1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 CodeGenOpts.FlushDenorm ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (CodeGenOpts.NoPLT) 560 getModule().setRtLibUseGOT(); 561 562 SimplifyPersonality(); 563 564 if (getCodeGenOpts().EmitDeclMetadata) 565 EmitDeclMetadata(); 566 567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 568 EmitCoverageFile(); 569 570 if (DebugInfo) 571 DebugInfo->finalize(); 572 573 if (getCodeGenOpts().EmitVersionIdentMetadata) 574 EmitVersionIdentMetadata(); 575 576 EmitTargetMetadata(); 577 } 578 579 void CodeGenModule::EmitOpenCLMetadata() { 580 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 581 // opencl.ocl.version named metadata node. 582 llvm::Metadata *OCLVerElts[] = { 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, LangOpts.OpenCLVersion / 100)), 585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 586 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 587 llvm::NamedMDNode *OCLVerMD = 588 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 589 llvm::LLVMContext &Ctx = TheModule.getContext(); 590 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 591 } 592 593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 594 // Make sure that this type is translated. 595 Types.UpdateCompletedType(TD); 596 } 597 598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 599 // Make sure that this type is translated. 600 Types.RefreshTypeCacheForClass(RD); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getTypeInfo(QTy); 607 } 608 609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 610 if (!TBAA) 611 return TBAAAccessInfo(); 612 return TBAA->getAccessInfo(AccessType); 613 } 614 615 TBAAAccessInfo 616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 617 if (!TBAA) 618 return TBAAAccessInfo(); 619 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 620 } 621 622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 623 if (!TBAA) 624 return nullptr; 625 return TBAA->getTBAAStructInfo(QTy); 626 } 627 628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 629 if (!TBAA) 630 return nullptr; 631 return TBAA->getBaseTypeInfo(QTy); 632 } 633 634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 635 if (!TBAA) 636 return nullptr; 637 return TBAA->getAccessTagInfo(Info); 638 } 639 640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 641 TBAAAccessInfo TargetInfo) { 642 if (!TBAA) 643 return TBAAAccessInfo(); 644 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 645 } 646 647 TBAAAccessInfo 648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 649 TBAAAccessInfo InfoB) { 650 if (!TBAA) 651 return TBAAAccessInfo(); 652 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 653 } 654 655 TBAAAccessInfo 656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 657 TBAAAccessInfo SrcInfo) { 658 if (!TBAA) 659 return TBAAAccessInfo(); 660 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 661 } 662 663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 664 TBAAAccessInfo TBAAInfo) { 665 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 666 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 667 } 668 669 void CodeGenModule::DecorateInstructionWithInvariantGroup( 670 llvm::Instruction *I, const CXXRecordDecl *RD) { 671 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 672 llvm::MDNode::get(getLLVMContext(), {})); 673 } 674 675 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 676 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 677 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 678 } 679 680 /// ErrorUnsupported - Print out an error that codegen doesn't support the 681 /// specified stmt yet. 682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 683 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 684 "cannot compile this %0 yet"); 685 std::string Msg = Type; 686 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 687 << Msg << S->getSourceRange(); 688 } 689 690 /// ErrorUnsupported - Print out an error that codegen doesn't support the 691 /// specified decl yet. 692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 693 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 694 "cannot compile this %0 yet"); 695 std::string Msg = Type; 696 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 697 } 698 699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 700 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 701 } 702 703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 704 const NamedDecl *D) const { 705 if (GV->hasDLLImportStorageClass()) 706 return; 707 // Internal definitions always have default visibility. 708 if (GV->hasLocalLinkage()) { 709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 710 return; 711 } 712 if (!D) 713 return; 714 // Set visibility for definitions. 715 LinkageInfo LV = D->getLinkageAndVisibility(); 716 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 718 } 719 720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 721 llvm::GlobalValue *GV) { 722 if (GV->hasLocalLinkage()) 723 return true; 724 725 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 726 return true; 727 728 // DLLImport explicitly marks the GV as external. 729 if (GV->hasDLLImportStorageClass()) 730 return false; 731 732 const llvm::Triple &TT = CGM.getTriple(); 733 // Every other GV is local on COFF. 734 // Make an exception for windows OS in the triple: Some firmware builds use 735 // *-win32-macho triples. This (accidentally?) produced windows relocations 736 // without GOT tables in older clang versions; Keep this behaviour. 737 // FIXME: even thread local variables? 738 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 739 return true; 740 741 // Only handle COFF and ELF for now. 742 if (!TT.isOSBinFormatELF()) 743 return false; 744 745 // If this is not an executable, don't assume anything is local. 746 const auto &CGOpts = CGM.getCodeGenOpts(); 747 llvm::Reloc::Model RM = CGOpts.RelocationModel; 748 const auto &LOpts = CGM.getLangOpts(); 749 if (RM != llvm::Reloc::Static && !LOpts.PIE) 750 return false; 751 752 // A definition cannot be preempted from an executable. 753 if (!GV->isDeclarationForLinker()) 754 return true; 755 756 // Most PIC code sequences that assume that a symbol is local cannot produce a 757 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 758 // depended, it seems worth it to handle it here. 759 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 760 return false; 761 762 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 763 llvm::Triple::ArchType Arch = TT.getArch(); 764 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 765 Arch == llvm::Triple::ppc64le) 766 return false; 767 768 // If we can use copy relocations we can assume it is local. 769 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 770 if (!Var->isThreadLocal() && 771 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 772 return true; 773 774 // If we can use a plt entry as the symbol address we can assume it 775 // is local. 776 // FIXME: This should work for PIE, but the gold linker doesn't support it. 777 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 778 return true; 779 780 // Otherwise don't assue it is local. 781 return false; 782 } 783 784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 785 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 786 } 787 788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 789 GlobalDecl GD) const { 790 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 791 // C++ destructors have a few C++ ABI specific special cases. 792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 793 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 794 return; 795 } 796 setDLLImportDLLExport(GV, D); 797 } 798 799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 800 const NamedDecl *D) const { 801 if (D && D->isExternallyVisible()) { 802 if (D->hasAttr<DLLImportAttr>()) 803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 804 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 805 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 806 } 807 } 808 809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 810 GlobalDecl GD) const { 811 setDLLImportDLLExport(GV, GD); 812 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 813 } 814 815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 816 const NamedDecl *D) const { 817 setDLLImportDLLExport(GV, D); 818 setGlobalVisibilityAndLocal(GV, D); 819 } 820 821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 setGlobalVisibility(GV, D); 824 setDSOLocal(GV); 825 } 826 827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 828 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 829 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 830 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 831 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 832 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 833 } 834 835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 836 CodeGenOptions::TLSModel M) { 837 switch (M) { 838 case CodeGenOptions::GeneralDynamicTLSModel: 839 return llvm::GlobalVariable::GeneralDynamicTLSModel; 840 case CodeGenOptions::LocalDynamicTLSModel: 841 return llvm::GlobalVariable::LocalDynamicTLSModel; 842 case CodeGenOptions::InitialExecTLSModel: 843 return llvm::GlobalVariable::InitialExecTLSModel; 844 case CodeGenOptions::LocalExecTLSModel: 845 return llvm::GlobalVariable::LocalExecTLSModel; 846 } 847 llvm_unreachable("Invalid TLS model!"); 848 } 849 850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 851 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 852 853 llvm::GlobalValue::ThreadLocalMode TLM; 854 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 855 856 // Override the TLS model if it is explicitly specified. 857 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 858 TLM = GetLLVMTLSModel(Attr->getModel()); 859 } 860 861 GV->setThreadLocalMode(TLM); 862 } 863 864 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 865 StringRef Name) { 866 const TargetInfo &Target = CGM.getTarget(); 867 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 868 } 869 870 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 871 const CPUSpecificAttr *Attr, 872 raw_ostream &Out) { 873 // cpu_specific gets the current name, dispatch gets the resolver. 874 if (Attr) 875 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 876 else 877 Out << ".resolver"; 878 } 879 880 static void AppendTargetMangling(const CodeGenModule &CGM, 881 const TargetAttr *Attr, raw_ostream &Out) { 882 if (Attr->isDefaultVersion()) 883 return; 884 885 Out << '.'; 886 const TargetInfo &Target = CGM.getTarget(); 887 TargetAttr::ParsedTargetAttr Info = 888 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 889 // Multiversioning doesn't allow "no-${feature}", so we can 890 // only have "+" prefixes here. 891 assert(LHS.startswith("+") && RHS.startswith("+") && 892 "Features should always have a prefix."); 893 return Target.multiVersionSortPriority(LHS.substr(1)) > 894 Target.multiVersionSortPriority(RHS.substr(1)); 895 }); 896 897 bool IsFirst = true; 898 899 if (!Info.Architecture.empty()) { 900 IsFirst = false; 901 Out << "arch_" << Info.Architecture; 902 } 903 904 for (StringRef Feat : Info.Features) { 905 if (!IsFirst) 906 Out << '_'; 907 IsFirst = false; 908 Out << Feat.substr(1); 909 } 910 } 911 912 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 913 const NamedDecl *ND, 914 bool OmitMultiVersionMangling = false) { 915 SmallString<256> Buffer; 916 llvm::raw_svector_ostream Out(Buffer); 917 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 918 if (MC.shouldMangleDeclName(ND)) { 919 llvm::raw_svector_ostream Out(Buffer); 920 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 921 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 922 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 923 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 924 else 925 MC.mangleName(ND, Out); 926 } else { 927 IdentifierInfo *II = ND->getIdentifier(); 928 assert(II && "Attempt to mangle unnamed decl."); 929 const auto *FD = dyn_cast<FunctionDecl>(ND); 930 931 if (FD && 932 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 933 llvm::raw_svector_ostream Out(Buffer); 934 Out << "__regcall3__" << II->getName(); 935 } else { 936 Out << II->getName(); 937 } 938 } 939 940 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 941 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 942 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 943 AppendCPUSpecificCPUDispatchMangling( 944 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 945 else 946 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 947 } 948 949 return Out.str(); 950 } 951 952 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 953 const FunctionDecl *FD) { 954 if (!FD->isMultiVersion()) 955 return; 956 957 // Get the name of what this would be without the 'target' attribute. This 958 // allows us to lookup the version that was emitted when this wasn't a 959 // multiversion function. 960 std::string NonTargetName = 961 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 962 GlobalDecl OtherGD; 963 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 964 assert(OtherGD.getCanonicalDecl() 965 .getDecl() 966 ->getAsFunction() 967 ->isMultiVersion() && 968 "Other GD should now be a multiversioned function"); 969 // OtherFD is the version of this function that was mangled BEFORE 970 // becoming a MultiVersion function. It potentially needs to be updated. 971 const FunctionDecl *OtherFD = 972 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 973 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 974 // This is so that if the initial version was already the 'default' 975 // version, we don't try to update it. 976 if (OtherName != NonTargetName) { 977 // Remove instead of erase, since others may have stored the StringRef 978 // to this. 979 const auto ExistingRecord = Manglings.find(NonTargetName); 980 if (ExistingRecord != std::end(Manglings)) 981 Manglings.remove(&(*ExistingRecord)); 982 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 983 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 984 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 985 Entry->setName(OtherName); 986 } 987 } 988 } 989 990 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 991 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 992 993 // Some ABIs don't have constructor variants. Make sure that base and 994 // complete constructors get mangled the same. 995 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 996 if (!getTarget().getCXXABI().hasConstructorVariants()) { 997 CXXCtorType OrigCtorType = GD.getCtorType(); 998 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 999 if (OrigCtorType == Ctor_Base) 1000 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1001 } 1002 } 1003 1004 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1005 // Since CPUSpecific can require multiple emits per decl, store the manglings 1006 // separately. 1007 if (FD && 1008 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1009 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1010 1011 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1012 CanonicalGD, 1013 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1014 1015 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1016 if (FoundName != CPUSpecificMangledDeclNames.end()) 1017 return FoundName->second; 1018 1019 auto Result = CPUSpecificManglings.insert( 1020 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1021 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1022 } 1023 1024 auto FoundName = MangledDeclNames.find(CanonicalGD); 1025 if (FoundName != MangledDeclNames.end()) 1026 return FoundName->second; 1027 1028 // Keep the first result in the case of a mangling collision. 1029 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1030 auto Result = 1031 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1032 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1033 } 1034 1035 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1036 const BlockDecl *BD) { 1037 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1038 const Decl *D = GD.getDecl(); 1039 1040 SmallString<256> Buffer; 1041 llvm::raw_svector_ostream Out(Buffer); 1042 if (!D) 1043 MangleCtx.mangleGlobalBlock(BD, 1044 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1045 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1046 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1047 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1048 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1049 else 1050 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1051 1052 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1053 return Result.first->first(); 1054 } 1055 1056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1057 return getModule().getNamedValue(Name); 1058 } 1059 1060 /// AddGlobalCtor - Add a function to the list that will be called before 1061 /// main() runs. 1062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1063 llvm::Constant *AssociatedData) { 1064 // FIXME: Type coercion of void()* types. 1065 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1066 } 1067 1068 /// AddGlobalDtor - Add a function to the list that will be called 1069 /// when the module is unloaded. 1070 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1071 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1072 DtorsUsingAtExit[Priority].push_back(Dtor); 1073 return; 1074 } 1075 1076 // FIXME: Type coercion of void()* types. 1077 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1078 } 1079 1080 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1081 if (Fns.empty()) return; 1082 1083 // Ctor function type is void()*. 