xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f2ceec4811c3587056344dd5ef8d819261e256ad)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               CodeGenOpts.FlushDenorm ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (CodeGenOpts.NoPLT)
560     getModule().setRtLibUseGOT();
561 
562   SimplifyPersonality();
563 
564   if (getCodeGenOpts().EmitDeclMetadata)
565     EmitDeclMetadata();
566 
567   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568     EmitCoverageFile();
569 
570   if (DebugInfo)
571     DebugInfo->finalize();
572 
573   if (getCodeGenOpts().EmitVersionIdentMetadata)
574     EmitVersionIdentMetadata();
575 
576   EmitTargetMetadata();
577 }
578 
579 void CodeGenModule::EmitOpenCLMetadata() {
580   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
581   // opencl.ocl.version named metadata node.
582   llvm::Metadata *OCLVerElts[] = {
583       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584           Int32Ty, LangOpts.OpenCLVersion / 100)),
585       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
587   llvm::NamedMDNode *OCLVerMD =
588       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
589   llvm::LLVMContext &Ctx = TheModule.getContext();
590   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
591 }
592 
593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
594   // Make sure that this type is translated.
595   Types.UpdateCompletedType(TD);
596 }
597 
598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
599   // Make sure that this type is translated.
600   Types.RefreshTypeCacheForClass(RD);
601 }
602 
603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
604   if (!TBAA)
605     return nullptr;
606   return TBAA->getTypeInfo(QTy);
607 }
608 
609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
610   if (!TBAA)
611     return TBAAAccessInfo();
612   return TBAA->getAccessInfo(AccessType);
613 }
614 
615 TBAAAccessInfo
616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
617   if (!TBAA)
618     return TBAAAccessInfo();
619   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
620 }
621 
622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
623   if (!TBAA)
624     return nullptr;
625   return TBAA->getTBAAStructInfo(QTy);
626 }
627 
628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
629   if (!TBAA)
630     return nullptr;
631   return TBAA->getBaseTypeInfo(QTy);
632 }
633 
634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
635   if (!TBAA)
636     return nullptr;
637   return TBAA->getAccessTagInfo(Info);
638 }
639 
640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
641                                                    TBAAAccessInfo TargetInfo) {
642   if (!TBAA)
643     return TBAAAccessInfo();
644   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
645 }
646 
647 TBAAAccessInfo
648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
649                                                    TBAAAccessInfo InfoB) {
650   if (!TBAA)
651     return TBAAAccessInfo();
652   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
653 }
654 
655 TBAAAccessInfo
656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
657                                               TBAAAccessInfo SrcInfo) {
658   if (!TBAA)
659     return TBAAAccessInfo();
660   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
661 }
662 
663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
664                                                 TBAAAccessInfo TBAAInfo) {
665   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
666     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
667 }
668 
669 void CodeGenModule::DecorateInstructionWithInvariantGroup(
670     llvm::Instruction *I, const CXXRecordDecl *RD) {
671   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
672                  llvm::MDNode::get(getLLVMContext(), {}));
673 }
674 
675 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
676   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
677   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
678 }
679 
680 /// ErrorUnsupported - Print out an error that codegen doesn't support the
681 /// specified stmt yet.
682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
683   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
684                                                "cannot compile this %0 yet");
685   std::string Msg = Type;
686   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
687       << Msg << S->getSourceRange();
688 }
689 
690 /// ErrorUnsupported - Print out an error that codegen doesn't support the
691 /// specified decl yet.
692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
693   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
694                                                "cannot compile this %0 yet");
695   std::string Msg = Type;
696   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
697 }
698 
699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
700   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
701 }
702 
703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
704                                         const NamedDecl *D) const {
705   if (GV->hasDLLImportStorageClass())
706     return;
707   // Internal definitions always have default visibility.
708   if (GV->hasLocalLinkage()) {
709     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710     return;
711   }
712   if (!D)
713     return;
714   // Set visibility for definitions.
715   LinkageInfo LV = D->getLinkageAndVisibility();
716   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
717     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718 }
719 
720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
721                                  llvm::GlobalValue *GV) {
722   if (GV->hasLocalLinkage())
723     return true;
724 
725   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
726     return true;
727 
728   // DLLImport explicitly marks the GV as external.
729   if (GV->hasDLLImportStorageClass())
730     return false;
731 
732   const llvm::Triple &TT = CGM.getTriple();
733   // Every other GV is local on COFF.
734   // Make an exception for windows OS in the triple: Some firmware builds use
735   // *-win32-macho triples. This (accidentally?) produced windows relocations
736   // without GOT tables in older clang versions; Keep this behaviour.
737   // FIXME: even thread local variables?
738   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
739     return true;
740 
741   // Only handle COFF and ELF for now.
742   if (!TT.isOSBinFormatELF())
743     return false;
744 
745   // If this is not an executable, don't assume anything is local.
746   const auto &CGOpts = CGM.getCodeGenOpts();
747   llvm::Reloc::Model RM = CGOpts.RelocationModel;
748   const auto &LOpts = CGM.getLangOpts();
749   if (RM != llvm::Reloc::Static && !LOpts.PIE)
750     return false;
751 
752   // A definition cannot be preempted from an executable.
753   if (!GV->isDeclarationForLinker())
754     return true;
755 
756   // Most PIC code sequences that assume that a symbol is local cannot produce a
757   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
758   // depended, it seems worth it to handle it here.
759   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
760     return false;
761 
762   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
763   llvm::Triple::ArchType Arch = TT.getArch();
764   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
765       Arch == llvm::Triple::ppc64le)
766     return false;
767 
768   // If we can use copy relocations we can assume it is local.
769   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
770     if (!Var->isThreadLocal() &&
771         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
772       return true;
773 
774   // If we can use a plt entry as the symbol address we can assume it
775   // is local.
776   // FIXME: This should work for PIE, but the gold linker doesn't support it.
777   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
778     return true;
779 
780   // Otherwise don't assue it is local.
781   return false;
782 }
783 
784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
785   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
786 }
787 
788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
789                                           GlobalDecl GD) const {
790   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
791   // C++ destructors have a few C++ ABI specific special cases.
792   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
793     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
794     return;
795   }
796   setDLLImportDLLExport(GV, D);
797 }
798 
799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
800                                           const NamedDecl *D) const {
801   if (D && D->isExternallyVisible()) {
802     if (D->hasAttr<DLLImportAttr>())
803       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
805       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806   }
807 }
808 
809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810                                     GlobalDecl GD) const {
811   setDLLImportDLLExport(GV, GD);
812   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
813 }
814 
815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
816                                     const NamedDecl *D) const {
817   setDLLImportDLLExport(GV, D);
818   setGlobalVisibilityAndLocal(GV, D);
819 }
820 
821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
822                                                 const NamedDecl *D) const {
823   setGlobalVisibility(GV, D);
824   setDSOLocal(GV);
825 }
826 
827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
828   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
829       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
830       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
831       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
832       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
833 }
834 
835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
836     CodeGenOptions::TLSModel M) {
837   switch (M) {
838   case CodeGenOptions::GeneralDynamicTLSModel:
839     return llvm::GlobalVariable::GeneralDynamicTLSModel;
840   case CodeGenOptions::LocalDynamicTLSModel:
841     return llvm::GlobalVariable::LocalDynamicTLSModel;
842   case CodeGenOptions::InitialExecTLSModel:
843     return llvm::GlobalVariable::InitialExecTLSModel;
844   case CodeGenOptions::LocalExecTLSModel:
845     return llvm::GlobalVariable::LocalExecTLSModel;
846   }
847   llvm_unreachable("Invalid TLS model!");
848 }
849 
850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
851   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
852 
853   llvm::GlobalValue::ThreadLocalMode TLM;
854   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
855 
856   // Override the TLS model if it is explicitly specified.
857   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
858     TLM = GetLLVMTLSModel(Attr->getModel());
859   }
860 
861   GV->setThreadLocalMode(TLM);
862 }
863 
864 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
865                                           StringRef Name) {
866   const TargetInfo &Target = CGM.getTarget();
867   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
868 }
869 
870 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
871                                                  const CPUSpecificAttr *Attr,
872                                                  raw_ostream &Out) {
873   // cpu_specific gets the current name, dispatch gets the resolver.
874   if (Attr)
875     Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName());
876   else
877     Out << ".resolver";
878 }
879 
880 static void AppendTargetMangling(const CodeGenModule &CGM,
881                                  const TargetAttr *Attr, raw_ostream &Out) {
882   if (Attr->isDefaultVersion())
883     return;
884 
885   Out << '.';
886   const TargetInfo &Target = CGM.getTarget();
887   TargetAttr::ParsedTargetAttr Info =
888       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
889         // Multiversioning doesn't allow "no-${feature}", so we can
890         // only have "+" prefixes here.
891         assert(LHS.startswith("+") && RHS.startswith("+") &&
892                "Features should always have a prefix.");
893         return Target.multiVersionSortPriority(LHS.substr(1)) >
894                Target.multiVersionSortPriority(RHS.substr(1));
895       });
896 
897   bool IsFirst = true;
898 
899   if (!Info.Architecture.empty()) {
900     IsFirst = false;
901     Out << "arch_" << Info.Architecture;
902   }
903 
904   for (StringRef Feat : Info.Features) {
905     if (!IsFirst)
906       Out << '_';
907     IsFirst = false;
908     Out << Feat.substr(1);
909   }
910 }
911 
912 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
913                                       const NamedDecl *ND,
914                                       bool OmitMultiVersionMangling = false) {
915   SmallString<256> Buffer;
916   llvm::raw_svector_ostream Out(Buffer);
917   MangleContext &MC = CGM.getCXXABI().getMangleContext();
918   if (MC.shouldMangleDeclName(ND)) {
919     llvm::raw_svector_ostream Out(Buffer);
920     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
921       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
922     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
923       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
924     else
925       MC.mangleName(ND, Out);
926   } else {
927     IdentifierInfo *II = ND->getIdentifier();
928     assert(II && "Attempt to mangle unnamed decl.");
929     const auto *FD = dyn_cast<FunctionDecl>(ND);
930 
931     if (FD &&
932         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
933       llvm::raw_svector_ostream Out(Buffer);
934       Out << "__regcall3__" << II->getName();
935     } else {
936       Out << II->getName();
937     }
938   }
939 
940   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
941     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
942       if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())
943         AppendCPUSpecificCPUDispatchMangling(
944             CGM, FD->getAttr<CPUSpecificAttr>(), Out);
945       else
946         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
947     }
948 
949   return Out.str();
950 }
951 
952 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
953                                             const FunctionDecl *FD) {
954   if (!FD->isMultiVersion())
955     return;
956 
957   // Get the name of what this would be without the 'target' attribute.  This
958   // allows us to lookup the version that was emitted when this wasn't a
959   // multiversion function.
960   std::string NonTargetName =
961       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
962   GlobalDecl OtherGD;
963   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
964     assert(OtherGD.getCanonicalDecl()
965                .getDecl()
966                ->getAsFunction()
967                ->isMultiVersion() &&
968            "Other GD should now be a multiversioned function");
969     // OtherFD is the version of this function that was mangled BEFORE
970     // becoming a MultiVersion function.  It potentially needs to be updated.
971     const FunctionDecl *OtherFD =
972         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
973     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
974     // This is so that if the initial version was already the 'default'
975     // version, we don't try to update it.
976     if (OtherName != NonTargetName) {
977       // Remove instead of erase, since others may have stored the StringRef
978       // to this.
979       const auto ExistingRecord = Manglings.find(NonTargetName);
980       if (ExistingRecord != std::end(Manglings))
981         Manglings.remove(&(*ExistingRecord));
982       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
983       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
984       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
985         Entry->setName(OtherName);
986     }
987   }
988 }
989 
990 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
991   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
992 
993   // Some ABIs don't have constructor variants.  Make sure that base and
994   // complete constructors get mangled the same.
995   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
996     if (!getTarget().getCXXABI().hasConstructorVariants()) {
997       CXXCtorType OrigCtorType = GD.getCtorType();
998       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
999       if (OrigCtorType == Ctor_Base)
1000         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1001     }
1002   }
1003 
1004   const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl());
1005   // Since CPUSpecific can require multiple emits per decl, store the manglings
1006   // separately.
1007   if (FD &&
1008       (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) {
1009     const auto *SD = FD->getAttr<CPUSpecificAttr>();
1010 
1011     std::pair<GlobalDecl, unsigned> SpecCanonicalGD{
1012         CanonicalGD,
1013         SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()};
1014 
1015     auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD);
1016     if (FoundName != CPUSpecificMangledDeclNames.end())
1017       return FoundName->second;
1018 
1019     auto Result = CPUSpecificManglings.insert(
1020         std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD));
1021     return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first();
1022   }
1023 
1024   auto FoundName = MangledDeclNames.find(CanonicalGD);
1025   if (FoundName != MangledDeclNames.end())
1026     return FoundName->second;
1027 
1028   // Keep the first result in the case of a mangling collision.
1029   const auto *ND = cast<NamedDecl>(GD.getDecl());
1030   auto Result =
1031       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1032   return MangledDeclNames[CanonicalGD] = Result.first->first();
1033 }
1034 
1035 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1036                                              const BlockDecl *BD) {
1037   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1038   const Decl *D = GD.getDecl();
1039 
1040   SmallString<256> Buffer;
1041   llvm::raw_svector_ostream Out(Buffer);
1042   if (!D)
1043     MangleCtx.mangleGlobalBlock(BD,
1044       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1045   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1046     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1047   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1048     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1049   else
1050     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1051 
1052   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1053   return Result.first->first();
1054 }
1055 
1056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1057   return getModule().getNamedValue(Name);
1058 }
1059 
1060 /// AddGlobalCtor - Add a function to the list that will be called before
1061 /// main() runs.
1062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1063                                   llvm::Constant *AssociatedData) {
1064   // FIXME: Type coercion of void()* types.
1065   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1066 }
1067 
1068 /// AddGlobalDtor - Add a function to the list that will be called
1069 /// when the module is unloaded.
1070 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1071   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1072     DtorsUsingAtExit[Priority].push_back(Dtor);
1073     return;
1074   }
1075 
1076   // FIXME: Type coercion of void()* types.
1077   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1078 }
1079 
1080 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1081   if (Fns.empty()) return;
1082 
1083   // Ctor function type is void()*.
1084   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1085   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1086 
1087   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1088   llvm::StructType *CtorStructTy = llvm::StructType::get(
1089       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1090 
1091   // Construct the constructor and destructor arrays.
1092   ConstantInitBuilder builder(*this);
1093   auto ctors = builder.beginArray(CtorStructTy);
1094   for (const auto &I : Fns) {
1095     auto ctor = ctors.beginStruct(CtorStructTy);
1096     ctor.addInt(Int32Ty, I.Priority);
1097     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1098     if (I.AssociatedData)
1099       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1100     else
1101       ctor.addNullPointer(VoidPtrTy);
1102     ctor.finishAndAddTo(ctors);
1103   }
1104 
1105   auto list =
1106     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1107                                 /*constant*/ false,
1108                                 llvm::GlobalValue::AppendingLinkage);
1109 
1110   // The LTO linker doesn't seem to like it when we set an alignment
1111   // on appending variables.  Take it off as a workaround.
1112   list->setAlignment(0);
1113 
1114   Fns.clear();
1115 }
1116 
1117 llvm::GlobalValue::LinkageTypes
1118 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1119   const auto *D = cast<FunctionDecl>(GD.getDecl());
1120 
1121   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1122 
1123   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1124     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1125 
1126   if (isa<CXXConstructorDecl>(D) &&
1127       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1128       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1129     // Our approach to inheriting constructors is fundamentally different from
1130     // that used by the MS ABI, so keep our inheriting constructor thunks
1131     // internal rather than trying to pick an unambiguous mangling for them.
1132     return llvm::GlobalValue::InternalLinkage;
1133   }
1134 
1135   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1136 }
1137 
1138 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1139   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1140   if (!MDS) return nullptr;
1141 
1142   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1143 }
1144 
1145 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1146                                               const CGFunctionInfo &Info,
1147                                               llvm::Function *F) {
1148   unsigned CallingConv;
1149   llvm::AttributeList PAL;
1150   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1151   F->setAttributes(PAL);
1152   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1153 }
1154 
1155 /// Determines whether the language options require us to model
1156 /// unwind exceptions.  We treat -fexceptions as mandating this
1157 /// except under the fragile ObjC ABI with only ObjC exceptions
1158 /// enabled.  This means, for example, that C with -fexceptions
1159 /// enables this.
1160 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1161   // If exceptions are completely disabled, obviously this is false.
1162   if (!LangOpts.Exceptions) return false;
1163 
1164   // If C++ exceptions are enabled, this is true.
1165   if (LangOpts.CXXExceptions) return true;
1166 
1167   // If ObjC exceptions are enabled, this depends on the ABI.
1168   if (LangOpts.ObjCExceptions) {
1169     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1170   }
1171 
1172   return true;
1173 }
1174 
1175 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1176                                                       const CXXMethodDecl *MD) {
1177   // Check that the type metadata can ever actually be used by a call.
1178   if (!CGM.getCodeGenOpts().LTOUnit ||
1179       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1180     return false;
1181 
1182   // Only functions whose address can be taken with a member function pointer
1183   // need this sort of type metadata.
1184   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1185          !isa<CXXDestructorDecl>(MD);
1186 }
1187 
1188 std::vector<const CXXRecordDecl *>
1189 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1190   llvm::SetVector<const CXXRecordDecl *> MostBases;
1191 
1192   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1193   CollectMostBases = [&](const CXXRecordDecl *RD) {
1194     if (RD->getNumBases() == 0)
1195       MostBases.insert(RD);
1196     for (const CXXBaseSpecifier &B : RD->bases())
1197       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1198   };
1199   CollectMostBases(RD);
1200   return MostBases.takeVector();
1201 }
1202 
1203 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1204                                                            llvm::Function *F) {
1205   llvm::AttrBuilder B;
1206 
1207   if (CodeGenOpts.UnwindTables)
1208     B.addAttribute(llvm::Attribute::UWTable);
1209 
1210   if (!hasUnwindExceptions(LangOpts))
1211     B.addAttribute(llvm::Attribute::NoUnwind);
1212 
1213   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1214     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1215       B.addAttribute(llvm::Attribute::StackProtect);
1216     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1217       B.addAttribute(llvm::Attribute::StackProtectStrong);
1218     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1219       B.addAttribute(llvm::Attribute::StackProtectReq);
1220   }
1221 
1222   if (!D) {
1223     // If we don't have a declaration to control inlining, the function isn't
1224     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1225     // disabled, mark the function as noinline.
