1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 #include "llvm/Support/X86TargetParser.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 const llvm::DataLayout &DL = M.getDataLayout(); 134 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 135 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 136 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 137 138 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 139 140 if (LangOpts.ObjC) 141 createObjCRuntime(); 142 if (LangOpts.OpenCL) 143 createOpenCLRuntime(); 144 if (LangOpts.OpenMP) 145 createOpenMPRuntime(); 146 if (LangOpts.CUDA) 147 createCUDARuntime(); 148 149 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 150 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 151 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 152 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 153 getCXXABI().getMangleContext())); 154 155 // If debug info or coverage generation is enabled, create the CGDebugInfo 156 // object. 157 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 158 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 159 DebugInfo.reset(new CGDebugInfo(*this)); 160 161 Block.GlobalUniqueCount = 0; 162 163 if (C.getLangOpts().ObjC) 164 ObjCData.reset(new ObjCEntrypoints()); 165 166 if (CodeGenOpts.hasProfileClangUse()) { 167 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 168 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 169 if (auto E = ReaderOrErr.takeError()) { 170 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 171 "Could not read profile %0: %1"); 172 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 173 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 174 << EI.message(); 175 }); 176 } else 177 PGOReader = std::move(ReaderOrErr.get()); 178 } 179 180 // If coverage mapping generation is enabled, create the 181 // CoverageMappingModuleGen object. 182 if (CodeGenOpts.CoverageMapping) 183 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 184 185 // Generate the module name hash here if needed. 186 if (CodeGenOpts.UniqueInternalLinkageNames && 187 !getModule().getSourceFileName().empty()) { 188 std::string Path = getModule().getSourceFileName(); 189 // Check if a path substitution is needed from the MacroPrefixMap. 190 for (const auto &Entry : LangOpts.MacroPrefixMap) 191 if (Path.rfind(Entry.first, 0) != std::string::npos) { 192 Path = Entry.second + Path.substr(Entry.first.size()); 193 break; 194 } 195 llvm::MD5 Md5; 196 Md5.update(Path); 197 llvm::MD5::MD5Result R; 198 Md5.final(R); 199 SmallString<32> Str; 200 llvm::MD5::stringifyResult(R, Str); 201 // Convert MD5hash to Decimal. Demangler suffixes can either contain 202 // numbers or characters but not both. 203 llvm::APInt IntHash(128, Str.str(), 16); 204 // Prepend "__uniq" before the hash for tools like profilers to understand 205 // that this symbol is of internal linkage type. The "__uniq" is the 206 // pre-determined prefix that is used to tell tools that this symbol was 207 // created with -funique-internal-linakge-symbols and the tools can strip or 208 // keep the prefix as needed. 209 ModuleNameHash = (Twine(".__uniq.") + 210 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 211 } 212 } 213 214 CodeGenModule::~CodeGenModule() {} 215 216 void CodeGenModule::createObjCRuntime() { 217 // This is just isGNUFamily(), but we want to force implementors of 218 // new ABIs to decide how best to do this. 219 switch (LangOpts.ObjCRuntime.getKind()) { 220 case ObjCRuntime::GNUstep: 221 case ObjCRuntime::GCC: 222 case ObjCRuntime::ObjFW: 223 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 224 return; 225 226 case ObjCRuntime::FragileMacOSX: 227 case ObjCRuntime::MacOSX: 228 case ObjCRuntime::iOS: 229 case ObjCRuntime::WatchOS: 230 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 231 return; 232 } 233 llvm_unreachable("bad runtime kind"); 234 } 235 236 void CodeGenModule::createOpenCLRuntime() { 237 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 238 } 239 240 void CodeGenModule::createOpenMPRuntime() { 241 // Select a specialized code generation class based on the target, if any. 242 // If it does not exist use the default implementation. 243 switch (getTriple().getArch()) { 244 case llvm::Triple::nvptx: 245 case llvm::Triple::nvptx64: 246 case llvm::Triple::amdgcn: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 250 break; 251 default: 252 if (LangOpts.OpenMPSimd) 253 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 254 else 255 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 256 break; 257 } 258 } 259 260 void CodeGenModule::createCUDARuntime() { 261 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 262 } 263 264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 265 Replacements[Name] = C; 266 } 267 268 void CodeGenModule::applyReplacements() { 269 for (auto &I : Replacements) { 270 StringRef MangledName = I.first(); 271 llvm::Constant *Replacement = I.second; 272 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 273 if (!Entry) 274 continue; 275 auto *OldF = cast<llvm::Function>(Entry); 276 auto *NewF = dyn_cast<llvm::Function>(Replacement); 277 if (!NewF) { 278 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 279 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 280 } else { 281 auto *CE = cast<llvm::ConstantExpr>(Replacement); 282 assert(CE->getOpcode() == llvm::Instruction::BitCast || 283 CE->getOpcode() == llvm::Instruction::GetElementPtr); 284 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 285 } 286 } 287 288 // Replace old with new, but keep the old order. 289 OldF->replaceAllUsesWith(Replacement); 290 if (NewF) { 291 NewF->removeFromParent(); 292 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 293 NewF); 294 } 295 OldF->eraseFromParent(); 296 } 297 } 298 299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 300 GlobalValReplacements.push_back(std::make_pair(GV, C)); 301 } 302 303 void CodeGenModule::applyGlobalValReplacements() { 304 for (auto &I : GlobalValReplacements) { 305 llvm::GlobalValue *GV = I.first; 306 llvm::Constant *C = I.second; 307 308 GV->replaceAllUsesWith(C); 309 GV->eraseFromParent(); 310 } 311 } 312 313 // This is only used in aliases that we created and we know they have a 314 // linear structure. 315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 316 const llvm::Constant *C; 317 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 318 C = GA->getAliasee(); 319 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 320 C = GI->getResolver(); 321 else 322 return GV; 323 324 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 325 if (!AliaseeGV) 326 return nullptr; 327 328 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 329 if (FinalGV == GV) 330 return nullptr; 331 332 return FinalGV; 333 } 334 335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 336 SourceLocation Location, bool IsIFunc, 337 const llvm::GlobalValue *Alias, 338 const llvm::GlobalValue *&GV) { 339 GV = getAliasedGlobal(Alias); 340 if (!GV) { 341 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 342 return false; 343 } 344 345 if (GV->isDeclaration()) { 346 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 347 return false; 348 } 349 350 if (IsIFunc) { 351 // Check resolver function type. 352 const auto *F = dyn_cast<llvm::Function>(GV); 353 if (!F) { 354 Diags.Report(Location, diag::err_alias_to_undefined) 355 << IsIFunc << IsIFunc; 356 return false; 357 } 358 359 llvm::FunctionType *FTy = F->getFunctionType(); 360 if (!FTy->getReturnType()->isPointerTy()) { 361 Diags.Report(Location, diag::err_ifunc_resolver_return); 362 return false; 363 } 364 } 365 366 return true; 367 } 368 369 void CodeGenModule::checkAliases() { 370 // Check if the constructed aliases are well formed. It is really unfortunate 371 // that we have to do this in CodeGen, but we only construct mangled names 372 // and aliases during codegen. 373 bool Error = false; 374 DiagnosticsEngine &Diags = getDiags(); 375 for (const GlobalDecl &GD : Aliases) { 376 const auto *D = cast<ValueDecl>(GD.getDecl()); 377 SourceLocation Location; 378 bool IsIFunc = D->hasAttr<IFuncAttr>(); 379 if (const Attr *A = D->getDefiningAttr()) 380 Location = A->getLocation(); 381 else 382 llvm_unreachable("Not an alias or ifunc?"); 383 384 StringRef MangledName = getMangledName(GD); 385 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 386 const llvm::GlobalValue *GV = nullptr; 387 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 388 Error = true; 389 continue; 390 } 391 392 llvm::Constant *Aliasee = 393 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 394 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 395 396 llvm::GlobalValue *AliaseeGV; 397 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 398 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 399 else 400 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 401 402 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 403 StringRef AliasSection = SA->getName(); 404 if (AliasSection != AliaseeGV->getSection()) 405 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 406 << AliasSection << IsIFunc << IsIFunc; 407 } 408 409 // We have to handle alias to weak aliases in here. LLVM itself disallows 410 // this since the object semantics would not match the IL one. For 411 // compatibility with gcc we implement it by just pointing the alias 412 // to its aliasee's aliasee. We also warn, since the user is probably 413 // expecting the link to be weak. 414 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 415 if (GA->isInterposable()) { 416 Diags.Report(Location, diag::warn_alias_to_weak_alias) 417 << GV->getName() << GA->getName() << IsIFunc; 418 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 419 GA->getAliasee(), Alias->getType()); 420 421 if (IsIFunc) 422 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 423 else 424 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 425 } 426 } 427 } 428 if (!Error) 429 return; 430 431 for (const GlobalDecl &GD : Aliases) { 432 StringRef MangledName = getMangledName(GD); 433 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 434 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 435 Alias->eraseFromParent(); 436 } 437 } 438 439 void CodeGenModule::clear() { 440 DeferredDeclsToEmit.clear(); 441 if (OpenMPRuntime) 442 OpenMPRuntime->clear(); 443 } 444 445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 446 StringRef MainFile) { 447 if (!hasDiagnostics()) 448 return; 449 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 450 if (MainFile.empty()) 451 MainFile = "<stdin>"; 452 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 453 } else { 454 if (Mismatched > 0) 455 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 456 457 if (Missing > 0) 458 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 459 } 460 } 461 462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 463 llvm::Module &M) { 464 if (!LO.VisibilityFromDLLStorageClass) 465 return; 466 467 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 468 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 469 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 470 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 471 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 472 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 473 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 474 CodeGenModule::GetLLVMVisibility( 475 LO.getExternDeclNoDLLStorageClassVisibility()); 476 477 for (llvm::GlobalValue &GV : M.global_values()) { 478 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 479 continue; 480 481 // Reset DSO locality before setting the visibility. This removes 482 // any effects that visibility options and annotations may have 483 // had on the DSO locality. Setting the visibility will implicitly set 484 // appropriate globals to DSO Local; however, this will be pessimistic 485 // w.r.t. to the normal compiler IRGen. 486 GV.setDSOLocal(false); 487 488 if (GV.isDeclarationForLinker()) { 489 GV.setVisibility(GV.getDLLStorageClass() == 490 llvm::GlobalValue::DLLImportStorageClass 491 ? ExternDeclDLLImportVisibility 492 : ExternDeclNoDLLStorageClassVisibility); 493 } else { 494 GV.setVisibility(GV.getDLLStorageClass() == 495 llvm::GlobalValue::DLLExportStorageClass 496 ? DLLExportVisibility 497 : NoDLLStorageClassVisibility); 498 } 499 500 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 501 } 502 } 503 504 void CodeGenModule::Release() { 505 EmitDeferred(); 506 EmitVTablesOpportunistically(); 507 applyGlobalValReplacements(); 508 applyReplacements(); 509 checkAliases(); 510 emitMultiVersionFunctions(); 511 EmitCXXGlobalInitFunc(); 512 EmitCXXGlobalCleanUpFunc(); 513 registerGlobalDtorsWithAtExit(); 514 EmitCXXThreadLocalInitFunc(); 515 if (ObjCRuntime) 516 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 517 AddGlobalCtor(ObjCInitFunction); 518 if (Context.getLangOpts().CUDA && CUDARuntime) { 519 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 520 AddGlobalCtor(CudaCtorFunction); 521 } 522 if (OpenMPRuntime) { 523 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 524 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 525 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 526 } 527 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 528 OpenMPRuntime->clear(); 529 } 530 if (PGOReader) { 531 getModule().setProfileSummary( 532 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 533 llvm::ProfileSummary::PSK_Instr); 534 if (PGOStats.hasDiagnostics()) 535 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 536 } 537 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 538 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 539 EmitGlobalAnnotations(); 540 EmitStaticExternCAliases(); 541 EmitDeferredUnusedCoverageMappings(); 542 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 543 if (CoverageMapping) 544 CoverageMapping->emit(); 545 if (CodeGenOpts.SanitizeCfiCrossDso) { 546 CodeGenFunction(*this).EmitCfiCheckFail(); 547 CodeGenFunction(*this).EmitCfiCheckStub(); 548 } 549 emitAtAvailableLinkGuard(); 550 if (Context.getTargetInfo().getTriple().isWasm() && 551 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 552 EmitMainVoidAlias(); 553 } 554 555 if (getTriple().isAMDGPU()) { 556 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 557 // preserve ASAN functions in bitcode libraries. 558 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 559 auto *FT = llvm::FunctionType::get(VoidTy, {}); 560 auto *F = llvm::Function::Create( 561 FT, llvm::GlobalValue::ExternalLinkage, 562 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 563 auto *Var = new llvm::GlobalVariable( 564 getModule(), FT->getPointerTo(), 565 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 566 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 567 llvm::GlobalVariable::NotThreadLocal); 568 addCompilerUsedGlobal(Var); 569 } 570 // Emit amdgpu_code_object_version module flag, which is code object version 571 // times 100. 572 // ToDo: Enable module flag for all code object version when ROCm device 573 // library is ready. 574 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 575 getModule().addModuleFlag(llvm::Module::Error, 576 "amdgpu_code_object_version", 577 getTarget().getTargetOpts().CodeObjectVersion); 578 } 579 } 580 581 emitLLVMUsed(); 582 if (SanStats) 583 SanStats->finish(); 584 585 if (CodeGenOpts.Autolink && 586 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 587 EmitModuleLinkOptions(); 588 } 589 590 // On ELF we pass the dependent library specifiers directly to the linker 591 // without manipulating them. This is in contrast to other platforms where 592 // they are mapped to a specific linker option by the compiler. This 593 // difference is a result of the greater variety of ELF linkers and the fact 594 // that ELF linkers tend to handle libraries in a more complicated fashion 595 // than on other platforms. This forces us to defer handling the dependent 596 // libs to the linker. 597 // 598 // CUDA/HIP device and host libraries are different. Currently there is no 599 // way to differentiate dependent libraries for host or device. Existing 600 // usage of #pragma comment(lib, *) is intended for host libraries on 601 // Windows. Therefore emit llvm.dependent-libraries only for host. 602 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 603 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 604 for (auto *MD : ELFDependentLibraries) 605 NMD->addOperand(MD); 606 } 607 608 // Record mregparm value now so it is visible through rest of codegen. 609 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 610 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 611 CodeGenOpts.NumRegisterParameters); 612 613 if (CodeGenOpts.DwarfVersion) { 614 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 615 CodeGenOpts.DwarfVersion); 616 } 617 618 if (CodeGenOpts.Dwarf64) 619 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 620 621 if (Context.getLangOpts().SemanticInterposition) 622 // Require various optimization to respect semantic interposition. 623 getModule().setSemanticInterposition(true); 624 625 if (CodeGenOpts.EmitCodeView) { 626 // Indicate that we want CodeView in the metadata. 627 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 628 } 629 if (CodeGenOpts.CodeViewGHash) { 630 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 631 } 632 if (CodeGenOpts.ControlFlowGuard) { 633 // Function ID tables and checks for Control Flow Guard (cfguard=2). 634 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 635 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 636 // Function ID tables for Control Flow Guard (cfguard=1). 637 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 638 } 639 if (CodeGenOpts.EHContGuard) { 640 // Function ID tables for EH Continuation Guard. 641 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 642 } 643 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 644 // We don't support LTO with 2 with different StrictVTablePointers 645 // FIXME: we could support it by stripping all the information introduced 646 // by StrictVTablePointers. 647 648 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 649 650 llvm::Metadata *Ops[2] = { 651 llvm::MDString::get(VMContext, "StrictVTablePointers"), 652 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 653 llvm::Type::getInt32Ty(VMContext), 1))}; 654 655 getModule().addModuleFlag(llvm::Module::Require, 656 "StrictVTablePointersRequirement", 657 llvm::MDNode::get(VMContext, Ops)); 658 } 659 if (getModuleDebugInfo()) 660 // We support a single version in the linked module. The LLVM 661 // parser will drop debug info with a different version number 662 // (and warn about it, too). 663 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 664 llvm::DEBUG_METADATA_VERSION); 665 666 // We need to record the widths of enums and wchar_t, so that we can generate 667 // the correct build attributes in the ARM backend. wchar_size is also used by 668 // TargetLibraryInfo. 669 uint64_t WCharWidth = 670 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 671 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 672 673 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 674 if ( Arch == llvm::Triple::arm 675 || Arch == llvm::Triple::armeb 676 || Arch == llvm::Triple::thumb 677 || Arch == llvm::Triple::thumbeb) { 678 // The minimum width of an enum in bytes 679 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 680 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 681 } 682 683 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 684 StringRef ABIStr = Target.getABI(); 685 llvm::LLVMContext &Ctx = TheModule.getContext(); 686 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 687 llvm::MDString::get(Ctx, ABIStr)); 688 } 689 690 if (CodeGenOpts.SanitizeCfiCrossDso) { 691 // Indicate that we want cross-DSO control flow integrity checks. 692 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 693 } 694 695 if (CodeGenOpts.WholeProgramVTables) { 696 // Indicate whether VFE was enabled for this module, so that the 697 // vcall_visibility metadata added under whole program vtables is handled 698 // appropriately in the optimizer. 699 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 700 CodeGenOpts.VirtualFunctionElimination); 701 } 702 703 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 704 getModule().addModuleFlag(llvm::Module::Override, 705 "CFI Canonical Jump Tables", 706 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 707 } 708 709 if (CodeGenOpts.CFProtectionReturn && 710 Target.checkCFProtectionReturnSupported(getDiags())) { 711 // Indicate that we want to instrument return control flow protection. 712 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 713 1); 714 } 715 716 if (CodeGenOpts.CFProtectionBranch && 717 Target.checkCFProtectionBranchSupported(getDiags())) { 718 // Indicate that we want to instrument branch control flow protection. 719 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 720 1); 721 } 722 723 if (CodeGenOpts.IBTSeal) 724 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 725 726 // Add module metadata for return address signing (ignoring 727 // non-leaf/all) and stack tagging. These are actually turned on by function 728 // attributes, but we use module metadata to emit build attributes. This is 729 // needed for LTO, where the function attributes are inside bitcode 730 // serialised into a global variable by the time build attributes are 731 // emitted, so we can't access them. 732 if (Context.getTargetInfo().hasFeature("ptrauth") && 733 LangOpts.getSignReturnAddressScope() != 734 LangOptions::SignReturnAddressScopeKind::None) 735 getModule().addModuleFlag(llvm::Module::Override, 736 "sign-return-address-buildattr", 1); 737 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) 738 getModule().addModuleFlag(llvm::Module::Override, 739 "tag-stack-memory-buildattr", 1); 740 741 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 742 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 743 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 744 Arch == llvm::Triple::aarch64_be) { 745 getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement", 746 LangOpts.BranchTargetEnforcement); 747 748 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 749 LangOpts.hasSignReturnAddress()); 750 751 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 752 LangOpts.isSignReturnAddressScopeAll()); 753 754 getModule().addModuleFlag(llvm::Module::Error, 755 "sign-return-address-with-bkey", 756 !LangOpts.isSignReturnAddressWithAKey()); 757 } 758 759 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 760 llvm::LLVMContext &Ctx = TheModule.getContext(); 761 getModule().addModuleFlag( 762 llvm::Module::Error, "MemProfProfileFilename", 763 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 764 } 765 766 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 767 // Indicate whether __nvvm_reflect should be configured to flush denormal 768 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 769 // property.) 770 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 771 CodeGenOpts.FP32DenormalMode.Output != 772 llvm::DenormalMode::IEEE); 773 } 774 775 if (LangOpts.EHAsynch) 776 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 777 778 // Indicate whether this Module was compiled with -fopenmp 779 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 780 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 781 if (getLangOpts().OpenMPIsDevice) 782 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 783 LangOpts.OpenMP); 784 785 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 786 if (LangOpts.OpenCL) { 787 EmitOpenCLMetadata(); 788 // Emit SPIR version. 789 if (getTriple().isSPIR()) { 790 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 791 // opencl.spir.version named metadata. 792 // C++ for OpenCL has a distinct mapping for version compatibility with 793 // OpenCL. 794 auto Version = LangOpts.getOpenCLCompatibleVersion(); 795 llvm::Metadata *SPIRVerElts[] = { 796 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 797 Int32Ty, Version / 100)), 798 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 799 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 800 llvm::NamedMDNode *SPIRVerMD = 801 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 802 llvm::LLVMContext &Ctx = TheModule.getContext(); 803 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 804 } 805 } 806 807 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 808 assert(PLevel < 3 && "Invalid PIC Level"); 809 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 810 if (Context.getLangOpts().PIE) 811 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 812 } 813 814 if (getCodeGenOpts().CodeModel.size() > 0) { 815 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 816 .Case("tiny", llvm::CodeModel::Tiny) 817 .Case("small", llvm::CodeModel::Small) 818 .Case("kernel", llvm::CodeModel::Kernel) 819 .Case("medium", llvm::CodeModel::Medium) 820 .Case("large", llvm::CodeModel::Large) 821 .Default(~0u); 822 if (CM != ~0u) { 823 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 824 getModule().setCodeModel(codeModel); 825 } 826 } 827 828 if (CodeGenOpts.NoPLT) 829 getModule().setRtLibUseGOT(); 830 if (CodeGenOpts.UnwindTables) 831 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 832 833 switch (CodeGenOpts.getFramePointer()) { 834 case CodeGenOptions::FramePointerKind::None: 835 // 0 ("none") is the default. 836 break; 837 case CodeGenOptions::FramePointerKind::NonLeaf: 838 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 839 break; 840 case CodeGenOptions::FramePointerKind::All: 841 getModule().setFramePointer(llvm::FramePointerKind::All); 842 break; 843 } 844 845 SimplifyPersonality(); 846 847 if (getCodeGenOpts().EmitDeclMetadata) 848 EmitDeclMetadata(); 849 850 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 851 EmitCoverageFile(); 852 853 if (CGDebugInfo *DI = getModuleDebugInfo()) 854 DI->finalize(); 855 856 if (getCodeGenOpts().EmitVersionIdentMetadata) 857 EmitVersionIdentMetadata(); 858 859 if (!getCodeGenOpts().RecordCommandLine.empty()) 860 EmitCommandLineMetadata(); 861 862 if (!getCodeGenOpts().StackProtectorGuard.empty()) 863 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 864 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 865 getModule().setStackProtectorGuardReg( 866 getCodeGenOpts().StackProtectorGuardReg); 867 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 868 getModule().setStackProtectorGuardOffset( 869 getCodeGenOpts().StackProtectorGuardOffset); 870 if (getCodeGenOpts().StackAlignment) 871 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 872 if (getCodeGenOpts().SkipRaxSetup) 873 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 874 875 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 876 877 EmitBackendOptionsMetadata(getCodeGenOpts()); 878 879 // Set visibility from DLL storage class 880 // We do this at the end of LLVM IR generation; after any operation 881 // that might affect the DLL storage class or the visibility, and 882 // before anything that might act on these. 883 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 884 } 885 886 void CodeGenModule::EmitOpenCLMetadata() { 887 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 888 // opencl.ocl.version named metadata node. 889 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 890 auto Version = LangOpts.getOpenCLCompatibleVersion(); 891 llvm::Metadata *OCLVerElts[] = { 892 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 893 Int32Ty, Version / 100)), 894 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 895 Int32Ty, (Version % 100) / 10))}; 896 llvm::NamedMDNode *OCLVerMD = 897 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 898 llvm::LLVMContext &Ctx = TheModule.getContext(); 899 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 900 } 901 902 void CodeGenModule::EmitBackendOptionsMetadata( 903 const CodeGenOptions CodeGenOpts) { 904 switch (getTriple().getArch()) { 905 default: 906 break; 907 case llvm::Triple::riscv32: 908 case llvm::Triple::riscv64: 909 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 910 CodeGenOpts.SmallDataLimit); 911 break; 912 } 913 } 914 915 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 916 // Make sure that this type is translated. 917 Types.UpdateCompletedType(TD); 918 } 919 920 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 921 // Make sure that this type is translated. 