1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 if (!LangOpts.NeXTRuntime) 139 ObjCRuntime = CreateGNUObjCRuntime(*this); 140 else 141 ObjCRuntime = CreateMacObjCRuntime(*this); 142 } 143 144 void CodeGenModule::createOpenCLRuntime() { 145 OpenCLRuntime = new CGOpenCLRuntime(*this); 146 } 147 148 void CodeGenModule::createCUDARuntime() { 149 CUDARuntime = CreateNVCUDARuntime(*this); 150 } 151 152 void CodeGenModule::Release() { 153 EmitDeferred(); 154 EmitCXXGlobalInitFunc(); 155 EmitCXXGlobalDtorFunc(); 156 if (ObjCRuntime) 157 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 158 AddGlobalCtor(ObjCInitFunction); 159 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 160 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 161 EmitGlobalAnnotations(); 162 EmitLLVMUsed(); 163 164 SimplifyPersonality(); 165 166 if (getCodeGenOpts().EmitDeclMetadata) 167 EmitDeclMetadata(); 168 169 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 170 EmitCoverageFile(); 171 172 if (DebugInfo) 173 DebugInfo->finalize(); 174 } 175 176 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 177 // Make sure that this type is translated. 178 Types.UpdateCompletedType(TD); 179 } 180 181 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 182 if (!TBAA) 183 return 0; 184 return TBAA->getTBAAInfo(QTy); 185 } 186 187 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 188 if (!TBAA) 189 return 0; 190 return TBAA->getTBAAInfoForVTablePtr(); 191 } 192 193 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 194 llvm::MDNode *TBAAInfo) { 195 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 196 } 197 198 bool CodeGenModule::isTargetDarwin() const { 199 return getContext().getTargetInfo().getTriple().isOSDarwin(); 200 } 201 202 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 203 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 204 getDiags().Report(Context.getFullLoc(loc), diagID); 205 } 206 207 /// ErrorUnsupported - Print out an error that codegen doesn't support the 208 /// specified stmt yet. 209 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 210 bool OmitOnError) { 211 if (OmitOnError && getDiags().hasErrorOccurred()) 212 return; 213 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 214 "cannot compile this %0 yet"); 215 std::string Msg = Type; 216 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 217 << Msg << S->getSourceRange(); 218 } 219 220 /// ErrorUnsupported - Print out an error that codegen doesn't support the 221 /// specified decl yet. 222 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 223 bool OmitOnError) { 224 if (OmitOnError && getDiags().hasErrorOccurred()) 225 return; 226 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 227 "cannot compile this %0 yet"); 228 std::string Msg = Type; 229 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 230 } 231 232 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 233 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 234 } 235 236 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 237 const NamedDecl *D) const { 238 // Internal definitions always have default visibility. 239 if (GV->hasLocalLinkage()) { 240 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 241 return; 242 } 243 244 // Set visibility for definitions. 245 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 246 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 247 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 248 } 249 250 /// Set the symbol visibility of type information (vtable and RTTI) 251 /// associated with the given type. 252 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 253 const CXXRecordDecl *RD, 254 TypeVisibilityKind TVK) const { 255 setGlobalVisibility(GV, RD); 256 257 if (!CodeGenOpts.HiddenWeakVTables) 258 return; 259 260 // We never want to drop the visibility for RTTI names. 261 if (TVK == TVK_ForRTTIName) 262 return; 263 264 // We want to drop the visibility to hidden for weak type symbols. 265 // This isn't possible if there might be unresolved references 266 // elsewhere that rely on this symbol being visible. 267 268 // This should be kept roughly in sync with setThunkVisibility 269 // in CGVTables.cpp. 270 271 // Preconditions. 272 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 273 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 274 return; 275 276 // Don't override an explicit visibility attribute. 277 if (RD->getExplicitVisibility()) 278 return; 279 280 switch (RD->getTemplateSpecializationKind()) { 281 // We have to disable the optimization if this is an EI definition 282 // because there might be EI declarations in other shared objects. 283 case TSK_ExplicitInstantiationDefinition: 284 case TSK_ExplicitInstantiationDeclaration: 285 return; 286 287 // Every use of a non-template class's type information has to emit it. 288 case TSK_Undeclared: 289 break; 290 291 // In theory, implicit instantiations can ignore the possibility of 292 // an explicit instantiation declaration because there necessarily 293 // must be an EI definition somewhere with default visibility. In 294 // practice, it's possible to have an explicit instantiation for 295 // an arbitrary template class, and linkers aren't necessarily able 296 // to deal with mixed-visibility symbols. 297 case TSK_ExplicitSpecialization: 298 case TSK_ImplicitInstantiation: 299 if (!CodeGenOpts.HiddenWeakTemplateVTables) 300 return; 301 break; 302 } 303 304 // If there's a key function, there may be translation units 305 // that don't have the key function's definition. But ignore 306 // this if we're emitting RTTI under -fno-rtti. 307 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 308 if (Context.getKeyFunction(RD)) 309 return; 310 } 311 312 // Otherwise, drop the visibility to hidden. 313 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 314 GV->setUnnamedAddr(true); 315 } 316 317 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 318 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 319 320 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 321 if (!Str.empty()) 322 return Str; 323 324 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 325 IdentifierInfo *II = ND->getIdentifier(); 326 assert(II && "Attempt to mangle unnamed decl."); 327 328 Str = II->getName(); 329 return Str; 330 } 331 332 SmallString<256> Buffer; 333 llvm::raw_svector_ostream Out(Buffer); 334 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 335 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 336 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 337 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 338 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 339 getCXXABI().getMangleContext().mangleBlock(BD, Out); 340 else 341 getCXXABI().getMangleContext().mangleName(ND, Out); 342 343 // Allocate space for the mangled name. 344 Out.flush(); 345 size_t Length = Buffer.size(); 346 char *Name = MangledNamesAllocator.Allocate<char>(Length); 347 std::copy(Buffer.begin(), Buffer.end(), Name); 348 349 Str = StringRef(Name, Length); 350 351 return Str; 352 } 353 354 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 355 const BlockDecl *BD) { 356 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 357 const Decl *D = GD.getDecl(); 358 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 359 if (D == 0) 360 MangleCtx.mangleGlobalBlock(BD, Out); 361 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 362 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 363 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 364 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 365 else 366 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 367 } 368 369 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 370 return getModule().getNamedValue(Name); 371 } 372 373 /// AddGlobalCtor - Add a function to the list that will be called before 374 /// main() runs. 375 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 376 // FIXME: Type coercion of void()* types. 377 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 378 } 379 380 /// AddGlobalDtor - Add a function to the list that will be called 381 /// when the module is unloaded. 382 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 383 // FIXME: Type coercion of void()* types. 384 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 385 } 386 387 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 388 // Ctor function type is void()*. 389 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 390 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 391 392 // Get the type of a ctor entry, { i32, void ()* }. 393 llvm::StructType *CtorStructTy = 394 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 395 396 // Construct the constructor and destructor arrays. 397 SmallVector<llvm::Constant*, 8> Ctors; 398 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 399 llvm::Constant *S[] = { 400 llvm::ConstantInt::get(Int32Ty, I->second, false), 401 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 402 }; 403 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 404 } 405 406 if (!Ctors.empty()) { 407 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 408 new llvm::GlobalVariable(TheModule, AT, false, 409 llvm::GlobalValue::AppendingLinkage, 410 llvm::ConstantArray::get(AT, Ctors), 411 GlobalName); 412 } 413 } 414 415 llvm::GlobalValue::LinkageTypes 416 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 417 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 418 419 if (Linkage == GVA_Internal) 420 return llvm::Function::InternalLinkage; 421 422 if (D->hasAttr<DLLExportAttr>()) 423 return llvm::Function::DLLExportLinkage; 424 425 if (D->hasAttr<WeakAttr>()) 426 return llvm::Function::WeakAnyLinkage; 427 428 // In C99 mode, 'inline' functions are guaranteed to have a strong 429 // definition somewhere else, so we can use available_externally linkage. 430 if (Linkage == GVA_C99Inline) 431 return llvm::Function::AvailableExternallyLinkage; 432 433 // Note that Apple's kernel linker doesn't support symbol 434 // coalescing, so we need to avoid linkonce and weak linkages there. 435 // Normally, this means we just map to internal, but for explicit 436 // instantiations we'll map to external. 437 438 // In C++, the compiler has to emit a definition in every translation unit 439 // that references the function. We should use linkonce_odr because 440 // a) if all references in this translation unit are optimized away, we 441 // don't need to codegen it. b) if the function persists, it needs to be 442 // merged with other definitions. c) C++ has the ODR, so we know the 443 // definition is dependable. 444 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 445 return !Context.getLangOpts().AppleKext 446 ? llvm::Function::LinkOnceODRLinkage 447 : llvm::Function::InternalLinkage; 448 449 // An explicit instantiation of a template has weak linkage, since 450 // explicit instantiations can occur in multiple translation units 451 // and must all be equivalent. However, we are not allowed to 452 // throw away these explicit instantiations. 453 if (Linkage == GVA_ExplicitTemplateInstantiation) 454 return !Context.getLangOpts().AppleKext 455 ? llvm::Function::WeakODRLinkage 456 : llvm::Function::ExternalLinkage; 457 458 // Otherwise, we have strong external linkage. 