1226     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1227         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1228       B.addAttribute(llvm::Attribute::NoInline);
1229 
1230     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1231     return;
1232   }
1233 
1234   // Track whether we need to add the optnone LLVM attribute,
1235   // starting with the default for this optimization level.
1236   bool ShouldAddOptNone =
1237       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1238   // We can't add optnone in the following cases, it won't pass the verifier.
1239   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1240   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1241   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1242 
1243   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1244     B.addAttribute(llvm::Attribute::OptimizeNone);
1245 
1246     // OptimizeNone implies noinline; we should not be inlining such functions.
1247     B.addAttribute(llvm::Attribute::NoInline);
1248     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1249            "OptimizeNone and AlwaysInline on same function!");
1250 
1251     // We still need to handle naked functions even though optnone subsumes
1252     // much of their semantics.
1253     if (D->hasAttr<NakedAttr>())
1254       B.addAttribute(llvm::Attribute::Naked);
1255 
1256     // OptimizeNone wins over OptimizeForSize and MinSize.
1257     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1258     F->removeFnAttr(llvm::Attribute::MinSize);
1259   } else if (D->hasAttr<NakedAttr>()) {
1260     // Naked implies noinline: we should not be inlining such functions.
1261     B.addAttribute(llvm::Attribute::Naked);
1262     B.addAttribute(llvm::Attribute::NoInline);
1263   } else if (D->hasAttr<NoDuplicateAttr>()) {
1264     B.addAttribute(llvm::Attribute::NoDuplicate);
1265   } else if (D->hasAttr<NoInlineAttr>()) {
1266     B.addAttribute(llvm::Attribute::NoInline);
1267   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1268              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1269     // (noinline wins over always_inline, and we can't specify both in IR)
1270     B.addAttribute(llvm::Attribute::AlwaysInline);
1271   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1272     // If we're not inlining, then force everything that isn't always_inline to
1273     // carry an explicit noinline attribute.
1274     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1275       B.addAttribute(llvm::Attribute::NoInline);
1276   } else {
1277     // Otherwise, propagate the inline hint attribute and potentially use its
1278     // absence to mark things as noinline.
1279     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1280       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1281             return Redecl->isInlineSpecified();
1282           })) {
1283         B.addAttribute(llvm::Attribute::InlineHint);
1284       } else if (CodeGenOpts.getInlining() ==
1285                      CodeGenOptions::OnlyHintInlining &&
1286                  !FD->isInlined() &&
1287                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1288         B.addAttribute(llvm::Attribute::NoInline);
1289       }
1290     }
1291   }
1292 
1293   // Add other optimization related attributes if we are optimizing this
1294   // function.
1295   if (!D->hasAttr<OptimizeNoneAttr>()) {
1296     if (D->hasAttr<ColdAttr>()) {
1297       if (!ShouldAddOptNone)
1298         B.addAttribute(llvm::Attribute::OptimizeForSize);
1299       B.addAttribute(llvm::Attribute::Cold);
1300     }
1301 
1302     if (D->hasAttr<MinSizeAttr>())
1303       B.addAttribute(llvm::Attribute::MinSize);
1304   }
1305 
1306   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1307 
1308   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1309   if (alignment)
1310     F->setAlignment(alignment);
1311 
1312   if (!D->hasAttr<AlignedAttr>())
1313     if (LangOpts.FunctionAlignment)
1314       F->setAlignment(1 << LangOpts.FunctionAlignment);
1315 
1316   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1317   // reserve a bit for differentiating between virtual and non-virtual member
1318   // functions. If the current target's C++ ABI requires this and this is a
1319   // member function, set its alignment accordingly.
1320   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1321     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1322       F->setAlignment(2);
1323   }
1324 
1325   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1326   if (CodeGenOpts.SanitizeCfiCrossDso)
1327     if (auto *FD = dyn_cast<FunctionDecl>(D))
1328       CreateFunctionTypeMetadataForIcall(FD, F);
1329 
1330   // Emit type metadata on member functions for member function pointer checks.
1331   // These are only ever necessary on definitions; we're guaranteed that the
1332   // definition will be present in the LTO unit as a result of LTO visibility.
1333   auto *MD = dyn_cast<CXXMethodDecl>(D);
1334   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1335     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1336       llvm::Metadata *Id =
1337           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1338               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1339       F->addTypeMetadata(0, Id);
1340     }
1341   }
1342 }
1343 
1344 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1345   const Decl *D = GD.getDecl();
1346   if (dyn_cast_or_null<NamedDecl>(D))
1347     setGVProperties(GV, GD);
1348   else
1349     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1350 
1351   if (D && D->hasAttr<UsedAttr>())
1352     addUsedGlobal(GV);
1353 }
1354 
1355 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1356                                                 llvm::AttrBuilder &Attrs) {
1357   // Add target-cpu and target-features attributes to functions. If
1358   // we have a decl for the function and it has a target attribute then
1359   // parse that and add it to the feature set.
1360   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1361   std::vector<std::string> Features;
1362   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1363   FD = FD ? FD->getMostRecentDecl() : FD;
1364   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1365   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1366   bool AddedAttr = false;
1367   if (TD || SD) {
1368     llvm::StringMap<bool> FeatureMap;
1369     getFunctionFeatureMap(FeatureMap, FD);
1370 
1371     // Produce the canonical string for this set of features.
1372     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1373       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1374 
1375     // Now add the target-cpu and target-features to the function.
1376     // While we populated the feature map above, we still need to
1377     // get and parse the target attribute so we can get the cpu for
1378     // the function.
1379     if (TD) {
1380       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1381       if (ParsedAttr.Architecture != "" &&
1382           getTarget().isValidCPUName(ParsedAttr.Architecture))
1383         TargetCPU = ParsedAttr.Architecture;
1384     }
1385   } else {
1386     // Otherwise just add the existing target cpu and target features to the
1387     // function.
1388     Features = getTarget().getTargetOpts().Features;
1389   }
1390 
1391   if (TargetCPU != "") {
1392     Attrs.addAttribute("target-cpu", TargetCPU);
1393     AddedAttr = true;
1394   }
1395   if (!Features.empty()) {
1396     llvm::sort(Features.begin(), Features.end());
1397     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1398     AddedAttr = true;
1399   }
1400 
1401   return AddedAttr;
1402 }
1403 
1404 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1405                                           llvm::GlobalObject *GO) {
1406   const Decl *D = GD.getDecl();
1407   SetCommonAttributes(GD, GO);
1408 
1409   if (D) {
1410     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1411       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1412         GV->addAttribute("bss-section", SA->getName());
1413       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1414         GV->addAttribute("data-section", SA->getName());
1415       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1416         GV->addAttribute("rodata-section", SA->getName());
1417     }
1418 
1419     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1420       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1421         if (!D->getAttr<SectionAttr>())
1422           F->addFnAttr("implicit-section-name", SA->getName());
1423 
1424       llvm::AttrBuilder Attrs;
1425       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1426         // We know that GetCPUAndFeaturesAttributes will always have the
1427         // newest set, since it has the newest possible FunctionDecl, so the
1428         // new ones should replace the old.
1429         F->removeFnAttr("target-cpu");
1430         F->removeFnAttr("target-features");
1431         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1432       }
1433     }
1434 
1435     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1436       GO->setSection(CSA->getName());
1437     else if (const auto *SA = D->getAttr<SectionAttr>())
1438       GO->setSection(SA->getName());
1439   }
1440 
1441   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1442 }
1443 
1444 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1445                                                   llvm::Function *F,
1446                                                   const CGFunctionInfo &FI) {
1447   const Decl *D = GD.getDecl();
1448   SetLLVMFunctionAttributes(D, FI, F);
1449   SetLLVMFunctionAttributesForDefinition(D, F);
1450 
1451   F->setLinkage(llvm::Function::InternalLinkage);
1452 
1453   setNonAliasAttributes(GD, F);
1454 }
1455 
1456 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1457   // Set linkage and visibility in case we never see a definition.
1458   LinkageInfo LV = ND->getLinkageAndVisibility();
1459   // Don't set internal linkage on declarations.
1460   // "extern_weak" is overloaded in LLVM; we probably should have
1461   // separate linkage types for this.
1462   if (isExternallyVisible(LV.getLinkage()) &&
1463       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1464     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1465 }
1466 
1467 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1468                                                        llvm::Function *F) {
1469   // Only if we are checking indirect calls.
1470   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1471     return;
1472 
1473   // Non-static class methods are handled via vtable or member function pointer
1474   // checks elsewhere.
1475   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1476     return;
1477 
1478   // Additionally, if building with cross-DSO support...
1479   if (CodeGenOpts.SanitizeCfiCrossDso) {
1480     // Skip available_externally functions. They won't be codegen'ed in the
1481     // current module anyway.
1482     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1483       return;
1484   }
1485 
1486   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1487   F->addTypeMetadata(0, MD);
1488   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1489 
1490   // Emit a hash-based bit set entry for cross-DSO calls.
1491   if (CodeGenOpts.SanitizeCfiCrossDso)
1492     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1493       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1494 }
1495 
1496 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1497                                           bool IsIncompleteFunction,
1498                                           bool IsThunk) {
1499 
1500   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1501     // If this is an intrinsic function, set the function's attributes
1502     // to the intrinsic's attributes.
1503     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1504     return;
1505   }
1506 
1507   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1508 
1509   if (!IsIncompleteFunction) {
1510     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1511     // Setup target-specific attributes.
1512     if (F->isDeclaration())
1513       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1514   }
1515 
1516   // Add the Returned attribute for "this", except for iOS 5 and earlier
1517   // where substantial code, including the libstdc++ dylib, was compiled with
1518   // GCC and does not actually return "this".
1519   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1520       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1521     assert(!F->arg_empty() &&
1522            F->arg_begin()->getType()
1523              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1524            "unexpected this return");
1525     F->addAttribute(1, llvm::Attribute::Returned);
1526   }
1527 
1528   // Only a few attributes are set on declarations; these may later be
1529   // overridden by a definition.
1530 
1531   setLinkageForGV(F, FD);
1532   setGVProperties(F, FD);
1533 
1534   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1535     F->setSection(CSA->getName());
1536   else if (const auto *SA = FD->getAttr<SectionAttr>())
1537      F->setSection(SA->getName());
1538 
1539   if (FD->isReplaceableGlobalAllocationFunction()) {
1540     // A replaceable global allocation function does not act like a builtin by
1541     // default, only if it is invoked by a new-expression or delete-expression.
1542     F->addAttribute(llvm::AttributeList::FunctionIndex,
1543                     llvm::Attribute::NoBuiltin);
1544 
1545     // A sane operator new returns a non-aliasing pointer.
1546     // FIXME: Also add NonNull attribute to the return value
1547     // for the non-nothrow forms?
1548     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1549     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1550         (Kind == OO_New || Kind == OO_Array_New))
1551       F->addAttribute(llvm::AttributeList::ReturnIndex,
1552                       llvm::Attribute::NoAlias);
1553   }
1554 
1555   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1556     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1557   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1558     if (MD->isVirtual())
1559       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1560 
1561   // Don't emit entries for function declarations in the cross-DSO mode. This
1562   // is handled with better precision by the receiving DSO.
1563   if (!CodeGenOpts.SanitizeCfiCrossDso)
1564     CreateFunctionTypeMetadataForIcall(FD, F);
1565 
1566   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1567     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1568 }
1569 
1570 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1571   assert(!GV->isDeclaration() &&
1572          "Only globals with definition can force usage.");
1573   LLVMUsed.emplace_back(GV);
1574 }
1575 
1576 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1577   assert(!GV->isDeclaration() &&
1578          "Only globals with definition can force usage.");
1579   LLVMCompilerUsed.emplace_back(GV);
1580 }
1581 
1582 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1583                      std::vector<llvm::WeakTrackingVH> &List) {
1584   // Don't create llvm.used if there is no need.
1585   if (List.empty())
1586     return;
1587 
1588   // Convert List to what ConstantArray needs.
1589   SmallVector<llvm::Constant*, 8> UsedArray;
1590   UsedArray.resize(List.size());
1591   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1592     UsedArray[i] =
1593         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1594             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1595   }
1596 
1597   if (UsedArray.empty())
1598     return;
1599   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1600 
1601   auto *GV = new llvm::GlobalVariable(
1602       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1603       llvm::ConstantArray::get(ATy, UsedArray), Name);
1604 
1605   GV->setSection("llvm.metadata");
1606 }
1607 
1608 void CodeGenModule::emitLLVMUsed() {
1609   emitUsed(*this, "llvm.used", LLVMUsed);
1610   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1611 }
1612 
1613 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1614   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1615   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1616 }
1617 
1618 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1619   llvm::SmallString<32> Opt;
1620   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1621   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1622   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1623 }
1624 
1625 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1626   auto &C = getLLVMContext();
1627   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1628       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1629 }
1630 
1631 void CodeGenModule::AddDependentLib(StringRef Lib) {
1632   llvm::SmallString<24> Opt;
1633   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1634   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1635   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1636 }
1637 
1638 /// Add link options implied by the given module, including modules
1639 /// it depends on, using a postorder walk.
1640 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1641                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1642                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1643   // Import this module's parent.
1644   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1645     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1646   }
1647 
1648   // Import this module's dependencies.
1649   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1650     if (Visited.insert(Mod->Imports[I - 1]).second)
1651       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1652   }
1653 
1654   // Add linker options to link against the libraries/frameworks
1655   // described by this module.
1656   llvm::LLVMContext &Context = CGM.getLLVMContext();
1657 
1658   // For modules that use export_as for linking, use that module
1659   // name instead.
1660   if (Mod->UseExportAsModuleLinkName)
1661     return;
1662 
1663   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1664     // Link against a framework.  Frameworks are currently Darwin only, so we
1665     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1666     if (Mod->LinkLibraries[I-1].IsFramework) {
1667       llvm::Metadata *Args[2] = {
1668           llvm::MDString::get(Context, "-framework"),
1669           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1670 
1671       Metadata.push_back(llvm::MDNode::get(Context, Args));
1672       continue;
1673     }
1674 
1675     // Link against a library.
1676     llvm::SmallString<24> Opt;
1677     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1678       Mod->LinkLibraries[I-1].Library, Opt);
1679     auto *OptString = llvm::MDString::get(Context, Opt);
1680     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1681   }
1682 }
1683 
1684 void CodeGenModule::EmitModuleLinkOptions() {
1685   // Collect the set of all of the modules we want to visit to emit link
1686   // options, which is essentially the imported modules and all of their
1687   // non-explicit child modules.
1688   llvm::SetVector<clang::Module *> LinkModules;
1689   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1690   SmallVector<clang::Module *, 16> Stack;
1691 
1692   // Seed the stack with imported modules.
1693   for (Module *M : ImportedModules) {
1694     // Do not add any link flags when an implementation TU of a module imports
1695     // a header of that same module.
1696     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1697         !getLangOpts().isCompilingModule())
1698       continue;
1699     if (Visited.insert(M).second)
1700       Stack.push_back(M);
1701   }
1702 
1703   // Find all of the modules to import, making a little effort to prune
1704   // non-leaf modules.
1705   while (!Stack.empty()) {
1706     clang::Module *Mod = Stack.pop_back_val();
1707 
1708     bool AnyChildren = false;
1709 
1710     // Visit the submodules of this module.
1711     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1712                                         SubEnd = Mod->submodule_end();
1713          Sub != SubEnd; ++Sub) {
1714       // Skip explicit children; they need to be explicitly imported to be
1715       // linked against.
1716       if ((*Sub)->IsExplicit)
1717         continue;
1718 
1719       if (Visited.insert(*Sub).second) {
1720         Stack.push_back(*Sub);
1721         AnyChildren = true;
1722       }
1723     }
1724 
1725     // We didn't find any children, so add this module to the list of
1726     // modules to link against.
1727     if (!AnyChildren) {
1728       LinkModules.insert(Mod);
1729     }
1730   }
1731 
1732   // Add link options for all of the imported modules in reverse topological
1733   // order.  We don't do anything to try to order import link flags with respect
1734   // to linker options inserted by things like #pragma comment().
1735   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1736   Visited.clear();
1737   for (Module *M : LinkModules)
1738     if (Visited.insert(M).second)
1739       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1740   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1741   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1742 
1743   // Add the linker options metadata flag.
1744   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1745   for (auto *MD : LinkerOptionsMetadata)
1746     NMD->addOperand(MD);
1747 }
1748 
1749 void CodeGenModule::EmitDeferred() {
1750   // Emit deferred declare target declarations.
1751   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1752     getOpenMPRuntime().emitDeferredTargetDecls();
1753 
1754   // Emit code for any potentially referenced deferred decls.  Since a
1755   // previously unused static decl may become used during the generation of code
1756   // for a static function, iterate until no changes are made.
1757 
1758   if (!DeferredVTables.empty()) {
1759     EmitDeferredVTables();
1760 
1761     // Emitting a vtable doesn't directly cause more vtables to
1762     // become deferred, although it can cause functions to be
1763     // emitted that then need those vtables.
1764     assert(DeferredVTables.empty());
1765   }
1766 
1767   // Stop if we're out of both deferred vtables and deferred declarations.
1768   if (DeferredDeclsToEmit.empty())
1769     return;
1770 
1771   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1772   // work, it will not interfere with this.
1773   std::vector<GlobalDecl> CurDeclsToEmit;
1774   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1775 
1776   for (GlobalDecl &D : CurDeclsToEmit) {
1777     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1778     // to get GlobalValue with exactly the type we need, not something that
1779     // might had been created for another decl with the same mangled name but
1780     // different type.
1781     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1782         GetAddrOfGlobal(D, ForDefinition));
1783 
1784     // In case of different address spaces, we may still get a cast, even with
1785     // IsForDefinition equal to true. Query mangled names table to get
1786     // GlobalValue.
1787     if (!GV)
1788       GV = GetGlobalValue(getMangledName(D));
1789 
1790     // Make sure GetGlobalValue returned non-null.
