xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f2ea775ed9ec93ac5402d226d1841443555e5421)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/CallingConv.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::iOS64:
64   case TargetCXXABI::GenericItanium:
65     return CreateItaniumCXXABI(CGM);
66   case TargetCXXABI::Microsoft:
67     return CreateMicrosoftCXXABI(CGM);
68   }
69 
70   llvm_unreachable("invalid C++ ABI kind");
71 }
72 
73 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
74                              llvm::Module &M, const llvm::DataLayout &TD,
75                              DiagnosticsEngine &diags)
76     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
77       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
78       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
79       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
80       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
81       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
82       CFConstantStringClassRef(0),
83       ConstantStringClassRef(0), NSConstantStringType(0),
84       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
85       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
86       LifetimeStartFn(0), LifetimeEndFn(0),
87       SanitizerBlacklist(
88           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
89       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
90                                           : LangOpts.Sanitize) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
105   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106   Int8PtrTy = Int8Ty->getPointerTo(0);
107   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 
109   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
110 
111   if (LangOpts.ObjC1)
112     createObjCRuntime();
113   if (LangOpts.OpenCL)
114     createOpenCLRuntime();
115   if (LangOpts.CUDA)
116     createCUDARuntime();
117 
118   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
119   if (SanOpts.Thread ||
120       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
121     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
122                            getCXXABI().getMangleContext());
123 
124   // If debug info or coverage generation is enabled, create the CGDebugInfo
125   // object.
126   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
127       CodeGenOpts.EmitGcovArcs ||
128       CodeGenOpts.EmitGcovNotes)
129     DebugInfo = new CGDebugInfo(*this);
130 
131   Block.GlobalUniqueCount = 0;
132 
133   if (C.getLangOpts().ObjCAutoRefCount)
134     ARCData = new ARCEntrypoints();
135   RRData = new RREntrypoints();
136 
137   if (!CodeGenOpts.InstrProfileInput.empty())
138     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
139 }
140 
141 CodeGenModule::~CodeGenModule() {
142   delete ObjCRuntime;
143   delete OpenCLRuntime;
144   delete CUDARuntime;
145   delete TheTargetCodeGenInfo;
146   delete TBAA;
147   delete DebugInfo;
148   delete ARCData;
149   delete RRData;
150 }
151 
152 void CodeGenModule::createObjCRuntime() {
153   // This is just isGNUFamily(), but we want to force implementors of
154   // new ABIs to decide how best to do this.
155   switch (LangOpts.ObjCRuntime.getKind()) {
156   case ObjCRuntime::GNUstep:
157   case ObjCRuntime::GCC:
158   case ObjCRuntime::ObjFW:
159     ObjCRuntime = CreateGNUObjCRuntime(*this);
160     return;
161 
162   case ObjCRuntime::FragileMacOSX:
163   case ObjCRuntime::MacOSX:
164   case ObjCRuntime::iOS:
165     ObjCRuntime = CreateMacObjCRuntime(*this);
166     return;
167   }
168   llvm_unreachable("bad runtime kind");
169 }
170 
171 void CodeGenModule::createOpenCLRuntime() {
172   OpenCLRuntime = new CGOpenCLRuntime(*this);
173 }
174 
175 void CodeGenModule::createCUDARuntime() {
176   CUDARuntime = CreateNVCUDARuntime(*this);
177 }
178 
179 void CodeGenModule::applyReplacements() {
180   for (ReplacementsTy::iterator I = Replacements.begin(),
181                                 E = Replacements.end();
182        I != E; ++I) {
183     StringRef MangledName = I->first();
184     llvm::Constant *Replacement = I->second;
185     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
186     if (!Entry)
187       continue;
188     llvm::Function *OldF = cast<llvm::Function>(Entry);
189     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
190     if (!NewF) {
191       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
192         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
193       } else {
194         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
195         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
196                CE->getOpcode() == llvm::Instruction::GetElementPtr);
197         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
198       }
199     }
200 
201     // Replace old with new, but keep the old order.
202     OldF->replaceAllUsesWith(Replacement);
203     if (NewF) {
204       NewF->removeFromParent();
205       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
206     }
207     OldF->eraseFromParent();
208   }
209 }
210 
211 void CodeGenModule::checkAliases() {
212   // Check if the constructed aliases are well formed. It is really unfortunate
213   // that we have to do this in CodeGen, but we only construct mangled names
214   // and aliases during codegen.
215   bool Error = false;
216   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
217          E = Aliases.end(); I != E; ++I) {
218     const GlobalDecl &GD = *I;
219     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
220     const AliasAttr *AA = D->getAttr<AliasAttr>();
221     StringRef MangledName = getMangledName(GD);
222     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
223     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
224     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
225     if (!GV) {
226       Error = true;
227       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
228     } else if (GV->isDeclaration()) {
229       Error = true;
230       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
231     }
232 
233     // We have to handle alias to weak aliases in here. LLVM itself disallows
234     // this since the object semantics would not match the IL one. For
235     // compatibility with gcc we implement it by just pointing the alias
236     // to its aliasee's aliasee. We also warn, since the user is probably
237     // expecting the link to be weak.
238     llvm::Constant *Aliasee = Alias->getAliasee();
239     llvm::GlobalValue *AliaseeGV;
240     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) {
241       assert((CE->getOpcode() == llvm::Instruction::BitCast ||
242               CE->getOpcode() == llvm::Instruction::AddrSpaceCast) &&
243              "Unsupported aliasee");
244       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
245     } else {
246       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
247     }
248     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
249       if (GA->mayBeOverridden()) {
250         getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
251           << GA->getAliasedGlobal()->getName() << GA->getName();
252         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
253             GA->getAliasee(), Alias->getType());
254         Alias->setAliasee(Aliasee);
255       }
256     }
257   }
258   if (!Error)
259     return;
260 
261   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
262          E = Aliases.end(); I != E; ++I) {
263     const GlobalDecl &GD = *I;
264     StringRef MangledName = getMangledName(GD);
265     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
266     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
267     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
268     Alias->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::clear() {
273   DeferredDeclsToEmit.clear();
274 }
275 
276 void CodeGenModule::Release() {
277   EmitDeferred();
278   applyReplacements();
279   checkAliases();
280   EmitCXXGlobalInitFunc();
281   EmitCXXGlobalDtorFunc();
282   EmitCXXThreadLocalInitFunc();
283   if (ObjCRuntime)
284     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
285       AddGlobalCtor(ObjCInitFunction);
286   if (getCodeGenOpts().ProfileInstrGenerate)
287     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
288       AddGlobalCtor(PGOInit, 0);
289   EmitCtorList(GlobalCtors, "llvm.global_ctors");
290   EmitCtorList(GlobalDtors, "llvm.global_dtors");
291   EmitGlobalAnnotations();
292   EmitStaticExternCAliases();
293   emitLLVMUsed();
294 
295   if (CodeGenOpts.Autolink &&
296       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
297     EmitModuleLinkOptions();
298   }
299   if (CodeGenOpts.DwarfVersion)
300     // We actually want the latest version when there are conflicts.
301     // We can change from Warning to Latest if such mode is supported.
302     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
303                               CodeGenOpts.DwarfVersion);
304   if (DebugInfo)
305     // We support a single version in the linked module: error out when
306     // modules do not have the same version. We are going to implement dropping
307     // debug info when the version number is not up-to-date. Once that is
308     // done, the bitcode linker is not going to see modules with different
309     // version numbers.
310     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
311                               llvm::DEBUG_METADATA_VERSION);
312 
313   SimplifyPersonality();
314 
315   if (getCodeGenOpts().EmitDeclMetadata)
316     EmitDeclMetadata();
317 
318   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
319     EmitCoverageFile();
320 
321   if (DebugInfo)
322     DebugInfo->finalize();
323 
324   EmitVersionIdentMetadata();
325 }
326 
327 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
328   // Make sure that this type is translated.
329   Types.UpdateCompletedType(TD);
330 }
331 
332 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
333   if (!TBAA)
334     return 0;
335   return TBAA->getTBAAInfo(QTy);
336 }
337 
338 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
339   if (!TBAA)
340     return 0;
341   return TBAA->getTBAAInfoForVTablePtr();
342 }
343 
344 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
345   if (!TBAA)
346     return 0;
347   return TBAA->getTBAAStructInfo(QTy);
348 }
349 
350 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
351   if (!TBAA)
352     return 0;
353   return TBAA->getTBAAStructTypeInfo(QTy);
354 }
355 
356 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
357                                                   llvm::MDNode *AccessN,
358                                                   uint64_t O) {
359   if (!TBAA)
360     return 0;
361   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
362 }
363 
364 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
365 /// and struct-path aware TBAA, the tag has the same format:
366 /// base type, access type and offset.
367 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
368 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
369                                         llvm::MDNode *TBAAInfo,
370                                         bool ConvertTypeToTag) {
371   if (ConvertTypeToTag && TBAA)
372     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
373                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
374   else
375     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
376 }
377 
378 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
379   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
380   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
381 }
382 
383 /// ErrorUnsupported - Print out an error that codegen doesn't support the
384 /// specified stmt yet.
385 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
386   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
387                                                "cannot compile this %0 yet");
388   std::string Msg = Type;
389   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
390     << Msg << S->getSourceRange();
391 }
392 
393 /// ErrorUnsupported - Print out an error that codegen doesn't support the
394 /// specified decl yet.
395 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
396   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
397                                                "cannot compile this %0 yet");
398   std::string Msg = Type;
399   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
400 }
401 
402 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
403   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
404 }
405 
406 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
407                                         const NamedDecl *D) const {
408   // Internal definitions always have default visibility.
409   if (GV->hasLocalLinkage()) {
410     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
411     return;
412   }
413 
414   // Set visibility for definitions.
415   LinkageInfo LV = D->getLinkageAndVisibility();
416   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
417     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
418 }
419 
420 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
421   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
422       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
423       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
424       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
425       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
426 }
427 
428 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
429     CodeGenOptions::TLSModel M) {
430   switch (M) {
431   case CodeGenOptions::GeneralDynamicTLSModel:
432     return llvm::GlobalVariable::GeneralDynamicTLSModel;
433   case CodeGenOptions::LocalDynamicTLSModel:
434     return llvm::GlobalVariable::LocalDynamicTLSModel;
435   case CodeGenOptions::InitialExecTLSModel:
436     return llvm::GlobalVariable::InitialExecTLSModel;
437   case CodeGenOptions::LocalExecTLSModel:
438     return llvm::GlobalVariable::LocalExecTLSModel;
439   }
440   llvm_unreachable("Invalid TLS model!");
441 }
442 
443 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
444                                const VarDecl &D) const {
445   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
446 
447   llvm::GlobalVariable::ThreadLocalMode TLM;
448   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
449 
450   // Override the TLS model if it is explicitly specified.
451   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
452     TLM = GetLLVMTLSModel(Attr->getModel());
453   }
454 
455   GV->setThreadLocalMode(TLM);
456 }
457 
458 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
459   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
460 
461   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
462   if (!Str.empty())
463     return Str;
464 
465   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
466     IdentifierInfo *II = ND->getIdentifier();
467     assert(II && "Attempt to mangle unnamed decl.");
468 
469     Str = II->getName();
470     return Str;
471   }
472 
473   SmallString<256> Buffer;
474   llvm::raw_svector_ostream Out(Buffer);
475   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
476     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
477   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
478     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
479   else
480     getCXXABI().getMangleContext().mangleName(ND, Out);
481 
482   // Allocate space for the mangled name.
483   Out.flush();
484   size_t Length = Buffer.size();
485   char *Name = MangledNamesAllocator.Allocate<char>(Length);
486   std::copy(Buffer.begin(), Buffer.end(), Name);
487 
488   Str = StringRef(Name, Length);
489 
490   return Str;
491 }
492 
493 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
494                                         const BlockDecl *BD) {
495   MangleContext &MangleCtx = getCXXABI().getMangleContext();
496   const Decl *D = GD.getDecl();
497   llvm::raw_svector_ostream Out(Buffer.getBuffer());
498   if (D == 0)
499     MangleCtx.mangleGlobalBlock(BD,
500       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
501   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
502     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
503   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
504     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
505   else
506     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
507 }
508 
509 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
510   return getModule().getNamedValue(Name);
511 }
512 
513 /// AddGlobalCtor - Add a function to the list that will be called before
514 /// main() runs.
515 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
516   // FIXME: Type coercion of void()* types.
517   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
518 }
519 
520 /// AddGlobalDtor - Add a function to the list that will be called
521 /// when the module is unloaded.
522 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
523   // FIXME: Type coercion of void()* types.
524   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
525 }
526 
527 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
528   // Ctor function type is void()*.
