instantiated, so they should not be emitted eagerly.
1679       return false;
1680   if (const auto *VD = dyn_cast<VarDecl>(Global))
1681     if (Context.getInlineVariableDefinitionKind(VD) ==
1682         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1683       // A definition of an inline constexpr static data member may change
1684       // linkage later if it's redeclared outside the class.
1685       return false;
1686   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1687   // codegen for global variables, because they may be marked as threadprivate.
1688   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1689       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1690     return false;
1691 
1692   return true;
1693 }
1694 
1695 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1696     const CXXUuidofExpr* E) {
1697   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1698   // well-formed.
1699   StringRef Uuid = E->getUuidStr();
1700   std::string Name = "_GUID_" + Uuid.lower();
1701   std::replace(Name.begin(), Name.end(), '-', '_');
1702 
1703   // The UUID descriptor should be pointer aligned.
1704   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1705 
1706   // Look for an existing global.
1707   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1708     return ConstantAddress(GV, Alignment);
1709 
1710   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1711   assert(Init && "failed to initialize as constant");
1712 
1713   auto *GV = new llvm::GlobalVariable(
1714       getModule(), Init->getType(),
1715       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1716   if (supportsCOMDAT())
1717     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1718   return ConstantAddress(GV, Alignment);
1719 }
1720 
1721 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1722   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1723   assert(AA && "No alias?");
1724 
1725   CharUnits Alignment = getContext().getDeclAlign(VD);
1726   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1727 
1728   // See if there is already something with the target's name in the module.
1729   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1730   if (Entry) {
1731     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1732     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1733     return ConstantAddress(Ptr, Alignment);
1734   }
1735 
1736   llvm::Constant *Aliasee;
1737   if (isa<llvm::FunctionType>(DeclTy))
1738     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1739                                       GlobalDecl(cast<FunctionDecl>(VD)),
1740                                       /*ForVTable=*/false);
1741   else
1742     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1743                                     llvm::PointerType::getUnqual(DeclTy),
1744                                     nullptr);
1745 
1746   auto *F = cast<llvm::GlobalValue>(Aliasee);
1747   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1748   WeakRefReferences.insert(F);
1749 
1750   return ConstantAddress(Aliasee, Alignment);
1751 }
1752 
1753 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1754   const auto *Global = cast<ValueDecl>(GD.getDecl());
1755 
1756   // Weak references don't produce any output by themselves.
1757   if (Global->hasAttr<WeakRefAttr>())
1758     return;
1759 
1760   // If this is an alias definition (which otherwise looks like a declaration)
1761   // emit it now.
1762   if (Global->hasAttr<AliasAttr>())
1763     return EmitAliasDefinition(GD);
1764 
1765   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1766   if (Global->hasAttr<IFuncAttr>())
1767     return emitIFuncDefinition(GD);
1768 
1769   // If this is CUDA, be selective about which declarations we emit.
1770   if (LangOpts.CUDA) {
1771     if (LangOpts.CUDAIsDevice) {
1772       if (!Global->hasAttr<CUDADeviceAttr>() &&
1773           !Global->hasAttr<CUDAGlobalAttr>() &&
1774           !Global->hasAttr<CUDAConstantAttr>() &&
1775           !Global->hasAttr<CUDASharedAttr>())
1776         return;
1777     } else {
1778       // We need to emit host-side 'shadows' for all global
1779       // device-side variables because the CUDA runtime needs their
1780       // size and host-side address in order to provide access to
1781       // their device-side incarnations.
1782 
1783       // So device-only functions are the only things we skip.
1784       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1785           Global->hasAttr<CUDADeviceAttr>())
1786         return;
1787 
1788       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1789              "Expected Variable or Function");
1790     }
1791   }
1792 
1793   if (LangOpts.OpenMP) {
1794     // If this is OpenMP device, check if it is legal to emit this global
1795     // normally.
1796     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1797       return;
1798     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1799       if (MustBeEmitted(Global))
1800         EmitOMPDeclareReduction(DRD);
1801       return;
1802     }
1803   }
1804 
1805   // Ignore declarations, they will be emitted on their first use.
1806   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1807     // Forward declarations are emitted lazily on first use.
1808     if (!FD->doesThisDeclarationHaveABody()) {
1809       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1810         return;
1811 
1812       StringRef MangledName = getMangledName(GD);
1813 
1814       // Compute the function info and LLVM type.
1815       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1816       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1817 
1818       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1819                               /*DontDefer=*/false);
1820       return;
1821     }
1822   } else {
1823     const auto *VD = cast<VarDecl>(Global);
1824     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1825     // We need to emit device-side global CUDA variables even if a
1826     // variable does not have a definition -- we still need to define
1827     // host-side shadow for it.
1828     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1829                            !VD->hasDefinition() &&
1830                            (VD->hasAttr<CUDAConstantAttr>() ||
1831                             VD->hasAttr<CUDADeviceAttr>());
1832     if (!MustEmitForCuda &&
1833         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1834         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1835       // If this declaration may have caused an inline variable definition to
1836       // change linkage, make sure that it's emitted.
1837       if (Context.getInlineVariableDefinitionKind(VD) ==
1838           ASTContext::InlineVariableDefinitionKind::Strong)
1839         GetAddrOfGlobalVar(VD);
1840       return;
1841     }
1842   }
1843 
1844   // Defer code generation to first use when possible, e.g. if this is an inline
1845   // function. If the global must always be emitted, do it eagerly if possible
1846   // to benefit from cache locality.
1847   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1848     // Emit the definition if it can't be deferred.
1849     EmitGlobalDefinition(GD);
1850     return;
1851   }
1852 
1853   // If we're deferring emission of a C++ variable with an
1854   // initializer, remember the order in which it appeared in the file.
1855   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1856       cast<VarDecl>(Global)->hasInit()) {
1857     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1858     CXXGlobalInits.push_back(nullptr);
1859   }
1860 
1861   StringRef MangledName = getMangledName(GD);
1862   if (GetGlobalValue(MangledName) != nullptr) {
1863     // The value has already been used and should therefore be emitted.
1864     addDeferredDeclToEmit(GD);
1865   } else if (MustBeEmitted(Global)) {
1866     // The value must be emitted, but cannot be emitted eagerly.
1867     assert(!MayBeEmittedEagerly(Global));
1868     addDeferredDeclToEmit(GD);
1869   } else {
1870     // Otherwise, remember that we saw a deferred decl with this name.  The
1871     // first use of the mangled name will cause it to move into
1872     // DeferredDeclsToEmit.
1873     DeferredDecls[MangledName] = GD;
1874   }
1875 }
1876 
1877 // Check if T is a class type with a destructor that's not dllimport.
1878 static bool HasNonDllImportDtor(QualType T) {
1879   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1880     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1881       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1882         return true;
1883 
1884   return false;
1885 }
1886 
1887 namespace {
1888   struct FunctionIsDirectlyRecursive :
1889     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1890     const StringRef Name;
1891     const Builtin::Context &BI;
1892     bool Result;
1893     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1894       Name(N), BI(C), Result(false) {
1895     }
1896     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1897 
1898     bool TraverseCallExpr(CallExpr *E) {
1899       const FunctionDecl *FD = E->getDirectCallee();
1900       if (!FD)
1901         return true;
1902       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1903       if (Attr && Name == Attr->getLabel()) {
1904         Result = true;
1905         return false;
1906       }
1907       unsigned BuiltinID = FD->getBuiltinID();
1908       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1909         return true;
1910       StringRef BuiltinName = BI.getName(BuiltinID);
1911       if (BuiltinName.startswith("__builtin_") &&
1912           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1913         Result = true;
1914         return false;
1915       }
1916       return true;
1917     }
1918   };
1919 
1920   // Make sure we're not referencing non-imported vars or functions.
1921   struct DLLImportFunctionVisitor
1922       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1923     bool SafeToInline = true;
1924 
1925     bool shouldVisitImplicitCode() const { return true; }
1926 
1927     bool VisitVarDecl(VarDecl *VD) {
1928       if (VD->getTLSKind()) {
1929         // A thread-local variable cannot be imported.
1930         SafeToInline = false;
1931         return SafeToInline;
1932       }
1933 
1934       // A variable definition might imply a destructor call.
1935       if (VD->isThisDeclarationADefinition())
1936         SafeToInline = !HasNonDllImportDtor(VD->getType());
1937 
1938       return SafeToInline;
1939     }
1940 
1941     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1942       if (const auto *D = E->getTemporary()->getDestructor())
1943         SafeToInline = D->hasAttr<DLLImportAttr>();
1944       return SafeToInline;
1945     }
1946 
1947     bool VisitDeclRefExpr(DeclRefExpr *E) {
1948       ValueDecl *VD = E->getDecl();
1949       if (isa<FunctionDecl>(VD))
1950         SafeToInline = VD->hasAttr<DLLImportAttr>();
1951       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1952         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1953       return SafeToInline;
1954     }
1955 
1956     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1957       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1958       return SafeToInline;
1959     }
1960 
1961     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1962       CXXMethodDecl *M = E->getMethodDecl();
1963       if (!M) {
1964         // Call through a pointer to member function. This is safe to inline.
1965         SafeToInline = true;
1966       } else {
1967         SafeToInline = M->hasAttr<DLLImportAttr>();
1968       }
1969       return SafeToInline;
1970     }
1971 
1972     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1973       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1974       return SafeToInline;
1975     }
1976 
1977     bool VisitCXXNewExpr(CXXNewExpr *E) {
1978       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1979       return SafeToInline;
1980     }
1981   };
1982 }
1983 
1984 // isTriviallyRecursive - Check if this function calls another
1985 // decl that, because of the asm attribute or the other decl being a builtin,
1986 // ends up pointing to itself.
1987 bool
1988 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1989   StringRef Name;
1990   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1991     // asm labels are a special kind of mangling we have to support.
1992     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1993     if (!Attr)
1994       return false;
1995     Name = Attr->getLabel();
1996   } else {
1997     Name = FD->getName();
1998   }
1999 
2000   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2001   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2002   return Walker.Result;
2003 }
2004 
2005 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2006   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2007     return true;
2008   const auto *F = cast<FunctionDecl>(GD.getDecl());
2009   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2010     return false;
2011 
2012   if (F->hasAttr<DLLImportAttr>()) {
2013     // Check whether it would be safe to inline this dllimport function.
2014     DLLImportFunctionVisitor Visitor;
2015     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2016     if (!Visitor.SafeToInline)
2017       return false;
2018 
2019     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2020       // Implicit destructor invocations aren't captured in the AST, so the
2021       // check above can't see them. Check for them manually here.
2022       for (const Decl *Member : Dtor->getParent()->decls())
2023         if (isa<FieldDecl>(Member))
2024           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2025             return false;
2026       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2027         if (HasNonDllImportDtor(B.getType()))
2028           return false;
2029     }
2030   }
2031 
2032   // PR9614. Avoid cases where the source code is lying to us. An available
2033   // externally function should have an equivalent function somewhere else,
2034   // but a function that calls itself is clearly not equivalent to the real
2035   // implementation.
2036   // This happens in glibc's btowc and in some configure checks.
2037   return !isTriviallyRecursive(F);
2038 }
2039 
2040 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2041   return CodeGenOpts.OptimizationLevel > 0;
2042 }
2043 
2044 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2045   const auto *D = cast<ValueDecl>(GD.getDecl());
2046 
2047   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2048                                  Context.getSourceManager(),
2049                                  "Generating code for declaration");
2050 
2051   if (isa<FunctionDecl>(D)) {
2052     // At -O0, don't generate IR for functions with available_externally
2053     // linkage.
2054     if (!shouldEmitFunction(GD))
2055       return;
2056 
2057     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2058       // Make sure to emit the definition(s) before we emit the thunks.
2059       // This is necessary for the generation of certain thunks.