1084 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1085 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1086 1087 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1088 llvm::StructType *CtorStructTy = llvm::StructType::get( 1089 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1090 1091 // Construct the constructor and destructor arrays. 1092 ConstantInitBuilder builder(*this); 1093 auto ctors = builder.beginArray(CtorStructTy); 1094 for (const auto &I : Fns) { 1095 auto ctor = ctors.beginStruct(CtorStructTy); 1096 ctor.addInt(Int32Ty, I.Priority); 1097 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1098 if (I.AssociatedData) 1099 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1100 else 1101 ctor.addNullPointer(VoidPtrTy); 1102 ctor.finishAndAddTo(ctors); 1103 } 1104 1105 auto list = 1106 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1107 /*constant*/ false, 1108 llvm::GlobalValue::AppendingLinkage); 1109 1110 // The LTO linker doesn't seem to like it when we set an alignment 1111 // on appending variables. Take it off as a workaround. 1112 list->setAlignment(0); 1113 1114 Fns.clear(); 1115 } 1116 1117 llvm::GlobalValue::LinkageTypes 1118 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1119 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1120 1121 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1122 1123 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1124 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1125 1126 if (isa<CXXConstructorDecl>(D) && 1127 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1128 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1129 // Our approach to inheriting constructors is fundamentally different from 1130 // that used by the MS ABI, so keep our inheriting constructor thunks 1131 // internal rather than trying to pick an unambiguous mangling for them. 1132 return llvm::GlobalValue::InternalLinkage; 1133 } 1134 1135 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1136 } 1137 1138 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1139 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1140 if (!MDS) return nullptr; 1141 1142 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1143 } 1144 1145 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1146 const CGFunctionInfo &Info, 1147 llvm::Function *F) { 1148 unsigned CallingConv; 1149 llvm::AttributeList PAL; 1150 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1151 F->setAttributes(PAL); 1152 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1153 } 1154 1155 /// Determines whether the language options require us to model 1156 /// unwind exceptions. We treat -fexceptions as mandating this 1157 /// except under the fragile ObjC ABI with only ObjC exceptions 1158 /// enabled. This means, for example, that C with -fexceptions 1159 /// enables this. 1160 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1161 // If exceptions are completely disabled, obviously this is false. 1162 if (!LangOpts.Exceptions) return false; 1163 1164 // If C++ exceptions are enabled, this is true. 1165 if (LangOpts.CXXExceptions) return true; 1166 1167 // If ObjC exceptions are enabled, this depends on the ABI. 1168 if (LangOpts.ObjCExceptions) { 1169 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1170 } 1171 1172 return true; 1173 } 1174 1175 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1176 const CXXMethodDecl *MD) { 1177 // Check that the type metadata can ever actually be used by a call. 1178 if (!CGM.getCodeGenOpts().LTOUnit || 1179 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1180 return false; 1181 1182 // Only functions whose address can be taken with a member function pointer 1183 // need this sort of type metadata. 1184 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1185 !isa<CXXDestructorDecl>(MD); 1186 } 1187 1188 std::vector<const CXXRecordDecl *> 1189 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1190 llvm::SetVector<const CXXRecordDecl *> MostBases; 1191 1192 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1193 CollectMostBases = [&](const CXXRecordDecl *RD) { 1194 if (RD->getNumBases() == 0) 1195 MostBases.insert(RD); 1196 for (const CXXBaseSpecifier &B : RD->bases()) 1197 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1198 }; 1199 CollectMostBases(RD); 1200 return MostBases.takeVector(); 1201 } 1202 1203 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1204 llvm::Function *F) { 1205 llvm::AttrBuilder B; 1206 1207 if (CodeGenOpts.UnwindTables) 1208 B.addAttribute(llvm::Attribute::UWTable); 1209 1210 if (!hasUnwindExceptions(LangOpts)) 1211 B.addAttribute(llvm::Attribute::NoUnwind); 1212 1213 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1214 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1215 B.addAttribute(llvm::Attribute::StackProtect); 1216 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1217 B.addAttribute(llvm::Attribute::StackProtectStrong); 1218 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1219 B.addAttribute(llvm::Attribute::StackProtectReq); 1220 } 1221 1222 if (!D) { 1223 // If we don't have a declaration to control inlining, the function isn't 1224 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1225 // disabled, mark the function as noinline. 1226 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1227 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1228 B.addAttribute(llvm::Attribute::NoInline); 1229 1230 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1231 return; 1232 } 1233 1234 // Track whether we need to add the optnone LLVM attribute, 1235 // starting with the default for this optimization level. 1236 bool ShouldAddOptNone = 1237 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1238 // We can't add optnone in the following cases, it won't pass the verifier. 1239 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1240 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1241 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1242 1243 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1244 B.addAttribute(llvm::Attribute::OptimizeNone); 1245 1246 // OptimizeNone implies noinline; we should not be inlining such functions. 1247 B.addAttribute(llvm::Attribute::NoInline); 1248 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1249 "OptimizeNone and AlwaysInline on same function!"); 1250 1251 // We still need to handle naked functions even though optnone subsumes 1252 // much of their semantics. 1253 if (D->hasAttr<NakedAttr>()) 1254 B.addAttribute(llvm::Attribute::Naked); 1255 1256 // OptimizeNone wins over OptimizeForSize and MinSize. 1257 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1258 F->removeFnAttr(llvm::Attribute::MinSize); 1259 } else if (D->hasAttr<NakedAttr>()) { 1260 // Naked implies noinline: we should not be inlining such functions. 1261 B.addAttribute(llvm::Attribute::Naked); 1262 B.addAttribute(llvm::Attribute::NoInline); 1263 } else if (D->hasAttr<NoDuplicateAttr>()) { 1264 B.addAttribute(llvm::Attribute::NoDuplicate); 1265 } else if (D->hasAttr<NoInlineAttr>()) { 1266 B.addAttribute(llvm::Attribute::NoInline); 1267 } else if (D->hasAttr<AlwaysInlineAttr>() && 1268 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1269 // (noinline wins over always_inline, and we can't specify both in IR) 1270 B.addAttribute(llvm::Attribute::AlwaysInline); 1271 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1272 // If we're not inlining, then force everything that isn't always_inline to 1273 // carry an explicit noinline attribute. 1274 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1275 B.addAttribute(llvm::Attribute::NoInline); 1276 } else { 1277 // Otherwise, propagate the inline hint attribute and potentially use its 1278 // absence to mark things as noinline. 1279 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1280 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1281 return Redecl->isInlineSpecified(); 1282 })) { 1283 B.addAttribute(llvm::Attribute::InlineHint); 1284 } else if (CodeGenOpts.getInlining() == 1285 CodeGenOptions::OnlyHintInlining && 1286 !FD->isInlined() && 1287 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1288 B.addAttribute(llvm::Attribute::NoInline); 1289 } 1290 } 1291 } 1292 1293 // Add other optimization related attributes if we are optimizing this 1294 // function. 1295 if (!D->hasAttr<OptimizeNoneAttr>()) { 1296 if (D->hasAttr<ColdAttr>()) { 1297 if (!ShouldAddOptNone) 1298 B.addAttribute(llvm::Attribute::OptimizeForSize); 1299 B.addAttribute(llvm::Attribute::Cold); 1300 } 1301 1302 if (D->hasAttr<MinSizeAttr>()) 1303 B.addAttribute(llvm::Attribute::MinSize); 1304 } 1305 1306 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1307 1308 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1309 if (alignment) 1310 F->setAlignment(alignment); 1311 1312 if (!D->hasAttr<AlignedAttr>()) 1313 if (LangOpts.FunctionAlignment) 1314 F->setAlignment(1 << LangOpts.FunctionAlignment); 1315 1316 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1317 // reserve a bit for differentiating between virtual and non-virtual member 1318 // functions. If the current target's C++ ABI requires this and this is a 1319 // member function, set its alignment accordingly. 1320 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1321 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1322 F->setAlignment(2); 1323 } 1324 1325 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1326 if (CodeGenOpts.SanitizeCfiCrossDso) 1327 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1328 CreateFunctionTypeMetadataForIcall(FD, F); 1329 1330 // Emit type metadata on member functions for member function pointer checks. 1331 // These are only ever necessary on definitions; we're guaranteed that the 1332 // definition will be present in the LTO unit as a result of LTO visibility. 1333 auto *MD = dyn_cast<CXXMethodDecl>(D); 1334 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1335 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1336 llvm::Metadata *Id = 1337 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1338 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1339 F->addTypeMetadata(0, Id); 1340 } 1341 } 1342 } 1343 1344 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1345 const Decl *D = GD.getDecl(); 1346 if (dyn_cast_or_null<NamedDecl>(D)) 1347 setGVProperties(GV, GD); 1348 else 1349 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1350 1351 if (D && D->hasAttr<UsedAttr>()) 1352 addUsedGlobal(GV); 1353 } 1354 1355 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1356 llvm::AttrBuilder &Attrs) { 1357 // Add target-cpu and target-features attributes to functions. If 1358 // we have a decl for the function and it has a target attribute then 1359 // parse that and add it to the feature set. 1360 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1361 std::vector<std::string> Features; 1362 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1363 FD = FD ? FD->getMostRecentDecl() : FD; 1364 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1365 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1366 bool AddedAttr = false; 1367 if (TD || SD) { 1368 llvm::StringMap<bool> FeatureMap; 1369 getFunctionFeatureMap(FeatureMap, FD); 1370 1371 // Produce the canonical string for this set of features. 1372 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1373 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1374 1375 // Now add the target-cpu and target-features to the function. 1376 // While we populated the feature map above, we still need to 1377 // get and parse the target attribute so we can get the cpu for 1378 // the function. 1379 if (TD) { 1380 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1381 if (ParsedAttr.Architecture != "" && 1382 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1383 TargetCPU = ParsedAttr.Architecture; 1384 } 1385 } else { 1386 // Otherwise just add the existing target cpu and target features to the 1387 // function. 1388 Features = getTarget().getTargetOpts().Features; 1389 } 1390 1391 if (TargetCPU != "") { 1392 Attrs.addAttribute("target-cpu", TargetCPU); 1393 AddedAttr = true; 1394 } 1395 if (!Features.empty()) { 1396 llvm::sort(Features.begin(), Features.end()); 1397 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1398 AddedAttr = true; 1399 } 1400 1401 return AddedAttr; 1402 } 1403 1404 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1405 llvm::GlobalObject *GO) { 1406 const Decl *D = GD.getDecl(); 1407 SetCommonAttributes(GD, GO); 1408 1409 if (D) { 1410 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1411 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1412 GV->addAttribute("bss-section", SA->getName()); 1413 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1414 GV->addAttribute("data-section", SA->getName()); 1415 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1416 GV->addAttribute("rodata-section", SA->getName()); 1417 } 1418 1419 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1420 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1421 if (!D->getAttr<SectionAttr>()) 1422 F->addFnAttr("implicit-section-name", SA->getName()); 1423 1424 llvm::AttrBuilder Attrs; 1425 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1426 // We know that GetCPUAndFeaturesAttributes will always have the 1427 // newest set, since it has the newest possible FunctionDecl, so the 1428 // new ones should replace the old. 1429 F->removeFnAttr("target-cpu"); 1430 F->removeFnAttr("target-features"); 1431 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1432 } 1433 } 1434 1435 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1436 GO->setSection(CSA->getName()); 1437 else if (const auto *SA = D->getAttr<SectionAttr>()) 1438 GO->setSection(SA->getName()); 1439 } 1440 1441 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1442 } 1443 1444 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1445 llvm::Function *F, 1446 const CGFunctionInfo &FI) { 1447 const Decl *D = GD.getDecl(); 1448 SetLLVMFunctionAttributes(D, FI, F); 1449 SetLLVMFunctionAttributesForDefinition(D, F); 1450 1451 F->setLinkage(llvm::Function::InternalLinkage); 1452 1453 setNonAliasAttributes(GD, F); 1454 } 1455 1456 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1457 // Set linkage and visibility in case we never see a definition. 1458 LinkageInfo LV = ND->getLinkageAndVisibility(); 1459 // Don't set internal linkage on declarations. 1460 // "extern_weak" is overloaded in LLVM; we probably should have 1461 // separate linkage types for this. 1462 if (isExternallyVisible(LV.getLinkage()) && 1463 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1464 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1465 } 1466 1467 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1468 llvm::Function *F) { 1469 // Only if we are checking indirect calls. 1470 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1471 return; 1472 1473 // Non-static class methods are handled via vtable or member function pointer 1474 // checks elsewhere. 1475 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1476 return; 1477 1478 // Additionally, if building with cross-DSO support... 1479 if (CodeGenOpts.SanitizeCfiCrossDso) { 1480 // Skip available_externally functions. They won't be codegen'ed in the 1481 // current module anyway. 1482 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1483 return; 1484 } 1485 1486 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1487 F->addTypeMetadata(0, MD); 1488 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1489 1490 // Emit a hash-based bit set entry for cross-DSO calls. 1491 if (CodeGenOpts.SanitizeCfiCrossDso) 1492 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1493 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1494 } 1495 1496 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1497 bool IsIncompleteFunction, 1498 bool IsThunk) { 1499 1500 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1501 // If this is an intrinsic function, set the function's attributes 1502 // to the intrinsic's attributes. 1503 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1504 return; 1505 } 1506 1507 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1508 1509 if (!IsIncompleteFunction) { 1510 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1511 // Setup target-specific attributes. 1512 if (F->isDeclaration()) 1513 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1514 } 1515 1516 // Add the Returned attribute for "this", except for iOS 5 and earlier 1517 // where substantial code, including the libstdc++ dylib, was compiled with 1518 // GCC and does not actually return "this". 1519 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1520 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1521 assert(!F->arg_empty() && 1522 F->arg_begin()->getType() 1523 ->canLosslesslyBitCastTo(F->getReturnType()) && 1524 "unexpected this return"); 1525 F->addAttribute(1, llvm::Attribute::Returned); 1526 } 1527 1528 // Only a few attributes are set on declarations; these may later be 1529 // overridden by a definition. 1530 1531 setLinkageForGV(F, FD); 1532 setGVProperties(F, FD); 1533 1534 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1535 F->setSection(CSA->getName()); 1536 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1537 F->setSection(SA->getName()); 1538 1539 if (FD->isReplaceableGlobalAllocationFunction()) { 1540 // A replaceable global allocation function does not act like a builtin by 1541 // default, only if it is invoked by a new-expression or delete-expression. 1542 F->addAttribute(llvm::AttributeList::FunctionIndex, 1543 llvm::Attribute::NoBuiltin); 1544 1545 // A sane operator new returns a non-aliasing pointer. 