529   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
530   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
531 
532   // Get the type of a ctor entry, { i32, void ()* }.
533   llvm::StructType *CtorStructTy =
534     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
535 
536   // Construct the constructor and destructor arrays.
537   SmallVector<llvm::Constant*, 8> Ctors;
538   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
539     llvm::Constant *S[] = {
540       llvm::ConstantInt::get(Int32Ty, I->second, false),
541       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
542     };
543     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
544   }
545 
546   if (!Ctors.empty()) {
547     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
548     new llvm::GlobalVariable(TheModule, AT, false,
549                              llvm::GlobalValue::AppendingLinkage,
550                              llvm::ConstantArray::get(AT, Ctors),
551                              GlobalName);
552   }
553 }
554 
555 llvm::GlobalValue::LinkageTypes
556 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
557   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
558 
559   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
560 
561   if (Linkage == GVA_Internal)
562     return llvm::Function::InternalLinkage;
563 
564   if (D->hasAttr<DLLExportAttr>())
565     return llvm::Function::ExternalLinkage;
566 
567   if (D->hasAttr<WeakAttr>())
568     return llvm::Function::WeakAnyLinkage;
569 
570   // In C99 mode, 'inline' functions are guaranteed to have a strong
571   // definition somewhere else, so we can use available_externally linkage.
572   if (Linkage == GVA_C99Inline)
573     return llvm::Function::AvailableExternallyLinkage;
574 
575   // Note that Apple's kernel linker doesn't support symbol
576   // coalescing, so we need to avoid linkonce and weak linkages there.
577   // Normally, this means we just map to internal, but for explicit
578   // instantiations we'll map to external.
579 
580   // In C++, the compiler has to emit a definition in every translation unit
581   // that references the function.  We should use linkonce_odr because
582   // a) if all references in this translation unit are optimized away, we
583   // don't need to codegen it.  b) if the function persists, it needs to be
584   // merged with other definitions. c) C++ has the ODR, so we know the
585   // definition is dependable.
586   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
587     return !Context.getLangOpts().AppleKext
588              ? llvm::Function::LinkOnceODRLinkage
589              : llvm::Function::InternalLinkage;
590 
591   // An explicit instantiation of a template has weak linkage, since
592   // explicit instantiations can occur in multiple translation units
593   // and must all be equivalent. However, we are not allowed to
594   // throw away these explicit instantiations.
595   if (Linkage == GVA_StrongODR)
596     return !Context.getLangOpts().AppleKext
597              ? llvm::Function::WeakODRLinkage
598              : llvm::Function::ExternalLinkage;
599 
600   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
601   // emitted on an as-needed basis.
602   if (isa<CXXDestructorDecl>(D) &&
603       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
604                                          GD.getDtorType()))
605     return llvm::Function::LinkOnceODRLinkage;
606 
607   // Otherwise, we have strong external linkage.
608   assert(Linkage == GVA_StrongExternal);
609   return llvm::Function::ExternalLinkage;
610 }
611 
612 
613 /// SetFunctionDefinitionAttributes - Set attributes for a global.
614 ///
615 /// FIXME: This is currently only done for aliases and functions, but not for
616 /// variables (these details are set in EmitGlobalVarDefinition for variables).
617 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
618                                                     llvm::GlobalValue *GV) {
619   SetCommonAttributes(D, GV);
620 }
621 
622 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
623                                               const CGFunctionInfo &Info,
624                                               llvm::Function *F) {
625   unsigned CallingConv;
626   AttributeListType AttributeList;
627   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
628   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
629   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
630 }
631 
632 /// Determines whether the language options require us to model
633 /// unwind exceptions.  We treat -fexceptions as mandating this
634 /// except under the fragile ObjC ABI with only ObjC exceptions
635 /// enabled.  This means, for example, that C with -fexceptions
636 /// enables this.
637 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
638   // If exceptions are completely disabled, obviously this is false.
639   if (!LangOpts.Exceptions) return false;
640 
641   // If C++ exceptions are enabled, this is true.
642   if (LangOpts.CXXExceptions) return true;
643 
644   // If ObjC exceptions are enabled, this depends on the ABI.
645   if (LangOpts.ObjCExceptions) {
646     return LangOpts.ObjCRuntime.hasUnwindExceptions();
647   }
648 
649   return true;
650 }
651 
652 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
653                                                            llvm::Function *F) {
654   llvm::AttrBuilder B;
655 
656   if (CodeGenOpts.UnwindTables)
657     B.addAttribute(llvm::Attribute::UWTable);
658 
659   if (!hasUnwindExceptions(LangOpts))
660     B.addAttribute(llvm::Attribute::NoUnwind);
661 
662   if (D->hasAttr<NakedAttr>()) {
663     // Naked implies noinline: we should not be inlining such functions.
664     B.addAttribute(llvm::Attribute::Naked);
665     B.addAttribute(llvm::Attribute::NoInline);
666   } else if (D->hasAttr<OptimizeNoneAttr>()) {
667     // OptimizeNone implies noinline; we should not be inlining such functions.
668     B.addAttribute(llvm::Attribute::OptimizeNone);
669     B.addAttribute(llvm::Attribute::NoInline);
670   } else if (D->hasAttr<NoDuplicateAttr>()) {
671     B.addAttribute(llvm::Attribute::NoDuplicate);
672   } else if (D->hasAttr<NoInlineAttr>()) {
673     B.addAttribute(llvm::Attribute::NoInline);
674   } else if (D->hasAttr<AlwaysInlineAttr>() &&
675              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
676                                               llvm::Attribute::NoInline)) {
677     // (noinline wins over always_inline, and we can't specify both in IR)
678     B.addAttribute(llvm::Attribute::AlwaysInline);
679   }
680 
681   if (D->hasAttr<ColdAttr>()) {
682     B.addAttribute(llvm::Attribute::OptimizeForSize);
683     B.addAttribute(llvm::Attribute::Cold);
684   }
685 
686   if (D->hasAttr<MinSizeAttr>())
687     B.addAttribute(llvm::Attribute::MinSize);
688 
689   if (D->hasAttr<OptimizeNoneAttr>()) {
690     // OptimizeNone wins over OptimizeForSize and MinSize.
691     B.removeAttribute(llvm::Attribute::OptimizeForSize);
692     B.removeAttribute(llvm::Attribute::MinSize);
693   }
694 
695   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
696     B.addAttribute(llvm::Attribute::StackProtect);
697   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
698     B.addAttribute(llvm::Attribute::StackProtectStrong);
699   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
700     B.addAttribute(llvm::Attribute::StackProtectReq);
701 
702   // Add sanitizer attributes if function is not blacklisted.
703   if (!SanitizerBlacklist->isIn(*F)) {
704     // When AddressSanitizer is enabled, set SanitizeAddress attribute
705     // unless __attribute__((no_sanitize_address)) is used.
706     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
707       B.addAttribute(llvm::Attribute::SanitizeAddress);
708     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
709     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
710       B.addAttribute(llvm::Attribute::SanitizeThread);
711     }
712     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
713     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
714       B.addAttribute(llvm::Attribute::SanitizeMemory);
715   }
716 
717   F->addAttributes(llvm::AttributeSet::FunctionIndex,
718                    llvm::AttributeSet::get(
719                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
720 
721   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
722     F->setUnnamedAddr(true);
723   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
724     if (MD->isVirtual())
725       F->setUnnamedAddr(true);
726 
727   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
728   if (alignment)
729     F->setAlignment(alignment);
730 
731   // C++ ABI requires 2-byte alignment for member functions.
732   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
733     F->setAlignment(2);
734 }
735 
736 void CodeGenModule::SetCommonAttributes(const Decl *D,
737                                         llvm::GlobalValue *GV) {
738   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
739     setGlobalVisibility(GV, ND);
740   else
741     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
742 
743   if (D->hasAttr<UsedAttr>())
744     addUsedGlobal(GV);
745 
746   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
747     GV->setSection(SA->getName());
748 
749   // Alias cannot have attributes. Filter them here.
750   if (!isa<llvm::GlobalAlias>(GV))
751     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
752 }
753 
754 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
755                                                   llvm::Function *F,
756                                                   const CGFunctionInfo &FI) {
757   SetLLVMFunctionAttributes(D, FI, F);
758   SetLLVMFunctionAttributesForDefinition(D, F);
759 
760   F->setLinkage(llvm::Function::InternalLinkage);
761 
762   SetCommonAttributes(D, F);
763 }
764 
765 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
766                                           llvm::Function *F,
767                                           bool IsIncompleteFunction) {
768   if (unsigned IID = F->getIntrinsicID()) {
769     // If this is an intrinsic function, set the function's attributes
770     // to the intrinsic's attributes.
771     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
772                                                     (llvm::Intrinsic::ID)IID));
773     return;
774   }
775 
776   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
777 
778   if (!IsIncompleteFunction)
779     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
780 
781   // Add the Returned attribute for "this", except for iOS 5 and earlier
782   // where substantial code, including the libstdc++ dylib, was compiled with
783   // GCC and does not actually return "this".
784   if (getCXXABI().HasThisReturn(GD) &&
785       !(getTarget().getTriple().isiOS() &&
786         getTarget().getTriple().isOSVersionLT(6))) {
787     assert(!F->arg_empty() &&
788            F->arg_begin()->getType()
789              ->canLosslesslyBitCastTo(F->getReturnType()) &&
790            "unexpected this return");
791     F->addAttribute(1, llvm::Attribute::Returned);
792   }
793 
794   // Only a few attributes are set on declarations; these may later be
795   // overridden by a definition.
796 
797   if (FD->hasAttr<DLLImportAttr>()) {
798     F->setLinkage(llvm::Function::ExternalLinkage);
799     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
800   } else if (FD->hasAttr<WeakAttr>() ||
801              FD->isWeakImported()) {
802     // "extern_weak" is overloaded in LLVM; we probably should have
803     // separate linkage types for this.
804     F->setLinkage(llvm::Function::ExternalWeakLinkage);
805   } else {
806     F->setLinkage(llvm::Function::ExternalLinkage);
807     if (FD->hasAttr<DLLExportAttr>())
808       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
809 
810     LinkageInfo LV = FD->getLinkageAndVisibility();
811     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
812       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
813     }
814   }
815 
816   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
817     F->setSection(SA->getName());
818 
819   // A replaceable global allocation function does not act like a builtin by
820   // default, only if it is invoked by a new-expression or delete-expression.
821   if (FD->isReplaceableGlobalAllocationFunction())
822     F->addAttribute(llvm::AttributeSet::FunctionIndex,
823                     llvm::Attribute::NoBuiltin);
824 }
825 
826 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
827   assert(!GV->isDeclaration() &&
828          "Only globals with definition can force usage.");
829   LLVMUsed.push_back(GV);
830 }
831 
832 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
833   assert(!GV->isDeclaration() &&
834          "Only globals with definition can force usage.");
835   LLVMCompilerUsed.push_back(GV);
836 }
837 
838 static void emitUsed(CodeGenModule &CGM, StringRef Name,
839                      std::vector<llvm::WeakVH> &List) {
840   // Don't create llvm.used if there is no need.
841   if (List.empty())
842     return;
843 
844   // Convert List to what ConstantArray needs.
845   SmallVector<llvm::Constant*, 8> UsedArray;
846   UsedArray.resize(List.size());
847   for (unsigned i = 0, e = List.size(); i != e; ++i) {
848     UsedArray[i] =
849      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
850                                     CGM.Int8PtrTy);
851   }
852 
853   if (UsedArray.empty())
854     return;
855   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
856 
857   llvm::GlobalVariable *GV =
858     new llvm::GlobalVariable(CGM.getModule(), ATy, false,
859                              llvm::GlobalValue::AppendingLinkage,
860                              llvm::ConstantArray::get(ATy, UsedArray),
861                              Name);
862 
863   GV->setSection("llvm.metadata");
864 }
865 
866 void CodeGenModule::emitLLVMUsed() {
867   emitUsed(*this, "llvm.used", LLVMUsed);
868   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
869 }
870 
871 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
872   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
873   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
874 }
875 
876 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
877   llvm::SmallString<32> Opt;
878   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
879   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
880   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
881 }
882 
883 void CodeGenModule::AddDependentLib(StringRef Lib) {
884   llvm::SmallString<24> Opt;
885   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
886   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
887   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
888 }
889 
890 /// \brief Add link options implied by the given module, including modules
891 /// it depends on, using a postorder walk.
892 static void addLinkOptionsPostorder(CodeGenModule &CGM,
893                                     Module *Mod,
894                                     SmallVectorImpl<llvm::Value *> &Metadata,
895                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
896   // Import this module's parent.