459 assert(Linkage == GVA_StrongExternal); 460 return llvm::Function::ExternalLinkage; 461 } 462 463 464 /// SetFunctionDefinitionAttributes - Set attributes for a global. 465 /// 466 /// FIXME: This is currently only done for aliases and functions, but not for 467 /// variables (these details are set in EmitGlobalVarDefinition for variables). 468 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 469 llvm::GlobalValue *GV) { 470 SetCommonAttributes(D, GV); 471 } 472 473 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 474 const CGFunctionInfo &Info, 475 llvm::Function *F) { 476 unsigned CallingConv; 477 AttributeListType AttributeList; 478 ConstructAttributeList(Info, D, AttributeList, CallingConv); 479 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 480 AttributeList.size())); 481 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 482 } 483 484 /// Determines whether the language options require us to model 485 /// unwind exceptions. We treat -fexceptions as mandating this 486 /// except under the fragile ObjC ABI with only ObjC exceptions 487 /// enabled. This means, for example, that C with -fexceptions 488 /// enables this. 489 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 490 // If exceptions are completely disabled, obviously this is false. 491 if (!LangOpts.Exceptions) return false; 492 493 // If C++ exceptions are enabled, this is true. 494 if (LangOpts.CXXExceptions) return true; 495 496 // If ObjC exceptions are enabled, this depends on the ABI. 497 if (LangOpts.ObjCExceptions) { 498 if (!LangOpts.ObjCNonFragileABI) return false; 499 } 500 501 return true; 502 } 503 504 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 505 llvm::Function *F) { 506 if (CodeGenOpts.UnwindTables) 507 F->setHasUWTable(); 508 509 if (!hasUnwindExceptions(LangOpts)) 510 F->addFnAttr(llvm::Attribute::NoUnwind); 511 512 if (D->hasAttr<NakedAttr>()) { 513 // Naked implies noinline: we should not be inlining such functions. 514 F->addFnAttr(llvm::Attribute::Naked); 515 F->addFnAttr(llvm::Attribute::NoInline); 516 } 517 518 if (D->hasAttr<NoInlineAttr>()) 519 F->addFnAttr(llvm::Attribute::NoInline); 520 521 // (noinline wins over always_inline, and we can't specify both in IR) 522 if (D->hasAttr<AlwaysInlineAttr>() && 523 !F->hasFnAttr(llvm::Attribute::NoInline)) 524 F->addFnAttr(llvm::Attribute::AlwaysInline); 525 526 // FIXME: Communicate hot and cold attributes to LLVM more directly. 527 if (D->hasAttr<ColdAttr>()) 528 F->addFnAttr(llvm::Attribute::OptimizeForSize); 529 530 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 531 F->setUnnamedAddr(true); 532 533 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 534 F->addFnAttr(llvm::Attribute::StackProtect); 535 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 536 F->addFnAttr(llvm::Attribute::StackProtectReq); 537 538 if (LangOpts.AddressSanitizer) { 539 // When AddressSanitizer is enabled, set AddressSafety attribute 540 // unless __attribute__((no_address_safety_analysis)) is used. 541 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 542 F->addFnAttr(llvm::Attribute::AddressSafety); 543 } 544 545 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 546 if (alignment) 547 F->setAlignment(alignment); 548 549 // C++ ABI requires 2-byte alignment for member functions. 550 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 551 F->setAlignment(2); 552 } 553 554 void CodeGenModule::SetCommonAttributes(const Decl *D, 555 llvm::GlobalValue *GV) { 556 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 557 setGlobalVisibility(GV, ND); 558 else 559 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 560 561 if (D->hasAttr<UsedAttr>()) 562 AddUsedGlobal(GV); 563 564 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 565 GV->setSection(SA->getName()); 566 567 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 568 } 569 570 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 571 llvm::Function *F, 572 const CGFunctionInfo &FI) { 573 SetLLVMFunctionAttributes(D, FI, F); 574 SetLLVMFunctionAttributesForDefinition(D, F); 575 576 F->setLinkage(llvm::Function::InternalLinkage); 577 578 SetCommonAttributes(D, F); 579 } 580 581 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 582 llvm::Function *F, 583 bool IsIncompleteFunction) { 584 if (unsigned IID = F->getIntrinsicID()) { 585 // If this is an intrinsic function, set the function's attributes 586 // to the intrinsic's attributes. 587 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 588 return; 589 } 590 591 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 592 593 if (!IsIncompleteFunction) 594 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 595 596 // Only a few attributes are set on declarations; these may later be 597 // overridden by a definition. 598 599 if (FD->hasAttr<DLLImportAttr>()) { 600 F->setLinkage(llvm::Function::DLLImportLinkage); 601 } else if (FD->hasAttr<WeakAttr>() || 602 FD->isWeakImported()) { 603 // "extern_weak" is overloaded in LLVM; we probably should have 604 // separate linkage types for this. 605 F->setLinkage(llvm::Function::ExternalWeakLinkage); 606 } else { 607 F->setLinkage(llvm::Function::ExternalLinkage); 608 609 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 610 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 611 F->setVisibility(GetLLVMVisibility(LV.visibility())); 612 } 613 } 614 615 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 616 F->setSection(SA->getName()); 617 } 618 619 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 620 assert(!GV->isDeclaration() && 621 "Only globals with definition can force usage."); 622 LLVMUsed.push_back(GV); 623 } 624 625 void CodeGenModule::EmitLLVMUsed() { 626 // Don't create llvm.used if there is no need. 627 if (LLVMUsed.empty()) 628 return; 629 630 // Convert LLVMUsed to what ConstantArray needs. 631 SmallVector<llvm::Constant*, 8> UsedArray; 632 UsedArray.resize(LLVMUsed.size()); 633 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 634 UsedArray[i] = 635 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 636 Int8PtrTy); 637 } 638 639 if (UsedArray.empty()) 640 return; 641 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 642 643 llvm::GlobalVariable *GV = 644 new llvm::GlobalVariable(getModule(), ATy, false, 645 llvm::GlobalValue::AppendingLinkage, 646 llvm::ConstantArray::get(ATy, UsedArray), 647 "llvm.used"); 648 649 GV->setSection("llvm.metadata"); 650 } 651 652 void CodeGenModule::EmitDeferred() { 653 // Emit code for any potentially referenced deferred decls. Since a 654 // previously unused static decl may become used during the generation of code 655 // for a static function, iterate until no changes are made. 656 657 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 658 if (!DeferredVTables.empty()) { 659 const CXXRecordDecl *RD = DeferredVTables.back(); 660 DeferredVTables.pop_back(); 661 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 662 continue; 663 } 664 665 GlobalDecl D = DeferredDeclsToEmit.back(); 666 DeferredDeclsToEmit.pop_back(); 667 668 // Check to see if we've already emitted this. This is necessary 669 // for a couple of reasons: first, decls can end up in the 670 // deferred-decls queue multiple times, and second, decls can end 671 // up with definitions in unusual ways (e.g. by an extern inline 672 // function acquiring a strong function redefinition). Just 673 // ignore these cases. 674 // 675 // TODO: That said, looking this up multiple times is very wasteful. 676 StringRef Name = getMangledName(D); 677 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 678 assert(CGRef && "Deferred decl wasn't referenced?"); 679 680 if (!CGRef->isDeclaration()) 681 continue; 682 683 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 684 // purposes an alias counts as a definition. 685 if (isa<llvm::GlobalAlias>(CGRef)) 686 continue; 687 688 // Otherwise, emit the definition and move on to the next one. 689 EmitGlobalDefinition(D); 690 } 691 } 692 693 void CodeGenModule::EmitGlobalAnnotations() { 694 if (Annotations.empty()) 695 return; 696 697 // Create a new global variable for the ConstantStruct in the Module. 698 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 699 Annotations[0]->getType(), Annotations.size()), Annotations); 700 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 701 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 702 "llvm.global.annotations"); 703 gv->setSection(AnnotationSection); 704 } 705 706 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 707 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 708 if (i != AnnotationStrings.end()) 709 return i->second; 710 711 // Not found yet, create a new global. 712 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 713 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 714 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 715 gv->setSection(AnnotationSection); 716 gv->setUnnamedAddr(true); 717 AnnotationStrings[Str] = gv; 718 return gv; 719 } 720 721 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 722 SourceManager &SM = getContext().getSourceManager(); 723 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 724 if (PLoc.isValid()) 725 return EmitAnnotationString(PLoc.getFilename()); 726 return EmitAnnotationString(SM.getBufferName(Loc)); 727 } 728 729 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 730 SourceManager &SM = getContext().getSourceManager(); 731 PresumedLoc PLoc = SM.getPresumedLoc(L); 732 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 733 SM.getExpansionLineNumber(L); 734 return llvm::ConstantInt::get(Int32Ty, LineNo); 735 } 736 737 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 738 const AnnotateAttr *AA, 739 SourceLocation L) { 740 // Get the globals for file name, annotation, and the line number. 741 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 742 *UnitGV = EmitAnnotationUnit(L), 743 *LineNoCst = EmitAnnotationLineNo(L); 744 745 // Create the ConstantStruct for the global annotation. 746 llvm::Constant *Fields[4] = { 747 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 748 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 749 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 750 LineNoCst 751 }; 752 return llvm::ConstantStruct::getAnon(Fields); 753 } 754 755 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 756 llvm::GlobalValue *GV) { 757 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 758 // Get the struct elements for these annotations. 759 for (specific_attr_iterator<AnnotateAttr> 760 ai = D->specific_attr_begin<AnnotateAttr>(), 761 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 762 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 763 } 764 765 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 766 // Never defer when EmitAllDecls is specified. 767 if (LangOpts.EmitAllDecls) 768 return false; 769 770 return !getContext().DeclMustBeEmitted(Global); 771 } 772 773 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 774 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 775 assert(AA && "No alias?"); 776 777 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 778 779 // See if there is already something with the target's name in the module. 