1546 // FIXME: Also add NonNull attribute to the return value 1547 // for the non-nothrow forms? 1548 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1549 if (getCodeGenOpts().AssumeSaneOperatorNew && 1550 (Kind == OO_New || Kind == OO_Array_New)) 1551 F->addAttribute(llvm::AttributeList::ReturnIndex, 1552 llvm::Attribute::NoAlias); 1553 } 1554 1555 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1556 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1557 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1558 if (MD->isVirtual()) 1559 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1560 1561 // Don't emit entries for function declarations in the cross-DSO mode. This 1562 // is handled with better precision by the receiving DSO. 1563 if (!CodeGenOpts.SanitizeCfiCrossDso) 1564 CreateFunctionTypeMetadataForIcall(FD, F); 1565 1566 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1567 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1568 } 1569 1570 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1571 assert(!GV->isDeclaration() && 1572 "Only globals with definition can force usage."); 1573 LLVMUsed.emplace_back(GV); 1574 } 1575 1576 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1577 assert(!GV->isDeclaration() && 1578 "Only globals with definition can force usage."); 1579 LLVMCompilerUsed.emplace_back(GV); 1580 } 1581 1582 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1583 std::vector<llvm::WeakTrackingVH> &List) { 1584 // Don't create llvm.used if there is no need. 1585 if (List.empty()) 1586 return; 1587 1588 // Convert List to what ConstantArray needs. 1589 SmallVector<llvm::Constant*, 8> UsedArray; 1590 UsedArray.resize(List.size()); 1591 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1592 UsedArray[i] = 1593 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1594 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1595 } 1596 1597 if (UsedArray.empty()) 1598 return; 1599 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1600 1601 auto *GV = new llvm::GlobalVariable( 1602 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1603 llvm::ConstantArray::get(ATy, UsedArray), Name); 1604 1605 GV->setSection("llvm.metadata"); 1606 } 1607 1608 void CodeGenModule::emitLLVMUsed() { 1609 emitUsed(*this, "llvm.used", LLVMUsed); 1610 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1611 } 1612 1613 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1614 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1615 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1616 } 1617 1618 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1619 llvm::SmallString<32> Opt; 1620 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1621 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1622 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1623 } 1624 1625 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1626 auto &C = getLLVMContext(); 1627 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1628 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1629 } 1630 1631 void CodeGenModule::AddDependentLib(StringRef Lib) { 1632 llvm::SmallString<24> Opt; 1633 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1634 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1635 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1636 } 1637 1638 /// Add link options implied by the given module, including modules 1639 /// it depends on, using a postorder walk. 1640 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1641 SmallVectorImpl<llvm::MDNode *> &Metadata, 1642 llvm::SmallPtrSet<Module *, 16> &Visited) { 1643 // Import this module's parent. 1644 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1645 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1646 } 1647 1648 // Import this module's dependencies. 1649 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1650 if (Visited.insert(Mod->Imports[I - 1]).second) 1651 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1652 } 1653 1654 // Add linker options to link against the libraries/frameworks 1655 // described by this module. 1656 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1657 1658 // For modules that use export_as for linking, use that module 1659 // name instead. 1660 if (Mod->UseExportAsModuleLinkName) 1661 return; 1662 1663 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1664 // Link against a framework. Frameworks are currently Darwin only, so we 1665 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1666 if (Mod->LinkLibraries[I-1].IsFramework) { 1667 llvm::Metadata *Args[2] = { 1668 llvm::MDString::get(Context, "-framework"), 1669 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1670 1671 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1672 continue; 1673 } 1674 1675 // Link against a library. 1676 llvm::SmallString<24> Opt; 1677 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1678 Mod->LinkLibraries[I-1].Library, Opt); 1679 auto *OptString = llvm::MDString::get(Context, Opt); 1680 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1681 } 1682 } 1683 1684 void CodeGenModule::EmitModuleLinkOptions() { 1685 // Collect the set of all of the modules we want to visit to emit link 1686 // options, which is essentially the imported modules and all of their 1687 // non-explicit child modules. 1688 llvm::SetVector<clang::Module *> LinkModules; 1689 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1690 SmallVector<clang::Module *, 16> Stack; 1691 1692 // Seed the stack with imported modules. 1693 for (Module *M : ImportedModules) { 1694 // Do not add any link flags when an implementation TU of a module imports 1695 // a header of that same module. 1696 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1697 !getLangOpts().isCompilingModule()) 1698 continue; 1699 if (Visited.insert(M).second) 1700 Stack.push_back(M); 1701 } 1702 1703 // Find all of the modules to import, making a little effort to prune 1704 // non-leaf modules. 1705 while (!Stack.empty()) { 1706 clang::Module *Mod = Stack.pop_back_val(); 1707 1708 bool AnyChildren = false; 1709 1710 // Visit the submodules of this module. 1711 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1712 SubEnd = Mod->submodule_end(); 1713 Sub != SubEnd; ++Sub) { 1714 // Skip explicit children; they need to be explicitly imported to be 1715 // linked against. 1716 if ((*Sub)->IsExplicit) 1717 continue; 1718 1719 if (Visited.insert(*Sub).second) { 1720 Stack.push_back(*Sub); 1721 AnyChildren = true; 1722 } 1723 } 1724 1725 // We didn't find any children, so add this module to the list of 1726 // modules to link against. 1727 if (!AnyChildren) { 1728 LinkModules.insert(Mod); 1729 } 1730 } 1731 1732 // Add link options for all of the imported modules in reverse topological 1733 // order. We don't do anything to try to order import link flags with respect 1734 // to linker options inserted by things like #pragma comment(). 1735 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1736 Visited.clear(); 1737 for (Module *M : LinkModules) 1738 if (Visited.insert(M).second) 1739 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1740 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1741 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1742 1743 // Add the linker options metadata flag. 1744 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1745 for (auto *MD : LinkerOptionsMetadata) 1746 NMD->addOperand(MD); 1747 } 1748 1749 void CodeGenModule::EmitDeferred() { 1750 // Emit deferred declare target declarations. 1751 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1752 getOpenMPRuntime().emitDeferredTargetDecls(); 1753 1754 // Emit code for any potentially referenced deferred decls. Since a 1755 // previously unused static decl may become used during the generation of code 1756 // for a static function, iterate until no changes are made. 1757 1758 if (!DeferredVTables.empty()) { 1759 EmitDeferredVTables(); 1760 1761 // Emitting a vtable doesn't directly cause more vtables to 1762 // become deferred, although it can cause functions to be 1763 // emitted that then need those vtables. 1764 assert(DeferredVTables.empty()); 1765 } 1766 1767 // Stop if we're out of both deferred vtables and deferred declarations. 1768 if (DeferredDeclsToEmit.empty()) 1769 return; 1770 1771 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1772 // work, it will not interfere with this. 1773 std::vector<GlobalDecl> CurDeclsToEmit; 1774 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1775 1776 for (GlobalDecl &D : CurDeclsToEmit) { 1777 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1778 // to get GlobalValue with exactly the type we need, not something that 1779 // might had been created for another decl with the same mangled name but 1780 // different type. 1781 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1782 GetAddrOfGlobal(D, ForDefinition)); 1783 1784 // In case of different address spaces, we may still get a cast, even with 1785 // IsForDefinition equal to true. Query mangled names table to get 1786 // GlobalValue. 1787 if (!GV) 1788 GV = GetGlobalValue(getMangledName(D)); 1789 1790 // Make sure GetGlobalValue returned non-null. 1791 assert(GV); 1792 1793 // Check to see if we've already emitted this. This is necessary 1794 // for a couple of reasons: first, decls can end up in the 1795 // deferred-decls queue multiple times, and second, decls can end 1796 // up with definitions in unusual ways (e.g. by an extern inline 1797 // function acquiring a strong function redefinition). Just 1798 // ignore these cases. 1799 if (!GV->isDeclaration()) 1800 continue; 1801 1802 // Otherwise, emit the definition and move on to the next one. 1803 EmitGlobalDefinition(D, GV); 1804 1805 // If we found out that we need to emit more decls, do that recursively. 1806 // This has the advantage that the decls are emitted in a DFS and related 1807 // ones are close together, which is convenient for testing. 1808 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1809 EmitDeferred(); 1810 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1811 } 1812 } 1813 } 1814 1815 void CodeGenModule::EmitVTablesOpportunistically() { 1816 // Try to emit external vtables as available_externally if they have emitted 1817 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1818 // is not allowed to create new references to things that need to be emitted 1819 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1820 1821 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1822 && "Only emit opportunistic vtables with optimizations"); 1823 1824 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1825 assert(getVTables().isVTableExternal(RD) && 1826 "This queue should only contain external vtables"); 1827 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1828 VTables.GenerateClassData(RD); 1829 } 1830 OpportunisticVTables.clear(); 1831 } 1832 1833 void CodeGenModule::EmitGlobalAnnotations() { 1834 if (Annotations.empty()) 1835 return; 1836 1837 // Create a new global variable for the ConstantStruct in the Module. 1838 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1839 Annotations[0]->getType(), Annotations.size()), Annotations); 1840 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1841 llvm::GlobalValue::AppendingLinkage, 1842 Array, "llvm.global.annotations"); 1843 gv->setSection(AnnotationSection); 1844 } 1845 1846 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1847 llvm::Constant *&AStr = AnnotationStrings[Str]; 1848 if (AStr) 1849 return AStr; 1850 1851 // Not found yet, create a new global. 1852 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1853 auto *gv = 1854 new llvm::GlobalVariable(getModule(), s->getType(), true, 1855 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1856 gv->setSection(AnnotationSection); 1857 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1858 AStr = gv; 1859 return gv; 1860 } 1861 1862 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1863 SourceManager &SM = getContext().getSourceManager(); 1864 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1865 if (PLoc.isValid()) 1866 return EmitAnnotationString(PLoc.getFilename()); 1867 return EmitAnnotationString(SM.getBufferName(Loc)); 1868 } 1869 1870 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1871 SourceManager &SM = getContext().getSourceManager(); 1872 PresumedLoc PLoc = SM.getPresumedLoc(L); 1873 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1874 SM.getExpansionLineNumber(L); 1875 return llvm::ConstantInt::get(Int32Ty, LineNo); 1876 } 1877 1878 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1879 const AnnotateAttr *AA, 1880 SourceLocation L) { 1881 // Get the globals for file name, annotation, and the line number. 1882 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1883 *UnitGV = EmitAnnotationUnit(L), 1884 *LineNoCst = EmitAnnotationLineNo(L); 1885 1886 // Create the ConstantStruct for the global annotation. 1887 llvm::Constant *Fields[4] = { 1888 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1889 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1890 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1891 LineNoCst 1892 }; 1893 return llvm::ConstantStruct::getAnon(Fields); 1894 } 1895 1896 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1897 llvm::GlobalValue *GV) { 1898 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1899 // Get the struct elements for these annotations. 1900 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1901 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1902 } 1903 1904 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1905 llvm::Function *Fn, 1906 SourceLocation Loc) const { 1907 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1908 // Blacklist by function name. 1909 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1910 return true; 1911 // Blacklist by location. 1912 if (Loc.isValid()) 1913 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1914 // If location is unknown, this may be a compiler-generated function. Assume 1915 // it's located in the main file. 1916 auto &SM = Context.getSourceManager(); 1917 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1918 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1919 } 1920 return false; 1921 } 1922 1923 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1924 SourceLocation Loc, QualType Ty, 1925 StringRef Category) const { 1926 // For now globals can be blacklisted only in ASan and KASan. 1927 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1928 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1929 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1930 if (!EnabledAsanMask) 1931 return false; 1932 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1933 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1934 return true; 1935 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1936 return true; 1937 // Check global type. 1938 if (!Ty.isNull()) { 1939 // Drill down the array types: if global variable of a fixed type is 1940 // blacklisted, we also don't instrument arrays of them. 1941 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1942 Ty = AT->getElementType(); 1943 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1944 // We allow to blacklist only record types (classes, structs etc.) 1945 if (Ty->isRecordType()) { 1946 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1947 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1948 return true; 1949 } 1950 } 1951 return false; 1952 } 1953 1954 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1955 StringRef Category) const { 1956 if (!LangOpts.XRayInstrument) 1957 return false; 1958 1959 const auto &XRayFilter = getContext().getXRayFilter(); 1960 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1961 auto Attr = ImbueAttr::NONE; 1962 if (Loc.isValid()) 1963 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1964 if (Attr == ImbueAttr::NONE) 1965 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1966 switch (Attr) { 1967 case ImbueAttr::NONE: 1968 return false; 1969 case ImbueAttr::ALWAYS: 1970 Fn->addFnAttr("function-instrument", "xray-always"); 1971 break; 1972 case ImbueAttr::ALWAYS_ARG1: 1973 Fn->addFnAttr("function-instrument", "xray-always"); 1974 Fn->addFnAttr("xray-log-args", "1"); 1975 break; 1976 case ImbueAttr::NEVER: 1977 Fn->addFnAttr("function-instrument", "xray-never"); 1978 break; 1979 } 1980 return true; 1981 } 1982 1983 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1984 // Never defer when EmitAllDecls is specified. 1985 if (LangOpts.EmitAllDecls) 1986 return true; 1987 1988 return getContext().DeclMustBeEmitted(Global); 1989 } 1990 1991 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1992 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1993 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1994 // Implicit template instantiations may change linkage if they are later 1995 // explicitly instantiated, so they should not be emitted eagerly. 1996 return false; 1997 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1998 if (Context.getInlineVariableDefinitionKind(VD) == 1999 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2000 // A definition of an inline constexpr static data member may change 2001 // linkage later if it's redeclared outside the class. 2002 return false; 2003 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2004 // codegen for global variables, because they may be marked as threadprivate. 2005 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2006 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2007 !isTypeConstant(Global->getType(), false)) 2008 return false; 2009 2010 return true; 2011 } 2012 2013 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2014 const CXXUuidofExpr* E) { 2015 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2016 // well-formed. 