922 Types.RefreshTypeCacheForClass(RD); 923 } 924 925 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 926 if (!TBAA) 927 return nullptr; 928 return TBAA->getTypeInfo(QTy); 929 } 930 931 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 932 if (!TBAA) 933 return TBAAAccessInfo(); 934 if (getLangOpts().CUDAIsDevice) { 935 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 936 // access info. 937 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 938 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 939 nullptr) 940 return TBAAAccessInfo(); 941 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 942 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 943 nullptr) 944 return TBAAAccessInfo(); 945 } 946 } 947 return TBAA->getAccessInfo(AccessType); 948 } 949 950 TBAAAccessInfo 951 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 952 if (!TBAA) 953 return TBAAAccessInfo(); 954 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 955 } 956 957 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 958 if (!TBAA) 959 return nullptr; 960 return TBAA->getTBAAStructInfo(QTy); 961 } 962 963 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 964 if (!TBAA) 965 return nullptr; 966 return TBAA->getBaseTypeInfo(QTy); 967 } 968 969 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 970 if (!TBAA) 971 return nullptr; 972 return TBAA->getAccessTagInfo(Info); 973 } 974 975 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 976 TBAAAccessInfo TargetInfo) { 977 if (!TBAA) 978 return TBAAAccessInfo(); 979 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 980 } 981 982 TBAAAccessInfo 983 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 984 TBAAAccessInfo InfoB) { 985 if (!TBAA) 986 return TBAAAccessInfo(); 987 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 988 } 989 990 TBAAAccessInfo 991 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 992 TBAAAccessInfo SrcInfo) { 993 if (!TBAA) 994 return TBAAAccessInfo(); 995 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 996 } 997 998 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 999 TBAAAccessInfo TBAAInfo) { 1000 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1001 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1002 } 1003 1004 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1005 llvm::Instruction *I, const CXXRecordDecl *RD) { 1006 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1007 llvm::MDNode::get(getLLVMContext(), {})); 1008 } 1009 1010 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1011 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1012 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1013 } 1014 1015 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1016 /// specified stmt yet. 1017 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1018 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1019 "cannot compile this %0 yet"); 1020 std::string Msg = Type; 1021 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1022 << Msg << S->getSourceRange(); 1023 } 1024 1025 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1026 /// specified decl yet. 1027 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1028 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1029 "cannot compile this %0 yet"); 1030 std::string Msg = Type; 1031 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1032 } 1033 1034 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1035 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1036 } 1037 1038 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1039 const NamedDecl *D) const { 1040 if (GV->hasDLLImportStorageClass()) 1041 return; 1042 // Internal definitions always have default visibility. 1043 if (GV->hasLocalLinkage()) { 1044 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1045 return; 1046 } 1047 if (!D) 1048 return; 1049 // Set visibility for definitions, and for declarations if requested globally 1050 // or set explicitly. 1051 LinkageInfo LV = D->getLinkageAndVisibility(); 1052 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1053 !GV->isDeclarationForLinker()) 1054 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1055 } 1056 1057 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1058 llvm::GlobalValue *GV) { 1059 if (GV->hasLocalLinkage()) 1060 return true; 1061 1062 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1063 return true; 1064 1065 // DLLImport explicitly marks the GV as external. 1066 if (GV->hasDLLImportStorageClass()) 1067 return false; 1068 1069 const llvm::Triple &TT = CGM.getTriple(); 1070 if (TT.isWindowsGNUEnvironment()) { 1071 // In MinGW, variables without DLLImport can still be automatically 1072 // imported from a DLL by the linker; don't mark variables that 1073 // potentially could come from another DLL as DSO local. 1074 1075 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1076 // (and this actually happens in the public interface of libstdc++), so 1077 // such variables can't be marked as DSO local. (Native TLS variables 1078 // can't be dllimported at all, though.) 1079 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1080 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1081 return false; 1082 } 1083 1084 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1085 // remain unresolved in the link, they can be resolved to zero, which is 1086 // outside the current DSO. 1087 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1088 return false; 1089 1090 // Every other GV is local on COFF. 1091 // Make an exception for windows OS in the triple: Some firmware builds use 1092 // *-win32-macho triples. This (accidentally?) produced windows relocations 1093 // without GOT tables in older clang versions; Keep this behaviour. 1094 // FIXME: even thread local variables? 1095 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1096 return true; 1097 1098 // Only handle COFF and ELF for now. 1099 if (!TT.isOSBinFormatELF()) 1100 return false; 1101 1102 // If this is not an executable, don't assume anything is local. 1103 const auto &CGOpts = CGM.getCodeGenOpts(); 1104 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1105 const auto &LOpts = CGM.getLangOpts(); 1106 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1107 // On ELF, if -fno-semantic-interposition is specified and the target 1108 // supports local aliases, there will be neither CC1 1109 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1110 // dso_local on the function if using a local alias is preferable (can avoid 1111 // PLT indirection). 1112 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1113 return false; 1114 return !(CGM.getLangOpts().SemanticInterposition || 1115 CGM.getLangOpts().HalfNoSemanticInterposition); 1116 } 1117 1118 // A definition cannot be preempted from an executable. 1119 if (!GV->isDeclarationForLinker()) 1120 return true; 1121 1122 // Most PIC code sequences that assume that a symbol is local cannot produce a 1123 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1124 // depended, it seems worth it to handle it here. 1125 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1126 return false; 1127 1128 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1129 if (TT.isPPC64()) 1130 return false; 1131 1132 if (CGOpts.DirectAccessExternalData) { 1133 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1134 // for non-thread-local variables. If the symbol is not defined in the 1135 // executable, a copy relocation will be needed at link time. dso_local is 1136 // excluded for thread-local variables because they generally don't support 1137 // copy relocations. 1138 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1139 if (!Var->isThreadLocal()) 1140 return true; 1141 1142 // -fno-pic sets dso_local on a function declaration to allow direct 1143 // accesses when taking its address (similar to a data symbol). If the 1144 // function is not defined in the executable, a canonical PLT entry will be 1145 // needed at link time. -fno-direct-access-external-data can avoid the 1146 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1147 // it could just cause trouble without providing perceptible benefits. 1148 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1149 return true; 1150 } 1151 1152 // If we can use copy relocations we can assume it is local. 1153 1154 // Otherwise don't assume it is local. 1155 return false; 1156 } 1157 1158 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1159 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1160 } 1161 1162 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1163 GlobalDecl GD) const { 1164 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1165 // C++ destructors have a few C++ ABI specific special cases. 1166 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1167 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1168 return; 1169 } 1170 setDLLImportDLLExport(GV, D); 1171 } 1172 1173 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1174 const NamedDecl *D) const { 1175 if (D && D->isExternallyVisible()) { 1176 if (D->hasAttr<DLLImportAttr>()) 1177 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1178 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1179 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1180 } 1181 } 1182 1183 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1184 GlobalDecl GD) const { 1185 setDLLImportDLLExport(GV, GD); 1186 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1187 } 1188 1189 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1190 const NamedDecl *D) const { 1191 setDLLImportDLLExport(GV, D); 1192 setGVPropertiesAux(GV, D); 1193 } 1194 1195 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1196 const NamedDecl *D) const { 1197 setGlobalVisibility(GV, D); 1198 setDSOLocal(GV); 1199 GV->setPartition(CodeGenOpts.SymbolPartition); 1200 } 1201 1202 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1203 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1204 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1205 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1206 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1207 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1208 } 1209 1210 llvm::GlobalVariable::ThreadLocalMode 1211 CodeGenModule::GetDefaultLLVMTLSModel() const { 1212 switch (CodeGenOpts.getDefaultTLSModel()) { 1213 case CodeGenOptions::GeneralDynamicTLSModel: 1214 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1215 case CodeGenOptions::LocalDynamicTLSModel: 1216 return llvm::GlobalVariable::LocalDynamicTLSModel; 1217 case CodeGenOptions::InitialExecTLSModel: 1218 return llvm::GlobalVariable::InitialExecTLSModel; 1219 case CodeGenOptions::LocalExecTLSModel: 1220 return llvm::GlobalVariable::LocalExecTLSModel; 1221 } 1222 llvm_unreachable("Invalid TLS model!"); 1223 } 1224 1225 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1226 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1227 1228 llvm::GlobalValue::ThreadLocalMode TLM; 1229 TLM = GetDefaultLLVMTLSModel(); 1230 1231 // Override the TLS model if it is explicitly specified. 1232 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1233 TLM = GetLLVMTLSModel(Attr->getModel()); 1234 } 1235 1236 GV->setThreadLocalMode(TLM); 1237 } 1238 1239 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1240 StringRef Name) { 1241 const TargetInfo &Target = CGM.getTarget(); 1242 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1243 } 1244 1245 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1246 const CPUSpecificAttr *Attr, 1247 unsigned CPUIndex, 1248 raw_ostream &Out) { 1249 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1250 // supported. 1251 if (Attr) 1252 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1253 else if (CGM.getTarget().supportsIFunc()) 1254 Out << ".resolver"; 1255 } 1256 1257 static void AppendTargetMangling(const CodeGenModule &CGM, 1258 const TargetAttr *Attr, raw_ostream &Out) { 1259 if (Attr->isDefaultVersion()) 1260 return; 1261 1262 Out << '.'; 1263 const TargetInfo &Target = CGM.getTarget(); 1264 ParsedTargetAttr Info = 1265 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1266 // Multiversioning doesn't allow "no-${feature}", so we can 1267 // only have "+" prefixes here. 1268 assert(LHS.startswith("+") && RHS.startswith("+") && 1269 "Features should always have a prefix."); 1270 return Target.multiVersionSortPriority(LHS.substr(1)) > 1271 Target.multiVersionSortPriority(RHS.substr(1)); 1272 }); 1273 1274 bool IsFirst = true; 1275 1276 if (!Info.Architecture.empty()) { 1277 IsFirst = false; 1278 Out << "arch_" << Info.Architecture; 1279 } 1280 1281 for (StringRef Feat : Info.Features) { 1282 if (!IsFirst) 1283 Out << '_'; 1284 IsFirst = false; 1285 Out << Feat.substr(1); 1286 } 1287 } 1288 1289 // Returns true if GD is a function decl with internal linkage and 1290 // needs a unique suffix after the mangled name. 1291 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1292 CodeGenModule &CGM) { 1293 const Decl *D = GD.getDecl(); 1294 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1295 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1296 } 1297 1298 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1299 const TargetClonesAttr *Attr, 1300 unsigned VersionIndex, 1301 raw_ostream &Out) { 1302 Out << '.'; 1303 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1304 if (FeatureStr.startswith("arch=")) 1305 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1306 else 1307 Out << FeatureStr; 1308 1309 Out << '.' << Attr->getMangledIndex(VersionIndex); 1310 } 1311 1312 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1313 const NamedDecl *ND, 1314 bool OmitMultiVersionMangling = false) { 1315 SmallString<256> Buffer; 1316 llvm::raw_svector_ostream Out(Buffer); 1317 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1318 if (!CGM.getModuleNameHash().empty()) 1319 MC.needsUniqueInternalLinkageNames(); 1320 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1321 if (ShouldMangle) 1322 MC.mangleName(GD.getWithDecl(ND), Out); 1323 else { 1324 IdentifierInfo *II = ND->getIdentifier(); 1325 assert(II && "Attempt to mangle unnamed decl."); 1326 const auto *FD = dyn_cast<FunctionDecl>(ND); 1327 1328 if (FD && 1329 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1330 Out << "__regcall3__" << II->getName(); 1331 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1332 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1333 Out << "__device_stub__" << II->getName(); 1334 } else { 1335 Out << II->getName(); 1336 } 1337 } 1338 1339 // Check if the module name hash should be appended for internal linkage 1340 // symbols. This should come before multi-version target suffixes are 1341 // appended. This is to keep the name and module hash suffix of the 1342 // internal linkage function together. The unique suffix should only be 1343 // added when name mangling is done to make sure that the final name can 1344 // be properly demangled. For example, for C functions without prototypes, 1345 // name mangling is not done and the unique suffix should not be appeneded 1346 // then. 1347 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1348 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1349 "Hash computed when not explicitly requested"); 1350 Out << CGM.getModuleNameHash(); 1351 } 1352 1353 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1354 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1355 switch (FD->getMultiVersionKind()) { 1356 case MultiVersionKind::CPUDispatch: 1357 case MultiVersionKind::CPUSpecific: 1358 AppendCPUSpecificCPUDispatchMangling(CGM, 1359 FD->getAttr<CPUSpecificAttr>(), 1360 GD.getMultiVersionIndex(), Out); 1361 break; 1362 case MultiVersionKind::Target: 1363 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1364 break; 1365 case MultiVersionKind::TargetClones: 1366 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1367 GD.getMultiVersionIndex(), Out); 1368 break; 1369 case MultiVersionKind::None: 1370 llvm_unreachable("None multiversion type isn't valid here"); 1371 } 1372 } 1373 1374 // Make unique name for device side static file-scope variable for HIP. 1375 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1376 CGM.getLangOpts().GPURelocatableDeviceCode && 1377 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1378 CGM.printPostfixForExternalizedStaticVar(Out); 1379 return std::string(Out.str()); 1380 } 1381 1382 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1383 const FunctionDecl *FD, 1384 StringRef &CurName) { 1385 if (!FD->isMultiVersion()) 1386 return; 1387 1388 // Get the name of what this would be without the 'target' attribute. This 1389 // allows us to lookup the version that was emitted when this wasn't a 1390 // multiversion function. 1391 std::string NonTargetName = 1392 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1393 GlobalDecl OtherGD; 1394 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1395 assert(OtherGD.getCanonicalDecl() 1396 .getDecl() 1397 ->getAsFunction() 1398 ->isMultiVersion() && 1399 "Other GD should now be a multiversioned function"); 1400 // OtherFD is the version of this function that was mangled BEFORE 1401 // becoming a MultiVersion function. It potentially needs to be updated. 1402 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1403 .getDecl() 1404 ->getAsFunction() 1405 ->getMostRecentDecl(); 1406 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1407 // This is so that if the initial version was already the 'default' 1408 // version, we don't try to update it. 1409 if (OtherName != NonTargetName) { 1410 // Remove instead of erase, since others may have stored the StringRef 1411 // to this. 1412 const auto ExistingRecord = Manglings.find(NonTargetName); 1413 if (ExistingRecord != std::end(Manglings)) 1414 Manglings.remove(&(*ExistingRecord)); 1415 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1416 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1417 Result.first->first(); 1418 // If this is the current decl is being created, make sure we update the name. 1419 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1420 CurName = OtherNameRef; 1421 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1422 Entry->setName(OtherName); 1423 } 1424 } 1425 } 1426 1427 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1428 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1429 1430 // Some ABIs don't have constructor variants. Make sure that base and 1431 // complete constructors get mangled the same. 1432 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1433 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1434 CXXCtorType OrigCtorType = GD.getCtorType(); 1435 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1436 if (OrigCtorType == Ctor_Base) 1437 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1438 } 1439 } 1440 1441 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1442 // static device variable depends on whether the variable is referenced by 1443 // a host or device host function. Therefore the mangled name cannot be 1444 // cached. 1445 if (!LangOpts.CUDAIsDevice || 1446 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1447 auto FoundName = MangledDeclNames.find(CanonicalGD); 1448 if (FoundName != MangledDeclNames.end()) 1449 return FoundName->second; 1450 } 1451 1452 // Keep the first result in the case of a mangling collision. 1453 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1454 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1455 1456 // Ensure either we have different ABIs between host and device compilations, 1457 // says host compilation following MSVC ABI but device compilation follows 1458 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1459 // mangling should be the same after name stubbing. The later checking is 1460 // very important as the device kernel name being mangled in host-compilation 1461 // is used to resolve the device binaries to be executed. Inconsistent naming 1462 // result in undefined behavior. Even though we cannot check that naming 1463 // directly between host- and device-compilations, the host- and 1464 // device-mangling in host compilation could help catching certain ones. 1465 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1466 getLangOpts().CUDAIsDevice || 1467 (getContext().getAuxTargetInfo() && 1468 (getContext().getAuxTargetInfo()->getCXXABI() != 1469 getContext().getTargetInfo().getCXXABI())) || 1470 getCUDARuntime().getDeviceSideName(ND) == 1471 getMangledNameImpl( 1472 *this, 1473 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1474 ND)); 1475 1476 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1477 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1478 } 1479 1480 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1481 const BlockDecl *BD) { 1482 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1483 const Decl *D = GD.getDecl(); 1484 1485 SmallString<256> Buffer; 1486 llvm::raw_svector_ostream Out(Buffer); 1487 if (!D) 1488 MangleCtx.mangleGlobalBlock(BD, 1489 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1490 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1491 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1492 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1493 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1494 else 1495 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1496 1497 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1498 return Result.first->first(); 1499 } 1500 1501 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1502 return getModule().getNamedValue(Name); 1503 } 1504 1505 /// AddGlobalCtor - Add a function to the list that will be called before 1506 /// main() runs. 1507 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1508 llvm::Constant *AssociatedData) { 1509 // FIXME: Type coercion of void()* types. 1510 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1511 } 1512 1513 /// AddGlobalDtor - Add a function to the list that will be called 1514 /// when the module is unloaded. 1515 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1516 bool IsDtorAttrFunc) { 1517 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1518 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1519 DtorsUsingAtExit[Priority].push_back(Dtor); 1520 return; 1521 } 1522 1523 // FIXME: Type coercion of void()* types. 1524 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1525 } 1526 1527 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1528 if (Fns.empty()) return; 1529 1530 // Ctor function type is void()*. 1531 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1532 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1533 TheModule.getDataLayout().getProgramAddressSpace()); 1534 1535 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1536 llvm::StructType *CtorStructTy = llvm::StructType::get( 1537 Int32Ty, CtorPFTy, VoidPtrTy); 1538 1539 // Construct the constructor and destructor arrays. 1540 ConstantInitBuilder builder(*this); 1541 auto ctors = builder.beginArray(CtorStructTy); 1542 for (const auto &I : Fns) { 1543 auto ctor = ctors.beginStruct(CtorStructTy); 1544 ctor.addInt(Int32Ty, I.Priority); 1545 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1546 if (I.AssociatedData) 1547 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1548 else 1549 ctor.addNullPointer(VoidPtrTy); 1550 ctor.finishAndAddTo(ctors); 1551 } 1552 1553 auto list = 1554 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1555 /*constant*/ false, 1556 llvm::GlobalValue::AppendingLinkage); 1557 1558 // The LTO linker doesn't seem to like it when we set an alignment 1559 // on appending variables. Take it off as a workaround. 1560 list->setAlignment(llvm::None); 1561 1562 Fns.clear(); 1563 } 1564 1565 llvm::GlobalValue::LinkageTypes 1566 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1567 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1568 1569 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1570 1571 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1572 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1573 1574 if (isa<CXXConstructorDecl>(D) && 1575 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1576 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1577 // Our approach to inheriting constructors is fundamentally different from 1578 // that used by the MS ABI, so keep our inheriting constructor thunks 1579 // internal rather than trying to pick an unambiguous mangling for them. 1580 return llvm::GlobalValue::InternalLinkage; 1581 } 1582 1583 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1584 } 1585 1586 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1587 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1588 if (!MDS) return nullptr; 1589 1590 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1591 } 1592 1593 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1594 const CGFunctionInfo &Info, 1595 llvm::Function *F, bool IsThunk) { 1596 unsigned CallingConv; 1597 llvm::AttributeList PAL; 1598 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1599 /*AttrOnCallSite=*/false, IsThunk); 1600 F->setAttributes(PAL); 1601 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1602 } 1603 1604 static void removeImageAccessQualifier(std::string& TyName) { 1605 std::string ReadOnlyQual("__read_only"); 1606 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1607 if (ReadOnlyPos != std::string::npos) 1608 // "+ 1" for the space after access qualifier. 1609 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1610 else { 1611 std::string WriteOnlyQual("__write_only"); 1612 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1613 if (WriteOnlyPos != std::string::npos) 1614 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1615 else { 1616 std::string ReadWriteQual("__read_write"); 1617 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1618 if (ReadWritePos != std::string::npos) 1619 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1620 } 1621 } 1622 } 1623 1624 // Returns the address space id that should be produced to the 1625 // kernel_arg_addr_space metadata. This is always fixed to the ids 1626 // as specified in the SPIR 2.0 specification in order to differentiate 1627 // for example in clGetKernelArgInfo() implementation between the address 1628 // spaces with targets without unique mapping to the OpenCL address spaces 1629 // (basically all single AS CPUs). 1630 static unsigned ArgInfoAddressSpace(LangAS AS) { 1631 switch (AS) { 1632 case LangAS::opencl_global: 1633 return 1; 1634 case LangAS::opencl_constant: 1635 return 2; 1636 case LangAS::opencl_local: 1637 return 3; 1638 case LangAS::opencl_generic: 1639 return 4; // Not in SPIR 2.0 specs. 1640 case LangAS::opencl_global_device: 1641 return 5; 1642 case LangAS::opencl_global_host: 1643 return 6; 1644 default: 1645 return 0; // Assume private. 1646 } 1647 } 1648 1649 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1650 const FunctionDecl *FD, 1651 CodeGenFunction *CGF) { 1652 assert(((FD && CGF) || (!FD && !CGF)) && 1653 "Incorrect use - FD and CGF should either be both null or not!"); 1654 // Create MDNodes that represent the kernel arg metadata. 1655 // Each MDNode is a list in the form of "key", N number of values which is 1656 // the same number of values as their are kernel arguments. 1657 1658 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1659 1660 // MDNode for the kernel argument address space qualifiers. 1661 SmallVector<llvm::Metadata *, 8> addressQuals; 1662 1663 // MDNode for the kernel argument access qualifiers (images only). 1664 SmallVector<llvm::Metadata *, 8> accessQuals; 1665 1666 // MDNode for the kernel argument type names. 1667 SmallVector<llvm::Metadata *, 8> argTypeNames; 1668 1669 // MDNode for the kernel argument base type names. 1670 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1671 1672 // MDNode for the kernel argument type qualifiers. 1673 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1674 1675 // MDNode for the kernel argument names. 1676 SmallVector<llvm::Metadata *, 8> argNames; 1677 1678 if (FD && CGF) 1679 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1680 const ParmVarDecl *parm = FD->getParamDecl(i); 1681 QualType ty = parm->getType(); 1682 std::string typeQuals; 1683 1684 // Get image and pipe access qualifier: 1685 if (ty->isImageType() || ty->isPipeType()) { 1686 const Decl *PDecl = parm; 1687 if (auto *TD = dyn_cast<TypedefType>(ty)) 1688 PDecl = TD->getDecl(); 1689 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1690 if (A && A->isWriteOnly()) 1691 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1692 else if (A && A->isReadWrite()) 1693 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1694 else 1695 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1696 } else 1697 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1698 1699 // Get argument name. 1700 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1701 1702 auto getTypeSpelling = [&](QualType Ty) { 1703 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1704 1705 if (Ty.isCanonical()) { 1706 StringRef typeNameRef = typeName; 1707 // Turn "unsigned type" to "utype" 1708 if (typeNameRef.consume_front("unsigned ")) 1709 return std::string("u") + typeNameRef.str(); 1710 if (typeNameRef.consume_front("signed ")) 1711 return typeNameRef.str(); 1712 } 1713 1714 return typeName; 1715 }; 1716 1717 if (ty->isPointerType()) { 1718 QualType pointeeTy = ty->getPointeeType(); 1719 1720 // Get address qualifier. 1721 addressQuals.push_back( 1722 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1723 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1724 1725 // Get argument type name. 1726 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1727 std::string baseTypeName = 1728 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1729 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1730 argBaseTypeNames.push_back( 1731 llvm::MDString::get(VMContext, baseTypeName)); 1732 1733 // Get argument type qualifiers: 1734 if (ty.isRestrictQualified()) 1735 typeQuals = "restrict"; 1736 if (pointeeTy.isConstQualified() || 1737 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1738 typeQuals += typeQuals.empty() ? "const" : " const"; 1739 if (pointeeTy.isVolatileQualified()) 1740 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1741 } else { 1742 uint32_t AddrSpc = 0; 1743 bool isPipe = ty->isPipeType(); 1744 if (ty->isImageType() || isPipe) 1745 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1746 1747 addressQuals.push_back( 1748 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1749 1750 // Get argument type name. 1751 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1752 std::string typeName = getTypeSpelling(ty); 1753 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1754 1755 // Remove access qualifiers on images 1756 // (as they are inseparable from type in clang implementation, 1757 // but OpenCL spec provides a special query to get access qualifier 1758 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1759 if (ty->isImageType()) { 1760 removeImageAccessQualifier(typeName); 1761 removeImageAccessQualifier(baseTypeName); 1762 } 1763 1764 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1765 argBaseTypeNames.push_back( 1766 llvm::MDString::get(VMContext, baseTypeName)); 1767 1768 if (isPipe) 1769 typeQuals = "pipe"; 1770 } 1771 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1772 } 1773 1774 Fn->setMetadata("kernel_arg_addr_space", 1775 llvm::MDNode::get(VMContext, addressQuals)); 1776 Fn->setMetadata("kernel_arg_access_qual", 1777 llvm::MDNode::get(VMContext, accessQuals)); 1778 Fn->setMetadata("kernel_arg_type", 1779 llvm::MDNode::get(VMContext, argTypeNames)); 1780 Fn->setMetadata("kernel_arg_base_type", 1781 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1782 Fn->setMetadata("kernel_arg_type_qual", 1783 llvm::MDNode::get(VMContext, argTypeQuals)); 1784 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1785 Fn->setMetadata("kernel_arg_name", 1786 llvm::MDNode::get(VMContext, argNames)); 1787 } 1788 1789 /// Determines whether the language options require us to model 1790 /// unwind exceptions. We treat -fexceptions as mandating this 1791 /// except under the fragile ObjC ABI with only ObjC exceptions 1792 /// enabled. This means, for example, that C with -fexceptions 1793 /// enables this. 1794 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1795 // If exceptions are completely disabled, obviously this is false. 