xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f3d3db65de4e2937cd2efa3de984b2d35c9ec5c0)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "CoverageMappingGen.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericMIPS:
68   case TargetCXXABI::GenericItanium:
69     return CreateItaniumCXXABI(CGM);
70   case TargetCXXABI::Microsoft:
71     return CreateMicrosoftCXXABI(CGM);
72   }
73 
74   llvm_unreachable("invalid C++ ABI kind");
75 }
76 
77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
78                              llvm::Module &M, const llvm::DataLayout &TD,
79                              DiagnosticsEngine &diags,
80                              CoverageSourceInfo *CoverageInfo)
81     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
82       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
83       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
84       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
85       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
86       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
87       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
88       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
89       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
90       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
91       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
92       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
93       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
100   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
101   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
102   FloatTy = llvm::Type::getFloatTy(LLVMContext);
103   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105   PointerAlignInBytes =
106   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109   Int8PtrTy = Int8Ty->getPointerTo(0);
110   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111 
112   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     auto ReaderOrErr =
145         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
146     if (std::error_code EC = ReaderOrErr.getError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile: %0");
149       getDiags().Report(DiagID) << EC.message();
150     }
151     PGOReader = std::move(ReaderOrErr.get());
152   }
153 
154   // If coverage mapping generation is enabled, create the
155   // CoverageMappingModuleGen object.
156   if (CodeGenOpts.CoverageMapping)
157     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
158 }
159 
160 CodeGenModule::~CodeGenModule() {
161   delete ObjCRuntime;
162   delete OpenCLRuntime;
163   delete OpenMPRuntime;
164   delete CUDARuntime;
165   delete TheTargetCodeGenInfo;
166   delete TBAA;
167   delete DebugInfo;
168   delete ARCData;
169   delete RRData;
170 }
171 
172 void CodeGenModule::createObjCRuntime() {
173   // This is just isGNUFamily(), but we want to force implementors of
174   // new ABIs to decide how best to do this.
175   switch (LangOpts.ObjCRuntime.getKind()) {
176   case ObjCRuntime::GNUstep:
177   case ObjCRuntime::GCC:
178   case ObjCRuntime::ObjFW:
179     ObjCRuntime = CreateGNUObjCRuntime(*this);
180     return;
181 
182   case ObjCRuntime::FragileMacOSX:
183   case ObjCRuntime::MacOSX:
184   case ObjCRuntime::iOS:
185     ObjCRuntime = CreateMacObjCRuntime(*this);
186     return;
187   }
188   llvm_unreachable("bad runtime kind");
189 }
190 
191 void CodeGenModule::createOpenCLRuntime() {
192   OpenCLRuntime = new CGOpenCLRuntime(*this);
193 }
194 
195 void CodeGenModule::createOpenMPRuntime() {
196   OpenMPRuntime = new CGOpenMPRuntime(*this);
197 }
198 
199 void CodeGenModule::createCUDARuntime() {
200   CUDARuntime = CreateNVCUDARuntime(*this);
201 }
202 
203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
204   Replacements[Name] = C;
205 }
206 
207 void CodeGenModule::applyReplacements() {
208   for (ReplacementsTy::iterator I = Replacements.begin(),
209                                 E = Replacements.end();
210        I != E; ++I) {
211     StringRef MangledName = I->first();
212     llvm::Constant *Replacement = I->second;
213     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
214     if (!Entry)
215       continue;
216     auto *OldF = cast<llvm::Function>(Entry);
217     auto *NewF = dyn_cast<llvm::Function>(Replacement);
218     if (!NewF) {
219       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
220         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
221       } else {
222         auto *CE = cast<llvm::ConstantExpr>(Replacement);
223         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
224                CE->getOpcode() == llvm::Instruction::GetElementPtr);
225         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
226       }
227     }
228 
229     // Replace old with new, but keep the old order.
230     OldF->replaceAllUsesWith(Replacement);
231     if (NewF) {
232       NewF->removeFromParent();
233       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
234     }
235     OldF->eraseFromParent();
236   }
237 }
238 
239 // This is only used in aliases that we created and we know they have a
240 // linear structure.
241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
242   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
243   const llvm::Constant *C = &GA;
244   for (;;) {
245     C = C->stripPointerCasts();
246     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
247       return GO;
248     // stripPointerCasts will not walk over weak aliases.
249     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
250     if (!GA2)
251       return nullptr;
252     if (!Visited.insert(GA2).second)
253       return nullptr;
254     C = GA2->getAliasee();
255   }
256 }
257 
258 void CodeGenModule::checkAliases() {
259   // Check if the constructed aliases are well formed. It is really unfortunate
260   // that we have to do this in CodeGen, but we only construct mangled names
261   // and aliases during codegen.
262   bool Error = false;
263   DiagnosticsEngine &Diags = getDiags();
264   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
265          E = Aliases.end(); I != E; ++I) {
266     const GlobalDecl &GD = *I;
267     const auto *D = cast<ValueDecl>(GD.getDecl());
268     const AliasAttr *AA = D->getAttr<AliasAttr>();
269     StringRef MangledName = getMangledName(GD);
270     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
271     auto *Alias = cast<llvm::GlobalAlias>(Entry);
272     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
273     if (!GV) {
274       Error = true;
275       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
276     } else if (GV->isDeclaration()) {
277       Error = true;
278       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
279     }
280 
281     llvm::Constant *Aliasee = Alias->getAliasee();
282     llvm::GlobalValue *AliaseeGV;
283     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
284       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
285     else
286       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
287 
288     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
289       StringRef AliasSection = SA->getName();
290       if (AliasSection != AliaseeGV->getSection())
291         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
292             << AliasSection;
293     }
294 
295     // We have to handle alias to weak aliases in here. LLVM itself disallows
296     // this since the object semantics would not match the IL one. For
297     // compatibility with gcc we implement it by just pointing the alias
298     // to its aliasee's aliasee. We also warn, since the user is probably
299     // expecting the link to be weak.
300     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
301       if (GA->mayBeOverridden()) {
302         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
303             << GV->getName() << GA->getName();
304         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
305             GA->getAliasee(), Alias->getType());
306         Alias->setAliasee(Aliasee);
307       }
308     }
309   }
310   if (!Error)
311     return;
312 
313   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
314          E = Aliases.end(); I != E; ++I) {
315     const GlobalDecl &GD = *I;
316     StringRef MangledName = getMangledName(GD);
317     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
318     auto *Alias = cast<llvm::GlobalAlias>(Entry);
319     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
320     Alias->eraseFromParent();
321   }
322 }
323 
324 void CodeGenModule::clear() {
325   DeferredDeclsToEmit.clear();
326   if (OpenMPRuntime)
327     OpenMPRuntime->clear();
328 }
329 
330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
331                                        StringRef MainFile) {
332   if (!hasDiagnostics())
333     return;
334   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
335     if (MainFile.empty())
336       MainFile = "<stdin>";
337     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
338   } else
339     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
340                                                       << Mismatched;
341 }
342 
343 void CodeGenModule::Release() {
344   EmitDeferred();
345   applyReplacements();
346   checkAliases();
347   EmitCXXGlobalInitFunc();
348   EmitCXXGlobalDtorFunc();
349   EmitCXXThreadLocalInitFunc();
350   if (ObjCRuntime)
351     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
352       AddGlobalCtor(ObjCInitFunction);
353   if (PGOReader && PGOStats.hasDiagnostics())
354     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
355   EmitCtorList(GlobalCtors, "llvm.global_ctors");
356   EmitCtorList(GlobalDtors, "llvm.global_dtors");
357   EmitGlobalAnnotations();
358   EmitStaticExternCAliases();
359   EmitDeferredUnusedCoverageMappings();
360   if (CoverageMapping)
361     CoverageMapping->emit();
362   emitLLVMUsed();
363 
364   if (CodeGenOpts.Autolink &&
365       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
366     EmitModuleLinkOptions();
367   }
368   if (CodeGenOpts.DwarfVersion)
369     // We actually want the latest version when there are conflicts.
370     // We can change from Warning to Latest if such mode is supported.
371     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
372                               CodeGenOpts.DwarfVersion);
373   if (DebugInfo)
374     // We support a single version in the linked module. The LLVM
375     // parser will drop debug info with a different version number
376     // (and warn about it, too).
377     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
378                               llvm::DEBUG_METADATA_VERSION);
379 
380   // We need to record the widths of enums and wchar_t, so that we can generate
381   // the correct build attributes in the ARM backend.
382   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
383   if (   Arch == llvm::Triple::arm
384       || Arch == llvm::Triple::armeb
385       || Arch == llvm::Triple::thumb
386       || Arch == llvm::Triple::thumbeb) {
387     // Width of wchar_t in bytes
388     uint64_t WCharWidth =
389         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
390     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
391 
392     // The minimum width of an enum in bytes
393     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
394     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
395   }
396 
397   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
398     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
399     switch (PLevel) {
400     case 0: break;
401     case 1: PL = llvm::PICLevel::Small; break;
402     case 2: PL = llvm::PICLevel::Large; break;
403     default: llvm_unreachable("Invalid PIC Level");
404     }
405 
406     getModule().setPICLevel(PL);
407   }
408 
409   SimplifyPersonality();
410 
411   if (getCodeGenOpts().EmitDeclMetadata)
412     EmitDeclMetadata();
413 
414   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
415     EmitCoverageFile();
416 
417   if (DebugInfo)
418     DebugInfo->finalize();
419 
420   EmitVersionIdentMetadata();
421 
422   EmitTargetMetadata();
423 }
424 
425 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
426   // Make sure that this type is translated.
427   Types.UpdateCompletedType(TD);
428 }
429 
430 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
431   if (!TBAA)
432     return nullptr;
433   return TBAA->getTBAAInfo(QTy);
434 }
435 
436 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
437   if (!TBAA)
438     return nullptr;
439   return TBAA->getTBAAInfoForVTablePtr();
440 }
441 
442 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
443   if (!TBAA)
444     return nullptr;
445   return TBAA->getTBAAStructInfo(QTy);
446 }
447 
448 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
449   if (!TBAA)
450     return nullptr;
451   return TBAA->getTBAAStructTypeInfo(QTy);
452 }
453 
454 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
455                                                   llvm::MDNode *AccessN,
456                                                   uint64_t O) {
457   if (!TBAA)
458     return nullptr;
459   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
460 }
461 
462 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
463 /// and struct-path aware TBAA, the tag has the same format:
464 /// base type, access type and offset.
465 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
466 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
467                                         llvm::MDNode *TBAAInfo,
468                                         bool ConvertTypeToTag) {
469   if (ConvertTypeToTag && TBAA)
470     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
471                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
472   else
473     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
474 }
475 
476 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
477   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
478   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
479 }
480 
481 /// ErrorUnsupported - Print out an error that codegen doesn't support the
482 /// specified stmt yet.
483 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
484   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
485                                                "cannot compile this %0 yet");
486   std::string Msg = Type;
487   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
488     << Msg << S->getSourceRange();
489 }
490 
491 /// ErrorUnsupported - Print out an error that codegen doesn't support the
492 /// specified decl yet.
493 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
494   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
495                                                "cannot compile this %0 yet");
496   std::string Msg = Type;
497   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
498 }
499 
500 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
501   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
502 }
503 
504 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
505                                         const NamedDecl *D) const {
506   // Internal definitions always have default visibility.
507   if (GV->hasLocalLinkage()) {
508     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
509     return;
510   }
511 
512   // Set visibility for definitions.
513   LinkageInfo LV = D->getLinkageAndVisibility();
514   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
515     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
516 }
517 
518 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
519   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
520       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
521       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
522       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
523       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
524 }
525 
526 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
527     CodeGenOptions::TLSModel M) {
528   switch (M) {
529   case CodeGenOptions::GeneralDynamicTLSModel:
530     return llvm::GlobalVariable::GeneralDynamicTLSModel;
531   case CodeGenOptions::LocalDynamicTLSModel:
532     return llvm::GlobalVariable::LocalDynamicTLSModel;
533   case CodeGenOptions::InitialExecTLSModel:
534     return llvm::GlobalVariable::InitialExecTLSModel;
535   case CodeGenOptions::LocalExecTLSModel:
536     return llvm::GlobalVariable::LocalExecTLSModel;
537   }
538   llvm_unreachable("Invalid TLS model!");
539 }
540 
541 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
542   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
543 
544   llvm::GlobalValue::ThreadLocalMode TLM;
545   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
546 
547   // Override the TLS model if it is explicitly specified.
548   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
549     TLM = GetLLVMTLSModel(Attr->getModel());
550   }
551 
552   GV->setThreadLocalMode(TLM);
553 }
554 
555 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
556   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
557   if (!FoundStr.empty())
558     return FoundStr;
559 
560   const auto *ND = cast<NamedDecl>(GD.getDecl());
561   SmallString<256> Buffer;
562   StringRef Str;
563   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
564     llvm::raw_svector_ostream Out(Buffer);
565     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
566       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
567     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
568       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
569     else
570       getCXXABI().getMangleContext().mangleName(ND, Out);
571     Str = Out.str();
572   } else {
573     IdentifierInfo *II = ND->getIdentifier();
574     assert(II && "Attempt to mangle unnamed decl.");
575     Str = II->getName();
576   }
577 
578   // Keep the first result in the case of a mangling collision.
579   auto Result = Manglings.insert(std::make_pair(Str, GD));
580   return FoundStr = Result.first->first();
581 }
582 
583 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
584                                              const BlockDecl *BD) {
585   MangleContext &MangleCtx = getCXXABI().getMangleContext();
586   const Decl *D = GD.getDecl();
587 
588   SmallString<256> Buffer;
589   llvm::raw_svector_ostream Out(Buffer);
590   if (!D)
591     MangleCtx.mangleGlobalBlock(BD,
592       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
593   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
594     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
595   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
596     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
597   else
598     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
599 
600   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
601   return Result.first->first();
602 }
603 
604 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
605   return getModule().getNamedValue(Name);
606 }
607 
608 /// AddGlobalCtor - Add a function to the list that will be called before
609 /// main() runs.