780 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 781 782 llvm::Constant *Aliasee; 783 if (isa<llvm::FunctionType>(DeclTy)) 784 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 785 /*ForVTable=*/false); 786 else 787 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 788 llvm::PointerType::getUnqual(DeclTy), 0); 789 if (!Entry) { 790 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 791 F->setLinkage(llvm::Function::ExternalWeakLinkage); 792 WeakRefReferences.insert(F); 793 } 794 795 return Aliasee; 796 } 797 798 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 799 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 800 801 // Weak references don't produce any output by themselves. 802 if (Global->hasAttr<WeakRefAttr>()) 803 return; 804 805 // If this is an alias definition (which otherwise looks like a declaration) 806 // emit it now. 807 if (Global->hasAttr<AliasAttr>()) 808 return EmitAliasDefinition(GD); 809 810 // If this is CUDA, be selective about which declarations we emit. 811 if (LangOpts.CUDA) { 812 if (CodeGenOpts.CUDAIsDevice) { 813 if (!Global->hasAttr<CUDADeviceAttr>() && 814 !Global->hasAttr<CUDAGlobalAttr>() && 815 !Global->hasAttr<CUDAConstantAttr>() && 816 !Global->hasAttr<CUDASharedAttr>()) 817 return; 818 } else { 819 if (!Global->hasAttr<CUDAHostAttr>() && ( 820 Global->hasAttr<CUDADeviceAttr>() || 821 Global->hasAttr<CUDAConstantAttr>() || 822 Global->hasAttr<CUDASharedAttr>())) 823 return; 824 } 825 } 826 827 // Ignore declarations, they will be emitted on their first use. 828 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 829 // Forward declarations are emitted lazily on first use. 830 if (!FD->doesThisDeclarationHaveABody()) { 831 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 832 return; 833 834 const FunctionDecl *InlineDefinition = 0; 835 FD->getBody(InlineDefinition); 836 837 StringRef MangledName = getMangledName(GD); 838 DeferredDecls.erase(MangledName); 839 EmitGlobalDefinition(InlineDefinition); 840 return; 841 } 842 } else { 843 const VarDecl *VD = cast<VarDecl>(Global); 844 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 845 846 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 847 return; 848 } 849 850 // Defer code generation when possible if this is a static definition, inline 851 // function etc. These we only want to emit if they are used. 852 if (!MayDeferGeneration(Global)) { 853 // Emit the definition if it can't be deferred. 854 EmitGlobalDefinition(GD); 855 return; 856 } 857 858 // If we're deferring emission of a C++ variable with an 859 // initializer, remember the order in which it appeared in the file. 860 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 861 cast<VarDecl>(Global)->hasInit()) { 862 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 863 CXXGlobalInits.push_back(0); 864 } 865 866 // If the value has already been used, add it directly to the 867 // DeferredDeclsToEmit list. 868 StringRef MangledName = getMangledName(GD); 869 if (GetGlobalValue(MangledName)) 870 DeferredDeclsToEmit.push_back(GD); 871 else { 872 // Otherwise, remember that we saw a deferred decl with this name. The 873 // first use of the mangled name will cause it to move into 874 // DeferredDeclsToEmit. 875 DeferredDecls[MangledName] = GD; 876 } 877 } 878 879 namespace { 880 struct FunctionIsDirectlyRecursive : 881 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 882 const StringRef Name; 883 const Builtin::Context &BI; 884 bool Result; 885 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 886 Name(N), BI(C), Result(false) { 887 } 888 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 889 890 bool TraverseCallExpr(CallExpr *E) { 891 const FunctionDecl *FD = E->getDirectCallee(); 892 if (!FD) 893 return true; 894 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 895 if (Attr && Name == Attr->getLabel()) { 896 Result = true; 897 return false; 898 } 899 unsigned BuiltinID = FD->getBuiltinID(); 900 if (!BuiltinID) 901 return true; 902 StringRef BuiltinName = BI.GetName(BuiltinID); 903 if (BuiltinName.startswith("__builtin_") && 904 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 905 Result = true; 906 return false; 907 } 908 return true; 909 } 910 }; 911 } 912 913 // isTriviallyRecursive - Check if this function calls another 914 // decl that, because of the asm attribute or the other decl being a builtin, 915 // ends up pointing to itself. 916 bool 917 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 918 StringRef Name; 919 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 920 // asm labels are a special kind of mangling we have to support. 921 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 922 if (!Attr) 923 return false; 924 Name = Attr->getLabel(); 925 } else { 926 Name = FD->getName(); 927 } 928 929 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 930 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 931 return Walker.Result; 932 } 933 934 bool 935 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 936 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 937 return true; 938 if (CodeGenOpts.OptimizationLevel == 0 && 939 !F->hasAttr<AlwaysInlineAttr>()) 940 return false; 941 // PR9614. Avoid cases where the source code is lying to us. An available 942 // externally function should have an equivalent function somewhere else, 943 // but a function that calls itself is clearly not equivalent to the real 944 // implementation. 945 // This happens in glibc's btowc and in some configure checks. 946 return !isTriviallyRecursive(F); 947 } 948 949 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 950 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 951 952 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 953 Context.getSourceManager(), 954 "Generating code for declaration"); 955 956 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 957 // At -O0, don't generate IR for functions with available_externally 958 // linkage. 959 if (!shouldEmitFunction(Function)) 960 return; 961 962 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 963 // Make sure to emit the definition(s) before we emit the thunks. 964 // This is necessary for the generation of certain thunks. 965 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 966 EmitCXXConstructor(CD, GD.getCtorType()); 967 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 968 EmitCXXDestructor(DD, GD.getDtorType()); 969 else 970 EmitGlobalFunctionDefinition(GD); 971 972 if (Method->isVirtual()) 973 getVTables().EmitThunks(GD); 974 975 return; 976 } 977 978 return EmitGlobalFunctionDefinition(GD); 979 } 980 981 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 982 return EmitGlobalVarDefinition(VD); 983 984 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 985 } 986 987 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 988 /// module, create and return an llvm Function with the specified type. If there 989 /// is something in the module with the specified name, return it potentially 990 /// bitcasted to the right type. 991 /// 992 /// If D is non-null, it specifies a decl that correspond to this. This is used 993 /// to set the attributes on the function when it is first created. 994 llvm::Constant * 995 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 996 llvm::Type *Ty, 997 GlobalDecl D, bool ForVTable, 998 llvm::Attributes ExtraAttrs) { 999 // Lookup the entry, lazily creating it if necessary. 1000 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1001 if (Entry) { 1002 if (WeakRefReferences.count(Entry)) { 1003 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1004 if (FD && !FD->hasAttr<WeakAttr>()) 1005 Entry->setLinkage(llvm::Function::ExternalLinkage); 1006 1007 WeakRefReferences.erase(Entry); 1008 } 1009 1010 if (Entry->getType()->getElementType() == Ty) 1011 return Entry; 1012 1013 // Make sure the result is of the correct type. 1014 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1015 } 1016 1017 // This function doesn't have a complete type (for example, the return 1018 // type is an incomplete struct). Use a fake type instead, and make 1019 // sure not to try to set attributes. 1020 bool IsIncompleteFunction = false; 1021 1022 llvm::FunctionType *FTy; 1023 if (isa<llvm::FunctionType>(Ty)) { 1024 FTy = cast<llvm::FunctionType>(Ty); 1025 } else { 1026 FTy = llvm::FunctionType::get(VoidTy, false); 1027 IsIncompleteFunction = true; 1028 } 1029 1030 llvm::Function *F = llvm::Function::Create(FTy, 1031 llvm::Function::ExternalLinkage, 1032 MangledName, &getModule()); 1033 assert(F->getName() == MangledName && "name was uniqued!"); 1034 if (D.getDecl()) 1035 SetFunctionAttributes(D, F, IsIncompleteFunction); 1036 if (ExtraAttrs != llvm::Attribute::None) 1037 F->addFnAttr(ExtraAttrs); 1038 1039 // This is the first use or definition of a mangled name. If there is a 1040 // deferred decl with this name, remember that we need to emit it at the end 1041 // of the file. 1042 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1043 if (DDI != DeferredDecls.end()) { 1044 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1045 // list, and remove it from DeferredDecls (since we don't need it anymore). 1046 DeferredDeclsToEmit.push_back(DDI->second); 1047 DeferredDecls.erase(DDI); 1048 1049 // Otherwise, there are cases we have to worry about where we're 1050 // using a declaration for which we must emit a definition but where 1051 // we might not find a top-level definition: 1052 // - member functions defined inline in their classes 1053 // - friend functions defined inline in some class 1054 // - special member functions with implicit definitions 1055 // If we ever change our AST traversal to walk into class methods, 1056 // this will be unnecessary. 1057 // 1058 // We also don't emit a definition for a function if it's going to be an entry 1059 // in a vtable, unless it's already marked as used. 1060 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1061 // Look for a declaration that's lexically in a record. 1062 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1063 do { 1064 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1065 if (FD->isImplicit() && !ForVTable) { 1066 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1067 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1068 break; 1069 } else if (FD->doesThisDeclarationHaveABody()) { 1070 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1071 break; 1072 } 1073 } 1074 FD = FD->getPreviousDecl(); 1075 } while (FD); 1076 } 1077 1078 // Make sure the result is of the requested type. 1079 if (!IsIncompleteFunction) { 1080 assert(F->getType()->getElementType() == Ty); 1081 return F; 1082 } 1083 1084 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1085 return llvm::ConstantExpr::getBitCast(F, PTy); 1086 } 1087 1088 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1089 /// non-null, then this function will use the specified type if it has to 1090 /// create it (this occurs when we see a definition of the function). 1091 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1092 llvm::Type *Ty, 1093 bool ForVTable) { 1094 // If there was no specific requested type, just convert it now. 1095 if (!Ty) 1096 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1097 1098 StringRef MangledName = getMangledName(GD); 1099 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1100 } 1101 1102 /// CreateRuntimeFunction - Create a new runtime function with the specified 1103 /// type and name. 1104 llvm::Constant * 1105 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1106 StringRef Name, 1107 llvm::Attributes ExtraAttrs) { 1108 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1109 ExtraAttrs); 1110 } 1111 1112 /// isTypeConstant - Determine whether an object of this type can be emitted 1113 /// as a constant. 