1796 if (!LangOpts.Exceptions) return false; 1797 1798 // If C++ exceptions are enabled, this is true. 1799 if (LangOpts.CXXExceptions) return true; 1800 1801 // If ObjC exceptions are enabled, this depends on the ABI. 1802 if (LangOpts.ObjCExceptions) { 1803 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1804 } 1805 1806 return true; 1807 } 1808 1809 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1810 const CXXMethodDecl *MD) { 1811 // Check that the type metadata can ever actually be used by a call. 1812 if (!CGM.getCodeGenOpts().LTOUnit || 1813 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1814 return false; 1815 1816 // Only functions whose address can be taken with a member function pointer 1817 // need this sort of type metadata. 1818 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1819 !isa<CXXDestructorDecl>(MD); 1820 } 1821 1822 std::vector<const CXXRecordDecl *> 1823 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1824 llvm::SetVector<const CXXRecordDecl *> MostBases; 1825 1826 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1827 CollectMostBases = [&](const CXXRecordDecl *RD) { 1828 if (RD->getNumBases() == 0) 1829 MostBases.insert(RD); 1830 for (const CXXBaseSpecifier &B : RD->bases()) 1831 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1832 }; 1833 CollectMostBases(RD); 1834 return MostBases.takeVector(); 1835 } 1836 1837 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1838 llvm::Function *F) { 1839 llvm::AttrBuilder B(F->getContext()); 1840 1841 if (CodeGenOpts.UnwindTables) 1842 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1843 1844 if (CodeGenOpts.StackClashProtector) 1845 B.addAttribute("probe-stack", "inline-asm"); 1846 1847 if (!hasUnwindExceptions(LangOpts)) 1848 B.addAttribute(llvm::Attribute::NoUnwind); 1849 1850 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1851 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1852 B.addAttribute(llvm::Attribute::StackProtect); 1853 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1854 B.addAttribute(llvm::Attribute::StackProtectStrong); 1855 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1856 B.addAttribute(llvm::Attribute::StackProtectReq); 1857 } 1858 1859 if (!D) { 1860 // If we don't have a declaration to control inlining, the function isn't 1861 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1862 // disabled, mark the function as noinline. 1863 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1864 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1865 B.addAttribute(llvm::Attribute::NoInline); 1866 1867 F->addFnAttrs(B); 1868 return; 1869 } 1870 1871 // Track whether we need to add the optnone LLVM attribute, 1872 // starting with the default for this optimization level. 1873 bool ShouldAddOptNone = 1874 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1875 // We can't add optnone in the following cases, it won't pass the verifier. 1876 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1877 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1878 1879 // Add optnone, but do so only if the function isn't always_inline. 1880 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1881 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1882 B.addAttribute(llvm::Attribute::OptimizeNone); 1883 1884 // OptimizeNone implies noinline; we should not be inlining such functions. 1885 B.addAttribute(llvm::Attribute::NoInline); 1886 1887 // We still need to handle naked functions even though optnone subsumes 1888 // much of their semantics. 1889 if (D->hasAttr<NakedAttr>()) 1890 B.addAttribute(llvm::Attribute::Naked); 1891 1892 // OptimizeNone wins over OptimizeForSize and MinSize. 1893 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1894 F->removeFnAttr(llvm::Attribute::MinSize); 1895 } else if (D->hasAttr<NakedAttr>()) { 1896 // Naked implies noinline: we should not be inlining such functions. 1897 B.addAttribute(llvm::Attribute::Naked); 1898 B.addAttribute(llvm::Attribute::NoInline); 1899 } else if (D->hasAttr<NoDuplicateAttr>()) { 1900 B.addAttribute(llvm::Attribute::NoDuplicate); 1901 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1902 // Add noinline if the function isn't always_inline. 1903 B.addAttribute(llvm::Attribute::NoInline); 1904 } else if (D->hasAttr<AlwaysInlineAttr>() && 1905 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1906 // (noinline wins over always_inline, and we can't specify both in IR) 1907 B.addAttribute(llvm::Attribute::AlwaysInline); 1908 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1909 // If we're not inlining, then force everything that isn't always_inline to 1910 // carry an explicit noinline attribute. 1911 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1912 B.addAttribute(llvm::Attribute::NoInline); 1913 } else { 1914 // Otherwise, propagate the inline hint attribute and potentially use its 1915 // absence to mark things as noinline. 1916 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1917 // Search function and template pattern redeclarations for inline. 1918 auto CheckForInline = [](const FunctionDecl *FD) { 1919 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1920 return Redecl->isInlineSpecified(); 1921 }; 1922 if (any_of(FD->redecls(), CheckRedeclForInline)) 1923 return true; 1924 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1925 if (!Pattern) 1926 return false; 1927 return any_of(Pattern->redecls(), CheckRedeclForInline); 1928 }; 1929 if (CheckForInline(FD)) { 1930 B.addAttribute(llvm::Attribute::InlineHint); 1931 } else if (CodeGenOpts.getInlining() == 1932 CodeGenOptions::OnlyHintInlining && 1933 !FD->isInlined() && 1934 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1935 B.addAttribute(llvm::Attribute::NoInline); 1936 } 1937 } 1938 } 1939 1940 // Add other optimization related attributes if we are optimizing this 1941 // function. 1942 if (!D->hasAttr<OptimizeNoneAttr>()) { 1943 if (D->hasAttr<ColdAttr>()) { 1944 if (!ShouldAddOptNone) 1945 B.addAttribute(llvm::Attribute::OptimizeForSize); 1946 B.addAttribute(llvm::Attribute::Cold); 1947 } 1948 if (D->hasAttr<HotAttr>()) 1949 B.addAttribute(llvm::Attribute::Hot); 1950 if (D->hasAttr<MinSizeAttr>()) 1951 B.addAttribute(llvm::Attribute::MinSize); 1952 } 1953 1954 F->addFnAttrs(B); 1955 1956 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1957 if (alignment) 1958 F->setAlignment(llvm::Align(alignment)); 1959 1960 if (!D->hasAttr<AlignedAttr>()) 1961 if (LangOpts.FunctionAlignment) 1962 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1963 1964 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1965 // reserve a bit for differentiating between virtual and non-virtual member 1966 // functions. If the current target's C++ ABI requires this and this is a 1967 // member function, set its alignment accordingly. 1968 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1969 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1970 F->setAlignment(llvm::Align(2)); 1971 } 1972 1973 // In the cross-dso CFI mode with canonical jump tables, we want !type 1974 // attributes on definitions only. 1975 if (CodeGenOpts.SanitizeCfiCrossDso && 1976 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1977 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1978 // Skip available_externally functions. They won't be codegen'ed in the 1979 // current module anyway. 1980 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1981 CreateFunctionTypeMetadataForIcall(FD, F); 1982 } 1983 } 1984 1985 // Emit type metadata on member functions for member function pointer checks. 1986 // These are only ever necessary on definitions; we're guaranteed that the 1987 // definition will be present in the LTO unit as a result of LTO visibility. 1988 auto *MD = dyn_cast<CXXMethodDecl>(D); 1989 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1990 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1991 llvm::Metadata *Id = 1992 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1993 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1994 F->addTypeMetadata(0, Id); 1995 } 1996 } 1997 } 1998 1999 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2000 llvm::Function *F) { 2001 if (D->hasAttr<StrictFPAttr>()) { 2002 llvm::AttrBuilder FuncAttrs(F->getContext()); 2003 FuncAttrs.addAttribute("strictfp"); 2004 F->addFnAttrs(FuncAttrs); 2005 } 2006 } 2007 2008 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2009 const Decl *D = GD.getDecl(); 2010 if (isa_and_nonnull<NamedDecl>(D)) 2011 setGVProperties(GV, GD); 2012 else 2013 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2014 2015 if (D && D->hasAttr<UsedAttr>()) 2016 addUsedOrCompilerUsedGlobal(GV); 2017 2018 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2019 const auto *VD = cast<VarDecl>(D); 2020 if (VD->getType().isConstQualified() && 2021 VD->getStorageDuration() == SD_Static) 2022 addUsedOrCompilerUsedGlobal(GV); 2023 } 2024 } 2025 2026 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2027 llvm::AttrBuilder &Attrs) { 2028 // Add target-cpu and target-features attributes to functions. If 2029 // we have a decl for the function and it has a target attribute then 2030 // parse that and add it to the feature set. 2031 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2032 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2033 std::vector<std::string> Features; 2034 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2035 FD = FD ? FD->getMostRecentDecl() : FD; 2036 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2037 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2038 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2039 bool AddedAttr = false; 2040 if (TD || SD || TC) { 2041 llvm::StringMap<bool> FeatureMap; 2042 getContext().getFunctionFeatureMap(FeatureMap, GD); 2043 2044 // Produce the canonical string for this set of features. 2045 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2046 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2047 2048 // Now add the target-cpu and target-features to the function. 2049 // While we populated the feature map above, we still need to 2050 // get and parse the target attribute so we can get the cpu for 2051 // the function. 2052 if (TD) { 2053 ParsedTargetAttr ParsedAttr = TD->parse(); 2054 if (!ParsedAttr.Architecture.empty() && 2055 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2056 TargetCPU = ParsedAttr.Architecture; 2057 TuneCPU = ""; // Clear the tune CPU. 2058 } 2059 if (!ParsedAttr.Tune.empty() && 2060 getTarget().isValidCPUName(ParsedAttr.Tune)) 2061 TuneCPU = ParsedAttr.Tune; 2062 } 2063 } else { 2064 // Otherwise just add the existing target cpu and target features to the 2065 // function. 2066 Features = getTarget().getTargetOpts().Features; 2067 } 2068 2069 if (!TargetCPU.empty()) { 2070 Attrs.addAttribute("target-cpu", TargetCPU); 2071 AddedAttr = true; 2072 } 2073 if (!TuneCPU.empty()) { 2074 Attrs.addAttribute("tune-cpu", TuneCPU); 2075 AddedAttr = true; 2076 } 2077 if (!Features.empty()) { 2078 llvm::sort(Features); 2079 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2080 AddedAttr = true; 2081 } 2082 2083 return AddedAttr; 2084 } 2085 2086 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2087 llvm::GlobalObject *GO) { 2088 const Decl *D = GD.getDecl(); 2089 SetCommonAttributes(GD, GO); 2090 2091 if (D) { 2092 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2093 if (D->hasAttr<RetainAttr>()) 2094 addUsedGlobal(GV); 2095 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2096 GV->addAttribute("bss-section", SA->getName()); 2097 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2098 GV->addAttribute("data-section", SA->getName()); 2099 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2100 GV->addAttribute("rodata-section", SA->getName()); 2101 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2102 GV->addAttribute("relro-section", SA->getName()); 2103 } 2104 2105 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2106 if (D->hasAttr<RetainAttr>()) 2107 addUsedGlobal(F); 2108 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2109 if (!D->getAttr<SectionAttr>()) 2110 F->addFnAttr("implicit-section-name", SA->getName()); 2111 2112 llvm::AttrBuilder Attrs(F->getContext()); 2113 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2114 // We know that GetCPUAndFeaturesAttributes will always have the 2115 // newest set, since it has the newest possible FunctionDecl, so the 2116 // new ones should replace the old. 2117 llvm::AttributeMask RemoveAttrs; 2118 RemoveAttrs.addAttribute("target-cpu"); 2119 RemoveAttrs.addAttribute("target-features"); 2120 RemoveAttrs.addAttribute("tune-cpu"); 2121 F->removeFnAttrs(RemoveAttrs); 2122 F->addFnAttrs(Attrs); 2123 } 2124 } 2125 2126 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2127 GO->setSection(CSA->getName()); 2128 else if (const auto *SA = D->getAttr<SectionAttr>()) 2129 GO->setSection(SA->getName()); 2130 } 2131 2132 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2133 } 2134 2135 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2136 llvm::Function *F, 2137 const CGFunctionInfo &FI) { 2138 const Decl *D = GD.getDecl(); 2139 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2140 SetLLVMFunctionAttributesForDefinition(D, F); 2141 2142 F->setLinkage(llvm::Function::InternalLinkage); 2143 2144 setNonAliasAttributes(GD, F); 2145 } 2146 2147 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2148 // Set linkage and visibility in case we never see a definition. 2149 LinkageInfo LV = ND->getLinkageAndVisibility(); 2150 // Don't set internal linkage on declarations. 2151 // "extern_weak" is overloaded in LLVM; we probably should have 2152 // separate linkage types for this. 2153 if (isExternallyVisible(LV.getLinkage()) && 2154 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2155 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2156 } 2157 2158 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2159 llvm::Function *F) { 2160 // Only if we are checking indirect calls. 2161 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2162 return; 2163 2164 // Non-static class methods are handled via vtable or member function pointer 2165 // checks elsewhere. 2166 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2167 return; 2168 2169 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2170 F->addTypeMetadata(0, MD); 2171 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2172 2173 // Emit a hash-based bit set entry for cross-DSO calls. 2174 if (CodeGenOpts.SanitizeCfiCrossDso) 2175 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2176 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2177 } 2178 2179 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2180 bool IsIncompleteFunction, 2181 bool IsThunk) { 2182 2183 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2184 // If this is an intrinsic function, set the function's attributes 2185 // to the intrinsic's attributes. 2186 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2187 return; 2188 } 2189 2190 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2191 2192 if (!IsIncompleteFunction) 2193 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2194 IsThunk); 2195 2196 // Add the Returned attribute for "this", except for iOS 5 and earlier 2197 // where substantial code, including the libstdc++ dylib, was compiled with 2198 // GCC and does not actually return "this". 2199 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2200 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2201 assert(!F->arg_empty() && 2202 F->arg_begin()->getType() 2203 ->canLosslesslyBitCastTo(F->getReturnType()) && 2204 "unexpected this return"); 2205 F->addParamAttr(0, llvm::Attribute::Returned); 2206 } 2207 2208 // Only a few attributes are set on declarations; these may later be 2209 // overridden by a definition. 2210 2211 setLinkageForGV(F, FD); 2212 setGVProperties(F, FD); 2213 2214 // Setup target-specific attributes. 2215 if (!IsIncompleteFunction && F->isDeclaration()) 2216 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2217 2218 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2219 F->setSection(CSA->getName()); 2220 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2221 F->setSection(SA->getName()); 2222 2223 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2224 if (EA->isError()) 2225 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2226 else if (EA->isWarning()) 2227 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2228 } 2229 2230 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2231 if (FD->isInlineBuiltinDeclaration()) { 2232 const FunctionDecl *FDBody; 2233 bool HasBody = FD->hasBody(FDBody); 2234 (void)HasBody; 2235 assert(HasBody && "Inline builtin declarations should always have an " 2236 "available body!"); 2237 if (shouldEmitFunction(FDBody)) 2238 F->addFnAttr(llvm::Attribute::NoBuiltin); 2239 } 2240 2241 if (FD->isReplaceableGlobalAllocationFunction()) { 2242 // A replaceable global allocation function does not act like a builtin by 2243 // default, only if it is invoked by a new-expression or delete-expression. 2244 F->addFnAttr(llvm::Attribute::NoBuiltin); 2245 } 2246 2247 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2248 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2249 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2250 if (MD->isVirtual()) 2251 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2252 2253 // Don't emit entries for function declarations in the cross-DSO mode. This 2254 // is handled with better precision by the receiving DSO. But if jump tables 2255 // are non-canonical then we need type metadata in order to produce the local 2256 // jump table. 2257 if (!CodeGenOpts.SanitizeCfiCrossDso || 2258 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2259 CreateFunctionTypeMetadataForIcall(FD, F); 2260 2261 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2262 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2263 2264 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2265 // Annotate the callback behavior as metadata: 2266 // - The callback callee (as argument number). 2267 // - The callback payloads (as argument numbers). 2268 llvm::LLVMContext &Ctx = F->getContext(); 2269 llvm::MDBuilder MDB(Ctx); 2270 2271 // The payload indices are all but the first one in the encoding. The first 2272 // identifies the callback callee. 2273 int CalleeIdx = *CB->encoding_begin(); 2274 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2275 F->addMetadata(llvm::LLVMContext::MD_callback, 2276 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2277 CalleeIdx, PayloadIndices, 2278 /* VarArgsArePassed */ false)})); 2279 } 2280 } 2281 2282 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2283 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2284 "Only globals with definition can force usage."); 2285 LLVMUsed.emplace_back(GV); 2286 } 2287 2288 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2289 assert(!GV->isDeclaration() && 2290 "Only globals with definition can force usage."); 2291 LLVMCompilerUsed.emplace_back(GV); 2292 } 2293 2294 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2295 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2296 "Only globals with definition can force usage."); 2297 if (getTriple().isOSBinFormatELF()) 2298 LLVMCompilerUsed.emplace_back(GV); 2299 else 2300 LLVMUsed.emplace_back(GV); 2301 } 2302 2303 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2304 std::vector<llvm::WeakTrackingVH> &List) { 2305 // Don't create llvm.used if there is no need. 2306 if (List.empty()) 2307 return; 2308 2309 // Convert List to what ConstantArray needs. 2310 SmallVector<llvm::Constant*, 8> UsedArray; 2311 UsedArray.resize(List.size()); 2312 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2313 UsedArray[i] = 2314 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2315 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2316 } 2317 2318 if (UsedArray.empty()) 2319 return; 2320 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2321 2322 auto *GV = new llvm::GlobalVariable( 2323 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2324 llvm::ConstantArray::get(ATy, UsedArray), Name); 2325 2326 GV->setSection("llvm.metadata"); 2327 } 2328 2329 void CodeGenModule::emitLLVMUsed() { 2330 emitUsed(*this, "llvm.used", LLVMUsed); 2331 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2332 } 2333 2334 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2335 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2336 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2337 } 2338 2339 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2340 llvm::SmallString<32> Opt; 2341 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2342 if (Opt.empty()) 2343 return; 2344 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2345 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2346 } 2347 2348 void CodeGenModule::AddDependentLib(StringRef Lib) { 2349 auto &C = getLLVMContext(); 2350 if (getTarget().getTriple().isOSBinFormatELF()) { 2351 ELFDependentLibraries.push_back( 2352 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2353 return; 2354 } 2355 2356 llvm::SmallString<24> Opt; 2357 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2358 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2359 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2360 } 2361 2362 /// Add link options implied by the given module, including modules 2363 /// it depends on, using a postorder walk. 2364 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2365 SmallVectorImpl<llvm::MDNode *> &Metadata, 2366 llvm::SmallPtrSet<Module *, 16> &Visited) { 2367 // Import this module's parent. 2368 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2369 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2370 } 2371 2372 // Import this module's dependencies. 2373 for (Module *Import : llvm::reverse(Mod->Imports)) { 2374 if (Visited.insert(Import).second) 2375 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2376 } 2377 2378 // Add linker options to link against the libraries/frameworks 2379 // described by this module. 2380 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2381 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2382 2383 // For modules that use export_as for linking, use that module 2384 // name instead. 2385 if (Mod->UseExportAsModuleLinkName) 2386 return; 2387 2388 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2389 // Link against a framework. Frameworks are currently Darwin only, so we 2390 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2391 if (LL.IsFramework) { 2392 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2393 llvm::MDString::get(Context, LL.Library)}; 2394 2395 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2396 continue; 2397 } 2398 2399 // Link against a library. 2400 if (IsELF) { 2401 llvm::Metadata *Args[2] = { 2402 llvm::MDString::get(Context, "lib"), 2403 llvm::MDString::get(Context, LL.Library), 2404 }; 2405 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2406 } else { 2407 llvm::SmallString<24> Opt; 2408 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2409 auto *OptString = llvm::MDString::get(Context, Opt); 2410 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2411 } 2412 } 2413 } 2414 2415 void CodeGenModule::EmitModuleLinkOptions() { 2416 // Collect the set of all of the modules we want to visit to emit link 2417 // options, which is essentially the imported modules and all of their 2418 // non-explicit child modules. 2419 llvm::SetVector<clang::Module *> LinkModules; 2420 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2421 SmallVector<clang::Module *, 16> Stack; 2422 2423 // Seed the stack with imported modules. 2424 for (Module *M : ImportedModules) { 2425 // Do not add any link flags when an implementation TU of a module imports 2426 // a header of that same module. 2427 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2428 !getLangOpts().isCompilingModule()) 2429 continue; 2430 if (Visited.insert(M).second) 2431 Stack.push_back(M); 2432 } 2433 2434 // Find all of the modules to import, making a little effort to prune 2435 // non-leaf modules. 2436 while (!Stack.empty()) { 2437 clang::Module *Mod = Stack.pop_back_val(); 2438 2439 bool AnyChildren = false; 2440 2441 // Visit the submodules of this module. 2442 for (const auto &SM : Mod->submodules()) { 2443 // Skip explicit children; they need to be explicitly imported to be 2444 // linked against. 2445 if (SM->IsExplicit) 2446 continue; 2447 2448 if (Visited.insert(SM).second) { 2449 Stack.push_back(SM); 2450 AnyChildren = true; 2451 } 2452 } 2453 2454 // We didn't find any children, so add this module to the list of 2455 // modules to link against. 2456 if (!AnyChildren) { 2457 LinkModules.insert(Mod); 2458 } 2459 } 2460 2461 // Add link options for all of the imported modules in reverse topological 2462 // order. We don't do anything to try to order import link flags with respect 2463 // to linker options inserted by things like #pragma comment(). 2464 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2465 Visited.clear(); 2466 for (Module *M : LinkModules) 2467 if (Visited.insert(M).second) 2468 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2469 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2470 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2471 2472 // Add the linker options metadata flag. 2473 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2474 for (auto *MD : LinkerOptionsMetadata) 2475 NMD->addOperand(MD); 2476 } 2477 2478 void CodeGenModule::EmitDeferred() { 2479 // Emit deferred declare target declarations. 2480 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2481 getOpenMPRuntime().emitDeferredTargetDecls(); 2482 2483 // Emit code for any potentially referenced deferred decls. Since a 2484 // previously unused static decl may become used during the generation of code 2485 // for a static function, iterate until no changes are made. 2486 2487 if (!DeferredVTables.empty()) { 2488 EmitDeferredVTables(); 2489 2490 // Emitting a vtable doesn't directly cause more vtables to 2491 // become deferred, although it can cause functions to be 2492 // emitted that then need those vtables. 2493 assert(DeferredVTables.empty()); 2494 } 2495 2496 // Emit CUDA/HIP static device variables referenced by host code only. 2497 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2498 // needed for further handling. 2499 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2500 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2501 DeferredDeclsToEmit.push_back(V); 2502 2503 // Stop if we're out of both deferred vtables and deferred declarations. 2504 if (DeferredDeclsToEmit.empty()) 2505 return; 2506 2507 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2508 // work, it will not interfere with this. 2509 std::vector<GlobalDecl> CurDeclsToEmit; 2510 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2511 2512 for (GlobalDecl &D : CurDeclsToEmit) { 2513 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2514 // to get GlobalValue with exactly the type we need, not something that 2515 // might had been created for another decl with the same mangled name but 2516 // different type. 2517 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2518 GetAddrOfGlobal(D, ForDefinition)); 2519 2520 // In case of different address spaces, we may still get a cast, even with 2521 // IsForDefinition equal to true. Query mangled names table to get 2522 // GlobalValue. 2523 if (!GV) 2524 GV = GetGlobalValue(getMangledName(D)); 2525 2526 // Make sure GetGlobalValue returned non-null. 2527 assert(GV); 2528 2529 // Check to see if we've already emitted this. This is necessary 2530 // for a couple of reasons: first, decls can end up in the 2531 // deferred-decls queue multiple times, and second, decls can end 2532 // up with definitions in unusual ways (e.g. by an extern inline 2533 // function acquiring a strong function redefinition). Just 2534 // ignore these cases. 2535 if (!GV->isDeclaration()) 2536 continue; 2537 2538 // If this is OpenMP, check if it is legal to emit this global normally. 2539 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2540 continue; 2541 2542 // Otherwise, emit the definition and move on to the next one. 2543 EmitGlobalDefinition(D, GV); 2544 2545 // If we found out that we need to emit more decls, do that recursively. 2546 // This has the advantage that the decls are emitted in a DFS and related 2547 // ones are close together, which is convenient for testing. 2548 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2549 EmitDeferred(); 2550 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2551 } 2552 } 2553 } 2554 2555 void CodeGenModule::EmitVTablesOpportunistically() { 2556 // Try to emit external vtables as available_externally if they have emitted 2557 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2558 // is not allowed to create new references to things that need to be emitted 2559 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2560 2561 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2562 && "Only emit opportunistic vtables with optimizations"); 2563 2564 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2565 assert(getVTables().isVTableExternal(RD) && 2566 "This queue should only contain external vtables"); 2567 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2568 VTables.GenerateClassData(RD); 2569 } 2570 OpportunisticVTables.clear(); 2571 } 2572 2573 void CodeGenModule::EmitGlobalAnnotations() { 2574 if (Annotations.empty()) 2575 return; 2576 2577 // Create a new global variable for the ConstantStruct in the Module. 