2017 StringRef Uuid = E->getUuidStr(); 2018 std::string Name = "_GUID_" + Uuid.lower(); 2019 std::replace(Name.begin(), Name.end(), '-', '_'); 2020 2021 // The UUID descriptor should be pointer aligned. 2022 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2023 2024 // Look for an existing global. 2025 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2026 return ConstantAddress(GV, Alignment); 2027 2028 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2029 assert(Init && "failed to initialize as constant"); 2030 2031 auto *GV = new llvm::GlobalVariable( 2032 getModule(), Init->getType(), 2033 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2034 if (supportsCOMDAT()) 2035 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2036 setDSOLocal(GV); 2037 return ConstantAddress(GV, Alignment); 2038 } 2039 2040 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2041 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2042 assert(AA && "No alias?"); 2043 2044 CharUnits Alignment = getContext().getDeclAlign(VD); 2045 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2046 2047 // See if there is already something with the target's name in the module. 2048 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2049 if (Entry) { 2050 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2051 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2052 return ConstantAddress(Ptr, Alignment); 2053 } 2054 2055 llvm::Constant *Aliasee; 2056 if (isa<llvm::FunctionType>(DeclTy)) 2057 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2058 GlobalDecl(cast<FunctionDecl>(VD)), 2059 /*ForVTable=*/false); 2060 else 2061 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2062 llvm::PointerType::getUnqual(DeclTy), 2063 nullptr); 2064 2065 auto *F = cast<llvm::GlobalValue>(Aliasee); 2066 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2067 WeakRefReferences.insert(F); 2068 2069 return ConstantAddress(Aliasee, Alignment); 2070 } 2071 2072 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2073 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2074 2075 // Weak references don't produce any output by themselves. 2076 if (Global->hasAttr<WeakRefAttr>()) 2077 return; 2078 2079 // If this is an alias definition (which otherwise looks like a declaration) 2080 // emit it now. 2081 if (Global->hasAttr<AliasAttr>()) 2082 return EmitAliasDefinition(GD); 2083 2084 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2085 if (Global->hasAttr<IFuncAttr>()) 2086 return emitIFuncDefinition(GD); 2087 2088 // If this is a cpu_dispatch multiversion function, emit the resolver. 2089 if (Global->hasAttr<CPUDispatchAttr>()) 2090 return emitCPUDispatchDefinition(GD); 2091 2092 // If this is CUDA, be selective about which declarations we emit. 2093 if (LangOpts.CUDA) { 2094 if (LangOpts.CUDAIsDevice) { 2095 if (!Global->hasAttr<CUDADeviceAttr>() && 2096 !Global->hasAttr<CUDAGlobalAttr>() && 2097 !Global->hasAttr<CUDAConstantAttr>() && 2098 !Global->hasAttr<CUDASharedAttr>()) 2099 return; 2100 } else { 2101 // We need to emit host-side 'shadows' for all global 2102 // device-side variables because the CUDA runtime needs their 2103 // size and host-side address in order to provide access to 2104 // their device-side incarnations. 2105 2106 // So device-only functions are the only things we skip. 2107 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2108 Global->hasAttr<CUDADeviceAttr>()) 2109 return; 2110 2111 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2112 "Expected Variable or Function"); 2113 } 2114 } 2115 2116 if (LangOpts.OpenMP) { 2117 // If this is OpenMP device, check if it is legal to emit this global 2118 // normally. 2119 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2120 return; 2121 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2122 if (MustBeEmitted(Global)) 2123 EmitOMPDeclareReduction(DRD); 2124 return; 2125 } 2126 } 2127 2128 // Ignore declarations, they will be emitted on their first use. 2129 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2130 // Forward declarations are emitted lazily on first use. 2131 if (!FD->doesThisDeclarationHaveABody()) { 2132 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2133 return; 2134 2135 StringRef MangledName = getMangledName(GD); 2136 2137 // Compute the function info and LLVM type. 2138 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2139 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2140 2141 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2142 /*DontDefer=*/false); 2143 return; 2144 } 2145 } else { 2146 const auto *VD = cast<VarDecl>(Global); 2147 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2148 // We need to emit device-side global CUDA variables even if a 2149 // variable does not have a definition -- we still need to define 2150 // host-side shadow for it. 2151 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2152 !VD->hasDefinition() && 2153 (VD->hasAttr<CUDAConstantAttr>() || 2154 VD->hasAttr<CUDADeviceAttr>()); 2155 if (!MustEmitForCuda && 2156 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2157 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2158 // If this declaration may have caused an inline variable definition to 2159 // change linkage, make sure that it's emitted. 2160 if (Context.getInlineVariableDefinitionKind(VD) == 2161 ASTContext::InlineVariableDefinitionKind::Strong) 2162 GetAddrOfGlobalVar(VD); 2163 return; 2164 } 2165 } 2166 2167 // Defer code generation to first use when possible, e.g. if this is an inline 2168 // function. If the global must always be emitted, do it eagerly if possible 2169 // to benefit from cache locality. 2170 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2171 // Emit the definition if it can't be deferred. 2172 EmitGlobalDefinition(GD); 2173 return; 2174 } 2175 2176 // If we're deferring emission of a C++ variable with an 2177 // initializer, remember the order in which it appeared in the file. 2178 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2179 cast<VarDecl>(Global)->hasInit()) { 2180 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2181 CXXGlobalInits.push_back(nullptr); 2182 } 2183 2184 StringRef MangledName = getMangledName(GD); 2185 if (GetGlobalValue(MangledName) != nullptr) { 2186 // The value has already been used and should therefore be emitted. 2187 addDeferredDeclToEmit(GD); 2188 } else if (MustBeEmitted(Global)) { 2189 // The value must be emitted, but cannot be emitted eagerly. 2190 assert(!MayBeEmittedEagerly(Global)); 2191 addDeferredDeclToEmit(GD); 2192 } else { 2193 // Otherwise, remember that we saw a deferred decl with this name. The 2194 // first use of the mangled name will cause it to move into 2195 // DeferredDeclsToEmit. 2196 DeferredDecls[MangledName] = GD; 2197 } 2198 } 2199 2200 // Check if T is a class type with a destructor that's not dllimport. 2201 static bool HasNonDllImportDtor(QualType T) { 2202 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2203 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2204 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2205 return true; 2206 2207 return false; 2208 } 2209 2210 namespace { 2211 struct FunctionIsDirectlyRecursive : 2212 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2213 const StringRef Name; 2214 const Builtin::Context &BI; 2215 bool Result; 2216 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2217 Name(N), BI(C), Result(false) { 2218 } 2219 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2220 2221 bool TraverseCallExpr(CallExpr *E) { 2222 const FunctionDecl *FD = E->getDirectCallee(); 2223 if (!FD) 2224 return true; 2225 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2226 if (Attr && Name == Attr->getLabel()) { 2227 Result = true; 2228 return false; 2229 } 2230 unsigned BuiltinID = FD->getBuiltinID(); 2231 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2232 return true; 2233 StringRef BuiltinName = BI.getName(BuiltinID); 2234 if (BuiltinName.startswith("__builtin_") && 2235 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2236 Result = true; 2237 return false; 2238 } 2239 return true; 2240 } 2241 }; 2242 2243 // Make sure we're not referencing non-imported vars or functions. 2244 struct DLLImportFunctionVisitor 2245 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2246 bool SafeToInline = true; 2247 2248 bool shouldVisitImplicitCode() const { return true; } 2249 2250 bool VisitVarDecl(VarDecl *VD) { 2251 if (VD->getTLSKind()) { 2252 // A thread-local variable cannot be imported. 2253 SafeToInline = false; 2254 return SafeToInline; 2255 } 2256 2257 // A variable definition might imply a destructor call. 2258 if (VD->isThisDeclarationADefinition()) 2259 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2260 2261 return SafeToInline; 2262 } 2263 2264 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2265 if (const auto *D = E->getTemporary()->getDestructor()) 2266 SafeToInline = D->hasAttr<DLLImportAttr>(); 2267 return SafeToInline; 2268 } 2269 2270 bool VisitDeclRefExpr(DeclRefExpr *E) { 2271 ValueDecl *VD = E->getDecl(); 2272 if (isa<FunctionDecl>(VD)) 2273 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2274 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2275 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2276 return SafeToInline; 2277 } 2278 2279 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2280 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2281 return SafeToInline; 2282 } 2283 2284 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2285 CXXMethodDecl *M = E->getMethodDecl(); 2286 if (!M) { 2287 // Call through a pointer to member function. This is safe to inline. 2288 SafeToInline = true; 2289 } else { 2290 SafeToInline = M->hasAttr<DLLImportAttr>(); 2291 } 2292 return SafeToInline; 2293 } 2294 2295 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2296 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2297 return SafeToInline; 2298 } 2299 2300 bool VisitCXXNewExpr(CXXNewExpr *E) { 2301 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2302 return SafeToInline; 2303 } 2304 }; 2305 } 2306 2307 // isTriviallyRecursive - Check if this function calls another 2308 // decl that, because of the asm attribute or the other decl being a builtin, 2309 // ends up pointing to itself. 2310 bool 2311 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2312 StringRef Name; 2313 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2314 // asm labels are a special kind of mangling we have to support. 2315 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2316 if (!Attr) 2317 return false; 2318 Name = Attr->getLabel(); 2319 } else { 2320 Name = FD->getName(); 2321 } 2322 2323 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2324 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2325 return Walker.Result; 2326 } 2327 2328 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2329 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2330 return true; 2331 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2332 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2333 return false; 2334 2335 if (F->hasAttr<DLLImportAttr>()) { 2336 // Check whether it would be safe to inline this dllimport function. 2337 DLLImportFunctionVisitor Visitor; 2338 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2339 if (!Visitor.SafeToInline) 2340 return false; 2341 2342 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2343 // Implicit destructor invocations aren't captured in the AST, so the 2344 // check above can't see them. Check for them manually here. 2345 for (const Decl *Member : Dtor->getParent()->decls()) 2346 if (isa<FieldDecl>(Member)) 2347 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2348 return false; 2349 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2350 if (HasNonDllImportDtor(B.getType())) 2351 return false; 2352 } 2353 } 2354 2355 // PR9614. Avoid cases where the source code is lying to us. An available 2356 // externally function should have an equivalent function somewhere else, 2357 // but a function that calls itself is clearly not equivalent to the real 2358 // implementation. 2359 // This happens in glibc's btowc and in some configure checks. 2360 return !isTriviallyRecursive(F); 2361 } 2362 2363 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2364 return CodeGenOpts.OptimizationLevel > 0; 2365 } 2366 2367 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2368 const auto *D = cast<ValueDecl>(GD.getDecl()); 2369 2370 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2371 Context.getSourceManager(), 2372 "Generating code for declaration"); 2373 2374 if (isa<FunctionDecl>(D)) { 2375 // At -O0, don't generate IR for functions with available_externally 2376 // linkage. 2377 if (!shouldEmitFunction(GD)) 2378 return; 2379 2380 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2381 // Make sure to emit the definition(s) before we emit the thunks. 2382 // This is necessary for the generation of certain thunks. 2383 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2384 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2385 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2386 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2387 else 2388 EmitGlobalFunctionDefinition(GD, GV); 2389 2390 if (Method->isVirtual()) 2391 getVTables().EmitThunks(GD); 2392 2393 return; 2394 } 2395 2396 return EmitGlobalFunctionDefinition(GD, GV); 2397 } 2398 2399 if (const auto *VD = dyn_cast<VarDecl>(D)) 2400 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2401 2402 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2403 } 2404 2405 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2406 llvm::Function *NewFn); 2407 2408 void CodeGenModule::emitMultiVersionFunctions() { 2409 for (GlobalDecl GD : MultiVersionFuncs) { 2410 SmallVector<CodeGenFunction::TargetMultiVersionResolverOption, 10> Options; 2411 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2412 getContext().forEachMultiversionedFunctionVersion( 2413 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2414 GlobalDecl CurGD{ 2415 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2416 StringRef MangledName = getMangledName(CurGD); 2417 llvm::Constant *Func = GetGlobalValue(MangledName); 2418 if (!Func) { 2419 if (CurFD->isDefined()) { 2420 EmitGlobalFunctionDefinition(CurGD, nullptr); 2421 Func = GetGlobalValue(MangledName); 2422 } else { 2423 const CGFunctionInfo &FI = 2424 getTypes().arrangeGlobalDeclaration(GD); 2425 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2426 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2427 /*DontDefer=*/false, ForDefinition); 2428 } 2429 assert(Func && "This should have just been created"); 2430 } 2431 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2432 CurFD->getAttr<TargetAttr>()->parse()); 2433 }); 2434 2435 llvm::Function *ResolverFunc = cast<llvm::Function>( 2436 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2437 if (supportsCOMDAT()) 2438 ResolverFunc->setComdat( 2439 getModule().getOrInsertComdat(ResolverFunc->getName())); 2440 std::stable_sort( 2441 Options.begin(), Options.end(), 2442 std::greater<CodeGenFunction::TargetMultiVersionResolverOption>()); 2443 CodeGenFunction CGF(*this); 2444 CGF.EmitTargetMultiVersionResolver(ResolverFunc, Options); 2445 } 2446 } 2447 2448 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2449 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2450 assert(FD && "Not a FunctionDecl?"); 2451 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2452 assert(DD && "Not a cpu_dispatch Function?"); 2453 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType()); 2454 2455 StringRef ResolverName = getMangledName(GD); 2456 llvm::Type *ResolverType = llvm::FunctionType::get( 2457 llvm::PointerType::get(DeclTy, 2458 Context.getTargetAddressSpace(FD->getType())), 2459 false); 2460 auto *ResolverFunc = cast<llvm::Function>( 2461 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2462 /*ForVTable=*/false)); 2463 2464 SmallVector<CodeGenFunction::CPUDispatchMultiVersionResolverOption, 10> 2465 Options; 2466 const TargetInfo &Target = getTarget(); 2467 for (const IdentifierInfo *II : DD->cpus()) { 2468 // Get the name of the target function so we can look it up/create it. 2469 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2470 getCPUSpecificMangling(*this, II->getName()); 2471 llvm::Constant *Func = GetOrCreateLLVMFunction( 2472 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false, 2473 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2474 llvm::SmallVector<StringRef, 32> Features; 2475 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2476 llvm::transform(Features, Features.begin(), 2477 [](StringRef Str) { return Str.substr(1); }); 2478 Features.erase(std::remove_if( 2479 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2480 return !Target.validateCpuSupports(Feat); 2481 }), Features.end()); 2482 Options.emplace_back(cast<llvm::Function>(Func), 2483 CodeGenFunction::GetX86CpuSupportsMask(Features)); 2484 } 2485 2486 llvm::sort( 2487 Options.begin(), Options.end(), 2488 std::greater<CodeGenFunction::CPUDispatchMultiVersionResolverOption>()); 2489 CodeGenFunction CGF(*this); 2490 CGF.EmitCPUDispatchMultiVersionResolver(ResolverFunc, Options); 2491 } 2492 2493 /// If an ifunc for the specified mangled name is not in the module, create and 2494 /// return an llvm IFunc Function with the specified type. 2495 llvm::Constant * 2496 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2497 const FunctionDecl *FD) { 2498 std::string MangledName = 2499 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2500 std::string IFuncName = MangledName + ".ifunc"; 2501 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2502 return IFuncGV; 2503 2504 // Since this is the first time we've created this IFunc, make sure 2505 // that we put this multiversioned function into the list to be 2506 // replaced later if necessary (target multiversioning only). 