2060       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2061         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2062       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2063         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2064       else
2065         EmitGlobalFunctionDefinition(GD, GV);
2066 
2067       if (Method->isVirtual())
2068         getVTables().EmitThunks(GD);
2069 
2070       return;
2071     }
2072 
2073     return EmitGlobalFunctionDefinition(GD, GV);
2074   }
2075 
2076   if (const auto *VD = dyn_cast<VarDecl>(D))
2077     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2078 
2079   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2080 }
2081 
2082 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2083                                                       llvm::Function *NewFn);
2084 
2085 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2086 /// module, create and return an llvm Function with the specified type. If there
2087 /// is something in the module with the specified name, return it potentially
2088 /// bitcasted to the right type.
2089 ///
2090 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2091 /// to set the attributes on the function when it is first created.
2092 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2093     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2094     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2095     ForDefinition_t IsForDefinition) {
2096   const Decl *D = GD.getDecl();
2097 
2098   // Lookup the entry, lazily creating it if necessary.
2099   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2100   if (Entry) {
2101     if (WeakRefReferences.erase(Entry)) {
2102       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2103       if (FD && !FD->hasAttr<WeakAttr>())
2104         Entry->setLinkage(llvm::Function::ExternalLinkage);
2105     }
2106 
2107     // Handle dropped DLL attributes.
2108     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2109       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2110 
2111     // If there are two attempts to define the same mangled name, issue an
2112     // error.
2113     if (IsForDefinition && !Entry->isDeclaration()) {
2114       GlobalDecl OtherGD;
2115       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2116       // to make sure that we issue an error only once.
2117       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2118           (GD.getCanonicalDecl().getDecl() !=
2119            OtherGD.getCanonicalDecl().getDecl()) &&
2120           DiagnosedConflictingDefinitions.insert(GD).second) {
2121         getDiags().Report(D->getLocation(),
2122                           diag::err_duplicate_mangled_name);
2123         getDiags().Report(OtherGD.getDecl()->getLocation(),
2124                           diag::note_previous_definition);
2125       }
2126     }
2127 
2128     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2129         (Entry->getType()->getElementType() == Ty)) {
2130       return Entry;
2131     }
2132 
2133     // Make sure the result is of the correct type.
2134     // (If function is requested for a definition, we always need to create a new
2135     // function, not just return a bitcast.)
2136     if (!IsForDefinition)
2137       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2138   }
2139 
2140   // This function doesn't have a complete type (for example, the return
2141   // type is an incomplete struct). Use a fake type instead, and make
2142   // sure not to try to set attributes.
2143   bool IsIncompleteFunction = false;
2144 
2145   llvm::FunctionType *FTy;
2146   if (isa<llvm::FunctionType>(Ty)) {
2147     FTy = cast<llvm::FunctionType>(Ty);
2148   } else {
2149     FTy = llvm::FunctionType::get(VoidTy, false);
2150     IsIncompleteFunction = true;
2151   }
2152 
2153   llvm::Function *F =
2154       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2155                              Entry ? StringRef() : MangledName, &getModule());
2156 
2157   // If we already created a function with the same mangled name (but different
2158   // type) before, take its name and add it to the list of functions to be
2159   // replaced with F at the end of CodeGen.
2160   //
2161   // This happens if there is a prototype for a function (e.g. "int f()") and
2162   // then a definition of a different type (e.g. "int f(int x)").
2163   if (Entry) {
2164     F->takeName(Entry);
2165 
2166     // This might be an implementation of a function without a prototype, in
2167     // which case, try to do special replacement of calls which match the new
2168     // prototype.  The really key thing here is that we also potentially drop
2169     // arguments from the call site so as to make a direct call, which makes the
2170     // inliner happier and suppresses a number of optimizer warnings (!) about
2171     // dropping arguments.
2172     if (!Entry->use_empty()) {
2173       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2174       Entry->removeDeadConstantUsers();
2175     }
2176 
2177     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2178         F, Entry->getType()->getElementType()->getPointerTo());
2179     addGlobalValReplacement(Entry, BC);
2180   }
2181 
2182   assert(F->getName() == MangledName && "name was uniqued!");
2183   if (D)
2184     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2185                           IsForDefinition);
2186   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2187     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2188     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2189   }
2190 
2191   if (!DontDefer) {
2192     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2193     // each other bottoming out with the base dtor.  Therefore we emit non-base
2194     // dtors on usage, even if there is no dtor definition in the TU.
2195     if (D && isa<CXXDestructorDecl>(D) &&
2196         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2197                                            GD.getDtorType()))
2198       addDeferredDeclToEmit(GD);
2199 
2200     // This is the first use or definition of a mangled name.  If there is a
2201     // deferred decl with this name, remember that we need to emit it at the end
2202     // of the file.
2203     auto DDI = DeferredDecls.find(MangledName);
2204     if (DDI != DeferredDecls.end()) {
2205       // Move the potentially referenced deferred decl to the
2206       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2207       // don't need it anymore).
2208       addDeferredDeclToEmit(DDI->second);
2209       DeferredDecls.erase(DDI);
2210 
2211       // Otherwise, there are cases we have to worry about where we're
2212       // using a declaration for which we must emit a definition but where
2213       // we might not find a top-level definition:
2214       //   - member functions defined inline in their classes
2215       //   - friend functions defined inline in some class
2216       //   - special member functions with implicit definitions
2217       // If we ever change our AST traversal to walk into class methods,
2218       // this will be unnecessary.
2219       //
2220       // We also don't emit a definition for a function if it's going to be an
2221       // entry in a vtable, unless it's already marked as used.
2222     } else if (getLangOpts().CPlusPlus && D) {
2223       // Look for a declaration that's lexically in a record.
2224       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2225            FD = FD->getPreviousDecl()) {
2226         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2227           if (FD->doesThisDeclarationHaveABody()) {
2228             addDeferredDeclToEmit(GD.getWithDecl(FD));
2229             break;
2230           }
2231         }
2232       }
2233     }
2234   }
2235 
2236   // Make sure the result is of the requested type.
2237   if (!IsIncompleteFunction) {
2238     assert(F->getType()->getElementType() == Ty);
2239     return F;
2240   }
2241 
2242   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2243   return llvm::ConstantExpr::getBitCast(F, PTy);
2244 }
2245 
2246 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2247 /// non-null, then this function will use the specified type if it has to
2248 /// create it (this occurs when we see a definition of the function).
2249 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2250                                                  llvm::Type *Ty,
2251                                                  bool ForVTable,
2252                                                  bool DontDefer,
2253                                               ForDefinition_t IsForDefinition) {
2254   // If there was no specific requested type, just convert it now.
2255   if (!Ty) {
2256     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2257     auto CanonTy = Context.getCanonicalType(FD->getType());
2258     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2259   }
2260 
2261   StringRef MangledName = getMangledName(GD);
2262   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2263                                  /*IsThunk=*/false, llvm::AttributeList(),
2264                                  IsForDefinition);
2265 }
2266 
2267 static const FunctionDecl *
2268 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2269   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2270   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2271 
2272   IdentifierInfo &CII = C.Idents.get(Name);
2273   for (const auto &Result : DC->lookup(&CII))
2274     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2275       return FD;
2276 
2277   if (!C.getLangOpts().CPlusPlus)
2278     return nullptr;
2279 
2280   // Demangle the premangled name from getTerminateFn()
2281   IdentifierInfo &CXXII =
2282       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2283           ? C.Idents.get("terminate")
2284           : C.Idents.get(Name);
2285 
2286   for (const auto &N : {"__cxxabiv1", "std"}) {
2287     IdentifierInfo &NS = C.Idents.get(N);
2288     for (const auto &Result : DC->lookup(&NS)) {
2289       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2290       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2291         for (const auto &Result : LSD->lookup(&NS))
2292           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2293             break;
2294 
2295       if (ND)
2296         for (const auto &Result : ND->lookup(&CXXII))
2297           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2298             return FD;
2299     }
2300   }
2301 
2302   return nullptr;
2303 }
2304 
2305 /// CreateRuntimeFunction - Create a new runtime function with the specified
2306 /// type and name.
2307 llvm::Constant *
2308 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2309                                      llvm::AttributeList ExtraAttrs,
2310                                      bool Local) {
2311   llvm::Constant *C =
2312       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2313                               /*DontDefer=*/false, /*IsThunk=*/false,
2314                               ExtraAttrs);
2315 
2316   if (auto *F = dyn_cast<llvm::Function>(C)) {
2317     if (F->empty()) {
2318       F->setCallingConv(getRuntimeCC());
2319 
2320       if (!Local && getTriple().isOSBinFormatCOFF() &&
2321           !getCodeGenOpts().LTOVisibilityPublicStd &&
2322           !getTriple().isWindowsGNUEnvironment()) {
2323         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2324         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2325           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2326           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2327         }
2328       }
2329     }
2330   }
2331 
2332   return C;
2333 }
2334 
2335 /// CreateBuiltinFunction - Create a new builtin function with the specified
2336 /// type and name.
2337 llvm::Constant *
2338 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2339                                      llvm::AttributeList ExtraAttrs) {
2340   llvm::Constant *C =
2341       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2342                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2343   if (auto *F = dyn_cast<llvm::Function>(C))
2344     if (F->empty())
2345       F->setCallingConv(getBuiltinCC());
2346   return C;
2347 }
2348 
2349 /// isTypeConstant - Determine whether an object of this type can be emitted
2350 /// as a constant.
2351 ///
2352 /// If ExcludeCtor is true, the duration when the object's constructor runs
2353 /// will not be considered. The caller will need to verify that the object is
2354 /// not written to during its construction.
2355 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2356   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2357     return false;
2358 
2359   if (Context.getLangOpts().CPlusPlus) {
2360     if (const CXXRecordDecl *Record
2361           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2362       return ExcludeCtor && !Record->hasMutableFields() &&
2363              Record->hasTrivialDestructor();
2364   }
2365 
2366   return true;
2367 }
2368 
2369 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2370 /// create and return an llvm GlobalVariable with the specified type.  If there
2371 /// is something in the module with the specified name, return it potentially
2372 /// bitcasted to the right type.
2373 ///
2374 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2375 /// to set the attributes on the global when it is first created.
2376 ///
2377 /// If IsForDefinition is true, it is guranteed that an actual global with
2378 /// type Ty will be returned, not conversion of a variable with the same
2379 /// mangled name but some other type.
2380 llvm::Constant *
2381 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2382                                      llvm::PointerType *Ty,
2383                                      const VarDecl *D,
2384                                      ForDefinition_t IsForDefinition) {
2385   // Lookup the entry, lazily creating it if necessary.
2386   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2387   if (Entry) {
2388     if (WeakRefReferences.erase(Entry)) {
2389       if (D && !D->hasAttr<WeakAttr>())
2390         Entry->setLinkage(llvm::Function::ExternalLinkage);
2391     }
2392 
2393     // Handle dropped DLL attributes.
2394     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2395       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2396 
2397     if (Entry->getType() == Ty)
2398       return Entry;
2399 
2400     // If there are two attempts to define the same mangled name, issue an
2401     // error.
2402     if (IsForDefinition && !Entry->isDeclaration()) {
2403       GlobalDecl OtherGD;
2404       const VarDecl *OtherD;
2405 
2406       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2407       // to make sure that we issue an error only once.
2408       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2409           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2410           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2411           OtherD->hasInit() &&
2412           DiagnosedConflictingDefinitions.insert(D).second) {
2413         getDiags().Report(D->getLocation(),
2414                           diag::err_duplicate_mangled_name);
2415         getDiags().Report(OtherGD.getDecl()->getLocation(),
2416                           diag::note_previous_definition);
2417       }
2418     }
2419 
2420     // Make sure the result is of the correct type.
2421     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2422       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2423 
2424     // (If global is requested for a definition, we always need to create a new
2425     // global, not just return a bitcast.)
2426     if (!IsForDefinition)
2427       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2428   }
2429 
2430   auto AddrSpace = GetGlobalVarAddressSpace(D);
2431   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2432 
2433   auto *GV = new llvm::GlobalVariable(
2434       getModule(), Ty->getElementType(), false,
2435       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2436       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2437 
2438   // If we already created a global with the same mangled name (but different
2439   // type) before, take its name and remove it from its parent.