1791     assert(GV);
1792 
1793     // Check to see if we've already emitted this.  This is necessary
1794     // for a couple of reasons: first, decls can end up in the
1795     // deferred-decls queue multiple times, and second, decls can end
1796     // up with definitions in unusual ways (e.g. by an extern inline
1797     // function acquiring a strong function redefinition).  Just
1798     // ignore these cases.
1799     if (!GV->isDeclaration())
1800       continue;
1801 
1802     // Otherwise, emit the definition and move on to the next one.
1803     EmitGlobalDefinition(D, GV);
1804 
1805     // If we found out that we need to emit more decls, do that recursively.
1806     // This has the advantage that the decls are emitted in a DFS and related
1807     // ones are close together, which is convenient for testing.
1808     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1809       EmitDeferred();
1810       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1811     }
1812   }
1813 }
1814 
1815 void CodeGenModule::EmitVTablesOpportunistically() {
1816   // Try to emit external vtables as available_externally if they have emitted
1817   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1818   // is not allowed to create new references to things that need to be emitted
1819   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1820 
1821   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1822          && "Only emit opportunistic vtables with optimizations");
1823 
1824   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1825     assert(getVTables().isVTableExternal(RD) &&
1826            "This queue should only contain external vtables");
1827     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1828       VTables.GenerateClassData(RD);
1829   }
1830   OpportunisticVTables.clear();
1831 }
1832 
1833 void CodeGenModule::EmitGlobalAnnotations() {
1834   if (Annotations.empty())
1835     return;
1836 
1837   // Create a new global variable for the ConstantStruct in the Module.
1838   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1839     Annotations[0]->getType(), Annotations.size()), Annotations);
1840   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1841                                       llvm::GlobalValue::AppendingLinkage,
1842                                       Array, "llvm.global.annotations");
1843   gv->setSection(AnnotationSection);
1844 }
1845 
1846 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1847   llvm::Constant *&AStr = AnnotationStrings[Str];
1848   if (AStr)
1849     return AStr;
1850 
1851   // Not found yet, create a new global.
1852   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1853   auto *gv =
1854       new llvm::GlobalVariable(getModule(), s->getType(), true,
1855                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1856   gv->setSection(AnnotationSection);
1857   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1858   AStr = gv;
1859   return gv;
1860 }
1861 
1862 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1863   SourceManager &SM = getContext().getSourceManager();
1864   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1865   if (PLoc.isValid())
1866     return EmitAnnotationString(PLoc.getFilename());
1867   return EmitAnnotationString(SM.getBufferName(Loc));
1868 }
1869 
1870 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1871   SourceManager &SM = getContext().getSourceManager();
1872   PresumedLoc PLoc = SM.getPresumedLoc(L);
1873   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1874     SM.getExpansionLineNumber(L);
1875   return llvm::ConstantInt::get(Int32Ty, LineNo);
1876 }
1877 
1878 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1879                                                 const AnnotateAttr *AA,
1880                                                 SourceLocation L) {
1881   // Get the globals for file name, annotation, and the line number.
1882   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1883                  *UnitGV = EmitAnnotationUnit(L),
1884                  *LineNoCst = EmitAnnotationLineNo(L);
1885 
1886   // Create the ConstantStruct for the global annotation.
1887   llvm::Constant *Fields[4] = {
1888     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1889     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1890     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1891     LineNoCst
1892   };
1893   return llvm::ConstantStruct::getAnon(Fields);
1894 }
1895 
1896 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1897                                          llvm::GlobalValue *GV) {
1898   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1899   // Get the struct elements for these annotations.
1900   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1901     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1902 }
1903 
1904 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1905                                            llvm::Function *Fn,
1906                                            SourceLocation Loc) const {
1907   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1908   // Blacklist by function name.
1909   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1910     return true;
1911   // Blacklist by location.
1912   if (Loc.isValid())
1913     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1914   // If location is unknown, this may be a compiler-generated function. Assume
1915   // it's located in the main file.
1916   auto &SM = Context.getSourceManager();
1917   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1918     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1919   }
1920   return false;
1921 }
1922 
1923 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1924                                            SourceLocation Loc, QualType Ty,
1925                                            StringRef Category) const {
1926   // For now globals can be blacklisted only in ASan and KASan.
1927   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1928       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1929        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1930   if (!EnabledAsanMask)
1931     return false;
1932   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1933   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1934     return true;
1935   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1936     return true;
1937   // Check global type.
1938   if (!Ty.isNull()) {
1939     // Drill down the array types: if global variable of a fixed type is
1940     // blacklisted, we also don't instrument arrays of them.
1941     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1942       Ty = AT->getElementType();
1943     Ty = Ty.getCanonicalType().getUnqualifiedType();
1944     // We allow to blacklist only record types (classes, structs etc.)
1945     if (Ty->isRecordType()) {
1946       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1947       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1948         return true;
1949     }
1950   }
1951   return false;
1952 }
1953 
1954 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1955                                    StringRef Category) const {
1956   if (!LangOpts.XRayInstrument)
1957     return false;
1958 
1959   const auto &XRayFilter = getContext().getXRayFilter();
1960   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1961   auto Attr = ImbueAttr::NONE;
1962   if (Loc.isValid())
1963     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1964   if (Attr == ImbueAttr::NONE)
1965     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1966   switch (Attr) {
1967   case ImbueAttr::NONE:
1968     return false;
1969   case ImbueAttr::ALWAYS:
1970     Fn->addFnAttr("function-instrument", "xray-always");
1971     break;
1972   case ImbueAttr::ALWAYS_ARG1:
1973     Fn->addFnAttr("function-instrument", "xray-always");
1974     Fn->addFnAttr("xray-log-args", "1");
1975     break;
1976   case ImbueAttr::NEVER:
1977     Fn->addFnAttr("function-instrument", "xray-never");
1978     break;
1979   }
1980   return true;
1981 }
1982 
1983 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1984   // Never defer when EmitAllDecls is specified.
1985   if (LangOpts.EmitAllDecls)
1986     return true;
1987 
1988   return getContext().DeclMustBeEmitted(Global);
1989 }
1990 
1991 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1992   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1993     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1994       // Implicit template instantiations may change linkage if they are later
1995       // explicitly instantiated, so they should not be emitted eagerly.
1996       return false;
1997   if (const auto *VD = dyn_cast<VarDecl>(Global))
1998     if (Context.getInlineVariableDefinitionKind(VD) ==
1999         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2000       // A definition of an inline constexpr static data member may change
2001       // linkage later if it's redeclared outside the class.
2002       return false;
2003   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2004   // codegen for global variables, because they may be marked as threadprivate.
2005   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2006       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2007       !isTypeConstant(Global->getType(), false))
2008     return false;
2009 
2010   return true;
2011 }
2012 
2013 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2014     const CXXUuidofExpr* E) {
2015   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2016   // well-formed.
2017   StringRef Uuid = E->getUuidStr();
2018   std::string Name = "_GUID_" + Uuid.lower();
2019   std::replace(Name.begin(), Name.end(), '-', '_');
2020 
2021   // The UUID descriptor should be pointer aligned.
2022   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2023 
2024   // Look for an existing global.
2025   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2026     return ConstantAddress(GV, Alignment);
2027 
2028   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2029   assert(Init && "failed to initialize as constant");
2030 
2031   auto *GV = new llvm::GlobalVariable(
2032       getModule(), Init->getType(),
2033       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2034   if (supportsCOMDAT())
2035     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2036   setDSOLocal(GV);
2037   return ConstantAddress(GV, Alignment);
2038 }
2039 
2040 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2041   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2042   assert(AA && "No alias?");
2043 
2044   CharUnits Alignment = getContext().getDeclAlign(VD);
2045   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2046 
2047   // See if there is already something with the target's name in the module.
2048   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2049   if (Entry) {
2050     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2051     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2052     return ConstantAddress(Ptr, Alignment);
2053   }
2054 
2055   llvm::Constant *Aliasee;
2056   if (isa<llvm::FunctionType>(DeclTy))
2057     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2058                                       GlobalDecl(cast<FunctionDecl>(VD)),
2059                                       /*ForVTable=*/false);
2060   else
2061     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2062                                     llvm::PointerType::getUnqual(DeclTy),
2063                                     nullptr);
2064 
2065   auto *F = cast<llvm::GlobalValue>(Aliasee);
2066   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2067   WeakRefReferences.insert(F);
2068 
2069   return ConstantAddress(Aliasee, Alignment);
2070 }
2071 
2072 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2073   const auto *Global = cast<ValueDecl>(GD.getDecl());
2074 
2075   // Weak references don't produce any output by themselves.
2076   if (Global->hasAttr<WeakRefAttr>())
2077     return;
2078 
2079   // If this is an alias definition (which otherwise looks like a declaration)
2080   // emit it now.
2081   if (Global->hasAttr<AliasAttr>())
2082     return EmitAliasDefinition(GD);
2083 
2084   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2085   if (Global->hasAttr<IFuncAttr>())
2086     return emitIFuncDefinition(GD);
2087 
2088   // If this is a cpu_dispatch multiversion function, emit the resolver.
2089   if (Global->hasAttr<CPUDispatchAttr>())
2090     return emitCPUDispatchDefinition(GD);
2091 
2092   // If this is CUDA, be selective about which declarations we emit.
2093   if (LangOpts.CUDA) {
2094     if (LangOpts.CUDAIsDevice) {
2095       if (!Global->hasAttr<CUDADeviceAttr>() &&
2096           !Global->hasAttr<CUDAGlobalAttr>() &&
2097           !Global->hasAttr<CUDAConstantAttr>() &&
2098           !Global->hasAttr<CUDASharedAttr>())
2099         return;
2100     } else {
2101       // We need to emit host-side 'shadows' for all global
2102       // device-side variables because the CUDA runtime needs their
2103       // size and host-side address in order to provide access to
2104       // their device-side incarnations.
2105 
2106       // So device-only functions are the only things we skip.
2107       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2108           Global->hasAttr<CUDADeviceAttr>())
2109         return;
2110 
2111       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2112              "Expected Variable or Function");
2113     }
2114   }
2115 
2116   if (LangOpts.OpenMP) {
2117     // If this is OpenMP device, check if it is legal to emit this global
2118     // normally.
2119     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2120       return;
2121     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2122       if (MustBeEmitted(Global))
2123         EmitOMPDeclareReduction(DRD);
2124       return;
2125     }
2126   }
2127 
2128   // Ignore declarations, they will be emitted on their first use.
2129   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2130     // Forward declarations are emitted lazily on first use.
2131     if (!FD->doesThisDeclarationHaveABody()) {
2132       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2133         return;
2134 
2135       StringRef MangledName = getMangledName(GD);
2136 
2137       // Compute the function info and LLVM type.
2138       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2139       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2140 
2141       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2142                               /*DontDefer=*/false);
2143       return;
2144     }
2145   } else {
2146     const auto *VD = cast<VarDecl>(Global);
2147     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2148     // We need to emit device-side global CUDA variables even if a
2149     // variable does not have a definition -- we still need to define
2150     // host-side shadow for it.
2151     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2152                            !VD->hasDefinition() &&
2153                            (VD->hasAttr<CUDAConstantAttr>() ||
2154                             VD->hasAttr<CUDADeviceAttr>());
2155     if (!MustEmitForCuda &&
2156         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2157         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2158       // If this declaration may have caused an inline variable definition to
2159       // change linkage, make sure that it's emitted.
2160       if (Context.getInlineVariableDefinitionKind(VD) ==
2161           ASTContext::InlineVariableDefinitionKind::Strong)
2162         GetAddrOfGlobalVar(VD);
2163       return;
2164     }
2165   }
2166 
2167   // Defer code generation to first use when possible, e.g. if this is an inline
2168   // function. If the global must always be emitted, do it eagerly if possible
2169   // to benefit from cache locality.
2170   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2171     // Emit the definition if it can't be deferred.
2172     EmitGlobalDefinition(GD);
2173     return;
2174   }
2175 
2176   // If we're deferring emission of a C++ variable with an
2177   // initializer, remember the order in which it appeared in the file.
2178   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2179       cast<VarDecl>(Global)->hasInit()) {
2180     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2181     CXXGlobalInits.push_back(nullptr);
2182   }
2183 
2184   StringRef MangledName = getMangledName(GD);
2185   if (GetGlobalValue(MangledName) != nullptr) {
2186     // The value has already been used and should therefore be emitted.
2187     addDeferredDeclToEmit(GD);
2188   } else if (MustBeEmitted(Global)) {
2189     // The value must be emitted, but cannot be emitted eagerly.
2190     assert(!MayBeEmittedEagerly(Global));
2191     addDeferredDeclToEmit(GD);
2192   } else {
2193     // Otherwise, remember that we saw a deferred decl with this name.  The
2194     // first use of the mangled name will cause it to move into
2195     // DeferredDeclsToEmit.
2196     DeferredDecls[MangledName] = GD;
2197   }
2198 }
2199 
2200 // Check if T is a class type with a destructor that's not dllimport.
2201 static bool HasNonDllImportDtor(QualType T) {
2202   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2203     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2204       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2205         return true;
2206 
2207   return false;
2208 }
2209 
2210 namespace {
2211   struct FunctionIsDirectlyRecursive :
2212     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2213     const StringRef Name;
2214     const Builtin::Context &BI;
2215     bool Result;
2216     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2217       Name(N), BI(C), Result(false) {
2218     }
2219     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2220 
2221     bool TraverseCallExpr(CallExpr *E) {
2222       const FunctionDecl *FD = E->getDirectCallee();
2223       if (!FD)
2224         return true;
2225       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2226       if (Attr && Name == Attr->getLabel()) {
2227         Result = true;
2228         return false;
2229       }
2230       unsigned BuiltinID = FD->getBuiltinID();
2231       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2232         return true;
2233       StringRef BuiltinName = BI.getName(BuiltinID);
2234       if (BuiltinName.startswith("__builtin_") &&
2235           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2236         Result = true;
2237         return false;
2238       }
2239       return true;
2240     }
2241   };
2242 
2243   // Make sure we're not referencing non-imported vars or functions.
2244   struct DLLImportFunctionVisitor
2245       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2246     bool SafeToInline = true;
2247 
2248     bool shouldVisitImplicitCode() const { return true; }
2249 
2250     bool VisitVarDecl(VarDecl *VD) {
2251       if (VD->getTLSKind()) {
2252         // A thread-local variable cannot be imported.
2253         SafeToInline = false;
2254         return SafeToInline;
2255       }
2256 
2257       // A variable definition might imply a destructor call.
2258       if (VD->isThisDeclarationADefinition())
2259         SafeToInline = !HasNonDllImportDtor(VD->getType());
2260 
2261       return SafeToInline;
2262     }
2263 
2264     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2265       if (const auto *D = E->getTemporary()->getDestructor())
2266         SafeToInline = D->hasAttr<DLLImportAttr>();
2267       return SafeToInline;
2268     }
2269 
2270     bool VisitDeclRefExpr(DeclRefExpr *E) {
2271       ValueDecl *VD = E->getDecl();
2272       if (isa<FunctionDecl>(VD))
2273         SafeToInline = VD->hasAttr<DLLImportAttr>();
2274       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2275         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2276       return SafeToInline;
2277     }
2278 
2279     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2280       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2281       return SafeToInline;
2282     }
2283 
2284     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2285       CXXMethodDecl *M = E->getMethodDecl();
2286       if (!M) {
2287         // Call through a pointer to member function. This is safe to inline.
2288         SafeToInline = true;
2289       } else {
2290         SafeToInline = M->hasAttr<DLLImportAttr>();
2291       }
2292       return SafeToInline;
2293     }
2294 
2295     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2296       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2297       return SafeToInline;
2298     }
2299 
2300     bool VisitCXXNewExpr(CXXNewExpr *E) {
2301       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2302       return SafeToInline;
2303     }
2304   };
2305 }
2306 
2307 // isTriviallyRecursive - Check if this function calls another
2308 // decl that, because of the asm attribute or the other decl being a builtin,
2309 // ends up pointing to itself.
2310 bool
2311 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2312   StringRef Name;
2313   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2314     // asm labels are a special kind of mangling we have to support.
2315     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2316     if (!Attr)
2317       return false;
2318     Name = Attr->getLabel();
2319   } else {
2320     Name = FD->getName();
2321   }
2322 
2323   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2324   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2325   return Walker.Result;
2326 }
2327 
2328 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2329   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2330     return true;
2331   const auto *F = cast<FunctionDecl>(GD.getDecl());
2332   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2333     return false;
2334 
2335   if (F->hasAttr<DLLImportAttr>()) {
2336     // Check whether it would be safe to inline this dllimport function.
2337     DLLImportFunctionVisitor Visitor;
2338     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2339     if (!Visitor.SafeToInline)
2340       return false;
2341 
2342     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2343       // Implicit destructor invocations aren't captured in the AST, so the
2344       // check above can't see them. Check for them manually here.
2345       for (const Decl *Member : Dtor->getParent()->decls())
2346         if (isa<FieldDecl>(Member))
2347           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2348             return false;
2349       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2350         if (HasNonDllImportDtor(B.getType()))
2351           return false;
2352     }
2353   }
2354 
2355   // PR9614. Avoid cases where the source code is lying to us. An available
2356   // externally function should have an equivalent function somewhere else,
2357   // but a function that calls itself is clearly not equivalent to the real
2358   // implementation.
2359   // This happens in glibc's btowc and in some configure checks.
2360   return !isTriviallyRecursive(F);
2361 }
2362 
2363 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2364   return CodeGenOpts.OptimizationLevel > 0;
2365 }
2366 
2367 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2368   const auto *D = cast<ValueDecl>(GD.getDecl());
2369 
2370   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2371                                  Context.getSourceManager(),
2372                                  "Generating code for declaration");
2373 
2374   if (isa<FunctionDecl>(D)) {
2375     // At -O0, don't generate IR for functions with available_externally
2376     // linkage.
2377     if (!shouldEmitFunction(GD))
2378       return;
2379 
2380     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2381       // Make sure to emit the definition(s) before we emit the thunks.
2382       // This is necessary for the generation of certain thunks.