2507 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2508 MultiVersionFuncs.push_back(GD); 2509 2510 std::string ResolverName = MangledName + ".resolver"; 2511 llvm::Type *ResolverType = llvm::FunctionType::get( 2512 llvm::PointerType::get(DeclTy, 2513 Context.getTargetAddressSpace(FD->getType())), 2514 false); 2515 llvm::Constant *Resolver = 2516 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2517 /*ForVTable=*/false); 2518 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2519 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2520 GIF->setName(IFuncName); 2521 SetCommonAttributes(FD, GIF); 2522 2523 return GIF; 2524 } 2525 2526 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2527 /// module, create and return an llvm Function with the specified type. If there 2528 /// is something in the module with the specified name, return it potentially 2529 /// bitcasted to the right type. 2530 /// 2531 /// If D is non-null, it specifies a decl that correspond to this. This is used 2532 /// to set the attributes on the function when it is first created. 2533 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2534 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2535 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2536 ForDefinition_t IsForDefinition) { 2537 const Decl *D = GD.getDecl(); 2538 2539 // Any attempts to use a MultiVersion function should result in retrieving 2540 // the iFunc instead. Name Mangling will handle the rest of the changes. 2541 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2542 // For the device mark the function as one that should be emitted. 2543 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2544 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2545 !DontDefer && !IsForDefinition) { 2546 const FunctionDecl *FDDef = FD->getDefinition(); 2547 GlobalDecl GDDef; 2548 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2549 GDDef = GlobalDecl(CD, GD.getCtorType()); 2550 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2551 GDDef = GlobalDecl(DD, GD.getDtorType()); 2552 else 2553 GDDef = GlobalDecl(FDDef); 2554 addDeferredDeclToEmit(GDDef); 2555 } 2556 2557 if (FD->isMultiVersion()) { 2558 const auto *TA = FD->getAttr<TargetAttr>(); 2559 if (TA && TA->isDefaultVersion()) 2560 UpdateMultiVersionNames(GD, FD); 2561 if (!IsForDefinition) 2562 return GetOrCreateMultiVersionIFunc(GD, Ty, FD); 2563 } 2564 } 2565 2566 // Lookup the entry, lazily creating it if necessary. 2567 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2568 if (Entry) { 2569 if (WeakRefReferences.erase(Entry)) { 2570 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2571 if (FD && !FD->hasAttr<WeakAttr>()) 2572 Entry->setLinkage(llvm::Function::ExternalLinkage); 2573 } 2574 2575 // Handle dropped DLL attributes. 2576 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2577 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2578 setDSOLocal(Entry); 2579 } 2580 2581 // If there are two attempts to define the same mangled name, issue an 2582 // error. 2583 if (IsForDefinition && !Entry->isDeclaration()) { 2584 GlobalDecl OtherGD; 2585 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2586 // to make sure that we issue an error only once. 2587 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2588 (GD.getCanonicalDecl().getDecl() != 2589 OtherGD.getCanonicalDecl().getDecl()) && 2590 DiagnosedConflictingDefinitions.insert(GD).second) { 2591 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2592 << MangledName; 2593 getDiags().Report(OtherGD.getDecl()->getLocation(), 2594 diag::note_previous_definition); 2595 } 2596 } 2597 2598 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2599 (Entry->getType()->getElementType() == Ty)) { 2600 return Entry; 2601 } 2602 2603 // Make sure the result is of the correct type. 2604 // (If function is requested for a definition, we always need to create a new 2605 // function, not just return a bitcast.) 2606 if (!IsForDefinition) 2607 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2608 } 2609 2610 // This function doesn't have a complete type (for example, the return 2611 // type is an incomplete struct). Use a fake type instead, and make 2612 // sure not to try to set attributes. 2613 bool IsIncompleteFunction = false; 2614 2615 llvm::FunctionType *FTy; 2616 if (isa<llvm::FunctionType>(Ty)) { 2617 FTy = cast<llvm::FunctionType>(Ty); 2618 } else { 2619 FTy = llvm::FunctionType::get(VoidTy, false); 2620 IsIncompleteFunction = true; 2621 } 2622 2623 llvm::Function *F = 2624 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2625 Entry ? StringRef() : MangledName, &getModule()); 2626 2627 // If we already created a function with the same mangled name (but different 2628 // type) before, take its name and add it to the list of functions to be 2629 // replaced with F at the end of CodeGen. 2630 // 2631 // This happens if there is a prototype for a function (e.g. "int f()") and 2632 // then a definition of a different type (e.g. "int f(int x)"). 2633 if (Entry) { 2634 F->takeName(Entry); 2635 2636 // This might be an implementation of a function without a prototype, in 2637 // which case, try to do special replacement of calls which match the new 2638 // prototype. The really key thing here is that we also potentially drop 2639 // arguments from the call site so as to make a direct call, which makes the 2640 // inliner happier and suppresses a number of optimizer warnings (!) about 2641 // dropping arguments. 2642 if (!Entry->use_empty()) { 2643 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2644 Entry->removeDeadConstantUsers(); 2645 } 2646 2647 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2648 F, Entry->getType()->getElementType()->getPointerTo()); 2649 addGlobalValReplacement(Entry, BC); 2650 } 2651 2652 assert(F->getName() == MangledName && "name was uniqued!"); 2653 if (D) 2654 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2655 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2656 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2657 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2658 } 2659 2660 if (!DontDefer) { 2661 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2662 // each other bottoming out with the base dtor. Therefore we emit non-base 2663 // dtors on usage, even if there is no dtor definition in the TU. 2664 if (D && isa<CXXDestructorDecl>(D) && 2665 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2666 GD.getDtorType())) 2667 addDeferredDeclToEmit(GD); 2668 2669 // This is the first use or definition of a mangled name. If there is a 2670 // deferred decl with this name, remember that we need to emit it at the end 2671 // of the file. 2672 auto DDI = DeferredDecls.find(MangledName); 2673 if (DDI != DeferredDecls.end()) { 2674 // Move the potentially referenced deferred decl to the 2675 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2676 // don't need it anymore). 2677 addDeferredDeclToEmit(DDI->second); 2678 DeferredDecls.erase(DDI); 2679 2680 // Otherwise, there are cases we have to worry about where we're 2681 // using a declaration for which we must emit a definition but where 2682 // we might not find a top-level definition: 2683 // - member functions defined inline in their classes 2684 // - friend functions defined inline in some class 2685 // - special member functions with implicit definitions 2686 // If we ever change our AST traversal to walk into class methods, 2687 // this will be unnecessary. 2688 // 2689 // We also don't emit a definition for a function if it's going to be an 2690 // entry in a vtable, unless it's already marked as used. 2691 } else if (getLangOpts().CPlusPlus && D) { 2692 // Look for a declaration that's lexically in a record. 2693 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2694 FD = FD->getPreviousDecl()) { 2695 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2696 if (FD->doesThisDeclarationHaveABody()) { 2697 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2698 break; 2699 } 2700 } 2701 } 2702 } 2703 } 2704 2705 // Make sure the result is of the requested type. 2706 if (!IsIncompleteFunction) { 2707 assert(F->getType()->getElementType() == Ty); 2708 return F; 2709 } 2710 2711 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2712 return llvm::ConstantExpr::getBitCast(F, PTy); 2713 } 2714 2715 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2716 /// non-null, then this function will use the specified type if it has to 2717 /// create it (this occurs when we see a definition of the function). 2718 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2719 llvm::Type *Ty, 2720 bool ForVTable, 2721 bool DontDefer, 2722 ForDefinition_t IsForDefinition) { 2723 // If there was no specific requested type, just convert it now. 2724 if (!Ty) { 2725 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2726 auto CanonTy = Context.getCanonicalType(FD->getType()); 2727 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2728 } 2729 2730 // Devirtualized destructor calls may come through here instead of via 2731 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2732 // of the complete destructor when necessary. 2733 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2734 if (getTarget().getCXXABI().isMicrosoft() && 2735 GD.getDtorType() == Dtor_Complete && 2736 DD->getParent()->getNumVBases() == 0) 2737 GD = GlobalDecl(DD, Dtor_Base); 2738 } 2739 2740 StringRef MangledName = getMangledName(GD); 2741 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2742 /*IsThunk=*/false, llvm::AttributeList(), 2743 IsForDefinition); 2744 } 2745 2746 static const FunctionDecl * 2747 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2748 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2749 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2750 2751 IdentifierInfo &CII = C.Idents.get(Name); 2752 for (const auto &Result : DC->lookup(&CII)) 2753 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2754 return FD; 2755 2756 if (!C.getLangOpts().CPlusPlus) 2757 return nullptr; 2758 2759 // Demangle the premangled name from getTerminateFn() 2760 IdentifierInfo &CXXII = 2761 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2762 ? C.Idents.get("terminate") 2763 : C.Idents.get(Name); 2764 2765 for (const auto &N : {"__cxxabiv1", "std"}) { 2766 IdentifierInfo &NS = C.Idents.get(N); 2767 for (const auto &Result : DC->lookup(&NS)) { 2768 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2769 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2770 for (const auto &Result : LSD->lookup(&NS)) 2771 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2772 break; 2773 2774 if (ND) 2775 for (const auto &Result : ND->lookup(&CXXII)) 2776 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2777 return FD; 2778 } 2779 } 2780 2781 return nullptr; 2782 } 2783 2784 /// CreateRuntimeFunction - Create a new runtime function with the specified 2785 /// type and name. 2786 llvm::Constant * 2787 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2788 llvm::AttributeList ExtraAttrs, 2789 bool Local) { 2790 llvm::Constant *C = 2791 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2792 /*DontDefer=*/false, /*IsThunk=*/false, 2793 ExtraAttrs); 2794 2795 if (auto *F = dyn_cast<llvm::Function>(C)) { 2796 if (F->empty()) { 2797 F->setCallingConv(getRuntimeCC()); 2798 2799 if (!Local && getTriple().isOSBinFormatCOFF() && 2800 !getCodeGenOpts().LTOVisibilityPublicStd && 2801 !getTriple().isWindowsGNUEnvironment()) { 2802 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2803 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2804 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2805 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2806 } 2807 } 2808 setDSOLocal(F); 2809 } 2810 } 2811 2812 return C; 2813 } 2814 2815 /// CreateBuiltinFunction - Create a new builtin function with the specified 2816 /// type and name. 2817 llvm::Constant * 2818 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2819 llvm::AttributeList ExtraAttrs) { 2820 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2821 } 2822 2823 /// isTypeConstant - Determine whether an object of this type can be emitted 2824 /// as a constant. 2825 /// 2826 /// If ExcludeCtor is true, the duration when the object's constructor runs 2827 /// will not be considered. The caller will need to verify that the object is 2828 /// not written to during its construction. 2829 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2830 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2831 return false; 2832 2833 if (Context.getLangOpts().CPlusPlus) { 2834 if (const CXXRecordDecl *Record 2835 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2836 return ExcludeCtor && !Record->hasMutableFields() && 2837 Record->hasTrivialDestructor(); 2838 } 2839 2840 return true; 2841 } 2842 2843 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2844 /// create and return an llvm GlobalVariable with the specified type. If there 2845 /// is something in the module with the specified name, return it potentially 2846 /// bitcasted to the right type. 2847 /// 2848 /// If D is non-null, it specifies a decl that correspond to this. This is used 2849 /// to set the attributes on the global when it is first created. 2850 /// 2851 /// If IsForDefinition is true, it is guaranteed that an actual global with 2852 /// type Ty will be returned, not conversion of a variable with the same 2853 /// mangled name but some other type. 2854 llvm::Constant * 2855 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2856 llvm::PointerType *Ty, 2857 const VarDecl *D, 2858 ForDefinition_t IsForDefinition) { 2859 // Lookup the entry, lazily creating it if necessary. 2860 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2861 if (Entry) { 2862 if (WeakRefReferences.erase(Entry)) { 2863 if (D && !D->hasAttr<WeakAttr>()) 2864 Entry->setLinkage(llvm::Function::ExternalLinkage); 2865 } 2866 2867 // Handle dropped DLL attributes. 2868 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2869 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2870 2871 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2872 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2873 2874 if (Entry->getType() == Ty) 2875 return Entry; 2876 2877 // If there are two attempts to define the same mangled name, issue an 2878 // error. 2879 if (IsForDefinition && !Entry->isDeclaration()) { 2880 GlobalDecl OtherGD; 2881 const VarDecl *OtherD; 2882 2883 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2884 // to make sure that we issue an error only once. 2885 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2886 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2887 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2888 OtherD->hasInit() && 2889 DiagnosedConflictingDefinitions.insert(D).second) { 2890 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2891 << MangledName; 2892 getDiags().Report(OtherGD.getDecl()->getLocation(), 2893 diag::note_previous_definition); 2894 } 2895 } 2896 2897 // Make sure the result is of the correct type. 2898 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2899 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2900 2901 // (If global is requested for a definition, we always need to create a new 2902 // global, not just return a bitcast.) 2903 if (!IsForDefinition) 2904 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2905 } 2906 2907 auto AddrSpace = GetGlobalVarAddressSpace(D); 2908 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2909 2910 auto *GV = new llvm::GlobalVariable( 2911 getModule(), Ty->getElementType(), false, 2912 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2913 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2914 2915 // If we already created a global with the same mangled name (but different 2916 // type) before, take its name and remove it from its parent. 2917 if (Entry) { 2918 GV->takeName(Entry); 2919 2920 if (!Entry->use_empty()) { 2921 llvm::Constant *NewPtrForOldDecl = 2922 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2923 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2924 } 2925 2926 Entry->eraseFromParent(); 2927 } 2928 2929 // This is the first use or definition of a mangled name. If there is a 2930 // deferred decl with this name, remember that we need to emit it at the end 2931 // of the file. 2932 auto DDI = DeferredDecls.find(MangledName); 2933 if (DDI != DeferredDecls.end()) { 2934 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2935 // list, and remove it from DeferredDecls (since we don't need it anymore). 2936 addDeferredDeclToEmit(DDI->second); 2937 DeferredDecls.erase(DDI); 2938 } 2939 2940 // Handle things which are present even on external declarations. 2941 if (D) { 2942 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2943 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2944 2945 // FIXME: This code is overly simple and should be merged with other global 2946 // handling. 2947 GV->setConstant(isTypeConstant(D->getType(), false)); 2948 2949 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2950 2951 setLinkageForGV(GV, D); 2952 2953 if (D->getTLSKind()) { 2954 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2955 CXXThreadLocals.push_back(D); 2956 setTLSMode(GV, *D); 2957 } 2958 2959 setGVProperties(GV, D); 2960 2961 // If required by the ABI, treat declarations of static data members with 2962 // inline initializers as definitions. 