610 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
611                                   llvm::Constant *AssociatedData) {
612   // FIXME: Type coercion of void()* types.
613   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
614 }
615 
616 /// AddGlobalDtor - Add a function to the list that will be called
617 /// when the module is unloaded.
618 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
619   // FIXME: Type coercion of void()* types.
620   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
621 }
622 
623 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
624   // Ctor function type is void()*.
625   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
626   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
627 
628   // Get the type of a ctor entry, { i32, void ()*, i8* }.
629   llvm::StructType *CtorStructTy = llvm::StructType::get(
630       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
631 
632   // Construct the constructor and destructor arrays.
633   SmallVector<llvm::Constant*, 8> Ctors;
634   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
635     llvm::Constant *S[] = {
636       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
637       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
638       (I->AssociatedData
639            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
640            : llvm::Constant::getNullValue(VoidPtrTy))
641     };
642     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
643   }
644 
645   if (!Ctors.empty()) {
646     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
647     new llvm::GlobalVariable(TheModule, AT, false,
648                              llvm::GlobalValue::AppendingLinkage,
649                              llvm::ConstantArray::get(AT, Ctors),
650                              GlobalName);
651   }
652 }
653 
654 llvm::GlobalValue::LinkageTypes
655 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
656   const auto *D = cast<FunctionDecl>(GD.getDecl());
657 
658   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
659 
660   if (isa<CXXDestructorDecl>(D) &&
661       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
662                                          GD.getDtorType())) {
663     // Destructor variants in the Microsoft C++ ABI are always internal or
664     // linkonce_odr thunks emitted on an as-needed basis.
665     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
666                                    : llvm::GlobalValue::LinkOnceODRLinkage;
667   }
668 
669   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
670 }
671 
672 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
673                                                     llvm::Function *F) {
674   setNonAliasAttributes(D, F);
675 }
676 
677 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
678                                               const CGFunctionInfo &Info,
679                                               llvm::Function *F) {
680   unsigned CallingConv;
681   AttributeListType AttributeList;
682   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
683   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
684   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
685 }
686 
687 /// Determines whether the language options require us to model
688 /// unwind exceptions.  We treat -fexceptions as mandating this
689 /// except under the fragile ObjC ABI with only ObjC exceptions
690 /// enabled.  This means, for example, that C with -fexceptions
691 /// enables this.
692 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
693   // If exceptions are completely disabled, obviously this is false.
694   if (!LangOpts.Exceptions) return false;
695 
696   // If C++ exceptions are enabled, this is true.
697   if (LangOpts.CXXExceptions) return true;
698 
699   // If ObjC exceptions are enabled, this depends on the ABI.
700   if (LangOpts.ObjCExceptions) {
701     return LangOpts.ObjCRuntime.hasUnwindExceptions();
702   }
703 
704   return true;
705 }
706 
707 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
708                                                            llvm::Function *F) {
709   llvm::AttrBuilder B;
710 
711   if (CodeGenOpts.UnwindTables)
712     B.addAttribute(llvm::Attribute::UWTable);
713 
714   if (!hasUnwindExceptions(LangOpts))
715     B.addAttribute(llvm::Attribute::NoUnwind);
716 
717   if (D->hasAttr<NakedAttr>()) {
718     // Naked implies noinline: we should not be inlining such functions.
719     B.addAttribute(llvm::Attribute::Naked);
720     B.addAttribute(llvm::Attribute::NoInline);
721   } else if (D->hasAttr<NoDuplicateAttr>()) {
722     B.addAttribute(llvm::Attribute::NoDuplicate);
723   } else if (D->hasAttr<NoInlineAttr>()) {
724     B.addAttribute(llvm::Attribute::NoInline);
725   } else if (D->hasAttr<AlwaysInlineAttr>() &&
726              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
727                                               llvm::Attribute::NoInline)) {
728     // (noinline wins over always_inline, and we can't specify both in IR)
729     B.addAttribute(llvm::Attribute::AlwaysInline);
730   }
731 
732   if (D->hasAttr<ColdAttr>()) {
733     if (!D->hasAttr<OptimizeNoneAttr>())
734       B.addAttribute(llvm::Attribute::OptimizeForSize);
735     B.addAttribute(llvm::Attribute::Cold);
736   }
737 
738   if (D->hasAttr<MinSizeAttr>())
739     B.addAttribute(llvm::Attribute::MinSize);
740 
741   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
742     B.addAttribute(llvm::Attribute::StackProtect);
743   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
744     B.addAttribute(llvm::Attribute::StackProtectStrong);
745   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
746     B.addAttribute(llvm::Attribute::StackProtectReq);
747 
748   // Add sanitizer attributes if function is not blacklisted.
749   if (!isInSanitizerBlacklist(F, D->getLocation())) {
750     // When AddressSanitizer is enabled, set SanitizeAddress attribute
751     // unless __attribute__((no_sanitize_address)) is used.
752     if (LangOpts.Sanitize.has(SanitizerKind::Address) &&
753         !D->hasAttr<NoSanitizeAddressAttr>())
754       B.addAttribute(llvm::Attribute::SanitizeAddress);
755     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
756     if (LangOpts.Sanitize.has(SanitizerKind::Thread) &&
757         !D->hasAttr<NoSanitizeThreadAttr>())
758       B.addAttribute(llvm::Attribute::SanitizeThread);
759     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
760     if (LangOpts.Sanitize.has(SanitizerKind::Memory) &&
761         !D->hasAttr<NoSanitizeMemoryAttr>())
762       B.addAttribute(llvm::Attribute::SanitizeMemory);
763   }
764 
765   F->addAttributes(llvm::AttributeSet::FunctionIndex,
766                    llvm::AttributeSet::get(
767                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
768 
769   if (D->hasAttr<OptimizeNoneAttr>()) {
770     // OptimizeNone implies noinline; we should not be inlining such functions.
771     F->addFnAttr(llvm::Attribute::OptimizeNone);
772     F->addFnAttr(llvm::Attribute::NoInline);
773 
774     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
775     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
776            "OptimizeNone and OptimizeForSize on same function!");
777     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
778            "OptimizeNone and MinSize on same function!");
779     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
780            "OptimizeNone and AlwaysInline on same function!");
781 
782     // Attribute 'inlinehint' has no effect on 'optnone' functions.
783     // Explicitly remove it from the set of function attributes.
784     F->removeFnAttr(llvm::Attribute::InlineHint);
785   }
786 
787   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
788     F->setUnnamedAddr(true);
789   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
790     if (MD->isVirtual())
791       F->setUnnamedAddr(true);
792 
793   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
794   if (alignment)
795     F->setAlignment(alignment);
796 
797   // C++ ABI requires 2-byte alignment for member functions.
798   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
799     F->setAlignment(2);
800 }
801 
802 void CodeGenModule::SetCommonAttributes(const Decl *D,
803                                         llvm::GlobalValue *GV) {
804   if (const auto *ND = dyn_cast<NamedDecl>(D))
805     setGlobalVisibility(GV, ND);
806   else
807     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
808 
809   if (D->hasAttr<UsedAttr>())
810     addUsedGlobal(GV);
811 }
812 
813 void CodeGenModule::setAliasAttributes(const Decl *D,
814                                        llvm::GlobalValue *GV) {
815   SetCommonAttributes(D, GV);
816 
817   // Process the dllexport attribute based on whether the original definition
818   // (not necessarily the aliasee) was exported.
819   if (D->hasAttr<DLLExportAttr>())
820     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
821 }
822 
823 void CodeGenModule::setNonAliasAttributes(const Decl *D,
824                                           llvm::GlobalObject *GO) {
825   SetCommonAttributes(D, GO);
826 
827   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
828     GO->setSection(SA->getName());
829 
830   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
831 }
832 
833 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
834                                                   llvm::Function *F,
835                                                   const CGFunctionInfo &FI) {
836   SetLLVMFunctionAttributes(D, FI, F);
837   SetLLVMFunctionAttributesForDefinition(D, F);
838 
839   F->setLinkage(llvm::Function::InternalLinkage);
840 
841   setNonAliasAttributes(D, F);
842 }
843 
844 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
845                                          const NamedDecl *ND) {
846   // Set linkage and visibility in case we never see a definition.
847   LinkageInfo LV = ND->getLinkageAndVisibility();
848   if (LV.getLinkage() != ExternalLinkage) {
849     // Don't set internal linkage on declarations.
850   } else {
851     if (ND->hasAttr<DLLImportAttr>()) {
852       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
853       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
854     } else if (ND->hasAttr<DLLExportAttr>()) {
855       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
856       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
857     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
858       // "extern_weak" is overloaded in LLVM; we probably should have
859       // separate linkage types for this.
860       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
861     }
862 
863     // Set visibility on a declaration only if it's explicit.
864     if (LV.isVisibilityExplicit())
865       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
866   }
867 }
868 
869 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
870                                           bool IsIncompleteFunction,
871                                           bool IsThunk) {
872   if (unsigned IID = F->getIntrinsicID()) {
873     // If this is an intrinsic function, set the function's attributes
874     // to the intrinsic's attributes.
875     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
876                                                     (llvm::Intrinsic::ID)IID));
877     return;
878   }
879 
880   const auto *FD = cast<FunctionDecl>(GD.getDecl());
881 
882   if (!IsIncompleteFunction)
883     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
884 
885   // Add the Returned attribute for "this", except for iOS 5 and earlier
886   // where substantial code, including the libstdc++ dylib, was compiled with
887   // GCC and does not actually return "this".
888   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
889       !(getTarget().getTriple().isiOS() &&
890         getTarget().getTriple().isOSVersionLT(6))) {
891     assert(!F->arg_empty() &&
892            F->arg_begin()->getType()
893              ->canLosslesslyBitCastTo(F->getReturnType()) &&
894            "unexpected this return");
895     F->addAttribute(1, llvm::Attribute::Returned);
896   }
897 
898   // Only a few attributes are set on declarations; these may later be
899   // overridden by a definition.
900 
901   setLinkageAndVisibilityForGV(F, FD);
902 
903   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
904     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
905       // Don't dllexport/import destructor thunks.
906       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
907     }
908   }
909 
910   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
911     F->setSection(SA->getName());
912 
913   // A replaceable global allocation function does not act like a builtin by
914   // default, only if it is invoked by a new-expression or delete-expression.
915   if (FD->isReplaceableGlobalAllocationFunction())
916     F->addAttribute(llvm::AttributeSet::FunctionIndex,
917                     llvm::Attribute::NoBuiltin);
918 }
919 
920 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
921   assert(!GV->isDeclaration() &&
922          "Only globals with definition can force usage.");
923   LLVMUsed.push_back(GV);
924 }
925 
926 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
927   assert(!GV->isDeclaration() &&
928          "Only globals with definition can force usage.");
929   LLVMCompilerUsed.push_back(GV);
930 }
931 
932 static void emitUsed(CodeGenModule &CGM, StringRef Name,
933                      std::vector<llvm::WeakVH> &List) {
934   // Don't create llvm.used if there is no need.
935   if (List.empty())
936     return;
937 
938   // Convert List to what ConstantArray needs.
939   SmallVector<llvm::Constant*, 8> UsedArray;
940   UsedArray.resize(List.size());
941   for (unsigned i = 0, e = List.size(); i != e; ++i) {
942     UsedArray[i] =
943         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
944             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
945   }
946 
947   if (UsedArray.empty())
948     return;
949   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
950 
951   auto *GV = new llvm::GlobalVariable(
952       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
953       llvm::ConstantArray::get(ATy, UsedArray), Name);
954 
955   GV->setSection("llvm.metadata");
956 }
957 
958 void CodeGenModule::emitLLVMUsed() {
959   emitUsed(*this, "llvm.used", LLVMUsed);
960   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
961 }
962 
963 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
964   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
965   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
966 }
967 
968 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
969   llvm::SmallString<32> Opt;
970   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
971   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
972   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
973 }
974 
975 void CodeGenModule::AddDependentLib(StringRef Lib) {
976   llvm::SmallString<24> Opt;
977   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
978   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
979   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
980 }
981 
982 /// \brief Add link options implied by the given module, including modules
983 /// it depends on, using a postorder walk.
984 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
985                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
986                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
987   // Import this module's parent.
988   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
989     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
990   }
991 
992   // Import this module's dependencies.
993   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
994     if (Visited.insert(Mod->Imports[I - 1]).second)
995       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
996   }
997 
998   // Add linker options to link against the libraries/frameworks
999   // described by this module.
1000   llvm::LLVMContext &Context = CGM.getLLVMContext();
1001   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1002     // Link against a framework.  Frameworks are currently Darwin only, so we
1003     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1004     if (Mod->LinkLibraries[I-1].IsFramework) {
1005       llvm::Metadata *Args[2] = {
1006           llvm::MDString::get(Context, "-framework"),
1007           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1008 
1009       Metadata.push_back(llvm::MDNode::get(Context, Args));
1010       continue;
1011     }
1012 
1013     // Link against a library.
1014     llvm::SmallString<24> Opt;
1015     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1016       Mod->LinkLibraries[I-1].Library, Opt);
1017     auto *OptString = llvm::MDString::get(Context, Opt);
1018     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1019   }
1020 }
1021 
1022 void CodeGenModule::EmitModuleLinkOptions() {
1023   // Collect the set of all of the modules we want to visit to emit link
1024   // options, which is essentially the imported modules and all of their
1025   // non-explicit child modules.
1026   llvm::SetVector<clang::Module *> LinkModules;
1027   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1028   SmallVector<clang::Module *, 16> Stack;
1029 
1030   // Seed the stack with imported modules.
1031   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1032                                                MEnd = ImportedModules.end();
1033        M != MEnd; ++M) {
1034     if (Visited.insert(*M).second)
1035       Stack.push_back(*M);
1036   }
1037 
1038   // Find all of the modules to import, making a little effort to prune
1039   // non-leaf modules.
1040   while (!Stack.empty()) {
1041     clang::Module *Mod = Stack.pop_back_val();
1042 
1043     bool AnyChildren = false;
1044 
1045     // Visit the submodules of this module.