1114 /// 1115 /// If ExcludeCtor is true, the duration when the object's constructor runs 1116 /// will not be considered. The caller will need to verify that the object is 1117 /// not written to during its construction. 1118 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1119 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1120 return false; 1121 1122 if (Context.getLangOpts().CPlusPlus) { 1123 if (const CXXRecordDecl *Record 1124 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1125 return ExcludeCtor && !Record->hasMutableFields() && 1126 Record->hasTrivialDestructor(); 1127 } 1128 1129 return true; 1130 } 1131 1132 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1133 /// create and return an llvm GlobalVariable with the specified type. If there 1134 /// is something in the module with the specified name, return it potentially 1135 /// bitcasted to the right type. 1136 /// 1137 /// If D is non-null, it specifies a decl that correspond to this. This is used 1138 /// to set the attributes on the global when it is first created. 1139 llvm::Constant * 1140 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1141 llvm::PointerType *Ty, 1142 const VarDecl *D, 1143 bool UnnamedAddr) { 1144 // Lookup the entry, lazily creating it if necessary. 1145 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1146 if (Entry) { 1147 if (WeakRefReferences.count(Entry)) { 1148 if (D && !D->hasAttr<WeakAttr>()) 1149 Entry->setLinkage(llvm::Function::ExternalLinkage); 1150 1151 WeakRefReferences.erase(Entry); 1152 } 1153 1154 if (UnnamedAddr) 1155 Entry->setUnnamedAddr(true); 1156 1157 if (Entry->getType() == Ty) 1158 return Entry; 1159 1160 // Make sure the result is of the correct type. 1161 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1162 } 1163 1164 // This is the first use or definition of a mangled name. If there is a 1165 // deferred decl with this name, remember that we need to emit it at the end 1166 // of the file. 1167 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1168 if (DDI != DeferredDecls.end()) { 1169 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1170 // list, and remove it from DeferredDecls (since we don't need it anymore). 1171 DeferredDeclsToEmit.push_back(DDI->second); 1172 DeferredDecls.erase(DDI); 1173 } 1174 1175 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1176 llvm::GlobalVariable *GV = 1177 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1178 llvm::GlobalValue::ExternalLinkage, 1179 0, MangledName, 0, 1180 false, AddrSpace); 1181 1182 // Handle things which are present even on external declarations. 1183 if (D) { 1184 // FIXME: This code is overly simple and should be merged with other global 1185 // handling. 1186 GV->setConstant(isTypeConstant(D->getType(), false)); 1187 1188 // Set linkage and visibility in case we never see a definition. 1189 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1190 if (LV.linkage() != ExternalLinkage) { 1191 // Don't set internal linkage on declarations. 1192 } else { 1193 if (D->hasAttr<DLLImportAttr>()) 1194 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1195 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1196 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1197 1198 // Set visibility on a declaration only if it's explicit. 1199 if (LV.visibilityExplicit()) 1200 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1201 } 1202 1203 GV->setThreadLocal(D->isThreadSpecified()); 1204 } 1205 1206 if (AddrSpace != Ty->getAddressSpace()) 1207 return llvm::ConstantExpr::getBitCast(GV, Ty); 1208 else 1209 return GV; 1210 } 1211 1212 1213 llvm::GlobalVariable * 1214 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1215 llvm::Type *Ty, 1216 llvm::GlobalValue::LinkageTypes Linkage) { 1217 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1218 llvm::GlobalVariable *OldGV = 0; 1219 1220 1221 if (GV) { 1222 // Check if the variable has the right type. 1223 if (GV->getType()->getElementType() == Ty) 1224 return GV; 1225 1226 // Because C++ name mangling, the only way we can end up with an already 1227 // existing global with the same name is if it has been declared extern "C". 1228 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1229 OldGV = GV; 1230 } 1231 1232 // Create a new variable. 1233 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1234 Linkage, 0, Name); 1235 1236 if (OldGV) { 1237 // Replace occurrences of the old variable if needed. 1238 GV->takeName(OldGV); 1239 1240 if (!OldGV->use_empty()) { 1241 llvm::Constant *NewPtrForOldDecl = 1242 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1243 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1244 } 1245 1246 OldGV->eraseFromParent(); 1247 } 1248 1249 return GV; 1250 } 1251 1252 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1253 /// given global variable. If Ty is non-null and if the global doesn't exist, 1254 /// then it will be created with the specified type instead of whatever the 1255 /// normal requested type would be. 1256 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1257 llvm::Type *Ty) { 1258 assert(D->hasGlobalStorage() && "Not a global variable"); 1259 QualType ASTTy = D->getType(); 1260 if (Ty == 0) 1261 Ty = getTypes().ConvertTypeForMem(ASTTy); 1262 1263 llvm::PointerType *PTy = 1264 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1265 1266 StringRef MangledName = getMangledName(D); 1267 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1268 } 1269 1270 /// CreateRuntimeVariable - Create a new runtime global variable with the 1271 /// specified type and name. 1272 llvm::Constant * 1273 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1274 StringRef Name) { 1275 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1276 true); 1277 } 1278 1279 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1280 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1281 1282 if (MayDeferGeneration(D)) { 1283 // If we have not seen a reference to this variable yet, place it 1284 // into the deferred declarations table to be emitted if needed 1285 // later. 1286 StringRef MangledName = getMangledName(D); 1287 if (!GetGlobalValue(MangledName)) { 1288 DeferredDecls[MangledName] = D; 1289 return; 1290 } 1291 } 1292 1293 // The tentative definition is the only definition. 1294 EmitGlobalVarDefinition(D); 1295 } 1296 1297 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1298 if (DefinitionRequired) 1299 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1300 } 1301 1302 llvm::GlobalVariable::LinkageTypes 1303 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1304 if (RD->getLinkage() != ExternalLinkage) 1305 return llvm::GlobalVariable::InternalLinkage; 1306 1307 if (const CXXMethodDecl *KeyFunction 1308 = RD->getASTContext().getKeyFunction(RD)) { 1309 // If this class has a key function, use that to determine the linkage of 1310 // the vtable. 1311 const FunctionDecl *Def = 0; 1312 if (KeyFunction->hasBody(Def)) 1313 KeyFunction = cast<CXXMethodDecl>(Def); 1314 1315 switch (KeyFunction->getTemplateSpecializationKind()) { 1316 case TSK_Undeclared: 1317 case TSK_ExplicitSpecialization: 1318 // When compiling with optimizations turned on, we emit all vtables, 1319 // even if the key function is not defined in the current translation 1320 // unit. If this is the case, use available_externally linkage. 1321 if (!Def && CodeGenOpts.OptimizationLevel) 1322 return llvm::GlobalVariable::AvailableExternallyLinkage; 1323 1324 if (KeyFunction->isInlined()) 1325 return !Context.getLangOpts().AppleKext ? 1326 llvm::GlobalVariable::LinkOnceODRLinkage : 1327 llvm::Function::InternalLinkage; 1328 1329 return llvm::GlobalVariable::ExternalLinkage; 1330 1331 case TSK_ImplicitInstantiation: 1332 return !Context.getLangOpts().AppleKext ? 1333 llvm::GlobalVariable::LinkOnceODRLinkage : 1334 llvm::Function::InternalLinkage; 1335 1336 case TSK_ExplicitInstantiationDefinition: 1337 return !Context.getLangOpts().AppleKext ? 1338 llvm::GlobalVariable::WeakODRLinkage : 1339 llvm::Function::InternalLinkage; 1340 1341 case TSK_ExplicitInstantiationDeclaration: 1342 // FIXME: Use available_externally linkage. However, this currently 1343 // breaks LLVM's build due to undefined symbols. 1344 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1345 return !Context.getLangOpts().AppleKext ? 1346 llvm::GlobalVariable::LinkOnceODRLinkage : 1347 llvm::Function::InternalLinkage; 1348 } 1349 } 1350 1351 if (Context.getLangOpts().AppleKext) 1352 return llvm::Function::InternalLinkage; 1353 1354 switch (RD->getTemplateSpecializationKind()) { 1355 case TSK_Undeclared: 1356 case TSK_ExplicitSpecialization: 1357 case TSK_ImplicitInstantiation: 1358 // FIXME: Use available_externally linkage. However, this currently 1359 // breaks LLVM's build due to undefined symbols. 1360 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1361 case TSK_ExplicitInstantiationDeclaration: 1362 return llvm::GlobalVariable::LinkOnceODRLinkage; 1363 1364 case TSK_ExplicitInstantiationDefinition: 1365 return llvm::GlobalVariable::WeakODRLinkage; 1366 } 1367 1368 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1369 } 1370 1371 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1372 return Context.toCharUnitsFromBits( 1373 TheTargetData.getTypeStoreSizeInBits(Ty)); 1374 } 1375 1376 llvm::Constant * 1377 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1378 const Expr *rawInit) { 1379 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1380 if (const ExprWithCleanups *withCleanups = 1381 dyn_cast<ExprWithCleanups>(rawInit)) { 1382 cleanups = withCleanups->getObjects(); 1383 rawInit = withCleanups->getSubExpr(); 1384 } 1385 1386 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1387 if (!init || !init->initializesStdInitializerList() || 1388 init->getNumInits() == 0) 1389 return 0; 1390 1391 ASTContext &ctx = getContext(); 1392 unsigned numInits = init->getNumInits(); 1393 // FIXME: This check is here because we would otherwise silently miscompile 1394 // nested global std::initializer_lists. Better would be to have a real 1395 // implementation. 1396 for (unsigned i = 0; i < numInits; ++i) { 1397 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1398 if (inner && inner->initializesStdInitializerList()) { 1399 ErrorUnsupported(inner, "nested global std::initializer_list"); 1400 return 0; 1401 } 1402 } 1403 1404 // Synthesize a fake VarDecl for the array and initialize that. 1405 QualType elementType = init->getInit(0)->getType(); 1406 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1407 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1408 ArrayType::Normal, 0); 1409 1410 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1411 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1412 arrayType, D->getLocation()); 1413 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1414 D->getDeclContext()), 1415 D->getLocStart(), D->getLocation(), 1416 name, arrayType, sourceInfo, 1417 SC_Static, SC_Static); 1418 1419 // Now clone the InitListExpr to initialize the array instead. 