897   if (Mod->Parent && Visited.insert(Mod->Parent)) {
898     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
899   }
900 
901   // Import this module's dependencies.
902   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
903     if (Visited.insert(Mod->Imports[I-1]))
904       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
905   }
906 
907   // Add linker options to link against the libraries/frameworks
908   // described by this module.
909   llvm::LLVMContext &Context = CGM.getLLVMContext();
910   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
911     // Link against a framework.  Frameworks are currently Darwin only, so we
912     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
913     if (Mod->LinkLibraries[I-1].IsFramework) {
914       llvm::Value *Args[2] = {
915         llvm::MDString::get(Context, "-framework"),
916         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
917       };
918 
919       Metadata.push_back(llvm::MDNode::get(Context, Args));
920       continue;
921     }
922 
923     // Link against a library.
924     llvm::SmallString<24> Opt;
925     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
926       Mod->LinkLibraries[I-1].Library, Opt);
927     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
928     Metadata.push_back(llvm::MDNode::get(Context, OptString));
929   }
930 }
931 
932 void CodeGenModule::EmitModuleLinkOptions() {
933   // Collect the set of all of the modules we want to visit to emit link
934   // options, which is essentially the imported modules and all of their
935   // non-explicit child modules.
936   llvm::SetVector<clang::Module *> LinkModules;
937   llvm::SmallPtrSet<clang::Module *, 16> Visited;
938   SmallVector<clang::Module *, 16> Stack;
939 
940   // Seed the stack with imported modules.
941   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
942                                                MEnd = ImportedModules.end();
943        M != MEnd; ++M) {
944     if (Visited.insert(*M))
945       Stack.push_back(*M);
946   }
947 
948   // Find all of the modules to import, making a little effort to prune
949   // non-leaf modules.
950   while (!Stack.empty()) {
951     clang::Module *Mod = Stack.pop_back_val();
952 
953     bool AnyChildren = false;
954 
955     // Visit the submodules of this module.
956     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
957                                         SubEnd = Mod->submodule_end();
958          Sub != SubEnd; ++Sub) {
959       // Skip explicit children; they need to be explicitly imported to be
960       // linked against.
961       if ((*Sub)->IsExplicit)
962         continue;
963 
964       if (Visited.insert(*Sub)) {
965         Stack.push_back(*Sub);
966         AnyChildren = true;
967       }
968     }
969 
970     // We didn't find any children, so add this module to the list of
971     // modules to link against.
972     if (!AnyChildren) {
973       LinkModules.insert(Mod);
974     }
975   }
976 
977   // Add link options for all of the imported modules in reverse topological
978   // order.  We don't do anything to try to order import link flags with respect
979   // to linker options inserted by things like #pragma comment().
980   SmallVector<llvm::Value *, 16> MetadataArgs;
981   Visited.clear();
982   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
983                                                MEnd = LinkModules.end();
984        M != MEnd; ++M) {
985     if (Visited.insert(*M))
986       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
987   }
988   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
989   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
990 
991   // Add the linker options metadata flag.
992   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
993                             llvm::MDNode::get(getLLVMContext(),
994                                               LinkerOptionsMetadata));
995 }
996 
997 void CodeGenModule::EmitDeferred() {
998   // Emit code for any potentially referenced deferred decls.  Since a
999   // previously unused static decl may become used during the generation of code
1000   // for a static function, iterate until no changes are made.
1001 
1002   while (true) {
1003     if (!DeferredVTables.empty()) {
1004       EmitDeferredVTables();
1005 
1006       // Emitting a v-table doesn't directly cause more v-tables to
1007       // become deferred, although it can cause functions to be
1008       // emitted that then need those v-tables.
1009       assert(DeferredVTables.empty());
1010     }
1011 
1012     // Stop if we're out of both deferred v-tables and deferred declarations.
1013     if (DeferredDeclsToEmit.empty()) break;
1014 
1015     DeferredGlobal &G = DeferredDeclsToEmit.back();
1016     GlobalDecl D = G.GD;
1017     llvm::GlobalValue *GV = G.GV;
1018     DeferredDeclsToEmit.pop_back();
1019 
1020     assert(GV == GetGlobalValue(getMangledName(D)));
1021     // Check to see if we've already emitted this.  This is necessary
1022     // for a couple of reasons: first, decls can end up in the
1023     // deferred-decls queue multiple times, and second, decls can end
1024     // up with definitions in unusual ways (e.g. by an extern inline
1025     // function acquiring a strong function redefinition).  Just
1026     // ignore these cases.
1027     if(!GV->isDeclaration())
1028       continue;
1029 
1030     // Otherwise, emit the definition and move on to the next one.
1031     EmitGlobalDefinition(D, GV);
1032   }
1033 }
1034 
1035 void CodeGenModule::EmitGlobalAnnotations() {
1036   if (Annotations.empty())
1037     return;
1038 
1039   // Create a new global variable for the ConstantStruct in the Module.
1040   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1041     Annotations[0]->getType(), Annotations.size()), Annotations);
1042   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1043     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1044     "llvm.global.annotations");
1045   gv->setSection(AnnotationSection);
1046 }
1047 
1048 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1049   llvm::Constant *&AStr = AnnotationStrings[Str];
1050   if (AStr)
1051     return AStr;
1052 
1053   // Not found yet, create a new global.
1054   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1055   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1056     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1057   gv->setSection(AnnotationSection);
1058   gv->setUnnamedAddr(true);
1059   AStr = gv;
1060   return gv;
1061 }
1062 
1063 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1064   SourceManager &SM = getContext().getSourceManager();
1065   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1066   if (PLoc.isValid())
1067     return EmitAnnotationString(PLoc.getFilename());
1068   return EmitAnnotationString(SM.getBufferName(Loc));
1069 }
1070 
1071 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1072   SourceManager &SM = getContext().getSourceManager();
1073   PresumedLoc PLoc = SM.getPresumedLoc(L);
1074   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1075     SM.getExpansionLineNumber(L);
1076   return llvm::ConstantInt::get(Int32Ty, LineNo);
1077 }
1078 
1079 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1080                                                 const AnnotateAttr *AA,
1081                                                 SourceLocation L) {
1082   // Get the globals for file name, annotation, and the line number.
1083   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1084                  *UnitGV = EmitAnnotationUnit(L),
1085                  *LineNoCst = EmitAnnotationLineNo(L);
1086 
1087   // Create the ConstantStruct for the global annotation.
1088   llvm::Constant *Fields[4] = {
1089     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1090     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1091     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1092     LineNoCst
1093   };
1094   return llvm::ConstantStruct::getAnon(Fields);
1095 }
1096 
1097 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1098                                          llvm::GlobalValue *GV) {
1099   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1100   // Get the struct elements for these annotations.
1101   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1102     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1103 }
1104 
1105 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1106   // Never defer when EmitAllDecls is specified.
1107   if (LangOpts.EmitAllDecls)
1108     return false;
1109 
1110   return !getContext().DeclMustBeEmitted(Global);
1111 }
1112 
1113 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1114     const CXXUuidofExpr* E) {
1115   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1116   // well-formed.
1117   StringRef Uuid = E->getUuidAsStringRef(Context);
1118   std::string Name = "_GUID_" + Uuid.lower();
1119   std::replace(Name.begin(), Name.end(), '-', '_');
1120 
1121   // Look for an existing global.
1122   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1123     return GV;
1124 
1125   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1126   assert(Init && "failed to initialize as constant");
1127 
1128   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1129       getModule(), Init->getType(),
1130       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1131   return GV;
1132 }
1133 
1134 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1135   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1136   assert(AA && "No alias?");
1137 
1138   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1139 
1140   // See if there is already something with the target's name in the module.
1141   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1142   if (Entry) {
1143     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1144     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1145   }
1146 
1147   llvm::Constant *Aliasee;
1148   if (isa<llvm::FunctionType>(DeclTy))
1149     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1150                                       GlobalDecl(cast<FunctionDecl>(VD)),
1151                                       /*ForVTable=*/false);
1152   else
1153     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1154                                     llvm::PointerType::getUnqual(DeclTy), 0);
1155 
1156   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1157   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1158   WeakRefReferences.insert(F);
1159 
1160   return Aliasee;
1161 }
1162 
1163 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1164   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1165 
1166   // Weak references don't produce any output by themselves.
1167   if (Global->hasAttr<WeakRefAttr>())
1168     return;
1169 
1170   // If this is an alias definition (which otherwise looks like a declaration)
1171   // emit it now.
1172   if (Global->hasAttr<AliasAttr>())
1173     return EmitAliasDefinition(GD);
1174 
1175   // If this is CUDA, be selective about which declarations we emit.
1176   if (LangOpts.CUDA) {
1177     if (CodeGenOpts.CUDAIsDevice) {
1178       if (!Global->hasAttr<CUDADeviceAttr>() &&
1179           !Global->hasAttr<CUDAGlobalAttr>() &&
1180           !Global->hasAttr<CUDAConstantAttr>() &&
1181           !Global->hasAttr<CUDASharedAttr>())
1182         return;
1183     } else {
1184       if (!Global->hasAttr<CUDAHostAttr>() && (
1185             Global->hasAttr<CUDADeviceAttr>() ||
1186             Global->hasAttr<CUDAConstantAttr>() ||
1187             Global->hasAttr<CUDASharedAttr>()))
1188         return;
1189     }
1190   }
1191 
1192   // Ignore declarations, they will be emitted on their first use.
1193   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1194     // Forward declarations are emitted lazily on first use.
1195     if (!FD->doesThisDeclarationHaveABody()) {
1196       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1197         return;
1198 
1199       StringRef MangledName = getMangledName(GD);
1200 
1201       // Compute the function info and LLVM type.
1202       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1203       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1204 
1205       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1206                               /*DontDefer=*/false);
1207       return;
1208     }
1209   } else {
1210     const VarDecl *VD = cast<VarDecl>(Global);
1211     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1212 
1213     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1214       return;
1215   }
1216 
1217   // Defer code generation when possible if this is a static definition, inline
1218   // function etc.  These we only want to emit if they are used.
1219   if (!MayDeferGeneration(Global)) {
1220     // Emit the definition if it can't be deferred.
1221     EmitGlobalDefinition(GD);
1222     return;
1223   }
1224 
1225   // If we're deferring emission of a C++ variable with an
1226   // initializer, remember the order in which it appeared in the file.
1227   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1228       cast<VarDecl>(Global)->hasInit()) {
1229     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1230     CXXGlobalInits.push_back(0);
1231   }
1232 
1233   // If the value has already been used, add it directly to the
1234   // DeferredDeclsToEmit list.
1235   StringRef MangledName = getMangledName(GD);
1236   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1237     addDeferredDeclToEmit(GV, GD);
1238   else {
1239     // Otherwise, remember that we saw a deferred decl with this name.  The
1240     // first use of the mangled name will cause it to move into
1241     // DeferredDeclsToEmit.
1242     DeferredDecls[MangledName] = GD;
1243   }
1244 }
1245 
1246 namespace {
1247   struct FunctionIsDirectlyRecursive :
1248     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1249     const StringRef Name;
1250     const Builtin::Context &BI;
1251     bool Result;
1252     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1253       Name(N), BI(C), Result(false) {
1254     }
1255     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1256 
1257     bool TraverseCallExpr(CallExpr *E) {
1258       const FunctionDecl *FD = E->getDirectCallee();
1259       if (!FD)
1260         return true;
1261       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1262       if (Attr && Name == Attr->getLabel()) {
1263         Result = true;
1264         return false;
1265       }
1266       unsigned BuiltinID = FD->getBuiltinID();
1267       if (!BuiltinID)
1268         return true;
1269       StringRef BuiltinName = BI.GetName(BuiltinID);
1270       if (BuiltinName.startswith("__builtin_") &&
1271           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1272         Result = true;
1273         return false;
1274       }
1275       return true;
1276     }
1277   };
1278 }
1279 
1280 // isTriviallyRecursive - Check if this function calls another
1281 // decl that, because of the asm attribute or the other decl being a builtin,
1282 // ends up pointing to itself.
1283 bool
1284 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1285   StringRef Name;
1286   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1287     // asm labels are a special kind of mangling we have to support.
1288     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1289     if (!Attr)
1290       return false;
1291     Name = Attr->getLabel();
1292   } else {
1293     Name = FD->getName();
1294   }
1295 
1296   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1297   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1298   return Walker.Result;
1299 }
1300 
1301 bool
1302 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1303   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1304     return true;
1305   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1306   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1307     return false;
1308   // PR9614. Avoid cases where the source code is lying to us. An available
1309   // externally function should have an equivalent function somewhere else,
1310   // but a function that calls itself is clearly not equivalent to the real
1311   // implementation.