1046     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1047                                         SubEnd = Mod->submodule_end();
1048          Sub != SubEnd; ++Sub) {
1049       // Skip explicit children; they need to be explicitly imported to be
1050       // linked against.
1051       if ((*Sub)->IsExplicit)
1052         continue;
1053 
1054       if (Visited.insert(*Sub).second) {
1055         Stack.push_back(*Sub);
1056         AnyChildren = true;
1057       }
1058     }
1059 
1060     // We didn't find any children, so add this module to the list of
1061     // modules to link against.
1062     if (!AnyChildren) {
1063       LinkModules.insert(Mod);
1064     }
1065   }
1066 
1067   // Add link options for all of the imported modules in reverse topological
1068   // order.  We don't do anything to try to order import link flags with respect
1069   // to linker options inserted by things like #pragma comment().
1070   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1071   Visited.clear();
1072   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1073                                                MEnd = LinkModules.end();
1074        M != MEnd; ++M) {
1075     if (Visited.insert(*M).second)
1076       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1077   }
1078   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1079   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1080 
1081   // Add the linker options metadata flag.
1082   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1083                             llvm::MDNode::get(getLLVMContext(),
1084                                               LinkerOptionsMetadata));
1085 }
1086 
1087 void CodeGenModule::EmitDeferred() {
1088   // Emit code for any potentially referenced deferred decls.  Since a
1089   // previously unused static decl may become used during the generation of code
1090   // for a static function, iterate until no changes are made.
1091 
1092   if (!DeferredVTables.empty()) {
1093     EmitDeferredVTables();
1094 
1095     // Emitting a v-table doesn't directly cause more v-tables to
1096     // become deferred, although it can cause functions to be
1097     // emitted that then need those v-tables.
1098     assert(DeferredVTables.empty());
1099   }
1100 
1101   // Stop if we're out of both deferred v-tables and deferred declarations.
1102   if (DeferredDeclsToEmit.empty())
1103     return;
1104 
1105   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1106   // work, it will not interfere with this.
1107   std::vector<DeferredGlobal> CurDeclsToEmit;
1108   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1109 
1110   for (DeferredGlobal &G : CurDeclsToEmit) {
1111     GlobalDecl D = G.GD;
1112     llvm::GlobalValue *GV = G.GV;
1113     G.GV = nullptr;
1114 
1115     assert(!GV || GV == GetGlobalValue(getMangledName(D)));
1116     if (!GV)
1117       GV = GetGlobalValue(getMangledName(D));
1118 
1119     // Check to see if we've already emitted this.  This is necessary
1120     // for a couple of reasons: first, decls can end up in the
1121     // deferred-decls queue multiple times, and second, decls can end
1122     // up with definitions in unusual ways (e.g. by an extern inline
1123     // function acquiring a strong function redefinition).  Just
1124     // ignore these cases.
1125     if (GV && !GV->isDeclaration())
1126       continue;
1127 
1128     // Otherwise, emit the definition and move on to the next one.
1129     EmitGlobalDefinition(D, GV);
1130 
1131     // If we found out that we need to emit more decls, do that recursively.
1132     // This has the advantage that the decls are emitted in a DFS and related
1133     // ones are close together, which is convenient for testing.
1134     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1135       EmitDeferred();
1136       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1137     }
1138   }
1139 }
1140 
1141 void CodeGenModule::EmitGlobalAnnotations() {
1142   if (Annotations.empty())
1143     return;
1144 
1145   // Create a new global variable for the ConstantStruct in the Module.
1146   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1147     Annotations[0]->getType(), Annotations.size()), Annotations);
1148   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1149                                       llvm::GlobalValue::AppendingLinkage,
1150                                       Array, "llvm.global.annotations");
1151   gv->setSection(AnnotationSection);
1152 }
1153 
1154 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1155   llvm::Constant *&AStr = AnnotationStrings[Str];
1156   if (AStr)
1157     return AStr;
1158 
1159   // Not found yet, create a new global.
1160   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1161   auto *gv =
1162       new llvm::GlobalVariable(getModule(), s->getType(), true,
1163                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1164   gv->setSection(AnnotationSection);
1165   gv->setUnnamedAddr(true);
1166   AStr = gv;
1167   return gv;
1168 }
1169 
1170 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1171   SourceManager &SM = getContext().getSourceManager();
1172   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1173   if (PLoc.isValid())
1174     return EmitAnnotationString(PLoc.getFilename());
1175   return EmitAnnotationString(SM.getBufferName(Loc));
1176 }
1177 
1178 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1179   SourceManager &SM = getContext().getSourceManager();
1180   PresumedLoc PLoc = SM.getPresumedLoc(L);
1181   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1182     SM.getExpansionLineNumber(L);
1183   return llvm::ConstantInt::get(Int32Ty, LineNo);
1184 }
1185 
1186 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1187                                                 const AnnotateAttr *AA,
1188                                                 SourceLocation L) {
1189   // Get the globals for file name, annotation, and the line number.
1190   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1191                  *UnitGV = EmitAnnotationUnit(L),
1192                  *LineNoCst = EmitAnnotationLineNo(L);
1193 
1194   // Create the ConstantStruct for the global annotation.
1195   llvm::Constant *Fields[4] = {
1196     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1197     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1198     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1199     LineNoCst
1200   };
1201   return llvm::ConstantStruct::getAnon(Fields);
1202 }
1203 
1204 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1205                                          llvm::GlobalValue *GV) {
1206   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1207   // Get the struct elements for these annotations.
1208   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1209     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1210 }
1211 
1212 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1213                                            SourceLocation Loc) const {
1214   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1215   // Blacklist by function name.
1216   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1217     return true;
1218   // Blacklist by location.
1219   if (!Loc.isInvalid())
1220     return SanitizerBL.isBlacklistedLocation(Loc);
1221   // If location is unknown, this may be a compiler-generated function. Assume
1222   // it's located in the main file.
1223   auto &SM = Context.getSourceManager();
1224   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1225     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1226   }
1227   return false;
1228 }
1229 
1230 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1231                                            SourceLocation Loc, QualType Ty,
1232                                            StringRef Category) const {
1233   // For now globals can be blacklisted only in ASan.
1234   if (!LangOpts.Sanitize.has(SanitizerKind::Address))
1235     return false;
1236   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1237   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1238     return true;
1239   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1240     return true;
1241   // Check global type.
1242   if (!Ty.isNull()) {
1243     // Drill down the array types: if global variable of a fixed type is
1244     // blacklisted, we also don't instrument arrays of them.
1245     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1246       Ty = AT->getElementType();
1247     Ty = Ty.getCanonicalType().getUnqualifiedType();
1248     // We allow to blacklist only record types (classes, structs etc.)
1249     if (Ty->isRecordType()) {
1250       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1251       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1252         return true;
1253     }
1254   }
1255   return false;
1256 }
1257 
1258 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1259   // Never defer when EmitAllDecls is specified.
1260   if (LangOpts.EmitAllDecls)
1261     return true;
1262 
1263   return getContext().DeclMustBeEmitted(Global);
1264 }
1265 
1266 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1267   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1268     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1269       // Implicit template instantiations may change linkage if they are later
1270       // explicitly instantiated, so they should not be emitted eagerly.
1271       return false;
1272 
1273   return true;
1274 }
1275 
1276 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1277     const CXXUuidofExpr* E) {
1278   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1279   // well-formed.
1280   StringRef Uuid = E->getUuidAsStringRef(Context);
1281   std::string Name = "_GUID_" + Uuid.lower();
1282   std::replace(Name.begin(), Name.end(), '-', '_');
1283 
1284   // Look for an existing global.
1285   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1286     return GV;
1287 
1288   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1289   assert(Init && "failed to initialize as constant");
1290 
1291   auto *GV = new llvm::GlobalVariable(
1292       getModule(), Init->getType(),
1293       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1294   if (supportsCOMDAT())
1295     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1296   return GV;
1297 }
1298 
1299 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1300   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1301   assert(AA && "No alias?");
1302 
1303   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1304 
1305   // See if there is already something with the target's name in the module.
1306   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1307   if (Entry) {
1308     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1309     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1310   }
1311 
1312   llvm::Constant *Aliasee;
1313   if (isa<llvm::FunctionType>(DeclTy))
1314     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1315                                       GlobalDecl(cast<FunctionDecl>(VD)),
1316                                       /*ForVTable=*/false);
1317   else
1318     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1319                                     llvm::PointerType::getUnqual(DeclTy),
1320                                     nullptr);
1321 
1322   auto *F = cast<llvm::GlobalValue>(Aliasee);
1323   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1324   WeakRefReferences.insert(F);
1325 
1326   return Aliasee;
1327 }
1328 
1329 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1330   const auto *Global = cast<ValueDecl>(GD.getDecl());
1331 
1332   // Weak references don't produce any output by themselves.
1333   if (Global->hasAttr<WeakRefAttr>())
1334     return;
1335 
1336   // If this is an alias definition (which otherwise looks like a declaration)
1337   // emit it now.
1338   if (Global->hasAttr<AliasAttr>())
1339     return EmitAliasDefinition(GD);
1340 
1341   // If this is CUDA, be selective about which declarations we emit.
1342   if (LangOpts.CUDA) {
1343     if (LangOpts.CUDAIsDevice) {
1344       if (!Global->hasAttr<CUDADeviceAttr>() &&
1345           !Global->hasAttr<CUDAGlobalAttr>() &&
1346           !Global->hasAttr<CUDAConstantAttr>() &&
1347           !Global->hasAttr<CUDASharedAttr>())
1348         return;
1349     } else {
1350       if (!Global->hasAttr<CUDAHostAttr>() && (
1351             Global->hasAttr<CUDADeviceAttr>() ||
1352             Global->hasAttr<CUDAConstantAttr>() ||
1353             Global->hasAttr<CUDASharedAttr>()))
1354         return;
1355     }
1356   }
1357 
1358   // Ignore declarations, they will be emitted on their first use.
1359   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1360     // Forward declarations are emitted lazily on first use.
1361     if (!FD->doesThisDeclarationHaveABody()) {
1362       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1363         return;
1364 
1365       StringRef MangledName = getMangledName(GD);
1366 
1367       // Compute the function info and LLVM type.
1368       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1369       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1370 
1371       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1372                               /*DontDefer=*/false);
1373       return;
1374     }
1375   } else {
1376     const auto *VD = cast<VarDecl>(Global);
1377     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1378 
1379     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1380         !Context.isMSStaticDataMemberInlineDefinition(VD))
1381       return;
1382   }
1383 
1384   // Defer code generation to first use when possible, e.g. if this is an inline
1385   // function. If the global must always be emitted, do it eagerly if possible
1386   // to benefit from cache locality.
1387   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1388     // Emit the definition if it can't be deferred.
1389     EmitGlobalDefinition(GD);
1390     return;
1391   }
1392 
1393   // If we're deferring emission of a C++ variable with an
1394   // initializer, remember the order in which it appeared in the file.
1395   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1396       cast<VarDecl>(Global)->hasInit()) {
1397     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1398     CXXGlobalInits.push_back(nullptr);
1399   }
1400 
1401   StringRef MangledName = getMangledName(GD);
1402   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1403     // The value has already been used and should therefore be emitted.
1404     addDeferredDeclToEmit(GV, GD);
1405   } else if (MustBeEmitted(Global)) {
1406     // The value must be emitted, but cannot be emitted eagerly.
1407     assert(!MayBeEmittedEagerly(Global));
1408     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1409   } else {
1410     // Otherwise, remember that we saw a deferred decl with this name.  The
1411     // first use of the mangled name will cause it to move into
1412     // DeferredDeclsToEmit.
1413     DeferredDecls[MangledName] = GD;
1414   }
1415 }
1416 
1417 namespace {
1418   struct FunctionIsDirectlyRecursive :
1419     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1420     const StringRef Name;
1421     const Builtin::Context &BI;
1422     bool Result;
1423     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1424       Name(N), BI(C), Result(false) {
1425     }
1426     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1427 
1428     bool TraverseCallExpr(CallExpr *E) {
1429       const FunctionDecl *FD = E->getDirectCallee();
1430       if (!FD)
1431         return true;
1432       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1433       if (Attr && Name == Attr->getLabel()) {
1434         Result = true;
1435         return false;
1436       }
1437       unsigned BuiltinID = FD->getBuiltinID();
1438       if (!BuiltinID)
1439         return true;
1440       StringRef BuiltinName = BI.GetName(BuiltinID);
1441       if (BuiltinName.startswith("__builtin_") &&
1442           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1443         Result = true;
1444         return false;
1445       }
1446       return true;
1447     }
1448   };
1449 }
1450 
1451 // isTriviallyRecursive - Check if this function calls another
1452 // decl that, because of the asm attribute or the other decl being a builtin,
1453 // ends up pointing to itself.
1454 bool
1455 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1456   StringRef Name;
1457   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1458     // asm labels are a special kind of mangling we have to support.
1459     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1460     if (!Attr)
1461       return false;
1462     Name = Attr->getLabel();
1463   } else {
1464     Name = FD->getName();
1465   }
1466 
1467   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1468   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1469   return Walker.Result;
1470 }
1471 
1472 bool
1473 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1474   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1475     return true;
1476   const auto *F = cast<FunctionDecl>(GD.getDecl());
1477   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1478     return false;
1479   // PR9614. Avoid cases where the source code is lying to us. An available
1480   // externally function should have an equivalent function somewhere else,
1481   // but a function that calls itself is clearly not equivalent to the real
1482   // implementation.
1483   // This happens in glibc's btowc and in some configure checks.
1484   return !isTriviallyRecursive(F);
1485 }
1486 
1487 /// If the type for the method's class was generated by
1488 /// CGDebugInfo::createContextChain(), the cache contains only a
1489 /// limited DIType without any declarations. Since EmitFunctionStart()
1490 /// needs to find the canonical declaration for each method, we need
1491 /// to construct the complete type prior to emitting the method.