1420 // Incredible hack: we want to use the existing InitListExpr here, so we need 1421 // to tell it that it no longer initializes a std::initializer_list. 1422 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1423 const_cast<InitListExpr*>(init)->getInits(), 1424 init->getNumInits(), 1425 init->getRBraceLoc()); 1426 arrayInit->setType(arrayType); 1427 1428 if (!cleanups.empty()) 1429 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1430 1431 backingArray->setInit(arrayInit); 1432 1433 // Emit the definition of the array. 1434 EmitGlobalVarDefinition(backingArray); 1435 1436 // Inspect the initializer list to validate it and determine its type. 1437 // FIXME: doing this every time is probably inefficient; caching would be nice 1438 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1439 RecordDecl::field_iterator field = record->field_begin(); 1440 if (field == record->field_end()) { 1441 ErrorUnsupported(D, "weird std::initializer_list"); 1442 return 0; 1443 } 1444 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1445 // Start pointer. 1446 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1447 ErrorUnsupported(D, "weird std::initializer_list"); 1448 return 0; 1449 } 1450 ++field; 1451 if (field == record->field_end()) { 1452 ErrorUnsupported(D, "weird std::initializer_list"); 1453 return 0; 1454 } 1455 bool isStartEnd = false; 1456 if (ctx.hasSameType(field->getType(), elementPtr)) { 1457 // End pointer. 1458 isStartEnd = true; 1459 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1460 ErrorUnsupported(D, "weird std::initializer_list"); 1461 return 0; 1462 } 1463 1464 // Now build an APValue representing the std::initializer_list. 1465 APValue initListValue(APValue::UninitStruct(), 0, 2); 1466 APValue &startField = initListValue.getStructField(0); 1467 APValue::LValuePathEntry startOffsetPathEntry; 1468 startOffsetPathEntry.ArrayIndex = 0; 1469 startField = APValue(APValue::LValueBase(backingArray), 1470 CharUnits::fromQuantity(0), 1471 llvm::makeArrayRef(startOffsetPathEntry), 1472 /*IsOnePastTheEnd=*/false, 0); 1473 1474 if (isStartEnd) { 1475 APValue &endField = initListValue.getStructField(1); 1476 APValue::LValuePathEntry endOffsetPathEntry; 1477 endOffsetPathEntry.ArrayIndex = numInits; 1478 endField = APValue(APValue::LValueBase(backingArray), 1479 ctx.getTypeSizeInChars(elementType) * numInits, 1480 llvm::makeArrayRef(endOffsetPathEntry), 1481 /*IsOnePastTheEnd=*/true, 0); 1482 } else { 1483 APValue &sizeField = initListValue.getStructField(1); 1484 sizeField = APValue(llvm::APSInt(numElements)); 1485 } 1486 1487 // Emit the constant for the initializer_list. 1488 llvm::Constant *llvmInit = 1489 EmitConstantValueForMemory(initListValue, D->getType()); 1490 assert(llvmInit && "failed to initialize as constant"); 1491 return llvmInit; 1492 } 1493 1494 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1495 unsigned AddrSpace) { 1496 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1497 if (D->hasAttr<CUDAConstantAttr>()) 1498 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1499 else if (D->hasAttr<CUDASharedAttr>()) 1500 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1501 else 1502 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1503 } 1504 1505 return AddrSpace; 1506 } 1507 1508 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1509 llvm::Constant *Init = 0; 1510 QualType ASTTy = D->getType(); 1511 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1512 bool NeedsGlobalCtor = false; 1513 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1514 1515 const VarDecl *InitDecl; 1516 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1517 1518 if (!InitExpr) { 1519 // This is a tentative definition; tentative definitions are 1520 // implicitly initialized with { 0 }. 1521 // 1522 // Note that tentative definitions are only emitted at the end of 1523 // a translation unit, so they should never have incomplete 1524 // type. In addition, EmitTentativeDefinition makes sure that we 1525 // never attempt to emit a tentative definition if a real one 1526 // exists. A use may still exists, however, so we still may need 1527 // to do a RAUW. 1528 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1529 Init = EmitNullConstant(D->getType()); 1530 } else { 1531 // If this is a std::initializer_list, emit the special initializer. 1532 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1533 // An empty init list will perform zero-initialization, which happens 1534 // to be exactly what we want. 1535 // FIXME: It does so in a global constructor, which is *not* what we 1536 // want. 1537 1538 if (!Init) 1539 Init = EmitConstantInit(*InitDecl); 1540 if (!Init) { 1541 QualType T = InitExpr->getType(); 1542 if (D->getType()->isReferenceType()) 1543 T = D->getType(); 1544 1545 if (getLangOpts().CPlusPlus) { 1546 Init = EmitNullConstant(T); 1547 NeedsGlobalCtor = true; 1548 } else { 1549 ErrorUnsupported(D, "static initializer"); 1550 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1551 } 1552 } else { 1553 // We don't need an initializer, so remove the entry for the delayed 1554 // initializer position (just in case this entry was delayed) if we 1555 // also don't need to register a destructor. 1556 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1557 DelayedCXXInitPosition.erase(D); 1558 } 1559 } 1560 1561 llvm::Type* InitType = Init->getType(); 1562 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1563 1564 // Strip off a bitcast if we got one back. 1565 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1566 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1567 // all zero index gep. 1568 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1569 Entry = CE->getOperand(0); 1570 } 1571 1572 // Entry is now either a Function or GlobalVariable. 1573 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1574 1575 // We have a definition after a declaration with the wrong type. 1576 // We must make a new GlobalVariable* and update everything that used OldGV 1577 // (a declaration or tentative definition) with the new GlobalVariable* 1578 // (which will be a definition). 1579 // 1580 // This happens if there is a prototype for a global (e.g. 1581 // "extern int x[];") and then a definition of a different type (e.g. 1582 // "int x[10];"). This also happens when an initializer has a different type 1583 // from the type of the global (this happens with unions). 1584 if (GV == 0 || 1585 GV->getType()->getElementType() != InitType || 1586 GV->getType()->getAddressSpace() != 1587 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1588 1589 // Move the old entry aside so that we'll create a new one. 1590 Entry->setName(StringRef()); 1591 1592 // Make a new global with the correct type, this is now guaranteed to work. 1593 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1594 1595 // Replace all uses of the old global with the new global 1596 llvm::Constant *NewPtrForOldDecl = 1597 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1598 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1599 1600 // Erase the old global, since it is no longer used. 1601 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1602 } 1603 1604 if (D->hasAttr<AnnotateAttr>()) 1605 AddGlobalAnnotations(D, GV); 1606 1607 GV->setInitializer(Init); 1608 1609 // If it is safe to mark the global 'constant', do so now. 1610 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1611 isTypeConstant(D->getType(), true)); 1612 1613 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1614 1615 // Set the llvm linkage type as appropriate. 1616 llvm::GlobalValue::LinkageTypes Linkage = 1617 GetLLVMLinkageVarDefinition(D, GV); 1618 GV->setLinkage(Linkage); 1619 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1620 // common vars aren't constant even if declared const. 1621 GV->setConstant(false); 1622 1623 SetCommonAttributes(D, GV); 1624 1625 // Emit the initializer function if necessary. 1626 if (NeedsGlobalCtor || NeedsGlobalDtor) 1627 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1628 1629 // Emit global variable debug information. 1630 if (CGDebugInfo *DI = getModuleDebugInfo()) 1631 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1632 DI->EmitGlobalVariable(GV, D); 1633 } 1634 1635 llvm::GlobalValue::LinkageTypes 1636 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1637 llvm::GlobalVariable *GV) { 1638 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1639 if (Linkage == GVA_Internal) 1640 return llvm::Function::InternalLinkage; 1641 else if (D->hasAttr<DLLImportAttr>()) 1642 return llvm::Function::DLLImportLinkage; 1643 else if (D->hasAttr<DLLExportAttr>()) 1644 return llvm::Function::DLLExportLinkage; 1645 else if (D->hasAttr<WeakAttr>()) { 1646 if (GV->isConstant()) 1647 return llvm::GlobalVariable::WeakODRLinkage; 1648 else 1649 return llvm::GlobalVariable::WeakAnyLinkage; 1650 } else if (Linkage == GVA_TemplateInstantiation || 1651 Linkage == GVA_ExplicitTemplateInstantiation) 1652 return llvm::GlobalVariable::WeakODRLinkage; 1653 else if (!getLangOpts().CPlusPlus && 1654 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1655 D->getAttr<CommonAttr>()) && 1656 !D->hasExternalStorage() && !D->getInit() && 1657 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1658 !D->getAttr<WeakImportAttr>()) { 1659 // Thread local vars aren't considered common linkage. 1660 return llvm::GlobalVariable::CommonLinkage; 1661 } 1662 return llvm::GlobalVariable::ExternalLinkage; 1663 } 1664 1665 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1666 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1667 /// existing call uses of the old function in the module, this adjusts them to 1668 /// call the new function directly. 1669 /// 1670 /// This is not just a cleanup: the always_inline pass requires direct calls to 1671 /// functions to be able to inline them. If there is a bitcast in the way, it 1672 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1673 /// run at -O0. 1674 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1675 llvm::Function *NewFn) { 1676 // If we're redefining a global as a function, don't transform it. 1677 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1678 if (OldFn == 0) return; 1679 1680 llvm::Type *NewRetTy = NewFn->getReturnType(); 1681 SmallVector<llvm::Value*, 4> ArgList; 1682 1683 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1684 UI != E; ) { 1685 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1686 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1687 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1688 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1689 llvm::CallSite CS(CI); 1690 if (!CI || !CS.isCallee(I)) continue; 1691 1692 // If the return types don't match exactly, and if the call isn't dead, then 1693 // we can't transform this call. 1694 if (CI->getType() != NewRetTy && !CI->use_empty()) 1695 continue; 1696 1697 // Get the attribute list. 1698 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1699 llvm::AttrListPtr AttrList = CI->getAttributes(); 1700 1701 // Get any return attributes. 1702 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1703 1704 // Add the return attributes. 1705 if (RAttrs) 1706 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1707 1708 // If the function was passed too few arguments, don't transform. If extra 1709 // arguments were passed, we silently drop them. If any of the types 1710 // mismatch, we don't transform. 