2578 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2579 Annotations[0]->getType(), Annotations.size()), Annotations); 2580 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2581 llvm::GlobalValue::AppendingLinkage, 2582 Array, "llvm.global.annotations"); 2583 gv->setSection(AnnotationSection); 2584 } 2585 2586 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2587 llvm::Constant *&AStr = AnnotationStrings[Str]; 2588 if (AStr) 2589 return AStr; 2590 2591 // Not found yet, create a new global. 2592 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2593 auto *gv = 2594 new llvm::GlobalVariable(getModule(), s->getType(), true, 2595 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2596 gv->setSection(AnnotationSection); 2597 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2598 AStr = gv; 2599 return gv; 2600 } 2601 2602 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2603 SourceManager &SM = getContext().getSourceManager(); 2604 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2605 if (PLoc.isValid()) 2606 return EmitAnnotationString(PLoc.getFilename()); 2607 return EmitAnnotationString(SM.getBufferName(Loc)); 2608 } 2609 2610 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2611 SourceManager &SM = getContext().getSourceManager(); 2612 PresumedLoc PLoc = SM.getPresumedLoc(L); 2613 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2614 SM.getExpansionLineNumber(L); 2615 return llvm::ConstantInt::get(Int32Ty, LineNo); 2616 } 2617 2618 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2619 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2620 if (Exprs.empty()) 2621 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2622 2623 llvm::FoldingSetNodeID ID; 2624 for (Expr *E : Exprs) { 2625 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2626 } 2627 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2628 if (Lookup) 2629 return Lookup; 2630 2631 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2632 LLVMArgs.reserve(Exprs.size()); 2633 ConstantEmitter ConstEmiter(*this); 2634 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2635 const auto *CE = cast<clang::ConstantExpr>(E); 2636 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2637 CE->getType()); 2638 }); 2639 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2640 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2641 llvm::GlobalValue::PrivateLinkage, Struct, 2642 ".args"); 2643 GV->setSection(AnnotationSection); 2644 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2645 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2646 2647 Lookup = Bitcasted; 2648 return Bitcasted; 2649 } 2650 2651 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2652 const AnnotateAttr *AA, 2653 SourceLocation L) { 2654 // Get the globals for file name, annotation, and the line number. 2655 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2656 *UnitGV = EmitAnnotationUnit(L), 2657 *LineNoCst = EmitAnnotationLineNo(L), 2658 *Args = EmitAnnotationArgs(AA); 2659 2660 llvm::Constant *GVInGlobalsAS = GV; 2661 if (GV->getAddressSpace() != 2662 getDataLayout().getDefaultGlobalsAddressSpace()) { 2663 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2664 GV, GV->getValueType()->getPointerTo( 2665 getDataLayout().getDefaultGlobalsAddressSpace())); 2666 } 2667 2668 // Create the ConstantStruct for the global annotation. 2669 llvm::Constant *Fields[] = { 2670 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2671 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2672 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2673 LineNoCst, 2674 Args, 2675 }; 2676 return llvm::ConstantStruct::getAnon(Fields); 2677 } 2678 2679 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2680 llvm::GlobalValue *GV) { 2681 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2682 // Get the struct elements for these annotations. 2683 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2684 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2685 } 2686 2687 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2688 SourceLocation Loc) const { 2689 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2690 // NoSanitize by function name. 2691 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2692 return true; 2693 // NoSanitize by location. 2694 if (Loc.isValid()) 2695 return NoSanitizeL.containsLocation(Kind, Loc); 2696 // If location is unknown, this may be a compiler-generated function. Assume 2697 // it's located in the main file. 2698 auto &SM = Context.getSourceManager(); 2699 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2700 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2701 } 2702 return false; 2703 } 2704 2705 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2706 SourceLocation Loc, QualType Ty, 2707 StringRef Category) const { 2708 // For now globals can be ignored only in ASan and KASan. 2709 const SanitizerMask EnabledAsanMask = 2710 LangOpts.Sanitize.Mask & 2711 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2712 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2713 SanitizerKind::MemTag); 2714 if (!EnabledAsanMask) 2715 return false; 2716 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2717 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2718 return true; 2719 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2720 return true; 2721 // Check global type. 2722 if (!Ty.isNull()) { 2723 // Drill down the array types: if global variable of a fixed type is 2724 // not sanitized, we also don't instrument arrays of them. 2725 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2726 Ty = AT->getElementType(); 2727 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2728 // Only record types (classes, structs etc.) are ignored. 2729 if (Ty->isRecordType()) { 2730 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2731 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2732 return true; 2733 } 2734 } 2735 return false; 2736 } 2737 2738 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2739 StringRef Category) const { 2740 const auto &XRayFilter = getContext().getXRayFilter(); 2741 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2742 auto Attr = ImbueAttr::NONE; 2743 if (Loc.isValid()) 2744 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2745 if (Attr == ImbueAttr::NONE) 2746 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2747 switch (Attr) { 2748 case ImbueAttr::NONE: 2749 return false; 2750 case ImbueAttr::ALWAYS: 2751 Fn->addFnAttr("function-instrument", "xray-always"); 2752 break; 2753 case ImbueAttr::ALWAYS_ARG1: 2754 Fn->addFnAttr("function-instrument", "xray-always"); 2755 Fn->addFnAttr("xray-log-args", "1"); 2756 break; 2757 case ImbueAttr::NEVER: 2758 Fn->addFnAttr("function-instrument", "xray-never"); 2759 break; 2760 } 2761 return true; 2762 } 2763 2764 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2765 SourceLocation Loc) const { 2766 const auto &ProfileList = getContext().getProfileList(); 2767 // If the profile list is empty, then instrument everything. 2768 if (ProfileList.isEmpty()) 2769 return false; 2770 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2771 // First, check the function name. 2772 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2773 if (V.hasValue()) 2774 return *V; 2775 // Next, check the source location. 2776 if (Loc.isValid()) { 2777 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2778 if (V.hasValue()) 2779 return *V; 2780 } 2781 // If location is unknown, this may be a compiler-generated function. Assume 2782 // it's located in the main file. 2783 auto &SM = Context.getSourceManager(); 2784 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2785 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2786 if (V.hasValue()) 2787 return *V; 2788 } 2789 return ProfileList.getDefault(); 2790 } 2791 2792 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2793 // Never defer when EmitAllDecls is specified. 2794 if (LangOpts.EmitAllDecls) 2795 return true; 2796 2797 if (CodeGenOpts.KeepStaticConsts) { 2798 const auto *VD = dyn_cast<VarDecl>(Global); 2799 if (VD && VD->getType().isConstQualified() && 2800 VD->getStorageDuration() == SD_Static) 2801 return true; 2802 } 2803 2804 return getContext().DeclMustBeEmitted(Global); 2805 } 2806 2807 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2808 // In OpenMP 5.0 variables and function may be marked as 2809 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2810 // that they must be emitted on the host/device. To be sure we need to have 2811 // seen a declare target with an explicit mentioning of the function, we know 2812 // we have if the level of the declare target attribute is -1. Note that we 2813 // check somewhere else if we should emit this at all. 2814 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2815 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2816 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2817 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2818 return false; 2819 } 2820 2821 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2822 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2823 // Implicit template instantiations may change linkage if they are later 2824 // explicitly instantiated, so they should not be emitted eagerly. 2825 return false; 2826 } 2827 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2828 if (Context.getInlineVariableDefinitionKind(VD) == 2829 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2830 // A definition of an inline constexpr static data member may change 2831 // linkage later if it's redeclared outside the class. 2832 return false; 2833 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2834 // codegen for global variables, because they may be marked as threadprivate. 2835 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2836 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2837 !isTypeConstant(Global->getType(), false) && 2838 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2839 return false; 2840 2841 return true; 2842 } 2843 2844 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2845 StringRef Name = getMangledName(GD); 2846 2847 // The UUID descriptor should be pointer aligned. 2848 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2849 2850 // Look for an existing global. 2851 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2852 return ConstantAddress(GV, GV->getValueType(), Alignment); 2853 2854 ConstantEmitter Emitter(*this); 2855 llvm::Constant *Init; 2856 2857 APValue &V = GD->getAsAPValue(); 2858 if (!V.isAbsent()) { 2859 // If possible, emit the APValue version of the initializer. In particular, 2860 // this gets the type of the constant right. 2861 Init = Emitter.emitForInitializer( 2862 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2863 } else { 2864 // As a fallback, directly construct the constant. 2865 // FIXME: This may get padding wrong under esoteric struct layout rules. 2866 // MSVC appears to create a complete type 'struct __s_GUID' that it 2867 // presumably uses to represent these constants. 2868 MSGuidDecl::Parts Parts = GD->getParts(); 2869 llvm::Constant *Fields[4] = { 2870 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2871 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2872 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2873 llvm::ConstantDataArray::getRaw( 2874 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2875 Int8Ty)}; 2876 Init = llvm::ConstantStruct::getAnon(Fields); 2877 } 2878 2879 auto *GV = new llvm::GlobalVariable( 2880 getModule(), Init->getType(), 2881 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2882 if (supportsCOMDAT()) 2883 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2884 setDSOLocal(GV); 2885 2886 if (!V.isAbsent()) { 2887 Emitter.finalize(GV); 2888 return ConstantAddress(GV, GV->getValueType(), Alignment); 2889 } 2890 2891 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2892 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2893 GV, Ty->getPointerTo(GV->getAddressSpace())); 2894 return ConstantAddress(Addr, Ty, Alignment); 2895 } 2896 2897 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2898 const TemplateParamObjectDecl *TPO) { 2899 StringRef Name = getMangledName(TPO); 2900 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2901 2902 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2903 return ConstantAddress(GV, GV->getValueType(), Alignment); 2904 2905 ConstantEmitter Emitter(*this); 2906 llvm::Constant *Init = Emitter.emitForInitializer( 2907 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2908 2909 if (!Init) { 2910 ErrorUnsupported(TPO, "template parameter object"); 2911 return ConstantAddress::invalid(); 2912 } 2913 2914 auto *GV = new llvm::GlobalVariable( 2915 getModule(), Init->getType(), 2916 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2917 if (supportsCOMDAT()) 2918 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2919 Emitter.finalize(GV); 2920 2921 return ConstantAddress(GV, GV->getValueType(), Alignment); 2922 } 2923 2924 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2925 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2926 assert(AA && "No alias?"); 2927 2928 CharUnits Alignment = getContext().getDeclAlign(VD); 2929 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2930 2931 // See if there is already something with the target's name in the module. 2932 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2933 if (Entry) { 2934 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2935 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2936 return ConstantAddress(Ptr, DeclTy, Alignment); 2937 } 2938 2939 llvm::Constant *Aliasee; 2940 if (isa<llvm::FunctionType>(DeclTy)) 2941 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2942 GlobalDecl(cast<FunctionDecl>(VD)), 2943 /*ForVTable=*/false); 2944 else 2945 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2946 nullptr); 2947 2948 auto *F = cast<llvm::GlobalValue>(Aliasee); 2949 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2950 WeakRefReferences.insert(F); 2951 2952 return ConstantAddress(Aliasee, DeclTy, Alignment); 2953 } 2954 2955 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2956 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2957 2958 // Weak references don't produce any output by themselves. 2959 if (Global->hasAttr<WeakRefAttr>()) 2960 return; 2961 2962 // If this is an alias definition (which otherwise looks like a declaration) 2963 // emit it now. 2964 if (Global->hasAttr<AliasAttr>()) 2965 return EmitAliasDefinition(GD); 2966 2967 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2968 if (Global->hasAttr<IFuncAttr>()) 2969 return emitIFuncDefinition(GD); 2970 2971 // If this is a cpu_dispatch multiversion function, emit the resolver. 2972 if (Global->hasAttr<CPUDispatchAttr>()) 2973 return emitCPUDispatchDefinition(GD); 2974 2975 // If this is CUDA, be selective about which declarations we emit. 2976 if (LangOpts.CUDA) { 2977 if (LangOpts.CUDAIsDevice) { 2978 if (!Global->hasAttr<CUDADeviceAttr>() && 2979 !Global->hasAttr<CUDAGlobalAttr>() && 2980 !Global->hasAttr<CUDAConstantAttr>() && 2981 !Global->hasAttr<CUDASharedAttr>() && 2982 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2983 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2984 return; 2985 } else { 2986 // We need to emit host-side 'shadows' for all global 2987 // device-side variables because the CUDA runtime needs their 2988 // size and host-side address in order to provide access to 2989 // their device-side incarnations. 2990 2991 // So device-only functions are the only things we skip. 2992 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2993 Global->hasAttr<CUDADeviceAttr>()) 2994 return; 2995 2996 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2997 "Expected Variable or Function"); 2998 } 2999 } 3000 3001 if (LangOpts.OpenMP) { 3002 // If this is OpenMP, check if it is legal to emit this global normally. 3003 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3004 return; 3005 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3006 if (MustBeEmitted(Global)) 3007 EmitOMPDeclareReduction(DRD); 3008 return; 3009 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3010 if (MustBeEmitted(Global)) 3011 EmitOMPDeclareMapper(DMD); 3012 return; 3013 } 3014 } 3015 3016 // Ignore declarations, they will be emitted on their first use. 3017 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3018 // Forward declarations are emitted lazily on first use. 3019 if (!FD->doesThisDeclarationHaveABody()) { 3020 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3021 return; 3022 3023 StringRef MangledName = getMangledName(GD); 3024 3025 // Compute the function info and LLVM type. 3026 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3027 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3028 3029 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3030 /*DontDefer=*/false); 3031 return; 3032 } 3033 } else { 3034 const auto *VD = cast<VarDecl>(Global); 3035 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3036 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3037 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3038 if (LangOpts.OpenMP) { 3039 // Emit declaration of the must-be-emitted declare target variable. 3040 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3041 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3042 bool UnifiedMemoryEnabled = 3043 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3044 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3045 !UnifiedMemoryEnabled) { 3046 (void)GetAddrOfGlobalVar(VD); 3047 } else { 3048 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3049 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3050 UnifiedMemoryEnabled)) && 3051 "Link clause or to clause with unified memory expected."); 3052 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3053 } 3054 3055 return; 3056 } 3057 } 3058 // If this declaration may have caused an inline variable definition to 3059 // change linkage, make sure that it's emitted. 3060 if (Context.getInlineVariableDefinitionKind(VD) == 3061 ASTContext::InlineVariableDefinitionKind::Strong) 3062 GetAddrOfGlobalVar(VD); 3063 return; 3064 } 3065 } 3066 3067 // Defer code generation to first use when possible, e.g. if this is an inline 3068 // function. If the global must always be emitted, do it eagerly if possible 3069 // to benefit from cache locality. 3070 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3071 // Emit the definition if it can't be deferred. 3072 EmitGlobalDefinition(GD); 3073 return; 3074 } 3075 3076 // If we're deferring emission of a C++ variable with an 3077 // initializer, remember the order in which it appeared in the file. 3078 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3079 cast<VarDecl>(Global)->hasInit()) { 3080 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3081 CXXGlobalInits.push_back(nullptr); 3082 } 3083 3084 StringRef MangledName = getMangledName(GD); 3085 if (GetGlobalValue(MangledName) != nullptr) { 3086 // The value has already been used and should therefore be emitted. 3087 addDeferredDeclToEmit(GD); 3088 } else if (MustBeEmitted(Global)) { 3089 // The value must be emitted, but cannot be emitted eagerly. 3090 assert(!MayBeEmittedEagerly(Global)); 3091 addDeferredDeclToEmit(GD); 3092 } else { 3093 // Otherwise, remember that we saw a deferred decl with this name. The 3094 // first use of the mangled name will cause it to move into 3095 // DeferredDeclsToEmit. 3096 DeferredDecls[MangledName] = GD; 3097 } 3098 } 3099 3100 // Check if T is a class type with a destructor that's not dllimport. 3101 static bool HasNonDllImportDtor(QualType T) { 3102 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3103 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3104 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3105 return true; 3106 3107 return false; 3108 } 3109 3110 namespace { 3111 struct FunctionIsDirectlyRecursive 3112 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3113 const StringRef Name; 3114 const Builtin::Context &BI; 3115 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3116 : Name(N), BI(C) {} 3117 3118 bool VisitCallExpr(const CallExpr *E) { 3119 const FunctionDecl *FD = E->getDirectCallee(); 3120 if (!FD) 3121 return false; 3122 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3123 if (Attr && Name == Attr->getLabel()) 3124 return true; 3125 unsigned BuiltinID = FD->getBuiltinID(); 3126 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3127 return false; 3128 StringRef BuiltinName = BI.getName(BuiltinID); 3129 if (BuiltinName.startswith("__builtin_") && 3130 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3131 return true; 3132 } 3133 return false; 3134 } 3135 3136 bool VisitStmt(const Stmt *S) { 3137 for (const Stmt *Child : S->children()) 3138 if (Child && this->Visit(Child)) 3139 return true; 3140 return false; 3141 } 3142 }; 3143 3144 // Make sure we're not referencing non-imported vars or functions. 3145 struct DLLImportFunctionVisitor 3146 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3147 bool SafeToInline = true; 3148 3149 bool shouldVisitImplicitCode() const { return true; } 3150 3151 bool VisitVarDecl(VarDecl *VD) { 3152 if (VD->getTLSKind()) { 3153 // A thread-local variable cannot be imported. 3154 SafeToInline = false; 3155 return SafeToInline; 3156 } 3157 3158 // A variable definition might imply a destructor call. 3159 if (VD->isThisDeclarationADefinition()) 3160 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3161 3162 return SafeToInline; 3163 } 3164 3165 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3166 if (const auto *D = E->getTemporary()->getDestructor()) 3167 SafeToInline = D->hasAttr<DLLImportAttr>(); 3168 return SafeToInline; 3169 } 3170 3171 bool VisitDeclRefExpr(DeclRefExpr *E) { 3172 ValueDecl *VD = E->getDecl(); 3173 if (isa<FunctionDecl>(VD)) 3174 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3175 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3176 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3177 return SafeToInline; 3178 } 3179 3180 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3181 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3182 return SafeToInline; 3183 } 3184 3185 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3186 CXXMethodDecl *M = E->getMethodDecl(); 3187 if (!M) { 3188 // Call through a pointer to member function. This is safe to inline. 3189 SafeToInline = true; 3190 } else { 3191 SafeToInline = M->hasAttr<DLLImportAttr>(); 3192 } 3193 return SafeToInline; 3194 } 3195 3196 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3197 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3198 return SafeToInline; 3199 } 3200 3201 bool VisitCXXNewExpr(CXXNewExpr *E) { 3202 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3203 return SafeToInline; 3204 } 3205 }; 3206 } 3207 3208 // isTriviallyRecursive - Check if this function calls another 3209 // decl that, because of the asm attribute or the other decl being a builtin, 3210 // ends up pointing to itself. 3211 bool 3212 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3213 StringRef Name; 3214 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3215 // asm labels are a special kind of mangling we have to support. 3216 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3217 if (!Attr) 3218 return false; 3219 Name = Attr->getLabel(); 3220 } else { 3221 Name = FD->getName(); 3222 } 3223 3224 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3225 const Stmt *Body = FD->getBody(); 3226 return Body ? Walker.Visit(Body) : false; 3227 } 3228 3229 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3230 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3231 return true; 3232 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3233 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3234 return false; 3235 3236 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3237 // Check whether it would be safe to inline this dllimport function. 3238 DLLImportFunctionVisitor Visitor; 3239 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3240 if (!Visitor.SafeToInline) 3241 return false; 3242 3243 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3244 // Implicit destructor invocations aren't captured in the AST, so the 3245 // check above can't see them. Check for them manually here. 3246 for (const Decl *Member : Dtor->getParent()->decls()) 3247 if (isa<FieldDecl>(Member)) 3248 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3249 return false; 3250 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3251 if (HasNonDllImportDtor(B.getType())) 3252 return false; 3253 } 3254 } 3255 3256 // Inline builtins declaration must be emitted. They often are fortified 3257 // functions. 3258 if (F->isInlineBuiltinDeclaration()) 3259 return true; 3260 3261 // PR9614. Avoid cases where the source code is lying to us. An available 3262 // externally function should have an equivalent function somewhere else, 3263 // but a function that calls itself through asm label/`__builtin_` trickery is 3264 // clearly not equivalent to the real implementation. 3265 // This happens in glibc's btowc and in some configure checks. 3266 return !isTriviallyRecursive(F); 3267 } 3268 3269 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3270 return CodeGenOpts.OptimizationLevel > 0; 3271 } 3272 3273 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3274 llvm::GlobalValue *GV) { 3275 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3276 3277 if (FD->isCPUSpecificMultiVersion()) { 3278 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3279 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3280 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3281 // Requires multiple emits. 3282 } else if (FD->isTargetClonesMultiVersion()) { 3283 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3284 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3285 if (Clone->isFirstOfVersion(I)) 3286 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3287 EmitTargetClonesResolver(GD); 3288 } else 3289 EmitGlobalFunctionDefinition(GD, GV); 3290 } 3291 3292 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3293 const auto *D = cast<ValueDecl>(GD.getDecl()); 3294 3295 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3296 Context.getSourceManager(), 3297 "Generating code for declaration"); 3298 3299 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3300 // At -O0, don't generate IR for functions with available_externally 3301 // linkage. 3302 if (!shouldEmitFunction(GD)) 3303 return; 3304 3305 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3306 std::string Name; 3307 llvm::raw_string_ostream OS(Name); 3308 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3309 /*Qualified=*/true); 3310 return Name; 3311 }); 3312 3313 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3314 // Make sure to emit the definition(s) before we emit the thunks. 3315 // This is necessary for the generation of certain thunks. 