2383       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2384         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2385       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2386         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2387       else
2388         EmitGlobalFunctionDefinition(GD, GV);
2389 
2390       if (Method->isVirtual())
2391         getVTables().EmitThunks(GD);
2392 
2393       return;
2394     }
2395 
2396     return EmitGlobalFunctionDefinition(GD, GV);
2397   }
2398 
2399   if (const auto *VD = dyn_cast<VarDecl>(D))
2400     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2401 
2402   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2403 }
2404 
2405 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2406                                                       llvm::Function *NewFn);
2407 
2408 void CodeGenModule::emitMultiVersionFunctions() {
2409   for (GlobalDecl GD : MultiVersionFuncs) {
2410     SmallVector<CodeGenFunction::TargetMultiVersionResolverOption, 10> Options;
2411     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2412     getContext().forEachMultiversionedFunctionVersion(
2413         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2414           GlobalDecl CurGD{
2415               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2416           StringRef MangledName = getMangledName(CurGD);
2417           llvm::Constant *Func = GetGlobalValue(MangledName);
2418           if (!Func) {
2419             if (CurFD->isDefined()) {
2420               EmitGlobalFunctionDefinition(CurGD, nullptr);
2421               Func = GetGlobalValue(MangledName);
2422             } else {
2423               const CGFunctionInfo &FI =
2424                   getTypes().arrangeGlobalDeclaration(GD);
2425               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2426               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2427                                        /*DontDefer=*/false, ForDefinition);
2428             }
2429             assert(Func && "This should have just been created");
2430           }
2431           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2432                                CurFD->getAttr<TargetAttr>()->parse());
2433         });
2434 
2435     llvm::Function *ResolverFunc = cast<llvm::Function>(
2436         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2437     if (supportsCOMDAT())
2438       ResolverFunc->setComdat(
2439           getModule().getOrInsertComdat(ResolverFunc->getName()));
2440     std::stable_sort(
2441         Options.begin(), Options.end(),
2442         std::greater<CodeGenFunction::TargetMultiVersionResolverOption>());
2443     CodeGenFunction CGF(*this);
2444     CGF.EmitTargetMultiVersionResolver(ResolverFunc, Options);
2445   }
2446 }
2447 
2448 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2449   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2450   assert(FD && "Not a FunctionDecl?");
2451   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2452   assert(DD && "Not a cpu_dispatch Function?");
2453   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType());
2454 
2455   StringRef ResolverName = getMangledName(GD);
2456   llvm::Type *ResolverType = llvm::FunctionType::get(
2457       llvm::PointerType::get(DeclTy,
2458                              Context.getTargetAddressSpace(FD->getType())),
2459       false);
2460   auto *ResolverFunc = cast<llvm::Function>(
2461       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2462                               /*ForVTable=*/false));
2463 
2464   SmallVector<CodeGenFunction::CPUDispatchMultiVersionResolverOption, 10>
2465       Options;
2466   const TargetInfo &Target = getTarget();
2467   for (const IdentifierInfo *II : DD->cpus()) {
2468     // Get the name of the target function so we can look it up/create it.
2469     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2470                               getCPUSpecificMangling(*this, II->getName());
2471     llvm::Constant *Func = GetOrCreateLLVMFunction(
2472         MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false,
2473         /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2474     llvm::SmallVector<StringRef, 32> Features;
2475     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2476     llvm::transform(Features, Features.begin(),
2477                     [](StringRef Str) { return Str.substr(1); });
2478     Features.erase(std::remove_if(
2479         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2480           return !Target.validateCpuSupports(Feat);
2481         }), Features.end());
2482     Options.emplace_back(cast<llvm::Function>(Func),
2483                          CodeGenFunction::GetX86CpuSupportsMask(Features));
2484   }
2485 
2486   llvm::sort(
2487       Options.begin(), Options.end(),
2488       std::greater<CodeGenFunction::CPUDispatchMultiVersionResolverOption>());
2489   CodeGenFunction CGF(*this);
2490   CGF.EmitCPUDispatchMultiVersionResolver(ResolverFunc, Options);
2491 }
2492 
2493 /// If an ifunc for the specified mangled name is not in the module, create and
2494 /// return an llvm IFunc Function with the specified type.
2495 llvm::Constant *
2496 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2497                                             const FunctionDecl *FD) {
2498   std::string MangledName =
2499       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2500   std::string IFuncName = MangledName + ".ifunc";
2501   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2502     return IFuncGV;
2503 
2504   // Since this is the first time we've created this IFunc, make sure
2505   // that we put this multiversioned function into the list to be
2506   // replaced later if necessary (target multiversioning only).
2507   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2508     MultiVersionFuncs.push_back(GD);
2509 
2510   std::string ResolverName = MangledName + ".resolver";
2511   llvm::Type *ResolverType = llvm::FunctionType::get(
2512       llvm::PointerType::get(DeclTy,
2513                              Context.getTargetAddressSpace(FD->getType())),
2514       false);
2515   llvm::Constant *Resolver =
2516       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2517                               /*ForVTable=*/false);
2518   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2519       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2520   GIF->setName(IFuncName);
2521   SetCommonAttributes(FD, GIF);
2522 
2523   return GIF;
2524 }
2525 
2526 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2527 /// module, create and return an llvm Function with the specified type. If there
2528 /// is something in the module with the specified name, return it potentially
2529 /// bitcasted to the right type.
2530 ///
2531 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2532 /// to set the attributes on the function when it is first created.
2533 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2534     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2535     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2536     ForDefinition_t IsForDefinition) {
2537   const Decl *D = GD.getDecl();
2538 
2539   // Any attempts to use a MultiVersion function should result in retrieving
2540   // the iFunc instead. Name Mangling will handle the rest of the changes.
2541   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2542     // For the device mark the function as one that should be emitted.
2543     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2544         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2545         !DontDefer && !IsForDefinition) {
2546       const FunctionDecl *FDDef = FD->getDefinition();
2547       GlobalDecl GDDef;
2548       if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2549         GDDef = GlobalDecl(CD, GD.getCtorType());
2550       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2551         GDDef = GlobalDecl(DD, GD.getDtorType());
2552       else
2553         GDDef = GlobalDecl(FDDef);
2554       addDeferredDeclToEmit(GDDef);
2555     }
2556 
2557     if (FD->isMultiVersion()) {
2558       const auto *TA = FD->getAttr<TargetAttr>();
2559       if (TA && TA->isDefaultVersion())
2560         UpdateMultiVersionNames(GD, FD);
2561       if (!IsForDefinition)
2562         return GetOrCreateMultiVersionIFunc(GD, Ty, FD);
2563     }
2564   }
2565 
2566   // Lookup the entry, lazily creating it if necessary.
2567   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2568   if (Entry) {
2569     if (WeakRefReferences.erase(Entry)) {
2570       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2571       if (FD && !FD->hasAttr<WeakAttr>())
2572         Entry->setLinkage(llvm::Function::ExternalLinkage);
2573     }
2574 
2575     // Handle dropped DLL attributes.
2576     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2577       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2578       setDSOLocal(Entry);
2579     }
2580 
2581     // If there are two attempts to define the same mangled name, issue an
2582     // error.
2583     if (IsForDefinition && !Entry->isDeclaration()) {
2584       GlobalDecl OtherGD;
2585       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2586       // to make sure that we issue an error only once.
2587       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2588           (GD.getCanonicalDecl().getDecl() !=
2589            OtherGD.getCanonicalDecl().getDecl()) &&
2590           DiagnosedConflictingDefinitions.insert(GD).second) {
2591         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2592             << MangledName;
2593         getDiags().Report(OtherGD.getDecl()->getLocation(),
2594                           diag::note_previous_definition);
2595       }
2596     }
2597 
2598     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2599         (Entry->getType()->getElementType() == Ty)) {
2600       return Entry;
2601     }
2602 
2603     // Make sure the result is of the correct type.
2604     // (If function is requested for a definition, we always need to create a new
2605     // function, not just return a bitcast.)
2606     if (!IsForDefinition)
2607       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2608   }
2609 
2610   // This function doesn't have a complete type (for example, the return
2611   // type is an incomplete struct). Use a fake type instead, and make
2612   // sure not to try to set attributes.
2613   bool IsIncompleteFunction = false;
2614 
2615   llvm::FunctionType *FTy;
2616   if (isa<llvm::FunctionType>(Ty)) {
2617     FTy = cast<llvm::FunctionType>(Ty);
2618   } else {
2619     FTy = llvm::FunctionType::get(VoidTy, false);
2620     IsIncompleteFunction = true;
2621   }
2622 
2623   llvm::Function *F =
2624       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2625                              Entry ? StringRef() : MangledName, &getModule());
2626 
2627   // If we already created a function with the same mangled name (but different
2628   // type) before, take its name and add it to the list of functions to be
2629   // replaced with F at the end of CodeGen.
2630   //
2631   // This happens if there is a prototype for a function (e.g. "int f()") and
2632   // then a definition of a different type (e.g. "int f(int x)").
2633   if (Entry) {
2634     F->takeName(Entry);
2635 
2636     // This might be an implementation of a function without a prototype, in
2637     // which case, try to do special replacement of calls which match the new
2638     // prototype.  The really key thing here is that we also potentially drop
2639     // arguments from the call site so as to make a direct call, which makes the
2640     // inliner happier and suppresses a number of optimizer warnings (!) about
2641     // dropping arguments.
2642     if (!Entry->use_empty()) {
2643       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2644       Entry->removeDeadConstantUsers();
2645     }
2646 
2647     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2648         F, Entry->getType()->getElementType()->getPointerTo());
2649     addGlobalValReplacement(Entry, BC);
2650   }
2651 
2652   assert(F->getName() == MangledName && "name was uniqued!");
2653   if (D)
2654     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2655   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2656     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2657     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2658   }
2659 
2660   if (!DontDefer) {
2661     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2662     // each other bottoming out with the base dtor.  Therefore we emit non-base
2663     // dtors on usage, even if there is no dtor definition in the TU.
2664     if (D && isa<CXXDestructorDecl>(D) &&
2665         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2666                                            GD.getDtorType()))
2667       addDeferredDeclToEmit(GD);
2668 
2669     // This is the first use or definition of a mangled name.  If there is a
2670     // deferred decl with this name, remember that we need to emit it at the end
2671     // of the file.
2672     auto DDI = DeferredDecls.find(MangledName);
2673     if (DDI != DeferredDecls.end()) {
2674       // Move the potentially referenced deferred decl to the
2675       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2676       // don't need it anymore).
2677       addDeferredDeclToEmit(DDI->second);
2678       DeferredDecls.erase(DDI);
2679 
2680       // Otherwise, there are cases we have to worry about where we're
2681       // using a declaration for which we must emit a definition but where
2682       // we might not find a top-level definition:
2683       //   - member functions defined inline in their classes
2684       //   - friend functions defined inline in some class
2685       //   - special member functions with implicit definitions
2686       // If we ever change our AST traversal to walk into class methods,
2687       // this will be unnecessary.
2688       //
2689       // We also don't emit a definition for a function if it's going to be an
2690       // entry in a vtable, unless it's already marked as used.
2691     } else if (getLangOpts().CPlusPlus && D) {
2692       // Look for a declaration that's lexically in a record.
2693       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2694            FD = FD->getPreviousDecl()) {
2695         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2696           if (FD->doesThisDeclarationHaveABody()) {
2697             addDeferredDeclToEmit(GD.getWithDecl(FD));
2698             break;
2699           }
2700         }
2701       }
2702     }
2703   }
2704 
2705   // Make sure the result is of the requested type.
2706   if (!IsIncompleteFunction) {
2707     assert(F->getType()->getElementType() == Ty);
2708     return F;
2709   }
2710 
2711   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2712   return llvm::ConstantExpr::getBitCast(F, PTy);
2713 }
2714 
2715 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2716 /// non-null, then this function will use the specified type if it has to
2717 /// create it (this occurs when we see a definition of the function).
2718 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2719                                                  llvm::Type *Ty,
2720                                                  bool ForVTable,
2721                                                  bool DontDefer,
2722                                               ForDefinition_t IsForDefinition) {
2723   // If there was no specific requested type, just convert it now.
2724   if (!Ty) {
2725     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2726     auto CanonTy = Context.getCanonicalType(FD->getType());
2727     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2728   }
2729 
2730   // Devirtualized destructor calls may come through here instead of via
2731   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2732   // of the complete destructor when necessary.
2733   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2734     if (getTarget().getCXXABI().isMicrosoft() &&
2735         GD.getDtorType() == Dtor_Complete &&
2736         DD->getParent()->getNumVBases() == 0)
2737       GD = GlobalDecl(DD, Dtor_Base);
2738   }
2739 
2740   StringRef MangledName = getMangledName(GD);
2741   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2742                                  /*IsThunk=*/false, llvm::AttributeList(),
2743                                  IsForDefinition);
2744 }
2745 
2746 static const FunctionDecl *
2747 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2748   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2749   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2750 
2751   IdentifierInfo &CII = C.Idents.get(Name);
2752   for (const auto &Result : DC->lookup(&CII))
2753     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2754       return FD;
2755 
2756   if (!C.getLangOpts().CPlusPlus)
2757     return nullptr;
2758 
2759   // Demangle the premangled name from getTerminateFn()
2760   IdentifierInfo &CXXII =
2761       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2762           ? C.Idents.get("terminate")
2763           : C.Idents.get(Name);
2764 
2765   for (const auto &N : {"__cxxabiv1", "std"}) {
2766     IdentifierInfo &NS = C.Idents.get(N);
2767     for (const auto &Result : DC->lookup(&NS)) {
2768       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2769       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2770         for (const auto &Result : LSD->lookup(&NS))
2771           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2772             break;
2773 
2774       if (ND)
2775         for (const auto &Result : ND->lookup(&CXXII))
2776           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2777             return FD;
2778     }
2779   }
2780 
2781   return nullptr;
2782 }
2783 
2784 /// CreateRuntimeFunction - Create a new runtime function with the specified
2785 /// type and name.
2786 llvm::Constant *
2787 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2788                                      llvm::AttributeList ExtraAttrs,
2789                                      bool Local) {
2790   llvm::Constant *C =
2791       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2792                               /*DontDefer=*/false, /*IsThunk=*/false,
2793                               ExtraAttrs);
2794 
2795   if (auto *F = dyn_cast<llvm::Function>(C)) {
2796     if (F->empty()) {
2797       F->setCallingConv(getRuntimeCC());
2798 
2799       if (!Local && getTriple().isOSBinFormatCOFF() &&
2800           !getCodeGenOpts().LTOVisibilityPublicStd &&
2801           !getTriple().isWindowsGNUEnvironment()) {
2802         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2803         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2804           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2805           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2806         }
2807       }
2808       setDSOLocal(F);
2809     }
2810   }
2811 
2812   return C;
2813 }
2814 
2815 /// CreateBuiltinFunction - Create a new builtin function with the specified
2816 /// type and name.
2817 llvm::Constant *
2818 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2819                                      llvm::AttributeList ExtraAttrs) {
2820   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2821 }
2822 
2823 /// isTypeConstant - Determine whether an object of this type can be emitted
2824 /// as a constant.
2825 ///
2826 /// If ExcludeCtor is true, the duration when the object's constructor runs
2827 /// will not be considered. The caller will need to verify that the object is
2828 /// not written to during its construction.
2829 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2830   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2831     return false;
2832 
2833   if (Context.getLangOpts().CPlusPlus) {
2834     if (const CXXRecordDecl *Record
2835           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2836       return ExcludeCtor && !Record->hasMutableFields() &&
2837              Record->hasTrivialDestructor();
2838   }
2839 
2840   return true;
2841 }
2842 
2843 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2844 /// create and return an llvm GlobalVariable with the specified type.  If there
2845 /// is something in the module with the specified name, return it potentially
2846 /// bitcasted to the right type.
2847 ///
2848 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2849 /// to set the attributes on the global when it is first created.
2850 ///
2851 /// If IsForDefinition is true, it is guaranteed that an actual global with
2852 /// type Ty will be returned, not conversion of a variable with the same
2853 /// mangled name but some other type.
2854 llvm::Constant *
2855 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2856                                      llvm::PointerType *Ty,
2857                                      const VarDecl *D,
2858                                      ForDefinition_t IsForDefinition) {
2859   // Lookup the entry, lazily creating it if necessary.
2860   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2861   if (Entry) {
2862     if (WeakRefReferences.erase(Entry)) {
2863       if (D && !D->hasAttr<WeakAttr>())
2864         Entry->setLinkage(llvm::Function::ExternalLinkage);
2865     }
2866 
2867     // Handle dropped DLL attributes.
2868     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2869       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2870 
2871     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2872       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2873 
2874     if (Entry->getType() == Ty)
2875       return Entry;
2876 
2877     // If there are two attempts to define the same mangled name, issue an
2878     // error.
2879     if (IsForDefinition && !Entry->isDeclaration()) {
2880       GlobalDecl OtherGD;
2881       const VarDecl *OtherD;
2882 
2883       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2884       // to make sure that we issue an error only once.
2885       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2886           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2887           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2888           OtherD->hasInit() &&
2889           DiagnosedConflictingDefinitions.insert(D).second) {
2890         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2891             << MangledName;
2892         getDiags().Report(OtherGD.getDecl()->getLocation(),
2893                           diag::note_previous_definition);
2894       }
2895     }
2896 
2897     // Make sure the result is of the correct type.
2898     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2899       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2900 
2901     // (If global is requested for a definition, we always need to create a new
2902     // global, not just return a bitcast.)
2903     if (!IsForDefinition)
2904       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2905   }
2906 
2907   auto AddrSpace = GetGlobalVarAddressSpace(D);
2908   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2909 
2910   auto *GV = new llvm::GlobalVariable(
2911       getModule(), Ty->getElementType(), false,
2912       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2913       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2914 
2915   // If we already created a global with the same mangled name (but different
2916   // type) before, take its name and remove it from its parent.
2917   if (Entry) {
2918     GV->takeName(Entry);
2919 
2920     if (!Entry->use_empty()) {
2921       llvm::Constant *NewPtrForOldDecl =
2922           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2923       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2924     }
2925 
2926     Entry->eraseFromParent();
2927   }
2928 
2929   // This is the first use or definition of a mangled name.  If there is a
2930   // deferred decl with this name, remember that we need to emit it at the end
2931   // of the file.
2932   auto DDI = DeferredDecls.find(MangledName);
2933   if (DDI != DeferredDecls.end()) {
2934     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2935     // list, and remove it from DeferredDecls (since we don't need it anymore).