1711 unsigned ArgNo = 0; 1712 bool DontTransform = false; 1713 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1714 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1715 if (CS.arg_size() == ArgNo || 1716 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1717 DontTransform = true; 1718 break; 1719 } 1720 1721 // Add any parameter attributes. 1722 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1723 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1724 } 1725 if (DontTransform) 1726 continue; 1727 1728 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1729 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1730 1731 // Okay, we can transform this. Create the new call instruction and copy 1732 // over the required information. 1733 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1734 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1735 ArgList.clear(); 1736 if (!NewCall->getType()->isVoidTy()) 1737 NewCall->takeName(CI); 1738 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1739 AttrVec.end())); 1740 NewCall->setCallingConv(CI->getCallingConv()); 1741 1742 // Finally, remove the old call, replacing any uses with the new one. 1743 if (!CI->use_empty()) 1744 CI->replaceAllUsesWith(NewCall); 1745 1746 // Copy debug location attached to CI. 1747 if (!CI->getDebugLoc().isUnknown()) 1748 NewCall->setDebugLoc(CI->getDebugLoc()); 1749 CI->eraseFromParent(); 1750 } 1751 } 1752 1753 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1754 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1755 // If we have a definition, this might be a deferred decl. If the 1756 // instantiation is explicit, make sure we emit it at the end. 1757 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1758 GetAddrOfGlobalVar(VD); 1759 } 1760 1761 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1762 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1763 1764 // Compute the function info and LLVM type. 1765 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1766 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1767 1768 // Get or create the prototype for the function. 1769 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1770 1771 // Strip off a bitcast if we got one back. 1772 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1773 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1774 Entry = CE->getOperand(0); 1775 } 1776 1777 1778 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1779 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1780 1781 // If the types mismatch then we have to rewrite the definition. 1782 assert(OldFn->isDeclaration() && 1783 "Shouldn't replace non-declaration"); 1784 1785 // F is the Function* for the one with the wrong type, we must make a new 1786 // Function* and update everything that used F (a declaration) with the new 1787 // Function* (which will be a definition). 1788 // 1789 // This happens if there is a prototype for a function 1790 // (e.g. "int f()") and then a definition of a different type 1791 // (e.g. "int f(int x)"). Move the old function aside so that it 1792 // doesn't interfere with GetAddrOfFunction. 1793 OldFn->setName(StringRef()); 1794 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1795 1796 // If this is an implementation of a function without a prototype, try to 1797 // replace any existing uses of the function (which may be calls) with uses 1798 // of the new function 1799 if (D->getType()->isFunctionNoProtoType()) { 1800 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1801 OldFn->removeDeadConstantUsers(); 1802 } 1803 1804 // Replace uses of F with the Function we will endow with a body. 1805 if (!Entry->use_empty()) { 1806 llvm::Constant *NewPtrForOldDecl = 1807 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1808 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1809 } 1810 1811 // Ok, delete the old function now, which is dead. 1812 OldFn->eraseFromParent(); 1813 1814 Entry = NewFn; 1815 } 1816 1817 // We need to set linkage and visibility on the function before 1818 // generating code for it because various parts of IR generation 1819 // want to propagate this information down (e.g. to local static 1820 // declarations). 1821 llvm::Function *Fn = cast<llvm::Function>(Entry); 1822 setFunctionLinkage(D, Fn); 1823 1824 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1825 setGlobalVisibility(Fn, D); 1826 1827 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1828 1829 SetFunctionDefinitionAttributes(D, Fn); 1830 SetLLVMFunctionAttributesForDefinition(D, Fn); 1831 1832 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1833 AddGlobalCtor(Fn, CA->getPriority()); 1834 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1835 AddGlobalDtor(Fn, DA->getPriority()); 1836 if (D->hasAttr<AnnotateAttr>()) 1837 AddGlobalAnnotations(D, Fn); 1838 } 1839 1840 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1841 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1842 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1843 assert(AA && "Not an alias?"); 1844 1845 StringRef MangledName = getMangledName(GD); 1846 1847 // If there is a definition in the module, then it wins over the alias. 1848 // This is dubious, but allow it to be safe. Just ignore the alias. 1849 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1850 if (Entry && !Entry->isDeclaration()) 1851 return; 1852 1853 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1854 1855 // Create a reference to the named value. This ensures that it is emitted 1856 // if a deferred decl. 1857 llvm::Constant *Aliasee; 1858 if (isa<llvm::FunctionType>(DeclTy)) 1859 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1860 /*ForVTable=*/false); 1861 else 1862 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1863 llvm::PointerType::getUnqual(DeclTy), 0); 1864 1865 // Create the new alias itself, but don't set a name yet. 1866 llvm::GlobalValue *GA = 1867 new llvm::GlobalAlias(Aliasee->getType(), 1868 llvm::Function::ExternalLinkage, 1869 "", Aliasee, &getModule()); 1870 1871 if (Entry) { 1872 assert(Entry->isDeclaration()); 1873 1874 // If there is a declaration in the module, then we had an extern followed 1875 // by the alias, as in: 1876 // extern int test6(); 1877 // ... 1878 // int test6() __attribute__((alias("test7"))); 1879 // 1880 // Remove it and replace uses of it with the alias. 1881 GA->takeName(Entry); 1882 1883 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1884 Entry->getType())); 1885 Entry->eraseFromParent(); 1886 } else { 1887 GA->setName(MangledName); 1888 } 1889 1890 // Set attributes which are particular to an alias; this is a 1891 // specialization of the attributes which may be set on a global 1892 // variable/function. 1893 if (D->hasAttr<DLLExportAttr>()) { 1894 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1895 // The dllexport attribute is ignored for undefined symbols. 1896 if (FD->hasBody()) 1897 GA->setLinkage(llvm::Function::DLLExportLinkage); 1898 } else { 1899 GA->setLinkage(llvm::Function::DLLExportLinkage); 1900 } 1901 } else if (D->hasAttr<WeakAttr>() || 1902 D->hasAttr<WeakRefAttr>() || 1903 D->isWeakImported()) { 1904 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1905 } 1906 1907 SetCommonAttributes(D, GA); 1908 } 1909 1910 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1911 ArrayRef<llvm::Type*> Tys) { 1912 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1913 Tys); 1914 } 1915 1916 static llvm::StringMapEntry<llvm::Constant*> & 1917 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1918 const StringLiteral *Literal, 1919 bool TargetIsLSB, 1920 bool &IsUTF16, 1921 unsigned &StringLength) { 1922 StringRef String = Literal->getString(); 1923 unsigned NumBytes = String.size(); 1924 1925 // Check for simple case. 1926 if (!Literal->containsNonAsciiOrNull()) { 1927 StringLength = NumBytes; 1928 return Map.GetOrCreateValue(String); 1929 } 1930 1931 // Otherwise, convert the UTF8 literals into a string of shorts. 1932 IsUTF16 = true; 1933 1934 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1935 const UTF8 *FromPtr = (UTF8 *)String.data(); 1936 UTF16 *ToPtr = &ToBuf[0]; 1937 1938 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1939 &ToPtr, ToPtr + NumBytes, 1940 strictConversion); 1941 1942 // ConvertUTF8toUTF16 returns the length in ToPtr. 1943 StringLength = ToPtr - &ToBuf[0]; 1944 1945 // Add an explicit null. 1946 *ToPtr = 0; 1947 return Map. 1948 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1949 (StringLength + 1) * 2)); 1950 } 1951 1952 static llvm::StringMapEntry<llvm::Constant*> & 1953 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1954 const StringLiteral *Literal, 1955 unsigned &StringLength) { 1956 StringRef String = Literal->getString(); 1957 StringLength = String.size(); 1958 return Map.GetOrCreateValue(String); 1959 } 1960 1961 llvm::Constant * 1962 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1963 unsigned StringLength = 0; 1964 bool isUTF16 = false; 1965 llvm::StringMapEntry<llvm::Constant*> &Entry = 1966 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1967 getTargetData().isLittleEndian(), 1968 isUTF16, StringLength); 1969 1970 if (llvm::Constant *C = Entry.getValue()) 1971 return C; 1972 1973 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1974 llvm::Constant *Zeros[] = { Zero, Zero }; 1975 1976 // If we don't already have it, get __CFConstantStringClassReference. 1977 if (!CFConstantStringClassRef) { 1978 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1979 Ty = llvm::ArrayType::get(Ty, 0); 1980 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1981 "__CFConstantStringClassReference"); 1982 // Decay array -> ptr 1983 CFConstantStringClassRef = 1984 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1985 } 1986 1987 QualType CFTy = getContext().getCFConstantStringType(); 1988 1989 llvm::StructType *STy = 1990 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1991 1992 llvm::Constant *Fields[4]; 1993 1994 // Class pointer. 1995 Fields[0] = CFConstantStringClassRef; 1996 1997 // Flags. 1998 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1999 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2000 llvm::ConstantInt::get(Ty, 0x07C8); 2001 2002 // String pointer. 2003 llvm::Constant *C = 0; 2004 if (isUTF16) { 2005 ArrayRef<uint16_t> Arr = 2006 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2007 Entry.getKey().size() / 2); 2008 C = llvm::ConstantDataArray::get(VMContext, Arr); 2009 } else { 2010 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2011 } 2012 2013 llvm::GlobalValue::LinkageTypes Linkage; 2014 if (isUTF16) 2015 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2016 Linkage = llvm::GlobalValue::InternalLinkage; 2017 else 2018 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2019 // when using private linkage. It is not clear if this is a bug in ld 2020 // or a reasonable new restriction. 2021 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2022 2023 // Note: -fwritable-strings doesn't make the backing store strings of 2024 // CFStrings writable. (See <rdar://problem/10657500>) 2025 llvm::GlobalVariable *GV = 2026 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2027 Linkage, C, ".str"); 2028 GV->setUnnamedAddr(true); 2029 if (isUTF16) { 2030 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2031 GV->setAlignment(Align.getQuantity()); 2032 } else { 2033 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2034 GV->setAlignment(Align.getQuantity()); 2035 } 2036 2037 // String. 