2440   if (Entry) {
2441     GV->takeName(Entry);
2442 
2443     if (!Entry->use_empty()) {
2444       llvm::Constant *NewPtrForOldDecl =
2445           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2446       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2447     }
2448 
2449     Entry->eraseFromParent();
2450   }
2451 
2452   // This is the first use or definition of a mangled name.  If there is a
2453   // deferred decl with this name, remember that we need to emit it at the end
2454   // of the file.
2455   auto DDI = DeferredDecls.find(MangledName);
2456   if (DDI != DeferredDecls.end()) {
2457     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2458     // list, and remove it from DeferredDecls (since we don't need it anymore).
2459     addDeferredDeclToEmit(DDI->second);
2460     DeferredDecls.erase(DDI);
2461   }
2462 
2463   // Handle things which are present even on external declarations.
2464   if (D) {
2465     // FIXME: This code is overly simple and should be merged with other global
2466     // handling.
2467     GV->setConstant(isTypeConstant(D->getType(), false));
2468 
2469     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2470 
2471     setLinkageForGV(GV, D);
2472     setGlobalVisibility(GV, D, NotForDefinition);
2473 
2474     if (D->getTLSKind()) {
2475       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2476         CXXThreadLocals.push_back(D);
2477       setTLSMode(GV, *D);
2478     }
2479 
2480     // If required by the ABI, treat declarations of static data members with
2481     // inline initializers as definitions.
2482     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2483       EmitGlobalVarDefinition(D);
2484     }
2485 
2486     // Emit section information for extern variables.
2487     if (D->hasExternalStorage()) {
2488       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2489         GV->setSection(SA->getName());
2490     }
2491 
2492     // Handle XCore specific ABI requirements.
2493     if (getTriple().getArch() == llvm::Triple::xcore &&
2494         D->getLanguageLinkage() == CLanguageLinkage &&
2495         D->getType().isConstant(Context) &&
2496         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2497       GV->setSection(".cp.rodata");
2498 
2499     // Check if we a have a const declaration with an initializer, we may be
2500     // able to emit it as available_externally to expose it's value to the
2501     // optimizer.
2502     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2503         D->getType().isConstQualified() && !GV->hasInitializer() &&
2504         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2505       const auto *Record =
2506           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2507       bool HasMutableFields = Record && Record->hasMutableFields();
2508       if (!HasMutableFields) {
2509         const VarDecl *InitDecl;
2510         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2511         if (InitExpr) {
2512           ConstantEmitter emitter(*this);
2513           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2514           if (Init) {
2515             auto *InitType = Init->getType();
2516             if (GV->getType()->getElementType() != InitType) {
2517               // The type of the initializer does not match the definition.
2518               // This happens when an initializer has a different type from
2519               // the type of the global (because of padding at the end of a
2520               // structure for instance).
2521               GV->setName(StringRef());
2522               // Make a new global with the correct type, this is now guaranteed
2523               // to work.
2524               auto *NewGV = cast<llvm::GlobalVariable>(
2525                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2526 
2527               // Erase the old global, since it is no longer used.
2528               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2529               GV = NewGV;
2530             } else {
2531               GV->setInitializer(Init);
2532               GV->setConstant(true);
2533               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2534             }
2535             emitter.finalize(GV);
2536           }
2537         }
2538       }
2539     }
2540   }
2541 
2542   LangAS ExpectedAS =
2543       D ? D->getType().getAddressSpace()
2544         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2545   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2546          Ty->getPointerAddressSpace());
2547   if (AddrSpace != ExpectedAS)
2548     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2549                                                        ExpectedAS, Ty);
2550 
2551   return GV;
2552 }
2553 
2554 llvm::Constant *
2555 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2556                                ForDefinition_t IsForDefinition) {
2557   const Decl *D = GD.getDecl();
2558   if (isa<CXXConstructorDecl>(D))
2559     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2560                                 getFromCtorType(GD.getCtorType()),
2561                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2562                                 /*DontDefer=*/false, IsForDefinition);
2563   else if (isa<CXXDestructorDecl>(D))
2564     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2565                                 getFromDtorType(GD.getDtorType()),
2566                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2567                                 /*DontDefer=*/false, IsForDefinition);
2568   else if (isa<CXXMethodDecl>(D)) {
2569     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2570         cast<CXXMethodDecl>(D));
2571     auto Ty = getTypes().GetFunctionType(*FInfo);
2572     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2573                              IsForDefinition);
2574   } else if (isa<FunctionDecl>(D)) {
2575     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2576     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2577     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2578                              IsForDefinition);
2579   } else
2580     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2581                               IsForDefinition);
2582 }
2583 
2584 llvm::GlobalVariable *
2585 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2586                                       llvm::Type *Ty,
2587                                       llvm::GlobalValue::LinkageTypes Linkage) {
2588   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2589   llvm::GlobalVariable *OldGV = nullptr;
2590 
2591   if (GV) {
2592     // Check if the variable has the right type.
2593     if (GV->getType()->getElementType() == Ty)
2594       return GV;
2595 
2596     // Because C++ name mangling, the only way we can end up with an already
2597     // existing global with the same name is if it has been declared extern "C".
2598     assert(GV->isDeclaration() && "Declaration has wrong type!");
2599     OldGV = GV;
2600   }
2601 
2602   // Create a new variable.
2603   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2604                                 Linkage, nullptr, Name);
2605 
2606   if (OldGV) {
2607     // Replace occurrences of the old variable if needed.
2608     GV->takeName(OldGV);
2609 
2610     if (!OldGV->use_empty()) {
2611       llvm::Constant *NewPtrForOldDecl =
2612       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2613       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2614     }
2615 
2616     OldGV->eraseFromParent();
2617   }
2618 
2619   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2620       !GV->hasAvailableExternallyLinkage())
2621     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2622 
2623   return GV;
2624 }
2625 
2626 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2627 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2628 /// then it will be created with the specified type instead of whatever the
2629 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2630 /// that an actual global with type Ty will be returned, not conversion of a
2631 /// variable with the same mangled name but some other type.
2632 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2633                                                   llvm::Type *Ty,
2634                                            ForDefinition_t IsForDefinition) {
2635   assert(D->hasGlobalStorage() && "Not a global variable");
2636   QualType ASTTy = D->getType();
2637   if (!Ty)
2638     Ty = getTypes().ConvertTypeForMem(ASTTy);
2639 
2640   llvm::PointerType *PTy =
2641     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2642 
2643   StringRef MangledName = getMangledName(D);
2644   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2645 }
2646 
2647 /// CreateRuntimeVariable - Create a new runtime global variable with the
2648 /// specified type and name.
2649 llvm::Constant *
2650 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2651                                      StringRef Name) {
2652   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2653 }
2654 
2655 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2656   assert(!D->getInit() && "Cannot emit definite definitions here!");
2657 
2658   StringRef MangledName = getMangledName(D);
2659   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2660 
2661   // We already have a definition, not declaration, with the same mangled name.
2662   // Emitting of declaration is not required (and actually overwrites emitted
2663   // definition).
2664   if (GV && !GV->isDeclaration())
2665     return;
2666 
2667   // If we have not seen a reference to this variable yet, place it into the
2668   // deferred declarations table to be emitted if needed later.
2669   if (!MustBeEmitted(D) && !GV) {
2670       DeferredDecls[MangledName] = D;
2671       return;
2672   }
2673 
2674   // The tentative definition is the only definition.
2675   EmitGlobalVarDefinition(D);
2676 }
2677 
2678 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2679   return Context.toCharUnitsFromBits(
2680       getDataLayout().getTypeStoreSizeInBits(Ty));
2681 }
2682 
2683 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2684   LangAS AddrSpace = LangAS::Default;
2685   if (LangOpts.OpenCL) {
2686     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2687     assert(AddrSpace == LangAS::opencl_global ||
2688            AddrSpace == LangAS::opencl_constant ||
2689            AddrSpace == LangAS::opencl_local ||
2690            AddrSpace >= LangAS::FirstTargetAddressSpace);
2691     return AddrSpace;
2692   }
2693 
2694   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2695     if (D && D->hasAttr<CUDAConstantAttr>())
2696       return LangAS::cuda_constant;
2697     else if (D && D->hasAttr<CUDASharedAttr>())
2698       return LangAS::cuda_shared;
2699     else
2700       return LangAS::cuda_device;
2701   }
2702 
2703   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2704 }
2705 
2706 template<typename SomeDecl>
2707 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2708                                                llvm::GlobalValue *GV) {
2709   if (!getLangOpts().CPlusPlus)
2710     return;
2711 
2712   // Must have 'used' attribute, or else inline assembly can't rely on
2713   // the name existing.
2714   if (!D->template hasAttr<UsedAttr>())
2715     return;
2716 
2717   // Must have internal linkage and an ordinary name.
2718   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2719     return;
2720 
2721   // Must be in an extern "C" context. Entities declared directly within
2722   // a record are not extern "C" even if the record is in such a context.
2723   const SomeDecl *First = D->getFirstDecl();
2724   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2725     return;
2726 
2727   // OK, this is an internal linkage entity inside an extern "C" linkage
2728   // specification. Make a note of that so we can give it the "expected"
2729   // mangled name if nothing else is using that name.
2730   std::pair<StaticExternCMap::iterator, bool> R =
2731       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2732 
2733   // If we have multiple internal linkage entities with the same name
2734   // in extern "C" regions, none of them gets that name.
2735   if (!R.second)
2736     R.first->second = nullptr;
2737 }
2738 
2739 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2740   if (!CGM.supportsCOMDAT())
2741     return false;
2742 
2743   if (D.hasAttr<SelectAnyAttr>())
2744     return true;
2745 
2746   GVALinkage Linkage;
2747   if (auto *VD = dyn_cast<VarDecl>(&D))
2748     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2749   else
2750     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2751 
2752   switch (Linkage) {
2753   case GVA_Internal:
2754   case GVA_AvailableExternally:
2755   case GVA_StrongExternal:
2756     return false;
2757   case GVA_DiscardableODR:
2758   case GVA_StrongODR:
2759     return true;
2760   }
2761   llvm_unreachable("No such linkage");
2762 }
2763 
2764 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2765                                           llvm::GlobalObject &GO) {
2766   if (!shouldBeInCOMDAT(*this, D))
2767     return;
2768   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2769 }
2770 
2771 /// Pass IsTentative as true if you want to create a tentative definition.
2772 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2773                                             bool IsTentative) {
2774   // OpenCL global variables of sampler type are translated to function calls,
2775   // therefore no need to be translated.
2776   QualType ASTTy = D->getType();
2777   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2778     return;
2779 
2780   llvm::Constant *Init = nullptr;
2781   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2782   bool NeedsGlobalCtor = false;
2783   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2784 
2785   const VarDecl *InitDecl;
2786   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2787 
2788   Optional<ConstantEmitter> emitter;
2789 
2790   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2791   // as part of their declaration."  Sema has already checked for
2792   // error cases, so we just need to set Init to UndefValue.
2793   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2794       D->hasAttr<CUDASharedAttr>())
2795     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2796   else if (!InitExpr) {
2797     // This is a tentative definition; tentative definitions are
2798     // implicitly initialized with { 0 }.
2799     //
2800     // Note that tentative definitions are only emitted at the end of
2801     // a translation unit, so they should never have incomplete
2802     // type. In addition, EmitTentativeDefinition makes sure that we
2803     // never attempt to emit a tentative definition if a real one
2804     // exists. A use may still exists, however, so we still may need
2805     // to do a RAUW.
2806     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2807     Init = EmitNullConstant(D->getType());
2808   } else {
2809     initializedGlobalDecl = GlobalDecl(D);
2810     emitter.emplace(*this);
2811     Init = emitter->tryEmitForInitializer(*InitDecl);
2812 
2813     if (!Init) {
2814       QualType T = InitExpr->getType();
2815       if (D->getType()->isReferenceType())
2816         T = D->getType();
2817 
2818       if (getLangOpts().CPlusPlus) {
2819         Init = EmitNullConstant(T);
2820         NeedsGlobalCtor = true;
2821       } else {
2822         ErrorUnsupported(D, "static initializer");
2823         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2824       }
2825     } else {
2826       // We don't need an initializer, so remove the entry for the delayed
2827       // initializer position (just in case this entry was delayed) if we
2828       // also don't need to register a destructor.