2936     addDeferredDeclToEmit(DDI->second);
2937     DeferredDecls.erase(DDI);
2938   }
2939 
2940   // Handle things which are present even on external declarations.
2941   if (D) {
2942     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2943       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2944 
2945     // FIXME: This code is overly simple and should be merged with other global
2946     // handling.
2947     GV->setConstant(isTypeConstant(D->getType(), false));
2948 
2949     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2950 
2951     setLinkageForGV(GV, D);
2952 
2953     if (D->getTLSKind()) {
2954       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2955         CXXThreadLocals.push_back(D);
2956       setTLSMode(GV, *D);
2957     }
2958 
2959     setGVProperties(GV, D);
2960 
2961     // If required by the ABI, treat declarations of static data members with
2962     // inline initializers as definitions.
2963     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2964       EmitGlobalVarDefinition(D);
2965     }
2966 
2967     // Emit section information for extern variables.
2968     if (D->hasExternalStorage()) {
2969       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2970         GV->setSection(SA->getName());
2971     }
2972 
2973     // Handle XCore specific ABI requirements.
2974     if (getTriple().getArch() == llvm::Triple::xcore &&
2975         D->getLanguageLinkage() == CLanguageLinkage &&
2976         D->getType().isConstant(Context) &&
2977         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2978       GV->setSection(".cp.rodata");
2979 
2980     // Check if we a have a const declaration with an initializer, we may be
2981     // able to emit it as available_externally to expose it's value to the
2982     // optimizer.
2983     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2984         D->getType().isConstQualified() && !GV->hasInitializer() &&
2985         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2986       const auto *Record =
2987           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2988       bool HasMutableFields = Record && Record->hasMutableFields();
2989       if (!HasMutableFields) {
2990         const VarDecl *InitDecl;
2991         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2992         if (InitExpr) {
2993           ConstantEmitter emitter(*this);
2994           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2995           if (Init) {
2996             auto *InitType = Init->getType();
2997             if (GV->getType()->getElementType() != InitType) {
2998               // The type of the initializer does not match the definition.
2999               // This happens when an initializer has a different type from
3000               // the type of the global (because of padding at the end of a
3001               // structure for instance).
3002               GV->setName(StringRef());
3003               // Make a new global with the correct type, this is now guaranteed
3004               // to work.
3005               auto *NewGV = cast<llvm::GlobalVariable>(
3006                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3007 
3008               // Erase the old global, since it is no longer used.
3009               GV->eraseFromParent();
3010               GV = NewGV;
3011             } else {
3012               GV->setInitializer(Init);
3013               GV->setConstant(true);
3014               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3015             }
3016             emitter.finalize(GV);
3017           }
3018         }
3019       }
3020     }
3021   }
3022 
3023   LangAS ExpectedAS =
3024       D ? D->getType().getAddressSpace()
3025         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3026   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3027          Ty->getPointerAddressSpace());
3028   if (AddrSpace != ExpectedAS)
3029     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3030                                                        ExpectedAS, Ty);
3031 
3032   return GV;
3033 }
3034 
3035 llvm::Constant *
3036 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3037                                ForDefinition_t IsForDefinition) {
3038   const Decl *D = GD.getDecl();
3039   if (isa<CXXConstructorDecl>(D))
3040     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3041                                 getFromCtorType(GD.getCtorType()),
3042                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3043                                 /*DontDefer=*/false, IsForDefinition);
3044   else if (isa<CXXDestructorDecl>(D))
3045     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3046                                 getFromDtorType(GD.getDtorType()),
3047                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3048                                 /*DontDefer=*/false, IsForDefinition);
3049   else if (isa<CXXMethodDecl>(D)) {
3050     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3051         cast<CXXMethodDecl>(D));
3052     auto Ty = getTypes().GetFunctionType(*FInfo);
3053     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3054                              IsForDefinition);
3055   } else if (isa<FunctionDecl>(D)) {
3056     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3057     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3058     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3059                              IsForDefinition);
3060   } else
3061     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3062                               IsForDefinition);
3063 }
3064 
3065 llvm::GlobalVariable *
3066 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
3067                                       llvm::Type *Ty,
3068                                       llvm::GlobalValue::LinkageTypes Linkage) {
3069   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3070   llvm::GlobalVariable *OldGV = nullptr;
3071 
3072   if (GV) {
3073     // Check if the variable has the right type.
3074     if (GV->getType()->getElementType() == Ty)
3075       return GV;
3076 
3077     // Because C++ name mangling, the only way we can end up with an already
3078     // existing global with the same name is if it has been declared extern "C".
3079     assert(GV->isDeclaration() && "Declaration has wrong type!");
3080     OldGV = GV;
3081   }
3082 
3083   // Create a new variable.
3084   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3085                                 Linkage, nullptr, Name);
3086 
3087   if (OldGV) {
3088     // Replace occurrences of the old variable if needed.
3089     GV->takeName(OldGV);
3090 
3091     if (!OldGV->use_empty()) {
3092       llvm::Constant *NewPtrForOldDecl =
3093       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3094       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3095     }
3096 
3097     OldGV->eraseFromParent();
3098   }
3099 
3100   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3101       !GV->hasAvailableExternallyLinkage())
3102     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3103 
3104   return GV;
3105 }
3106 
3107 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3108 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3109 /// then it will be created with the specified type instead of whatever the
3110 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3111 /// that an actual global with type Ty will be returned, not conversion of a
3112 /// variable with the same mangled name but some other type.
3113 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3114                                                   llvm::Type *Ty,
3115                                            ForDefinition_t IsForDefinition) {
3116   assert(D->hasGlobalStorage() && "Not a global variable");
3117   QualType ASTTy = D->getType();
3118   if (!Ty)
3119     Ty = getTypes().ConvertTypeForMem(ASTTy);
3120 
3121   llvm::PointerType *PTy =
3122     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3123 
3124   StringRef MangledName = getMangledName(D);
3125   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3126 }
3127 
3128 /// CreateRuntimeVariable - Create a new runtime global variable with the
3129 /// specified type and name.
3130 llvm::Constant *
3131 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3132                                      StringRef Name) {
3133   auto *Ret =
3134       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3135   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3136   return Ret;
3137 }
3138 
3139 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3140   assert(!D->getInit() && "Cannot emit definite definitions here!");
3141 
3142   StringRef MangledName = getMangledName(D);
3143   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3144 
3145   // We already have a definition, not declaration, with the same mangled name.
3146   // Emitting of declaration is not required (and actually overwrites emitted
3147   // definition).
3148   if (GV && !GV->isDeclaration())
3149     return;
3150 
3151   // If we have not seen a reference to this variable yet, place it into the
3152   // deferred declarations table to be emitted if needed later.
3153   if (!MustBeEmitted(D) && !GV) {
3154       DeferredDecls[MangledName] = D;
3155       return;
3156   }
3157 
3158   // The tentative definition is the only definition.
3159   EmitGlobalVarDefinition(D);
3160 }
3161 
3162 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3163   return Context.toCharUnitsFromBits(
3164       getDataLayout().getTypeStoreSizeInBits(Ty));
3165 }
3166 
3167 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3168   LangAS AddrSpace = LangAS::Default;
3169   if (LangOpts.OpenCL) {
3170     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3171     assert(AddrSpace == LangAS::opencl_global ||
3172            AddrSpace == LangAS::opencl_constant ||
3173            AddrSpace == LangAS::opencl_local ||
3174            AddrSpace >= LangAS::FirstTargetAddressSpace);
3175     return AddrSpace;
3176   }
3177 
3178   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3179     if (D && D->hasAttr<CUDAConstantAttr>())
3180       return LangAS::cuda_constant;
3181     else if (D && D->hasAttr<CUDASharedAttr>())
3182       return LangAS::cuda_shared;
3183     else if (D && D->hasAttr<CUDADeviceAttr>())
3184       return LangAS::cuda_device;
3185     else if (D && D->getType().isConstQualified())
3186       return LangAS::cuda_constant;
3187     else
3188       return LangAS::cuda_device;
3189   }
3190 
3191   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3192 }
3193 
3194 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3195   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3196   if (LangOpts.OpenCL)
3197     return LangAS::opencl_constant;
3198   if (auto AS = getTarget().getConstantAddressSpace())
3199     return AS.getValue();
3200   return LangAS::Default;
3201 }
3202 
3203 // In address space agnostic languages, string literals are in default address
3204 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3205 // emitted in constant address space in LLVM IR. To be consistent with other
3206 // parts of AST, string literal global variables in constant address space
3207 // need to be casted to default address space before being put into address
3208 // map and referenced by other part of CodeGen.
3209 // In OpenCL, string literals are in constant address space in AST, therefore
3210 // they should not be casted to default address space.
3211 static llvm::Constant *
3212 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3213                                        llvm::GlobalVariable *GV) {
3214   llvm::Constant *Cast = GV;
3215   if (!CGM.getLangOpts().OpenCL) {
3216     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3217       if (AS != LangAS::Default)
3218         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3219             CGM, GV, AS.getValue(), LangAS::Default,
3220             GV->getValueType()->getPointerTo(
3221                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3222     }
3223   }
3224   return Cast;
3225 }
3226 
3227 template<typename SomeDecl>
3228 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3229                                                llvm::GlobalValue *GV) {
3230   if (!getLangOpts().CPlusPlus)
3231     return;
3232 
3233   // Must have 'used' attribute, or else inline assembly can't rely on
3234   // the name existing.
3235   if (!D->template hasAttr<UsedAttr>())
3236     return;
3237 
3238   // Must have internal linkage and an ordinary name.
3239   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3240     return;
3241 
3242   // Must be in an extern "C" context. Entities declared directly within
3243   // a record are not extern "C" even if the record is in such a context.
3244   const SomeDecl *First = D->getFirstDecl();
3245   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3246     return;
3247 
3248   // OK, this is an internal linkage entity inside an extern "C" linkage
3249   // specification. Make a note of that so we can give it the "expected"
3250   // mangled name if nothing else is using that name.
3251   std::pair<StaticExternCMap::iterator, bool> R =
3252       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3253 
3254   // If we have multiple internal linkage entities with the same name
3255   // in extern "C" regions, none of them gets that name.
3256   if (!R.second)
3257     R.first->second = nullptr;
3258 }
3259 
3260 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3261   if (!CGM.supportsCOMDAT())
3262     return false;
3263 
3264   if (D.hasAttr<SelectAnyAttr>())
3265     return true;
3266 
3267   GVALinkage Linkage;
3268   if (auto *VD = dyn_cast<VarDecl>(&D))
3269     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3270   else
3271     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3272 
3273   switch (Linkage) {
3274   case GVA_Internal:
3275   case GVA_AvailableExternally:
3276   case GVA_StrongExternal:
3277     return false;
3278   case GVA_DiscardableODR:
3279   case GVA_StrongODR:
3280     return true;
3281   }
3282   llvm_unreachable("No such linkage");
3283 }
3284 
3285 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3286                                           llvm::GlobalObject &GO) {
3287   if (!shouldBeInCOMDAT(*this, D))
3288     return;
3289   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3290 }
3291 
3292 /// Pass IsTentative as true if you want to create a tentative definition.
3293 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3294                                             bool IsTentative) {
3295   // OpenCL global variables of sampler type are translated to function calls,
3296   // therefore no need to be translated.
3297   QualType ASTTy = D->getType();
3298   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3299     return;
3300 
3301   // If this is OpenMP device, check if it is legal to emit this global
3302   // normally.
3303   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3304       OpenMPRuntime->emitTargetGlobalVariable(D))
3305     return;
3306 
3307   llvm::Constant *Init = nullptr;
3308   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3309   bool NeedsGlobalCtor = false;
3310   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3311 
3312   const VarDecl *InitDecl;
3313   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3314 
3315   Optional<ConstantEmitter> emitter;
3316 
3317   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3318   // as part of their declaration."  Sema has already checked for
3319   // error cases, so we just need to set Init to UndefValue.
3320   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3321       D->hasAttr<CUDASharedAttr>())
3322     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3323   else if (!InitExpr) {
3324     // This is a tentative definition; tentative definitions are
3325     // implicitly initialized with { 0 }.
3326     //
3327     // Note that tentative definitions are only emitted at the end of
3328     // a translation unit, so they should never have incomplete
3329     // type. In addition, EmitTentativeDefinition makes sure that we
3330     // never attempt to emit a tentative definition if a real one
3331     // exists. A use may still exists, however, so we still may need
3332     // to do a RAUW.
3333     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3334     Init = EmitNullConstant(D->getType());
3335   } else {
3336     initializedGlobalDecl = GlobalDecl(D);
3337     emitter.emplace(*this);
3338     Init = emitter->tryEmitForInitializer(*InitDecl);
3339 
3340     if (!Init) {
3341       QualType T = InitExpr->getType();
3342       if (D->getType()->isReferenceType())
3343         T = D->getType();
3344 
3345       if (getLangOpts().CPlusPlus) {
3346         Init = EmitNullConstant(T);
3347         NeedsGlobalCtor = true;
3348       } else {
3349         ErrorUnsupported(D, "static initializer");
3350         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3351       }
3352     } else {
3353       // We don't need an initializer, so remove the entry for the delayed
3354       // initializer position (just in case this entry was delayed) if we
3355       // also don't need to register a destructor.
3356       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3357         DelayedCXXInitPosition.erase(D);
3358     }
3359   }
3360 
3361   llvm::Type* InitType = Init->getType();
3362   llvm::Constant *Entry =
3363       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3364 
3365   // Strip off a bitcast if we got one back.
3366   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3367     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3368            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3369            // All zero index gep.
3370            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3371     Entry = CE->getOperand(0);
3372   }
3373 
3374   // Entry is now either a Function or GlobalVariable.
3375   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3376 
3377   // We have a definition after a declaration with the wrong type.
3378   // We must make a new GlobalVariable* and update everything that used OldGV
3379   // (a declaration or tentative definition) with the new GlobalVariable*
3380   // (which will be a definition).
3381   //
3382   // This happens if there is a prototype for a global (e.g.
3383   // "extern int x[];") and then a definition of a different type (e.g.
3384   // "int x[10];"). This also happens when an initializer has a different type
3385   // from the type of the global (this happens with unions).
3386   if (!GV || GV->getType()->getElementType() != InitType ||
3387       GV->getType()->getAddressSpace() !=
3388           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3389 
3390     // Move the old entry aside so that we'll create a new one.
3391     Entry->setName(StringRef());
3392 
3393     // Make a new global with the correct type, this is now guaranteed to work.
3394     GV = cast<llvm::GlobalVariable>(
3395         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3396 
3397     // Replace all uses of the old global with the new global
3398     llvm::Constant *NewPtrForOldDecl =
3399         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3400     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3401 
3402     // Erase the old global, since it is no longer used.
3403     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3404   }
3405 
3406   MaybeHandleStaticInExternC(D, GV);
3407 
3408   if (D->hasAttr<AnnotateAttr>())
3409     AddGlobalAnnotations(D, GV);
3410 
3411   // Set the llvm linkage type as appropriate.
3412   llvm::GlobalValue::LinkageTypes Linkage =
3413       getLLVMLinkageVarDefinition(D, GV->isConstant());
3414 
3415   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3416   // the device. [...]"
3417   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3418   // __device__, declares a variable that: [...]
3419   // Is accessible from all the threads within the grid and from the host
3420   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3421   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3422   if (GV && LangOpts.CUDA) {
3423     if (LangOpts.CUDAIsDevice) {
3424       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3425         GV->setExternallyInitialized(true);
3426     } else {
3427       // Host-side shadows of external declarations of device-side
3428       // global variables become internal definitions. These have to
3429       // be internal in order to prevent name conflicts with global
3430       // host variables with the same name in a different TUs.
3431       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3432         Linkage = llvm::GlobalValue::InternalLinkage;
3433 
3434         // Shadow variables and their properties must be registered
3435         // with CUDA runtime.
3436         unsigned Flags = 0;
3437         if (!D->hasDefinition())
3438           Flags |= CGCUDARuntime::ExternDeviceVar;
3439         if (D->hasAttr<CUDAConstantAttr>())
3440           Flags |= CGCUDARuntime::ConstantDeviceVar;
3441         getCUDARuntime().registerDeviceVar(*GV, Flags);
3442       } else if (D->hasAttr<CUDASharedAttr>())
3443         // __shared__ variables are odd. Shadows do get created, but
3444         // they are not registered with the CUDA runtime, so they
3445         // can't really be used to access their device-side
3446         // counterparts. It's not clear yet whether it's nvcc's bug or
3447         // a feature, but we've got to do the same for compatibility.
3448         Linkage = llvm::GlobalValue::InternalLinkage;
3449     }
3450   }
3451 
3452   GV->setInitializer(Init);
3453   if (emitter) emitter->finalize(GV);
3454 
3455   // If it is safe to mark the global 'constant', do so now.
3456   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3457                   isTypeConstant(D->getType(), true));
3458 
3459   // If it is in a read-only section, mark it 'constant'.
3460   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3461     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3462     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3463       GV->setConstant(true);
3464   }
3465 
3466   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3467 
3468 
3469   // On Darwin, if the normal linkage of a C++ thread_local variable is
3470   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3471   // copies within a linkage unit; otherwise, the backing variable has
3472   // internal linkage and all accesses should just be calls to the
3473   // Itanium-specified entry point, which has the normal linkage of the
3474   // variable. This is to preserve the ability to change the implementation
3475   // behind the scenes.
3476   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3477       Context.getTargetInfo().getTriple().isOSDarwin() &&
3478       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3479       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3480     Linkage = llvm::GlobalValue::InternalLinkage;
3481 
3482   GV->setLinkage(Linkage);
3483   if (D->hasAttr<DLLImportAttr>())
3484     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3485   else if (D->hasAttr<DLLExportAttr>())
3486     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3487   else
3488     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3489 
3490   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3491     // common vars aren't constant even if declared const.
3492     GV->setConstant(false);
3493     // Tentative definition of global variables may be initialized with
3494     // non-zero null pointers. In this case they should have weak linkage
3495     // since common linkage must have zero initializer and must not have
3496     // explicit section therefore cannot have non-zero initial value.