1492 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1493   if (!D->isInstance())
1494     return;
1495 
1496   if (CGDebugInfo *DI = getModuleDebugInfo())
1497     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1498       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1499       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1500     }
1501 }
1502 
1503 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1504   const auto *D = cast<ValueDecl>(GD.getDecl());
1505 
1506   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1507                                  Context.getSourceManager(),
1508                                  "Generating code for declaration");
1509 
1510   if (isa<FunctionDecl>(D)) {
1511     // At -O0, don't generate IR for functions with available_externally
1512     // linkage.
1513     if (!shouldEmitFunction(GD))
1514       return;
1515 
1516     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1517       CompleteDIClassType(Method);
1518       // Make sure to emit the definition(s) before we emit the thunks.
1519       // This is necessary for the generation of certain thunks.
1520       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1521         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1522       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1523         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1524       else
1525         EmitGlobalFunctionDefinition(GD, GV);
1526 
1527       if (Method->isVirtual())
1528         getVTables().EmitThunks(GD);
1529 
1530       return;
1531     }
1532 
1533     return EmitGlobalFunctionDefinition(GD, GV);
1534   }
1535 
1536   if (const auto *VD = dyn_cast<VarDecl>(D))
1537     return EmitGlobalVarDefinition(VD);
1538 
1539   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1540 }
1541 
1542 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1543 /// module, create and return an llvm Function with the specified type. If there
1544 /// is something in the module with the specified name, return it potentially
1545 /// bitcasted to the right type.
1546 ///
1547 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1548 /// to set the attributes on the function when it is first created.
1549 llvm::Constant *
1550 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1551                                        llvm::Type *Ty,
1552                                        GlobalDecl GD, bool ForVTable,
1553                                        bool DontDefer, bool IsThunk,
1554                                        llvm::AttributeSet ExtraAttrs) {
1555   const Decl *D = GD.getDecl();
1556 
1557   // Lookup the entry, lazily creating it if necessary.
1558   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1559   if (Entry) {
1560     if (WeakRefReferences.erase(Entry)) {
1561       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1562       if (FD && !FD->hasAttr<WeakAttr>())
1563         Entry->setLinkage(llvm::Function::ExternalLinkage);
1564     }
1565 
1566     // Handle dropped DLL attributes.
1567     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1568       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1569 
1570     if (Entry->getType()->getElementType() == Ty)
1571       return Entry;
1572 
1573     // Make sure the result is of the correct type.
1574     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1575   }
1576 
1577   // This function doesn't have a complete type (for example, the return
1578   // type is an incomplete struct). Use a fake type instead, and make
1579   // sure not to try to set attributes.
1580   bool IsIncompleteFunction = false;
1581 
1582   llvm::FunctionType *FTy;
1583   if (isa<llvm::FunctionType>(Ty)) {
1584     FTy = cast<llvm::FunctionType>(Ty);
1585   } else {
1586     FTy = llvm::FunctionType::get(VoidTy, false);
1587     IsIncompleteFunction = true;
1588   }
1589 
1590   llvm::Function *F = llvm::Function::Create(FTy,
1591                                              llvm::Function::ExternalLinkage,
1592                                              MangledName, &getModule());
1593   assert(F->getName() == MangledName && "name was uniqued!");
1594   if (D)
1595     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1596   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1597     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1598     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1599                      llvm::AttributeSet::get(VMContext,
1600                                              llvm::AttributeSet::FunctionIndex,
1601                                              B));
1602   }
1603 
1604   if (!DontDefer) {
1605     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1606     // each other bottoming out with the base dtor.  Therefore we emit non-base
1607     // dtors on usage, even if there is no dtor definition in the TU.
1608     if (D && isa<CXXDestructorDecl>(D) &&
1609         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1610                                            GD.getDtorType()))
1611       addDeferredDeclToEmit(F, GD);
1612 
1613     // This is the first use or definition of a mangled name.  If there is a
1614     // deferred decl with this name, remember that we need to emit it at the end
1615     // of the file.
1616     auto DDI = DeferredDecls.find(MangledName);
1617     if (DDI != DeferredDecls.end()) {
1618       // Move the potentially referenced deferred decl to the
1619       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1620       // don't need it anymore).
1621       addDeferredDeclToEmit(F, DDI->second);
1622       DeferredDecls.erase(DDI);
1623 
1624       // Otherwise, if this is a sized deallocation function, emit a weak
1625       // definition for it at the end of the translation unit (if allowed),
1626       // unless the sized deallocation function is aliased.
1627     } else if (D &&
1628                cast<FunctionDecl>(D)
1629                   ->getCorrespondingUnsizedGlobalDeallocationFunction() &&
1630                getLangOpts().DefineSizedDeallocation &&
1631                !D->hasAttr<AliasAttr>()) {
1632       addDeferredDeclToEmit(F, GD);
1633 
1634       // Otherwise, there are cases we have to worry about where we're
1635       // using a declaration for which we must emit a definition but where
1636       // we might not find a top-level definition:
1637       //   - member functions defined inline in their classes
1638       //   - friend functions defined inline in some class
1639       //   - special member functions with implicit definitions
1640       // If we ever change our AST traversal to walk into class methods,
1641       // this will be unnecessary.
1642       //
1643       // We also don't emit a definition for a function if it's going to be an
1644       // entry in a vtable, unless it's already marked as used.
1645     } else if (getLangOpts().CPlusPlus && D) {
1646       // Look for a declaration that's lexically in a record.
1647       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1648            FD = FD->getPreviousDecl()) {
1649         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1650           if (FD->doesThisDeclarationHaveABody()) {
1651             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1652             break;
1653           }
1654         }
1655       }
1656     }
1657   }
1658 
1659   // Make sure the result is of the requested type.
1660   if (!IsIncompleteFunction) {
1661     assert(F->getType()->getElementType() == Ty);
1662     return F;
1663   }
1664 
1665   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1666   return llvm::ConstantExpr::getBitCast(F, PTy);
1667 }
1668 
1669 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1670 /// non-null, then this function will use the specified type if it has to
1671 /// create it (this occurs when we see a definition of the function).
1672 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1673                                                  llvm::Type *Ty,
1674                                                  bool ForVTable,
1675                                                  bool DontDefer) {
1676   // If there was no specific requested type, just convert it now.
1677   if (!Ty)
1678     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1679 
1680   StringRef MangledName = getMangledName(GD);
1681   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1682 }
1683 
1684 /// CreateRuntimeFunction - Create a new runtime function with the specified
1685 /// type and name.
1686 llvm::Constant *
1687 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1688                                      StringRef Name,
1689                                      llvm::AttributeSet ExtraAttrs) {
1690   llvm::Constant *C =
1691       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1692                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1693   if (auto *F = dyn_cast<llvm::Function>(C))
1694     if (F->empty())
1695       F->setCallingConv(getRuntimeCC());
1696   return C;
1697 }
1698 
1699 /// CreateBuiltinFunction - Create a new builtin function with the specified
1700 /// type and name.
1701 llvm::Constant *
1702 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1703                                      StringRef Name,
1704                                      llvm::AttributeSet ExtraAttrs) {
1705   llvm::Constant *C =
1706       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1707                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1708   if (auto *F = dyn_cast<llvm::Function>(C))
1709     if (F->empty())
1710       F->setCallingConv(getBuiltinCC());
1711   return C;
1712 }
1713 
1714 /// isTypeConstant - Determine whether an object of this type can be emitted
1715 /// as a constant.
1716 ///
1717 /// If ExcludeCtor is true, the duration when the object's constructor runs
1718 /// will not be considered. The caller will need to verify that the object is
1719 /// not written to during its construction.
1720 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1721   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1722     return false;
1723 
1724   if (Context.getLangOpts().CPlusPlus) {
1725     if (const CXXRecordDecl *Record
1726           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1727       return ExcludeCtor && !Record->hasMutableFields() &&
1728              Record->hasTrivialDestructor();
1729   }
1730 
1731   return true;
1732 }
1733 
1734 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1735 /// create and return an llvm GlobalVariable with the specified type.  If there
1736 /// is something in the module with the specified name, return it potentially
1737 /// bitcasted to the right type.
1738 ///
1739 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1740 /// to set the attributes on the global when it is first created.
1741 llvm::Constant *
1742 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1743                                      llvm::PointerType *Ty,
1744                                      const VarDecl *D) {
1745   // Lookup the entry, lazily creating it if necessary.
1746   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1747   if (Entry) {
1748     if (WeakRefReferences.erase(Entry)) {
1749       if (D && !D->hasAttr<WeakAttr>())
1750         Entry->setLinkage(llvm::Function::ExternalLinkage);
1751     }
1752 
1753     // Handle dropped DLL attributes.
1754     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1755       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1756 
1757     if (Entry->getType() == Ty)
1758       return Entry;
1759 
1760     // Make sure the result is of the correct type.
1761     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1762       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1763 
1764     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1765   }
1766 
1767   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1768   auto *GV = new llvm::GlobalVariable(
1769       getModule(), Ty->getElementType(), false,
1770       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1771       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1772 
1773   // This is the first use or definition of a mangled name.  If there is a
1774   // deferred decl with this name, remember that we need to emit it at the end
1775   // of the file.
1776   auto DDI = DeferredDecls.find(MangledName);
1777   if (DDI != DeferredDecls.end()) {
1778     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1779     // list, and remove it from DeferredDecls (since we don't need it anymore).
1780     addDeferredDeclToEmit(GV, DDI->second);
1781     DeferredDecls.erase(DDI);
1782   }
1783 
1784   // Handle things which are present even on external declarations.
1785   if (D) {
1786     // FIXME: This code is overly simple and should be merged with other global
1787     // handling.
1788     GV->setConstant(isTypeConstant(D->getType(), false));
1789 
1790     setLinkageAndVisibilityForGV(GV, D);
1791 
1792     if (D->getTLSKind()) {
1793       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1794         CXXThreadLocals.push_back(std::make_pair(D, GV));
1795       setTLSMode(GV, *D);
1796     }
1797 
1798     // If required by the ABI, treat declarations of static data members with
1799     // inline initializers as definitions.
1800     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1801       EmitGlobalVarDefinition(D);
1802     }
1803 
1804     // Handle XCore specific ABI requirements.
1805     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1806         D->getLanguageLinkage() == CLanguageLinkage &&
1807         D->getType().isConstant(Context) &&
1808         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1809       GV->setSection(".cp.rodata");
1810   }
1811 
1812   if (AddrSpace != Ty->getAddressSpace())
1813     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1814 
1815   return GV;
1816 }
1817 
1818 
1819 llvm::GlobalVariable *
1820 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1821                                       llvm::Type *Ty,
1822                                       llvm::GlobalValue::LinkageTypes Linkage) {
1823   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1824   llvm::GlobalVariable *OldGV = nullptr;
1825 
1826   if (GV) {
1827     // Check if the variable has the right type.
1828     if (GV->getType()->getElementType() == Ty)
1829       return GV;
1830 
1831     // Because C++ name mangling, the only way we can end up with an already
1832     // existing global with the same name is if it has been declared extern "C".
1833     assert(GV->isDeclaration() && "Declaration has wrong type!");
1834     OldGV = GV;
1835   }
1836 
1837   // Create a new variable.
1838   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1839                                 Linkage, nullptr, Name);
1840 
1841   if (OldGV) {
1842     // Replace occurrences of the old variable if needed.
1843     GV->takeName(OldGV);
1844 
1845     if (!OldGV->use_empty()) {
1846       llvm::Constant *NewPtrForOldDecl =
1847       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1848       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1849     }
1850 
1851     OldGV->eraseFromParent();
1852   }
1853 
1854   if (supportsCOMDAT() && GV->isWeakForLinker() &&
1855       !GV->hasAvailableExternallyLinkage())
1856     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1857 
1858   return GV;
1859 }
1860 
1861 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1862 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1863 /// then it will be created with the specified type instead of whatever the
1864 /// normal requested type would be.
1865 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1866                                                   llvm::Type *Ty) {
1867   assert(D->hasGlobalStorage() && "Not a global variable");
1868   QualType ASTTy = D->getType();
1869   if (!Ty)
1870     Ty = getTypes().ConvertTypeForMem(ASTTy);
1871 
1872   llvm::PointerType *PTy =
1873     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1874 
1875   StringRef MangledName = getMangledName(D);
1876   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1877 }
1878 
1879 /// CreateRuntimeVariable - Create a new runtime global variable with the
1880 /// specified type and name.
1881 llvm::Constant *
1882 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1883                                      StringRef Name) {
1884   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1885 }
1886 
1887 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1888   assert(!D->getInit() && "Cannot emit definite definitions here!");
1889 
1890   if (!MustBeEmitted(D)) {
1891     // If we have not seen a reference to this variable yet, place it
1892     // into the deferred declarations table to be emitted if needed
1893     // later.
1894     StringRef MangledName = getMangledName(D);
1895     if (!GetGlobalValue(MangledName)) {
1896       DeferredDecls[MangledName] = D;
1897       return;
1898     }
1899   }
1900 
1901   // The tentative definition is the only definition.
1902   EmitGlobalVarDefinition(D);
1903 }
1904 
1905 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1906     return Context.toCharUnitsFromBits(
1907       TheDataLayout.getTypeStoreSizeInBits(Ty));
1908 }
1909 
1910 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1911                                                  unsigned AddrSpace) {
1912   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
1913     if (D->hasAttr<CUDAConstantAttr>())
1914       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1915     else if (D->hasAttr<CUDASharedAttr>())
1916       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1917     else
1918       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1919   }
1920 
1921   return AddrSpace;
1922 }
1923 
1924 template<typename SomeDecl>
1925 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1926                                                llvm::GlobalValue *GV) {
1927   if (!getLangOpts().CPlusPlus)
1928     return;
1929 
1930   // Must have 'used' attribute, or else inline assembly can't rely on
1931   // the name existing.
1932   if (!D->template hasAttr<UsedAttr>())
1933     return;
1934 
1935   // Must have internal linkage and an ordinary name.