2038 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2039 2040 if (isUTF16) 2041 // Cast the UTF16 string to the correct type. 2042 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2043 2044 // String length. 2045 Ty = getTypes().ConvertType(getContext().LongTy); 2046 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2047 2048 // The struct. 2049 C = llvm::ConstantStruct::get(STy, Fields); 2050 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2051 llvm::GlobalVariable::PrivateLinkage, C, 2052 "_unnamed_cfstring_"); 2053 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2054 GV->setSection(Sect); 2055 Entry.setValue(GV); 2056 2057 return GV; 2058 } 2059 2060 static RecordDecl * 2061 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2062 DeclContext *DC, IdentifierInfo *Id) { 2063 SourceLocation Loc; 2064 if (Ctx.getLangOpts().CPlusPlus) 2065 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2066 else 2067 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2068 } 2069 2070 llvm::Constant * 2071 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2072 unsigned StringLength = 0; 2073 llvm::StringMapEntry<llvm::Constant*> &Entry = 2074 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2075 2076 if (llvm::Constant *C = Entry.getValue()) 2077 return C; 2078 2079 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2080 llvm::Constant *Zeros[] = { Zero, Zero }; 2081 2082 // If we don't already have it, get _NSConstantStringClassReference. 2083 if (!ConstantStringClassRef) { 2084 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2085 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2086 llvm::Constant *GV; 2087 if (LangOpts.ObjCNonFragileABI) { 2088 std::string str = 2089 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2090 : "OBJC_CLASS_$_" + StringClass; 2091 GV = getObjCRuntime().GetClassGlobal(str); 2092 // Make sure the result is of the correct type. 2093 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2094 ConstantStringClassRef = 2095 llvm::ConstantExpr::getBitCast(GV, PTy); 2096 } else { 2097 std::string str = 2098 StringClass.empty() ? "_NSConstantStringClassReference" 2099 : "_" + StringClass + "ClassReference"; 2100 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2101 GV = CreateRuntimeVariable(PTy, str); 2102 // Decay array -> ptr 2103 ConstantStringClassRef = 2104 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2105 } 2106 } 2107 2108 if (!NSConstantStringType) { 2109 // Construct the type for a constant NSString. 2110 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2111 Context.getTranslationUnitDecl(), 2112 &Context.Idents.get("__builtin_NSString")); 2113 D->startDefinition(); 2114 2115 QualType FieldTypes[3]; 2116 2117 // const int *isa; 2118 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2119 // const char *str; 2120 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2121 // unsigned int length; 2122 FieldTypes[2] = Context.UnsignedIntTy; 2123 2124 // Create fields 2125 for (unsigned i = 0; i < 3; ++i) { 2126 FieldDecl *Field = FieldDecl::Create(Context, D, 2127 SourceLocation(), 2128 SourceLocation(), 0, 2129 FieldTypes[i], /*TInfo=*/0, 2130 /*BitWidth=*/0, 2131 /*Mutable=*/false, 2132 /*HasInit=*/false); 2133 Field->setAccess(AS_public); 2134 D->addDecl(Field); 2135 } 2136 2137 D->completeDefinition(); 2138 QualType NSTy = Context.getTagDeclType(D); 2139 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2140 } 2141 2142 llvm::Constant *Fields[3]; 2143 2144 // Class pointer. 2145 Fields[0] = ConstantStringClassRef; 2146 2147 // String pointer. 2148 llvm::Constant *C = 2149 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2150 2151 llvm::GlobalValue::LinkageTypes Linkage; 2152 bool isConstant; 2153 Linkage = llvm::GlobalValue::PrivateLinkage; 2154 isConstant = !LangOpts.WritableStrings; 2155 2156 llvm::GlobalVariable *GV = 2157 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2158 ".str"); 2159 GV->setUnnamedAddr(true); 2160 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2161 GV->setAlignment(Align.getQuantity()); 2162 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2163 2164 // String length. 2165 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2166 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2167 2168 // The struct. 2169 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2170 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2171 llvm::GlobalVariable::PrivateLinkage, C, 2172 "_unnamed_nsstring_"); 2173 // FIXME. Fix section. 2174 if (const char *Sect = 2175 LangOpts.ObjCNonFragileABI 2176 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2177 : getContext().getTargetInfo().getNSStringSection()) 2178 GV->setSection(Sect); 2179 Entry.setValue(GV); 2180 2181 return GV; 2182 } 2183 2184 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2185 if (ObjCFastEnumerationStateType.isNull()) { 2186 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2187 Context.getTranslationUnitDecl(), 2188 &Context.Idents.get("__objcFastEnumerationState")); 2189 D->startDefinition(); 2190 2191 QualType FieldTypes[] = { 2192 Context.UnsignedLongTy, 2193 Context.getPointerType(Context.getObjCIdType()), 2194 Context.getPointerType(Context.UnsignedLongTy), 2195 Context.getConstantArrayType(Context.UnsignedLongTy, 2196 llvm::APInt(32, 5), ArrayType::Normal, 0) 2197 }; 2198 2199 for (size_t i = 0; i < 4; ++i) { 2200 FieldDecl *Field = FieldDecl::Create(Context, 2201 D, 2202 SourceLocation(), 2203 SourceLocation(), 0, 2204 FieldTypes[i], /*TInfo=*/0, 2205 /*BitWidth=*/0, 2206 /*Mutable=*/false, 2207 /*HasInit=*/false); 2208 Field->setAccess(AS_public); 2209 D->addDecl(Field); 2210 } 2211 2212 D->completeDefinition(); 2213 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2214 } 2215 2216 return ObjCFastEnumerationStateType; 2217 } 2218 2219 llvm::Constant * 2220 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2221 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2222 2223 // Don't emit it as the address of the string, emit the string data itself 2224 // as an inline array. 2225 if (E->getCharByteWidth() == 1) { 2226 SmallString<64> Str(E->getString()); 2227 2228 // Resize the string to the right size, which is indicated by its type. 2229 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2230 Str.resize(CAT->getSize().getZExtValue()); 2231 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2232 } 2233 2234 llvm::ArrayType *AType = 2235 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2236 llvm::Type *ElemTy = AType->getElementType(); 2237 unsigned NumElements = AType->getNumElements(); 2238 2239 // Wide strings have either 2-byte or 4-byte elements. 2240 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2241 SmallVector<uint16_t, 32> Elements; 2242 Elements.reserve(NumElements); 2243 2244 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2245 Elements.push_back(E->getCodeUnit(i)); 2246 Elements.resize(NumElements); 2247 return llvm::ConstantDataArray::get(VMContext, Elements); 2248 } 2249 2250 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2251 SmallVector<uint32_t, 32> Elements; 2252 Elements.reserve(NumElements); 2253 2254 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2255 Elements.push_back(E->getCodeUnit(i)); 2256 Elements.resize(NumElements); 2257 return llvm::ConstantDataArray::get(VMContext, Elements); 2258 } 2259 2260 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2261 /// constant array for the given string literal. 2262 llvm::Constant * 2263 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2264 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2265 if (S->isAscii() || S->isUTF8()) { 2266 SmallString<64> Str(S->getString()); 2267 2268 // Resize the string to the right size, which is indicated by its type. 2269 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2270 Str.resize(CAT->getSize().getZExtValue()); 2271 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2272 } 2273 2274 // FIXME: the following does not memoize wide strings. 2275 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2276 llvm::GlobalVariable *GV = 2277 new llvm::GlobalVariable(getModule(),C->getType(), 2278 !LangOpts.WritableStrings, 2279 llvm::GlobalValue::PrivateLinkage, 2280 C,".str"); 2281 2282 GV->setAlignment(Align.getQuantity()); 2283 GV->setUnnamedAddr(true); 2284 return GV; 2285 } 2286 2287 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2288 /// array for the given ObjCEncodeExpr node. 2289 llvm::Constant * 2290 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2291 std::string Str; 2292 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2293 2294 return GetAddrOfConstantCString(Str); 2295 } 2296 2297 2298 /// GenerateWritableString -- Creates storage for a string literal. 2299 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2300 bool constant, 2301 CodeGenModule &CGM, 2302 const char *GlobalName, 2303 unsigned Alignment) { 2304 // Create Constant for this string literal. Don't add a '\0'. 2305 llvm::Constant *C = 2306 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2307 2308 // Create a global variable for this string 2309 llvm::GlobalVariable *GV = 2310 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2311 llvm::GlobalValue::PrivateLinkage, 2312 C, GlobalName); 2313 GV->setAlignment(Alignment); 2314 GV->setUnnamedAddr(true); 2315 return GV; 2316 } 2317 2318 /// GetAddrOfConstantString - Returns a pointer to a character array 2319 /// containing the literal. This contents are exactly that of the 2320 /// given string, i.e. it will not be null terminated automatically; 2321 /// see GetAddrOfConstantCString. Note that whether the result is 2322 /// actually a pointer to an LLVM constant depends on 2323 /// Feature.WriteableStrings. 2324 /// 2325 /// The result has pointer to array type. 2326 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2327 const char *GlobalName, 2328 unsigned Alignment) { 2329 // Get the default prefix if a name wasn't specified. 2330 if (!GlobalName) 2331 GlobalName = ".str"; 2332 2333 // Don't share any string literals if strings aren't constant. 2334 if (LangOpts.WritableStrings) 2335 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2336 2337 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2338 ConstantStringMap.GetOrCreateValue(Str); 2339 2340 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2341 if (Alignment > GV->getAlignment()) { 2342 GV->setAlignment(Alignment); 2343 } 2344 return GV; 2345 } 2346 2347 // Create a global variable for this. 2348 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2349 Alignment); 2350 Entry.setValue(GV); 2351 return GV; 2352 } 2353 2354 /// GetAddrOfConstantCString - Returns a pointer to a character 2355 /// array containing the literal and a terminating '\0' 2356 /// character. The result has pointer to array type. 2357 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2358 const char *GlobalName, 2359 unsigned Alignment) { 2360 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2361 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2362 } 2363 2364 /// EmitObjCPropertyImplementations - Emit information for synthesized 2365 /// properties for an implementation. 