2963 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2964 EmitGlobalVarDefinition(D); 2965 } 2966 2967 // Emit section information for extern variables. 2968 if (D->hasExternalStorage()) { 2969 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2970 GV->setSection(SA->getName()); 2971 } 2972 2973 // Handle XCore specific ABI requirements. 2974 if (getTriple().getArch() == llvm::Triple::xcore && 2975 D->getLanguageLinkage() == CLanguageLinkage && 2976 D->getType().isConstant(Context) && 2977 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2978 GV->setSection(".cp.rodata"); 2979 2980 // Check if we a have a const declaration with an initializer, we may be 2981 // able to emit it as available_externally to expose it's value to the 2982 // optimizer. 2983 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2984 D->getType().isConstQualified() && !GV->hasInitializer() && 2985 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2986 const auto *Record = 2987 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2988 bool HasMutableFields = Record && Record->hasMutableFields(); 2989 if (!HasMutableFields) { 2990 const VarDecl *InitDecl; 2991 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2992 if (InitExpr) { 2993 ConstantEmitter emitter(*this); 2994 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2995 if (Init) { 2996 auto *InitType = Init->getType(); 2997 if (GV->getType()->getElementType() != InitType) { 2998 // The type of the initializer does not match the definition. 2999 // This happens when an initializer has a different type from 3000 // the type of the global (because of padding at the end of a 3001 // structure for instance). 3002 GV->setName(StringRef()); 3003 // Make a new global with the correct type, this is now guaranteed 3004 // to work. 3005 auto *NewGV = cast<llvm::GlobalVariable>( 3006 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3007 3008 // Erase the old global, since it is no longer used. 3009 GV->eraseFromParent(); 3010 GV = NewGV; 3011 } else { 3012 GV->setInitializer(Init); 3013 GV->setConstant(true); 3014 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3015 } 3016 emitter.finalize(GV); 3017 } 3018 } 3019 } 3020 } 3021 } 3022 3023 LangAS ExpectedAS = 3024 D ? D->getType().getAddressSpace() 3025 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3026 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3027 Ty->getPointerAddressSpace()); 3028 if (AddrSpace != ExpectedAS) 3029 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3030 ExpectedAS, Ty); 3031 3032 return GV; 3033 } 3034 3035 llvm::Constant * 3036 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3037 ForDefinition_t IsForDefinition) { 3038 const Decl *D = GD.getDecl(); 3039 if (isa<CXXConstructorDecl>(D)) 3040 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3041 getFromCtorType(GD.getCtorType()), 3042 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3043 /*DontDefer=*/false, IsForDefinition); 3044 else if (isa<CXXDestructorDecl>(D)) 3045 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3046 getFromDtorType(GD.getDtorType()), 3047 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3048 /*DontDefer=*/false, IsForDefinition); 3049 else if (isa<CXXMethodDecl>(D)) { 3050 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3051 cast<CXXMethodDecl>(D)); 3052 auto Ty = getTypes().GetFunctionType(*FInfo); 3053 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3054 IsForDefinition); 3055 } else if (isa<FunctionDecl>(D)) { 3056 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3057 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3058 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3059 IsForDefinition); 3060 } else 3061 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3062 IsForDefinition); 3063 } 3064 3065 llvm::GlobalVariable * 3066 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 3067 llvm::Type *Ty, 3068 llvm::GlobalValue::LinkageTypes Linkage) { 3069 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3070 llvm::GlobalVariable *OldGV = nullptr; 3071 3072 if (GV) { 3073 // Check if the variable has the right type. 3074 if (GV->getType()->getElementType() == Ty) 3075 return GV; 3076 3077 // Because C++ name mangling, the only way we can end up with an already 3078 // existing global with the same name is if it has been declared extern "C". 3079 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3080 OldGV = GV; 3081 } 3082 3083 // Create a new variable. 3084 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3085 Linkage, nullptr, Name); 3086 3087 if (OldGV) { 3088 // Replace occurrences of the old variable if needed. 3089 GV->takeName(OldGV); 3090 3091 if (!OldGV->use_empty()) { 3092 llvm::Constant *NewPtrForOldDecl = 3093 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3094 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3095 } 3096 3097 OldGV->eraseFromParent(); 3098 } 3099 3100 if (supportsCOMDAT() && GV->isWeakForLinker() && 3101 !GV->hasAvailableExternallyLinkage()) 3102 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3103 3104 return GV; 3105 } 3106 3107 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3108 /// given global variable. If Ty is non-null and if the global doesn't exist, 3109 /// then it will be created with the specified type instead of whatever the 3110 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3111 /// that an actual global with type Ty will be returned, not conversion of a 3112 /// variable with the same mangled name but some other type. 3113 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3114 llvm::Type *Ty, 3115 ForDefinition_t IsForDefinition) { 3116 assert(D->hasGlobalStorage() && "Not a global variable"); 3117 QualType ASTTy = D->getType(); 3118 if (!Ty) 3119 Ty = getTypes().ConvertTypeForMem(ASTTy); 3120 3121 llvm::PointerType *PTy = 3122 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3123 3124 StringRef MangledName = getMangledName(D); 3125 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3126 } 3127 3128 /// CreateRuntimeVariable - Create a new runtime global variable with the 3129 /// specified type and name. 3130 llvm::Constant * 3131 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3132 StringRef Name) { 3133 auto *Ret = 3134 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3135 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3136 return Ret; 3137 } 3138 3139 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3140 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3141 3142 StringRef MangledName = getMangledName(D); 3143 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3144 3145 // We already have a definition, not declaration, with the same mangled name. 3146 // Emitting of declaration is not required (and actually overwrites emitted 3147 // definition). 3148 if (GV && !GV->isDeclaration()) 3149 return; 3150 3151 // If we have not seen a reference to this variable yet, place it into the 3152 // deferred declarations table to be emitted if needed later. 3153 if (!MustBeEmitted(D) && !GV) { 3154 DeferredDecls[MangledName] = D; 3155 return; 3156 } 3157 3158 // The tentative definition is the only definition. 3159 EmitGlobalVarDefinition(D); 3160 } 3161 3162 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3163 return Context.toCharUnitsFromBits( 3164 getDataLayout().getTypeStoreSizeInBits(Ty)); 3165 } 3166 3167 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3168 LangAS AddrSpace = LangAS::Default; 3169 if (LangOpts.OpenCL) { 3170 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3171 assert(AddrSpace == LangAS::opencl_global || 3172 AddrSpace == LangAS::opencl_constant || 3173 AddrSpace == LangAS::opencl_local || 3174 AddrSpace >= LangAS::FirstTargetAddressSpace); 3175 return AddrSpace; 3176 } 3177 3178 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3179 if (D && D->hasAttr<CUDAConstantAttr>()) 3180 return LangAS::cuda_constant; 3181 else if (D && D->hasAttr<CUDASharedAttr>()) 3182 return LangAS::cuda_shared; 3183 else if (D && D->hasAttr<CUDADeviceAttr>()) 3184 return LangAS::cuda_device; 3185 else if (D && D->getType().isConstQualified()) 3186 return LangAS::cuda_constant; 3187 else 3188 return LangAS::cuda_device; 3189 } 3190 3191 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3192 } 3193 3194 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3195 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3196 if (LangOpts.OpenCL) 3197 return LangAS::opencl_constant; 3198 if (auto AS = getTarget().getConstantAddressSpace()) 3199 return AS.getValue(); 3200 return LangAS::Default; 3201 } 3202 3203 // In address space agnostic languages, string literals are in default address 3204 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3205 // emitted in constant address space in LLVM IR. To be consistent with other 3206 // parts of AST, string literal global variables in constant address space 3207 // need to be casted to default address space before being put into address 3208 // map and referenced by other part of CodeGen. 3209 // In OpenCL, string literals are in constant address space in AST, therefore 3210 // they should not be casted to default address space. 3211 static llvm::Constant * 3212 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3213 llvm::GlobalVariable *GV) { 3214 llvm::Constant *Cast = GV; 3215 if (!CGM.getLangOpts().OpenCL) { 3216 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3217 if (AS != LangAS::Default) 3218 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3219 CGM, GV, AS.getValue(), LangAS::Default, 3220 GV->getValueType()->getPointerTo( 3221 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3222 } 3223 } 3224 return Cast; 3225 } 3226 3227 template<typename SomeDecl> 3228 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3229 llvm::GlobalValue *GV) { 3230 if (!getLangOpts().CPlusPlus) 3231 return; 3232 3233 // Must have 'used' attribute, or else inline assembly can't rely on 3234 // the name existing. 3235 if (!D->template hasAttr<UsedAttr>()) 3236 return; 3237 3238 // Must have internal linkage and an ordinary name. 3239 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3240 return; 3241 3242 // Must be in an extern "C" context. Entities declared directly within 3243 // a record are not extern "C" even if the record is in such a context. 3244 const SomeDecl *First = D->getFirstDecl(); 3245 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3246 return; 3247 3248 // OK, this is an internal linkage entity inside an extern "C" linkage 3249 // specification. Make a note of that so we can give it the "expected" 3250 // mangled name if nothing else is using that name. 3251 std::pair<StaticExternCMap::iterator, bool> R = 3252 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3253 3254 // If we have multiple internal linkage entities with the same name 3255 // in extern "C" regions, none of them gets that name. 3256 if (!R.second) 3257 R.first->second = nullptr; 3258 } 3259 3260 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3261 if (!CGM.supportsCOMDAT()) 3262 return false; 3263 3264 if (D.hasAttr<SelectAnyAttr>()) 3265 return true; 3266 3267 GVALinkage Linkage; 3268 if (auto *VD = dyn_cast<VarDecl>(&D)) 3269 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3270 else 3271 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3272 3273 switch (Linkage) { 3274 case GVA_Internal: 3275 case GVA_AvailableExternally: 3276 case GVA_StrongExternal: 3277 return false; 3278 case GVA_DiscardableODR: 3279 case GVA_StrongODR: 3280 return true; 3281 } 3282 llvm_unreachable("No such linkage"); 3283 } 3284 3285 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3286 llvm::GlobalObject &GO) { 3287 if (!shouldBeInCOMDAT(*this, D)) 3288 return; 3289 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3290 } 3291 3292 /// Pass IsTentative as true if you want to create a tentative definition. 3293 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3294 bool IsTentative) { 3295 // OpenCL global variables of sampler type are translated to function calls, 3296 // therefore no need to be translated. 3297 QualType ASTTy = D->getType(); 3298 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3299 return; 3300 3301 // If this is OpenMP device, check if it is legal to emit this global 3302 // normally. 3303 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3304 OpenMPRuntime->emitTargetGlobalVariable(D)) 3305 return; 3306 3307 llvm::Constant *Init = nullptr; 3308 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3309 bool NeedsGlobalCtor = false; 3310 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3311 3312 const VarDecl *InitDecl; 3313 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3314 3315 Optional<ConstantEmitter> emitter; 3316 3317 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3318 // as part of their declaration." Sema has already checked for 3319 // error cases, so we just need to set Init to UndefValue. 3320 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3321 D->hasAttr<CUDASharedAttr>()) 3322 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3323 else if (!InitExpr) { 3324 // This is a tentative definition; tentative definitions are 3325 // implicitly initialized with { 0 }. 3326 // 3327 // Note that tentative definitions are only emitted at the end of 3328 // a translation unit, so they should never have incomplete 3329 // type. In addition, EmitTentativeDefinition makes sure that we 3330 // never attempt to emit a tentative definition if a real one 3331 // exists. A use may still exists, however, so we still may need 3332 // to do a RAUW. 3333 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3334 Init = EmitNullConstant(D->getType()); 3335 } else { 3336 initializedGlobalDecl = GlobalDecl(D); 3337 emitter.emplace(*this); 3338 Init = emitter->tryEmitForInitializer(*InitDecl); 3339 3340 if (!Init) { 3341 QualType T = InitExpr->getType(); 3342 if (D->getType()->isReferenceType()) 3343 T = D->getType(); 3344 3345 if (getLangOpts().CPlusPlus) { 3346 Init = EmitNullConstant(T); 3347 NeedsGlobalCtor = true; 3348 } else { 3349 ErrorUnsupported(D, "static initializer"); 3350 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3351 } 3352 } else { 3353 // We don't need an initializer, so remove the entry for the delayed 3354 // initializer position (just in case this entry was delayed) if we 3355 // also don't need to register a destructor. 3356 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3357 DelayedCXXInitPosition.erase(D); 3358 } 3359 } 3360 3361 llvm::Type* InitType = Init->getType(); 3362 llvm::Constant *Entry = 3363 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3364 3365 // Strip off a bitcast if we got one back. 3366 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3367 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3368 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3369 // All zero index gep. 3370 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3371 Entry = CE->getOperand(0); 3372 } 3373 3374 // Entry is now either a Function or GlobalVariable. 3375 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3376 3377 // We have a definition after a declaration with the wrong type. 3378 // We must make a new GlobalVariable* and update everything that used OldGV 3379 // (a declaration or tentative definition) with the new GlobalVariable* 3380 // (which will be a definition). 3381 // 3382 // This happens if there is a prototype for a global (e.g. 3383 // "extern int x[];") and then a definition of a different type (e.g. 3384 // "int x[10];"). This also happens when an initializer has a different type 3385 // from the type of the global (this happens with unions). 3386 if (!GV || GV->getType()->getElementType() != InitType || 3387 GV->getType()->getAddressSpace() != 3388 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3389 3390 // Move the old entry aside so that we'll create a new one. 3391 Entry->setName(StringRef()); 3392 3393 // Make a new global with the correct type, this is now guaranteed to work. 3394 GV = cast<llvm::GlobalVariable>( 3395 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3396 3397 // Replace all uses of the old global with the new global 3398 llvm::Constant *NewPtrForOldDecl = 3399 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3400 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3401 3402 // Erase the old global, since it is no longer used. 3403 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3404 } 3405 3406 MaybeHandleStaticInExternC(D, GV); 3407 3408 if (D->hasAttr<AnnotateAttr>()) 3409 AddGlobalAnnotations(D, GV); 3410 3411 // Set the llvm linkage type as appropriate. 3412 llvm::GlobalValue::LinkageTypes Linkage = 3413 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3414 3415 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3416 // the device. [...]" 3417 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3418 // __device__, declares a variable that: [...] 3419 // Is accessible from all the threads within the grid and from the host 3420 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3421 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3422 if (GV && LangOpts.CUDA) { 3423 if (LangOpts.CUDAIsDevice) { 3424 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3425 GV->setExternallyInitialized(true); 3426 } else { 3427 // Host-side shadows of external declarations of device-side 3428 // global variables become internal definitions. These have to 3429 // be internal in order to prevent name conflicts with global 3430 // host variables with the same name in a different TUs. 3431 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3432 Linkage = llvm::GlobalValue::InternalLinkage; 3433 3434 // Shadow variables and their properties must be registered 3435 // with CUDA runtime. 