1936   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1937     return;
1938 
1939   // Must be in an extern "C" context. Entities declared directly within
1940   // a record are not extern "C" even if the record is in such a context.
1941   const SomeDecl *First = D->getFirstDecl();
1942   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1943     return;
1944 
1945   // OK, this is an internal linkage entity inside an extern "C" linkage
1946   // specification. Make a note of that so we can give it the "expected"
1947   // mangled name if nothing else is using that name.
1948   std::pair<StaticExternCMap::iterator, bool> R =
1949       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1950 
1951   // If we have multiple internal linkage entities with the same name
1952   // in extern "C" regions, none of them gets that name.
1953   if (!R.second)
1954     R.first->second = nullptr;
1955 }
1956 
1957 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
1958   if (!CGM.supportsCOMDAT())
1959     return false;
1960 
1961   if (D.hasAttr<SelectAnyAttr>())
1962     return true;
1963 
1964   GVALinkage Linkage;
1965   if (auto *VD = dyn_cast<VarDecl>(&D))
1966     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
1967   else
1968     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
1969 
1970   switch (Linkage) {
1971   case GVA_Internal:
1972   case GVA_AvailableExternally:
1973   case GVA_StrongExternal:
1974     return false;
1975   case GVA_DiscardableODR:
1976   case GVA_StrongODR:
1977     return true;
1978   }
1979   llvm_unreachable("No such linkage");
1980 }
1981 
1982 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
1983                                           llvm::GlobalObject &GO) {
1984   if (!shouldBeInCOMDAT(*this, D))
1985     return;
1986   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
1987 }
1988 
1989 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1990   llvm::Constant *Init = nullptr;
1991   QualType ASTTy = D->getType();
1992   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1993   bool NeedsGlobalCtor = false;
1994   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1995 
1996   const VarDecl *InitDecl;
1997   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1998 
1999   if (!InitExpr) {
2000     // This is a tentative definition; tentative definitions are
2001     // implicitly initialized with { 0 }.
2002     //
2003     // Note that tentative definitions are only emitted at the end of
2004     // a translation unit, so they should never have incomplete
2005     // type. In addition, EmitTentativeDefinition makes sure that we
2006     // never attempt to emit a tentative definition if a real one
2007     // exists. A use may still exists, however, so we still may need
2008     // to do a RAUW.
2009     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2010     Init = EmitNullConstant(D->getType());
2011   } else {
2012     initializedGlobalDecl = GlobalDecl(D);
2013     Init = EmitConstantInit(*InitDecl);
2014 
2015     if (!Init) {
2016       QualType T = InitExpr->getType();
2017       if (D->getType()->isReferenceType())
2018         T = D->getType();
2019 
2020       if (getLangOpts().CPlusPlus) {
2021         Init = EmitNullConstant(T);
2022         NeedsGlobalCtor = true;
2023       } else {
2024         ErrorUnsupported(D, "static initializer");
2025         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2026       }
2027     } else {
2028       // We don't need an initializer, so remove the entry for the delayed
2029       // initializer position (just in case this entry was delayed) if we
2030       // also don't need to register a destructor.
2031       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2032         DelayedCXXInitPosition.erase(D);
2033     }
2034   }
2035 
2036   llvm::Type* InitType = Init->getType();
2037   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2038 
2039   // Strip off a bitcast if we got one back.
2040   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2041     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2042            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2043            // All zero index gep.
2044            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2045     Entry = CE->getOperand(0);
2046   }
2047 
2048   // Entry is now either a Function or GlobalVariable.
2049   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2050 
2051   // We have a definition after a declaration with the wrong type.
2052   // We must make a new GlobalVariable* and update everything that used OldGV
2053   // (a declaration or tentative definition) with the new GlobalVariable*
2054   // (which will be a definition).
2055   //
2056   // This happens if there is a prototype for a global (e.g.
2057   // "extern int x[];") and then a definition of a different type (e.g.
2058   // "int x[10];"). This also happens when an initializer has a different type
2059   // from the type of the global (this happens with unions).
2060   if (!GV ||
2061       GV->getType()->getElementType() != InitType ||
2062       GV->getType()->getAddressSpace() !=
2063        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2064 
2065     // Move the old entry aside so that we'll create a new one.
2066     Entry->setName(StringRef());
2067 
2068     // Make a new global with the correct type, this is now guaranteed to work.
2069     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2070 
2071     // Replace all uses of the old global with the new global
2072     llvm::Constant *NewPtrForOldDecl =
2073         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2074     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2075 
2076     // Erase the old global, since it is no longer used.
2077     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2078   }
2079 
2080   MaybeHandleStaticInExternC(D, GV);
2081 
2082   if (D->hasAttr<AnnotateAttr>())
2083     AddGlobalAnnotations(D, GV);
2084 
2085   GV->setInitializer(Init);
2086 
2087   // If it is safe to mark the global 'constant', do so now.
2088   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2089                   isTypeConstant(D->getType(), true));
2090 
2091   // If it is in a read-only section, mark it 'constant'.
2092   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2093     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2094     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2095       GV->setConstant(true);
2096   }
2097 
2098   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2099 
2100   // Set the llvm linkage type as appropriate.
2101   llvm::GlobalValue::LinkageTypes Linkage =
2102       getLLVMLinkageVarDefinition(D, GV->isConstant());
2103 
2104   // On Darwin, the backing variable for a C++11 thread_local variable always
2105   // has internal linkage; all accesses should just be calls to the
2106   // Itanium-specified entry point, which has the normal linkage of the
2107   // variable.
2108   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2109       Context.getTargetInfo().getTriple().isMacOSX())
2110     Linkage = llvm::GlobalValue::InternalLinkage;
2111 
2112   GV->setLinkage(Linkage);
2113   if (D->hasAttr<DLLImportAttr>())
2114     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2115   else if (D->hasAttr<DLLExportAttr>())
2116     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2117   else
2118     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2119 
2120   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2121     // common vars aren't constant even if declared const.
2122     GV->setConstant(false);
2123 
2124   setNonAliasAttributes(D, GV);
2125 
2126   if (D->getTLSKind() && !GV->isThreadLocal()) {
2127     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2128       CXXThreadLocals.push_back(std::make_pair(D, GV));
2129     setTLSMode(GV, *D);
2130   }
2131 
2132   maybeSetTrivialComdat(*D, *GV);
2133 
2134   // Emit the initializer function if necessary.
2135   if (NeedsGlobalCtor || NeedsGlobalDtor)
2136     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2137 
2138   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2139 
2140   // Emit global variable debug information.
2141   if (CGDebugInfo *DI = getModuleDebugInfo())
2142     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2143       DI->EmitGlobalVariable(GV, D);
2144 }
2145 
2146 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2147                                       const VarDecl *D, bool NoCommon) {
2148   // Don't give variables common linkage if -fno-common was specified unless it
2149   // was overridden by a NoCommon attribute.
2150   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2151     return true;
2152 
2153   // C11 6.9.2/2:
2154   //   A declaration of an identifier for an object that has file scope without
2155   //   an initializer, and without a storage-class specifier or with the
2156   //   storage-class specifier static, constitutes a tentative definition.
2157   if (D->getInit() || D->hasExternalStorage())
2158     return true;
2159 
2160   // A variable cannot be both common and exist in a section.
2161   if (D->hasAttr<SectionAttr>())
2162     return true;
2163 
2164   // Thread local vars aren't considered common linkage.
2165   if (D->getTLSKind())
2166     return true;
2167 
2168   // Tentative definitions marked with WeakImportAttr are true definitions.
2169   if (D->hasAttr<WeakImportAttr>())
2170     return true;
2171 
2172   // Declarations with a required alignment do not have common linakge in MSVC
2173   // mode.
2174   if (Context.getLangOpts().MSVCCompat) {
2175     if (D->hasAttr<AlignedAttr>())
2176       return true;
2177     QualType VarType = D->getType();
2178     if (Context.isAlignmentRequired(VarType))
2179       return true;
2180 
2181     if (const auto *RT = VarType->getAs<RecordType>()) {
2182       const RecordDecl *RD = RT->getDecl();
2183       for (const FieldDecl *FD : RD->fields()) {
2184         if (FD->isBitField())
2185           continue;
2186         if (FD->hasAttr<AlignedAttr>())
2187           return true;
2188         if (Context.isAlignmentRequired(FD->getType()))
2189           return true;
2190       }
2191     }
2192   }
2193 
2194   return false;
2195 }
2196 
2197 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2198     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2199   if (Linkage == GVA_Internal)
2200     return llvm::Function::InternalLinkage;
2201 
2202   if (D->hasAttr<WeakAttr>()) {
2203     if (IsConstantVariable)
2204       return llvm::GlobalVariable::WeakODRLinkage;
2205     else
2206       return llvm::GlobalVariable::WeakAnyLinkage;
2207   }
2208 
2209   // We are guaranteed to have a strong definition somewhere else,
2210   // so we can use available_externally linkage.
2211   if (Linkage == GVA_AvailableExternally)
2212     return llvm::Function::AvailableExternallyLinkage;
2213 
2214   // Note that Apple's kernel linker doesn't support symbol
2215   // coalescing, so we need to avoid linkonce and weak linkages there.
2216   // Normally, this means we just map to internal, but for explicit
2217   // instantiations we'll map to external.
2218 
2219   // In C++, the compiler has to emit a definition in every translation unit
2220   // that references the function.  We should use linkonce_odr because
2221   // a) if all references in this translation unit are optimized away, we
2222   // don't need to codegen it.  b) if the function persists, it needs to be
2223   // merged with other definitions. c) C++ has the ODR, so we know the
2224   // definition is dependable.
2225   if (Linkage == GVA_DiscardableODR)
2226     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2227                                             : llvm::Function::InternalLinkage;
2228 
2229   // An explicit instantiation of a template has weak linkage, since
2230   // explicit instantiations can occur in multiple translation units
2231   // and must all be equivalent. However, we are not allowed to
2232   // throw away these explicit instantiations.
2233   if (Linkage == GVA_StrongODR)
2234     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2235                                             : llvm::Function::ExternalLinkage;
2236 
2237   // C++ doesn't have tentative definitions and thus cannot have common
2238   // linkage.
2239   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2240       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2241                                  CodeGenOpts.NoCommon))
2242     return llvm::GlobalVariable::CommonLinkage;
2243 
2244   // selectany symbols are externally visible, so use weak instead of
2245   // linkonce.  MSVC optimizes away references to const selectany globals, so
2246   // all definitions should be the same and ODR linkage should be used.
2247   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2248   if (D->hasAttr<SelectAnyAttr>())
2249     return llvm::GlobalVariable::WeakODRLinkage;
2250 
2251   // Otherwise, we have strong external linkage.
2252   assert(Linkage == GVA_StrongExternal);
2253   return llvm::GlobalVariable::ExternalLinkage;
2254 }
2255 
2256 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2257     const VarDecl *VD, bool IsConstant) {
2258   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2259   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2260 }
2261 
2262 /// Replace the uses of a function that was declared with a non-proto type.
2263 /// We want to silently drop extra arguments from call sites
2264 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2265                                           llvm::Function *newFn) {
2266   // Fast path.
2267   if (old->use_empty()) return;
2268 
2269   llvm::Type *newRetTy = newFn->getReturnType();
2270   SmallVector<llvm::Value*, 4> newArgs;
2271 
2272   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2273          ui != ue; ) {
2274     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2275     llvm::User *user = use->getUser();
2276 
2277     // Recognize and replace uses of bitcasts.  Most calls to
2278     // unprototyped functions will use bitcasts.
2279     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2280       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2281         replaceUsesOfNonProtoConstant(bitcast, newFn);
2282       continue;
2283     }
2284 
2285     // Recognize calls to the function.
2286     llvm::CallSite callSite(user);
2287     if (!callSite) continue;
2288     if (!callSite.isCallee(&*use)) continue;
2289 
2290     // If the return types don't match exactly, then we can't
2291     // transform this call unless it's dead.
2292     if (callSite->getType() != newRetTy && !callSite->use_empty())
2293       continue;
2294 
2295     // Get the call site's attribute list.
2296     SmallVector<llvm::AttributeSet, 8> newAttrs;
2297     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2298 
2299     // Collect any return attributes from the call.
2300     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2301       newAttrs.push_back(
2302         llvm::AttributeSet::get(newFn->getContext(),
2303                                 oldAttrs.getRetAttributes()));
2304 
2305     // If the function was passed too few arguments, don't transform.
2306     unsigned newNumArgs = newFn->arg_size();
2307     if (callSite.arg_size() < newNumArgs) continue;
2308 
2309     // If extra arguments were passed, we silently drop them.
2310     // If any of the types mismatch, we don't transform.
2311     unsigned argNo = 0;
2312     bool dontTransform = false;
2313     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2314            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2315       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2316         dontTransform = true;
2317         break;
2318       }
2319 
2320       // Add any parameter attributes.
2321       if (oldAttrs.hasAttributes(argNo + 1))
2322         newAttrs.
2323           push_back(llvm::
2324                     AttributeSet::get(newFn->getContext(),
2325                                       oldAttrs.getParamAttributes(argNo + 1)));
2326     }
2327     if (dontTransform)
2328       continue;
2329 
2330     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2331       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2332                                                  oldAttrs.getFnAttributes()));
2333 
2334     // Okay, we can transform this.  Create the new call instruction and copy
2335     // over the required information.
2336     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2337 
2338     llvm::CallSite newCall;
2339     if (callSite.isCall()) {
2340       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2341                                        callSite.getInstruction());
2342     } else {
2343       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2344       newCall = llvm::InvokeInst::Create(newFn,
2345                                          oldInvoke->getNormalDest(),
2346                                          oldInvoke->getUnwindDest(),
2347                                          newArgs, "",
2348                                          callSite.getInstruction());
2349     }
2350     newArgs.clear(); // for the next iteration
2351 
2352     if (!newCall->getType()->isVoidTy())
2353       newCall->takeName(callSite.getInstruction());
2354     newCall.setAttributes(
2355                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2356     newCall.setCallingConv(callSite.getCallingConv());
2357 
2358     // Finally, remove the old call, replacing any uses with the new one.