1312   // This happens in glibc's btowc and in some configure checks.
1313   return !isTriviallyRecursive(F);
1314 }
1315 
1316 /// If the type for the method's class was generated by
1317 /// CGDebugInfo::createContextChain(), the cache contains only a
1318 /// limited DIType without any declarations. Since EmitFunctionStart()
1319 /// needs to find the canonical declaration for each method, we need
1320 /// to construct the complete type prior to emitting the method.
1321 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1322   if (!D->isInstance())
1323     return;
1324 
1325   if (CGDebugInfo *DI = getModuleDebugInfo())
1326     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1327       const PointerType *ThisPtr =
1328         cast<PointerType>(D->getThisType(getContext()));
1329       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1330     }
1331 }
1332 
1333 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1334   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1335 
1336   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1337                                  Context.getSourceManager(),
1338                                  "Generating code for declaration");
1339 
1340   if (isa<FunctionDecl>(D)) {
1341     // At -O0, don't generate IR for functions with available_externally
1342     // linkage.
1343     if (!shouldEmitFunction(GD))
1344       return;
1345 
1346     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1347       CompleteDIClassType(Method);
1348       // Make sure to emit the definition(s) before we emit the thunks.
1349       // This is necessary for the generation of certain thunks.
1350       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1351         EmitCXXConstructor(CD, GD.getCtorType());
1352       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1353         EmitCXXDestructor(DD, GD.getDtorType());
1354       else
1355         EmitGlobalFunctionDefinition(GD, GV);
1356 
1357       if (Method->isVirtual())
1358         getVTables().EmitThunks(GD);
1359 
1360       return;
1361     }
1362 
1363     return EmitGlobalFunctionDefinition(GD, GV);
1364   }
1365 
1366   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1367     return EmitGlobalVarDefinition(VD);
1368 
1369   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1370 }
1371 
1372 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1373 /// module, create and return an llvm Function with the specified type. If there
1374 /// is something in the module with the specified name, return it potentially
1375 /// bitcasted to the right type.
1376 ///
1377 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1378 /// to set the attributes on the function when it is first created.
1379 llvm::Constant *
1380 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1381                                        llvm::Type *Ty,
1382                                        GlobalDecl GD, bool ForVTable,
1383                                        bool DontDefer,
1384                                        llvm::AttributeSet ExtraAttrs) {
1385   const Decl *D = GD.getDecl();
1386 
1387   // Lookup the entry, lazily creating it if necessary.
1388   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1389   if (Entry) {
1390     if (WeakRefReferences.erase(Entry)) {
1391       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1392       if (FD && !FD->hasAttr<WeakAttr>())
1393         Entry->setLinkage(llvm::Function::ExternalLinkage);
1394     }
1395 
1396     if (Entry->getType()->getElementType() == Ty)
1397       return Entry;
1398 
1399     // Make sure the result is of the correct type.
1400     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1401   }
1402 
1403   // This function doesn't have a complete type (for example, the return
1404   // type is an incomplete struct). Use a fake type instead, and make
1405   // sure not to try to set attributes.
1406   bool IsIncompleteFunction = false;
1407 
1408   llvm::FunctionType *FTy;
1409   if (isa<llvm::FunctionType>(Ty)) {
1410     FTy = cast<llvm::FunctionType>(Ty);
1411   } else {
1412     FTy = llvm::FunctionType::get(VoidTy, false);
1413     IsIncompleteFunction = true;
1414   }
1415 
1416   llvm::Function *F = llvm::Function::Create(FTy,
1417                                              llvm::Function::ExternalLinkage,
1418                                              MangledName, &getModule());
1419   assert(F->getName() == MangledName && "name was uniqued!");
1420   if (D)
1421     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1422   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1423     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1424     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1425                      llvm::AttributeSet::get(VMContext,
1426                                              llvm::AttributeSet::FunctionIndex,
1427                                              B));
1428   }
1429 
1430   if (!DontDefer) {
1431     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1432     // each other bottoming out with the base dtor.  Therefore we emit non-base
1433     // dtors on usage, even if there is no dtor definition in the TU.
1434     if (D && isa<CXXDestructorDecl>(D) &&
1435         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1436                                            GD.getDtorType()))
1437       addDeferredDeclToEmit(F, GD);
1438 
1439     // This is the first use or definition of a mangled name.  If there is a
1440     // deferred decl with this name, remember that we need to emit it at the end
1441     // of the file.
1442     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1443     if (DDI != DeferredDecls.end()) {
1444       // Move the potentially referenced deferred decl to the
1445       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1446       // don't need it anymore).
1447       addDeferredDeclToEmit(F, DDI->second);
1448       DeferredDecls.erase(DDI);
1449 
1450       // Otherwise, if this is a sized deallocation function, emit a weak
1451       // definition
1452       // for it at the end of the translation unit.
1453     } else if (D && cast<FunctionDecl>(D)
1454                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1455       addDeferredDeclToEmit(F, GD);
1456 
1457       // Otherwise, there are cases we have to worry about where we're
1458       // using a declaration for which we must emit a definition but where
1459       // we might not find a top-level definition:
1460       //   - member functions defined inline in their classes
1461       //   - friend functions defined inline in some class
1462       //   - special member functions with implicit definitions
1463       // If we ever change our AST traversal to walk into class methods,
1464       // this will be unnecessary.
1465       //
1466       // We also don't emit a definition for a function if it's going to be an
1467       // entry
1468       // in a vtable, unless it's already marked as used.
1469     } else if (getLangOpts().CPlusPlus && D) {
1470       // Look for a declaration that's lexically in a record.
1471       const FunctionDecl *FD = cast<FunctionDecl>(D);
1472       FD = FD->getMostRecentDecl();
1473       do {
1474         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1475           if (FD->isImplicit() && !ForVTable) {
1476             assert(FD->isUsed() &&
1477                    "Sema didn't mark implicit function as used!");
1478             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1479             break;
1480           } else if (FD->doesThisDeclarationHaveABody()) {
1481             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1482             break;
1483           }
1484         }
1485         FD = FD->getPreviousDecl();
1486       } while (FD);
1487     }
1488   }
1489 
1490   // Make sure the result is of the requested type.
1491   if (!IsIncompleteFunction) {
1492     assert(F->getType()->getElementType() == Ty);
1493     return F;
1494   }
1495 
1496   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1497   return llvm::ConstantExpr::getBitCast(F, PTy);
1498 }
1499 
1500 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1501 /// non-null, then this function will use the specified type if it has to
1502 /// create it (this occurs when we see a definition of the function).
1503 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1504                                                  llvm::Type *Ty,
1505                                                  bool ForVTable,
1506                                                  bool DontDefer) {
1507   // If there was no specific requested type, just convert it now.
1508   if (!Ty)
1509     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1510 
1511   StringRef MangledName = getMangledName(GD);
1512   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1513 }
1514 
1515 /// CreateRuntimeFunction - Create a new runtime function with the specified
1516 /// type and name.
1517 llvm::Constant *
1518 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1519                                      StringRef Name,
1520                                      llvm::AttributeSet ExtraAttrs) {
1521   llvm::Constant *C =
1522       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1523                               /*DontDefer=*/false, ExtraAttrs);
1524   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1525     if (F->empty())
1526       F->setCallingConv(getRuntimeCC());
1527   return C;
1528 }
1529 
1530 /// isTypeConstant - Determine whether an object of this type can be emitted
1531 /// as a constant.
1532 ///
1533 /// If ExcludeCtor is true, the duration when the object's constructor runs
1534 /// will not be considered. The caller will need to verify that the object is
1535 /// not written to during its construction.
1536 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1537   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1538     return false;
1539 
1540   if (Context.getLangOpts().CPlusPlus) {
1541     if (const CXXRecordDecl *Record
1542           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1543       return ExcludeCtor && !Record->hasMutableFields() &&
1544              Record->hasTrivialDestructor();
1545   }
1546 
1547   return true;
1548 }
1549 
1550 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1551 /// create and return an llvm GlobalVariable with the specified type.  If there
1552 /// is something in the module with the specified name, return it potentially
1553 /// bitcasted to the right type.
1554 ///
1555 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1556 /// to set the attributes on the global when it is first created.
1557 llvm::Constant *
1558 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1559                                      llvm::PointerType *Ty,
1560                                      const VarDecl *D,
1561                                      bool UnnamedAddr) {
1562   // Lookup the entry, lazily creating it if necessary.
1563   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1564   if (Entry) {
1565     if (WeakRefReferences.erase(Entry)) {
1566       if (D && !D->hasAttr<WeakAttr>())
1567         Entry->setLinkage(llvm::Function::ExternalLinkage);
1568     }
1569 
1570     if (UnnamedAddr)
1571       Entry->setUnnamedAddr(true);
1572 
1573     if (Entry->getType() == Ty)
1574       return Entry;
1575 
1576     // Make sure the result is of the correct type.
1577     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1578       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1579 
1580     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1581   }
1582 
1583   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1584   llvm::GlobalVariable *GV =
1585     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1586                              llvm::GlobalValue::ExternalLinkage,
1587                              0, MangledName, 0,
1588                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1589 
1590   // This is the first use or definition of a mangled name.  If there is a
1591   // deferred decl with this name, remember that we need to emit it at the end
1592   // of the file.
1593   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1594   if (DDI != DeferredDecls.end()) {
1595     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1596     // list, and remove it from DeferredDecls (since we don't need it anymore).
1597     addDeferredDeclToEmit(GV, DDI->second);
1598     DeferredDecls.erase(DDI);
1599   }
1600 
1601   // Handle things which are present even on external declarations.
1602   if (D) {
1603     // FIXME: This code is overly simple and should be merged with other global
1604     // handling.
1605     GV->setConstant(isTypeConstant(D->getType(), false));
1606 
1607     // Set linkage and visibility in case we never see a definition.
1608     LinkageInfo LV = D->getLinkageAndVisibility();
1609     if (LV.getLinkage() != ExternalLinkage) {
1610       // Don't set internal linkage on declarations.
1611     } else {
1612       if (D->hasAttr<DLLImportAttr>()) {
1613         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1614         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1615       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1616         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1617 
1618       // Set visibility on a declaration only if it's explicit.
1619       if (LV.isVisibilityExplicit())
1620         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1621     }
1622 
1623     if (D->getTLSKind()) {
1624       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1625         CXXThreadLocals.push_back(std::make_pair(D, GV));
1626       setTLSMode(GV, *D);
1627     }
1628 
1629     // If required by the ABI, treat declarations of static data members with
1630     // inline initializers as definitions.
1631     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1632         D->isStaticDataMember() && D->hasInit() &&
1633         !D->isThisDeclarationADefinition())
1634       EmitGlobalVarDefinition(D);
1635   }
1636 
1637   if (AddrSpace != Ty->getAddressSpace())
1638     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1639 
1640   if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1641       D->getLanguageLinkage() == CLanguageLinkage &&
1642       D->getType().isConstant(Context) &&
1643       isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1644     GV->setSection(".cp.rodata");
1645 
1646   return GV;
1647 }
1648 
1649 
1650 llvm::GlobalVariable *
1651 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1652                                       llvm::Type *Ty,
1653                                       llvm::GlobalValue::LinkageTypes Linkage) {
1654   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1655   llvm::GlobalVariable *OldGV = 0;
1656 
1657 
1658   if (GV) {
1659     // Check if the variable has the right type.
1660     if (GV->getType()->getElementType() == Ty)
1661       return GV;
1662 
1663     // Because C++ name mangling, the only way we can end up with an already
1664     // existing global with the same name is if it has been declared extern "C".
1665     assert(GV->isDeclaration() && "Declaration has wrong type!");
1666     OldGV = GV;
1667   }
1668 
1669   // Create a new variable.
1670   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1671                                 Linkage, 0, Name);
1672 
1673   if (OldGV) {
1674     // Replace occurrences of the old variable if needed.
1675     GV->takeName(OldGV);
1676 
1677     if (!OldGV->use_empty()) {
1678       llvm::Constant *NewPtrForOldDecl =
1679       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1680       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1681     }
1682 
1683     OldGV->eraseFromParent();
1684   }
1685 
1686   return GV;
1687 }
1688 
1689 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1690 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1691 /// then it will be created with the specified type instead of whatever the
1692 /// normal requested type would be.
1693 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1694                                                   llvm::Type *Ty) {
1695   assert(D->hasGlobalStorage() && "Not a global variable");
1696   QualType ASTTy = D->getType();
1697   if (Ty == 0)
1698     Ty = getTypes().ConvertTypeForMem(ASTTy);
1699 
1700   llvm::PointerType *PTy =
1701     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1702 
1703   StringRef MangledName = getMangledName(D);
1704   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1705 }
1706 
1707 /// CreateRuntimeVariable - Create a new runtime global variable with the
1708 /// specified type and name.