2829       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2830         DelayedCXXInitPosition.erase(D);
2831     }
2832   }
2833 
2834   llvm::Type* InitType = Init->getType();
2835   llvm::Constant *Entry =
2836       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2837 
2838   // Strip off a bitcast if we got one back.
2839   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2840     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2841            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2842            // All zero index gep.
2843            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2844     Entry = CE->getOperand(0);
2845   }
2846 
2847   // Entry is now either a Function or GlobalVariable.
2848   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2849 
2850   // We have a definition after a declaration with the wrong type.
2851   // We must make a new GlobalVariable* and update everything that used OldGV
2852   // (a declaration or tentative definition) with the new GlobalVariable*
2853   // (which will be a definition).
2854   //
2855   // This happens if there is a prototype for a global (e.g.
2856   // "extern int x[];") and then a definition of a different type (e.g.
2857   // "int x[10];"). This also happens when an initializer has a different type
2858   // from the type of the global (this happens with unions).
2859   if (!GV || GV->getType()->getElementType() != InitType ||
2860       GV->getType()->getAddressSpace() !=
2861           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
2862 
2863     // Move the old entry aside so that we'll create a new one.
2864     Entry->setName(StringRef());
2865 
2866     // Make a new global with the correct type, this is now guaranteed to work.
2867     GV = cast<llvm::GlobalVariable>(
2868         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2869 
2870     // Replace all uses of the old global with the new global
2871     llvm::Constant *NewPtrForOldDecl =
2872         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2873     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2874 
2875     // Erase the old global, since it is no longer used.
2876     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2877   }
2878 
2879   MaybeHandleStaticInExternC(D, GV);
2880 
2881   if (D->hasAttr<AnnotateAttr>())
2882     AddGlobalAnnotations(D, GV);
2883 
2884   // Set the llvm linkage type as appropriate.
2885   llvm::GlobalValue::LinkageTypes Linkage =
2886       getLLVMLinkageVarDefinition(D, GV->isConstant());
2887 
2888   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2889   // the device. [...]"
2890   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2891   // __device__, declares a variable that: [...]
2892   // Is accessible from all the threads within the grid and from the host
2893   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2894   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2895   if (GV && LangOpts.CUDA) {
2896     if (LangOpts.CUDAIsDevice) {
2897       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2898         GV->setExternallyInitialized(true);
2899     } else {
2900       // Host-side shadows of external declarations of device-side
2901       // global variables become internal definitions. These have to
2902       // be internal in order to prevent name conflicts with global
2903       // host variables with the same name in a different TUs.
2904       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2905         Linkage = llvm::GlobalValue::InternalLinkage;
2906 
2907         // Shadow variables and their properties must be registered
2908         // with CUDA runtime.
2909         unsigned Flags = 0;
2910         if (!D->hasDefinition())
2911           Flags |= CGCUDARuntime::ExternDeviceVar;
2912         if (D->hasAttr<CUDAConstantAttr>())
2913           Flags |= CGCUDARuntime::ConstantDeviceVar;
2914         getCUDARuntime().registerDeviceVar(*GV, Flags);
2915       } else if (D->hasAttr<CUDASharedAttr>())
2916         // __shared__ variables are odd. Shadows do get created, but
2917         // they are not registered with the CUDA runtime, so they
2918         // can't really be used to access their device-side
2919         // counterparts. It's not clear yet whether it's nvcc's bug or
2920         // a feature, but we've got to do the same for compatibility.
2921         Linkage = llvm::GlobalValue::InternalLinkage;
2922     }
2923   }
2924 
2925   GV->setInitializer(Init);
2926   if (emitter) emitter->finalize(GV);
2927 
2928   // If it is safe to mark the global 'constant', do so now.
2929   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2930                   isTypeConstant(D->getType(), true));
2931 
2932   // If it is in a read-only section, mark it 'constant'.
2933   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2934     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2935     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2936       GV->setConstant(true);
2937   }
2938 
2939   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2940 
2941 
2942   // On Darwin, if the normal linkage of a C++ thread_local variable is
2943   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2944   // copies within a linkage unit; otherwise, the backing variable has
2945   // internal linkage and all accesses should just be calls to the
2946   // Itanium-specified entry point, which has the normal linkage of the
2947   // variable. This is to preserve the ability to change the implementation
2948   // behind the scenes.
2949   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2950       Context.getTargetInfo().getTriple().isOSDarwin() &&
2951       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2952       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2953     Linkage = llvm::GlobalValue::InternalLinkage;
2954 
2955   GV->setLinkage(Linkage);
2956   if (D->hasAttr<DLLImportAttr>())
2957     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2958   else if (D->hasAttr<DLLExportAttr>())
2959     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2960   else
2961     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2962 
2963   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2964     // common vars aren't constant even if declared const.
2965     GV->setConstant(false);
2966     // Tentative definition of global variables may be initialized with
2967     // non-zero null pointers. In this case they should have weak linkage
2968     // since common linkage must have zero initializer and must not have
2969     // explicit section therefore cannot have non-zero initial value.
2970     if (!GV->getInitializer()->isNullValue())
2971       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2972   }
2973 
2974   setNonAliasAttributes(D, GV);
2975 
2976   if (D->getTLSKind() && !GV->isThreadLocal()) {
2977     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2978       CXXThreadLocals.push_back(D);
2979     setTLSMode(GV, *D);
2980   }
2981 
2982   maybeSetTrivialComdat(*D, *GV);
2983 
2984   // Emit the initializer function if necessary.
2985   if (NeedsGlobalCtor || NeedsGlobalDtor)
2986     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2987 
2988   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2989 
2990   // Emit global variable debug information.
2991   if (CGDebugInfo *DI = getModuleDebugInfo())
2992     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2993       DI->EmitGlobalVariable(GV, D);
2994 }
2995 
2996 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2997                                       CodeGenModule &CGM, const VarDecl *D,
2998                                       bool NoCommon) {
2999   // Don't give variables common linkage if -fno-common was specified unless it
3000   // was overridden by a NoCommon attribute.
3001   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3002     return true;
3003 
3004   // C11 6.9.2/2:
3005   //   A declaration of an identifier for an object that has file scope without
3006   //   an initializer, and without a storage-class specifier or with the
3007   //   storage-class specifier static, constitutes a tentative definition.
3008   if (D->getInit() || D->hasExternalStorage())
3009     return true;
3010 
3011   // A variable cannot be both common and exist in a section.
3012   if (D->hasAttr<SectionAttr>())
3013     return true;
3014 
3015   // A variable cannot be both common and exist in a section.
3016   // We dont try to determine which is the right section in the front-end.
3017   // If no specialized section name is applicable, it will resort to default.
3018   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3019       D->hasAttr<PragmaClangDataSectionAttr>() ||
3020       D->hasAttr<PragmaClangRodataSectionAttr>())
3021     return true;
3022 
3023   // Thread local vars aren't considered common linkage.
3024   if (D->getTLSKind())
3025     return true;
3026 
3027   // Tentative definitions marked with WeakImportAttr are true definitions.
3028   if (D->hasAttr<WeakImportAttr>())
3029     return true;
3030 
3031   // A variable cannot be both common and exist in a comdat.
3032   if (shouldBeInCOMDAT(CGM, *D))
3033     return true;
3034 
3035   // Declarations with a required alignment do not have common linkage in MSVC
3036   // mode.
3037   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3038     if (D->hasAttr<AlignedAttr>())
3039       return true;
3040     QualType VarType = D->getType();
3041     if (Context.isAlignmentRequired(VarType))
3042       return true;
3043 
3044     if (const auto *RT = VarType->getAs<RecordType>()) {
3045       const RecordDecl *RD = RT->getDecl();
3046       for (const FieldDecl *FD : RD->fields()) {
3047         if (FD->isBitField())
3048           continue;
3049         if (FD->hasAttr<AlignedAttr>())
3050           return true;
3051         if (Context.isAlignmentRequired(FD->getType()))
3052           return true;
3053       }
3054     }
3055   }
3056 
3057   return false;
3058 }
3059 
3060 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3061     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3062   if (Linkage == GVA_Internal)
3063     return llvm::Function::InternalLinkage;
3064 
3065   if (D->hasAttr<WeakAttr>()) {
3066     if (IsConstantVariable)
3067       return llvm::GlobalVariable::WeakODRLinkage;
3068     else
3069       return llvm::GlobalVariable::WeakAnyLinkage;
3070   }
3071 
3072   // We are guaranteed to have a strong definition somewhere else,
3073   // so we can use available_externally linkage.
3074   if (Linkage == GVA_AvailableExternally)
3075     return llvm::GlobalValue::AvailableExternallyLinkage;
3076 
3077   // Note that Apple's kernel linker doesn't support symbol
3078   // coalescing, so we need to avoid linkonce and weak linkages there.
3079   // Normally, this means we just map to internal, but for explicit
3080   // instantiations we'll map to external.
3081 
3082   // In C++, the compiler has to emit a definition in every translation unit
3083   // that references the function.  We should use linkonce_odr because
3084   // a) if all references in this translation unit are optimized away, we
3085   // don't need to codegen it.  b) if the function persists, it needs to be
3086   // merged with other definitions. c) C++ has the ODR, so we know the
3087   // definition is dependable.
3088   if (Linkage == GVA_DiscardableODR)
3089     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3090                                             : llvm::Function::InternalLinkage;
3091 
3092   // An explicit instantiation of a template has weak linkage, since
3093   // explicit instantiations can occur in multiple translation units
3094   // and must all be equivalent. However, we are not allowed to
3095   // throw away these explicit instantiations.
3096   //
3097   // We don't currently support CUDA device code spread out across multiple TUs,
3098   // so say that CUDA templates are either external (for kernels) or internal.
3099   // This lets llvm perform aggressive inter-procedural optimizations.
3100   if (Linkage == GVA_StrongODR) {
3101     if (Context.getLangOpts().AppleKext)
3102       return llvm::Function::ExternalLinkage;
3103     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3104       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3105                                           : llvm::Function::InternalLinkage;
3106     return llvm::Function::WeakODRLinkage;
3107   }
3108 
3109   // C++ doesn't have tentative definitions and thus cannot have common
3110   // linkage.
3111   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3112       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3113                                  CodeGenOpts.NoCommon))
3114     return llvm::GlobalVariable::CommonLinkage;
3115 
3116   // selectany symbols are externally visible, so use weak instead of
3117   // linkonce.  MSVC optimizes away references to const selectany globals, so
3118   // all definitions should be the same and ODR linkage should be used.
3119   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3120   if (D->hasAttr<SelectAnyAttr>())
3121     return llvm::GlobalVariable::WeakODRLinkage;
3122 
3123   // Otherwise, we have strong external linkage.
3124   assert(Linkage == GVA_StrongExternal);
3125   return llvm::GlobalVariable::ExternalLinkage;
3126 }
3127 
3128 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3129     const VarDecl *VD, bool IsConstant) {
3130   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3131   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3132 }
3133 
3134 /// Replace the uses of a function that was declared with a non-proto type.
3135 /// We want to silently drop extra arguments from call sites
3136 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3137                                           llvm::Function *newFn) {
3138   // Fast path.
3139   if (old->use_empty()) return;
3140 
3141   llvm::Type *newRetTy = newFn->getReturnType();
3142   SmallVector<llvm::Value*, 4> newArgs;
3143   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3144 
3145   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3146          ui != ue; ) {
3147     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3148     llvm::User *user = use->getUser();
3149 
3150     // Recognize and replace uses of bitcasts.  Most calls to
3151     // unprototyped functions will use bitcasts.
3152     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3153       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3154         replaceUsesOfNonProtoConstant(bitcast, newFn);
3155       continue;
3156     }
3157 
3158     // Recognize calls to the function.
3159     llvm::CallSite callSite(user);
3160     if (!callSite) continue;
3161     if (!callSite.isCallee(&*use)) continue;
3162 
3163     // If the return types don't match exactly, then we can't
3164     // transform this call unless it's dead.
3165     if (callSite->getType() != newRetTy && !callSite->use_empty())
3166       continue;
3167 
3168     // Get the call site's attribute list.