3497     if (!GV->getInitializer()->isNullValue())
3498       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3499   }
3500 
3501   setNonAliasAttributes(D, GV);
3502 
3503   if (D->getTLSKind() && !GV->isThreadLocal()) {
3504     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3505       CXXThreadLocals.push_back(D);
3506     setTLSMode(GV, *D);
3507   }
3508 
3509   maybeSetTrivialComdat(*D, *GV);
3510 
3511   // Emit the initializer function if necessary.
3512   if (NeedsGlobalCtor || NeedsGlobalDtor)
3513     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3514 
3515   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3516 
3517   // Emit global variable debug information.
3518   if (CGDebugInfo *DI = getModuleDebugInfo())
3519     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3520       DI->EmitGlobalVariable(GV, D);
3521 }
3522 
3523 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3524                                       CodeGenModule &CGM, const VarDecl *D,
3525                                       bool NoCommon) {
3526   // Don't give variables common linkage if -fno-common was specified unless it
3527   // was overridden by a NoCommon attribute.
3528   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3529     return true;
3530 
3531   // C11 6.9.2/2:
3532   //   A declaration of an identifier for an object that has file scope without
3533   //   an initializer, and without a storage-class specifier or with the
3534   //   storage-class specifier static, constitutes a tentative definition.
3535   if (D->getInit() || D->hasExternalStorage())
3536     return true;
3537 
3538   // A variable cannot be both common and exist in a section.
3539   if (D->hasAttr<SectionAttr>())
3540     return true;
3541 
3542   // A variable cannot be both common and exist in a section.
3543   // We don't try to determine which is the right section in the front-end.
3544   // If no specialized section name is applicable, it will resort to default.
3545   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3546       D->hasAttr<PragmaClangDataSectionAttr>() ||
3547       D->hasAttr<PragmaClangRodataSectionAttr>())
3548     return true;
3549 
3550   // Thread local vars aren't considered common linkage.
3551   if (D->getTLSKind())
3552     return true;
3553 
3554   // Tentative definitions marked with WeakImportAttr are true definitions.
3555   if (D->hasAttr<WeakImportAttr>())
3556     return true;
3557 
3558   // A variable cannot be both common and exist in a comdat.
3559   if (shouldBeInCOMDAT(CGM, *D))
3560     return true;
3561 
3562   // Declarations with a required alignment do not have common linkage in MSVC
3563   // mode.
3564   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3565     if (D->hasAttr<AlignedAttr>())
3566       return true;
3567     QualType VarType = D->getType();
3568     if (Context.isAlignmentRequired(VarType))
3569       return true;
3570 
3571     if (const auto *RT = VarType->getAs<RecordType>()) {
3572       const RecordDecl *RD = RT->getDecl();
3573       for (const FieldDecl *FD : RD->fields()) {
3574         if (FD->isBitField())
3575           continue;
3576         if (FD->hasAttr<AlignedAttr>())
3577           return true;
3578         if (Context.isAlignmentRequired(FD->getType()))
3579           return true;
3580       }
3581     }
3582   }
3583 
3584   return false;
3585 }
3586 
3587 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3588     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3589   if (Linkage == GVA_Internal)
3590     return llvm::Function::InternalLinkage;
3591 
3592   if (D->hasAttr<WeakAttr>()) {
3593     if (IsConstantVariable)
3594       return llvm::GlobalVariable::WeakODRLinkage;
3595     else
3596       return llvm::GlobalVariable::WeakAnyLinkage;
3597   }
3598 
3599   // We are guaranteed to have a strong definition somewhere else,
3600   // so we can use available_externally linkage.
3601   if (Linkage == GVA_AvailableExternally)
3602     return llvm::GlobalValue::AvailableExternallyLinkage;
3603 
3604   // Note that Apple's kernel linker doesn't support symbol
3605   // coalescing, so we need to avoid linkonce and weak linkages there.
3606   // Normally, this means we just map to internal, but for explicit
3607   // instantiations we'll map to external.
3608 
3609   // In C++, the compiler has to emit a definition in every translation unit
3610   // that references the function.  We should use linkonce_odr because
3611   // a) if all references in this translation unit are optimized away, we
3612   // don't need to codegen it.  b) if the function persists, it needs to be
3613   // merged with other definitions. c) C++ has the ODR, so we know the
3614   // definition is dependable.
3615   if (Linkage == GVA_DiscardableODR)
3616     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3617                                             : llvm::Function::InternalLinkage;
3618 
3619   // An explicit instantiation of a template has weak linkage, since
3620   // explicit instantiations can occur in multiple translation units
3621   // and must all be equivalent. However, we are not allowed to
3622   // throw away these explicit instantiations.
3623   //
3624   // We don't currently support CUDA device code spread out across multiple TUs,
3625   // so say that CUDA templates are either external (for kernels) or internal.
3626   // This lets llvm perform aggressive inter-procedural optimizations.
3627   if (Linkage == GVA_StrongODR) {
3628     if (Context.getLangOpts().AppleKext)
3629       return llvm::Function::ExternalLinkage;
3630     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3631       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3632                                           : llvm::Function::InternalLinkage;
3633     return llvm::Function::WeakODRLinkage;
3634   }
3635 
3636   // C++ doesn't have tentative definitions and thus cannot have common
3637   // linkage.
3638   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3639       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3640                                  CodeGenOpts.NoCommon))
3641     return llvm::GlobalVariable::CommonLinkage;
3642 
3643   // selectany symbols are externally visible, so use weak instead of
3644   // linkonce.  MSVC optimizes away references to const selectany globals, so
3645   // all definitions should be the same and ODR linkage should be used.
3646   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3647   if (D->hasAttr<SelectAnyAttr>())
3648     return llvm::GlobalVariable::WeakODRLinkage;
3649 
3650   // Otherwise, we have strong external linkage.
3651   assert(Linkage == GVA_StrongExternal);
3652   return llvm::GlobalVariable::ExternalLinkage;
3653 }
3654 
3655 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3656     const VarDecl *VD, bool IsConstant) {
3657   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3658   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3659 }
3660 
3661 /// Replace the uses of a function that was declared with a non-proto type.
3662 /// We want to silently drop extra arguments from call sites
3663 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3664                                           llvm::Function *newFn) {
3665   // Fast path.
3666   if (old->use_empty()) return;
3667 
3668   llvm::Type *newRetTy = newFn->getReturnType();
3669   SmallVector<llvm::Value*, 4> newArgs;
3670   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3671 
3672   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3673          ui != ue; ) {
3674     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3675     llvm::User *user = use->getUser();
3676 
3677     // Recognize and replace uses of bitcasts.  Most calls to
3678     // unprototyped functions will use bitcasts.
3679     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3680       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3681         replaceUsesOfNonProtoConstant(bitcast, newFn);
3682       continue;
3683     }
3684 
3685     // Recognize calls to the function.
3686     llvm::CallSite callSite(user);
3687     if (!callSite) continue;
3688     if (!callSite.isCallee(&*use)) continue;
3689 
3690     // If the return types don't match exactly, then we can't
3691     // transform this call unless it's dead.
3692     if (callSite->getType() != newRetTy && !callSite->use_empty())
3693       continue;
3694 
3695     // Get the call site's attribute list.
3696     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3697     llvm::AttributeList oldAttrs = callSite.getAttributes();
3698 
3699     // If the function was passed too few arguments, don't transform.
3700     unsigned newNumArgs = newFn->arg_size();
3701     if (callSite.arg_size() < newNumArgs) continue;
3702 
3703     // If extra arguments were passed, we silently drop them.
3704     // If any of the types mismatch, we don't transform.
3705     unsigned argNo = 0;
3706     bool dontTransform = false;
3707     for (llvm::Argument &A : newFn->args()) {
3708       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3709         dontTransform = true;
3710         break;
3711       }
3712 
3713       // Add any parameter attributes.
3714       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3715       argNo++;
3716     }
3717     if (dontTransform)
3718       continue;
3719 
3720     // Okay, we can transform this.  Create the new call instruction and copy
3721     // over the required information.
3722     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3723 
3724     // Copy over any operand bundles.
3725     callSite.getOperandBundlesAsDefs(newBundles);
3726 
3727     llvm::CallSite newCall;
3728     if (callSite.isCall()) {
3729       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3730                                        callSite.getInstruction());
3731     } else {
3732       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3733       newCall = llvm::InvokeInst::Create(newFn,
3734                                          oldInvoke->getNormalDest(),
3735                                          oldInvoke->getUnwindDest(),
3736                                          newArgs, newBundles, "",
3737                                          callSite.getInstruction());
3738     }
3739     newArgs.clear(); // for the next iteration
3740 
3741     if (!newCall->getType()->isVoidTy())
3742       newCall->takeName(callSite.getInstruction());
3743     newCall.setAttributes(llvm::AttributeList::get(
3744         newFn->getContext(), oldAttrs.getFnAttributes(),
3745         oldAttrs.getRetAttributes(), newArgAttrs));
3746     newCall.setCallingConv(callSite.getCallingConv());
3747 
3748     // Finally, remove the old call, replacing any uses with the new one.
3749     if (!callSite->use_empty())
3750       callSite->replaceAllUsesWith(newCall.getInstruction());
3751 
3752     // Copy debug location attached to CI.
3753     if (callSite->getDebugLoc())
3754       newCall->setDebugLoc(callSite->getDebugLoc());
3755 
3756     callSite->eraseFromParent();
3757   }
3758 }
3759 
3760 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3761 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3762 /// existing call uses of the old function in the module, this adjusts them to
3763 /// call the new function directly.
3764 ///
3765 /// This is not just a cleanup: the always_inline pass requires direct calls to
3766 /// functions to be able to inline them.  If there is a bitcast in the way, it
3767 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3768 /// run at -O0.
3769 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3770                                                       llvm::Function *NewFn) {
3771   // If we're redefining a global as a function, don't transform it.
3772   if (!isa<llvm::Function>(Old)) return;
3773 
3774   replaceUsesOfNonProtoConstant(Old, NewFn);
3775 }
3776 
3777 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3778   auto DK = VD->isThisDeclarationADefinition();
3779   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3780     return;
3781 
3782   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3783   // If we have a definition, this might be a deferred decl. If the
3784   // instantiation is explicit, make sure we emit it at the end.
3785   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3786     GetAddrOfGlobalVar(VD);
3787 
3788   EmitTopLevelDecl(VD);
3789 }
3790 
3791 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3792                                                  llvm::GlobalValue *GV) {
3793   const auto *D = cast<FunctionDecl>(GD.getDecl());
3794 
3795   // Compute the function info and LLVM type.
3796   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3797   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3798 
3799   // Get or create the prototype for the function.
3800   if (!GV || (GV->getType()->getElementType() != Ty))
3801     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3802                                                    /*DontDefer=*/true,
3803                                                    ForDefinition));
3804 
3805   // Already emitted.
3806   if (!GV->isDeclaration())
3807     return;
3808 
3809   // We need to set linkage and visibility on the function before
3810   // generating code for it because various parts of IR generation
3811   // want to propagate this information down (e.g. to local static
3812   // declarations).
3813   auto *Fn = cast<llvm::Function>(GV);
3814   setFunctionLinkage(GD, Fn);
3815 
3816   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3817   setGVProperties(Fn, GD);
3818 
3819   MaybeHandleStaticInExternC(D, Fn);
3820 
3821 
3822   maybeSetTrivialComdat(*D, *Fn);
3823 
3824   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3825 
3826   setNonAliasAttributes(GD, Fn);
3827   SetLLVMFunctionAttributesForDefinition(D, Fn);
3828 
3829   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3830     AddGlobalCtor(Fn, CA->getPriority());
3831   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3832     AddGlobalDtor(Fn, DA->getPriority());
3833   if (D->hasAttr<AnnotateAttr>())
3834     AddGlobalAnnotations(D, Fn);
3835 
3836   if (D->isCPUSpecificMultiVersion()) {
3837     auto *Spec = D->getAttr<CPUSpecificAttr>();
3838     // If there is another specific version we need to emit, do so here.
3839     if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) {
3840       ++Spec->ActiveArgIndex;
3841       EmitGlobalFunctionDefinition(GD, nullptr);
3842     }
3843   }
3844 }
3845 
3846 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3847   const auto *D = cast<ValueDecl>(GD.getDecl());
3848   const AliasAttr *AA = D->getAttr<AliasAttr>();
3849   assert(AA && "Not an alias?");
3850 
3851   StringRef MangledName = getMangledName(GD);
3852 
3853   if (AA->getAliasee() == MangledName) {
3854     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3855     return;
3856   }
3857 
3858   // If there is a definition in the module, then it wins over the alias.
3859   // This is dubious, but allow it to be safe.  Just ignore the alias.
3860   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3861   if (Entry && !Entry->isDeclaration())
3862     return;
3863 
3864   Aliases.push_back(GD);
3865 
3866   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3867 
3868   // Create a reference to the named value.  This ensures that it is emitted
3869   // if a deferred decl.
3870   llvm::Constant *Aliasee;
3871   if (isa<llvm::FunctionType>(DeclTy))
3872     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3873                                       /*ForVTable=*/false);
3874   else
3875     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3876                                     llvm::PointerType::getUnqual(DeclTy),
3877                                     /*D=*/nullptr);
3878 
3879   // Create the new alias itself, but don't set a name yet.
3880   auto *GA = llvm::GlobalAlias::create(
3881       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3882 
3883   if (Entry) {
3884     if (GA->getAliasee() == Entry) {
3885       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3886       return;
3887     }
3888 
3889     assert(Entry->isDeclaration());
3890 
3891     // If there is a declaration in the module, then we had an extern followed
3892     // by the alias, as in:
3893     //   extern int test6();
3894     //   ...
3895     //   int test6() __attribute__((alias("test7")));
3896     //
3897     // Remove it and replace uses of it with the alias.
3898     GA->takeName(Entry);
3899 
3900     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3901                                                           Entry->getType()));
3902     Entry->eraseFromParent();
3903   } else {
3904     GA->setName(MangledName);
3905   }
3906 
3907   // Set attributes which are particular to an alias; this is a
3908   // specialization of the attributes which may be set on a global
3909   // variable/function.
3910   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3911       D->isWeakImported()) {
3912     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3913   }
3914 
3915   if (const auto *VD = dyn_cast<VarDecl>(D))
3916     if (VD->getTLSKind())
3917       setTLSMode(GA, *VD);
3918 
3919   SetCommonAttributes(GD, GA);
3920 }
3921 
3922 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3923   const auto *D = cast<ValueDecl>(GD.getDecl());
3924   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3925   assert(IFA && "Not an ifunc?");
3926 
3927   StringRef MangledName = getMangledName(GD);
3928 
3929   if (IFA->getResolver() == MangledName) {
3930     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3931     return;
3932   }
3933 
3934   // Report an error if some definition overrides ifunc.
3935   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3936   if (Entry && !Entry->isDeclaration()) {
3937     GlobalDecl OtherGD;
3938     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3939         DiagnosedConflictingDefinitions.insert(GD).second) {
3940       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3941           << MangledName;
3942       Diags.Report(OtherGD.getDecl()->getLocation(),
3943                    diag::note_previous_definition);
3944     }
3945     return;
3946   }
3947 
3948   Aliases.push_back(GD);
3949 
3950   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3951   llvm::Constant *Resolver =
3952       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3953                               /*ForVTable=*/false);
3954   llvm::GlobalIFunc *GIF =
3955       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3956                                 "", Resolver, &getModule());
3957   if (Entry) {
3958     if (GIF->getResolver() == Entry) {
3959       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3960       return;
3961     }
3962     assert(Entry->isDeclaration());
3963 
3964     // If there is a declaration in the module, then we had an extern followed
3965     // by the ifunc, as in:
3966     //   extern int test();
3967     //   ...
3968     //   int test() __attribute__((ifunc("resolver")));
3969     //
3970     // Remove it and replace uses of it with the ifunc.
3971     GIF->takeName(Entry);
3972 
3973     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3974                                                           Entry->getType()));
3975     Entry->eraseFromParent();
3976   } else
3977     GIF->setName(MangledName);
3978 
3979   SetCommonAttributes(GD, GIF);
3980 }
3981 
3982 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3983                                             ArrayRef<llvm::Type*> Tys) {
3984   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3985                                          Tys);
3986 }
3987 
3988 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3989 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3990                          const StringLiteral *Literal, bool TargetIsLSB,
3991                          bool &IsUTF16, unsigned &StringLength) {
3992   StringRef String = Literal->getString();
3993   unsigned NumBytes = String.size();
3994 
3995   // Check for simple case.
3996   if (!Literal->containsNonAsciiOrNull()) {
3997     StringLength = NumBytes;
3998     return *Map.insert(std::make_pair(String, nullptr)).first;
3999   }
4000 
4001   // Otherwise, convert the UTF8 literals into a string of shorts.
4002   IsUTF16 = true;
4003 
4004   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4005   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4006   llvm::UTF16 *ToPtr = &ToBuf[0];
4007 
4008   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4009                                  ToPtr + NumBytes, llvm::strictConversion);
4010 
4011   // ConvertUTF8toUTF16 returns the length in ToPtr.
4012   StringLength = ToPtr - &ToBuf[0];
4013 
4014   // Add an explicit null.
4015   *ToPtr = 0;
4016   return *Map.insert(std::make_pair(
4017                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4018                                    (StringLength + 1) * 2),
4019                          nullptr)).first;
4020 }
4021 
4022 ConstantAddress
4023 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4024   unsigned StringLength = 0;
4025   bool isUTF16 = false;
4026   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4027       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4028                                getDataLayout().isLittleEndian(), isUTF16,
4029                                StringLength);
4030 
4031   if (auto *C = Entry.second)
4032     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4033 
4034   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4035   llvm::Constant *Zeros[] = { Zero, Zero };
4036 
4037   // If we don't already have it, get __CFConstantStringClassReference.
4038   if (!CFConstantStringClassRef) {
4039     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4040     Ty = llvm::ArrayType::get(Ty, 0);
4041     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
4042         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
4043 
4044     if (getTriple().isOSBinFormatCOFF()) {
4045       IdentifierInfo &II = getContext().Idents.get(GV->getName());
4046       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
4047       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4048 
4049       const VarDecl *VD = nullptr;
4050       for (const auto &Result : DC->lookup(&II))
4051         if ((VD = dyn_cast<VarDecl>(Result)))
4052           break;
4053 
4054       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
4055         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4056         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4057       } else {
4058         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4059         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4060       }
4061     }
4062     setDSOLocal(GV);
4063 
4064     // Decay array -> ptr
4065     CFConstantStringClassRef =
4066         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
4067   }
4068 
4069   QualType CFTy = getContext().getCFConstantStringType();
4070 
4071   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4072 
4073   ConstantInitBuilder Builder(*this);
4074   auto Fields = Builder.beginStruct(STy);
4075 
4076   // Class pointer.