3316 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3317 ABI->emitCXXStructor(GD); 3318 else if (FD->isMultiVersion()) 3319 EmitMultiVersionFunctionDefinition(GD, GV); 3320 else 3321 EmitGlobalFunctionDefinition(GD, GV); 3322 3323 if (Method->isVirtual()) 3324 getVTables().EmitThunks(GD); 3325 3326 return; 3327 } 3328 3329 if (FD->isMultiVersion()) 3330 return EmitMultiVersionFunctionDefinition(GD, GV); 3331 return EmitGlobalFunctionDefinition(GD, GV); 3332 } 3333 3334 if (const auto *VD = dyn_cast<VarDecl>(D)) 3335 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3336 3337 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3338 } 3339 3340 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3341 llvm::Function *NewFn); 3342 3343 static unsigned 3344 TargetMVPriority(const TargetInfo &TI, 3345 const CodeGenFunction::MultiVersionResolverOption &RO) { 3346 unsigned Priority = 0; 3347 for (StringRef Feat : RO.Conditions.Features) 3348 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3349 3350 if (!RO.Conditions.Architecture.empty()) 3351 Priority = std::max( 3352 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3353 return Priority; 3354 } 3355 3356 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3357 // TU can forward declare the function without causing problems. Particularly 3358 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3359 // work with internal linkage functions, so that the same function name can be 3360 // used with internal linkage in multiple TUs. 3361 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3362 GlobalDecl GD) { 3363 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3364 if (FD->getFormalLinkage() == InternalLinkage) 3365 return llvm::GlobalValue::InternalLinkage; 3366 return llvm::GlobalValue::WeakODRLinkage; 3367 } 3368 3369 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) { 3370 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3371 assert(FD && "Not a FunctionDecl?"); 3372 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3373 assert(TC && "Not a target_clones Function?"); 3374 3375 QualType CanonTy = Context.getCanonicalType(FD->getType()); 3376 llvm::Type *DeclTy = getTypes().ConvertType(CanonTy); 3377 3378 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3379 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3380 DeclTy = getTypes().GetFunctionType(FInfo); 3381 } 3382 3383 llvm::Function *ResolverFunc; 3384 if (getTarget().supportsIFunc()) { 3385 auto *IFunc = cast<llvm::GlobalIFunc>( 3386 GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3387 ResolverFunc = cast<llvm::Function>(IFunc->getResolver()); 3388 } else 3389 ResolverFunc = 3390 cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3391 3392 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3393 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3394 ++VersionIndex) { 3395 if (!TC->isFirstOfVersion(VersionIndex)) 3396 continue; 3397 StringRef Version = TC->getFeatureStr(VersionIndex); 3398 StringRef MangledName = 3399 getMangledName(GD.getWithMultiVersionIndex(VersionIndex)); 3400 llvm::Constant *Func = GetGlobalValue(MangledName); 3401 assert(Func && 3402 "Should have already been created before calling resolver emit"); 3403 3404 StringRef Architecture; 3405 llvm::SmallVector<StringRef, 1> Feature; 3406 3407 if (Version.startswith("arch=")) 3408 Architecture = Version.drop_front(sizeof("arch=") - 1); 3409 else if (Version != "default") 3410 Feature.push_back(Version); 3411 3412 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3413 } 3414 3415 const TargetInfo &TI = getTarget(); 3416 std::stable_sort( 3417 Options.begin(), Options.end(), 3418 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3419 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3420 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3421 }); 3422 CodeGenFunction CGF(*this); 3423 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3424 } 3425 3426 void CodeGenModule::emitMultiVersionFunctions() { 3427 std::vector<GlobalDecl> MVFuncsToEmit; 3428 MultiVersionFuncs.swap(MVFuncsToEmit); 3429 for (GlobalDecl GD : MVFuncsToEmit) { 3430 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3431 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3432 getContext().forEachMultiversionedFunctionVersion( 3433 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3434 GlobalDecl CurGD{ 3435 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3436 StringRef MangledName = getMangledName(CurGD); 3437 llvm::Constant *Func = GetGlobalValue(MangledName); 3438 if (!Func) { 3439 if (CurFD->isDefined()) { 3440 EmitGlobalFunctionDefinition(CurGD, nullptr); 3441 Func = GetGlobalValue(MangledName); 3442 } else { 3443 const CGFunctionInfo &FI = 3444 getTypes().arrangeGlobalDeclaration(GD); 3445 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3446 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3447 /*DontDefer=*/false, ForDefinition); 3448 } 3449 assert(Func && "This should have just been created"); 3450 } 3451 3452 const auto *TA = CurFD->getAttr<TargetAttr>(); 3453 llvm::SmallVector<StringRef, 8> Feats; 3454 TA->getAddedFeatures(Feats); 3455 3456 Options.emplace_back(cast<llvm::Function>(Func), 3457 TA->getArchitecture(), Feats); 3458 }); 3459 3460 llvm::Function *ResolverFunc; 3461 const TargetInfo &TI = getTarget(); 3462 3463 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3464 ResolverFunc = cast<llvm::Function>( 3465 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3466 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3467 } else { 3468 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3469 } 3470 3471 if (supportsCOMDAT()) 3472 ResolverFunc->setComdat( 3473 getModule().getOrInsertComdat(ResolverFunc->getName())); 3474 3475 llvm::stable_sort( 3476 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3477 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3478 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3479 }); 3480 CodeGenFunction CGF(*this); 3481 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3482 } 3483 3484 // Ensure that any additions to the deferred decls list caused by emitting a 3485 // variant are emitted. This can happen when the variant itself is inline and 3486 // calls a function without linkage. 3487 if (!MVFuncsToEmit.empty()) 3488 EmitDeferred(); 3489 3490 // Ensure that any additions to the multiversion funcs list from either the 3491 // deferred decls or the multiversion functions themselves are emitted. 3492 if (!MultiVersionFuncs.empty()) 3493 emitMultiVersionFunctions(); 3494 } 3495 3496 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3497 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3498 assert(FD && "Not a FunctionDecl?"); 3499 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3500 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3501 assert(DD && "Not a cpu_dispatch Function?"); 3502 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3503 3504 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3505 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3506 DeclTy = getTypes().GetFunctionType(FInfo); 3507 } 3508 3509 StringRef ResolverName = getMangledName(GD); 3510 UpdateMultiVersionNames(GD, FD, ResolverName); 3511 3512 llvm::Type *ResolverType; 3513 GlobalDecl ResolverGD; 3514 if (getTarget().supportsIFunc()) { 3515 ResolverType = llvm::FunctionType::get( 3516 llvm::PointerType::get(DeclTy, 3517 Context.getTargetAddressSpace(FD->getType())), 3518 false); 3519 } 3520 else { 3521 ResolverType = DeclTy; 3522 ResolverGD = GD; 3523 } 3524 3525 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3526 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3527 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3528 if (supportsCOMDAT()) 3529 ResolverFunc->setComdat( 3530 getModule().getOrInsertComdat(ResolverFunc->getName())); 3531 3532 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3533 const TargetInfo &Target = getTarget(); 3534 unsigned Index = 0; 3535 for (const IdentifierInfo *II : DD->cpus()) { 3536 // Get the name of the target function so we can look it up/create it. 3537 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3538 getCPUSpecificMangling(*this, II->getName()); 3539 3540 llvm::Constant *Func = GetGlobalValue(MangledName); 3541 3542 if (!Func) { 3543 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3544 if (ExistingDecl.getDecl() && 3545 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3546 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3547 Func = GetGlobalValue(MangledName); 3548 } else { 3549 if (!ExistingDecl.getDecl()) 3550 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3551 3552 Func = GetOrCreateLLVMFunction( 3553 MangledName, DeclTy, ExistingDecl, 3554 /*ForVTable=*/false, /*DontDefer=*/true, 3555 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3556 } 3557 } 3558 3559 llvm::SmallVector<StringRef, 32> Features; 3560 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3561 llvm::transform(Features, Features.begin(), 3562 [](StringRef Str) { return Str.substr(1); }); 3563 llvm::erase_if(Features, [&Target](StringRef Feat) { 3564 return !Target.validateCpuSupports(Feat); 3565 }); 3566 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3567 ++Index; 3568 } 3569 3570 llvm::stable_sort( 3571 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3572 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3573 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3574 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3575 }); 3576 3577 // If the list contains multiple 'default' versions, such as when it contains 3578 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3579 // always run on at least a 'pentium'). We do this by deleting the 'least 3580 // advanced' (read, lowest mangling letter). 3581 while (Options.size() > 1 && 3582 llvm::X86::getCpuSupportsMask( 3583 (Options.end() - 2)->Conditions.Features) == 0) { 3584 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3585 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3586 if (LHSName.compare(RHSName) < 0) 3587 Options.erase(Options.end() - 2); 3588 else 3589 Options.erase(Options.end() - 1); 3590 } 3591 3592 CodeGenFunction CGF(*this); 3593 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3594 3595 if (getTarget().supportsIFunc()) { 3596 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3597 auto *IFunc = cast<llvm::GlobalValue>( 3598 GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3599 3600 // Fix up function declarations that were created for cpu_specific before 3601 // cpu_dispatch was known 3602 if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) { 3603 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3604 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3605 &getModule()); 3606 GI->takeName(IFunc); 3607 IFunc->replaceAllUsesWith(GI); 3608 IFunc->eraseFromParent(); 3609 IFunc = GI; 3610 } 3611 3612 std::string AliasName = getMangledNameImpl( 3613 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3614 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3615 if (!AliasFunc) { 3616 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3617 &getModule()); 3618 SetCommonAttributes(GD, GA); 3619 } 3620 } 3621 } 3622 3623 /// If a dispatcher for the specified mangled name is not in the module, create 3624 /// and return an llvm Function with the specified type. 3625 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3626 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3627 std::string MangledName = 3628 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3629 3630 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3631 // a separate resolver). 3632 std::string ResolverName = MangledName; 3633 if (getTarget().supportsIFunc()) 3634 ResolverName += ".ifunc"; 3635 else if (FD->isTargetMultiVersion()) 3636 ResolverName += ".resolver"; 3637 3638 // If this already exists, just return that one. 3639 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3640 return ResolverGV; 3641 3642 // Since this is the first time we've created this IFunc, make sure 3643 // that we put this multiversioned function into the list to be 3644 // replaced later if necessary (target multiversioning only). 3645 if (FD->isTargetMultiVersion()) 3646 MultiVersionFuncs.push_back(GD); 3647 else if (FD->isTargetClonesMultiVersion()) { 3648 // In target_clones multiversioning, make sure we emit this if used. 3649 auto DDI = 3650 DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0))); 3651 if (DDI != DeferredDecls.end()) { 3652 addDeferredDeclToEmit(GD); 3653 DeferredDecls.erase(DDI); 3654 } else { 3655 // Emit the symbol of the 1st variant, so that the deferred decls know we 3656 // need it, otherwise the only global value will be the resolver/ifunc, 3657 // which end up getting broken if we search for them with GetGlobalValue'. 3658 GetOrCreateLLVMFunction( 3659 getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD, 3660 /*ForVTable=*/false, /*DontDefer=*/true, 3661 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3662 } 3663 } 3664 3665 // For cpu_specific, don't create an ifunc yet because we don't know if the 3666 // cpu_dispatch will be emitted in this translation unit. 3667 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3668 llvm::Type *ResolverType = llvm::FunctionType::get( 3669 llvm::PointerType::get( 3670 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3671 false); 3672 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3673 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3674 /*ForVTable=*/false); 3675 llvm::GlobalIFunc *GIF = 3676 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3677 "", Resolver, &getModule()); 3678 GIF->setName(ResolverName); 3679 SetCommonAttributes(FD, GIF); 3680 3681 return GIF; 3682 } 3683 3684 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3685 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3686 assert(isa<llvm::GlobalValue>(Resolver) && 3687 "Resolver should be created for the first time"); 3688 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3689 return Resolver; 3690 } 3691 3692 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3693 /// module, create and return an llvm Function with the specified type. If there 3694 /// is something in the module with the specified name, return it potentially 3695 /// bitcasted to the right type. 3696 /// 3697 /// If D is non-null, it specifies a decl that correspond to this. This is used 3698 /// to set the attributes on the function when it is first created. 3699 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3700 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3701 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3702 ForDefinition_t IsForDefinition) { 3703 const Decl *D = GD.getDecl(); 3704 3705 // Any attempts to use a MultiVersion function should result in retrieving 3706 // the iFunc instead. Name Mangling will handle the rest of the changes. 3707 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3708 // For the device mark the function as one that should be emitted. 3709 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3710 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3711 !DontDefer && !IsForDefinition) { 3712 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3713 GlobalDecl GDDef; 3714 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3715 GDDef = GlobalDecl(CD, GD.getCtorType()); 3716 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3717 GDDef = GlobalDecl(DD, GD.getDtorType()); 3718 else 3719 GDDef = GlobalDecl(FDDef); 3720 EmitGlobal(GDDef); 3721 } 3722 } 3723 3724 if (FD->isMultiVersion()) { 3725 UpdateMultiVersionNames(GD, FD, MangledName); 3726 if (!IsForDefinition) 3727 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3728 } 3729 } 3730 3731 // Lookup the entry, lazily creating it if necessary. 3732 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3733 if (Entry) { 3734 if (WeakRefReferences.erase(Entry)) { 3735 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3736 if (FD && !FD->hasAttr<WeakAttr>()) 3737 Entry->setLinkage(llvm::Function::ExternalLinkage); 3738 } 3739 3740 // Handle dropped DLL attributes. 3741 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3742 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3743 setDSOLocal(Entry); 3744 } 3745 3746 // If there are two attempts to define the same mangled name, issue an 3747 // error. 3748 if (IsForDefinition && !Entry->isDeclaration()) { 3749 GlobalDecl OtherGD; 3750 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3751 // to make sure that we issue an error only once. 3752 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3753 (GD.getCanonicalDecl().getDecl() != 3754 OtherGD.getCanonicalDecl().getDecl()) && 3755 DiagnosedConflictingDefinitions.insert(GD).second) { 3756 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3757 << MangledName; 3758 getDiags().Report(OtherGD.getDecl()->getLocation(), 3759 diag::note_previous_definition); 3760 } 3761 } 3762 3763 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3764 (Entry->getValueType() == Ty)) { 3765 return Entry; 3766 } 3767 3768 // Make sure the result is of the correct type. 3769 // (If function is requested for a definition, we always need to create a new 3770 // function, not just return a bitcast.) 3771 if (!IsForDefinition) 3772 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3773 } 3774 3775 // This function doesn't have a complete type (for example, the return 3776 // type is an incomplete struct). Use a fake type instead, and make 3777 // sure not to try to set attributes. 3778 bool IsIncompleteFunction = false; 3779 3780 llvm::FunctionType *FTy; 3781 if (isa<llvm::FunctionType>(Ty)) { 3782 FTy = cast<llvm::FunctionType>(Ty); 3783 } else { 3784 FTy = llvm::FunctionType::get(VoidTy, false); 3785 IsIncompleteFunction = true; 3786 } 3787 3788 llvm::Function *F = 3789 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3790 Entry ? StringRef() : MangledName, &getModule()); 3791 3792 // If we already created a function with the same mangled name (but different 3793 // type) before, take its name and add it to the list of functions to be 3794 // replaced with F at the end of CodeGen. 3795 // 3796 // This happens if there is a prototype for a function (e.g. "int f()") and 3797 // then a definition of a different type (e.g. "int f(int x)"). 3798 if (Entry) { 3799 F->takeName(Entry); 3800 3801 // This might be an implementation of a function without a prototype, in 3802 // which case, try to do special replacement of calls which match the new 3803 // prototype. The really key thing here is that we also potentially drop 3804 // arguments from the call site so as to make a direct call, which makes the 3805 // inliner happier and suppresses a number of optimizer warnings (!) about 3806 // dropping arguments. 3807 if (!Entry->use_empty()) { 3808 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3809 Entry->removeDeadConstantUsers(); 3810 } 3811 3812 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3813 F, Entry->getValueType()->getPointerTo()); 3814 addGlobalValReplacement(Entry, BC); 3815 } 3816 3817 assert(F->getName() == MangledName && "name was uniqued!"); 3818 if (D) 3819 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3820 if (ExtraAttrs.hasFnAttrs()) { 3821 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3822 F->addFnAttrs(B); 3823 } 3824 3825 if (!DontDefer) { 3826 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3827 // each other bottoming out with the base dtor. Therefore we emit non-base 3828 // dtors on usage, even if there is no dtor definition in the TU. 3829 if (D && isa<CXXDestructorDecl>(D) && 3830 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3831 GD.getDtorType())) 3832 addDeferredDeclToEmit(GD); 3833 3834 // This is the first use or definition of a mangled name. If there is a 3835 // deferred decl with this name, remember that we need to emit it at the end 3836 // of the file. 3837 auto DDI = DeferredDecls.find(MangledName); 3838 if (DDI != DeferredDecls.end()) { 3839 // Move the potentially referenced deferred decl to the 3840 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3841 // don't need it anymore). 3842 addDeferredDeclToEmit(DDI->second); 3843 DeferredDecls.erase(DDI); 3844 3845 // Otherwise, there are cases we have to worry about where we're 3846 // using a declaration for which we must emit a definition but where 3847 // we might not find a top-level definition: 3848 // - member functions defined inline in their classes 3849 // - friend functions defined inline in some class 3850 // - special member functions with implicit definitions 3851 // If we ever change our AST traversal to walk into class methods, 3852 // this will be unnecessary. 3853 // 3854 // We also don't emit a definition for a function if it's going to be an 3855 // entry in a vtable, unless it's already marked as used. 3856 } else if (getLangOpts().CPlusPlus && D) { 3857 // Look for a declaration that's lexically in a record. 3858 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3859 FD = FD->getPreviousDecl()) { 3860 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3861 if (FD->doesThisDeclarationHaveABody()) { 3862 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3863 break; 3864 } 3865 } 3866 } 3867 } 3868 } 3869 3870 // Make sure the result is of the requested type. 3871 if (!IsIncompleteFunction) { 3872 assert(F->getFunctionType() == Ty); 3873 return F; 3874 } 3875 3876 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3877 return llvm::ConstantExpr::getBitCast(F, PTy); 3878 } 3879 3880 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3881 /// non-null, then this function will use the specified type if it has to 3882 /// create it (this occurs when we see a definition of the function). 3883 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3884 llvm::Type *Ty, 3885 bool ForVTable, 3886 bool DontDefer, 3887 ForDefinition_t IsForDefinition) { 3888 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3889 "consteval function should never be emitted"); 3890 // If there was no specific requested type, just convert it now. 3891 if (!Ty) { 3892 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3893 Ty = getTypes().ConvertType(FD->getType()); 3894 } 3895 3896 // Devirtualized destructor calls may come through here instead of via 3897 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3898 // of the complete destructor when necessary. 3899 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3900 if (getTarget().getCXXABI().isMicrosoft() && 3901 GD.getDtorType() == Dtor_Complete && 3902 DD->getParent()->getNumVBases() == 0) 3903 GD = GlobalDecl(DD, Dtor_Base); 3904 } 3905 3906 StringRef MangledName = getMangledName(GD); 3907 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3908 /*IsThunk=*/false, llvm::AttributeList(), 3909 IsForDefinition); 3910 // Returns kernel handle for HIP kernel stub function. 3911 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3912 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3913 auto *Handle = getCUDARuntime().getKernelHandle( 3914 cast<llvm::Function>(F->stripPointerCasts()), GD); 3915 if (IsForDefinition) 3916 return F; 3917 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3918 } 3919 return F; 3920 } 3921 3922 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3923 llvm::GlobalValue *F = 3924 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3925 3926 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3927 llvm::Type::getInt8PtrTy(VMContext)); 3928 } 3929 3930 static const FunctionDecl * 3931 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3932 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3933 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3934 3935 IdentifierInfo &CII = C.Idents.get(Name); 3936 for (const auto *Result : DC->lookup(&CII)) 3937 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3938 return FD; 3939 3940 if (!C.getLangOpts().CPlusPlus) 3941 return nullptr; 3942 3943 // Demangle the premangled name from getTerminateFn() 3944 IdentifierInfo &CXXII = 3945 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3946 ? C.Idents.get("terminate") 3947 : C.Idents.get(Name); 3948 3949 for (const auto &N : {"__cxxabiv1", "std"}) { 3950 IdentifierInfo &NS = C.Idents.get(N); 3951 for (const auto *Result : DC->lookup(&NS)) { 3952 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3953 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3954 for (const auto *Result : LSD->lookup(&NS)) 3955 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3956 break; 3957 3958 if (ND) 3959 for (const auto *Result : ND->lookup(&CXXII)) 3960 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3961 return FD; 3962 } 3963 } 3964 3965 return nullptr; 3966 } 3967 3968 /// CreateRuntimeFunction - Create a new runtime function with the specified 3969 /// type and name. 3970 llvm::FunctionCallee 3971 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3972 llvm::AttributeList ExtraAttrs, bool Local, 3973 bool AssumeConvergent) { 3974 if (AssumeConvergent) { 3975 ExtraAttrs = 3976 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3977 } 3978 3979 llvm::Constant *C = 3980 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3981 /*DontDefer=*/false, /*IsThunk=*/false, 3982 ExtraAttrs); 3983 3984 if (auto *F = dyn_cast<llvm::Function>(C)) { 3985 if (F->empty()) { 3986 F->setCallingConv(getRuntimeCC()); 3987 3988 // In Windows Itanium environments, try to mark runtime functions 3989 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3990 // will link their standard library statically or dynamically. Marking 3991 // functions imported when they are not imported can cause linker errors 3992 // and warnings. 3993 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3994 !getCodeGenOpts().LTOVisibilityPublicStd) { 3995 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3996 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3997 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3998 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3999 } 4000 } 4001 setDSOLocal(F); 4002 } 4003 } 4004 4005 return {FTy, C}; 4006 } 4007 4008 /// isTypeConstant - Determine whether an object of this type can be emitted 4009 /// as a constant. 4010 /// 4011 /// If ExcludeCtor is true, the duration when the object's constructor runs 4012 /// will not be considered. The caller will need to verify that the object is 4013 /// not written to during its construction. 4014 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4015 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4016 return false; 4017 4018 if (Context.getLangOpts().CPlusPlus) { 4019 if (const CXXRecordDecl *Record 4020 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4021 return ExcludeCtor && !Record->hasMutableFields() && 4022 Record->hasTrivialDestructor(); 4023 } 4024 4025 return true; 4026 } 4027 4028 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4029 /// create and return an llvm GlobalVariable with the specified type and address 4030 /// space. If there is something in the module with the specified name, return 4031 /// it potentially bitcasted to the right type. 4032 /// 4033 /// If D is non-null, it specifies a decl that correspond to this. This is used 4034 /// to set the attributes on the global when it is first created. 4035 /// 4036 /// If IsForDefinition is true, it is guaranteed that an actual global with 4037 /// type Ty will be returned, not conversion of a variable with the same 4038 /// mangled name but some other type. 4039 llvm::Constant * 4040 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4041 LangAS AddrSpace, const VarDecl *D, 4042 ForDefinition_t IsForDefinition) { 4043 // Lookup the entry, lazily creating it if necessary. 4044 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4045 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4046 if (Entry) { 4047 if (WeakRefReferences.erase(Entry)) { 4048 if (D && !D->hasAttr<WeakAttr>()) 4049 Entry->setLinkage(llvm::Function::ExternalLinkage); 4050 } 4051 4052 // Handle dropped DLL attributes. 4053 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4054 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4055 4056 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4057 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4058 4059 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4060 return Entry; 4061 4062 // If there are two attempts to define the same mangled name, issue an 4063 // error. 4064 if (IsForDefinition && !Entry->isDeclaration()) { 4065 GlobalDecl OtherGD; 4066 const VarDecl *OtherD; 4067 4068 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4069 // to make sure that we issue an error only once. 4070 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4071 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4072 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4073 OtherD->hasInit() && 4074 DiagnosedConflictingDefinitions.insert(D).second) { 4075 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4076 << MangledName; 4077 getDiags().Report(OtherGD.getDecl()->getLocation(), 4078 diag::note_previous_definition); 4079 } 4080 } 4081 4082 // Make sure the result is of the correct type. 4083 if (Entry->getType()->getAddressSpace() != TargetAS) { 4084 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4085 Ty->getPointerTo(TargetAS)); 4086 } 4087 4088 // (If global is requested for a definition, we always need to create a new 4089 // global, not just return a bitcast.) 4090 if (!IsForDefinition) 4091 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4092 } 4093 4094 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4095 4096 auto *GV = new llvm::GlobalVariable( 4097 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4098 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4099 getContext().getTargetAddressSpace(DAddrSpace)); 4100 4101 // If we already created a global with the same mangled name (but different 4102 // type) before, take its name and remove it from its parent. 4103 if (Entry) { 4104 GV->takeName(Entry); 4105 4106 if (!Entry->use_empty()) { 4107 llvm::Constant *NewPtrForOldDecl = 4108 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4109 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4110 } 4111 4112 Entry->eraseFromParent(); 4113 } 4114 4115 // This is the first use or definition of a mangled name. If there is a 4116 // deferred decl with this name, remember that we need to emit it at the end 4117 // of the file. 4118 auto DDI = DeferredDecls.find(MangledName); 4119 if (DDI != DeferredDecls.end()) { 4120 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4121 // list, and remove it from DeferredDecls (since we don't need it anymore). 4122 addDeferredDeclToEmit(DDI->second); 4123 DeferredDecls.erase(DDI); 4124 } 4125 4126 // Handle things which are present even on external declarations. 4127 if (D) { 4128 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4129 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4130 4131 // FIXME: This code is overly simple and should be merged with other global 4132 // handling. 4133 GV->setConstant(isTypeConstant(D->getType(), false)); 4134 4135 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4136 4137 setLinkageForGV(GV, D); 4138 4139 if (D->getTLSKind()) { 4140 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4141 CXXThreadLocals.push_back(D); 4142 setTLSMode(GV, *D); 4143 } 4144 4145 setGVProperties(GV, D); 4146 4147 // If required by the ABI, treat declarations of static data members with 4148 // inline initializers as definitions. 4149 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4150 EmitGlobalVarDefinition(D); 4151 } 4152 4153 // Emit section information for extern variables. 4154 if (D->hasExternalStorage()) { 4155 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4156 GV->setSection(SA->getName()); 4157 } 4158 4159 // Handle XCore specific ABI requirements. 4160 if (getTriple().getArch() == llvm::Triple::xcore && 4161 D->getLanguageLinkage() == CLanguageLinkage && 4162 D->getType().isConstant(Context) && 4163 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4164 GV->setSection(".cp.rodata"); 4165 4166 // Check if we a have a const declaration with an initializer, we may be 4167 // able to emit it as available_externally to expose it's value to the 4168 // optimizer. 4169 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4170 D->getType().isConstQualified() && !GV->hasInitializer() && 4171 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4172 const auto *Record = 4173 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4174 bool HasMutableFields = Record && Record->hasMutableFields(); 4175 if (!HasMutableFields) { 4176 const VarDecl *InitDecl; 4177 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4178 if (InitExpr) { 4179 ConstantEmitter emitter(*this); 4180 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4181 if (Init) { 4182 auto *InitType = Init->getType(); 4183 if (GV->getValueType() != InitType) { 4184 // The type of the initializer does not match the definition. 