3169     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3170     llvm::AttributeList oldAttrs = callSite.getAttributes();
3171 
3172     // If the function was passed too few arguments, don't transform.
3173     unsigned newNumArgs = newFn->arg_size();
3174     if (callSite.arg_size() < newNumArgs) continue;
3175 
3176     // If extra arguments were passed, we silently drop them.
3177     // If any of the types mismatch, we don't transform.
3178     unsigned argNo = 0;
3179     bool dontTransform = false;
3180     for (llvm::Argument &A : newFn->args()) {
3181       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3182         dontTransform = true;
3183         break;
3184       }
3185 
3186       // Add any parameter attributes.
3187       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3188       argNo++;
3189     }
3190     if (dontTransform)
3191       continue;
3192 
3193     // Okay, we can transform this.  Create the new call instruction and copy
3194     // over the required information.
3195     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3196 
3197     // Copy over any operand bundles.
3198     callSite.getOperandBundlesAsDefs(newBundles);
3199 
3200     llvm::CallSite newCall;
3201     if (callSite.isCall()) {
3202       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3203                                        callSite.getInstruction());
3204     } else {
3205       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3206       newCall = llvm::InvokeInst::Create(newFn,
3207                                          oldInvoke->getNormalDest(),
3208                                          oldInvoke->getUnwindDest(),
3209                                          newArgs, newBundles, "",
3210                                          callSite.getInstruction());
3211     }
3212     newArgs.clear(); // for the next iteration
3213 
3214     if (!newCall->getType()->isVoidTy())
3215       newCall->takeName(callSite.getInstruction());
3216     newCall.setAttributes(llvm::AttributeList::get(
3217         newFn->getContext(), oldAttrs.getFnAttributes(),
3218         oldAttrs.getRetAttributes(), newArgAttrs));
3219     newCall.setCallingConv(callSite.getCallingConv());
3220 
3221     // Finally, remove the old call, replacing any uses with the new one.
3222     if (!callSite->use_empty())
3223       callSite->replaceAllUsesWith(newCall.getInstruction());
3224 
3225     // Copy debug location attached to CI.
3226     if (callSite->getDebugLoc())
3227       newCall->setDebugLoc(callSite->getDebugLoc());
3228 
3229     callSite->eraseFromParent();
3230   }
3231 }
3232 
3233 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3234 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3235 /// existing call uses of the old function in the module, this adjusts them to
3236 /// call the new function directly.
3237 ///
3238 /// This is not just a cleanup: the always_inline pass requires direct calls to
3239 /// functions to be able to inline them.  If there is a bitcast in the way, it
3240 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3241 /// run at -O0.
3242 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3243                                                       llvm::Function *NewFn) {
3244   // If we're redefining a global as a function, don't transform it.
3245   if (!isa<llvm::Function>(Old)) return;
3246 
3247   replaceUsesOfNonProtoConstant(Old, NewFn);
3248 }
3249 
3250 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3251   auto DK = VD->isThisDeclarationADefinition();
3252   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3253     return;
3254 
3255   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3256   // If we have a definition, this might be a deferred decl. If the
3257   // instantiation is explicit, make sure we emit it at the end.
3258   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3259     GetAddrOfGlobalVar(VD);
3260 
3261   EmitTopLevelDecl(VD);
3262 }
3263 
3264 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3265                                                  llvm::GlobalValue *GV) {
3266   const auto *D = cast<FunctionDecl>(GD.getDecl());
3267 
3268   // Compute the function info and LLVM type.
3269   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3270   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3271 
3272   // Get or create the prototype for the function.
3273   if (!GV || (GV->getType()->getElementType() != Ty))
3274     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3275                                                    /*DontDefer=*/true,
3276                                                    ForDefinition));
3277 
3278   // Already emitted.
3279   if (!GV->isDeclaration())
3280     return;
3281 
3282   // We need to set linkage and visibility on the function before
3283   // generating code for it because various parts of IR generation
3284   // want to propagate this information down (e.g. to local static
3285   // declarations).
3286   auto *Fn = cast<llvm::Function>(GV);
3287   setFunctionLinkage(GD, Fn);
3288   setFunctionDLLStorageClass(GD, Fn);
3289 
3290   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3291   setGlobalVisibility(Fn, D, ForDefinition);
3292 
3293   MaybeHandleStaticInExternC(D, Fn);
3294 
3295   maybeSetTrivialComdat(*D, *Fn);
3296 
3297   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3298 
3299   setFunctionDefinitionAttributes(D, Fn);
3300   SetLLVMFunctionAttributesForDefinition(D, Fn);
3301 
3302   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3303     AddGlobalCtor(Fn, CA->getPriority());
3304   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3305     AddGlobalDtor(Fn, DA->getPriority());
3306   if (D->hasAttr<AnnotateAttr>())
3307     AddGlobalAnnotations(D, Fn);
3308 }
3309 
3310 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3311   const auto *D = cast<ValueDecl>(GD.getDecl());
3312   const AliasAttr *AA = D->getAttr<AliasAttr>();
3313   assert(AA && "Not an alias?");
3314 
3315   StringRef MangledName = getMangledName(GD);
3316 
3317   if (AA->getAliasee() == MangledName) {
3318     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3319     return;
3320   }
3321 
3322   // If there is a definition in the module, then it wins over the alias.
3323   // This is dubious, but allow it to be safe.  Just ignore the alias.
3324   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3325   if (Entry && !Entry->isDeclaration())
3326     return;
3327 
3328   Aliases.push_back(GD);
3329 
3330   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3331 
3332   // Create a reference to the named value.  This ensures that it is emitted
3333   // if a deferred decl.
3334   llvm::Constant *Aliasee;
3335   if (isa<llvm::FunctionType>(DeclTy))
3336     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3337                                       /*ForVTable=*/false);
3338   else
3339     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3340                                     llvm::PointerType::getUnqual(DeclTy),
3341                                     /*D=*/nullptr);
3342 
3343   // Create the new alias itself, but don't set a name yet.
3344   auto *GA = llvm::GlobalAlias::create(
3345       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3346 
3347   if (Entry) {
3348     if (GA->getAliasee() == Entry) {
3349       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3350       return;
3351     }
3352 
3353     assert(Entry->isDeclaration());
3354 
3355     // If there is a declaration in the module, then we had an extern followed
3356     // by the alias, as in:
3357     //   extern int test6();
3358     //   ...
3359     //   int test6() __attribute__((alias("test7")));
3360     //
3361     // Remove it and replace uses of it with the alias.
3362     GA->takeName(Entry);
3363 
3364     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3365                                                           Entry->getType()));
3366     Entry->eraseFromParent();
3367   } else {
3368     GA->setName(MangledName);
3369   }
3370 
3371   // Set attributes which are particular to an alias; this is a
3372   // specialization of the attributes which may be set on a global
3373   // variable/function.
3374   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3375       D->isWeakImported()) {
3376     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3377   }
3378 
3379   if (const auto *VD = dyn_cast<VarDecl>(D))
3380     if (VD->getTLSKind())
3381       setTLSMode(GA, *VD);
3382 
3383   setAliasAttributes(D, GA);
3384 }
3385 
3386 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3387   const auto *D = cast<ValueDecl>(GD.getDecl());
3388   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3389   assert(IFA && "Not an ifunc?");
3390 
3391   StringRef MangledName = getMangledName(GD);
3392 
3393   if (IFA->getResolver() == MangledName) {
3394     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3395     return;
3396   }
3397 
3398   // Report an error if some definition overrides ifunc.
3399   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3400   if (Entry && !Entry->isDeclaration()) {
3401     GlobalDecl OtherGD;
3402     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3403         DiagnosedConflictingDefinitions.insert(GD).second) {
3404       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3405       Diags.Report(OtherGD.getDecl()->getLocation(),
3406                    diag::note_previous_definition);
3407     }
3408     return;
3409   }
3410 
3411   Aliases.push_back(GD);
3412 
3413   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3414   llvm::Constant *Resolver =
3415       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3416                               /*ForVTable=*/false);
3417   llvm::GlobalIFunc *GIF =
3418       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3419                                 "", Resolver, &getModule());
3420   if (Entry) {
3421     if (GIF->getResolver() == Entry) {
3422       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3423       return;
3424     }
3425     assert(Entry->isDeclaration());
3426 
3427     // If there is a declaration in the module, then we had an extern followed
3428     // by the ifunc, as in:
3429     //   extern int test();
3430     //   ...
3431     //   int test() __attribute__((ifunc("resolver")));
3432     //
3433     // Remove it and replace uses of it with the ifunc.
3434     GIF->takeName(Entry);
3435 
3436     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3437                                                           Entry->getType()));
3438     Entry->eraseFromParent();
3439   } else
3440     GIF->setName(MangledName);
3441 
3442   SetCommonAttributes(D, GIF);
3443 }
3444 
3445 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3446                                             ArrayRef<llvm::Type*> Tys) {
3447   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3448                                          Tys);
3449 }
3450 
3451 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3452 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3453                          const StringLiteral *Literal, bool TargetIsLSB,
3454                          bool &IsUTF16, unsigned &StringLength) {
3455   StringRef String = Literal->getString();
3456   unsigned NumBytes = String.size();
3457 
3458   // Check for simple case.
3459   if (!Literal->containsNonAsciiOrNull()) {
3460     StringLength = NumBytes;
3461     return *Map.insert(std::make_pair(String, nullptr)).first;
3462   }
3463 
3464   // Otherwise, convert the UTF8 literals into a string of shorts.
3465   IsUTF16 = true;
3466 
3467   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3468   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3469   llvm::UTF16 *ToPtr = &ToBuf[0];
3470 
3471   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3472                                  ToPtr + NumBytes, llvm::strictConversion);
3473 
3474   // ConvertUTF8toUTF16 returns the length in ToPtr.
3475   StringLength = ToPtr - &ToBuf[0];
3476 
3477   // Add an explicit null.
3478   *ToPtr = 0;
3479   return *Map.insert(std::make_pair(
3480                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3481                                    (StringLength + 1) * 2),
3482                          nullptr)).first;
3483 }
3484 
3485 ConstantAddress
3486 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3487   unsigned StringLength = 0;
3488   bool isUTF16 = false;
3489   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3490       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3491                                getDataLayout().isLittleEndian(), isUTF16,
3492                                StringLength);
3493 
3494   if (auto *C = Entry.second)
3495     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3496 
3497   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3498   llvm::Constant *Zeros[] = { Zero, Zero };
3499 
3500   // If we don't already have it, get __CFConstantStringClassReference.
3501   if (!CFConstantStringClassRef) {
3502     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3503     Ty = llvm::ArrayType::get(Ty, 0);
3504     llvm::Constant *GV =
3505         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3506 
3507     if (getTriple().isOSBinFormatCOFF()) {
3508       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3509       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3510       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3511       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3512 
3513       const VarDecl *VD = nullptr;
3514       for (const auto &Result : DC->lookup(&II))
3515         if ((VD = dyn_cast<VarDecl>(Result)))
3516           break;
3517 
3518       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3519         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3520         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3521       } else {
3522         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3523         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3524       }
3525     }
3526 
3527     // Decay array -> ptr
3528     CFConstantStringClassRef =
3529         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3530   }
3531 
3532   QualType CFTy = getContext().getCFConstantStringType();
3533 
3534   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3535 
3536   ConstantInitBuilder Builder(*this);
3537   auto Fields = Builder.beginStruct(STy);
3538 
3539   // Class pointer.
3540   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3541 
3542   // Flags.
3543   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3544 
3545   // String pointer.
3546   llvm::Constant *C = nullptr;
3547   if (isUTF16) {
3548     auto Arr = llvm::makeArrayRef(
3549         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3550         Entry.first().size() / 2);
3551     C = llvm::ConstantDataArray::get(VMContext, Arr);
3552   } else {
3553     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3554   }
3555 
3556   // Note: -fwritable-strings doesn't make the backing store strings of
3557   // CFStrings writable. (See <rdar://problem/10657500>)
3558   auto *GV =
3559       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3560                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3561   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3562   // Don't enforce the target's minimum global alignment, since the only use
3563   // of the string is via this class initializer.