2366 void CodeGenModule::EmitObjCPropertyImplementations(const 2367 ObjCImplementationDecl *D) { 2368 for (ObjCImplementationDecl::propimpl_iterator 2369 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2370 ObjCPropertyImplDecl *PID = &*i; 2371 2372 // Dynamic is just for type-checking. 2373 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2374 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2375 2376 // Determine which methods need to be implemented, some may have 2377 // been overridden. Note that ::isSynthesized is not the method 2378 // we want, that just indicates if the decl came from a 2379 // property. What we want to know is if the method is defined in 2380 // this implementation. 2381 if (!D->getInstanceMethod(PD->getGetterName())) 2382 CodeGenFunction(*this).GenerateObjCGetter( 2383 const_cast<ObjCImplementationDecl *>(D), PID); 2384 if (!PD->isReadOnly() && 2385 !D->getInstanceMethod(PD->getSetterName())) 2386 CodeGenFunction(*this).GenerateObjCSetter( 2387 const_cast<ObjCImplementationDecl *>(D), PID); 2388 } 2389 } 2390 } 2391 2392 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2393 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2394 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2395 ivar; ivar = ivar->getNextIvar()) 2396 if (ivar->getType().isDestructedType()) 2397 return true; 2398 2399 return false; 2400 } 2401 2402 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2403 /// for an implementation. 2404 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2405 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2406 if (needsDestructMethod(D)) { 2407 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2408 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2409 ObjCMethodDecl *DTORMethod = 2410 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2411 cxxSelector, getContext().VoidTy, 0, D, 2412 /*isInstance=*/true, /*isVariadic=*/false, 2413 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2414 /*isDefined=*/false, ObjCMethodDecl::Required); 2415 D->addInstanceMethod(DTORMethod); 2416 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2417 D->setHasCXXStructors(true); 2418 } 2419 2420 // If the implementation doesn't have any ivar initializers, we don't need 2421 // a .cxx_construct. 2422 if (D->getNumIvarInitializers() == 0) 2423 return; 2424 2425 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2426 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2427 // The constructor returns 'self'. 2428 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2429 D->getLocation(), 2430 D->getLocation(), 2431 cxxSelector, 2432 getContext().getObjCIdType(), 0, 2433 D, /*isInstance=*/true, 2434 /*isVariadic=*/false, 2435 /*isSynthesized=*/true, 2436 /*isImplicitlyDeclared=*/true, 2437 /*isDefined=*/false, 2438 ObjCMethodDecl::Required); 2439 D->addInstanceMethod(CTORMethod); 2440 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2441 D->setHasCXXStructors(true); 2442 } 2443 2444 /// EmitNamespace - Emit all declarations in a namespace. 2445 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2446 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2447 I != E; ++I) 2448 EmitTopLevelDecl(*I); 2449 } 2450 2451 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2452 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2453 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2454 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2455 ErrorUnsupported(LSD, "linkage spec"); 2456 return; 2457 } 2458 2459 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2460 I != E; ++I) 2461 EmitTopLevelDecl(*I); 2462 } 2463 2464 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2465 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2466 // If an error has occurred, stop code generation, but continue 2467 // parsing and semantic analysis (to ensure all warnings and errors 2468 // are emitted). 2469 if (Diags.hasErrorOccurred()) 2470 return; 2471 2472 // Ignore dependent declarations. 2473 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2474 return; 2475 2476 switch (D->getKind()) { 2477 case Decl::CXXConversion: 2478 case Decl::CXXMethod: 2479 case Decl::Function: 2480 // Skip function templates 2481 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2482 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2483 return; 2484 2485 EmitGlobal(cast<FunctionDecl>(D)); 2486 break; 2487 2488 case Decl::Var: 2489 EmitGlobal(cast<VarDecl>(D)); 2490 break; 2491 2492 // Indirect fields from global anonymous structs and unions can be 2493 // ignored; only the actual variable requires IR gen support. 2494 case Decl::IndirectField: 2495 break; 2496 2497 // C++ Decls 2498 case Decl::Namespace: 2499 EmitNamespace(cast<NamespaceDecl>(D)); 2500 break; 2501 // No code generation needed. 2502 case Decl::UsingShadow: 2503 case Decl::Using: 2504 case Decl::UsingDirective: 2505 case Decl::ClassTemplate: 2506 case Decl::FunctionTemplate: 2507 case Decl::TypeAliasTemplate: 2508 case Decl::NamespaceAlias: 2509 case Decl::Block: 2510 case Decl::Import: 2511 break; 2512 case Decl::CXXConstructor: 2513 // Skip function templates 2514 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2515 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2516 return; 2517 2518 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2519 break; 2520 case Decl::CXXDestructor: 2521 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2522 return; 2523 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2524 break; 2525 2526 case Decl::StaticAssert: 2527 // Nothing to do. 2528 break; 2529 2530 // Objective-C Decls 2531 2532 // Forward declarations, no (immediate) code generation. 2533 case Decl::ObjCInterface: 2534 break; 2535 2536 case Decl::ObjCCategory: { 2537 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2538 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2539 Context.ResetObjCLayout(CD->getClassInterface()); 2540 break; 2541 } 2542 2543 case Decl::ObjCProtocol: { 2544 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2545 if (Proto->isThisDeclarationADefinition()) 2546 ObjCRuntime->GenerateProtocol(Proto); 2547 break; 2548 } 2549 2550 case Decl::ObjCCategoryImpl: 2551 // Categories have properties but don't support synthesize so we 2552 // can ignore them here. 2553 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2554 break; 2555 2556 case Decl::ObjCImplementation: { 2557 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2558 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2559 Context.ResetObjCLayout(OMD->getClassInterface()); 2560 EmitObjCPropertyImplementations(OMD); 2561 EmitObjCIvarInitializations(OMD); 2562 ObjCRuntime->GenerateClass(OMD); 2563 // Emit global variable debug information. 2564 if (CGDebugInfo *DI = getModuleDebugInfo()) 2565 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2566 OMD->getLocation()); 2567 2568 break; 2569 } 2570 case Decl::ObjCMethod: { 2571 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2572 // If this is not a prototype, emit the body. 2573 if (OMD->getBody()) 2574 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2575 break; 2576 } 2577 case Decl::ObjCCompatibleAlias: 2578 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2579 break; 2580 2581 case Decl::LinkageSpec: 2582 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2583 break; 2584 2585 case Decl::FileScopeAsm: { 2586 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2587 StringRef AsmString = AD->getAsmString()->getString(); 2588 2589 const std::string &S = getModule().getModuleInlineAsm(); 2590 if (S.empty()) 2591 getModule().setModuleInlineAsm(AsmString); 2592 else if (*--S.end() == '\n') 2593 getModule().setModuleInlineAsm(S + AsmString.str()); 2594 else 2595 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2596 break; 2597 } 2598 2599 default: 2600 // Make sure we handled everything we should, every other kind is a 2601 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2602 // function. Need to recode Decl::Kind to do that easily. 2603 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2604 } 2605 } 2606 2607 /// Turns the given pointer into a constant. 2608 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2609 const void *Ptr) { 2610 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2611 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2612 return llvm::ConstantInt::get(i64, PtrInt); 2613 } 2614 2615 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2616 llvm::NamedMDNode *&GlobalMetadata, 2617 GlobalDecl D, 2618 llvm::GlobalValue *Addr) { 2619 if (!GlobalMetadata) 2620 GlobalMetadata = 2621 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2622 2623 // TODO: should we report variant information for ctors/dtors? 2624 llvm::Value *Ops[] = { 2625 Addr, 2626 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2627 }; 2628 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2629 } 2630 2631 /// Emits metadata nodes associating all the global values in the 2632 /// current module with the Decls they came from. This is useful for 2633 /// projects using IR gen as a subroutine. 2634 /// 2635 /// Since there's currently no way to associate an MDNode directly 2636 /// with an llvm::GlobalValue, we create a global named metadata 2637 /// with the name 'clang.global.decl.ptrs'. 2638 void CodeGenModule::EmitDeclMetadata() { 2639 llvm::NamedMDNode *GlobalMetadata = 0; 2640 2641 // StaticLocalDeclMap 2642 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2643 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2644 I != E; ++I) { 2645 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2646 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2647 } 2648 } 2649 2650 /// Emits metadata nodes for all the local variables in the current 2651 /// function. 2652 void CodeGenFunction::EmitDeclMetadata() { 2653 if (LocalDeclMap.empty()) return; 2654 2655 llvm::LLVMContext &Context = getLLVMContext(); 2656 2657 // Find the unique metadata ID for this name. 2658 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2659 2660 llvm::NamedMDNode *GlobalMetadata = 0; 2661 2662 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2663 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2664 const Decl *D = I->first; 2665 llvm::Value *Addr = I->second; 2666 2667 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2668 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2669 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2670 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2671 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2672 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2673 } 2674 } 2675 } 2676 2677 void CodeGenModule::EmitCoverageFile() { 2678 if (!getCodeGenOpts().CoverageFile.empty()) { 2679 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2680 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2681 llvm::LLVMContext &Ctx = TheModule.getContext(); 2682 llvm::MDString *CoverageFile = 2683 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2684 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2685 llvm::MDNode *CU = CUNode->getOperand(i); 2686 llvm::Value *node[] = { CoverageFile, CU }; 2687 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2688 GCov->addOperand(N); 2689 } 2690 } 2691 } 2692 } 2693