4077   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4078 
4079   // Flags.
4080   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4081 
4082   // String pointer.
4083   llvm::Constant *C = nullptr;
4084   if (isUTF16) {
4085     auto Arr = llvm::makeArrayRef(
4086         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4087         Entry.first().size() / 2);
4088     C = llvm::ConstantDataArray::get(VMContext, Arr);
4089   } else {
4090     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4091   }
4092 
4093   // Note: -fwritable-strings doesn't make the backing store strings of
4094   // CFStrings writable. (See <rdar://problem/10657500>)
4095   auto *GV =
4096       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4097                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4098   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4099   // Don't enforce the target's minimum global alignment, since the only use
4100   // of the string is via this class initializer.
4101   CharUnits Align = isUTF16
4102                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
4103                         : getContext().getTypeAlignInChars(getContext().CharTy);
4104   GV->setAlignment(Align.getQuantity());
4105 
4106   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4107   // Without it LLVM can merge the string with a non unnamed_addr one during
4108   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4109   if (getTriple().isOSBinFormatMachO())
4110     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4111                            : "__TEXT,__cstring,cstring_literals");
4112 
4113   // String.
4114   llvm::Constant *Str =
4115       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4116 
4117   if (isUTF16)
4118     // Cast the UTF16 string to the correct type.
4119     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4120   Fields.add(Str);
4121 
4122   // String length.
4123   auto Ty = getTypes().ConvertType(getContext().LongTy);
4124   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
4125 
4126   CharUnits Alignment = getPointerAlign();
4127 
4128   // The struct.
4129   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4130                                     /*isConstant=*/false,
4131                                     llvm::GlobalVariable::PrivateLinkage);
4132   switch (getTriple().getObjectFormat()) {
4133   case llvm::Triple::UnknownObjectFormat:
4134     llvm_unreachable("unknown file format");
4135   case llvm::Triple::COFF:
4136   case llvm::Triple::ELF:
4137   case llvm::Triple::Wasm:
4138     GV->setSection("cfstring");
4139     break;
4140   case llvm::Triple::MachO:
4141     GV->setSection("__DATA,__cfstring");
4142     break;
4143   }
4144   Entry.second = GV;
4145 
4146   return ConstantAddress(GV, Alignment);
4147 }
4148 
4149 bool CodeGenModule::getExpressionLocationsEnabled() const {
4150   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4151 }
4152 
4153 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4154   if (ObjCFastEnumerationStateType.isNull()) {
4155     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4156     D->startDefinition();
4157 
4158     QualType FieldTypes[] = {
4159       Context.UnsignedLongTy,
4160       Context.getPointerType(Context.getObjCIdType()),
4161       Context.getPointerType(Context.UnsignedLongTy),
4162       Context.getConstantArrayType(Context.UnsignedLongTy,
4163                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4164     };
4165 
4166     for (size_t i = 0; i < 4; ++i) {
4167       FieldDecl *Field = FieldDecl::Create(Context,
4168                                            D,
4169                                            SourceLocation(),
4170                                            SourceLocation(), nullptr,
4171                                            FieldTypes[i], /*TInfo=*/nullptr,
4172                                            /*BitWidth=*/nullptr,
4173                                            /*Mutable=*/false,
4174                                            ICIS_NoInit);
4175       Field->setAccess(AS_public);
4176       D->addDecl(Field);
4177     }
4178 
4179     D->completeDefinition();
4180     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4181   }
4182 
4183   return ObjCFastEnumerationStateType;
4184 }
4185 
4186 llvm::Constant *
4187 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4188   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4189 
4190   // Don't emit it as the address of the string, emit the string data itself
4191   // as an inline array.
4192   if (E->getCharByteWidth() == 1) {
4193     SmallString<64> Str(E->getString());
4194 
4195     // Resize the string to the right size, which is indicated by its type.
4196     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4197     Str.resize(CAT->getSize().getZExtValue());
4198     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4199   }
4200 
4201   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4202   llvm::Type *ElemTy = AType->getElementType();
4203   unsigned NumElements = AType->getNumElements();
4204 
4205   // Wide strings have either 2-byte or 4-byte elements.
4206   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4207     SmallVector<uint16_t, 32> Elements;
4208     Elements.reserve(NumElements);
4209 
4210     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4211       Elements.push_back(E->getCodeUnit(i));
4212     Elements.resize(NumElements);
4213     return llvm::ConstantDataArray::get(VMContext, Elements);
4214   }
4215 
4216   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4217   SmallVector<uint32_t, 32> Elements;
4218   Elements.reserve(NumElements);
4219 
4220   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4221     Elements.push_back(E->getCodeUnit(i));
4222   Elements.resize(NumElements);
4223   return llvm::ConstantDataArray::get(VMContext, Elements);
4224 }
4225 
4226 static llvm::GlobalVariable *
4227 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4228                       CodeGenModule &CGM, StringRef GlobalName,
4229                       CharUnits Alignment) {
4230   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4231       CGM.getStringLiteralAddressSpace());
4232 
4233   llvm::Module &M = CGM.getModule();
4234   // Create a global variable for this string
4235   auto *GV = new llvm::GlobalVariable(
4236       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4237       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4238   GV->setAlignment(Alignment.getQuantity());
4239   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4240   if (GV->isWeakForLinker()) {
4241     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4242     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4243   }
4244   CGM.setDSOLocal(GV);
4245 
4246   return GV;
4247 }
4248 
4249 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4250 /// constant array for the given string literal.
4251 ConstantAddress
4252 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4253                                                   StringRef Name) {
4254   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4255 
4256   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4257   llvm::GlobalVariable **Entry = nullptr;
4258   if (!LangOpts.WritableStrings) {
4259     Entry = &ConstantStringMap[C];
4260     if (auto GV = *Entry) {
4261       if (Alignment.getQuantity() > GV->getAlignment())
4262         GV->setAlignment(Alignment.getQuantity());
4263       return ConstantAddress(GV, Alignment);
4264     }
4265   }
4266 
4267   SmallString<256> MangledNameBuffer;
4268   StringRef GlobalVariableName;
4269   llvm::GlobalValue::LinkageTypes LT;
4270 
4271   // Mangle the string literal if the ABI allows for it.  However, we cannot
4272   // do this if  we are compiling with ASan or -fwritable-strings because they
4273   // rely on strings having normal linkage.
4274   if (!LangOpts.WritableStrings &&
4275       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4276       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4277     llvm::raw_svector_ostream Out(MangledNameBuffer);
4278     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4279 
4280     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4281     GlobalVariableName = MangledNameBuffer;
4282   } else {
4283     LT = llvm::GlobalValue::PrivateLinkage;
4284     GlobalVariableName = Name;
4285   }
4286 
4287   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4288   if (Entry)
4289     *Entry = GV;
4290 
4291   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4292                                   QualType());
4293 
4294   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4295                          Alignment);
4296 }
4297 
4298 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4299 /// array for the given ObjCEncodeExpr node.
4300 ConstantAddress
4301 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4302   std::string Str;
4303   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4304 
4305   return GetAddrOfConstantCString(Str);
4306 }
4307 
4308 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4309 /// the literal and a terminating '\0' character.
4310 /// The result has pointer to array type.
4311 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4312     const std::string &Str, const char *GlobalName) {
4313   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4314   CharUnits Alignment =
4315     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4316 
4317   llvm::Constant *C =
4318       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4319 
4320   // Don't share any string literals if strings aren't constant.
4321   llvm::GlobalVariable **Entry = nullptr;
4322   if (!LangOpts.WritableStrings) {
4323     Entry = &ConstantStringMap[C];
4324     if (auto GV = *Entry) {
4325       if (Alignment.getQuantity() > GV->getAlignment())
4326         GV->setAlignment(Alignment.getQuantity());
4327       return ConstantAddress(GV, Alignment);
4328     }
4329   }
4330 
4331   // Get the default prefix if a name wasn't specified.
4332   if (!GlobalName)
4333     GlobalName = ".str";
4334   // Create a global variable for this.
4335   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4336                                   GlobalName, Alignment);
4337   if (Entry)
4338     *Entry = GV;
4339 
4340   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4341                          Alignment);
4342 }
4343 
4344 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4345     const MaterializeTemporaryExpr *E, const Expr *Init) {
4346   assert((E->getStorageDuration() == SD_Static ||
4347           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4348   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4349 
4350   // If we're not materializing a subobject of the temporary, keep the
4351   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4352   QualType MaterializedType = Init->getType();
4353   if (Init == E->GetTemporaryExpr())
4354     MaterializedType = E->getType();
4355 
4356   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4357 
4358   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4359     return ConstantAddress(Slot, Align);
4360 
4361   // FIXME: If an externally-visible declaration extends multiple temporaries,
4362   // we need to give each temporary the same name in every translation unit (and
4363   // we also need to make the temporaries externally-visible).
4364   SmallString<256> Name;
4365   llvm::raw_svector_ostream Out(Name);
4366   getCXXABI().getMangleContext().mangleReferenceTemporary(
4367       VD, E->getManglingNumber(), Out);
4368 
4369   APValue *Value = nullptr;
4370   if (E->getStorageDuration() == SD_Static) {
4371     // We might have a cached constant initializer for this temporary. Note
4372     // that this might have a different value from the value computed by
4373     // evaluating the initializer if the surrounding constant expression
4374     // modifies the temporary.
4375     Value = getContext().getMaterializedTemporaryValue(E, false);
4376     if (Value && Value->isUninit())
4377       Value = nullptr;
4378   }
4379 
4380   // Try evaluating it now, it might have a constant initializer.
4381   Expr::EvalResult EvalResult;
4382   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4383       !EvalResult.hasSideEffects())
4384     Value = &EvalResult.Val;
4385 
4386   LangAS AddrSpace =
4387       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4388 
4389   Optional<ConstantEmitter> emitter;
4390   llvm::Constant *InitialValue = nullptr;
4391   bool Constant = false;
4392   llvm::Type *Type;
4393   if (Value) {
4394     // The temporary has a constant initializer, use it.
4395     emitter.emplace(*this);
4396     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4397                                                MaterializedType);
4398     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4399     Type = InitialValue->getType();
4400   } else {
4401     // No initializer, the initialization will be provided when we
4402     // initialize the declaration which performed lifetime extension.
4403     Type = getTypes().ConvertTypeForMem(MaterializedType);
4404   }
4405 
4406   // Create a global variable for this lifetime-extended temporary.
4407   llvm::GlobalValue::LinkageTypes Linkage =
4408       getLLVMLinkageVarDefinition(VD, Constant);
4409   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4410     const VarDecl *InitVD;
4411     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4412         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4413       // Temporaries defined inside a class get linkonce_odr linkage because the
4414       // class can be defined in multiple translation units.
4415       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4416     } else {
4417       // There is no need for this temporary to have external linkage if the
4418       // VarDecl has external linkage.
4419       Linkage = llvm::GlobalVariable::InternalLinkage;
4420     }
4421   }
4422   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4423   auto *GV = new llvm::GlobalVariable(
4424       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4425       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4426   if (emitter) emitter->finalize(GV);
4427   setGVProperties(GV, VD);
4428   GV->setAlignment(Align.getQuantity());
4429   if (supportsCOMDAT() && GV->isWeakForLinker())
4430     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4431   if (VD->getTLSKind())
4432     setTLSMode(GV, *VD);
4433   llvm::Constant *CV = GV;
4434   if (AddrSpace != LangAS::Default)
4435     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4436         *this, GV, AddrSpace, LangAS::Default,
4437         Type->getPointerTo(
4438             getContext().getTargetAddressSpace(LangAS::Default)));
4439   MaterializedGlobalTemporaryMap[E] = CV;
4440   return ConstantAddress(CV, Align);
4441 }
4442 
4443 /// EmitObjCPropertyImplementations - Emit information for synthesized
4444 /// properties for an implementation.
4445 void CodeGenModule::EmitObjCPropertyImplementations(const
4446                                                     ObjCImplementationDecl *D) {
4447   for (const auto *PID : D->property_impls()) {
4448     // Dynamic is just for type-checking.
4449     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4450       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4451 
4452       // Determine which methods need to be implemented, some may have
4453       // been overridden. Note that ::isPropertyAccessor is not the method
4454       // we want, that just indicates if the decl came from a
4455       // property. What we want to know is if the method is defined in
4456       // this implementation.
4457       if (!D->getInstanceMethod(PD->getGetterName()))
4458         CodeGenFunction(*this).GenerateObjCGetter(
4459                                  const_cast<ObjCImplementationDecl *>(D), PID);
4460       if (!PD->isReadOnly() &&
4461           !D->getInstanceMethod(PD->getSetterName()))
4462         CodeGenFunction(*this).GenerateObjCSetter(
4463                                  const_cast<ObjCImplementationDecl *>(D), PID);
4464     }
4465   }
4466 }
4467 
4468 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4469   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4470   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4471        ivar; ivar = ivar->getNextIvar())
4472     if (ivar->getType().isDestructedType())
4473       return true;
4474 
4475   return false;
4476 }
4477 
4478 static bool AllTrivialInitializers(CodeGenModule &CGM,
4479                                    ObjCImplementationDecl *D) {
4480   CodeGenFunction CGF(CGM);
4481   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4482        E = D->init_end(); B != E; ++B) {
4483     CXXCtorInitializer *CtorInitExp = *B;
4484     Expr *Init = CtorInitExp->getInit();
4485     if (!CGF.isTrivialInitializer(Init))
4486       return false;
4487   }
4488   return true;
4489 }
4490 
4491 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4492 /// for an implementation.
4493 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4494   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4495   if (needsDestructMethod(D)) {
4496     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4497     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4498     ObjCMethodDecl *DTORMethod =
4499       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4500                              cxxSelector, getContext().VoidTy, nullptr, D,
4501                              /*isInstance=*/true, /*isVariadic=*/false,
4502                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4503                              /*isDefined=*/false, ObjCMethodDecl::Required);
4504     D->addInstanceMethod(DTORMethod);
4505     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4506     D->setHasDestructors(true);
4507   }
4508 
4509   // If the implementation doesn't have any ivar initializers, we don't need
4510   // a .cxx_construct.
4511   if (D->getNumIvarInitializers() == 0 ||
4512       AllTrivialInitializers(*this, D))
4513     return;
4514 
4515   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4516   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4517   // The constructor returns 'self'.
4518   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4519                                                 D->getLocation(),
4520                                                 D->getLocation(),
4521                                                 cxxSelector,
4522                                                 getContext().getObjCIdType(),
4523                                                 nullptr, D, /*isInstance=*/true,
4524                                                 /*isVariadic=*/false,
4525                                                 /*isPropertyAccessor=*/true,
4526                                                 /*isImplicitlyDeclared=*/true,
4527                                                 /*isDefined=*/false,
4528                                                 ObjCMethodDecl::Required);
4529   D->addInstanceMethod(CTORMethod);
4530   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4531   D->setHasNonZeroConstructors(true);
4532 }
4533 
4534 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4535 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4536   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4537       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4538     ErrorUnsupported(LSD, "linkage spec");
4539     return;
4540   }
4541 
4542   EmitDeclContext(LSD);
4543 }
4544 
4545 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4546   for (auto *I : DC->decls()) {
4547     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4548     // are themselves considered "top-level", so EmitTopLevelDecl on an
4549     // ObjCImplDecl does not recursively visit them. We need to do that in
4550     // case they're nested inside another construct (LinkageSpecDecl /
4551     // ExportDecl) that does stop them from being considered "top-level".
4552     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4553       for (auto *M : OID->methods())
4554         EmitTopLevelDecl(M);
4555     }
4556 
4557     EmitTopLevelDecl(I);
4558   }
4559 }
4560 
4561 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4562 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4563   // Ignore dependent declarations.
4564   if (D->isTemplated())
4565     return;
4566 
4567   switch (D->getKind()) {
4568   case Decl::CXXConversion:
4569   case Decl::CXXMethod:
4570   case Decl::Function:
4571     EmitGlobal(cast<FunctionDecl>(D));
4572     // Always provide some coverage mapping
4573     // even for the functions that aren't emitted.
4574     AddDeferredUnusedCoverageMapping(D);
4575     break;
4576 
4577   case Decl::CXXDeductionGuide:
4578     // Function-like, but does not result in code emission.
4579     break;
4580 
4581   case Decl::Var:
4582   case Decl::Decomposition:
4583   case Decl::VarTemplateSpecialization:
4584     EmitGlobal(cast<VarDecl>(D));
4585     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4586       for (auto *B : DD->bindings())
4587         if (auto *HD = B->getHoldingVar())
4588           EmitGlobal(HD);
4589     break;
4590 
4591   // Indirect fields from global anonymous structs and unions can be
4592   // ignored; only the actual variable requires IR gen support.
4593   case Decl::IndirectField:
4594     break;
4595 
4596   // C++ Decls
4597   case Decl::Namespace:
4598     EmitDeclContext(cast<NamespaceDecl>(D));
4599     break;
4600   case Decl::ClassTemplateSpecialization: {
4601     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4602     if (DebugInfo &&
4603         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4604         Spec->hasDefinition())
4605       DebugInfo->completeTemplateDefinition(*Spec);
4606   } LLVM_FALLTHROUGH;
4607   case Decl::CXXRecord:
4608     if (DebugInfo) {
4609       if (auto *ES = D->getASTContext().getExternalSource())
4610         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4611           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4612     }
4613     // Emit any static data members, they may be definitions.
4614     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4615       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4616         EmitTopLevelDecl(I);
4617     break;
4618     // No code generation needed.