2359     if (!callSite->use_empty())
2360       callSite->replaceAllUsesWith(newCall.getInstruction());
2361 
2362     // Copy debug location attached to CI.
2363     if (!callSite->getDebugLoc().isUnknown())
2364       newCall->setDebugLoc(callSite->getDebugLoc());
2365     callSite->eraseFromParent();
2366   }
2367 }
2368 
2369 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2370 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2371 /// existing call uses of the old function in the module, this adjusts them to
2372 /// call the new function directly.
2373 ///
2374 /// This is not just a cleanup: the always_inline pass requires direct calls to
2375 /// functions to be able to inline them.  If there is a bitcast in the way, it
2376 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2377 /// run at -O0.
2378 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2379                                                       llvm::Function *NewFn) {
2380   // If we're redefining a global as a function, don't transform it.
2381   if (!isa<llvm::Function>(Old)) return;
2382 
2383   replaceUsesOfNonProtoConstant(Old, NewFn);
2384 }
2385 
2386 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2387   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2388   // If we have a definition, this might be a deferred decl. If the
2389   // instantiation is explicit, make sure we emit it at the end.
2390   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2391     GetAddrOfGlobalVar(VD);
2392 
2393   EmitTopLevelDecl(VD);
2394 }
2395 
2396 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2397                                                  llvm::GlobalValue *GV) {
2398   const auto *D = cast<FunctionDecl>(GD.getDecl());
2399 
2400   // Compute the function info and LLVM type.
2401   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2402   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2403 
2404   // Get or create the prototype for the function.
2405   if (!GV) {
2406     llvm::Constant *C =
2407         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2408 
2409     // Strip off a bitcast if we got one back.
2410     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2411       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2412       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2413     } else {
2414       GV = cast<llvm::GlobalValue>(C);
2415     }
2416   }
2417 
2418   if (!GV->isDeclaration()) {
2419     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2420     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2421     if (auto *Prev = OldGD.getDecl())
2422       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2423     return;
2424   }
2425 
2426   if (GV->getType()->getElementType() != Ty) {
2427     // If the types mismatch then we have to rewrite the definition.
2428     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2429 
2430     // F is the Function* for the one with the wrong type, we must make a new
2431     // Function* and update everything that used F (a declaration) with the new
2432     // Function* (which will be a definition).
2433     //
2434     // This happens if there is a prototype for a function
2435     // (e.g. "int f()") and then a definition of a different type
2436     // (e.g. "int f(int x)").  Move the old function aside so that it
2437     // doesn't interfere with GetAddrOfFunction.
2438     GV->setName(StringRef());
2439     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2440 
2441     // This might be an implementation of a function without a
2442     // prototype, in which case, try to do special replacement of
2443     // calls which match the new prototype.  The really key thing here
2444     // is that we also potentially drop arguments from the call site
2445     // so as to make a direct call, which makes the inliner happier
2446     // and suppresses a number of optimizer warnings (!) about
2447     // dropping arguments.
2448     if (!GV->use_empty()) {
2449       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2450       GV->removeDeadConstantUsers();
2451     }
2452 
2453     // Replace uses of F with the Function we will endow with a body.
2454     if (!GV->use_empty()) {
2455       llvm::Constant *NewPtrForOldDecl =
2456           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2457       GV->replaceAllUsesWith(NewPtrForOldDecl);
2458     }
2459 
2460     // Ok, delete the old function now, which is dead.
2461     GV->eraseFromParent();
2462 
2463     GV = NewFn;
2464   }
2465 
2466   // We need to set linkage and visibility on the function before
2467   // generating code for it because various parts of IR generation
2468   // want to propagate this information down (e.g. to local static
2469   // declarations).
2470   auto *Fn = cast<llvm::Function>(GV);
2471   setFunctionLinkage(GD, Fn);
2472   if (D->hasAttr<DLLImportAttr>())
2473     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2474   else if (D->hasAttr<DLLExportAttr>())
2475     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2476   else
2477     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2478 
2479   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2480   setGlobalVisibility(Fn, D);
2481 
2482   MaybeHandleStaticInExternC(D, Fn);
2483 
2484   maybeSetTrivialComdat(*D, *Fn);
2485 
2486   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2487 
2488   setFunctionDefinitionAttributes(D, Fn);
2489   SetLLVMFunctionAttributesForDefinition(D, Fn);
2490 
2491   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2492     AddGlobalCtor(Fn, CA->getPriority());
2493   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2494     AddGlobalDtor(Fn, DA->getPriority());
2495   if (D->hasAttr<AnnotateAttr>())
2496     AddGlobalAnnotations(D, Fn);
2497 }
2498 
2499 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2500   const auto *D = cast<ValueDecl>(GD.getDecl());
2501   const AliasAttr *AA = D->getAttr<AliasAttr>();
2502   assert(AA && "Not an alias?");
2503 
2504   StringRef MangledName = getMangledName(GD);
2505 
2506   // If there is a definition in the module, then it wins over the alias.
2507   // This is dubious, but allow it to be safe.  Just ignore the alias.
2508   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2509   if (Entry && !Entry->isDeclaration())
2510     return;
2511 
2512   Aliases.push_back(GD);
2513 
2514   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2515 
2516   // Create a reference to the named value.  This ensures that it is emitted
2517   // if a deferred decl.
2518   llvm::Constant *Aliasee;
2519   if (isa<llvm::FunctionType>(DeclTy))
2520     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2521                                       /*ForVTable=*/false);
2522   else
2523     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2524                                     llvm::PointerType::getUnqual(DeclTy),
2525                                     /*D=*/nullptr);
2526 
2527   // Create the new alias itself, but don't set a name yet.
2528   auto *GA = llvm::GlobalAlias::create(
2529       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2530       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2531 
2532   if (Entry) {
2533     if (GA->getAliasee() == Entry) {
2534       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2535       return;
2536     }
2537 
2538     assert(Entry->isDeclaration());
2539 
2540     // If there is a declaration in the module, then we had an extern followed
2541     // by the alias, as in:
2542     //   extern int test6();
2543     //   ...
2544     //   int test6() __attribute__((alias("test7")));
2545     //
2546     // Remove it and replace uses of it with the alias.
2547     GA->takeName(Entry);
2548 
2549     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2550                                                           Entry->getType()));
2551     Entry->eraseFromParent();
2552   } else {
2553     GA->setName(MangledName);
2554   }
2555 
2556   // Set attributes which are particular to an alias; this is a
2557   // specialization of the attributes which may be set on a global
2558   // variable/function.
2559   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2560       D->isWeakImported()) {
2561     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2562   }
2563 
2564   if (const auto *VD = dyn_cast<VarDecl>(D))
2565     if (VD->getTLSKind())
2566       setTLSMode(GA, *VD);
2567 
2568   setAliasAttributes(D, GA);
2569 }
2570 
2571 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2572                                             ArrayRef<llvm::Type*> Tys) {
2573   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2574                                          Tys);
2575 }
2576 
2577 static llvm::StringMapEntry<llvm::Constant*> &
2578 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2579                          const StringLiteral *Literal,
2580                          bool TargetIsLSB,
2581                          bool &IsUTF16,
2582                          unsigned &StringLength) {
2583   StringRef String = Literal->getString();
2584   unsigned NumBytes = String.size();
2585 
2586   // Check for simple case.
2587   if (!Literal->containsNonAsciiOrNull()) {
2588     StringLength = NumBytes;
2589     return *Map.insert(std::make_pair(String, nullptr)).first;
2590   }
2591 
2592   // Otherwise, convert the UTF8 literals into a string of shorts.
2593   IsUTF16 = true;
2594 
2595   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2596   const UTF8 *FromPtr = (const UTF8 *)String.data();
2597   UTF16 *ToPtr = &ToBuf[0];
2598 
2599   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2600                            &ToPtr, ToPtr + NumBytes,
2601                            strictConversion);
2602 
2603   // ConvertUTF8toUTF16 returns the length in ToPtr.
2604   StringLength = ToPtr - &ToBuf[0];
2605 
2606   // Add an explicit null.
2607   *ToPtr = 0;
2608   return *Map.insert(std::make_pair(
2609                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2610                                    (StringLength + 1) * 2),
2611                          nullptr)).first;
2612 }
2613 
2614 static llvm::StringMapEntry<llvm::Constant*> &
2615 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2616                        const StringLiteral *Literal,
2617                        unsigned &StringLength) {
2618   StringRef String = Literal->getString();
2619   StringLength = String.size();
2620   return *Map.insert(std::make_pair(String, nullptr)).first;
2621 }
2622 
2623 llvm::Constant *
2624 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2625   unsigned StringLength = 0;
2626   bool isUTF16 = false;
2627   llvm::StringMapEntry<llvm::Constant*> &Entry =
2628     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2629                              getDataLayout().isLittleEndian(),
2630                              isUTF16, StringLength);
2631 
2632   if (auto *C = Entry.second)
2633     return C;
2634 
2635   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2636   llvm::Constant *Zeros[] = { Zero, Zero };
2637   llvm::Value *V;
2638 
2639   // If we don't already have it, get __CFConstantStringClassReference.
2640   if (!CFConstantStringClassRef) {
2641     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2642     Ty = llvm::ArrayType::get(Ty, 0);
2643     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2644                                            "__CFConstantStringClassReference");
2645     // Decay array -> ptr
2646     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2647     CFConstantStringClassRef = V;
2648   }
2649   else
2650     V = CFConstantStringClassRef;
2651 
2652   QualType CFTy = getContext().getCFConstantStringType();
2653 
2654   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2655 
2656   llvm::Constant *Fields[4];
2657 
2658   // Class pointer.
2659   Fields[0] = cast<llvm::ConstantExpr>(V);
2660 
2661   // Flags.
2662   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2663   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2664     llvm::ConstantInt::get(Ty, 0x07C8);
2665 
2666   // String pointer.
2667   llvm::Constant *C = nullptr;
2668   if (isUTF16) {
2669     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2670         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2671         Entry.first().size() / 2);
2672     C = llvm::ConstantDataArray::get(VMContext, Arr);
2673   } else {
2674     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2675   }
2676 
2677   // Note: -fwritable-strings doesn't make the backing store strings of
2678   // CFStrings writable. (See <rdar://problem/10657500>)
2679   auto *GV =
2680       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2681                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2682   GV->setUnnamedAddr(true);
2683   // Don't enforce the target's minimum global alignment, since the only use
2684   // of the string is via this class initializer.
2685   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2686   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2687   // that changes the section it ends in, which surprises ld64.
2688   if (isUTF16) {
2689     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2690     GV->setAlignment(Align.getQuantity());
2691     GV->setSection("__TEXT,__ustring");
2692   } else {
2693     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2694     GV->setAlignment(Align.getQuantity());
2695     GV->setSection("__TEXT,__cstring,cstring_literals");
2696   }
2697 
2698   // String.
2699   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2700 
2701   if (isUTF16)
2702     // Cast the UTF16 string to the correct type.
2703     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2704 
2705   // String length.
2706   Ty = getTypes().ConvertType(getContext().LongTy);
2707   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2708 
2709   // The struct.
2710   C = llvm::ConstantStruct::get(STy, Fields);
2711   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2712                                 llvm::GlobalVariable::PrivateLinkage, C,
2713                                 "_unnamed_cfstring_");
2714   GV->setSection("__DATA,__cfstring");
2715   Entry.second = GV;
2716 
2717   return GV;
2718 }
2719 
2720 llvm::Constant *
2721 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2722   unsigned StringLength = 0;
2723   llvm::StringMapEntry<llvm::Constant*> &Entry =
2724     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2725 
2726   if (auto *C = Entry.second)
2727     return C;
2728 
2729   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2730   llvm::Constant *Zeros[] = { Zero, Zero };
2731   llvm::Value *V;
2732   // If we don't already have it, get _NSConstantStringClassReference.
2733   if (!ConstantStringClassRef) {
2734     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2735     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2736     llvm::Constant *GV;
2737     if (LangOpts.ObjCRuntime.isNonFragile()) {
2738       std::string str =
2739         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2740                             : "OBJC_CLASS_$_" + StringClass;
2741       GV = getObjCRuntime().GetClassGlobal(str);
2742       // Make sure the result is of the correct type.
2743       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2744       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2745       ConstantStringClassRef = V;
2746     } else {
2747       std::string str =
2748         StringClass.empty() ? "_NSConstantStringClassReference"
2749                             : "_" + StringClass + "ClassReference";
2750       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2751       GV = CreateRuntimeVariable(PTy, str);
2752       // Decay array -> ptr
2753       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2754       ConstantStringClassRef = V;
2755     }
2756   }
2757   else
2758     V = ConstantStringClassRef;
2759 
2760   if (!NSConstantStringType) {
2761     // Construct the type for a constant NSString.
2762     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2763     D->startDefinition();
2764 
2765     QualType FieldTypes[3];
2766 
2767     // const int *isa;
2768     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2769     // const char *str;
2770     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2771     // unsigned int length;
2772     FieldTypes[2] = Context.UnsignedIntTy;
2773 
2774     // Create fields
2775     for (unsigned i = 0; i < 3; ++i) {
2776       FieldDecl *Field = FieldDecl::Create(Context, D,
2777                                            SourceLocation(),
2778                                            SourceLocation(), nullptr,
2779                                            FieldTypes[i], /*TInfo=*/nullptr,
2780                                            /*BitWidth=*/nullptr,
2781                                            /*Mutable=*/false,
2782                                            ICIS_NoInit);
2783       Field->setAccess(AS_public);
2784       D->addDecl(Field);
2785     }
2786 
2787     D->completeDefinition();
2788     QualType NSTy = Context.getTagDeclType(D);
2789     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2790   }
2791 
2792   llvm::Constant *Fields[3];
2793 
2794   // Class pointer.
2795   Fields[0] = cast<llvm::ConstantExpr>(V);
2796 
2797   // String pointer.