4185 // This happens when an initializer has a different type from 4186 // the type of the global (because of padding at the end of a 4187 // structure for instance). 4188 GV->setName(StringRef()); 4189 // Make a new global with the correct type, this is now guaranteed 4190 // to work. 4191 auto *NewGV = cast<llvm::GlobalVariable>( 4192 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4193 ->stripPointerCasts()); 4194 4195 // Erase the old global, since it is no longer used. 4196 GV->eraseFromParent(); 4197 GV = NewGV; 4198 } else { 4199 GV->setInitializer(Init); 4200 GV->setConstant(true); 4201 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4202 } 4203 emitter.finalize(GV); 4204 } 4205 } 4206 } 4207 } 4208 } 4209 4210 if (GV->isDeclaration()) { 4211 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4212 // External HIP managed variables needed to be recorded for transformation 4213 // in both device and host compilations. 4214 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4215 D->hasExternalStorage()) 4216 getCUDARuntime().handleVarRegistration(D, *GV); 4217 } 4218 4219 LangAS ExpectedAS = 4220 D ? D->getType().getAddressSpace() 4221 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4222 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4223 if (DAddrSpace != ExpectedAS) { 4224 return getTargetCodeGenInfo().performAddrSpaceCast( 4225 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4226 } 4227 4228 return GV; 4229 } 4230 4231 llvm::Constant * 4232 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4233 const Decl *D = GD.getDecl(); 4234 4235 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4236 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4237 /*DontDefer=*/false, IsForDefinition); 4238 4239 if (isa<CXXMethodDecl>(D)) { 4240 auto FInfo = 4241 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4242 auto Ty = getTypes().GetFunctionType(*FInfo); 4243 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4244 IsForDefinition); 4245 } 4246 4247 if (isa<FunctionDecl>(D)) { 4248 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4249 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4250 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4251 IsForDefinition); 4252 } 4253 4254 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4255 } 4256 4257 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4258 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4259 unsigned Alignment) { 4260 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4261 llvm::GlobalVariable *OldGV = nullptr; 4262 4263 if (GV) { 4264 // Check if the variable has the right type. 4265 if (GV->getValueType() == Ty) 4266 return GV; 4267 4268 // Because C++ name mangling, the only way we can end up with an already 4269 // existing global with the same name is if it has been declared extern "C". 4270 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4271 OldGV = GV; 4272 } 4273 4274 // Create a new variable. 4275 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4276 Linkage, nullptr, Name); 4277 4278 if (OldGV) { 4279 // Replace occurrences of the old variable if needed. 4280 GV->takeName(OldGV); 4281 4282 if (!OldGV->use_empty()) { 4283 llvm::Constant *NewPtrForOldDecl = 4284 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4285 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4286 } 4287 4288 OldGV->eraseFromParent(); 4289 } 4290 4291 if (supportsCOMDAT() && GV->isWeakForLinker() && 4292 !GV->hasAvailableExternallyLinkage()) 4293 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4294 4295 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4296 4297 return GV; 4298 } 4299 4300 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4301 /// given global variable. If Ty is non-null and if the global doesn't exist, 4302 /// then it will be created with the specified type instead of whatever the 4303 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4304 /// that an actual global with type Ty will be returned, not conversion of a 4305 /// variable with the same mangled name but some other type. 4306 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4307 llvm::Type *Ty, 4308 ForDefinition_t IsForDefinition) { 4309 assert(D->hasGlobalStorage() && "Not a global variable"); 4310 QualType ASTTy = D->getType(); 4311 if (!Ty) 4312 Ty = getTypes().ConvertTypeForMem(ASTTy); 4313 4314 StringRef MangledName = getMangledName(D); 4315 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4316 IsForDefinition); 4317 } 4318 4319 /// CreateRuntimeVariable - Create a new runtime global variable with the 4320 /// specified type and name. 4321 llvm::Constant * 4322 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4323 StringRef Name) { 4324 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4325 : LangAS::Default; 4326 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4327 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4328 return Ret; 4329 } 4330 4331 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4332 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4333 4334 StringRef MangledName = getMangledName(D); 4335 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4336 4337 // We already have a definition, not declaration, with the same mangled name. 4338 // Emitting of declaration is not required (and actually overwrites emitted 4339 // definition). 4340 if (GV && !GV->isDeclaration()) 4341 return; 4342 4343 // If we have not seen a reference to this variable yet, place it into the 4344 // deferred declarations table to be emitted if needed later. 4345 if (!MustBeEmitted(D) && !GV) { 4346 DeferredDecls[MangledName] = D; 4347 return; 4348 } 4349 4350 // The tentative definition is the only definition. 4351 EmitGlobalVarDefinition(D); 4352 } 4353 4354 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4355 EmitExternalVarDeclaration(D); 4356 } 4357 4358 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4359 return Context.toCharUnitsFromBits( 4360 getDataLayout().getTypeStoreSizeInBits(Ty)); 4361 } 4362 4363 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4364 if (LangOpts.OpenCL) { 4365 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4366 assert(AS == LangAS::opencl_global || 4367 AS == LangAS::opencl_global_device || 4368 AS == LangAS::opencl_global_host || 4369 AS == LangAS::opencl_constant || 4370 AS == LangAS::opencl_local || 4371 AS >= LangAS::FirstTargetAddressSpace); 4372 return AS; 4373 } 4374 4375 if (LangOpts.SYCLIsDevice && 4376 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4377 return LangAS::sycl_global; 4378 4379 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4380 if (D && D->hasAttr<CUDAConstantAttr>()) 4381 return LangAS::cuda_constant; 4382 else if (D && D->hasAttr<CUDASharedAttr>()) 4383 return LangAS::cuda_shared; 4384 else if (D && D->hasAttr<CUDADeviceAttr>()) 4385 return LangAS::cuda_device; 4386 else if (D && D->getType().isConstQualified()) 4387 return LangAS::cuda_constant; 4388 else 4389 return LangAS::cuda_device; 4390 } 4391 4392 if (LangOpts.OpenMP) { 4393 LangAS AS; 4394 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4395 return AS; 4396 } 4397 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4398 } 4399 4400 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4401 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4402 if (LangOpts.OpenCL) 4403 return LangAS::opencl_constant; 4404 if (LangOpts.SYCLIsDevice) 4405 return LangAS::sycl_global; 4406 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4407 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4408 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4409 // with OpVariable instructions with Generic storage class which is not 4410 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4411 // UniformConstant storage class is not viable as pointers to it may not be 4412 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4413 return LangAS::cuda_device; 4414 if (auto AS = getTarget().getConstantAddressSpace()) 4415 return AS.getValue(); 4416 return LangAS::Default; 4417 } 4418 4419 // In address space agnostic languages, string literals are in default address 4420 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4421 // emitted in constant address space in LLVM IR. To be consistent with other 4422 // parts of AST, string literal global variables in constant address space 4423 // need to be casted to default address space before being put into address 4424 // map and referenced by other part of CodeGen. 4425 // In OpenCL, string literals are in constant address space in AST, therefore 4426 // they should not be casted to default address space. 4427 static llvm::Constant * 4428 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4429 llvm::GlobalVariable *GV) { 4430 llvm::Constant *Cast = GV; 4431 if (!CGM.getLangOpts().OpenCL) { 4432 auto AS = CGM.GetGlobalConstantAddressSpace(); 4433 if (AS != LangAS::Default) 4434 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4435 CGM, GV, AS, LangAS::Default, 4436 GV->getValueType()->getPointerTo( 4437 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4438 } 4439 return Cast; 4440 } 4441 4442 template<typename SomeDecl> 4443 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4444 llvm::GlobalValue *GV) { 4445 if (!getLangOpts().CPlusPlus) 4446 return; 4447 4448 // Must have 'used' attribute, or else inline assembly can't rely on 4449 // the name existing. 4450 if (!D->template hasAttr<UsedAttr>()) 4451 return; 4452 4453 // Must have internal linkage and an ordinary name. 4454 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4455 return; 4456 4457 // Must be in an extern "C" context. Entities declared directly within 4458 // a record are not extern "C" even if the record is in such a context. 4459 const SomeDecl *First = D->getFirstDecl(); 4460 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4461 return; 4462 4463 // OK, this is an internal linkage entity inside an extern "C" linkage 4464 // specification. Make a note of that so we can give it the "expected" 4465 // mangled name if nothing else is using that name. 4466 std::pair<StaticExternCMap::iterator, bool> R = 4467 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4468 4469 // If we have multiple internal linkage entities with the same name 4470 // in extern "C" regions, none of them gets that name. 4471 if (!R.second) 4472 R.first->second = nullptr; 4473 } 4474 4475 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4476 if (!CGM.supportsCOMDAT()) 4477 return false; 4478 4479 if (D.hasAttr<SelectAnyAttr>()) 4480 return true; 4481 4482 GVALinkage Linkage; 4483 if (auto *VD = dyn_cast<VarDecl>(&D)) 4484 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4485 else 4486 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4487 4488 switch (Linkage) { 4489 case GVA_Internal: 4490 case GVA_AvailableExternally: 4491 case GVA_StrongExternal: 4492 return false; 4493 case GVA_DiscardableODR: 4494 case GVA_StrongODR: 4495 return true; 4496 } 4497 llvm_unreachable("No such linkage"); 4498 } 4499 4500 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4501 llvm::GlobalObject &GO) { 4502 if (!shouldBeInCOMDAT(*this, D)) 4503 return; 4504 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4505 } 4506 4507 /// Pass IsTentative as true if you want to create a tentative definition. 4508 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4509 bool IsTentative) { 4510 // OpenCL global variables of sampler type are translated to function calls, 4511 // therefore no need to be translated. 4512 QualType ASTTy = D->getType(); 4513 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4514 return; 4515 4516 // If this is OpenMP device, check if it is legal to emit this global 4517 // normally. 4518 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4519 OpenMPRuntime->emitTargetGlobalVariable(D)) 4520 return; 4521 4522 llvm::TrackingVH<llvm::Constant> Init; 4523 bool NeedsGlobalCtor = false; 4524 bool NeedsGlobalDtor = 4525 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4526 4527 const VarDecl *InitDecl; 4528 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4529 4530 Optional<ConstantEmitter> emitter; 4531 4532 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4533 // as part of their declaration." Sema has already checked for 4534 // error cases, so we just need to set Init to UndefValue. 4535 bool IsCUDASharedVar = 4536 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4537 // Shadows of initialized device-side global variables are also left 4538 // undefined. 4539 // Managed Variables should be initialized on both host side and device side. 4540 bool IsCUDAShadowVar = 4541 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4542 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4543 D->hasAttr<CUDASharedAttr>()); 4544 bool IsCUDADeviceShadowVar = 4545 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4546 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4547 D->getType()->isCUDADeviceBuiltinTextureType()); 4548 if (getLangOpts().CUDA && 4549 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4550 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4551 else if (D->hasAttr<LoaderUninitializedAttr>()) 4552 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4553 else if (!InitExpr) { 4554 // This is a tentative definition; tentative definitions are 4555 // implicitly initialized with { 0 }. 4556 // 4557 // Note that tentative definitions are only emitted at the end of 4558 // a translation unit, so they should never have incomplete 4559 // type. In addition, EmitTentativeDefinition makes sure that we 4560 // never attempt to emit a tentative definition if a real one 4561 // exists. A use may still exists, however, so we still may need 4562 // to do a RAUW. 4563 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4564 Init = EmitNullConstant(D->getType()); 4565 } else { 4566 initializedGlobalDecl = GlobalDecl(D); 4567 emitter.emplace(*this); 4568 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4569 if (!Initializer) { 4570 QualType T = InitExpr->getType(); 4571 if (D->getType()->isReferenceType()) 4572 T = D->getType(); 4573 4574 if (getLangOpts().CPlusPlus) { 4575 Init = EmitNullConstant(T); 4576 NeedsGlobalCtor = true; 4577 } else { 4578 ErrorUnsupported(D, "static initializer"); 4579 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4580 } 4581 } else { 4582 Init = Initializer; 4583 // We don't need an initializer, so remove the entry for the delayed 4584 // initializer position (just in case this entry was delayed) if we 4585 // also don't need to register a destructor. 4586 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4587 DelayedCXXInitPosition.erase(D); 4588 } 4589 } 4590 4591 llvm::Type* InitType = Init->getType(); 4592 llvm::Constant *Entry = 4593 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4594 4595 // Strip off pointer casts if we got them. 4596 Entry = Entry->stripPointerCasts(); 4597 4598 // Entry is now either a Function or GlobalVariable. 4599 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4600 4601 // We have a definition after a declaration with the wrong type. 4602 // We must make a new GlobalVariable* and update everything that used OldGV 4603 // (a declaration or tentative definition) with the new GlobalVariable* 4604 // (which will be a definition). 4605 // 4606 // This happens if there is a prototype for a global (e.g. 4607 // "extern int x[];") and then a definition of a different type (e.g. 4608 // "int x[10];"). This also happens when an initializer has a different type 4609 // from the type of the global (this happens with unions). 4610 if (!GV || GV->getValueType() != InitType || 4611 GV->getType()->getAddressSpace() != 4612 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4613 4614 // Move the old entry aside so that we'll create a new one. 4615 Entry->setName(StringRef()); 4616 4617 // Make a new global with the correct type, this is now guaranteed to work. 4618 GV = cast<llvm::GlobalVariable>( 4619 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4620 ->stripPointerCasts()); 4621 4622 // Replace all uses of the old global with the new global 4623 llvm::Constant *NewPtrForOldDecl = 4624 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4625 Entry->getType()); 4626 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4627 4628 // Erase the old global, since it is no longer used. 4629 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4630 } 4631 4632 MaybeHandleStaticInExternC(D, GV); 4633 4634 if (D->hasAttr<AnnotateAttr>()) 4635 AddGlobalAnnotations(D, GV); 4636 4637 // Set the llvm linkage type as appropriate. 4638 llvm::GlobalValue::LinkageTypes Linkage = 4639 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4640 4641 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4642 // the device. [...]" 4643 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4644 // __device__, declares a variable that: [...] 4645 // Is accessible from all the threads within the grid and from the host 4646 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4647 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4648 if (GV && LangOpts.CUDA) { 4649 if (LangOpts.CUDAIsDevice) { 4650 if (Linkage != llvm::GlobalValue::InternalLinkage && 4651 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4652 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4653 D->getType()->isCUDADeviceBuiltinTextureType())) 4654 GV->setExternallyInitialized(true); 4655 } else { 4656 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4657 } 4658 getCUDARuntime().handleVarRegistration(D, *GV); 4659 } 4660 4661 GV->setInitializer(Init); 4662 if (emitter) 4663 emitter->finalize(GV); 4664 4665 // If it is safe to mark the global 'constant', do so now. 4666 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4667 isTypeConstant(D->getType(), true)); 4668 4669 // If it is in a read-only section, mark it 'constant'. 4670 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4671 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4672 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4673 GV->setConstant(true); 4674 } 4675 4676 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4677 4678 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4679 // function is only defined alongside the variable, not also alongside 4680 // callers. Normally, all accesses to a thread_local go through the 4681 // thread-wrapper in order to ensure initialization has occurred, underlying 4682 // variable will never be used other than the thread-wrapper, so it can be 4683 // converted to internal linkage. 4684 // 4685 // However, if the variable has the 'constinit' attribute, it _can_ be 4686 // referenced directly, without calling the thread-wrapper, so the linkage 4687 // must not be changed. 4688 // 4689 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4690 // weak or linkonce, the de-duplication semantics are important to preserve, 4691 // so we don't change the linkage. 4692 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4693 Linkage == llvm::GlobalValue::ExternalLinkage && 4694 Context.getTargetInfo().getTriple().isOSDarwin() && 4695 !D->hasAttr<ConstInitAttr>()) 4696 Linkage = llvm::GlobalValue::InternalLinkage; 4697 4698 GV->setLinkage(Linkage); 4699 if (D->hasAttr<DLLImportAttr>()) 4700 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4701 else if (D->hasAttr<DLLExportAttr>()) 4702 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4703 else 4704 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4705 4706 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4707 // common vars aren't constant even if declared const. 4708 GV->setConstant(false); 4709 // Tentative definition of global variables may be initialized with 4710 // non-zero null pointers. In this case they should have weak linkage 4711 // since common linkage must have zero initializer and must not have 4712 // explicit section therefore cannot have non-zero initial value. 4713 if (!GV->getInitializer()->isNullValue()) 4714 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4715 } 4716 4717 setNonAliasAttributes(D, GV); 4718 4719 if (D->getTLSKind() && !GV->isThreadLocal()) { 4720 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4721 CXXThreadLocals.push_back(D); 4722 setTLSMode(GV, *D); 4723 } 4724 4725 maybeSetTrivialComdat(*D, *GV); 4726 4727 // Emit the initializer function if necessary. 4728 if (NeedsGlobalCtor || NeedsGlobalDtor) 4729 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4730 4731 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4732 4733 // Emit global variable debug information. 4734 if (CGDebugInfo *DI = getModuleDebugInfo()) 4735 if (getCodeGenOpts().hasReducedDebugInfo()) 4736 DI->EmitGlobalVariable(GV, D); 4737 } 4738 4739 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4740 if (CGDebugInfo *DI = getModuleDebugInfo()) 4741 if (getCodeGenOpts().hasReducedDebugInfo()) { 4742 QualType ASTTy = D->getType(); 4743 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4744 llvm::Constant *GV = 4745 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4746 DI->EmitExternalVariable( 4747 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4748 } 4749 } 4750 4751 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4752 CodeGenModule &CGM, const VarDecl *D, 4753 bool NoCommon) { 4754 // Don't give variables common linkage if -fno-common was specified unless it 4755 // was overridden by a NoCommon attribute. 4756 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4757 return true; 4758 4759 // C11 6.9.2/2: 4760 // A declaration of an identifier for an object that has file scope without 4761 // an initializer, and without a storage-class specifier or with the 4762 // storage-class specifier static, constitutes a tentative definition. 4763 if (D->getInit() || D->hasExternalStorage()) 4764 return true; 4765 4766 // A variable cannot be both common and exist in a section. 4767 if (D->hasAttr<SectionAttr>()) 4768 return true; 4769 4770 // A variable cannot be both common and exist in a section. 4771 // We don't try to determine which is the right section in the front-end. 4772 // If no specialized section name is applicable, it will resort to default. 4773 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4774 D->hasAttr<PragmaClangDataSectionAttr>() || 4775 D->hasAttr<PragmaClangRelroSectionAttr>() || 4776 D->hasAttr<PragmaClangRodataSectionAttr>()) 4777 return true; 4778 4779 // Thread local vars aren't considered common linkage. 4780 if (D->getTLSKind()) 4781 return true; 4782 4783 // Tentative definitions marked with WeakImportAttr are true definitions. 4784 if (D->hasAttr<WeakImportAttr>()) 4785 return true; 4786 4787 // A variable cannot be both common and exist in a comdat. 4788 if (shouldBeInCOMDAT(CGM, *D)) 4789 return true; 4790 4791 // Declarations with a required alignment do not have common linkage in MSVC 4792 // mode. 4793 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4794 if (D->hasAttr<AlignedAttr>()) 4795 return true; 4796 QualType VarType = D->getType(); 4797 if (Context.isAlignmentRequired(VarType)) 4798 return true; 4799 4800 if (const auto *RT = VarType->getAs<RecordType>()) { 4801 const RecordDecl *RD = RT->getDecl(); 4802 for (const FieldDecl *FD : RD->fields()) { 4803 if (FD->isBitField()) 4804 continue; 4805 if (FD->hasAttr<AlignedAttr>()) 4806 return true; 4807 if (Context.isAlignmentRequired(FD->getType())) 4808 return true; 4809 } 4810 } 4811 } 4812 4813 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4814 // common symbols, so symbols with greater alignment requirements cannot be 4815 // common. 4816 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4817 // alignments for common symbols via the aligncomm directive, so this 4818 // restriction only applies to MSVC environments. 4819 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4820 Context.getTypeAlignIfKnown(D->getType()) > 4821 Context.toBits(CharUnits::fromQuantity(32))) 4822 return true; 4823 4824 return false; 4825 } 4826 4827 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4828 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4829 if (Linkage == GVA_Internal) 4830 return llvm::Function::InternalLinkage; 4831 4832 if (D->hasAttr<WeakAttr>()) { 4833 if (IsConstantVariable) 4834 return llvm::GlobalVariable::WeakODRLinkage; 4835 else 4836 return llvm::GlobalVariable::WeakAnyLinkage; 4837 } 4838 4839 if (const auto *FD = D->getAsFunction()) 4840 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4841 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4842 4843 // We are guaranteed to have a strong definition somewhere else, 4844 // so we can use available_externally linkage. 4845 if (Linkage == GVA_AvailableExternally) 4846 return llvm::GlobalValue::AvailableExternallyLinkage; 4847 4848 // Note that Apple's kernel linker doesn't support symbol 4849 // coalescing, so we need to avoid linkonce and weak linkages there. 4850 // Normally, this means we just map to internal, but for explicit 4851 // instantiations we'll map to external. 4852 4853 // In C++, the compiler has to emit a definition in every translation unit 4854 // that references the function. We should use linkonce_odr because 4855 // a) if all references in this translation unit are optimized away, we 4856 // don't need to codegen it. b) if the function persists, it needs to be 4857 // merged with other definitions. c) C++ has the ODR, so we know the 4858 // definition is dependable. 4859 if (Linkage == GVA_DiscardableODR) 4860 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4861 : llvm::Function::InternalLinkage; 4862 4863 // An explicit instantiation of a template has weak linkage, since 4864 // explicit instantiations can occur in multiple translation units 4865 // and must all be equivalent. However, we are not allowed to 4866 // throw away these explicit instantiations. 4867 // 4868 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4869 // so say that CUDA templates are either external (for kernels) or internal. 4870 // This lets llvm perform aggressive inter-procedural optimizations. For 4871 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4872 // therefore we need to follow the normal linkage paradigm. 4873 if (Linkage == GVA_StrongODR) { 4874 if (getLangOpts().AppleKext) 4875 return llvm::Function::ExternalLinkage; 4876 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4877 !getLangOpts().GPURelocatableDeviceCode) 4878 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4879 : llvm::Function::InternalLinkage; 4880 return llvm::Function::WeakODRLinkage; 4881 } 4882 4883 // C++ doesn't have tentative definitions and thus cannot have common 4884 // linkage. 4885 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4886 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4887 CodeGenOpts.NoCommon)) 4888 return llvm::GlobalVariable::CommonLinkage; 4889 4890 // selectany symbols are externally visible, so use weak instead of 4891 // linkonce. MSVC optimizes away references to const selectany globals, so 4892 // all definitions should be the same and ODR linkage should be used. 4893 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4894 if (D->hasAttr<SelectAnyAttr>()) 4895 return llvm::GlobalVariable::WeakODRLinkage; 4896 4897 // Otherwise, we have strong external linkage. 4898 assert(Linkage == GVA_StrongExternal); 4899 return llvm::GlobalVariable::ExternalLinkage; 4900 } 4901 4902 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4903 const VarDecl *VD, bool IsConstant) { 4904 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4905 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4906 } 4907 4908 /// Replace the uses of a function that was declared with a non-proto type. 4909 /// We want to silently drop extra arguments from call sites 4910 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4911 llvm::Function *newFn) { 4912 // Fast path. 4913 if (old->use_empty()) return; 4914 4915 llvm::Type *newRetTy = newFn->getReturnType(); 4916 SmallVector<llvm::Value*, 4> newArgs; 4917 4918 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4919 ui != ue; ) { 4920 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4921 llvm::User *user = use->getUser(); 4922 4923 // Recognize and replace uses of bitcasts. Most calls to 4924 // unprototyped functions will use bitcasts. 4925 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4926 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4927 replaceUsesOfNonProtoConstant(bitcast, newFn); 4928 continue; 4929 } 4930 4931 // Recognize calls to the function. 4932 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4933 if (!callSite) continue; 4934 if (!callSite->isCallee(&*use)) 4935 continue; 4936 4937 // If the return types don't match exactly, then we can't 4938 // transform this call unless it's dead. 4939 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4940 continue; 4941 4942 // Get the call site's attribute list. 4943 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4944 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4945 4946 // If the function was passed too few arguments, don't transform. 4947 unsigned newNumArgs = newFn->arg_size(); 4948 if (callSite->arg_size() < newNumArgs) 4949 continue; 4950 4951 // If extra arguments were passed, we silently drop them. 4952 // If any of the types mismatch, we don't transform. 4953 unsigned argNo = 0; 4954 bool dontTransform = false; 4955 for (llvm::Argument &A : newFn->args()) { 4956 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4957 dontTransform = true; 4958 break; 4959 } 4960 4961 // Add any parameter attributes. 4962 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4963 argNo++; 4964 } 4965 if (dontTransform) 4966 continue; 4967 4968 // Okay, we can transform this. Create the new call instruction and copy 4969 // over the required information. 4970 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4971 4972 // Copy over any operand bundles. 