1709 llvm::Constant *
1710 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1711                                      StringRef Name) {
1712   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1713                                true);
1714 }
1715 
1716 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1717   assert(!D->getInit() && "Cannot emit definite definitions here!");
1718 
1719   if (MayDeferGeneration(D)) {
1720     // If we have not seen a reference to this variable yet, place it
1721     // into the deferred declarations table to be emitted if needed
1722     // later.
1723     StringRef MangledName = getMangledName(D);
1724     if (!GetGlobalValue(MangledName)) {
1725       DeferredDecls[MangledName] = D;
1726       return;
1727     }
1728   }
1729 
1730   // The tentative definition is the only definition.
1731   EmitGlobalVarDefinition(D);
1732 }
1733 
1734 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1735     return Context.toCharUnitsFromBits(
1736       TheDataLayout.getTypeStoreSizeInBits(Ty));
1737 }
1738 
1739 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1740                                                  unsigned AddrSpace) {
1741   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1742     if (D->hasAttr<CUDAConstantAttr>())
1743       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1744     else if (D->hasAttr<CUDASharedAttr>())
1745       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1746     else
1747       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1748   }
1749 
1750   return AddrSpace;
1751 }
1752 
1753 template<typename SomeDecl>
1754 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1755                                                llvm::GlobalValue *GV) {
1756   if (!getLangOpts().CPlusPlus)
1757     return;
1758 
1759   // Must have 'used' attribute, or else inline assembly can't rely on
1760   // the name existing.
1761   if (!D->template hasAttr<UsedAttr>())
1762     return;
1763 
1764   // Must have internal linkage and an ordinary name.
1765   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1766     return;
1767 
1768   // Must be in an extern "C" context. Entities declared directly within
1769   // a record are not extern "C" even if the record is in such a context.
1770   const SomeDecl *First = D->getFirstDecl();
1771   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1772     return;
1773 
1774   // OK, this is an internal linkage entity inside an extern "C" linkage
1775   // specification. Make a note of that so we can give it the "expected"
1776   // mangled name if nothing else is using that name.
1777   std::pair<StaticExternCMap::iterator, bool> R =
1778       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1779 
1780   // If we have multiple internal linkage entities with the same name
1781   // in extern "C" regions, none of them gets that name.
1782   if (!R.second)
1783     R.first->second = 0;
1784 }
1785 
1786 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1787   llvm::Constant *Init = 0;
1788   QualType ASTTy = D->getType();
1789   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1790   bool NeedsGlobalCtor = false;
1791   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1792 
1793   const VarDecl *InitDecl;
1794   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1795 
1796   if (!InitExpr) {
1797     // This is a tentative definition; tentative definitions are
1798     // implicitly initialized with { 0 }.
1799     //
1800     // Note that tentative definitions are only emitted at the end of
1801     // a translation unit, so they should never have incomplete
1802     // type. In addition, EmitTentativeDefinition makes sure that we
1803     // never attempt to emit a tentative definition if a real one
1804     // exists. A use may still exists, however, so we still may need
1805     // to do a RAUW.
1806     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1807     Init = EmitNullConstant(D->getType());
1808   } else {
1809     initializedGlobalDecl = GlobalDecl(D);
1810     Init = EmitConstantInit(*InitDecl);
1811 
1812     if (!Init) {
1813       QualType T = InitExpr->getType();
1814       if (D->getType()->isReferenceType())
1815         T = D->getType();
1816 
1817       if (getLangOpts().CPlusPlus) {
1818         Init = EmitNullConstant(T);
1819         NeedsGlobalCtor = true;
1820       } else {
1821         ErrorUnsupported(D, "static initializer");
1822         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1823       }
1824     } else {
1825       // We don't need an initializer, so remove the entry for the delayed
1826       // initializer position (just in case this entry was delayed) if we
1827       // also don't need to register a destructor.
1828       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1829         DelayedCXXInitPosition.erase(D);
1830     }
1831   }
1832 
1833   llvm::Type* InitType = Init->getType();
1834   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1835 
1836   // Strip off a bitcast if we got one back.
1837   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1838     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1839            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1840            // All zero index gep.
1841            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1842     Entry = CE->getOperand(0);
1843   }
1844 
1845   // Entry is now either a Function or GlobalVariable.
1846   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1847 
1848   // We have a definition after a declaration with the wrong type.
1849   // We must make a new GlobalVariable* and update everything that used OldGV
1850   // (a declaration or tentative definition) with the new GlobalVariable*
1851   // (which will be a definition).
1852   //
1853   // This happens if there is a prototype for a global (e.g.
1854   // "extern int x[];") and then a definition of a different type (e.g.
1855   // "int x[10];"). This also happens when an initializer has a different type
1856   // from the type of the global (this happens with unions).
1857   if (GV == 0 ||
1858       GV->getType()->getElementType() != InitType ||
1859       GV->getType()->getAddressSpace() !=
1860        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1861 
1862     // Move the old entry aside so that we'll create a new one.
1863     Entry->setName(StringRef());
1864 
1865     // Make a new global with the correct type, this is now guaranteed to work.
1866     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1867 
1868     // Replace all uses of the old global with the new global
1869     llvm::Constant *NewPtrForOldDecl =
1870         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1871     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1872 
1873     // Erase the old global, since it is no longer used.
1874     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1875   }
1876 
1877   MaybeHandleStaticInExternC(D, GV);
1878 
1879   if (D->hasAttr<AnnotateAttr>())
1880     AddGlobalAnnotations(D, GV);
1881 
1882   GV->setInitializer(Init);
1883 
1884   // If it is safe to mark the global 'constant', do so now.
1885   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1886                   isTypeConstant(D->getType(), true));
1887 
1888   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1889 
1890   // Set the llvm linkage type as appropriate.
1891   llvm::GlobalValue::LinkageTypes Linkage =
1892     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1893   GV->setLinkage(Linkage);
1894   if (D->hasAttr<DLLImportAttr>())
1895     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1896   else if (D->hasAttr<DLLExportAttr>())
1897     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1898 
1899   // If required by the ABI, give definitions of static data members with inline
1900   // initializers linkonce_odr linkage.
1901   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1902       D->isStaticDataMember() && InitExpr &&
1903       !InitDecl->isThisDeclarationADefinition())
1904     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1905 
1906   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1907     // common vars aren't constant even if declared const.
1908     GV->setConstant(false);
1909 
1910   SetCommonAttributes(D, GV);
1911 
1912   // Emit the initializer function if necessary.
1913   if (NeedsGlobalCtor || NeedsGlobalDtor)
1914     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1915 
1916   // If we are compiling with ASan, add metadata indicating dynamically
1917   // initialized globals.
1918   if (SanOpts.Address && NeedsGlobalCtor) {
1919     llvm::Module &M = getModule();
1920 
1921     llvm::NamedMDNode *DynamicInitializers =
1922         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1923     llvm::Value *GlobalToAdd[] = { GV };
1924     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1925     DynamicInitializers->addOperand(ThisGlobal);
1926   }
1927 
1928   // Emit global variable debug information.
1929   if (CGDebugInfo *DI = getModuleDebugInfo())
1930     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1931       DI->EmitGlobalVariable(GV, D);
1932 }
1933 
1934 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1935   // Don't give variables common linkage if -fno-common was specified unless it
1936   // was overridden by a NoCommon attribute.
1937   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1938     return true;
1939 
1940   // C11 6.9.2/2:
1941   //   A declaration of an identifier for an object that has file scope without
1942   //   an initializer, and without a storage-class specifier or with the
1943   //   storage-class specifier static, constitutes a tentative definition.
1944   if (D->getInit() || D->hasExternalStorage())
1945     return true;
1946 
1947   // A variable cannot be both common and exist in a section.
1948   if (D->hasAttr<SectionAttr>())
1949     return true;
1950 
1951   // Thread local vars aren't considered common linkage.
1952   if (D->getTLSKind())
1953     return true;
1954 
1955   // Tentative definitions marked with WeakImportAttr are true definitions.
1956   if (D->hasAttr<WeakImportAttr>())
1957     return true;
1958 
1959   return false;
1960 }
1961 
1962 llvm::GlobalValue::LinkageTypes
1963 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1964   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1965   if (Linkage == GVA_Internal)
1966     return llvm::Function::InternalLinkage;
1967   else if (D->hasAttr<DLLImportAttr>())
1968     return llvm::Function::ExternalLinkage;
1969   else if (D->hasAttr<DLLExportAttr>())
1970     return llvm::Function::ExternalLinkage;
1971   else if (D->hasAttr<SelectAnyAttr>()) {
1972     // selectany symbols are externally visible, so use weak instead of
1973     // linkonce.  MSVC optimizes away references to const selectany globals, so
1974     // all definitions should be the same and ODR linkage should be used.
1975     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1976     return llvm::GlobalVariable::WeakODRLinkage;
1977   } else if (D->hasAttr<WeakAttr>()) {
1978     if (isConstant)
1979       return llvm::GlobalVariable::WeakODRLinkage;
1980     else
1981       return llvm::GlobalVariable::WeakAnyLinkage;
1982   } else if (Linkage == GVA_TemplateInstantiation || Linkage == GVA_StrongODR)
1983     return llvm::GlobalVariable::WeakODRLinkage;
1984   else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1985            getTarget().getTriple().isMacOSX())
1986     // On Darwin, the backing variable for a C++11 thread_local variable always
1987     // has internal linkage; all accesses should just be calls to the
1988     // Itanium-specified entry point, which has the normal linkage of the
1989     // variable.
1990     return llvm::GlobalValue::InternalLinkage;
1991   // C++ doesn't have tentative definitions and thus cannot have common linkage.
1992   else if (!getLangOpts().CPlusPlus &&
1993            !isVarDeclStrongDefinition(D, CodeGenOpts.NoCommon))
1994     return llvm::GlobalVariable::CommonLinkage;
1995 
1996   return llvm::GlobalVariable::ExternalLinkage;
1997 }
1998 
1999 /// Replace the uses of a function that was declared with a non-proto type.
2000 /// We want to silently drop extra arguments from call sites
2001 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2002                                           llvm::Function *newFn) {
2003   // Fast path.
2004   if (old->use_empty()) return;
2005 
2006   llvm::Type *newRetTy = newFn->getReturnType();
2007   SmallVector<llvm::Value*, 4> newArgs;
2008 
2009   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2010          ui != ue; ) {
2011     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2012     llvm::User *user = use->getUser();
2013 
2014     // Recognize and replace uses of bitcasts.  Most calls to
2015     // unprototyped functions will use bitcasts.
2016     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2017       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2018         replaceUsesOfNonProtoConstant(bitcast, newFn);
2019       continue;
2020     }
2021 
2022     // Recognize calls to the function.
2023     llvm::CallSite callSite(user);
2024     if (!callSite) continue;
2025     if (!callSite.isCallee(&*use)) continue;
2026 
2027     // If the return types don't match exactly, then we can't
2028     // transform this call unless it's dead.
2029     if (callSite->getType() != newRetTy && !callSite->use_empty())
2030       continue;
2031 
2032     // Get the call site's attribute list.
2033     SmallVector<llvm::AttributeSet, 8> newAttrs;
2034     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2035 
2036     // Collect any return attributes from the call.
2037     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2038       newAttrs.push_back(
2039         llvm::AttributeSet::get(newFn->getContext(),
2040                                 oldAttrs.getRetAttributes()));
2041 
2042     // If the function was passed too few arguments, don't transform.
2043     unsigned newNumArgs = newFn->arg_size();
2044     if (callSite.arg_size() < newNumArgs) continue;
2045 
2046     // If extra arguments were passed, we silently drop them.
2047     // If any of the types mismatch, we don't transform.
2048     unsigned argNo = 0;
2049     bool dontTransform = false;
2050     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2051            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2052       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2053         dontTransform = true;
2054         break;
2055       }
2056 
2057       // Add any parameter attributes.
2058       if (oldAttrs.hasAttributes(argNo + 1))
2059         newAttrs.
2060           push_back(llvm::
2061                     AttributeSet::get(newFn->getContext(),
2062                                       oldAttrs.getParamAttributes(argNo + 1)));
2063     }
2064     if (dontTransform)
2065       continue;
2066 
2067     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2068       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2069                                                  oldAttrs.getFnAttributes()));
2070 
2071     // Okay, we can transform this.  Create the new call instruction and copy
2072     // over the required information.