2798   llvm::Constant *C =
2799       llvm::ConstantDataArray::getString(VMContext, Entry.first());
2800 
2801   llvm::GlobalValue::LinkageTypes Linkage;
2802   bool isConstant;
2803   Linkage = llvm::GlobalValue::PrivateLinkage;
2804   isConstant = !LangOpts.WritableStrings;
2805 
2806   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2807                                       Linkage, C, ".str");
2808   GV->setUnnamedAddr(true);
2809   // Don't enforce the target's minimum global alignment, since the only use
2810   // of the string is via this class initializer.
2811   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2812   GV->setAlignment(Align.getQuantity());
2813   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2814 
2815   // String length.
2816   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2817   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2818 
2819   // The struct.
2820   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2821   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2822                                 llvm::GlobalVariable::PrivateLinkage, C,
2823                                 "_unnamed_nsstring_");
2824   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2825   const char *NSStringNonFragileABISection =
2826       "__DATA,__objc_stringobj,regular,no_dead_strip";
2827   // FIXME. Fix section.
2828   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2829                      ? NSStringNonFragileABISection
2830                      : NSStringSection);
2831   Entry.second = GV;
2832 
2833   return GV;
2834 }
2835 
2836 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2837   if (ObjCFastEnumerationStateType.isNull()) {
2838     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2839     D->startDefinition();
2840 
2841     QualType FieldTypes[] = {
2842       Context.UnsignedLongTy,
2843       Context.getPointerType(Context.getObjCIdType()),
2844       Context.getPointerType(Context.UnsignedLongTy),
2845       Context.getConstantArrayType(Context.UnsignedLongTy,
2846                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2847     };
2848 
2849     for (size_t i = 0; i < 4; ++i) {
2850       FieldDecl *Field = FieldDecl::Create(Context,
2851                                            D,
2852                                            SourceLocation(),
2853                                            SourceLocation(), nullptr,
2854                                            FieldTypes[i], /*TInfo=*/nullptr,
2855                                            /*BitWidth=*/nullptr,
2856                                            /*Mutable=*/false,
2857                                            ICIS_NoInit);
2858       Field->setAccess(AS_public);
2859       D->addDecl(Field);
2860     }
2861 
2862     D->completeDefinition();
2863     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2864   }
2865 
2866   return ObjCFastEnumerationStateType;
2867 }
2868 
2869 llvm::Constant *
2870 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2871   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2872 
2873   // Don't emit it as the address of the string, emit the string data itself
2874   // as an inline array.
2875   if (E->getCharByteWidth() == 1) {
2876     SmallString<64> Str(E->getString());
2877 
2878     // Resize the string to the right size, which is indicated by its type.
2879     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2880     Str.resize(CAT->getSize().getZExtValue());
2881     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2882   }
2883 
2884   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2885   llvm::Type *ElemTy = AType->getElementType();
2886   unsigned NumElements = AType->getNumElements();
2887 
2888   // Wide strings have either 2-byte or 4-byte elements.
2889   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2890     SmallVector<uint16_t, 32> Elements;
2891     Elements.reserve(NumElements);
2892 
2893     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2894       Elements.push_back(E->getCodeUnit(i));
2895     Elements.resize(NumElements);
2896     return llvm::ConstantDataArray::get(VMContext, Elements);
2897   }
2898 
2899   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2900   SmallVector<uint32_t, 32> Elements;
2901   Elements.reserve(NumElements);
2902 
2903   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2904     Elements.push_back(E->getCodeUnit(i));
2905   Elements.resize(NumElements);
2906   return llvm::ConstantDataArray::get(VMContext, Elements);
2907 }
2908 
2909 static llvm::GlobalVariable *
2910 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2911                       CodeGenModule &CGM, StringRef GlobalName,
2912                       unsigned Alignment) {
2913   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2914   unsigned AddrSpace = 0;
2915   if (CGM.getLangOpts().OpenCL)
2916     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2917 
2918   llvm::Module &M = CGM.getModule();
2919   // Create a global variable for this string
2920   auto *GV = new llvm::GlobalVariable(
2921       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
2922       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2923   GV->setAlignment(Alignment);
2924   GV->setUnnamedAddr(true);
2925   if (GV->isWeakForLinker()) {
2926     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
2927     GV->setComdat(M.getOrInsertComdat(GV->getName()));
2928   }
2929 
2930   return GV;
2931 }
2932 
2933 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2934 /// constant array for the given string literal.
2935 llvm::GlobalVariable *
2936 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2937                                                   StringRef Name) {
2938   auto Alignment =
2939       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2940 
2941   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2942   llvm::GlobalVariable **Entry = nullptr;
2943   if (!LangOpts.WritableStrings) {
2944     Entry = &ConstantStringMap[C];
2945     if (auto GV = *Entry) {
2946       if (Alignment > GV->getAlignment())
2947         GV->setAlignment(Alignment);
2948       return GV;
2949     }
2950   }
2951 
2952   SmallString<256> MangledNameBuffer;
2953   StringRef GlobalVariableName;
2954   llvm::GlobalValue::LinkageTypes LT;
2955 
2956   // Mangle the string literal if the ABI allows for it.  However, we cannot
2957   // do this if  we are compiling with ASan or -fwritable-strings because they
2958   // rely on strings having normal linkage.
2959   if (!LangOpts.WritableStrings &&
2960       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
2961       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2962     llvm::raw_svector_ostream Out(MangledNameBuffer);
2963     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2964     Out.flush();
2965 
2966     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2967     GlobalVariableName = MangledNameBuffer;
2968   } else {
2969     LT = llvm::GlobalValue::PrivateLinkage;
2970     GlobalVariableName = Name;
2971   }
2972 
2973   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2974   if (Entry)
2975     *Entry = GV;
2976 
2977   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
2978                                   QualType());
2979   return GV;
2980 }
2981 
2982 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2983 /// array for the given ObjCEncodeExpr node.
2984 llvm::GlobalVariable *
2985 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2986   std::string Str;
2987   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2988 
2989   return GetAddrOfConstantCString(Str);
2990 }
2991 
2992 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2993 /// the literal and a terminating '\0' character.
2994 /// The result has pointer to array type.
2995 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2996     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2997   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2998   if (Alignment == 0) {
2999     Alignment = getContext()
3000                     .getAlignOfGlobalVarInChars(getContext().CharTy)
3001                     .getQuantity();
3002   }
3003 
3004   llvm::Constant *C =
3005       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3006 
3007   // Don't share any string literals if strings aren't constant.
3008   llvm::GlobalVariable **Entry = nullptr;
3009   if (!LangOpts.WritableStrings) {
3010     Entry = &ConstantStringMap[C];
3011     if (auto GV = *Entry) {
3012       if (Alignment > GV->getAlignment())
3013         GV->setAlignment(Alignment);
3014       return GV;
3015     }
3016   }
3017 
3018   // Get the default prefix if a name wasn't specified.
3019   if (!GlobalName)
3020     GlobalName = ".str";
3021   // Create a global variable for this.
3022   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3023                                   GlobalName, Alignment);
3024   if (Entry)
3025     *Entry = GV;
3026   return GV;
3027 }
3028 
3029 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
3030     const MaterializeTemporaryExpr *E, const Expr *Init) {
3031   assert((E->getStorageDuration() == SD_Static ||
3032           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3033   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3034 
3035   // If we're not materializing a subobject of the temporary, keep the
3036   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3037   QualType MaterializedType = Init->getType();
3038   if (Init == E->GetTemporaryExpr())
3039     MaterializedType = E->getType();
3040 
3041   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
3042   if (Slot)
3043     return Slot;
3044 
3045   // FIXME: If an externally-visible declaration extends multiple temporaries,
3046   // we need to give each temporary the same name in every translation unit (and
3047   // we also need to make the temporaries externally-visible).
3048   SmallString<256> Name;
3049   llvm::raw_svector_ostream Out(Name);
3050   getCXXABI().getMangleContext().mangleReferenceTemporary(
3051       VD, E->getManglingNumber(), Out);
3052   Out.flush();
3053 
3054   APValue *Value = nullptr;
3055   if (E->getStorageDuration() == SD_Static) {
3056     // We might have a cached constant initializer for this temporary. Note
3057     // that this might have a different value from the value computed by
3058     // evaluating the initializer if the surrounding constant expression
3059     // modifies the temporary.
3060     Value = getContext().getMaterializedTemporaryValue(E, false);
3061     if (Value && Value->isUninit())
3062       Value = nullptr;
3063   }
3064 
3065   // Try evaluating it now, it might have a constant initializer.
3066   Expr::EvalResult EvalResult;
3067   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3068       !EvalResult.hasSideEffects())
3069     Value = &EvalResult.Val;
3070 
3071   llvm::Constant *InitialValue = nullptr;
3072   bool Constant = false;
3073   llvm::Type *Type;
3074   if (Value) {
3075     // The temporary has a constant initializer, use it.
3076     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3077     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3078     Type = InitialValue->getType();
3079   } else {
3080     // No initializer, the initialization will be provided when we
3081     // initialize the declaration which performed lifetime extension.
3082     Type = getTypes().ConvertTypeForMem(MaterializedType);
3083   }
3084 
3085   // Create a global variable for this lifetime-extended temporary.
3086   llvm::GlobalValue::LinkageTypes Linkage =
3087       getLLVMLinkageVarDefinition(VD, Constant);
3088   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3089     const VarDecl *InitVD;
3090     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3091         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3092       // Temporaries defined inside a class get linkonce_odr linkage because the
3093       // class can be defined in multipe translation units.
3094       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3095     } else {
3096       // There is no need for this temporary to have external linkage if the
3097       // VarDecl has external linkage.
3098       Linkage = llvm::GlobalVariable::InternalLinkage;
3099     }
3100   }
3101   unsigned AddrSpace = GetGlobalVarAddressSpace(
3102       VD, getContext().getTargetAddressSpace(MaterializedType));
3103   auto *GV = new llvm::GlobalVariable(
3104       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3105       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3106       AddrSpace);
3107   setGlobalVisibility(GV, VD);
3108   GV->setAlignment(
3109       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
3110   if (supportsCOMDAT() && GV->isWeakForLinker())
3111     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3112   if (VD->getTLSKind())
3113     setTLSMode(GV, *VD);
3114   Slot = GV;
3115   return GV;
3116 }
3117 
3118 /// EmitObjCPropertyImplementations - Emit information for synthesized
3119 /// properties for an implementation.
3120 void CodeGenModule::EmitObjCPropertyImplementations(const
3121                                                     ObjCImplementationDecl *D) {
3122   for (const auto *PID : D->property_impls()) {
3123     // Dynamic is just for type-checking.
3124     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3125       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3126 
3127       // Determine which methods need to be implemented, some may have
3128       // been overridden. Note that ::isPropertyAccessor is not the method
3129       // we want, that just indicates if the decl came from a
3130       // property. What we want to know is if the method is defined in
3131       // this implementation.
3132       if (!D->getInstanceMethod(PD->getGetterName()))
3133         CodeGenFunction(*this).GenerateObjCGetter(
3134                                  const_cast<ObjCImplementationDecl *>(D), PID);
3135       if (!PD->isReadOnly() &&
3136           !D->getInstanceMethod(PD->getSetterName()))
3137         CodeGenFunction(*this).GenerateObjCSetter(
3138                                  const_cast<ObjCImplementationDecl *>(D), PID);
3139     }
3140   }
3141 }
3142 
3143 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3144   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3145   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3146        ivar; ivar = ivar->getNextIvar())
3147     if (ivar->getType().isDestructedType())
3148       return true;
3149 
3150   return false;
3151 }
3152 
3153 static bool AllTrivialInitializers(CodeGenModule &CGM,
3154                                    ObjCImplementationDecl *D) {
3155   CodeGenFunction CGF(CGM);
3156   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3157        E = D->init_end(); B != E; ++B) {
3158     CXXCtorInitializer *CtorInitExp = *B;
3159     Expr *Init = CtorInitExp->getInit();
3160     if (!CGF.isTrivialInitializer(Init))
3161       return false;
3162   }
3163   return true;
3164 }
3165 
3166 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3167 /// for an implementation.
3168 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3169   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3170   if (needsDestructMethod(D)) {
3171     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3172     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3173     ObjCMethodDecl *DTORMethod =
3174       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3175                              cxxSelector, getContext().VoidTy, nullptr, D,
3176                              /*isInstance=*/true, /*isVariadic=*/false,
3177                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3178                              /*isDefined=*/false, ObjCMethodDecl::Required);
3179     D->addInstanceMethod(DTORMethod);
3180     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3181     D->setHasDestructors(true);
3182   }
3183 
3184   // If the implementation doesn't have any ivar initializers, we don't need
3185   // a .cxx_construct.
3186   if (D->getNumIvarInitializers() == 0 ||
3187       AllTrivialInitializers(*this, D))
3188     return;
3189 
3190   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3191   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3192   // The constructor returns 'self'.
3193   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3194                                                 D->getLocation(),
3195                                                 D->getLocation(),
3196                                                 cxxSelector,
3197                                                 getContext().getObjCIdType(),
3198                                                 nullptr, D, /*isInstance=*/true,
3199                                                 /*isVariadic=*/false,
3200                                                 /*isPropertyAccessor=*/true,
3201                                                 /*isImplicitlyDeclared=*/true,
3202                                                 /*isDefined=*/false,
3203                                                 ObjCMethodDecl::Required);
3204   D->addInstanceMethod(CTORMethod);
3205   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3206   D->setHasNonZeroConstructors(true);
3207 }
3208 
3209 /// EmitNamespace - Emit all declarations in a namespace.
3210 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3211   for (auto *I : ND->decls()) {
3212     if (const auto *VD = dyn_cast<VarDecl>(I))
3213       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3214           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3215         continue;
3216     EmitTopLevelDecl(I);
3217   }
3218 }
3219 
3220 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3221 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3222   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3223       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3224     ErrorUnsupported(LSD, "linkage spec");
3225     return;
3226   }
3227 
3228   for (auto *I : LSD->decls()) {
3229     // Meta-data for ObjC class includes references to implemented methods.
3230     // Generate class's method definitions first.