3436 unsigned Flags = 0; 3437 if (!D->hasDefinition()) 3438 Flags |= CGCUDARuntime::ExternDeviceVar; 3439 if (D->hasAttr<CUDAConstantAttr>()) 3440 Flags |= CGCUDARuntime::ConstantDeviceVar; 3441 getCUDARuntime().registerDeviceVar(*GV, Flags); 3442 } else if (D->hasAttr<CUDASharedAttr>()) 3443 // __shared__ variables are odd. Shadows do get created, but 3444 // they are not registered with the CUDA runtime, so they 3445 // can't really be used to access their device-side 3446 // counterparts. It's not clear yet whether it's nvcc's bug or 3447 // a feature, but we've got to do the same for compatibility. 3448 Linkage = llvm::GlobalValue::InternalLinkage; 3449 } 3450 } 3451 3452 GV->setInitializer(Init); 3453 if (emitter) emitter->finalize(GV); 3454 3455 // If it is safe to mark the global 'constant', do so now. 3456 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3457 isTypeConstant(D->getType(), true)); 3458 3459 // If it is in a read-only section, mark it 'constant'. 3460 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3461 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3462 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3463 GV->setConstant(true); 3464 } 3465 3466 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3467 3468 3469 // On Darwin, if the normal linkage of a C++ thread_local variable is 3470 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3471 // copies within a linkage unit; otherwise, the backing variable has 3472 // internal linkage and all accesses should just be calls to the 3473 // Itanium-specified entry point, which has the normal linkage of the 3474 // variable. This is to preserve the ability to change the implementation 3475 // behind the scenes. 3476 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3477 Context.getTargetInfo().getTriple().isOSDarwin() && 3478 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3479 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3480 Linkage = llvm::GlobalValue::InternalLinkage; 3481 3482 GV->setLinkage(Linkage); 3483 if (D->hasAttr<DLLImportAttr>()) 3484 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3485 else if (D->hasAttr<DLLExportAttr>()) 3486 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3487 else 3488 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3489 3490 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3491 // common vars aren't constant even if declared const. 3492 GV->setConstant(false); 3493 // Tentative definition of global variables may be initialized with 3494 // non-zero null pointers. In this case they should have weak linkage 3495 // since common linkage must have zero initializer and must not have 3496 // explicit section therefore cannot have non-zero initial value. 3497 if (!GV->getInitializer()->isNullValue()) 3498 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3499 } 3500 3501 setNonAliasAttributes(D, GV); 3502 3503 if (D->getTLSKind() && !GV->isThreadLocal()) { 3504 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3505 CXXThreadLocals.push_back(D); 3506 setTLSMode(GV, *D); 3507 } 3508 3509 maybeSetTrivialComdat(*D, *GV); 3510 3511 // Emit the initializer function if necessary. 3512 if (NeedsGlobalCtor || NeedsGlobalDtor) 3513 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3514 3515 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3516 3517 // Emit global variable debug information. 3518 if (CGDebugInfo *DI = getModuleDebugInfo()) 3519 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3520 DI->EmitGlobalVariable(GV, D); 3521 } 3522 3523 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3524 CodeGenModule &CGM, const VarDecl *D, 3525 bool NoCommon) { 3526 // Don't give variables common linkage if -fno-common was specified unless it 3527 // was overridden by a NoCommon attribute. 3528 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3529 return true; 3530 3531 // C11 6.9.2/2: 3532 // A declaration of an identifier for an object that has file scope without 3533 // an initializer, and without a storage-class specifier or with the 3534 // storage-class specifier static, constitutes a tentative definition. 3535 if (D->getInit() || D->hasExternalStorage()) 3536 return true; 3537 3538 // A variable cannot be both common and exist in a section. 3539 if (D->hasAttr<SectionAttr>()) 3540 return true; 3541 3542 // A variable cannot be both common and exist in a section. 3543 // We don't try to determine which is the right section in the front-end. 3544 // If no specialized section name is applicable, it will resort to default. 3545 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3546 D->hasAttr<PragmaClangDataSectionAttr>() || 3547 D->hasAttr<PragmaClangRodataSectionAttr>()) 3548 return true; 3549 3550 // Thread local vars aren't considered common linkage. 3551 if (D->getTLSKind()) 3552 return true; 3553 3554 // Tentative definitions marked with WeakImportAttr are true definitions. 3555 if (D->hasAttr<WeakImportAttr>()) 3556 return true; 3557 3558 // A variable cannot be both common and exist in a comdat. 3559 if (shouldBeInCOMDAT(CGM, *D)) 3560 return true; 3561 3562 // Declarations with a required alignment do not have common linkage in MSVC 3563 // mode. 3564 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3565 if (D->hasAttr<AlignedAttr>()) 3566 return true; 3567 QualType VarType = D->getType(); 3568 if (Context.isAlignmentRequired(VarType)) 3569 return true; 3570 3571 if (const auto *RT = VarType->getAs<RecordType>()) { 3572 const RecordDecl *RD = RT->getDecl(); 3573 for (const FieldDecl *FD : RD->fields()) { 3574 if (FD->isBitField()) 3575 continue; 3576 if (FD->hasAttr<AlignedAttr>()) 3577 return true; 3578 if (Context.isAlignmentRequired(FD->getType())) 3579 return true; 3580 } 3581 } 3582 } 3583 3584 return false; 3585 } 3586 3587 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3588 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3589 if (Linkage == GVA_Internal) 3590 return llvm::Function::InternalLinkage; 3591 3592 if (D->hasAttr<WeakAttr>()) { 3593 if (IsConstantVariable) 3594 return llvm::GlobalVariable::WeakODRLinkage; 3595 else 3596 return llvm::GlobalVariable::WeakAnyLinkage; 3597 } 3598 3599 // We are guaranteed to have a strong definition somewhere else, 3600 // so we can use available_externally linkage. 3601 if (Linkage == GVA_AvailableExternally) 3602 return llvm::GlobalValue::AvailableExternallyLinkage; 3603 3604 // Note that Apple's kernel linker doesn't support symbol 3605 // coalescing, so we need to avoid linkonce and weak linkages there. 3606 // Normally, this means we just map to internal, but for explicit 3607 // instantiations we'll map to external. 3608 3609 // In C++, the compiler has to emit a definition in every translation unit 3610 // that references the function. We should use linkonce_odr because 3611 // a) if all references in this translation unit are optimized away, we 3612 // don't need to codegen it. b) if the function persists, it needs to be 3613 // merged with other definitions. c) C++ has the ODR, so we know the 3614 // definition is dependable. 3615 if (Linkage == GVA_DiscardableODR) 3616 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3617 : llvm::Function::InternalLinkage; 3618 3619 // An explicit instantiation of a template has weak linkage, since 3620 // explicit instantiations can occur in multiple translation units 3621 // and must all be equivalent. However, we are not allowed to 3622 // throw away these explicit instantiations. 3623 // 3624 // We don't currently support CUDA device code spread out across multiple TUs, 3625 // so say that CUDA templates are either external (for kernels) or internal. 3626 // This lets llvm perform aggressive inter-procedural optimizations. 3627 if (Linkage == GVA_StrongODR) { 3628 if (Context.getLangOpts().AppleKext) 3629 return llvm::Function::ExternalLinkage; 3630 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3631 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3632 : llvm::Function::InternalLinkage; 3633 return llvm::Function::WeakODRLinkage; 3634 } 3635 3636 // C++ doesn't have tentative definitions and thus cannot have common 3637 // linkage. 3638 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3639 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3640 CodeGenOpts.NoCommon)) 3641 return llvm::GlobalVariable::CommonLinkage; 3642 3643 // selectany symbols are externally visible, so use weak instead of 3644 // linkonce. MSVC optimizes away references to const selectany globals, so 3645 // all definitions should be the same and ODR linkage should be used. 3646 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3647 if (D->hasAttr<SelectAnyAttr>()) 3648 return llvm::GlobalVariable::WeakODRLinkage; 3649 3650 // Otherwise, we have strong external linkage. 3651 assert(Linkage == GVA_StrongExternal); 3652 return llvm::GlobalVariable::ExternalLinkage; 3653 } 3654 3655 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3656 const VarDecl *VD, bool IsConstant) { 3657 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3658 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3659 } 3660 3661 /// Replace the uses of a function that was declared with a non-proto type. 3662 /// We want to silently drop extra arguments from call sites 3663 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3664 llvm::Function *newFn) { 3665 // Fast path. 3666 if (old->use_empty()) return; 3667 3668 llvm::Type *newRetTy = newFn->getReturnType(); 3669 SmallVector<llvm::Value*, 4> newArgs; 3670 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3671 3672 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3673 ui != ue; ) { 3674 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3675 llvm::User *user = use->getUser(); 3676 3677 // Recognize and replace uses of bitcasts. Most calls to 3678 // unprototyped functions will use bitcasts. 3679 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3680 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3681 replaceUsesOfNonProtoConstant(bitcast, newFn); 3682 continue; 3683 } 3684 3685 // Recognize calls to the function. 3686 llvm::CallSite callSite(user); 3687 if (!callSite) continue; 3688 if (!callSite.isCallee(&*use)) continue; 3689 3690 // If the return types don't match exactly, then we can't 3691 // transform this call unless it's dead. 3692 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3693 continue; 3694 3695 // Get the call site's attribute list. 3696 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3697 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3698 3699 // If the function was passed too few arguments, don't transform. 3700 unsigned newNumArgs = newFn->arg_size(); 3701 if (callSite.arg_size() < newNumArgs) continue; 3702 3703 // If extra arguments were passed, we silently drop them. 3704 // If any of the types mismatch, we don't transform. 3705 unsigned argNo = 0; 3706 bool dontTransform = false; 3707 for (llvm::Argument &A : newFn->args()) { 3708 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3709 dontTransform = true; 3710 break; 3711 } 3712 3713 // Add any parameter attributes. 3714 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3715 argNo++; 3716 } 3717 if (dontTransform) 3718 continue; 3719 3720 // Okay, we can transform this. Create the new call instruction and copy 3721 // over the required information. 3722 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3723 3724 // Copy over any operand bundles. 3725 callSite.getOperandBundlesAsDefs(newBundles); 3726 3727 llvm::CallSite newCall; 3728 if (callSite.isCall()) { 3729 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3730 callSite.getInstruction()); 3731 } else { 3732 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3733 newCall = llvm::InvokeInst::Create(newFn, 3734 oldInvoke->getNormalDest(), 3735 oldInvoke->getUnwindDest(), 3736 newArgs, newBundles, "", 3737 callSite.getInstruction()); 3738 } 3739 newArgs.clear(); // for the next iteration 3740 3741 if (!newCall->getType()->isVoidTy()) 3742 newCall->takeName(callSite.getInstruction()); 3743 newCall.setAttributes(llvm::AttributeList::get( 3744 newFn->getContext(), oldAttrs.getFnAttributes(), 3745 oldAttrs.getRetAttributes(), newArgAttrs)); 3746 newCall.setCallingConv(callSite.getCallingConv()); 3747 3748 // Finally, remove the old call, replacing any uses with the new one. 3749 if (!callSite->use_empty()) 3750 callSite->replaceAllUsesWith(newCall.getInstruction()); 3751 3752 // Copy debug location attached to CI. 3753 if (callSite->getDebugLoc()) 3754 newCall->setDebugLoc(callSite->getDebugLoc()); 3755 3756 callSite->eraseFromParent(); 3757 } 3758 } 3759 3760 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3761 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3762 /// existing call uses of the old function in the module, this adjusts them to 3763 /// call the new function directly. 3764 /// 3765 /// This is not just a cleanup: the always_inline pass requires direct calls to 3766 /// functions to be able to inline them. If there is a bitcast in the way, it 3767 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3768 /// run at -O0. 3769 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3770 llvm::Function *NewFn) { 3771 // If we're redefining a global as a function, don't transform it. 3772 if (!isa<llvm::Function>(Old)) return; 3773 3774 replaceUsesOfNonProtoConstant(Old, NewFn); 3775 } 3776 3777 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3778 auto DK = VD->isThisDeclarationADefinition(); 3779 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3780 return; 3781 3782 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3783 // If we have a definition, this might be a deferred decl. If the 3784 // instantiation is explicit, make sure we emit it at the end. 3785 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3786 GetAddrOfGlobalVar(VD); 3787 3788 EmitTopLevelDecl(VD); 3789 } 3790 3791 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3792 llvm::GlobalValue *GV) { 3793 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3794 3795 // Compute the function info and LLVM type. 3796 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3797 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3798 3799 // Get or create the prototype for the function. 3800 if (!GV || (GV->getType()->getElementType() != Ty)) 3801 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3802 /*DontDefer=*/true, 3803 ForDefinition)); 3804 3805 // Already emitted. 3806 if (!GV->isDeclaration()) 3807 return; 3808 3809 // We need to set linkage and visibility on the function before 3810 // generating code for it because various parts of IR generation 3811 // want to propagate this information down (e.g. to local static 3812 // declarations). 3813 auto *Fn = cast<llvm::Function>(GV); 3814 setFunctionLinkage(GD, Fn); 3815 3816 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3817 setGVProperties(Fn, GD); 3818 3819 MaybeHandleStaticInExternC(D, Fn); 3820 3821 3822 maybeSetTrivialComdat(*D, *Fn); 3823 3824 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3825 3826 setNonAliasAttributes(GD, Fn); 3827 SetLLVMFunctionAttributesForDefinition(D, Fn); 3828 3829 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3830 AddGlobalCtor(Fn, CA->getPriority()); 3831 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3832 AddGlobalDtor(Fn, DA->getPriority()); 3833 if (D->hasAttr<AnnotateAttr>()) 3834 AddGlobalAnnotations(D, Fn); 3835 3836 if (D->isCPUSpecificMultiVersion()) { 3837 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3838 // If there is another specific version we need to emit, do so here. 3839 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3840 ++Spec->ActiveArgIndex; 3841 EmitGlobalFunctionDefinition(GD, nullptr); 3842 } 3843 } 3844 } 3845 3846 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3847 const auto *D = cast<ValueDecl>(GD.getDecl()); 3848 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3849 assert(AA && "Not an alias?"); 3850 3851 StringRef MangledName = getMangledName(GD); 3852 3853 if (AA->getAliasee() == MangledName) { 3854 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3855 return; 3856 } 3857 3858 // If there is a definition in the module, then it wins over the alias. 3859 // This is dubious, but allow it to be safe. Just ignore the alias. 3860 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3861 if (Entry && !Entry->isDeclaration()) 3862 return; 3863 3864 Aliases.push_back(GD); 3865 3866 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3867 3868 // Create a reference to the named value. This ensures that it is emitted 3869 // if a deferred decl. 3870 llvm::Constant *Aliasee; 3871 if (isa<llvm::FunctionType>(DeclTy)) 3872 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3873 /*ForVTable=*/false); 3874 else 3875 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3876 llvm::PointerType::getUnqual(DeclTy), 3877 /*D=*/nullptr); 3878 3879 // Create the new alias itself, but don't set a name yet. 3880 auto *GA = llvm::GlobalAlias::create( 3881 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3882 3883 if (Entry) { 3884 if (GA->getAliasee() == Entry) { 3885 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3886 return; 3887 } 3888 3889 assert(Entry->isDeclaration()); 3890 3891 // If there is a declaration in the module, then we had an extern followed 3892 // by the alias, as in: 3893 // extern int test6(); 3894 // ... 3895 // int test6() __attribute__((alias("test7"))); 3896 // 3897 // Remove it and replace uses of it with the alias. 