2073     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2074 
2075     llvm::CallSite newCall;
2076     if (callSite.isCall()) {
2077       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2078                                        callSite.getInstruction());
2079     } else {
2080       llvm::InvokeInst *oldInvoke =
2081         cast<llvm::InvokeInst>(callSite.getInstruction());
2082       newCall = llvm::InvokeInst::Create(newFn,
2083                                          oldInvoke->getNormalDest(),
2084                                          oldInvoke->getUnwindDest(),
2085                                          newArgs, "",
2086                                          callSite.getInstruction());
2087     }
2088     newArgs.clear(); // for the next iteration
2089 
2090     if (!newCall->getType()->isVoidTy())
2091       newCall->takeName(callSite.getInstruction());
2092     newCall.setAttributes(
2093                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2094     newCall.setCallingConv(callSite.getCallingConv());
2095 
2096     // Finally, remove the old call, replacing any uses with the new one.
2097     if (!callSite->use_empty())
2098       callSite->replaceAllUsesWith(newCall.getInstruction());
2099 
2100     // Copy debug location attached to CI.
2101     if (!callSite->getDebugLoc().isUnknown())
2102       newCall->setDebugLoc(callSite->getDebugLoc());
2103     callSite->eraseFromParent();
2104   }
2105 }
2106 
2107 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2108 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2109 /// existing call uses of the old function in the module, this adjusts them to
2110 /// call the new function directly.
2111 ///
2112 /// This is not just a cleanup: the always_inline pass requires direct calls to
2113 /// functions to be able to inline them.  If there is a bitcast in the way, it
2114 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2115 /// run at -O0.
2116 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2117                                                       llvm::Function *NewFn) {
2118   // If we're redefining a global as a function, don't transform it.
2119   if (!isa<llvm::Function>(Old)) return;
2120 
2121   replaceUsesOfNonProtoConstant(Old, NewFn);
2122 }
2123 
2124 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2125   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2126   // If we have a definition, this might be a deferred decl. If the
2127   // instantiation is explicit, make sure we emit it at the end.
2128   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2129     GetAddrOfGlobalVar(VD);
2130 
2131   EmitTopLevelDecl(VD);
2132 }
2133 
2134 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2135                                                  llvm::GlobalValue *GV) {
2136   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2137 
2138   // Compute the function info and LLVM type.
2139   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2140   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2141 
2142   // Get or create the prototype for the function.
2143   llvm::Constant *Entry =
2144       GV ? GV
2145          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2146 
2147   // Strip off a bitcast if we got one back.
2148   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2149     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2150     Entry = CE->getOperand(0);
2151   }
2152 
2153   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2154     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2155     return;
2156   }
2157 
2158   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2159     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2160 
2161     // If the types mismatch then we have to rewrite the definition.
2162     assert(OldFn->isDeclaration() &&
2163            "Shouldn't replace non-declaration");
2164 
2165     // F is the Function* for the one with the wrong type, we must make a new
2166     // Function* and update everything that used F (a declaration) with the new
2167     // Function* (which will be a definition).
2168     //
2169     // This happens if there is a prototype for a function
2170     // (e.g. "int f()") and then a definition of a different type
2171     // (e.g. "int f(int x)").  Move the old function aside so that it
2172     // doesn't interfere with GetAddrOfFunction.
2173     OldFn->setName(StringRef());
2174     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2175 
2176     // This might be an implementation of a function without a
2177     // prototype, in which case, try to do special replacement of
2178     // calls which match the new prototype.  The really key thing here
2179     // is that we also potentially drop arguments from the call site
2180     // so as to make a direct call, which makes the inliner happier
2181     // and suppresses a number of optimizer warnings (!) about
2182     // dropping arguments.
2183     if (!OldFn->use_empty()) {
2184       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2185       OldFn->removeDeadConstantUsers();
2186     }
2187 
2188     // Replace uses of F with the Function we will endow with a body.
2189     if (!Entry->use_empty()) {
2190       llvm::Constant *NewPtrForOldDecl =
2191         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2192       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2193     }
2194 
2195     // Ok, delete the old function now, which is dead.
2196     OldFn->eraseFromParent();
2197 
2198     Entry = NewFn;
2199   }
2200 
2201   // We need to set linkage and visibility on the function before
2202   // generating code for it because various parts of IR generation
2203   // want to propagate this information down (e.g. to local static
2204   // declarations).
2205   llvm::Function *Fn = cast<llvm::Function>(Entry);
2206   setFunctionLinkage(GD, Fn);
2207 
2208   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2209   setGlobalVisibility(Fn, D);
2210 
2211   MaybeHandleStaticInExternC(D, Fn);
2212 
2213   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2214 
2215   SetFunctionDefinitionAttributes(D, Fn);
2216   SetLLVMFunctionAttributesForDefinition(D, Fn);
2217 
2218   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2219     AddGlobalCtor(Fn, CA->getPriority());
2220   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2221     AddGlobalDtor(Fn, DA->getPriority());
2222   if (D->hasAttr<AnnotateAttr>())
2223     AddGlobalAnnotations(D, Fn);
2224 }
2225 
2226 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2227   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2228   const AliasAttr *AA = D->getAttr<AliasAttr>();
2229   assert(AA && "Not an alias?");
2230 
2231   StringRef MangledName = getMangledName(GD);
2232 
2233   // If there is a definition in the module, then it wins over the alias.
2234   // This is dubious, but allow it to be safe.  Just ignore the alias.
2235   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2236   if (Entry && !Entry->isDeclaration())
2237     return;
2238 
2239   Aliases.push_back(GD);
2240 
2241   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2242 
2243   // Create a reference to the named value.  This ensures that it is emitted
2244   // if a deferred decl.
2245   llvm::Constant *Aliasee;
2246   if (isa<llvm::FunctionType>(DeclTy))
2247     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2248                                       /*ForVTable=*/false);
2249   else
2250     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2251                                     llvm::PointerType::getUnqual(DeclTy), 0);
2252 
2253   // Create the new alias itself, but don't set a name yet.
2254   llvm::GlobalValue *GA =
2255     new llvm::GlobalAlias(Aliasee->getType(),
2256                           llvm::Function::ExternalLinkage,
2257                           "", Aliasee, &getModule());
2258 
2259   if (Entry) {
2260     assert(Entry->isDeclaration());
2261 
2262     // If there is a declaration in the module, then we had an extern followed
2263     // by the alias, as in:
2264     //   extern int test6();
2265     //   ...
2266     //   int test6() __attribute__((alias("test7")));
2267     //
2268     // Remove it and replace uses of it with the alias.
2269     GA->takeName(Entry);
2270 
2271     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2272                                                           Entry->getType()));
2273     Entry->eraseFromParent();
2274   } else {
2275     GA->setName(MangledName);
2276   }
2277 
2278   // Set attributes which are particular to an alias; this is a
2279   // specialization of the attributes which may be set on a global
2280   // variable/function.
2281   if (D->hasAttr<DLLExportAttr>()) {
2282     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2283       // The dllexport attribute is ignored for undefined symbols.
2284       if (FD->hasBody())
2285         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2286     } else {
2287       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2288     }
2289   } else if (D->hasAttr<WeakAttr>() ||
2290              D->hasAttr<WeakRefAttr>() ||
2291              D->isWeakImported()) {
2292     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2293   }
2294 
2295   SetCommonAttributes(D, GA);
2296 }
2297 
2298 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2299                                             ArrayRef<llvm::Type*> Tys) {
2300   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2301                                          Tys);
2302 }
2303 
2304 static llvm::StringMapEntry<llvm::Constant*> &
2305 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2306                          const StringLiteral *Literal,
2307                          bool TargetIsLSB,
2308                          bool &IsUTF16,
2309                          unsigned &StringLength) {
2310   StringRef String = Literal->getString();
2311   unsigned NumBytes = String.size();
2312 
2313   // Check for simple case.
2314   if (!Literal->containsNonAsciiOrNull()) {
2315     StringLength = NumBytes;
2316     return Map.GetOrCreateValue(String);
2317   }
2318 
2319   // Otherwise, convert the UTF8 literals into a string of shorts.
2320   IsUTF16 = true;
2321 
2322   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2323   const UTF8 *FromPtr = (const UTF8 *)String.data();
2324   UTF16 *ToPtr = &ToBuf[0];
2325 
2326   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2327                            &ToPtr, ToPtr + NumBytes,
2328                            strictConversion);
2329 
2330   // ConvertUTF8toUTF16 returns the length in ToPtr.
2331   StringLength = ToPtr - &ToBuf[0];
2332 
2333   // Add an explicit null.
2334   *ToPtr = 0;
2335   return Map.
2336     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2337                                (StringLength + 1) * 2));
2338 }
2339 
2340 static llvm::StringMapEntry<llvm::Constant*> &
2341 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2342                        const StringLiteral *Literal,
2343                        unsigned &StringLength) {
2344   StringRef String = Literal->getString();
2345   StringLength = String.size();
2346   return Map.GetOrCreateValue(String);
2347 }
2348 
2349 llvm::Constant *
2350 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2351   unsigned StringLength = 0;
2352   bool isUTF16 = false;
2353   llvm::StringMapEntry<llvm::Constant*> &Entry =
2354     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2355                              getDataLayout().isLittleEndian(),
2356                              isUTF16, StringLength);
2357 
2358   if (llvm::Constant *C = Entry.getValue())
2359     return C;
2360 
2361   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2362   llvm::Constant *Zeros[] = { Zero, Zero };
2363   llvm::Value *V;
2364 
2365   // If we don't already have it, get __CFConstantStringClassReference.
2366   if (!CFConstantStringClassRef) {
2367     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2368     Ty = llvm::ArrayType::get(Ty, 0);
2369     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2370                                            "__CFConstantStringClassReference");
2371     // Decay array -> ptr
2372     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2373     CFConstantStringClassRef = V;
2374   }
2375   else
2376     V = CFConstantStringClassRef;
2377 
2378   QualType CFTy = getContext().getCFConstantStringType();
2379 
2380   llvm::StructType *STy =
2381     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2382 
2383   llvm::Constant *Fields[4];
2384 
2385   // Class pointer.
2386   Fields[0] = cast<llvm::ConstantExpr>(V);
2387 
2388   // Flags.
2389   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2390   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2391     llvm::ConstantInt::get(Ty, 0x07C8);
2392 
2393   // String pointer.
2394   llvm::Constant *C = 0;
2395   if (isUTF16) {
2396     ArrayRef<uint16_t> Arr =
2397       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2398                                      const_cast<char *>(Entry.getKey().data())),
2399                                    Entry.getKey().size() / 2);
2400     C = llvm::ConstantDataArray::get(VMContext, Arr);
2401   } else {
2402     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2403   }
2404 
2405   // Note: -fwritable-strings doesn't make the backing store strings of
2406   // CFStrings writable. (See <rdar://problem/10657500>)
2407   llvm::GlobalVariable *GV =
2408       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2409                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2410   GV->setUnnamedAddr(true);
2411   // Don't enforce the target's minimum global alignment, since the only use
2412   // of the string is via this class initializer.
2413   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2414   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2415   // that changes the section it ends in, which surprises ld64.
2416   if (isUTF16) {
2417     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2418     GV->setAlignment(Align.getQuantity());
2419     GV->setSection("__TEXT,__ustring");
2420   } else {
2421     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2422     GV->setAlignment(Align.getQuantity());
2423     GV->setSection("__TEXT,__cstring,cstring_literals");
2424   }
2425 
2426   // String.
2427   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2428 
2429   if (isUTF16)
2430     // Cast the UTF16 string to the correct type.
2431     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2432 
2433   // String length.
2434   Ty = getTypes().ConvertType(getContext().LongTy);
2435   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2436 
2437   // The struct.
2438   C = llvm::ConstantStruct::get(STy, Fields);
2439   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2440                                 llvm::GlobalVariable::PrivateLinkage, C,
2441                                 "_unnamed_cfstring_");
2442   GV->setSection("__DATA,__cfstring");
2443   Entry.setValue(GV);
2444 
2445   return GV;
2446 }
2447 
2448 llvm::Constant *
2449 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2450   unsigned StringLength = 0;
2451   llvm::StringMapEntry<llvm::Constant*> &Entry =
2452     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2453 
2454   if (llvm::Constant *C = Entry.getValue())
2455     return C;
2456 
2457   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2458   llvm::Constant *Zeros[] = { Zero, Zero };
2459   llvm::Value *V;
2460   // If we don't already have it, get _NSConstantStringClassReference.