3564   CharUnits Align = isUTF16
3565                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3566                         : getContext().getTypeAlignInChars(getContext().CharTy);
3567   GV->setAlignment(Align.getQuantity());
3568 
3569   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3570   // Without it LLVM can merge the string with a non unnamed_addr one during
3571   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3572   if (getTriple().isOSBinFormatMachO())
3573     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3574                            : "__TEXT,__cstring,cstring_literals");
3575 
3576   // String.
3577   llvm::Constant *Str =
3578       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3579 
3580   if (isUTF16)
3581     // Cast the UTF16 string to the correct type.
3582     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3583   Fields.add(Str);
3584 
3585   // String length.
3586   auto Ty = getTypes().ConvertType(getContext().LongTy);
3587   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3588 
3589   CharUnits Alignment = getPointerAlign();
3590 
3591   // The struct.
3592   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3593                                     /*isConstant=*/false,
3594                                     llvm::GlobalVariable::PrivateLinkage);
3595   switch (getTriple().getObjectFormat()) {
3596   case llvm::Triple::UnknownObjectFormat:
3597     llvm_unreachable("unknown file format");
3598   case llvm::Triple::COFF:
3599   case llvm::Triple::ELF:
3600   case llvm::Triple::Wasm:
3601     GV->setSection("cfstring");
3602     break;
3603   case llvm::Triple::MachO:
3604     GV->setSection("__DATA,__cfstring");
3605     break;
3606   }
3607   Entry.second = GV;
3608 
3609   return ConstantAddress(GV, Alignment);
3610 }
3611 
3612 bool CodeGenModule::getExpressionLocationsEnabled() const {
3613   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3614 }
3615 
3616 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3617   if (ObjCFastEnumerationStateType.isNull()) {
3618     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3619     D->startDefinition();
3620 
3621     QualType FieldTypes[] = {
3622       Context.UnsignedLongTy,
3623       Context.getPointerType(Context.getObjCIdType()),
3624       Context.getPointerType(Context.UnsignedLongTy),
3625       Context.getConstantArrayType(Context.UnsignedLongTy,
3626                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3627     };
3628 
3629     for (size_t i = 0; i < 4; ++i) {
3630       FieldDecl *Field = FieldDecl::Create(Context,
3631                                            D,
3632                                            SourceLocation(),
3633                                            SourceLocation(), nullptr,
3634                                            FieldTypes[i], /*TInfo=*/nullptr,
3635                                            /*BitWidth=*/nullptr,
3636                                            /*Mutable=*/false,
3637                                            ICIS_NoInit);
3638       Field->setAccess(AS_public);
3639       D->addDecl(Field);
3640     }
3641 
3642     D->completeDefinition();
3643     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3644   }
3645 
3646   return ObjCFastEnumerationStateType;
3647 }
3648 
3649 llvm::Constant *
3650 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3651   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3652 
3653   // Don't emit it as the address of the string, emit the string data itself
3654   // as an inline array.
3655   if (E->getCharByteWidth() == 1) {
3656     SmallString<64> Str(E->getString());
3657 
3658     // Resize the string to the right size, which is indicated by its type.
3659     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3660     Str.resize(CAT->getSize().getZExtValue());
3661     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3662   }
3663 
3664   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3665   llvm::Type *ElemTy = AType->getElementType();
3666   unsigned NumElements = AType->getNumElements();
3667 
3668   // Wide strings have either 2-byte or 4-byte elements.
3669   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3670     SmallVector<uint16_t, 32> Elements;
3671     Elements.reserve(NumElements);
3672 
3673     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3674       Elements.push_back(E->getCodeUnit(i));
3675     Elements.resize(NumElements);
3676     return llvm::ConstantDataArray::get(VMContext, Elements);
3677   }
3678 
3679   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3680   SmallVector<uint32_t, 32> Elements;
3681   Elements.reserve(NumElements);
3682 
3683   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3684     Elements.push_back(E->getCodeUnit(i));
3685   Elements.resize(NumElements);
3686   return llvm::ConstantDataArray::get(VMContext, Elements);
3687 }
3688 
3689 static llvm::GlobalVariable *
3690 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3691                       CodeGenModule &CGM, StringRef GlobalName,
3692                       CharUnits Alignment) {
3693   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3694   unsigned AddrSpace = 0;
3695   if (CGM.getLangOpts().OpenCL)
3696     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3697 
3698   llvm::Module &M = CGM.getModule();
3699   // Create a global variable for this string
3700   auto *GV = new llvm::GlobalVariable(
3701       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3702       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3703   GV->setAlignment(Alignment.getQuantity());
3704   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3705   if (GV->isWeakForLinker()) {
3706     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3707     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3708   }
3709 
3710   return GV;
3711 }
3712 
3713 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3714 /// constant array for the given string literal.
3715 ConstantAddress
3716 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3717                                                   StringRef Name) {
3718   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3719 
3720   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3721   llvm::GlobalVariable **Entry = nullptr;
3722   if (!LangOpts.WritableStrings) {
3723     Entry = &ConstantStringMap[C];
3724     if (auto GV = *Entry) {
3725       if (Alignment.getQuantity() > GV->getAlignment())
3726         GV->setAlignment(Alignment.getQuantity());
3727       return ConstantAddress(GV, Alignment);
3728     }
3729   }
3730 
3731   SmallString<256> MangledNameBuffer;
3732   StringRef GlobalVariableName;
3733   llvm::GlobalValue::LinkageTypes LT;
3734 
3735   // Mangle the string literal if the ABI allows for it.  However, we cannot
3736   // do this if  we are compiling with ASan or -fwritable-strings because they
3737   // rely on strings having normal linkage.
3738   if (!LangOpts.WritableStrings &&
3739       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3740       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3741     llvm::raw_svector_ostream Out(MangledNameBuffer);
3742     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3743 
3744     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3745     GlobalVariableName = MangledNameBuffer;
3746   } else {
3747     LT = llvm::GlobalValue::PrivateLinkage;
3748     GlobalVariableName = Name;
3749   }
3750 
3751   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3752   if (Entry)
3753     *Entry = GV;
3754 
3755   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3756                                   QualType());
3757   return ConstantAddress(GV, Alignment);
3758 }
3759 
3760 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3761 /// array for the given ObjCEncodeExpr node.
3762 ConstantAddress
3763 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3764   std::string Str;
3765   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3766 
3767   return GetAddrOfConstantCString(Str);
3768 }
3769 
3770 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3771 /// the literal and a terminating '\0' character.
3772 /// The result has pointer to array type.
3773 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3774     const std::string &Str, const char *GlobalName) {
3775   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3776   CharUnits Alignment =
3777     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3778 
3779   llvm::Constant *C =
3780       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3781 
3782   // Don't share any string literals if strings aren't constant.
3783   llvm::GlobalVariable **Entry = nullptr;
3784   if (!LangOpts.WritableStrings) {
3785     Entry = &ConstantStringMap[C];
3786     if (auto GV = *Entry) {
3787       if (Alignment.getQuantity() > GV->getAlignment())
3788         GV->setAlignment(Alignment.getQuantity());
3789       return ConstantAddress(GV, Alignment);
3790     }
3791   }
3792 
3793   // Get the default prefix if a name wasn't specified.
3794   if (!GlobalName)
3795     GlobalName = ".str";
3796   // Create a global variable for this.
3797   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3798                                   GlobalName, Alignment);
3799   if (Entry)
3800     *Entry = GV;
3801   return ConstantAddress(GV, Alignment);
3802 }
3803 
3804 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3805     const MaterializeTemporaryExpr *E, const Expr *Init) {
3806   assert((E->getStorageDuration() == SD_Static ||
3807           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3808   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3809 
3810   // If we're not materializing a subobject of the temporary, keep the
3811   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3812   QualType MaterializedType = Init->getType();
3813   if (Init == E->GetTemporaryExpr())
3814     MaterializedType = E->getType();
3815 
3816   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3817 
3818   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3819     return ConstantAddress(Slot, Align);
3820 
3821   // FIXME: If an externally-visible declaration extends multiple temporaries,
3822   // we need to give each temporary the same name in every translation unit (and
3823   // we also need to make the temporaries externally-visible).
3824   SmallString<256> Name;
3825   llvm::raw_svector_ostream Out(Name);
3826   getCXXABI().getMangleContext().mangleReferenceTemporary(
3827       VD, E->getManglingNumber(), Out);
3828 
3829   APValue *Value = nullptr;
3830   if (E->getStorageDuration() == SD_Static) {
3831     // We might have a cached constant initializer for this temporary. Note
3832     // that this might have a different value from the value computed by
3833     // evaluating the initializer if the surrounding constant expression
3834     // modifies the temporary.
3835     Value = getContext().getMaterializedTemporaryValue(E, false);
3836     if (Value && Value->isUninit())
3837       Value = nullptr;
3838   }
3839 
3840   // Try evaluating it now, it might have a constant initializer.
3841   Expr::EvalResult EvalResult;
3842   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3843       !EvalResult.hasSideEffects())
3844     Value = &EvalResult.Val;
3845 
3846   LangAS AddrSpace =
3847       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
3848 
3849   Optional<ConstantEmitter> emitter;
3850   llvm::Constant *InitialValue = nullptr;
3851   bool Constant = false;
3852   llvm::Type *Type;
3853   if (Value) {
3854     // The temporary has a constant initializer, use it.
3855     emitter.emplace(*this);
3856     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
3857                                                MaterializedType);
3858     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3859     Type = InitialValue->getType();
3860   } else {
3861     // No initializer, the initialization will be provided when we
3862     // initialize the declaration which performed lifetime extension.
3863     Type = getTypes().ConvertTypeForMem(MaterializedType);
3864   }
3865 
3866   // Create a global variable for this lifetime-extended temporary.
3867   llvm::GlobalValue::LinkageTypes Linkage =
3868       getLLVMLinkageVarDefinition(VD, Constant);
3869   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3870     const VarDecl *InitVD;
3871     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3872         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3873       // Temporaries defined inside a class get linkonce_odr linkage because the
3874       // class can be defined in multipe translation units.
3875       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3876     } else {
3877       // There is no need for this temporary to have external linkage if the
3878       // VarDecl has external linkage.
3879       Linkage = llvm::GlobalVariable::InternalLinkage;
3880     }
3881   }
3882   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3883   auto *GV = new llvm::GlobalVariable(
3884       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3885       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
3886   if (emitter) emitter->finalize(GV);
3887   setGlobalVisibility(GV, VD, ForDefinition);
3888   GV->setAlignment(Align.getQuantity());
3889   if (supportsCOMDAT() && GV->isWeakForLinker())
3890     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3891   if (VD->getTLSKind())
3892     setTLSMode(GV, *VD);
3893   llvm::Constant *CV = GV;
3894   if (AddrSpace != LangAS::Default)
3895     CV = getTargetCodeGenInfo().performAddrSpaceCast(
3896         *this, GV, AddrSpace, LangAS::Default,
3897         Type->getPointerTo(
3898             getContext().getTargetAddressSpace(LangAS::Default)));
3899   MaterializedGlobalTemporaryMap[E] = CV;
3900   return ConstantAddress(CV, Align);
3901 }
3902 
3903 /// EmitObjCPropertyImplementations - Emit information for synthesized
3904 /// properties for an implementation.
3905 void CodeGenModule::EmitObjCPropertyImplementations(const
3906                                                     ObjCImplementationDecl *D) {
3907   for (const auto *PID : D->property_impls()) {
3908     // Dynamic is just for type-checking.
3909     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3910       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3911 
3912       // Determine which methods need to be implemented, some may have
3913       // been overridden. Note that ::isPropertyAccessor is not the method
3914       // we want, that just indicates if the decl came from a
3915       // property. What we want to know is if the method is defined in
3916       // this implementation.