4619   case Decl::UsingShadow:
4620   case Decl::ClassTemplate:
4621   case Decl::VarTemplate:
4622   case Decl::VarTemplatePartialSpecialization:
4623   case Decl::FunctionTemplate:
4624   case Decl::TypeAliasTemplate:
4625   case Decl::Block:
4626   case Decl::Empty:
4627     break;
4628   case Decl::Using:          // using X; [C++]
4629     if (CGDebugInfo *DI = getModuleDebugInfo())
4630         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4631     return;
4632   case Decl::NamespaceAlias:
4633     if (CGDebugInfo *DI = getModuleDebugInfo())
4634         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4635     return;
4636   case Decl::UsingDirective: // using namespace X; [C++]
4637     if (CGDebugInfo *DI = getModuleDebugInfo())
4638       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4639     return;
4640   case Decl::CXXConstructor:
4641     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4642     break;
4643   case Decl::CXXDestructor:
4644     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4645     break;
4646 
4647   case Decl::StaticAssert:
4648     // Nothing to do.
4649     break;
4650 
4651   // Objective-C Decls
4652 
4653   // Forward declarations, no (immediate) code generation.
4654   case Decl::ObjCInterface:
4655   case Decl::ObjCCategory:
4656     break;
4657 
4658   case Decl::ObjCProtocol: {
4659     auto *Proto = cast<ObjCProtocolDecl>(D);
4660     if (Proto->isThisDeclarationADefinition())
4661       ObjCRuntime->GenerateProtocol(Proto);
4662     break;
4663   }
4664 
4665   case Decl::ObjCCategoryImpl:
4666     // Categories have properties but don't support synthesize so we
4667     // can ignore them here.
4668     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4669     break;
4670 
4671   case Decl::ObjCImplementation: {
4672     auto *OMD = cast<ObjCImplementationDecl>(D);
4673     EmitObjCPropertyImplementations(OMD);
4674     EmitObjCIvarInitializations(OMD);
4675     ObjCRuntime->GenerateClass(OMD);
4676     // Emit global variable debug information.
4677     if (CGDebugInfo *DI = getModuleDebugInfo())
4678       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4679         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4680             OMD->getClassInterface()), OMD->getLocation());
4681     break;
4682   }
4683   case Decl::ObjCMethod: {
4684     auto *OMD = cast<ObjCMethodDecl>(D);
4685     // If this is not a prototype, emit the body.
4686     if (OMD->getBody())
4687       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4688     break;
4689   }
4690   case Decl::ObjCCompatibleAlias:
4691     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4692     break;
4693 
4694   case Decl::PragmaComment: {
4695     const auto *PCD = cast<PragmaCommentDecl>(D);
4696     switch (PCD->getCommentKind()) {
4697     case PCK_Unknown:
4698       llvm_unreachable("unexpected pragma comment kind");
4699     case PCK_Linker:
4700       AppendLinkerOptions(PCD->getArg());
4701       break;
4702     case PCK_Lib:
4703       if (getTarget().getTriple().isOSBinFormatELF() &&
4704           !getTarget().getTriple().isPS4())
4705         AddELFLibDirective(PCD->getArg());
4706       else
4707         AddDependentLib(PCD->getArg());
4708       break;
4709     case PCK_Compiler:
4710     case PCK_ExeStr:
4711     case PCK_User:
4712       break; // We ignore all of these.
4713     }
4714     break;
4715   }
4716 
4717   case Decl::PragmaDetectMismatch: {
4718     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4719     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4720     break;
4721   }
4722 
4723   case Decl::LinkageSpec:
4724     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4725     break;
4726 
4727   case Decl::FileScopeAsm: {
4728     // File-scope asm is ignored during device-side CUDA compilation.
4729     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4730       break;
4731     // File-scope asm is ignored during device-side OpenMP compilation.
4732     if (LangOpts.OpenMPIsDevice)
4733       break;
4734     auto *AD = cast<FileScopeAsmDecl>(D);
4735     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4736     break;
4737   }
4738 
4739   case Decl::Import: {
4740     auto *Import = cast<ImportDecl>(D);
4741 
4742     // If we've already imported this module, we're done.
4743     if (!ImportedModules.insert(Import->getImportedModule()))
4744       break;
4745 
4746     // Emit debug information for direct imports.
4747     if (!Import->getImportedOwningModule()) {
4748       if (CGDebugInfo *DI = getModuleDebugInfo())
4749         DI->EmitImportDecl(*Import);
4750     }
4751 
4752     // Find all of the submodules and emit the module initializers.
4753     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4754     SmallVector<clang::Module *, 16> Stack;
4755     Visited.insert(Import->getImportedModule());
4756     Stack.push_back(Import->getImportedModule());
4757 
4758     while (!Stack.empty()) {
4759       clang::Module *Mod = Stack.pop_back_val();
4760       if (!EmittedModuleInitializers.insert(Mod).second)
4761         continue;
4762 
4763       for (auto *D : Context.getModuleInitializers(Mod))
4764         EmitTopLevelDecl(D);
4765 
4766       // Visit the submodules of this module.
4767       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4768                                              SubEnd = Mod->submodule_end();
4769            Sub != SubEnd; ++Sub) {
4770         // Skip explicit children; they need to be explicitly imported to emit
4771         // the initializers.
4772         if ((*Sub)->IsExplicit)
4773           continue;
4774 
4775         if (Visited.insert(*Sub).second)
4776           Stack.push_back(*Sub);
4777       }
4778     }
4779     break;
4780   }
4781 
4782   case Decl::Export:
4783     EmitDeclContext(cast<ExportDecl>(D));
4784     break;
4785 
4786   case Decl::OMPThreadPrivate:
4787     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4788     break;
4789 
4790   case Decl::OMPDeclareReduction:
4791     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4792     break;
4793 
4794   default:
4795     // Make sure we handled everything we should, every other kind is a
4796     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4797     // function. Need to recode Decl::Kind to do that easily.
4798     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4799     break;
4800   }
4801 }
4802 
4803 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4804   // Do we need to generate coverage mapping?
4805   if (!CodeGenOpts.CoverageMapping)
4806     return;
4807   switch (D->getKind()) {
4808   case Decl::CXXConversion:
4809   case Decl::CXXMethod:
4810   case Decl::Function:
4811   case Decl::ObjCMethod:
4812   case Decl::CXXConstructor:
4813   case Decl::CXXDestructor: {
4814     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4815       return;
4816     SourceManager &SM = getContext().getSourceManager();
4817     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
4818       return;
4819     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4820     if (I == DeferredEmptyCoverageMappingDecls.end())
4821       DeferredEmptyCoverageMappingDecls[D] = true;
4822     break;
4823   }
4824   default:
4825     break;
4826   };
4827 }
4828 
4829 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4830   // Do we need to generate coverage mapping?
4831   if (!CodeGenOpts.CoverageMapping)
4832     return;
4833   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4834     if (Fn->isTemplateInstantiation())
4835       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4836   }
4837   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4838   if (I == DeferredEmptyCoverageMappingDecls.end())
4839     DeferredEmptyCoverageMappingDecls[D] = false;
4840   else
4841     I->second = false;
4842 }
4843 
4844 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4845   // We call takeVector() here to avoid use-after-free.
4846   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4847   // we deserialize function bodies to emit coverage info for them, and that
4848   // deserializes more declarations. How should we handle that case?
4849   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4850     if (!Entry.second)
4851       continue;
4852     const Decl *D = Entry.first;
4853     switch (D->getKind()) {
4854     case Decl::CXXConversion:
4855     case Decl::CXXMethod:
4856     case Decl::Function:
4857     case Decl::ObjCMethod: {
4858       CodeGenPGO PGO(*this);
4859       GlobalDecl GD(cast<FunctionDecl>(D));
4860       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4861                                   getFunctionLinkage(GD));
4862       break;
4863     }
4864     case Decl::CXXConstructor: {
4865       CodeGenPGO PGO(*this);
4866       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4867       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4868                                   getFunctionLinkage(GD));
4869       break;
4870     }
4871     case Decl::CXXDestructor: {
4872       CodeGenPGO PGO(*this);
4873       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4874       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4875                                   getFunctionLinkage(GD));
4876       break;
4877     }
4878     default:
4879       break;
4880     };
4881   }
4882 }
4883 
4884 /// Turns the given pointer into a constant.
4885 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4886                                           const void *Ptr) {
4887   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4888   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4889   return llvm::ConstantInt::get(i64, PtrInt);
4890 }
4891 
4892 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4893                                    llvm::NamedMDNode *&GlobalMetadata,
4894                                    GlobalDecl D,
4895                                    llvm::GlobalValue *Addr) {
4896   if (!GlobalMetadata)
4897     GlobalMetadata =
4898       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4899 
4900   // TODO: should we report variant information for ctors/dtors?
4901   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4902                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4903                                CGM.getLLVMContext(), D.getDecl()))};
4904   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4905 }
4906 
4907 /// For each function which is declared within an extern "C" region and marked
4908 /// as 'used', but has internal linkage, create an alias from the unmangled
4909 /// name to the mangled name if possible. People expect to be able to refer
4910 /// to such functions with an unmangled name from inline assembly within the
4911 /// same translation unit.
4912 void CodeGenModule::EmitStaticExternCAliases() {
4913   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4914     return;
4915   for (auto &I : StaticExternCValues) {
4916     IdentifierInfo *Name = I.first;
4917     llvm::GlobalValue *Val = I.second;
4918     if (Val && !getModule().getNamedValue(Name->getName()))
4919       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4920   }
4921 }
4922 
4923 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4924                                              GlobalDecl &Result) const {
4925   auto Res = Manglings.find(MangledName);
4926   if (Res == Manglings.end())
4927     return false;
4928   Result = Res->getValue();
4929   return true;
4930 }
4931 
4932 /// Emits metadata nodes associating all the global values in the
4933 /// current module with the Decls they came from.  This is useful for
4934 /// projects using IR gen as a subroutine.
4935 ///
4936 /// Since there's currently no way to associate an MDNode directly
4937 /// with an llvm::GlobalValue, we create a global named metadata
4938 /// with the name 'clang.global.decl.ptrs'.
4939 void CodeGenModule::EmitDeclMetadata() {
4940   llvm::NamedMDNode *GlobalMetadata = nullptr;
4941 
4942   for (auto &I : MangledDeclNames) {
4943     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4944     // Some mangled names don't necessarily have an associated GlobalValue
4945     // in this module, e.g. if we mangled it for DebugInfo.
4946     if (Addr)
4947       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4948   }
4949 }
4950 
4951 /// Emits metadata nodes for all the local variables in the current
4952 /// function.
4953 void CodeGenFunction::EmitDeclMetadata() {
4954   if (LocalDeclMap.empty()) return;
4955 
4956   llvm::LLVMContext &Context = getLLVMContext();
4957 
4958   // Find the unique metadata ID for this name.
4959   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4960 
4961   llvm::NamedMDNode *GlobalMetadata = nullptr;
4962 
4963   for (auto &I : LocalDeclMap) {
4964     const Decl *D = I.first;
4965     llvm::Value *Addr = I.second.getPointer();
4966     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4967       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4968       Alloca->setMetadata(
4969           DeclPtrKind, llvm::MDNode::get(
4970                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4971     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4972       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4973       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4974     }
4975   }
4976 }
4977 
4978 void CodeGenModule::EmitVersionIdentMetadata() {
4979   llvm::NamedMDNode *IdentMetadata =
4980     TheModule.getOrInsertNamedMetadata("llvm.ident");
4981   std::string Version = getClangFullVersion();
4982   llvm::LLVMContext &Ctx = TheModule.getContext();
4983 
4984   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4985   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4986 }
4987 
4988 void CodeGenModule::EmitTargetMetadata() {
4989   // Warning, new MangledDeclNames may be appended within this loop.
4990   // We rely on MapVector insertions adding new elements to the end
4991   // of the container.
4992   // FIXME: Move this loop into the one target that needs it, and only
4993   // loop over those declarations for which we couldn't emit the target
4994   // metadata when we emitted the declaration.
4995   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4996     auto Val = *(MangledDeclNames.begin() + I);
4997     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4998     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4999     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5000   }
5001 }
5002 
5003 void CodeGenModule::EmitCoverageFile() {
5004   if (getCodeGenOpts().CoverageDataFile.empty() &&
5005       getCodeGenOpts().CoverageNotesFile.empty())
5006     return;
5007 
5008   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5009   if (!CUNode)
5010     return;
5011 
5012   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5013   llvm::LLVMContext &Ctx = TheModule.getContext();
5014   auto *CoverageDataFile =
5015       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5016   auto *CoverageNotesFile =
5017       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5018   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5019     llvm::MDNode *CU = CUNode->getOperand(i);
5020     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5021     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5022   }
5023 }
5024 
5025 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5026   // Sema has checked that all uuid strings are of the form
5027   // "12345678-1234-1234-1234-1234567890ab".
5028   assert(Uuid.size() == 36);
5029   for (unsigned i = 0; i < 36; ++i) {
5030     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5031     else                                         assert(isHexDigit(Uuid[i]));
5032   }
5033 
5034   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5035   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5036 
5037   llvm::Constant *Field3[8];
5038   for (unsigned Idx = 0; Idx < 8; ++Idx)
5039     Field3[Idx] = llvm::ConstantInt::get(
5040         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5041 
5042   llvm::Constant *Fields[4] = {
5043     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5044     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5045     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5046     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5047   };
5048 
5049   return llvm::ConstantStruct::getAnon(Fields);
5050 }
5051 
5052 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5053                                                        bool ForEH) {
5054   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5055   // FIXME: should we even be calling this method if RTTI is disabled
5056   // and it's not for EH?
5057   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5058     return llvm::Constant::getNullValue(Int8PtrTy);
5059 
5060   if (ForEH && Ty->isObjCObjectPointerType() &&
5061       LangOpts.ObjCRuntime.isGNUFamily())
5062     return ObjCRuntime->GetEHType(Ty);
5063 
5064   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5065 }
5066 
5067 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5068   // Do not emit threadprivates in simd-only mode.
5069   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5070     return;
5071   for (auto RefExpr : D->varlists()) {
5072     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5073     bool PerformInit =
5074         VD->getAnyInitializer() &&
5075         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5076                                                         /*ForRef=*/false);
5077 
5078     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5079     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5080             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5081       CXXGlobalInits.push_back(InitFunction);
5082   }
5083 }
5084 
5085 llvm::Metadata *
5086 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5087                                             StringRef Suffix) {
5088   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5089   if (InternalId)
5090     return InternalId;
5091 
5092   if (isExternallyVisible(T->getLinkage())) {
5093     std::string OutName;
5094     llvm::raw_string_ostream Out(OutName);
5095     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5096     Out << Suffix;
5097 
5098     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5099   } else {
5100     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5101                                            llvm::ArrayRef<llvm::Metadata *>());
5102   }
5103 
5104   return InternalId;
5105 }
5106 
5107 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5108   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5109 }
5110 
5111 llvm::Metadata *
5112 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5113   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5114 }
5115 
5116 // Generalize pointer types to a void pointer with the qualifiers of the
5117 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5118 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5119 // 'void *'.
5120 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5121   if (!Ty->isPointerType())
5122     return Ty;
5123 
5124   return Ctx.getPointerType(
5125       QualType(Ctx.VoidTy).withCVRQualifiers(
5126           Ty->getPointeeType().getCVRQualifiers()));
5127 }
5128 
5129 // Apply type generalization to a FunctionType's return and argument types
5130 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5131   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5132     SmallVector<QualType, 8> GeneralizedParams;
5133     for (auto &Param : FnType->param_types())
5134       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5135 
5136     return Ctx.getFunctionType(
5137         GeneralizeType(Ctx, FnType->getReturnType()),
5138         GeneralizedParams, FnType->getExtProtoInfo());
5139   }
5140 
5141   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5142     return Ctx.getFunctionNoProtoType(
5143         GeneralizeType(Ctx, FnType->getReturnType()));
5144 
5145   llvm_unreachable("Encountered unknown FunctionType");
5146 }
5147 
5148 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5149   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5150                                       GeneralizedMetadataIdMap, ".generalized");
5151 }
5152 
5153 /// Returns whether this module needs the "all-vtables" type identifier.
5154 bool CodeGenModule::NeedAllVtablesTypeId() const {
5155   // Returns true if at least one of vtable-based CFI checkers is enabled and
5156   // is not in the trapping mode.
5157   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5158            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5159           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5160            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5161           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5162            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5163           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5164            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5165 }
5166 
5167 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5168                                           CharUnits Offset,
5169                                           const CXXRecordDecl *RD) {
5170   llvm::Metadata *MD =
5171       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5172   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5173 
5174   if (CodeGenOpts.SanitizeCfiCrossDso)
5175     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5176       VTable->addTypeMetadata(Offset.getQuantity(),
5177                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5178 
5179   if (NeedAllVtablesTypeId()) {
5180     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5181     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5182   }
5183 }
5184 
5185 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5186   assert(TD != nullptr);
5187   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5188 
5189   ParsedAttr.Features.erase(
5190       llvm::remove_if(ParsedAttr.Features,
5191                       [&](const std::string &Feat) {
5192                         return !Target.isValidFeatureName(
5193                             StringRef{Feat}.substr(1));
5194                       }),
5195       ParsedAttr.Features.end());
5196   return ParsedAttr;
5197 }
5198 
5199 
5200 // Fills in the supplied string map with the set of target features for the
5201 // passed in function.
5202 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5203                                           const FunctionDecl *FD) {
5204   StringRef TargetCPU = Target.getTargetOpts().CPU;
5205   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5206     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5207 
5208     // Make a copy of the features as passed on the command line into the
5209     // beginning of the additional features from the function to override.
5210     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5211                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5212                             Target.getTargetOpts().FeaturesAsWritten.end());
5213 
5214     if (ParsedAttr.Architecture != "" &&
5215         Target.isValidCPUName(ParsedAttr.Architecture))
5216       TargetCPU = ParsedAttr.Architecture;
5217 
5218     // Now populate the feature map, first with the TargetCPU which is either
5219     // the default or a new one from the target attribute string. Then we'll use
5220     // the passed in features (FeaturesAsWritten) along with the new ones from
5221     // the attribute.
5222     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5223                           ParsedAttr.Features);
5224   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5225     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5226     Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(),
5227                                              FeaturesTmp);
5228     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5229     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5230   } else {
5231     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5232                           Target.getTargetOpts().Features);
5233   }
5234 }
5235 
5236 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5237   if (!SanStats)
5238     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5239 
5240   return *SanStats;
5241 }
5242 llvm::Value *
5243 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5244                                                   CodeGenFunction &CGF) {
5245   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5246   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5247   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5248   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5249                                 "__translate_sampler_initializer"),
5250                                 {C});
5251 }
5252