4973 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4974 callSite->getOperandBundlesAsDefs(newBundles); 4975 4976 llvm::CallBase *newCall; 4977 if (isa<llvm::CallInst>(callSite)) { 4978 newCall = 4979 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4980 } else { 4981 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4982 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4983 oldInvoke->getUnwindDest(), newArgs, 4984 newBundles, "", callSite); 4985 } 4986 newArgs.clear(); // for the next iteration 4987 4988 if (!newCall->getType()->isVoidTy()) 4989 newCall->takeName(callSite); 4990 newCall->setAttributes( 4991 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 4992 oldAttrs.getRetAttrs(), newArgAttrs)); 4993 newCall->setCallingConv(callSite->getCallingConv()); 4994 4995 // Finally, remove the old call, replacing any uses with the new one. 4996 if (!callSite->use_empty()) 4997 callSite->replaceAllUsesWith(newCall); 4998 4999 // Copy debug location attached to CI. 5000 if (callSite->getDebugLoc()) 5001 newCall->setDebugLoc(callSite->getDebugLoc()); 5002 5003 callSite->eraseFromParent(); 5004 } 5005 } 5006 5007 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5008 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5009 /// existing call uses of the old function in the module, this adjusts them to 5010 /// call the new function directly. 5011 /// 5012 /// This is not just a cleanup: the always_inline pass requires direct calls to 5013 /// functions to be able to inline them. If there is a bitcast in the way, it 5014 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5015 /// run at -O0. 5016 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5017 llvm::Function *NewFn) { 5018 // If we're redefining a global as a function, don't transform it. 5019 if (!isa<llvm::Function>(Old)) return; 5020 5021 replaceUsesOfNonProtoConstant(Old, NewFn); 5022 } 5023 5024 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5025 auto DK = VD->isThisDeclarationADefinition(); 5026 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5027 return; 5028 5029 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5030 // If we have a definition, this might be a deferred decl. If the 5031 // instantiation is explicit, make sure we emit it at the end. 5032 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5033 GetAddrOfGlobalVar(VD); 5034 5035 EmitTopLevelDecl(VD); 5036 } 5037 5038 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5039 llvm::GlobalValue *GV) { 5040 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5041 5042 // Compute the function info and LLVM type. 5043 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5044 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5045 5046 // Get or create the prototype for the function. 5047 if (!GV || (GV->getValueType() != Ty)) 5048 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5049 /*DontDefer=*/true, 5050 ForDefinition)); 5051 5052 // Already emitted. 5053 if (!GV->isDeclaration()) 5054 return; 5055 5056 // We need to set linkage and visibility on the function before 5057 // generating code for it because various parts of IR generation 5058 // want to propagate this information down (e.g. to local static 5059 // declarations). 5060 auto *Fn = cast<llvm::Function>(GV); 5061 setFunctionLinkage(GD, Fn); 5062 5063 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5064 setGVProperties(Fn, GD); 5065 5066 MaybeHandleStaticInExternC(D, Fn); 5067 5068 maybeSetTrivialComdat(*D, *Fn); 5069 5070 // Set CodeGen attributes that represent floating point environment. 5071 setLLVMFunctionFEnvAttributes(D, Fn); 5072 5073 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5074 5075 setNonAliasAttributes(GD, Fn); 5076 SetLLVMFunctionAttributesForDefinition(D, Fn); 5077 5078 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5079 AddGlobalCtor(Fn, CA->getPriority()); 5080 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5081 AddGlobalDtor(Fn, DA->getPriority(), true); 5082 if (D->hasAttr<AnnotateAttr>()) 5083 AddGlobalAnnotations(D, Fn); 5084 } 5085 5086 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5087 const auto *D = cast<ValueDecl>(GD.getDecl()); 5088 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5089 assert(AA && "Not an alias?"); 5090 5091 StringRef MangledName = getMangledName(GD); 5092 5093 if (AA->getAliasee() == MangledName) { 5094 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5095 return; 5096 } 5097 5098 // If there is a definition in the module, then it wins over the alias. 5099 // This is dubious, but allow it to be safe. Just ignore the alias. 5100 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5101 if (Entry && !Entry->isDeclaration()) 5102 return; 5103 5104 Aliases.push_back(GD); 5105 5106 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5107 5108 // Create a reference to the named value. This ensures that it is emitted 5109 // if a deferred decl. 5110 llvm::Constant *Aliasee; 5111 llvm::GlobalValue::LinkageTypes LT; 5112 if (isa<llvm::FunctionType>(DeclTy)) { 5113 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5114 /*ForVTable=*/false); 5115 LT = getFunctionLinkage(GD); 5116 } else { 5117 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5118 /*D=*/nullptr); 5119 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5120 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5121 else 5122 LT = getFunctionLinkage(GD); 5123 } 5124 5125 // Create the new alias itself, but don't set a name yet. 5126 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5127 auto *GA = 5128 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5129 5130 if (Entry) { 5131 if (GA->getAliasee() == Entry) { 5132 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5133 return; 5134 } 5135 5136 assert(Entry->isDeclaration()); 5137 5138 // If there is a declaration in the module, then we had an extern followed 5139 // by the alias, as in: 5140 // extern int test6(); 5141 // ... 5142 // int test6() __attribute__((alias("test7"))); 5143 // 5144 // Remove it and replace uses of it with the alias. 5145 GA->takeName(Entry); 5146 5147 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5148 Entry->getType())); 5149 Entry->eraseFromParent(); 5150 } else { 5151 GA->setName(MangledName); 5152 } 5153 5154 // Set attributes which are particular to an alias; this is a 5155 // specialization of the attributes which may be set on a global 5156 // variable/function. 5157 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5158 D->isWeakImported()) { 5159 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5160 } 5161 5162 if (const auto *VD = dyn_cast<VarDecl>(D)) 5163 if (VD->getTLSKind()) 5164 setTLSMode(GA, *VD); 5165 5166 SetCommonAttributes(GD, GA); 5167 } 5168 5169 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5170 const auto *D = cast<ValueDecl>(GD.getDecl()); 5171 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5172 assert(IFA && "Not an ifunc?"); 5173 5174 StringRef MangledName = getMangledName(GD); 5175 5176 if (IFA->getResolver() == MangledName) { 5177 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5178 return; 5179 } 5180 5181 // Report an error if some definition overrides ifunc. 5182 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5183 if (Entry && !Entry->isDeclaration()) { 5184 GlobalDecl OtherGD; 5185 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5186 DiagnosedConflictingDefinitions.insert(GD).second) { 5187 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5188 << MangledName; 5189 Diags.Report(OtherGD.getDecl()->getLocation(), 5190 diag::note_previous_definition); 5191 } 5192 return; 5193 } 5194 5195 Aliases.push_back(GD); 5196 5197 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5198 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5199 llvm::Constant *Resolver = 5200 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5201 /*ForVTable=*/false); 5202 llvm::GlobalIFunc *GIF = 5203 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5204 "", Resolver, &getModule()); 5205 if (Entry) { 5206 if (GIF->getResolver() == Entry) { 5207 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5208 return; 5209 } 5210 assert(Entry->isDeclaration()); 5211 5212 // If there is a declaration in the module, then we had an extern followed 5213 // by the ifunc, as in: 5214 // extern int test(); 5215 // ... 5216 // int test() __attribute__((ifunc("resolver"))); 5217 // 5218 // Remove it and replace uses of it with the ifunc. 5219 GIF->takeName(Entry); 5220 5221 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5222 Entry->getType())); 5223 Entry->eraseFromParent(); 5224 } else 5225 GIF->setName(MangledName); 5226 5227 SetCommonAttributes(GD, GIF); 5228 } 5229 5230 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5231 ArrayRef<llvm::Type*> Tys) { 5232 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5233 Tys); 5234 } 5235 5236 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5237 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5238 const StringLiteral *Literal, bool TargetIsLSB, 5239 bool &IsUTF16, unsigned &StringLength) { 5240 StringRef String = Literal->getString(); 5241 unsigned NumBytes = String.size(); 5242 5243 // Check for simple case. 5244 if (!Literal->containsNonAsciiOrNull()) { 5245 StringLength = NumBytes; 5246 return *Map.insert(std::make_pair(String, nullptr)).first; 5247 } 5248 5249 // Otherwise, convert the UTF8 literals into a string of shorts. 5250 IsUTF16 = true; 5251 5252 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5253 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5254 llvm::UTF16 *ToPtr = &ToBuf[0]; 5255 5256 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5257 ToPtr + NumBytes, llvm::strictConversion); 5258 5259 // ConvertUTF8toUTF16 returns the length in ToPtr. 5260 StringLength = ToPtr - &ToBuf[0]; 5261 5262 // Add an explicit null. 5263 *ToPtr = 0; 5264 return *Map.insert(std::make_pair( 5265 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5266 (StringLength + 1) * 2), 5267 nullptr)).first; 5268 } 5269 5270 ConstantAddress 5271 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5272 unsigned StringLength = 0; 5273 bool isUTF16 = false; 5274 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5275 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5276 getDataLayout().isLittleEndian(), isUTF16, 5277 StringLength); 5278 5279 if (auto *C = Entry.second) 5280 return ConstantAddress( 5281 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5282 5283 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5284 llvm::Constant *Zeros[] = { Zero, Zero }; 5285 5286 const ASTContext &Context = getContext(); 5287 const llvm::Triple &Triple = getTriple(); 5288 5289 const auto CFRuntime = getLangOpts().CFRuntime; 5290 const bool IsSwiftABI = 5291 static_cast<unsigned>(CFRuntime) >= 5292 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5293 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5294 5295 // If we don't already have it, get __CFConstantStringClassReference. 5296 if (!CFConstantStringClassRef) { 5297 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5298 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5299 Ty = llvm::ArrayType::get(Ty, 0); 5300 5301 switch (CFRuntime) { 5302 default: break; 5303 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5304 case LangOptions::CoreFoundationABI::Swift5_0: 5305 CFConstantStringClassName = 5306 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5307 : "$s10Foundation19_NSCFConstantStringCN"; 5308 Ty = IntPtrTy; 5309 break; 5310 case LangOptions::CoreFoundationABI::Swift4_2: 5311 CFConstantStringClassName = 5312 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5313 : "$S10Foundation19_NSCFConstantStringCN"; 5314 Ty = IntPtrTy; 5315 break; 5316 case LangOptions::CoreFoundationABI::Swift4_1: 5317 CFConstantStringClassName = 5318 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5319 : "__T010Foundation19_NSCFConstantStringCN"; 5320 Ty = IntPtrTy; 5321 break; 5322 } 5323 5324 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5325 5326 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5327 llvm::GlobalValue *GV = nullptr; 5328 5329 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5330 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5331 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5332 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5333 5334 const VarDecl *VD = nullptr; 5335 for (const auto *Result : DC->lookup(&II)) 5336 if ((VD = dyn_cast<VarDecl>(Result))) 5337 break; 5338 5339 if (Triple.isOSBinFormatELF()) { 5340 if (!VD) 5341 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5342 } else { 5343 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5344 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5345 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5346 else 5347 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5348 } 5349 5350 setDSOLocal(GV); 5351 } 5352 } 5353 5354 // Decay array -> ptr 5355 CFConstantStringClassRef = 5356 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5357 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5358 } 5359 5360 QualType CFTy = Context.getCFConstantStringType(); 5361 5362 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5363 5364 ConstantInitBuilder Builder(*this); 5365 auto Fields = Builder.beginStruct(STy); 5366 5367 // Class pointer. 5368 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5369 5370 // Flags. 5371 if (IsSwiftABI) { 5372 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5373 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5374 } else { 5375 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5376 } 5377 5378 // String pointer. 5379 llvm::Constant *C = nullptr; 5380 if (isUTF16) { 5381 auto Arr = llvm::makeArrayRef( 5382 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5383 Entry.first().size() / 2); 5384 C = llvm::ConstantDataArray::get(VMContext, Arr); 5385 } else { 5386 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5387 } 5388 5389 // Note: -fwritable-strings doesn't make the backing store strings of 5390 // CFStrings writable. (See <rdar://problem/10657500>) 5391 auto *GV = 5392 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5393 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5394 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5395 // Don't enforce the target's minimum global alignment, since the only use 5396 // of the string is via this class initializer. 5397 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5398 : Context.getTypeAlignInChars(Context.CharTy); 5399 GV->setAlignment(Align.getAsAlign()); 5400 5401 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5402 // Without it LLVM can merge the string with a non unnamed_addr one during 5403 // LTO. Doing that changes the section it ends in, which surprises ld64. 5404 if (Triple.isOSBinFormatMachO()) 5405 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5406 : "__TEXT,__cstring,cstring_literals"); 5407 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5408 // the static linker to adjust permissions to read-only later on. 5409 else if (Triple.isOSBinFormatELF()) 5410 GV->setSection(".rodata"); 5411 5412 // String. 5413 llvm::Constant *Str = 5414 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5415 5416 if (isUTF16) 5417 // Cast the UTF16 string to the correct type. 5418 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5419 Fields.add(Str); 5420 5421 // String length. 5422 llvm::IntegerType *LengthTy = 5423 llvm::IntegerType::get(getModule().getContext(), 5424 Context.getTargetInfo().getLongWidth()); 5425 if (IsSwiftABI) { 5426 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5427 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5428 LengthTy = Int32Ty; 5429 else 5430 LengthTy = IntPtrTy; 5431 } 5432 Fields.addInt(LengthTy, StringLength); 5433 5434 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5435 // properly aligned on 32-bit platforms. 5436 CharUnits Alignment = 5437 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5438 5439 // The struct. 5440 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5441 /*isConstant=*/false, 5442 llvm::GlobalVariable::PrivateLinkage); 5443 GV->addAttribute("objc_arc_inert"); 5444 switch (Triple.getObjectFormat()) { 5445 case llvm::Triple::UnknownObjectFormat: 5446 llvm_unreachable("unknown file format"); 5447 case llvm::Triple::GOFF: 5448 llvm_unreachable("GOFF is not yet implemented"); 5449 case llvm::Triple::XCOFF: 5450 llvm_unreachable("XCOFF is not yet implemented"); 5451 case llvm::Triple::COFF: 5452 case llvm::Triple::ELF: 5453 case llvm::Triple::Wasm: 5454 GV->setSection("cfstring"); 5455 break; 5456 case llvm::Triple::MachO: 5457 GV->setSection("__DATA,__cfstring"); 5458 break; 5459 } 5460 Entry.second = GV; 5461 5462 return ConstantAddress(GV, GV->getValueType(), Alignment); 5463 } 5464 5465 bool CodeGenModule::getExpressionLocationsEnabled() const { 5466 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5467 } 5468 5469 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5470 if (ObjCFastEnumerationStateType.isNull()) { 5471 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5472 D->startDefinition(); 5473 5474 QualType FieldTypes[] = { 5475 Context.UnsignedLongTy, 5476 Context.getPointerType(Context.getObjCIdType()), 5477 Context.getPointerType(Context.UnsignedLongTy), 5478 Context.getConstantArrayType(Context.UnsignedLongTy, 5479 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5480 }; 5481 5482 for (size_t i = 0; i < 4; ++i) { 5483 FieldDecl *Field = FieldDecl::Create(Context, 5484 D, 5485 SourceLocation(), 5486 SourceLocation(), nullptr, 5487 FieldTypes[i], /*TInfo=*/nullptr, 5488 /*BitWidth=*/nullptr, 5489 /*Mutable=*/false, 5490 ICIS_NoInit); 5491 Field->setAccess(AS_public); 5492 D->addDecl(Field); 5493 } 5494 5495 D->completeDefinition(); 5496 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5497 } 5498 5499 return ObjCFastEnumerationStateType; 5500 } 5501 5502 llvm::Constant * 5503 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5504 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5505 5506 // Don't emit it as the address of the string, emit the string data itself 5507 // as an inline array. 5508 if (E->getCharByteWidth() == 1) { 5509 SmallString<64> Str(E->getString()); 5510 5511 // Resize the string to the right size, which is indicated by its type. 5512 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5513 Str.resize(CAT->getSize().getZExtValue()); 5514 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5515 } 5516 5517 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5518 llvm::Type *ElemTy = AType->getElementType(); 5519 unsigned NumElements = AType->getNumElements(); 5520 5521 // Wide strings have either 2-byte or 4-byte elements. 5522 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5523 SmallVector<uint16_t, 32> Elements; 5524 Elements.reserve(NumElements); 5525 5526 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5527 Elements.push_back(E->getCodeUnit(i)); 5528 Elements.resize(NumElements); 5529 return llvm::ConstantDataArray::get(VMContext, Elements); 5530 } 5531 5532 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5533 SmallVector<uint32_t, 32> Elements; 5534 Elements.reserve(NumElements); 5535 5536 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5537 Elements.push_back(E->getCodeUnit(i)); 5538 Elements.resize(NumElements); 5539 return llvm::ConstantDataArray::get(VMContext, Elements); 5540 } 5541 5542 static llvm::GlobalVariable * 5543 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5544 CodeGenModule &CGM, StringRef GlobalName, 5545 CharUnits Alignment) { 5546 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5547 CGM.GetGlobalConstantAddressSpace()); 5548 5549 llvm::Module &M = CGM.getModule(); 5550 // Create a global variable for this string 5551 auto *GV = new llvm::GlobalVariable( 5552 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5553 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5554 GV->setAlignment(Alignment.getAsAlign()); 5555 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5556 if (GV->isWeakForLinker()) { 5557 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5558 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5559 } 5560 CGM.setDSOLocal(GV); 5561 5562 return GV; 5563 } 5564 5565 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5566 /// constant array for the given string literal. 5567 ConstantAddress 5568 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5569 StringRef Name) { 5570 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5571 5572 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5573 llvm::GlobalVariable **Entry = nullptr; 5574 if (!LangOpts.WritableStrings) { 5575 Entry = &ConstantStringMap[C]; 5576 if (auto GV = *Entry) { 5577 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5578 GV->setAlignment(Alignment.getAsAlign()); 5579 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5580 GV->getValueType(), Alignment); 5581 } 5582 } 5583 5584 SmallString<256> MangledNameBuffer; 5585 StringRef GlobalVariableName; 5586 llvm::GlobalValue::LinkageTypes LT; 5587 5588 // Mangle the string literal if that's how the ABI merges duplicate strings. 5589 // Don't do it if they are writable, since we don't want writes in one TU to 5590 // affect strings in another. 5591 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5592 !LangOpts.WritableStrings) { 5593 llvm::raw_svector_ostream Out(MangledNameBuffer); 5594 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5595 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5596 GlobalVariableName = MangledNameBuffer; 5597 } else { 5598 LT = llvm::GlobalValue::PrivateLinkage; 5599 GlobalVariableName = Name; 5600 } 5601 5602 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5603 if (Entry) 5604 *Entry = GV; 5605 5606 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5607 QualType()); 5608 5609 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5610 GV->getValueType(), Alignment); 5611 } 5612 5613 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5614 /// array for the given ObjCEncodeExpr node. 5615 ConstantAddress 5616 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5617 std::string Str; 5618 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5619 5620 return GetAddrOfConstantCString(Str); 5621 } 5622 5623 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5624 /// the literal and a terminating '\0' character. 5625 /// The result has pointer to array type. 5626 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5627 const std::string &Str, const char *GlobalName) { 5628 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5629 CharUnits Alignment = 5630 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5631 5632 llvm::Constant *C = 5633 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5634 5635 // Don't share any string literals if strings aren't constant. 5636 llvm::GlobalVariable **Entry = nullptr; 5637 if (!LangOpts.WritableStrings) { 5638 Entry = &ConstantStringMap[C]; 5639 if (auto GV = *Entry) { 5640 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5641 GV->setAlignment(Alignment.getAsAlign()); 5642 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5643 GV->getValueType(), Alignment); 5644 } 5645 } 5646 5647 // Get the default prefix if a name wasn't specified. 5648 if (!GlobalName) 5649 GlobalName = ".str"; 5650 // Create a global variable for this. 5651 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5652 GlobalName, Alignment); 5653 if (Entry) 5654 *Entry = GV; 5655 5656 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5657 GV->getValueType(), Alignment); 5658 } 5659 5660 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5661 const MaterializeTemporaryExpr *E, const Expr *Init) { 5662 assert((E->getStorageDuration() == SD_Static || 5663 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5664 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5665 5666 // If we're not materializing a subobject of the temporary, keep the 5667 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5668 QualType MaterializedType = Init->getType(); 5669 if (Init == E->getSubExpr()) 5670 MaterializedType = E->getType(); 5671 5672 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5673 5674 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5675 if (!InsertResult.second) { 5676 // We've seen this before: either we already created it or we're in the 5677 // process of doing so. 5678 if (!InsertResult.first->second) { 5679 // We recursively re-entered this function, probably during emission of 5680 // the initializer. Create a placeholder. We'll clean this up in the 5681 // outer call, at the end of this function. 5682 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5683 InsertResult.first->second = new llvm::GlobalVariable( 5684 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5685 nullptr); 5686 } 5687 return ConstantAddress(InsertResult.first->second, 5688 llvm::cast<llvm::GlobalVariable>( 5689 InsertResult.first->second->stripPointerCasts()) 5690 ->getValueType(), 5691 Align); 5692 } 5693 5694 // FIXME: If an externally-visible declaration extends multiple temporaries, 5695 // we need to give each temporary the same name in every translation unit (and 5696 // we also need to make the temporaries externally-visible). 5697 SmallString<256> Name; 5698 llvm::raw_svector_ostream Out(Name); 5699 getCXXABI().getMangleContext().mangleReferenceTemporary( 5700 VD, E->getManglingNumber(), Out); 5701 5702 APValue *Value = nullptr; 5703 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5704 // If the initializer of the extending declaration is a constant 5705 // initializer, we should have a cached constant initializer for this 5706 // temporary. Note that this might have a different value from the value 5707 // computed by evaluating the initializer if the surrounding constant 5708 // expression modifies the temporary. 5709 Value = E->getOrCreateValue(false); 5710 } 5711 5712 // Try evaluating it now, it might have a constant initializer. 5713 Expr::EvalResult EvalResult; 5714 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5715 !EvalResult.hasSideEffects()) 5716 Value = &EvalResult.Val; 5717 5718 LangAS AddrSpace = 5719 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5720 5721 Optional<ConstantEmitter> emitter; 5722 llvm::Constant *InitialValue = nullptr; 5723 bool Constant = false; 5724 llvm::Type *Type; 5725 if (Value) { 5726 // The temporary has a constant initializer, use it. 5727 emitter.emplace(*this); 5728 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5729 MaterializedType); 5730 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5731 Type = InitialValue->getType(); 5732 } else { 5733 // No initializer, the initialization will be provided when we 5734 // initialize the declaration which performed lifetime extension. 5735 Type = getTypes().ConvertTypeForMem(MaterializedType); 5736 } 5737 5738 // Create a global variable for this lifetime-extended temporary. 5739 llvm::GlobalValue::LinkageTypes Linkage = 5740 getLLVMLinkageVarDefinition(VD, Constant); 5741 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5742 const VarDecl *InitVD; 5743 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5744 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5745 // Temporaries defined inside a class get linkonce_odr linkage because the 5746 // class can be defined in multiple translation units. 5747 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5748 } else { 5749 // There is no need for this temporary to have external linkage if the 5750 // VarDecl has external linkage. 5751 Linkage = llvm::GlobalVariable::InternalLinkage; 5752 } 5753 } 5754 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5755 auto *GV = new llvm::GlobalVariable( 5756 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5757 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5758 if (emitter) emitter->finalize(GV); 5759 setGVProperties(GV, VD); 5760 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5761 // The reference temporary should never be dllexport. 5762 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5763 GV->setAlignment(Align.getAsAlign()); 5764 if (supportsCOMDAT() && GV->isWeakForLinker()) 5765 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5766 if (VD->getTLSKind()) 5767 setTLSMode(GV, *VD); 5768 llvm::Constant *CV = GV; 5769 if (AddrSpace != LangAS::Default) 5770 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5771 *this, GV, AddrSpace, LangAS::Default, 5772 Type->getPointerTo( 5773 getContext().getTargetAddressSpace(LangAS::Default))); 5774 5775 // Update the map with the new temporary. If we created a placeholder above, 5776 // replace it with the new global now. 5777 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5778 if (Entry) { 5779 Entry->replaceAllUsesWith( 5780 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5781 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5782 } 5783 Entry = CV; 5784 5785 return ConstantAddress(CV, Type, Align); 5786 } 5787 5788 /// EmitObjCPropertyImplementations - Emit information for synthesized 5789 /// properties for an implementation. 5790 void CodeGenModule::EmitObjCPropertyImplementations(const 5791 ObjCImplementationDecl *D) { 5792 for (const auto *PID : D->property_impls()) { 5793 // Dynamic is just for type-checking. 5794 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5795 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5796 5797 // Determine which methods need to be implemented, some may have 5798 // been overridden. Note that ::isPropertyAccessor is not the method 5799 // we want, that just indicates if the decl came from a 5800 // property. What we want to know is if the method is defined in 5801 // this implementation. 