3917       if (!D->getInstanceMethod(PD->getGetterName()))
3918         CodeGenFunction(*this).GenerateObjCGetter(
3919                                  const_cast<ObjCImplementationDecl *>(D), PID);
3920       if (!PD->isReadOnly() &&
3921           !D->getInstanceMethod(PD->getSetterName()))
3922         CodeGenFunction(*this).GenerateObjCSetter(
3923                                  const_cast<ObjCImplementationDecl *>(D), PID);
3924     }
3925   }
3926 }
3927 
3928 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3929   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3930   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3931        ivar; ivar = ivar->getNextIvar())
3932     if (ivar->getType().isDestructedType())
3933       return true;
3934 
3935   return false;
3936 }
3937 
3938 static bool AllTrivialInitializers(CodeGenModule &CGM,
3939                                    ObjCImplementationDecl *D) {
3940   CodeGenFunction CGF(CGM);
3941   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3942        E = D->init_end(); B != E; ++B) {
3943     CXXCtorInitializer *CtorInitExp = *B;
3944     Expr *Init = CtorInitExp->getInit();
3945     if (!CGF.isTrivialInitializer(Init))
3946       return false;
3947   }
3948   return true;
3949 }
3950 
3951 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3952 /// for an implementation.
3953 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3954   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3955   if (needsDestructMethod(D)) {
3956     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3957     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3958     ObjCMethodDecl *DTORMethod =
3959       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3960                              cxxSelector, getContext().VoidTy, nullptr, D,
3961                              /*isInstance=*/true, /*isVariadic=*/false,
3962                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3963                              /*isDefined=*/false, ObjCMethodDecl::Required);
3964     D->addInstanceMethod(DTORMethod);
3965     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3966     D->setHasDestructors(true);
3967   }
3968 
3969   // If the implementation doesn't have any ivar initializers, we don't need
3970   // a .cxx_construct.
3971   if (D->getNumIvarInitializers() == 0 ||
3972       AllTrivialInitializers(*this, D))
3973     return;
3974 
3975   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3976   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3977   // The constructor returns 'self'.
3978   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3979                                                 D->getLocation(),
3980                                                 D->getLocation(),
3981                                                 cxxSelector,
3982                                                 getContext().getObjCIdType(),
3983                                                 nullptr, D, /*isInstance=*/true,
3984                                                 /*isVariadic=*/false,
3985                                                 /*isPropertyAccessor=*/true,
3986                                                 /*isImplicitlyDeclared=*/true,
3987                                                 /*isDefined=*/false,
3988                                                 ObjCMethodDecl::Required);
3989   D->addInstanceMethod(CTORMethod);
3990   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3991   D->setHasNonZeroConstructors(true);
3992 }
3993 
3994 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3995 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3996   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3997       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3998     ErrorUnsupported(LSD, "linkage spec");
3999     return;
4000   }
4001 
4002   EmitDeclContext(LSD);
4003 }
4004 
4005 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4006   for (auto *I : DC->decls()) {
4007     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4008     // are themselves considered "top-level", so EmitTopLevelDecl on an
4009     // ObjCImplDecl does not recursively visit them. We need to do that in
4010     // case they're nested inside another construct (LinkageSpecDecl /
4011     // ExportDecl) that does stop them from being considered "top-level".
4012     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4013       for (auto *M : OID->methods())
4014         EmitTopLevelDecl(M);
4015     }
4016 
4017     EmitTopLevelDecl(I);
4018   }
4019 }
4020 
4021 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4022 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4023   // Ignore dependent declarations.
4024   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
4025     return;
4026 
4027   switch (D->getKind()) {
4028   case Decl::CXXConversion:
4029   case Decl::CXXMethod:
4030   case Decl::Function:
4031     // Skip function templates
4032     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4033         cast<FunctionDecl>(D)->isLateTemplateParsed())
4034       return;
4035 
4036     EmitGlobal(cast<FunctionDecl>(D));
4037     // Always provide some coverage mapping
4038     // even for the functions that aren't emitted.
4039     AddDeferredUnusedCoverageMapping(D);
4040     break;
4041 
4042   case Decl::CXXDeductionGuide:
4043     // Function-like, but does not result in code emission.
4044     break;
4045 
4046   case Decl::Var:
4047   case Decl::Decomposition:
4048     // Skip variable templates
4049     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4050       return;
4051     LLVM_FALLTHROUGH;
4052   case Decl::VarTemplateSpecialization:
4053     EmitGlobal(cast<VarDecl>(D));
4054     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4055       for (auto *B : DD->bindings())
4056         if (auto *HD = B->getHoldingVar())
4057           EmitGlobal(HD);
4058     break;
4059 
4060   // Indirect fields from global anonymous structs and unions can be
4061   // ignored; only the actual variable requires IR gen support.
4062   case Decl::IndirectField:
4063     break;
4064 
4065   // C++ Decls
4066   case Decl::Namespace:
4067     EmitDeclContext(cast<NamespaceDecl>(D));
4068     break;
4069   case Decl::ClassTemplateSpecialization: {
4070     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4071     if (DebugInfo &&
4072         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4073         Spec->hasDefinition())
4074       DebugInfo->completeTemplateDefinition(*Spec);
4075   } LLVM_FALLTHROUGH;
4076   case Decl::CXXRecord:
4077     if (DebugInfo) {
4078       if (auto *ES = D->getASTContext().getExternalSource())
4079         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4080           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4081     }
4082     // Emit any static data members, they may be definitions.
4083     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4084       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4085         EmitTopLevelDecl(I);
4086     break;
4087     // No code generation needed.
4088   case Decl::UsingShadow:
4089   case Decl::ClassTemplate:
4090   case Decl::VarTemplate:
4091   case Decl::VarTemplatePartialSpecialization:
4092   case Decl::FunctionTemplate:
4093   case Decl::TypeAliasTemplate:
4094   case Decl::Block:
4095   case Decl::Empty:
4096     break;
4097   case Decl::Using:          // using X; [C++]
4098     if (CGDebugInfo *DI = getModuleDebugInfo())
4099         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4100     return;
4101   case Decl::NamespaceAlias:
4102     if (CGDebugInfo *DI = getModuleDebugInfo())
4103         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4104     return;
4105   case Decl::UsingDirective: // using namespace X; [C++]
4106     if (CGDebugInfo *DI = getModuleDebugInfo())
4107       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4108     return;
4109   case Decl::CXXConstructor:
4110     // Skip function templates
4111     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4112         cast<FunctionDecl>(D)->isLateTemplateParsed())
4113       return;
4114 
4115     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4116     break;
4117   case Decl::CXXDestructor:
4118     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4119       return;
4120     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4121     break;
4122 
4123   case Decl::StaticAssert:
4124     // Nothing to do.
4125     break;
4126 
4127   // Objective-C Decls
4128 
4129   // Forward declarations, no (immediate) code generation.
4130   case Decl::ObjCInterface:
4131   case Decl::ObjCCategory:
4132     break;
4133 
4134   case Decl::ObjCProtocol: {
4135     auto *Proto = cast<ObjCProtocolDecl>(D);
4136     if (Proto->isThisDeclarationADefinition())
4137       ObjCRuntime->GenerateProtocol(Proto);
4138     break;
4139   }
4140 
4141   case Decl::ObjCCategoryImpl:
4142     // Categories have properties but don't support synthesize so we
4143     // can ignore them here.
4144     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4145     break;
4146 
4147   case Decl::ObjCImplementation: {
4148     auto *OMD = cast<ObjCImplementationDecl>(D);
4149     EmitObjCPropertyImplementations(OMD);
4150     EmitObjCIvarInitializations(OMD);
4151     ObjCRuntime->GenerateClass(OMD);
4152     // Emit global variable debug information.
4153     if (CGDebugInfo *DI = getModuleDebugInfo())
4154       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4155         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4156             OMD->getClassInterface()), OMD->getLocation());
4157     break;
4158   }
4159   case Decl::ObjCMethod: {
4160     auto *OMD = cast<ObjCMethodDecl>(D);
4161     // If this is not a prototype, emit the body.
4162     if (OMD->getBody())
4163       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4164     break;
4165   }
4166   case Decl::ObjCCompatibleAlias:
4167     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4168     break;
4169 
4170   case Decl::PragmaComment: {
4171     const auto *PCD = cast<PragmaCommentDecl>(D);
4172     switch (PCD->getCommentKind()) {
4173     case PCK_Unknown:
4174       llvm_unreachable("unexpected pragma comment kind");
4175     case PCK_Linker:
4176       AppendLinkerOptions(PCD->getArg());
4177       break;
4178     case PCK_Lib:
4179       AddDependentLib(PCD->getArg());
4180       break;
4181     case PCK_Compiler:
4182     case PCK_ExeStr:
4183     case PCK_User:
4184       break; // We ignore all of these.
4185     }
4186     break;
4187   }
4188 
4189   case Decl::PragmaDetectMismatch: {
4190     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4191     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4192     break;
4193   }
4194 
4195   case Decl::LinkageSpec:
4196     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4197     break;
4198 
4199   case Decl::FileScopeAsm: {
4200     // File-scope asm is ignored during device-side CUDA compilation.
4201     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4202       break;
4203     // File-scope asm is ignored during device-side OpenMP compilation.
4204     if (LangOpts.OpenMPIsDevice)
4205       break;
4206     auto *AD = cast<FileScopeAsmDecl>(D);
4207     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4208     break;
4209   }
4210 
4211   case Decl::Import: {
4212     auto *Import = cast<ImportDecl>(D);
4213 
4214     // If we've already imported this module, we're done.
4215     if (!ImportedModules.insert(Import->getImportedModule()))
4216       break;
4217 
4218     // Emit debug information for direct imports.
4219     if (!Import->getImportedOwningModule()) {
4220       if (CGDebugInfo *DI = getModuleDebugInfo())
4221         DI->EmitImportDecl(*Import);
4222     }
4223 
4224     // Find all of the submodules and emit the module initializers.
4225     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4226     SmallVector<clang::Module *, 16> Stack;
4227     Visited.insert(Import->getImportedModule());
4228     Stack.push_back(Import->getImportedModule());
4229 
4230     while (!Stack.empty()) {
4231       clang::Module *Mod = Stack.pop_back_val();
4232       if (!EmittedModuleInitializers.insert(Mod).second)
4233         continue;
4234 
4235       for (auto *D : Context.getModuleInitializers(Mod))
4236         EmitTopLevelDecl(D);
4237 
4238       // Visit the submodules of this module.
4239       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4240                                              SubEnd = Mod->submodule_end();
4241            Sub != SubEnd; ++Sub) {
4242         // Skip explicit children; they need to be explicitly imported to emit
4243         // the initializers.
4244         if ((*Sub)->IsExplicit)
4245           continue;
4246 
4247         if (Visited.insert(*Sub).second)
4248           Stack.push_back(*Sub);
4249       }
4250     }
4251     break;
4252   }
4253 
4254   case Decl::Export:
4255     EmitDeclContext(cast<ExportDecl>(D));
4256     break;
4257 
4258   case Decl::OMPThreadPrivate:
4259     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4260     break;
4261 
4262   case Decl::OMPDeclareReduction:
4263     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4264     break;
4265 
4266   default:
4267     // Make sure we handled everything we should, every other kind is a
4268     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4269     // function. Need to recode Decl::Kind to do that easily.
4270     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4271     break;
4272   }
4273 }
4274 
4275 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4276   // Do we need to generate coverage mapping?
4277   if (!CodeGenOpts.CoverageMapping)
4278     return;
4279   switch (D->getKind()) {
4280   case Decl::CXXConversion:
4281   case Decl::CXXMethod:
4282   case Decl::Function:
4283   case Decl::ObjCMethod:
4284   case Decl::CXXConstructor:
4285   case Decl::CXXDestructor: {
4286     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4287       return;
4288     SourceManager &SM = getContext().getSourceManager();
4289     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4290       return;
4291     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4292     if (I == DeferredEmptyCoverageMappingDecls.end())
4293       DeferredEmptyCoverageMappingDecls[D] = true;
4294     break;
4295   }
4296   default:
4297     break;
4298   };
4299 }
4300 
4301 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4302   // Do we need to generate coverage mapping?
4303   if (!CodeGenOpts.CoverageMapping)
4304     return;
4305   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4306     if (Fn->isTemplateInstantiation())
4307       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4308   }
4309   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4310   if (I == DeferredEmptyCoverageMappingDecls.end())
4311     DeferredEmptyCoverageMappingDecls[D] = false;
4312   else
4313     I->second = false;
4314 }
4315 
4316 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4317   // We call takeVector() here to avoid use-after-free.