2461   if (!ConstantStringClassRef) {
2462     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2463     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2464     llvm::Constant *GV;
2465     if (LangOpts.ObjCRuntime.isNonFragile()) {
2466       std::string str =
2467         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2468                             : "OBJC_CLASS_$_" + StringClass;
2469       GV = getObjCRuntime().GetClassGlobal(str);
2470       // Make sure the result is of the correct type.
2471       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2472       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2473       ConstantStringClassRef = V;
2474     } else {
2475       std::string str =
2476         StringClass.empty() ? "_NSConstantStringClassReference"
2477                             : "_" + StringClass + "ClassReference";
2478       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2479       GV = CreateRuntimeVariable(PTy, str);
2480       // Decay array -> ptr
2481       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2482       ConstantStringClassRef = V;
2483     }
2484   }
2485   else
2486     V = ConstantStringClassRef;
2487 
2488   if (!NSConstantStringType) {
2489     // Construct the type for a constant NSString.
2490     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2491     D->startDefinition();
2492 
2493     QualType FieldTypes[3];
2494 
2495     // const int *isa;
2496     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2497     // const char *str;
2498     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2499     // unsigned int length;
2500     FieldTypes[2] = Context.UnsignedIntTy;
2501 
2502     // Create fields
2503     for (unsigned i = 0; i < 3; ++i) {
2504       FieldDecl *Field = FieldDecl::Create(Context, D,
2505                                            SourceLocation(),
2506                                            SourceLocation(), 0,
2507                                            FieldTypes[i], /*TInfo=*/0,
2508                                            /*BitWidth=*/0,
2509                                            /*Mutable=*/false,
2510                                            ICIS_NoInit);
2511       Field->setAccess(AS_public);
2512       D->addDecl(Field);
2513     }
2514 
2515     D->completeDefinition();
2516     QualType NSTy = Context.getTagDeclType(D);
2517     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2518   }
2519 
2520   llvm::Constant *Fields[3];
2521 
2522   // Class pointer.
2523   Fields[0] = cast<llvm::ConstantExpr>(V);
2524 
2525   // String pointer.
2526   llvm::Constant *C =
2527     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2528 
2529   llvm::GlobalValue::LinkageTypes Linkage;
2530   bool isConstant;
2531   Linkage = llvm::GlobalValue::PrivateLinkage;
2532   isConstant = !LangOpts.WritableStrings;
2533 
2534   llvm::GlobalVariable *GV =
2535   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2536                            ".str");
2537   GV->setUnnamedAddr(true);
2538   // Don't enforce the target's minimum global alignment, since the only use
2539   // of the string is via this class initializer.
2540   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2541   GV->setAlignment(Align.getQuantity());
2542   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2543 
2544   // String length.
2545   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2546   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2547 
2548   // The struct.
2549   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2550   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2551                                 llvm::GlobalVariable::PrivateLinkage, C,
2552                                 "_unnamed_nsstring_");
2553   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2554   const char *NSStringNonFragileABISection =
2555       "__DATA,__objc_stringobj,regular,no_dead_strip";
2556   // FIXME. Fix section.
2557   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2558                      ? NSStringNonFragileABISection
2559                      : NSStringSection);
2560   Entry.setValue(GV);
2561 
2562   return GV;
2563 }
2564 
2565 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2566   if (ObjCFastEnumerationStateType.isNull()) {
2567     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2568     D->startDefinition();
2569 
2570     QualType FieldTypes[] = {
2571       Context.UnsignedLongTy,
2572       Context.getPointerType(Context.getObjCIdType()),
2573       Context.getPointerType(Context.UnsignedLongTy),
2574       Context.getConstantArrayType(Context.UnsignedLongTy,
2575                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2576     };
2577 
2578     for (size_t i = 0; i < 4; ++i) {
2579       FieldDecl *Field = FieldDecl::Create(Context,
2580                                            D,
2581                                            SourceLocation(),
2582                                            SourceLocation(), 0,
2583                                            FieldTypes[i], /*TInfo=*/0,
2584                                            /*BitWidth=*/0,
2585                                            /*Mutable=*/false,
2586                                            ICIS_NoInit);
2587       Field->setAccess(AS_public);
2588       D->addDecl(Field);
2589     }
2590 
2591     D->completeDefinition();
2592     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2593   }
2594 
2595   return ObjCFastEnumerationStateType;
2596 }
2597 
2598 llvm::Constant *
2599 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2600   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2601 
2602   // Don't emit it as the address of the string, emit the string data itself
2603   // as an inline array.
2604   if (E->getCharByteWidth() == 1) {
2605     SmallString<64> Str(E->getString());
2606 
2607     // Resize the string to the right size, which is indicated by its type.
2608     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2609     Str.resize(CAT->getSize().getZExtValue());
2610     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2611   }
2612 
2613   llvm::ArrayType *AType =
2614     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2615   llvm::Type *ElemTy = AType->getElementType();
2616   unsigned NumElements = AType->getNumElements();
2617 
2618   // Wide strings have either 2-byte or 4-byte elements.
2619   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2620     SmallVector<uint16_t, 32> Elements;
2621     Elements.reserve(NumElements);
2622 
2623     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2624       Elements.push_back(E->getCodeUnit(i));
2625     Elements.resize(NumElements);
2626     return llvm::ConstantDataArray::get(VMContext, Elements);
2627   }
2628 
2629   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2630   SmallVector<uint32_t, 32> Elements;
2631   Elements.reserve(NumElements);
2632 
2633   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2634     Elements.push_back(E->getCodeUnit(i));
2635   Elements.resize(NumElements);
2636   return llvm::ConstantDataArray::get(VMContext, Elements);
2637 }
2638 
2639 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2640 /// constant array for the given string literal.
2641 llvm::Constant *
2642 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2643   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2644 
2645   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2646   llvm::GlobalVariable *GV = nullptr;
2647   if (!LangOpts.WritableStrings) {
2648     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2649     switch (S->getCharByteWidth()) {
2650     case 1:
2651       ConstantStringMap = &Constant1ByteStringMap;
2652       break;
2653     case 2:
2654       ConstantStringMap = &Constant2ByteStringMap;
2655       break;
2656     case 4:
2657       ConstantStringMap = &Constant4ByteStringMap;
2658       break;
2659     default:
2660       llvm_unreachable("unhandled byte width!");
2661     }
2662     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2663     GV = Entry->getValue();
2664   }
2665 
2666   if (!GV) {
2667     SmallString<256> MangledNameBuffer;
2668     StringRef GlobalVariableName;
2669     llvm::GlobalValue::LinkageTypes LT;
2670 
2671     // Mangle the string literal if the ABI allows for it.  However, we cannot
2672     // do this if  we are compiling with ASan or -fwritable-strings because they
2673     // rely on strings having normal linkage.
2674     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2675         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2676       llvm::raw_svector_ostream Out(MangledNameBuffer);
2677       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2678       Out.flush();
2679 
2680       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2681       GlobalVariableName = MangledNameBuffer;
2682     } else {
2683       LT = llvm::GlobalValue::PrivateLinkage;;
2684       GlobalVariableName = ".str";
2685     }
2686 
2687     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2688     unsigned AddrSpace = 0;
2689     if (getLangOpts().OpenCL)
2690       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2691 
2692     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2693     GV = new llvm::GlobalVariable(
2694         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2695         GlobalVariableName, /*InsertBefore=*/nullptr,
2696         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2697     GV->setUnnamedAddr(true);
2698     if (Entry)
2699       Entry->setValue(GV);
2700   }
2701 
2702   if (Align.getQuantity() > GV->getAlignment())
2703     GV->setAlignment(Align.getQuantity());
2704 
2705   return GV;
2706 }
2707 
2708 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2709 /// array for the given ObjCEncodeExpr node.
2710 llvm::Constant *
2711 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2712   std::string Str;
2713   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2714 
2715   return GetAddrOfConstantCString(Str);
2716 }
2717 
2718 
2719 /// GenerateWritableString -- Creates storage for a string literal.
2720 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2721                                              bool constant,
2722                                              CodeGenModule &CGM,
2723                                              const char *GlobalName,
2724                                              unsigned Alignment) {
2725   // Create Constant for this string literal. Don't add a '\0'.
2726   llvm::Constant *C =
2727       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2728 
2729   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2730   unsigned AddrSpace = 0;
2731   if (CGM.getLangOpts().OpenCL)
2732     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2733 
2734   // Create a global variable for this string
2735   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2736       CGM.getModule(), C->getType(), constant,
2737       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2738       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2739   GV->setAlignment(Alignment);
2740   GV->setUnnamedAddr(true);
2741   return GV;
2742 }
2743 
2744 /// GetAddrOfConstantString - Returns a pointer to a character array
2745 /// containing the literal. This contents are exactly that of the
2746 /// given string, i.e. it will not be null terminated automatically;
2747 /// see GetAddrOfConstantCString. Note that whether the result is
2748 /// actually a pointer to an LLVM constant depends on
2749 /// Feature.WriteableStrings.
2750 ///
2751 /// The result has pointer to array type.
2752 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2753                                                        const char *GlobalName,
2754                                                        unsigned Alignment) {
2755   // Get the default prefix if a name wasn't specified.
2756   if (!GlobalName)
2757     GlobalName = ".str";
2758 
2759   if (Alignment == 0)
2760     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2761       .getQuantity();
2762 
2763   // Don't share any string literals if strings aren't constant.
2764   if (LangOpts.WritableStrings)
2765     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2766 
2767   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2768     Constant1ByteStringMap.GetOrCreateValue(Str);
2769 
2770   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2771     if (Alignment > GV->getAlignment()) {
2772       GV->setAlignment(Alignment);
2773     }
2774     return GV;
2775   }
2776 
2777   // Create a global variable for this.
2778   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2779                                                    Alignment);
2780   Entry.setValue(GV);
2781   return GV;
2782 }
2783 
2784 /// GetAddrOfConstantCString - Returns a pointer to a character
2785 /// array containing the literal and a terminating '\0'
2786 /// character. The result has pointer to array type.
2787 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2788                                                         const char *GlobalName,
2789                                                         unsigned Alignment) {
2790   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2791   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2792 }
2793 
2794 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2795     const MaterializeTemporaryExpr *E, const Expr *Init) {
2796   assert((E->getStorageDuration() == SD_Static ||
2797           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2798   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2799 
2800   // If we're not materializing a subobject of the temporary, keep the
2801   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2802   QualType MaterializedType = Init->getType();
2803   if (Init == E->GetTemporaryExpr())
2804     MaterializedType = E->getType();
2805 
2806   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2807   if (Slot)
2808     return Slot;
2809 
2810   // FIXME: If an externally-visible declaration extends multiple temporaries,
2811   // we need to give each temporary the same name in every translation unit (and
2812   // we also need to make the temporaries externally-visible).
2813   SmallString<256> Name;
2814   llvm::raw_svector_ostream Out(Name);
2815   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2816   Out.flush();
2817 
2818   APValue *Value = 0;
2819   if (E->getStorageDuration() == SD_Static) {
2820     // We might have a cached constant initializer for this temporary. Note
2821     // that this might have a different value from the value computed by
2822     // evaluating the initializer if the surrounding constant expression
2823     // modifies the temporary.
2824     Value = getContext().getMaterializedTemporaryValue(E, false);
2825     if (Value && Value->isUninit())
2826       Value = 0;
2827   }
2828 
2829   // Try evaluating it now, it might have a constant initializer.
2830   Expr::EvalResult EvalResult;
2831   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2832       !EvalResult.hasSideEffects())
2833     Value = &EvalResult.Val;
2834 
2835   llvm::Constant *InitialValue = 0;
2836   bool Constant = false;
2837   llvm::Type *Type;
2838   if (Value) {
2839     // The temporary has a constant initializer, use it.
2840     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2841     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2842     Type = InitialValue->getType();
2843   } else {
2844     // No initializer, the initialization will be provided when we
2845     // initialize the declaration which performed lifetime extension.
2846     Type = getTypes().ConvertTypeForMem(MaterializedType);
2847   }
2848 
2849   // Create a global variable for this lifetime-extended temporary.
2850   llvm::GlobalVariable *GV =
2851     new llvm::GlobalVariable(getModule(), Type, Constant,
2852                              llvm::GlobalValue::PrivateLinkage,
2853                              InitialValue, Name.c_str());
2854   GV->setAlignment(
2855       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2856   if (VD->getTLSKind())
2857     setTLSMode(GV, *VD);
2858   Slot = GV;
2859   return GV;
2860 }
2861 
2862 /// EmitObjCPropertyImplementations - Emit information for synthesized
2863 /// properties for an implementation.
2864 void CodeGenModule::EmitObjCPropertyImplementations(const
2865                                                     ObjCImplementationDecl *D) {
2866   for (const auto *PID : D->property_impls()) {
2867     // Dynamic is just for type-checking.