5802 auto *Getter = PID->getGetterMethodDecl(); 5803 if (!Getter || Getter->isSynthesizedAccessorStub()) 5804 CodeGenFunction(*this).GenerateObjCGetter( 5805 const_cast<ObjCImplementationDecl *>(D), PID); 5806 auto *Setter = PID->getSetterMethodDecl(); 5807 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5808 CodeGenFunction(*this).GenerateObjCSetter( 5809 const_cast<ObjCImplementationDecl *>(D), PID); 5810 } 5811 } 5812 } 5813 5814 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5815 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5816 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5817 ivar; ivar = ivar->getNextIvar()) 5818 if (ivar->getType().isDestructedType()) 5819 return true; 5820 5821 return false; 5822 } 5823 5824 static bool AllTrivialInitializers(CodeGenModule &CGM, 5825 ObjCImplementationDecl *D) { 5826 CodeGenFunction CGF(CGM); 5827 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5828 E = D->init_end(); B != E; ++B) { 5829 CXXCtorInitializer *CtorInitExp = *B; 5830 Expr *Init = CtorInitExp->getInit(); 5831 if (!CGF.isTrivialInitializer(Init)) 5832 return false; 5833 } 5834 return true; 5835 } 5836 5837 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5838 /// for an implementation. 5839 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5840 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5841 if (needsDestructMethod(D)) { 5842 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5843 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5844 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5845 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5846 getContext().VoidTy, nullptr, D, 5847 /*isInstance=*/true, /*isVariadic=*/false, 5848 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5849 /*isImplicitlyDeclared=*/true, 5850 /*isDefined=*/false, ObjCMethodDecl::Required); 5851 D->addInstanceMethod(DTORMethod); 5852 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5853 D->setHasDestructors(true); 5854 } 5855 5856 // If the implementation doesn't have any ivar initializers, we don't need 5857 // a .cxx_construct. 5858 if (D->getNumIvarInitializers() == 0 || 5859 AllTrivialInitializers(*this, D)) 5860 return; 5861 5862 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5863 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5864 // The constructor returns 'self'. 5865 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5866 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5867 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5868 /*isVariadic=*/false, 5869 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5870 /*isImplicitlyDeclared=*/true, 5871 /*isDefined=*/false, ObjCMethodDecl::Required); 5872 D->addInstanceMethod(CTORMethod); 5873 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5874 D->setHasNonZeroConstructors(true); 5875 } 5876 5877 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5878 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5879 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5880 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5881 ErrorUnsupported(LSD, "linkage spec"); 5882 return; 5883 } 5884 5885 EmitDeclContext(LSD); 5886 } 5887 5888 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5889 for (auto *I : DC->decls()) { 5890 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5891 // are themselves considered "top-level", so EmitTopLevelDecl on an 5892 // ObjCImplDecl does not recursively visit them. We need to do that in 5893 // case they're nested inside another construct (LinkageSpecDecl / 5894 // ExportDecl) that does stop them from being considered "top-level". 5895 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5896 for (auto *M : OID->methods()) 5897 EmitTopLevelDecl(M); 5898 } 5899 5900 EmitTopLevelDecl(I); 5901 } 5902 } 5903 5904 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5905 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5906 // Ignore dependent declarations. 5907 if (D->isTemplated()) 5908 return; 5909 5910 // Consteval function shouldn't be emitted. 5911 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5912 if (FD->isConsteval()) 5913 return; 5914 5915 switch (D->getKind()) { 5916 case Decl::CXXConversion: 5917 case Decl::CXXMethod: 5918 case Decl::Function: 5919 EmitGlobal(cast<FunctionDecl>(D)); 5920 // Always provide some coverage mapping 5921 // even for the functions that aren't emitted. 5922 AddDeferredUnusedCoverageMapping(D); 5923 break; 5924 5925 case Decl::CXXDeductionGuide: 5926 // Function-like, but does not result in code emission. 5927 break; 5928 5929 case Decl::Var: 5930 case Decl::Decomposition: 5931 case Decl::VarTemplateSpecialization: 5932 EmitGlobal(cast<VarDecl>(D)); 5933 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5934 for (auto *B : DD->bindings()) 5935 if (auto *HD = B->getHoldingVar()) 5936 EmitGlobal(HD); 5937 break; 5938 5939 // Indirect fields from global anonymous structs and unions can be 5940 // ignored; only the actual variable requires IR gen support. 5941 case Decl::IndirectField: 5942 break; 5943 5944 // C++ Decls 5945 case Decl::Namespace: 5946 EmitDeclContext(cast<NamespaceDecl>(D)); 5947 break; 5948 case Decl::ClassTemplateSpecialization: { 5949 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5950 if (CGDebugInfo *DI = getModuleDebugInfo()) 5951 if (Spec->getSpecializationKind() == 5952 TSK_ExplicitInstantiationDefinition && 5953 Spec->hasDefinition()) 5954 DI->completeTemplateDefinition(*Spec); 5955 } LLVM_FALLTHROUGH; 5956 case Decl::CXXRecord: { 5957 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5958 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5959 if (CRD->hasDefinition()) 5960 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5961 if (auto *ES = D->getASTContext().getExternalSource()) 5962 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5963 DI->completeUnusedClass(*CRD); 5964 } 5965 // Emit any static data members, they may be definitions. 5966 for (auto *I : CRD->decls()) 5967 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5968 EmitTopLevelDecl(I); 5969 break; 5970 } 5971 // No code generation needed. 5972 case Decl::UsingShadow: 5973 case Decl::ClassTemplate: 5974 case Decl::VarTemplate: 5975 case Decl::Concept: 5976 case Decl::VarTemplatePartialSpecialization: 5977 case Decl::FunctionTemplate: 5978 case Decl::TypeAliasTemplate: 5979 case Decl::Block: 5980 case Decl::Empty: 5981 case Decl::Binding: 5982 break; 5983 case Decl::Using: // using X; [C++] 5984 if (CGDebugInfo *DI = getModuleDebugInfo()) 5985 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5986 break; 5987 case Decl::UsingEnum: // using enum X; [C++] 5988 if (CGDebugInfo *DI = getModuleDebugInfo()) 5989 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5990 break; 5991 case Decl::NamespaceAlias: 5992 if (CGDebugInfo *DI = getModuleDebugInfo()) 5993 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5994 break; 5995 case Decl::UsingDirective: // using namespace X; [C++] 5996 if (CGDebugInfo *DI = getModuleDebugInfo()) 5997 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5998 break; 5999 case Decl::CXXConstructor: 6000 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6001 break; 6002 case Decl::CXXDestructor: 6003 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6004 break; 6005 6006 case Decl::StaticAssert: 6007 // Nothing to do. 6008 break; 6009 6010 // Objective-C Decls 6011 6012 // Forward declarations, no (immediate) code generation. 6013 case Decl::ObjCInterface: 6014 case Decl::ObjCCategory: 6015 break; 6016 6017 case Decl::ObjCProtocol: { 6018 auto *Proto = cast<ObjCProtocolDecl>(D); 6019 if (Proto->isThisDeclarationADefinition()) 6020 ObjCRuntime->GenerateProtocol(Proto); 6021 break; 6022 } 6023 6024 case Decl::ObjCCategoryImpl: 6025 // Categories have properties but don't support synthesize so we 6026 // can ignore them here. 6027 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6028 break; 6029 6030 case Decl::ObjCImplementation: { 6031 auto *OMD = cast<ObjCImplementationDecl>(D); 6032 EmitObjCPropertyImplementations(OMD); 6033 EmitObjCIvarInitializations(OMD); 6034 ObjCRuntime->GenerateClass(OMD); 6035 // Emit global variable debug information. 6036 if (CGDebugInfo *DI = getModuleDebugInfo()) 6037 if (getCodeGenOpts().hasReducedDebugInfo()) 6038 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6039 OMD->getClassInterface()), OMD->getLocation()); 6040 break; 6041 } 6042 case Decl::ObjCMethod: { 6043 auto *OMD = cast<ObjCMethodDecl>(D); 6044 // If this is not a prototype, emit the body. 6045 if (OMD->getBody()) 6046 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6047 break; 6048 } 6049 case Decl::ObjCCompatibleAlias: 6050 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6051 break; 6052 6053 case Decl::PragmaComment: { 6054 const auto *PCD = cast<PragmaCommentDecl>(D); 6055 switch (PCD->getCommentKind()) { 6056 case PCK_Unknown: 6057 llvm_unreachable("unexpected pragma comment kind"); 6058 case PCK_Linker: 6059 AppendLinkerOptions(PCD->getArg()); 6060 break; 6061 case PCK_Lib: 6062 AddDependentLib(PCD->getArg()); 6063 break; 6064 case PCK_Compiler: 6065 case PCK_ExeStr: 6066 case PCK_User: 6067 break; // We ignore all of these. 6068 } 6069 break; 6070 } 6071 6072 case Decl::PragmaDetectMismatch: { 6073 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6074 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6075 break; 6076 } 6077 6078 case Decl::LinkageSpec: 6079 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6080 break; 6081 6082 case Decl::FileScopeAsm: { 6083 // File-scope asm is ignored during device-side CUDA compilation. 6084 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6085 break; 6086 // File-scope asm is ignored during device-side OpenMP compilation. 6087 if (LangOpts.OpenMPIsDevice) 6088 break; 6089 // File-scope asm is ignored during device-side SYCL compilation. 6090 if (LangOpts.SYCLIsDevice) 6091 break; 6092 auto *AD = cast<FileScopeAsmDecl>(D); 6093 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6094 break; 6095 } 6096 6097 case Decl::Import: { 6098 auto *Import = cast<ImportDecl>(D); 6099 6100 // If we've already imported this module, we're done. 6101 if (!ImportedModules.insert(Import->getImportedModule())) 6102 break; 6103 6104 // Emit debug information for direct imports. 6105 if (!Import->getImportedOwningModule()) { 6106 if (CGDebugInfo *DI = getModuleDebugInfo()) 6107 DI->EmitImportDecl(*Import); 6108 } 6109 6110 // Find all of the submodules and emit the module initializers. 6111 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6112 SmallVector<clang::Module *, 16> Stack; 6113 Visited.insert(Import->getImportedModule()); 6114 Stack.push_back(Import->getImportedModule()); 6115 6116 while (!Stack.empty()) { 6117 clang::Module *Mod = Stack.pop_back_val(); 6118 if (!EmittedModuleInitializers.insert(Mod).second) 6119 continue; 6120 6121 for (auto *D : Context.getModuleInitializers(Mod)) 6122 EmitTopLevelDecl(D); 6123 6124 // Visit the submodules of this module. 6125 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6126 SubEnd = Mod->submodule_end(); 6127 Sub != SubEnd; ++Sub) { 6128 // Skip explicit children; they need to be explicitly imported to emit 6129 // the initializers. 6130 if ((*Sub)->IsExplicit) 6131 continue; 6132 6133 if (Visited.insert(*Sub).second) 6134 Stack.push_back(*Sub); 6135 } 6136 } 6137 break; 6138 } 6139 6140 case Decl::Export: 6141 EmitDeclContext(cast<ExportDecl>(D)); 6142 break; 6143 6144 case Decl::OMPThreadPrivate: 6145 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6146 break; 6147 6148 case Decl::OMPAllocate: 6149 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6150 break; 6151 6152 case Decl::OMPDeclareReduction: 6153 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6154 break; 6155 6156 case Decl::OMPDeclareMapper: 6157 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6158 break; 6159 6160 case Decl::OMPRequires: 6161 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6162 break; 6163 6164 case Decl::Typedef: 6165 case Decl::TypeAlias: // using foo = bar; [C++11] 6166 if (CGDebugInfo *DI = getModuleDebugInfo()) 6167 DI->EmitAndRetainType( 6168 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6169 break; 6170 6171 case Decl::Record: 6172 if (CGDebugInfo *DI = getModuleDebugInfo()) 6173 if (cast<RecordDecl>(D)->getDefinition()) 6174 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6175 break; 6176 6177 case Decl::Enum: 6178 if (CGDebugInfo *DI = getModuleDebugInfo()) 6179 if (cast<EnumDecl>(D)->getDefinition()) 6180 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6181 break; 6182 6183 default: 6184 // Make sure we handled everything we should, every other kind is a 6185 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6186 // function. Need to recode Decl::Kind to do that easily. 6187 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6188 break; 6189 } 6190 } 6191 6192 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6193 // Do we need to generate coverage mapping? 6194 if (!CodeGenOpts.CoverageMapping) 6195 return; 6196 switch (D->getKind()) { 6197 case Decl::CXXConversion: 6198 case Decl::CXXMethod: 6199 case Decl::Function: 6200 case Decl::ObjCMethod: 6201 case Decl::CXXConstructor: 6202 case Decl::CXXDestructor: { 6203 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6204 break; 6205 SourceManager &SM = getContext().getSourceManager(); 6206 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6207 break; 6208 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6209 if (I == DeferredEmptyCoverageMappingDecls.end()) 6210 DeferredEmptyCoverageMappingDecls[D] = true; 6211 break; 6212 } 6213 default: 6214 break; 6215 }; 6216 } 6217 6218 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6219 // Do we need to generate coverage mapping? 6220 if (!CodeGenOpts.CoverageMapping) 6221 return; 6222 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6223 if (Fn->isTemplateInstantiation()) 6224 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6225 } 6226 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6227 if (I == DeferredEmptyCoverageMappingDecls.end()) 6228 DeferredEmptyCoverageMappingDecls[D] = false; 6229 else 6230 I->second = false; 6231 } 6232 6233 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6234 // We call takeVector() here to avoid use-after-free. 6235 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6236 // we deserialize function bodies to emit coverage info for them, and that 6237 // deserializes more declarations. How should we handle that case? 6238 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6239 if (!Entry.second) 6240 continue; 6241 const Decl *D = Entry.first; 6242 switch (D->getKind()) { 6243 case Decl::CXXConversion: 6244 case Decl::CXXMethod: 6245 case Decl::Function: 6246 case Decl::ObjCMethod: { 6247 CodeGenPGO PGO(*this); 6248 GlobalDecl GD(cast<FunctionDecl>(D)); 6249 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6250 getFunctionLinkage(GD)); 6251 break; 6252 } 6253 case Decl::CXXConstructor: { 6254 CodeGenPGO PGO(*this); 6255 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6256 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6257 getFunctionLinkage(GD)); 6258 break; 6259 } 6260 case Decl::CXXDestructor: { 6261 CodeGenPGO PGO(*this); 6262 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6263 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6264 getFunctionLinkage(GD)); 6265 break; 6266 } 6267 default: 6268 break; 6269 }; 6270 } 6271 } 6272 6273 void CodeGenModule::EmitMainVoidAlias() { 6274 // In order to transition away from "__original_main" gracefully, emit an 6275 // alias for "main" in the no-argument case so that libc can detect when 6276 // new-style no-argument main is in used. 6277 if (llvm::Function *F = getModule().getFunction("main")) { 6278 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6279 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6280 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6281 } 6282 } 6283 6284 /// Turns the given pointer into a constant. 6285 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6286 const void *Ptr) { 6287 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6288 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6289 return llvm::ConstantInt::get(i64, PtrInt); 6290 } 6291 6292 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6293 llvm::NamedMDNode *&GlobalMetadata, 6294 GlobalDecl D, 6295 llvm::GlobalValue *Addr) { 6296 if (!GlobalMetadata) 6297 GlobalMetadata = 6298 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6299 6300 // TODO: should we report variant information for ctors/dtors? 6301 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6302 llvm::ConstantAsMetadata::get(GetPointerConstant( 6303 CGM.getLLVMContext(), D.getDecl()))}; 6304 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6305 } 6306 6307 /// For each function which is declared within an extern "C" region and marked 6308 /// as 'used', but has internal linkage, create an alias from the unmangled 6309 /// name to the mangled name if possible. People expect to be able to refer 6310 /// to such functions with an unmangled name from inline assembly within the 6311 /// same translation unit. 6312 void CodeGenModule::EmitStaticExternCAliases() { 6313 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6314 return; 6315 for (auto &I : StaticExternCValues) { 6316 IdentifierInfo *Name = I.first; 6317 llvm::GlobalValue *Val = I.second; 6318 if (Val && !getModule().getNamedValue(Name->getName())) 6319 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6320 } 6321 } 6322 6323 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6324 GlobalDecl &Result) const { 6325 auto Res = Manglings.find(MangledName); 6326 if (Res == Manglings.end()) 6327 return false; 6328 Result = Res->getValue(); 6329 return true; 6330 } 6331 6332 /// Emits metadata nodes associating all the global values in the 6333 /// current module with the Decls they came from. This is useful for 6334 /// projects using IR gen as a subroutine. 6335 /// 6336 /// Since there's currently no way to associate an MDNode directly 6337 /// with an llvm::GlobalValue, we create a global named metadata 6338 /// with the name 'clang.global.decl.ptrs'. 6339 void CodeGenModule::EmitDeclMetadata() { 6340 llvm::NamedMDNode *GlobalMetadata = nullptr; 6341 6342 for (auto &I : MangledDeclNames) { 6343 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6344 // Some mangled names don't necessarily have an associated GlobalValue 6345 // in this module, e.g. if we mangled it for DebugInfo. 6346 if (Addr) 6347 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6348 } 6349 } 6350 6351 /// Emits metadata nodes for all the local variables in the current 6352 /// function. 6353 void CodeGenFunction::EmitDeclMetadata() { 6354 if (LocalDeclMap.empty()) return; 6355 6356 llvm::LLVMContext &Context = getLLVMContext(); 6357 6358 // Find the unique metadata ID for this name. 6359 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6360 6361 llvm::NamedMDNode *GlobalMetadata = nullptr; 6362 6363 for (auto &I : LocalDeclMap) { 6364 const Decl *D = I.first; 6365 llvm::Value *Addr = I.second.getPointer(); 6366 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6367 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6368 Alloca->setMetadata( 6369 DeclPtrKind, llvm::MDNode::get( 6370 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6371 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6372 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6373 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6374 } 6375 } 6376 } 6377 6378 void CodeGenModule::EmitVersionIdentMetadata() { 6379 llvm::NamedMDNode *IdentMetadata = 6380 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6381 std::string Version = getClangFullVersion(); 6382 llvm::LLVMContext &Ctx = TheModule.getContext(); 6383 6384 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6385 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6386 } 6387 6388 void CodeGenModule::EmitCommandLineMetadata() { 6389 llvm::NamedMDNode *CommandLineMetadata = 6390 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6391 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6392 llvm::LLVMContext &Ctx = TheModule.getContext(); 6393 6394 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6395 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6396 } 6397 6398 void CodeGenModule::EmitCoverageFile() { 6399 if (getCodeGenOpts().CoverageDataFile.empty() && 6400 getCodeGenOpts().CoverageNotesFile.empty()) 6401 return; 6402 6403 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6404 if (!CUNode) 6405 return; 6406 6407 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6408 llvm::LLVMContext &Ctx = TheModule.getContext(); 6409 auto *CoverageDataFile = 6410 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6411 auto *CoverageNotesFile = 6412 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6413 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6414 llvm::MDNode *CU = CUNode->getOperand(i); 6415 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6416 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6417 } 6418 } 6419 6420 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6421 bool ForEH) { 6422 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6423 // FIXME: should we even be calling this method if RTTI is disabled 6424 // and it's not for EH? 6425 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6426 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6427 getTriple().isNVPTX())) 6428 return llvm::Constant::getNullValue(Int8PtrTy); 6429 6430 if (ForEH && Ty->isObjCObjectPointerType() && 6431 LangOpts.ObjCRuntime.isGNUFamily()) 6432 return ObjCRuntime->GetEHType(Ty); 6433 6434 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6435 } 6436 6437 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6438 // Do not emit threadprivates in simd-only mode. 6439 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6440 return; 6441 for (auto RefExpr : D->varlists()) { 6442 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6443 bool PerformInit = 6444 VD->getAnyInitializer() && 6445 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6446 /*ForRef=*/false); 6447 6448 Address Addr = Address::deprecated(GetAddrOfGlobalVar(VD), 6449 getContext().getDeclAlign(VD)); 6450 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6451 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6452 CXXGlobalInits.push_back(InitFunction); 6453 } 6454 } 6455 6456 llvm::Metadata * 6457 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6458 StringRef Suffix) { 6459 if (auto *FnType = T->getAs<FunctionProtoType>()) 6460 T = getContext().getFunctionType( 6461 FnType->getReturnType(), FnType->getParamTypes(), 6462 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6463 6464 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6465 if (InternalId) 6466 return InternalId; 6467 6468 if (isExternallyVisible(T->getLinkage())) { 6469 std::string OutName; 6470 llvm::raw_string_ostream Out(OutName); 6471 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6472 Out << Suffix; 6473 6474 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6475 } else { 6476 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6477 llvm::ArrayRef<llvm::Metadata *>()); 6478 } 6479 6480 return InternalId; 6481 } 6482 6483 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6484 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6485 } 6486 6487 llvm::Metadata * 6488 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6489 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6490 } 6491 6492 // Generalize pointer types to a void pointer with the qualifiers of the 6493 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6494 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6495 // 'void *'. 6496 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6497 if (!Ty->isPointerType()) 6498 return Ty; 6499 6500 return Ctx.getPointerType( 6501 QualType(Ctx.VoidTy).withCVRQualifiers( 6502 Ty->getPointeeType().getCVRQualifiers())); 6503 } 6504 6505 // Apply type generalization to a FunctionType's return and argument types 6506 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6507 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6508 SmallVector<QualType, 8> GeneralizedParams; 6509 for (auto &Param : FnType->param_types()) 6510 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6511 6512 return Ctx.getFunctionType( 6513 GeneralizeType(Ctx, FnType->getReturnType()), 6514 GeneralizedParams, FnType->getExtProtoInfo()); 6515 } 6516 6517 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6518 return Ctx.getFunctionNoProtoType( 6519 GeneralizeType(Ctx, FnType->getReturnType())); 6520 6521 llvm_unreachable("Encountered unknown FunctionType"); 6522 } 6523 6524 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6525 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6526 GeneralizedMetadataIdMap, ".generalized"); 6527 } 6528 6529 /// Returns whether this module needs the "all-vtables" type identifier. 6530 bool CodeGenModule::NeedAllVtablesTypeId() const { 6531 // Returns true if at least one of vtable-based CFI checkers is enabled and 6532 // is not in the trapping mode. 6533 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6534 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6535 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6536 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6537 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6538 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6539 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6540 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6541 } 6542 6543 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6544 CharUnits Offset, 6545 const CXXRecordDecl *RD) { 6546 llvm::Metadata *MD = 6547 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6548 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6549 6550 if (CodeGenOpts.SanitizeCfiCrossDso) 6551 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6552 VTable->addTypeMetadata(Offset.getQuantity(), 6553 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6554 6555 if (NeedAllVtablesTypeId()) { 6556 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6557 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6558 } 6559 } 6560 6561 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6562 if (!SanStats) 6563 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6564 6565 return *SanStats; 6566 } 6567 6568 llvm::Value * 6569 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6570 CodeGenFunction &CGF) { 6571 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6572 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6573 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6574 auto *Call = CGF.EmitRuntimeCall( 6575 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6576 return Call; 6577 } 6578 6579 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6580 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6581 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6582 /* forPointeeType= */ true); 6583 } 6584 6585 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6586 LValueBaseInfo *BaseInfo, 6587 TBAAAccessInfo *TBAAInfo, 6588 bool forPointeeType) { 6589 if (TBAAInfo) 6590 *TBAAInfo = getTBAAAccessInfo(T); 6591 6592 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6593 // that doesn't return the information we need to compute BaseInfo. 6594 6595 // Honor alignment typedef attributes even on incomplete types. 6596 // We also honor them straight for C++ class types, even as pointees; 6597 // there's an expressivity gap here. 6598 if (auto TT = T->getAs<TypedefType>()) { 6599 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6600 if (BaseInfo) 6601 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6602 return getContext().toCharUnitsFromBits(Align); 6603 } 6604 } 6605 6606 bool AlignForArray = T->isArrayType(); 6607 6608 // Analyze the base element type, so we don't get confused by incomplete 6609 // array types. 6610 T = getContext().getBaseElementType(T); 6611 6612 if (T->isIncompleteType()) { 6613 // We could try to replicate the logic from 6614 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6615 // type is incomplete, so it's impossible to test. We could try to reuse 6616 // getTypeAlignIfKnown, but that doesn't return the information we need 6617 // to set BaseInfo. So just ignore the possibility that the alignment is 6618 // greater than one. 6619 if (BaseInfo) 6620 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6621 return CharUnits::One(); 6622 } 6623 6624 if (BaseInfo) 6625 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6626 6627 CharUnits Alignment; 6628 const CXXRecordDecl *RD; 6629 if (T.getQualifiers().hasUnaligned()) { 6630 Alignment = CharUnits::One(); 6631 } else if (forPointeeType && !AlignForArray && 6632 (RD = T->getAsCXXRecordDecl())) { 6633 // For C++ class pointees, we don't know whether we're pointing at a 6634 // base or a complete object, so we generally need to use the 6635 // non-virtual alignment. 6636 Alignment = getClassPointerAlignment(RD); 6637 } else { 6638 Alignment = getContext().getTypeAlignInChars(T); 6639 } 6640 6641 // Cap to the global maximum type alignment unless the alignment 6642 // was somehow explicit on the type. 6643 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6644 if (Alignment.getQuantity() > MaxAlign && 6645 !getContext().isAlignmentRequired(T)) 6646 Alignment = CharUnits::fromQuantity(MaxAlign); 6647 } 6648 return Alignment; 6649 } 6650 6651 bool CodeGenModule::stopAutoInit() { 6652 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6653 if (StopAfter) { 6654 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6655 // used 6656 if (NumAutoVarInit >= StopAfter) { 6657 return true; 6658 } 6659 if (!NumAutoVarInit) { 6660 unsigned DiagID = getDiags().getCustomDiagID( 6661 DiagnosticsEngine::Warning, 6662 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6663 "number of times ftrivial-auto-var-init=%1 gets applied."); 6664 getDiags().Report(DiagID) 6665 << StopAfter 6666 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6667 LangOptions::TrivialAutoVarInitKind::Zero 6668 ? "zero" 6669 : "pattern"); 6670 } 6671 ++NumAutoVarInit; 6672 } 6673 return false; 6674 } 6675 6676 void CodeGenModule::printPostfixForExternalizedStaticVar( 6677 llvm::raw_ostream &OS) const { 6678 OS << "__static__" << getContext().getCUIDHash(); 6679 } 6680