3231     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3232       for (auto *M : OID->methods())
3233         EmitTopLevelDecl(M);
3234     }
3235     EmitTopLevelDecl(I);
3236   }
3237 }
3238 
3239 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3240 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3241   // Ignore dependent declarations.
3242   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3243     return;
3244 
3245   switch (D->getKind()) {
3246   case Decl::CXXConversion:
3247   case Decl::CXXMethod:
3248   case Decl::Function:
3249     // Skip function templates
3250     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3251         cast<FunctionDecl>(D)->isLateTemplateParsed())
3252       return;
3253 
3254     EmitGlobal(cast<FunctionDecl>(D));
3255     // Always provide some coverage mapping
3256     // even for the functions that aren't emitted.
3257     AddDeferredUnusedCoverageMapping(D);
3258     break;
3259 
3260   case Decl::Var:
3261     // Skip variable templates
3262     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3263       return;
3264   case Decl::VarTemplateSpecialization:
3265     EmitGlobal(cast<VarDecl>(D));
3266     break;
3267 
3268   // Indirect fields from global anonymous structs and unions can be
3269   // ignored; only the actual variable requires IR gen support.
3270   case Decl::IndirectField:
3271     break;
3272 
3273   // C++ Decls
3274   case Decl::Namespace:
3275     EmitNamespace(cast<NamespaceDecl>(D));
3276     break;
3277     // No code generation needed.
3278   case Decl::UsingShadow:
3279   case Decl::ClassTemplate:
3280   case Decl::VarTemplate:
3281   case Decl::VarTemplatePartialSpecialization:
3282   case Decl::FunctionTemplate:
3283   case Decl::TypeAliasTemplate:
3284   case Decl::Block:
3285   case Decl::Empty:
3286     break;
3287   case Decl::Using:          // using X; [C++]
3288     if (CGDebugInfo *DI = getModuleDebugInfo())
3289         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3290     return;
3291   case Decl::NamespaceAlias:
3292     if (CGDebugInfo *DI = getModuleDebugInfo())
3293         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3294     return;
3295   case Decl::UsingDirective: // using namespace X; [C++]
3296     if (CGDebugInfo *DI = getModuleDebugInfo())
3297       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3298     return;
3299   case Decl::CXXConstructor:
3300     // Skip function templates
3301     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3302         cast<FunctionDecl>(D)->isLateTemplateParsed())
3303       return;
3304 
3305     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3306     break;
3307   case Decl::CXXDestructor:
3308     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3309       return;
3310     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3311     break;
3312 
3313   case Decl::StaticAssert:
3314     // Nothing to do.
3315     break;
3316 
3317   // Objective-C Decls
3318 
3319   // Forward declarations, no (immediate) code generation.
3320   case Decl::ObjCInterface:
3321   case Decl::ObjCCategory:
3322     break;
3323 
3324   case Decl::ObjCProtocol: {
3325     auto *Proto = cast<ObjCProtocolDecl>(D);
3326     if (Proto->isThisDeclarationADefinition())
3327       ObjCRuntime->GenerateProtocol(Proto);
3328     break;
3329   }
3330 
3331   case Decl::ObjCCategoryImpl:
3332     // Categories have properties but don't support synthesize so we
3333     // can ignore them here.
3334     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3335     break;
3336 
3337   case Decl::ObjCImplementation: {
3338     auto *OMD = cast<ObjCImplementationDecl>(D);
3339     EmitObjCPropertyImplementations(OMD);
3340     EmitObjCIvarInitializations(OMD);
3341     ObjCRuntime->GenerateClass(OMD);
3342     // Emit global variable debug information.
3343     if (CGDebugInfo *DI = getModuleDebugInfo())
3344       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3345         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3346             OMD->getClassInterface()), OMD->getLocation());
3347     break;
3348   }
3349   case Decl::ObjCMethod: {
3350     auto *OMD = cast<ObjCMethodDecl>(D);
3351     // If this is not a prototype, emit the body.
3352     if (OMD->getBody())
3353       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3354     break;
3355   }
3356   case Decl::ObjCCompatibleAlias:
3357     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3358     break;
3359 
3360   case Decl::LinkageSpec:
3361     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3362     break;
3363 
3364   case Decl::FileScopeAsm: {
3365     auto *AD = cast<FileScopeAsmDecl>(D);
3366     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3367     break;
3368   }
3369 
3370   case Decl::Import: {
3371     auto *Import = cast<ImportDecl>(D);
3372 
3373     // Ignore import declarations that come from imported modules.
3374     if (clang::Module *Owner = Import->getOwningModule()) {
3375       if (getLangOpts().CurrentModule.empty() ||
3376           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3377         break;
3378     }
3379 
3380     ImportedModules.insert(Import->getImportedModule());
3381     break;
3382   }
3383 
3384   case Decl::OMPThreadPrivate:
3385     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3386     break;
3387 
3388   case Decl::ClassTemplateSpecialization: {
3389     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3390     if (DebugInfo &&
3391         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3392         Spec->hasDefinition())
3393       DebugInfo->completeTemplateDefinition(*Spec);
3394     break;
3395   }
3396 
3397   default:
3398     // Make sure we handled everything we should, every other kind is a
3399     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3400     // function. Need to recode Decl::Kind to do that easily.
3401     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3402     break;
3403   }
3404 }
3405 
3406 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3407   // Do we need to generate coverage mapping?
3408   if (!CodeGenOpts.CoverageMapping)
3409     return;
3410   switch (D->getKind()) {
3411   case Decl::CXXConversion:
3412   case Decl::CXXMethod:
3413   case Decl::Function:
3414   case Decl::ObjCMethod:
3415   case Decl::CXXConstructor:
3416   case Decl::CXXDestructor: {
3417     if (!cast<FunctionDecl>(D)->hasBody())
3418       return;
3419     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3420     if (I == DeferredEmptyCoverageMappingDecls.end())
3421       DeferredEmptyCoverageMappingDecls[D] = true;
3422     break;
3423   }
3424   default:
3425     break;
3426   };
3427 }
3428 
3429 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3430   // Do we need to generate coverage mapping?
3431   if (!CodeGenOpts.CoverageMapping)
3432     return;
3433   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3434     if (Fn->isTemplateInstantiation())
3435       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3436   }
3437   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3438   if (I == DeferredEmptyCoverageMappingDecls.end())
3439     DeferredEmptyCoverageMappingDecls[D] = false;
3440   else
3441     I->second = false;
3442 }
3443 
3444 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3445   std::vector<const Decl *> DeferredDecls;
3446   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3447     if (!I.second)
3448       continue;
3449     DeferredDecls.push_back(I.first);
3450   }
3451   // Sort the declarations by their location to make sure that the tests get a
3452   // predictable order for the coverage mapping for the unused declarations.
3453   if (CodeGenOpts.DumpCoverageMapping)
3454     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3455               [] (const Decl *LHS, const Decl *RHS) {
3456       return LHS->getLocStart() < RHS->getLocStart();
3457     });
3458   for (const auto *D : DeferredDecls) {
3459     switch (D->getKind()) {
3460     case Decl::CXXConversion:
3461     case Decl::CXXMethod:
3462     case Decl::Function:
3463     case Decl::ObjCMethod: {
3464       CodeGenPGO PGO(*this);
3465       GlobalDecl GD(cast<FunctionDecl>(D));
3466       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3467                                   getFunctionLinkage(GD));
3468       break;
3469     }
3470     case Decl::CXXConstructor: {
3471       CodeGenPGO PGO(*this);
3472       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3473       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3474                                   getFunctionLinkage(GD));
3475       break;
3476     }
3477     case Decl::CXXDestructor: {
3478       CodeGenPGO PGO(*this);
3479       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3480       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3481                                   getFunctionLinkage(GD));
3482       break;
3483     }
3484     default:
3485       break;
3486     };
3487   }
3488 }
3489 
3490 /// Turns the given pointer into a constant.
3491 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3492                                           const void *Ptr) {
3493   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3494   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3495   return llvm::ConstantInt::get(i64, PtrInt);
3496 }
3497 
3498 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3499                                    llvm::NamedMDNode *&GlobalMetadata,
3500                                    GlobalDecl D,
3501                                    llvm::GlobalValue *Addr) {
3502   if (!GlobalMetadata)
3503     GlobalMetadata =
3504       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3505 
3506   // TODO: should we report variant information for ctors/dtors?
3507   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3508                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3509                                CGM.getLLVMContext(), D.getDecl()))};
3510   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3511 }
3512 
3513 /// For each function which is declared within an extern "C" region and marked
3514 /// as 'used', but has internal linkage, create an alias from the unmangled
3515 /// name to the mangled name if possible. People expect to be able to refer
3516 /// to such functions with an unmangled name from inline assembly within the
3517 /// same translation unit.
3518 void CodeGenModule::EmitStaticExternCAliases() {
3519   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3520                                   E = StaticExternCValues.end();
3521        I != E; ++I) {
3522     IdentifierInfo *Name = I->first;
3523     llvm::GlobalValue *Val = I->second;
3524     if (Val && !getModule().getNamedValue(Name->getName()))
3525       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3526   }
3527 }
3528 
3529 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3530                                              GlobalDecl &Result) const {
3531   auto Res = Manglings.find(MangledName);
3532   if (Res == Manglings.end())
3533     return false;
3534   Result = Res->getValue();
3535   return true;
3536 }
3537 
3538 /// Emits metadata nodes associating all the global values in the
3539 /// current module with the Decls they came from.  This is useful for
3540 /// projects using IR gen as a subroutine.
3541 ///
3542 /// Since there's currently no way to associate an MDNode directly
3543 /// with an llvm::GlobalValue, we create a global named metadata
3544 /// with the name 'clang.global.decl.ptrs'.
3545 void CodeGenModule::EmitDeclMetadata() {
3546   llvm::NamedMDNode *GlobalMetadata = nullptr;
3547 
3548   // StaticLocalDeclMap
3549   for (auto &I : MangledDeclNames) {
3550     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3551     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3552   }
3553 }
3554 
3555 /// Emits metadata nodes for all the local variables in the current
3556 /// function.
3557 void CodeGenFunction::EmitDeclMetadata() {
3558   if (LocalDeclMap.empty()) return;
3559 
3560   llvm::LLVMContext &Context = getLLVMContext();
3561 
3562   // Find the unique metadata ID for this name.
3563   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3564 
3565   llvm::NamedMDNode *GlobalMetadata = nullptr;
3566 
3567   for (auto &I : LocalDeclMap) {
3568     const Decl *D = I.first;
3569     llvm::Value *Addr = I.second;
3570     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3571       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3572       Alloca->setMetadata(
3573           DeclPtrKind, llvm::MDNode::get(
3574                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3575     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3576       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3577       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3578     }
3579   }
3580 }
3581 
3582 void CodeGenModule::EmitVersionIdentMetadata() {
3583   llvm::NamedMDNode *IdentMetadata =
3584     TheModule.getOrInsertNamedMetadata("llvm.ident");
3585   std::string Version = getClangFullVersion();
3586   llvm::LLVMContext &Ctx = TheModule.getContext();
3587 
3588   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3589   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3590 }
3591 
3592 void CodeGenModule::EmitTargetMetadata() {
3593   // Warning, new MangledDeclNames may be appended within this loop.
3594   // We rely on MapVector insertions adding new elements to the end
3595   // of the container.
3596   // FIXME: Move this loop into the one target that needs it, and only
3597   // loop over those declarations for which we couldn't emit the target
3598   // metadata when we emitted the declaration.
3599   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3600     auto Val = *(MangledDeclNames.begin() + I);
3601     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3602     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3603     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3604   }
3605 }
3606 
3607 void CodeGenModule::EmitCoverageFile() {
3608   if (!getCodeGenOpts().CoverageFile.empty()) {
3609     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3610       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3611       llvm::LLVMContext &Ctx = TheModule.getContext();
3612       llvm::MDString *CoverageFile =
3613           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3614       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3615         llvm::MDNode *CU = CUNode->getOperand(i);
3616         llvm::Metadata *Elts[] = {CoverageFile, CU};
3617         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3618       }
3619     }
3620   }
3621 }
3622 
3623 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3624   // Sema has checked that all uuid strings are of the form
3625   // "12345678-1234-1234-1234-1234567890ab".
3626   assert(Uuid.size() == 36);
3627   for (unsigned i = 0; i < 36; ++i) {
3628     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3629     else                                         assert(isHexDigit(Uuid[i]));
3630   }
3631 
3632   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3633   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3634 
3635   llvm::Constant *Field3[8];
3636   for (unsigned Idx = 0; Idx < 8; ++Idx)
3637     Field3[Idx] = llvm::ConstantInt::get(
3638         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3639 
3640   llvm::Constant *Fields[4] = {
3641     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3642     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3643     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3644     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3645   };
3646 
3647   return llvm::ConstantStruct::getAnon(Fields);
3648 }
3649 
3650 llvm::Constant *
3651 CodeGenModule::getAddrOfCXXHandlerMapEntry(QualType Ty,
3652                                            QualType CatchHandlerType) {
3653   return getCXXABI().getAddrOfCXXHandlerMapEntry(Ty, CatchHandlerType);
3654 }
3655 
3656 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3657                                                        bool ForEH) {
3658   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3659   // FIXME: should we even be calling this method if RTTI is disabled
3660   // and it's not for EH?
3661   if (!ForEH && !getLangOpts().RTTI)
3662     return llvm::Constant::getNullValue(Int8PtrTy);
3663 
3664   if (ForEH && Ty->isObjCObjectPointerType() &&
3665       LangOpts.ObjCRuntime.isGNUFamily())
3666     return ObjCRuntime->GetEHType(Ty);
3667 
3668   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3669 }
3670 
3671 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3672   for (auto RefExpr : D->varlists()) {
3673     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3674     bool PerformInit =
3675         VD->getAnyInitializer() &&
3676         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3677                                                         /*ForRef=*/false);
3678     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3679             VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit))
3680       CXXGlobalInits.push_back(InitFunction);
3681   }
3682 }
3683 
3684