2868     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2869       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2870 
2871       // Determine which methods need to be implemented, some may have
2872       // been overridden. Note that ::isPropertyAccessor is not the method
2873       // we want, that just indicates if the decl came from a
2874       // property. What we want to know is if the method is defined in
2875       // this implementation.
2876       if (!D->getInstanceMethod(PD->getGetterName()))
2877         CodeGenFunction(*this).GenerateObjCGetter(
2878                                  const_cast<ObjCImplementationDecl *>(D), PID);
2879       if (!PD->isReadOnly() &&
2880           !D->getInstanceMethod(PD->getSetterName()))
2881         CodeGenFunction(*this).GenerateObjCSetter(
2882                                  const_cast<ObjCImplementationDecl *>(D), PID);
2883     }
2884   }
2885 }
2886 
2887 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2888   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2889   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2890        ivar; ivar = ivar->getNextIvar())
2891     if (ivar->getType().isDestructedType())
2892       return true;
2893 
2894   return false;
2895 }
2896 
2897 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2898 /// for an implementation.
2899 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2900   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2901   if (needsDestructMethod(D)) {
2902     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2903     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2904     ObjCMethodDecl *DTORMethod =
2905       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2906                              cxxSelector, getContext().VoidTy, 0, D,
2907                              /*isInstance=*/true, /*isVariadic=*/false,
2908                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2909                              /*isDefined=*/false, ObjCMethodDecl::Required);
2910     D->addInstanceMethod(DTORMethod);
2911     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2912     D->setHasDestructors(true);
2913   }
2914 
2915   // If the implementation doesn't have any ivar initializers, we don't need
2916   // a .cxx_construct.
2917   if (D->getNumIvarInitializers() == 0)
2918     return;
2919 
2920   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2921   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2922   // The constructor returns 'self'.
2923   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2924                                                 D->getLocation(),
2925                                                 D->getLocation(),
2926                                                 cxxSelector,
2927                                                 getContext().getObjCIdType(), 0,
2928                                                 D, /*isInstance=*/true,
2929                                                 /*isVariadic=*/false,
2930                                                 /*isPropertyAccessor=*/true,
2931                                                 /*isImplicitlyDeclared=*/true,
2932                                                 /*isDefined=*/false,
2933                                                 ObjCMethodDecl::Required);
2934   D->addInstanceMethod(CTORMethod);
2935   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2936   D->setHasNonZeroConstructors(true);
2937 }
2938 
2939 /// EmitNamespace - Emit all declarations in a namespace.
2940 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2941   for (auto *I : ND->decls()) {
2942     if (const auto *VD = dyn_cast<VarDecl>(I))
2943       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2944           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2945         continue;
2946     EmitTopLevelDecl(I);
2947   }
2948 }
2949 
2950 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2951 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2952   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2953       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2954     ErrorUnsupported(LSD, "linkage spec");
2955     return;
2956   }
2957 
2958   for (auto *I : LSD->decls()) {
2959     // Meta-data for ObjC class includes references to implemented methods.
2960     // Generate class's method definitions first.
2961     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2962       for (auto *M : OID->methods())
2963         EmitTopLevelDecl(M);
2964     }
2965     EmitTopLevelDecl(I);
2966   }
2967 }
2968 
2969 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2970 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2971   // Ignore dependent declarations.
2972   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2973     return;
2974 
2975   switch (D->getKind()) {
2976   case Decl::CXXConversion:
2977   case Decl::CXXMethod:
2978   case Decl::Function:
2979     // Skip function templates
2980     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2981         cast<FunctionDecl>(D)->isLateTemplateParsed())
2982       return;
2983 
2984     EmitGlobal(cast<FunctionDecl>(D));
2985     break;
2986 
2987   case Decl::Var:
2988     // Skip variable templates
2989     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2990       return;
2991   case Decl::VarTemplateSpecialization:
2992     EmitGlobal(cast<VarDecl>(D));
2993     break;
2994 
2995   // Indirect fields from global anonymous structs and unions can be
2996   // ignored; only the actual variable requires IR gen support.
2997   case Decl::IndirectField:
2998     break;
2999 
3000   // C++ Decls
3001   case Decl::Namespace:
3002     EmitNamespace(cast<NamespaceDecl>(D));
3003     break;
3004     // No code generation needed.
3005   case Decl::UsingShadow:
3006   case Decl::ClassTemplate:
3007   case Decl::VarTemplate:
3008   case Decl::VarTemplatePartialSpecialization:
3009   case Decl::FunctionTemplate:
3010   case Decl::TypeAliasTemplate:
3011   case Decl::Block:
3012   case Decl::Empty:
3013     break;
3014   case Decl::Using:          // using X; [C++]
3015     if (CGDebugInfo *DI = getModuleDebugInfo())
3016         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3017     return;
3018   case Decl::NamespaceAlias:
3019     if (CGDebugInfo *DI = getModuleDebugInfo())
3020         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3021     return;
3022   case Decl::UsingDirective: // using namespace X; [C++]
3023     if (CGDebugInfo *DI = getModuleDebugInfo())
3024       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3025     return;
3026   case Decl::CXXConstructor:
3027     // Skip function templates
3028     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3029         cast<FunctionDecl>(D)->isLateTemplateParsed())
3030       return;
3031 
3032     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3033     break;
3034   case Decl::CXXDestructor:
3035     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3036       return;
3037     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3038     break;
3039 
3040   case Decl::StaticAssert:
3041     // Nothing to do.
3042     break;
3043 
3044   // Objective-C Decls
3045 
3046   // Forward declarations, no (immediate) code generation.
3047   case Decl::ObjCInterface:
3048   case Decl::ObjCCategory:
3049     break;
3050 
3051   case Decl::ObjCProtocol: {
3052     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
3053     if (Proto->isThisDeclarationADefinition())
3054       ObjCRuntime->GenerateProtocol(Proto);
3055     break;
3056   }
3057 
3058   case Decl::ObjCCategoryImpl:
3059     // Categories have properties but don't support synthesize so we
3060     // can ignore them here.
3061     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3062     break;
3063 
3064   case Decl::ObjCImplementation: {
3065     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3066     EmitObjCPropertyImplementations(OMD);
3067     EmitObjCIvarInitializations(OMD);
3068     ObjCRuntime->GenerateClass(OMD);
3069     // Emit global variable debug information.
3070     if (CGDebugInfo *DI = getModuleDebugInfo())
3071       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3072         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3073             OMD->getClassInterface()), OMD->getLocation());
3074     break;
3075   }
3076   case Decl::ObjCMethod: {
3077     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3078     // If this is not a prototype, emit the body.
3079     if (OMD->getBody())
3080       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3081     break;
3082   }
3083   case Decl::ObjCCompatibleAlias:
3084     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3085     break;
3086 
3087   case Decl::LinkageSpec:
3088     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3089     break;
3090 
3091   case Decl::FileScopeAsm: {
3092     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3093     StringRef AsmString = AD->getAsmString()->getString();
3094 
3095     const std::string &S = getModule().getModuleInlineAsm();
3096     if (S.empty())
3097       getModule().setModuleInlineAsm(AsmString);
3098     else if (S.end()[-1] == '\n')
3099       getModule().setModuleInlineAsm(S + AsmString.str());
3100     else
3101       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3102     break;
3103   }
3104 
3105   case Decl::Import: {
3106     ImportDecl *Import = cast<ImportDecl>(D);
3107 
3108     // Ignore import declarations that come from imported modules.
3109     if (clang::Module *Owner = Import->getOwningModule()) {
3110       if (getLangOpts().CurrentModule.empty() ||
3111           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3112         break;
3113     }
3114 
3115     ImportedModules.insert(Import->getImportedModule());
3116     break;
3117   }
3118 
3119   case Decl::ClassTemplateSpecialization: {
3120     const ClassTemplateSpecializationDecl *Spec =
3121         cast<ClassTemplateSpecializationDecl>(D);
3122     if (DebugInfo &&
3123         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3124       DebugInfo->completeTemplateDefinition(*Spec);
3125   }
3126 
3127   default:
3128     // Make sure we handled everything we should, every other kind is a
3129     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3130     // function. Need to recode Decl::Kind to do that easily.
3131     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3132   }
3133 }
3134 
3135 /// Turns the given pointer into a constant.
3136 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3137                                           const void *Ptr) {
3138   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3139   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3140   return llvm::ConstantInt::get(i64, PtrInt);
3141 }
3142 
3143 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3144                                    llvm::NamedMDNode *&GlobalMetadata,
3145                                    GlobalDecl D,
3146                                    llvm::GlobalValue *Addr) {
3147   if (!GlobalMetadata)
3148     GlobalMetadata =
3149       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3150 
3151   // TODO: should we report variant information for ctors/dtors?
3152   llvm::Value *Ops[] = {
3153     Addr,
3154     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3155   };
3156   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3157 }
3158 
3159 /// For each function which is declared within an extern "C" region and marked
3160 /// as 'used', but has internal linkage, create an alias from the unmangled
3161 /// name to the mangled name if possible. People expect to be able to refer
3162 /// to such functions with an unmangled name from inline assembly within the
3163 /// same translation unit.
3164 void CodeGenModule::EmitStaticExternCAliases() {
3165   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3166                                   E = StaticExternCValues.end();
3167        I != E; ++I) {
3168     IdentifierInfo *Name = I->first;
3169     llvm::GlobalValue *Val = I->second;
3170     if (Val && !getModule().getNamedValue(Name->getName()))
3171       addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3172                                           Name->getName(), Val, &getModule()));
3173   }
3174 }
3175 
3176 /// Emits metadata nodes associating all the global values in the
3177 /// current module with the Decls they came from.  This is useful for
3178 /// projects using IR gen as a subroutine.
3179 ///
3180 /// Since there's currently no way to associate an MDNode directly
3181 /// with an llvm::GlobalValue, we create a global named metadata
3182 /// with the name 'clang.global.decl.ptrs'.
3183 void CodeGenModule::EmitDeclMetadata() {
3184   llvm::NamedMDNode *GlobalMetadata = 0;
3185 
3186   // StaticLocalDeclMap
3187   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3188          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3189        I != E; ++I) {
3190     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3191     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3192   }
3193 }
3194 
3195 /// Emits metadata nodes for all the local variables in the current
3196 /// function.
3197 void CodeGenFunction::EmitDeclMetadata() {
3198   if (LocalDeclMap.empty()) return;
3199 
3200   llvm::LLVMContext &Context = getLLVMContext();
3201 
3202   // Find the unique metadata ID for this name.
3203   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3204 
3205   llvm::NamedMDNode *GlobalMetadata = 0;
3206 
3207   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3208          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3209     const Decl *D = I->first;
3210     llvm::Value *Addr = I->second;
3211 
3212     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3213       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3214       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3215     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3216       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3217       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3218     }
3219   }
3220 }
3221 
3222 void CodeGenModule::EmitVersionIdentMetadata() {
3223   llvm::NamedMDNode *IdentMetadata =
3224     TheModule.getOrInsertNamedMetadata("llvm.ident");
3225   std::string Version = getClangFullVersion();
3226   llvm::LLVMContext &Ctx = TheModule.getContext();
3227 
3228   llvm::Value *IdentNode[] = {
3229     llvm::MDString::get(Ctx, Version)
3230   };
3231   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3232 }
3233 
3234 void CodeGenModule::EmitCoverageFile() {
3235   if (!getCodeGenOpts().CoverageFile.empty()) {
3236     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3237       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3238       llvm::LLVMContext &Ctx = TheModule.getContext();
3239       llvm::MDString *CoverageFile =
3240           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3241       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3242         llvm::MDNode *CU = CUNode->getOperand(i);
3243         llvm::Value *node[] = { CoverageFile, CU };
3244         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3245         GCov->addOperand(N);
3246       }
3247     }
3248   }
3249 }
3250 
3251 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3252                                                      QualType GuidType) {
3253   // Sema has checked that all uuid strings are of the form
3254   // "12345678-1234-1234-1234-1234567890ab".
3255   assert(Uuid.size() == 36);
3256   for (unsigned i = 0; i < 36; ++i) {
3257     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3258     else                                         assert(isHexDigit(Uuid[i]));
3259   }
3260 
3261   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3262 
3263   llvm::Constant *Field3[8];
3264   for (unsigned Idx = 0; Idx < 8; ++Idx)
3265     Field3[Idx] = llvm::ConstantInt::get(
3266         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3267 
3268   llvm::Constant *Fields[4] = {
3269     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3270     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3271     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3272     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3273   };
3274 
3275   return llvm::ConstantStruct::getAnon(Fields);
3276 }
3277