4318   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4319   // we deserialize function bodies to emit coverage info for them, and that
4320   // deserializes more declarations. How should we handle that case?
4321   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4322     if (!Entry.second)
4323       continue;
4324     const Decl *D = Entry.first;
4325     switch (D->getKind()) {
4326     case Decl::CXXConversion:
4327     case Decl::CXXMethod:
4328     case Decl::Function:
4329     case Decl::ObjCMethod: {
4330       CodeGenPGO PGO(*this);
4331       GlobalDecl GD(cast<FunctionDecl>(D));
4332       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4333                                   getFunctionLinkage(GD));
4334       break;
4335     }
4336     case Decl::CXXConstructor: {
4337       CodeGenPGO PGO(*this);
4338       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4339       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4340                                   getFunctionLinkage(GD));
4341       break;
4342     }
4343     case Decl::CXXDestructor: {
4344       CodeGenPGO PGO(*this);
4345       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4346       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4347                                   getFunctionLinkage(GD));
4348       break;
4349     }
4350     default:
4351       break;
4352     };
4353   }
4354 }
4355 
4356 /// Turns the given pointer into a constant.
4357 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4358                                           const void *Ptr) {
4359   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4360   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4361   return llvm::ConstantInt::get(i64, PtrInt);
4362 }
4363 
4364 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4365                                    llvm::NamedMDNode *&GlobalMetadata,
4366                                    GlobalDecl D,
4367                                    llvm::GlobalValue *Addr) {
4368   if (!GlobalMetadata)
4369     GlobalMetadata =
4370       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4371 
4372   // TODO: should we report variant information for ctors/dtors?
4373   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4374                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4375                                CGM.getLLVMContext(), D.getDecl()))};
4376   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4377 }
4378 
4379 /// For each function which is declared within an extern "C" region and marked
4380 /// as 'used', but has internal linkage, create an alias from the unmangled
4381 /// name to the mangled name if possible. People expect to be able to refer
4382 /// to such functions with an unmangled name from inline assembly within the
4383 /// same translation unit.
4384 void CodeGenModule::EmitStaticExternCAliases() {
4385   // Don't do anything if we're generating CUDA device code -- the NVPTX
4386   // assembly target doesn't support aliases.
4387   if (Context.getTargetInfo().getTriple().isNVPTX())
4388     return;
4389   for (auto &I : StaticExternCValues) {
4390     IdentifierInfo *Name = I.first;
4391     llvm::GlobalValue *Val = I.second;
4392     if (Val && !getModule().getNamedValue(Name->getName()))
4393       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4394   }
4395 }
4396 
4397 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4398                                              GlobalDecl &Result) const {
4399   auto Res = Manglings.find(MangledName);
4400   if (Res == Manglings.end())
4401     return false;
4402   Result = Res->getValue();
4403   return true;
4404 }
4405 
4406 /// Emits metadata nodes associating all the global values in the
4407 /// current module with the Decls they came from.  This is useful for
4408 /// projects using IR gen as a subroutine.
4409 ///
4410 /// Since there's currently no way to associate an MDNode directly
4411 /// with an llvm::GlobalValue, we create a global named metadata
4412 /// with the name 'clang.global.decl.ptrs'.
4413 void CodeGenModule::EmitDeclMetadata() {
4414   llvm::NamedMDNode *GlobalMetadata = nullptr;
4415 
4416   for (auto &I : MangledDeclNames) {
4417     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4418     // Some mangled names don't necessarily have an associated GlobalValue
4419     // in this module, e.g. if we mangled it for DebugInfo.
4420     if (Addr)
4421       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4422   }
4423 }
4424 
4425 /// Emits metadata nodes for all the local variables in the current
4426 /// function.
4427 void CodeGenFunction::EmitDeclMetadata() {
4428   if (LocalDeclMap.empty()) return;
4429 
4430   llvm::LLVMContext &Context = getLLVMContext();
4431 
4432   // Find the unique metadata ID for this name.
4433   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4434 
4435   llvm::NamedMDNode *GlobalMetadata = nullptr;
4436 
4437   for (auto &I : LocalDeclMap) {
4438     const Decl *D = I.first;
4439     llvm::Value *Addr = I.second.getPointer();
4440     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4441       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4442       Alloca->setMetadata(
4443           DeclPtrKind, llvm::MDNode::get(
4444                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4445     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4446       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4447       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4448     }
4449   }
4450 }
4451 
4452 void CodeGenModule::EmitVersionIdentMetadata() {
4453   llvm::NamedMDNode *IdentMetadata =
4454     TheModule.getOrInsertNamedMetadata("llvm.ident");
4455   std::string Version = getClangFullVersion();
4456   llvm::LLVMContext &Ctx = TheModule.getContext();
4457 
4458   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4459   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4460 }
4461 
4462 void CodeGenModule::EmitTargetMetadata() {
4463   // Warning, new MangledDeclNames may be appended within this loop.
4464   // We rely on MapVector insertions adding new elements to the end
4465   // of the container.
4466   // FIXME: Move this loop into the one target that needs it, and only
4467   // loop over those declarations for which we couldn't emit the target
4468   // metadata when we emitted the declaration.
4469   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4470     auto Val = *(MangledDeclNames.begin() + I);
4471     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4472     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4473     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4474   }
4475 }
4476 
4477 void CodeGenModule::EmitCoverageFile() {
4478   if (getCodeGenOpts().CoverageDataFile.empty() &&
4479       getCodeGenOpts().CoverageNotesFile.empty())
4480     return;
4481 
4482   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4483   if (!CUNode)
4484     return;
4485 
4486   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4487   llvm::LLVMContext &Ctx = TheModule.getContext();
4488   auto *CoverageDataFile =
4489       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4490   auto *CoverageNotesFile =
4491       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4492   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4493     llvm::MDNode *CU = CUNode->getOperand(i);
4494     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4495     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4496   }
4497 }
4498 
4499 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4500   // Sema has checked that all uuid strings are of the form
4501   // "12345678-1234-1234-1234-1234567890ab".
4502   assert(Uuid.size() == 36);
4503   for (unsigned i = 0; i < 36; ++i) {
4504     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4505     else                                         assert(isHexDigit(Uuid[i]));
4506   }
4507 
4508   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4509   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4510 
4511   llvm::Constant *Field3[8];
4512   for (unsigned Idx = 0; Idx < 8; ++Idx)
4513     Field3[Idx] = llvm::ConstantInt::get(
4514         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4515 
4516   llvm::Constant *Fields[4] = {
4517     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4518     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4519     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4520     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4521   };
4522 
4523   return llvm::ConstantStruct::getAnon(Fields);
4524 }
4525 
4526 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4527                                                        bool ForEH) {
4528   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4529   // FIXME: should we even be calling this method if RTTI is disabled
4530   // and it's not for EH?
4531   if (!ForEH && !getLangOpts().RTTI)
4532     return llvm::Constant::getNullValue(Int8PtrTy);
4533 
4534   if (ForEH && Ty->isObjCObjectPointerType() &&
4535       LangOpts.ObjCRuntime.isGNUFamily())
4536     return ObjCRuntime->GetEHType(Ty);
4537 
4538   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4539 }
4540 
4541 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4542   for (auto RefExpr : D->varlists()) {
4543     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4544     bool PerformInit =
4545         VD->getAnyInitializer() &&
4546         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4547                                                         /*ForRef=*/false);
4548 
4549     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4550     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4551             VD, Addr, RefExpr->getLocStart(), PerformInit))
4552       CXXGlobalInits.push_back(InitFunction);
4553   }
4554 }
4555 
4556 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4557   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4558   if (InternalId)
4559     return InternalId;
4560 
4561   if (isExternallyVisible(T->getLinkage())) {
4562     std::string OutName;
4563     llvm::raw_string_ostream Out(OutName);
4564     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4565 
4566     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4567   } else {
4568     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4569                                            llvm::ArrayRef<llvm::Metadata *>());
4570   }
4571 
4572   return InternalId;
4573 }
4574 
4575 // Generalize pointer types to a void pointer with the qualifiers of the
4576 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4577 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4578 // 'void *'.
4579 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4580   if (!Ty->isPointerType())
4581     return Ty;
4582 
4583   return Ctx.getPointerType(
4584       QualType(Ctx.VoidTy).withCVRQualifiers(
4585           Ty->getPointeeType().getCVRQualifiers()));
4586 }
4587 
4588 // Apply type generalization to a FunctionType's return and argument types
4589 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4590   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4591     SmallVector<QualType, 8> GeneralizedParams;
4592     for (auto &Param : FnType->param_types())
4593       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4594 
4595     return Ctx.getFunctionType(
4596         GeneralizeType(Ctx, FnType->getReturnType()),
4597         GeneralizedParams, FnType->getExtProtoInfo());
4598   }
4599 
4600   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4601     return Ctx.getFunctionNoProtoType(
4602         GeneralizeType(Ctx, FnType->getReturnType()));
4603 
4604   llvm_unreachable("Encountered unknown FunctionType");
4605 }
4606 
4607 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4608   T = GeneralizeFunctionType(getContext(), T);
4609 
4610   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4611   if (InternalId)
4612     return InternalId;
4613 
4614   if (isExternallyVisible(T->getLinkage())) {
4615     std::string OutName;
4616     llvm::raw_string_ostream Out(OutName);
4617     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4618     Out << ".generalized";
4619 
4620     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4621   } else {
4622     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4623                                            llvm::ArrayRef<llvm::Metadata *>());
4624   }
4625 
4626   return InternalId;
4627 }
4628 
4629 /// Returns whether this module needs the "all-vtables" type identifier.
4630 bool CodeGenModule::NeedAllVtablesTypeId() const {
4631   // Returns true if at least one of vtable-based CFI checkers is enabled and
4632   // is not in the trapping mode.
4633   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4634            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4635           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4636            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4637           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4638            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4639           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4640            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4641 }
4642 
4643 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4644                                           CharUnits Offset,
4645                                           const CXXRecordDecl *RD) {
4646   llvm::Metadata *MD =
4647       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4648   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4649 
4650   if (CodeGenOpts.SanitizeCfiCrossDso)
4651     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4652       VTable->addTypeMetadata(Offset.getQuantity(),
4653                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4654 
4655   if (NeedAllVtablesTypeId()) {
4656     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4657     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4658   }
4659 }
4660 
4661 // Fills in the supplied string map with the set of target features for the
4662 // passed in function.
4663 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4664                                           const FunctionDecl *FD) {
4665   StringRef TargetCPU = Target.getTargetOpts().CPU;
4666   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4667     // If we have a TargetAttr build up the feature map based on that.
4668     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4669 
4670     ParsedAttr.Features.erase(
4671         llvm::remove_if(ParsedAttr.Features,
4672                         [&](const std::string &Feat) {
4673                           return !Target.isValidFeatureName(
4674                               StringRef{Feat}.substr(1));
4675                         }),
4676         ParsedAttr.Features.end());
4677 
4678     // Make a copy of the features as passed on the command line into the
4679     // beginning of the additional features from the function to override.
4680     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4681                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4682                             Target.getTargetOpts().FeaturesAsWritten.end());
4683 
4684     if (ParsedAttr.Architecture != "" &&
4685         Target.isValidCPUName(ParsedAttr.Architecture))
4686       TargetCPU = ParsedAttr.Architecture;
4687 
4688     // Now populate the feature map, first with the TargetCPU which is either
4689     // the default or a new one from the target attribute string. Then we'll use
4690     // the passed in features (FeaturesAsWritten) along with the new ones from
4691     // the attribute.
4692     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4693                           ParsedAttr.Features);
4694   } else {
4695     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4696                           Target.getTargetOpts().Features);
4697   }
4698 }
4699 
4700 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4701   if (!SanStats)
4702     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4703 
4704   return *SanStats;
4705 }
4706 llvm::Value *
4707 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4708                                                   CodeGenFunction &CGF) {
4709   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4710   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4711   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4712   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4713                                 "__translate_sampler_initializer"),
4714                                 {C});
4715 }
4716