3898 GA->takeName(Entry); 3899 3900 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3901 Entry->getType())); 3902 Entry->eraseFromParent(); 3903 } else { 3904 GA->setName(MangledName); 3905 } 3906 3907 // Set attributes which are particular to an alias; this is a 3908 // specialization of the attributes which may be set on a global 3909 // variable/function. 3910 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3911 D->isWeakImported()) { 3912 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3913 } 3914 3915 if (const auto *VD = dyn_cast<VarDecl>(D)) 3916 if (VD->getTLSKind()) 3917 setTLSMode(GA, *VD); 3918 3919 SetCommonAttributes(GD, GA); 3920 } 3921 3922 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3923 const auto *D = cast<ValueDecl>(GD.getDecl()); 3924 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3925 assert(IFA && "Not an ifunc?"); 3926 3927 StringRef MangledName = getMangledName(GD); 3928 3929 if (IFA->getResolver() == MangledName) { 3930 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3931 return; 3932 } 3933 3934 // Report an error if some definition overrides ifunc. 3935 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3936 if (Entry && !Entry->isDeclaration()) { 3937 GlobalDecl OtherGD; 3938 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3939 DiagnosedConflictingDefinitions.insert(GD).second) { 3940 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 3941 << MangledName; 3942 Diags.Report(OtherGD.getDecl()->getLocation(), 3943 diag::note_previous_definition); 3944 } 3945 return; 3946 } 3947 3948 Aliases.push_back(GD); 3949 3950 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3951 llvm::Constant *Resolver = 3952 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3953 /*ForVTable=*/false); 3954 llvm::GlobalIFunc *GIF = 3955 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3956 "", Resolver, &getModule()); 3957 if (Entry) { 3958 if (GIF->getResolver() == Entry) { 3959 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3960 return; 3961 } 3962 assert(Entry->isDeclaration()); 3963 3964 // If there is a declaration in the module, then we had an extern followed 3965 // by the ifunc, as in: 3966 // extern int test(); 3967 // ... 3968 // int test() __attribute__((ifunc("resolver"))); 3969 // 3970 // Remove it and replace uses of it with the ifunc. 3971 GIF->takeName(Entry); 3972 3973 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3974 Entry->getType())); 3975 Entry->eraseFromParent(); 3976 } else 3977 GIF->setName(MangledName); 3978 3979 SetCommonAttributes(GD, GIF); 3980 } 3981 3982 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3983 ArrayRef<llvm::Type*> Tys) { 3984 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3985 Tys); 3986 } 3987 3988 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3989 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3990 const StringLiteral *Literal, bool TargetIsLSB, 3991 bool &IsUTF16, unsigned &StringLength) { 3992 StringRef String = Literal->getString(); 3993 unsigned NumBytes = String.size(); 3994 3995 // Check for simple case. 3996 if (!Literal->containsNonAsciiOrNull()) { 3997 StringLength = NumBytes; 3998 return *Map.insert(std::make_pair(String, nullptr)).first; 3999 } 4000 4001 // Otherwise, convert the UTF8 literals into a string of shorts. 4002 IsUTF16 = true; 4003 4004 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4005 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4006 llvm::UTF16 *ToPtr = &ToBuf[0]; 4007 4008 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4009 ToPtr + NumBytes, llvm::strictConversion); 4010 4011 // ConvertUTF8toUTF16 returns the length in ToPtr. 4012 StringLength = ToPtr - &ToBuf[0]; 4013 4014 // Add an explicit null. 4015 *ToPtr = 0; 4016 return *Map.insert(std::make_pair( 4017 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4018 (StringLength + 1) * 2), 4019 nullptr)).first; 4020 } 4021 4022 ConstantAddress 4023 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4024 unsigned StringLength = 0; 4025 bool isUTF16 = false; 4026 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4027 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4028 getDataLayout().isLittleEndian(), isUTF16, 4029 StringLength); 4030 4031 if (auto *C = Entry.second) 4032 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4033 4034 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4035 llvm::Constant *Zeros[] = { Zero, Zero }; 4036 4037 // If we don't already have it, get __CFConstantStringClassReference. 4038 if (!CFConstantStringClassRef) { 4039 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4040 Ty = llvm::ArrayType::get(Ty, 0); 4041 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 4042 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 4043 4044 if (getTriple().isOSBinFormatCOFF()) { 4045 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 4046 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 4047 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4048 4049 const VarDecl *VD = nullptr; 4050 for (const auto &Result : DC->lookup(&II)) 4051 if ((VD = dyn_cast<VarDecl>(Result))) 4052 break; 4053 4054 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 4055 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4056 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4057 } else { 4058 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4059 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4060 } 4061 } 4062 setDSOLocal(GV); 4063 4064 // Decay array -> ptr 4065 CFConstantStringClassRef = 4066 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 4067 } 4068 4069 QualType CFTy = getContext().getCFConstantStringType(); 4070 4071 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4072 4073 ConstantInitBuilder Builder(*this); 4074 auto Fields = Builder.beginStruct(STy); 4075 4076 // Class pointer. 4077 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4078 4079 // Flags. 4080 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4081 4082 // String pointer. 4083 llvm::Constant *C = nullptr; 4084 if (isUTF16) { 4085 auto Arr = llvm::makeArrayRef( 4086 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4087 Entry.first().size() / 2); 4088 C = llvm::ConstantDataArray::get(VMContext, Arr); 4089 } else { 4090 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4091 } 4092 4093 // Note: -fwritable-strings doesn't make the backing store strings of 4094 // CFStrings writable. (See <rdar://problem/10657500>) 4095 auto *GV = 4096 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4097 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4098 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4099 // Don't enforce the target's minimum global alignment, since the only use 4100 // of the string is via this class initializer. 4101 CharUnits Align = isUTF16 4102 ? getContext().getTypeAlignInChars(getContext().ShortTy) 4103 : getContext().getTypeAlignInChars(getContext().CharTy); 4104 GV->setAlignment(Align.getQuantity()); 4105 4106 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4107 // Without it LLVM can merge the string with a non unnamed_addr one during 4108 // LTO. Doing that changes the section it ends in, which surprises ld64. 4109 if (getTriple().isOSBinFormatMachO()) 4110 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4111 : "__TEXT,__cstring,cstring_literals"); 4112 4113 // String. 4114 llvm::Constant *Str = 4115 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4116 4117 if (isUTF16) 4118 // Cast the UTF16 string to the correct type. 4119 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4120 Fields.add(Str); 4121 4122 // String length. 4123 auto Ty = getTypes().ConvertType(getContext().LongTy); 4124 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 4125 4126 CharUnits Alignment = getPointerAlign(); 4127 4128 // The struct. 4129 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4130 /*isConstant=*/false, 4131 llvm::GlobalVariable::PrivateLinkage); 4132 switch (getTriple().getObjectFormat()) { 4133 case llvm::Triple::UnknownObjectFormat: 4134 llvm_unreachable("unknown file format"); 4135 case llvm::Triple::COFF: 4136 case llvm::Triple::ELF: 4137 case llvm::Triple::Wasm: 4138 GV->setSection("cfstring"); 4139 break; 4140 case llvm::Triple::MachO: 4141 GV->setSection("__DATA,__cfstring"); 4142 break; 4143 } 4144 Entry.second = GV; 4145 4146 return ConstantAddress(GV, Alignment); 4147 } 4148 4149 bool CodeGenModule::getExpressionLocationsEnabled() const { 4150 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4151 } 4152 4153 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4154 if (ObjCFastEnumerationStateType.isNull()) { 4155 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4156 D->startDefinition(); 4157 4158 QualType FieldTypes[] = { 4159 Context.UnsignedLongTy, 4160 Context.getPointerType(Context.getObjCIdType()), 4161 Context.getPointerType(Context.UnsignedLongTy), 4162 Context.getConstantArrayType(Context.UnsignedLongTy, 4163 llvm::APInt(32, 5), ArrayType::Normal, 0) 4164 }; 4165 4166 for (size_t i = 0; i < 4; ++i) { 4167 FieldDecl *Field = FieldDecl::Create(Context, 4168 D, 4169 SourceLocation(), 4170 SourceLocation(), nullptr, 4171 FieldTypes[i], /*TInfo=*/nullptr, 4172 /*BitWidth=*/nullptr, 4173 /*Mutable=*/false, 4174 ICIS_NoInit); 4175 Field->setAccess(AS_public); 4176 D->addDecl(Field); 4177 } 4178 4179 D->completeDefinition(); 4180 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4181 } 4182 4183 return ObjCFastEnumerationStateType; 4184 } 4185 4186 llvm::Constant * 4187 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4188 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4189 4190 // Don't emit it as the address of the string, emit the string data itself 4191 // as an inline array. 4192 if (E->getCharByteWidth() == 1) { 4193 SmallString<64> Str(E->getString()); 4194 4195 // Resize the string to the right size, which is indicated by its type. 4196 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4197 Str.resize(CAT->getSize().getZExtValue()); 4198 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4199 } 4200 4201 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4202 llvm::Type *ElemTy = AType->getElementType(); 4203 unsigned NumElements = AType->getNumElements(); 4204 4205 // Wide strings have either 2-byte or 4-byte elements. 4206 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4207 SmallVector<uint16_t, 32> Elements; 4208 Elements.reserve(NumElements); 4209 4210 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4211 Elements.push_back(E->getCodeUnit(i)); 4212 Elements.resize(NumElements); 4213 return llvm::ConstantDataArray::get(VMContext, Elements); 4214 } 4215 4216 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4217 SmallVector<uint32_t, 32> Elements; 4218 Elements.reserve(NumElements); 4219 4220 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4221 Elements.push_back(E->getCodeUnit(i)); 4222 Elements.resize(NumElements); 4223 return llvm::ConstantDataArray::get(VMContext, Elements); 4224 } 4225 4226 static llvm::GlobalVariable * 4227 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4228 CodeGenModule &CGM, StringRef GlobalName, 4229 CharUnits Alignment) { 4230 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4231 CGM.getStringLiteralAddressSpace()); 4232 4233 llvm::Module &M = CGM.getModule(); 4234 // Create a global variable for this string 4235 auto *GV = new llvm::GlobalVariable( 4236 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4237 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4238 GV->setAlignment(Alignment.getQuantity()); 4239 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4240 if (GV->isWeakForLinker()) { 4241 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4242 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4243 } 4244 CGM.setDSOLocal(GV); 4245 4246 return GV; 4247 } 4248 4249 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4250 /// constant array for the given string literal. 4251 ConstantAddress 4252 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4253 StringRef Name) { 4254 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4255 4256 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4257 llvm::GlobalVariable **Entry = nullptr; 4258 if (!LangOpts.WritableStrings) { 4259 Entry = &ConstantStringMap[C]; 4260 if (auto GV = *Entry) { 4261 if (Alignment.getQuantity() > GV->getAlignment()) 4262 GV->setAlignment(Alignment.getQuantity()); 4263 return ConstantAddress(GV, Alignment); 4264 } 4265 } 4266 4267 SmallString<256> MangledNameBuffer; 4268 StringRef GlobalVariableName; 4269 llvm::GlobalValue::LinkageTypes LT; 4270 4271 // Mangle the string literal if the ABI allows for it. However, we cannot 4272 // do this if we are compiling with ASan or -fwritable-strings because they 4273 // rely on strings having normal linkage. 4274 if (!LangOpts.WritableStrings && 4275 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4276 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4277 llvm::raw_svector_ostream Out(MangledNameBuffer); 4278 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4279 4280 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4281 GlobalVariableName = MangledNameBuffer; 4282 } else { 4283 LT = llvm::GlobalValue::PrivateLinkage; 4284 GlobalVariableName = Name; 4285 } 4286 4287 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4288 if (Entry) 4289 *Entry = GV; 4290 4291 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4292 QualType()); 4293 4294 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4295 Alignment); 4296 } 4297 4298 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4299 /// array for the given ObjCEncodeExpr node. 4300 ConstantAddress 4301 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4302 std::string Str; 4303 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4304 4305 return GetAddrOfConstantCString(Str); 4306 } 4307 4308 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4309 /// the literal and a terminating '\0' character. 4310 /// The result has pointer to array type. 4311 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4312 const std::string &Str, const char *GlobalName) { 4313 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4314 CharUnits Alignment = 4315 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4316 4317 llvm::Constant *C = 4318 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4319 4320 // Don't share any string literals if strings aren't constant. 4321 llvm::GlobalVariable **Entry = nullptr; 4322 if (!LangOpts.WritableStrings) { 4323 Entry = &ConstantStringMap[C]; 4324 if (auto GV = *Entry) { 4325 if (Alignment.getQuantity() > GV->getAlignment()) 4326 GV->setAlignment(Alignment.getQuantity()); 4327 return ConstantAddress(GV, Alignment); 4328 } 4329 } 4330 4331 // Get the default prefix if a name wasn't specified. 4332 if (!GlobalName) 4333 GlobalName = ".str"; 4334 // Create a global variable for this. 4335 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4336 GlobalName, Alignment); 4337 if (Entry) 4338 *Entry = GV; 4339 4340 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4341 Alignment); 4342 } 4343 4344 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4345 const MaterializeTemporaryExpr *E, const Expr *Init) { 4346 assert((E->getStorageDuration() == SD_Static || 4347 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4348 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4349 4350 // If we're not materializing a subobject of the temporary, keep the 4351 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4352 QualType MaterializedType = Init->getType(); 4353 if (Init == E->GetTemporaryExpr()) 4354 MaterializedType = E->getType(); 4355 4356 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4357 4358 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4359 return ConstantAddress(Slot, Align); 4360 4361 // FIXME: If an externally-visible declaration extends multiple temporaries, 4362 // we need to give each temporary the same name in every translation unit (and 4363 // we also need to make the temporaries externally-visible). 4364 SmallString<256> Name; 4365 llvm::raw_svector_ostream Out(Name); 4366 getCXXABI().getMangleContext().mangleReferenceTemporary( 4367 VD, E->getManglingNumber(), Out); 4368 4369 APValue *Value = nullptr; 4370 if (E->getStorageDuration() == SD_Static) { 4371 // We might have a cached constant initializer for this temporary. Note 4372 // that this might have a different value from the value computed by 4373 // evaluating the initializer if the surrounding constant expression 4374 // modifies the temporary. 4375 Value = getContext().getMaterializedTemporaryValue(E, false); 4376 if (Value && Value->isUninit()) 4377 Value = nullptr; 4378 } 4379 4380 // Try evaluating it now, it might have a constant initializer. 4381 Expr::EvalResult EvalResult; 4382 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4383 !EvalResult.hasSideEffects()) 4384 Value = &EvalResult.Val; 4385 4386 LangAS AddrSpace = 4387 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4388 4389 Optional<ConstantEmitter> emitter; 4390 llvm::Constant *InitialValue = nullptr; 4391 bool Constant = false; 4392 llvm::Type *Type; 4393 if (Value) { 4394 // The temporary has a constant initializer, use it. 4395 emitter.emplace(*this); 4396 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4397 MaterializedType); 4398 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4399 Type = InitialValue->getType(); 4400 } else { 4401 // No initializer, the initialization will be provided when we 4402 // initialize the declaration which performed lifetime extension. 4403 Type = getTypes().ConvertTypeForMem(MaterializedType); 4404 } 4405 4406 // Create a global variable for this lifetime-extended temporary. 4407 llvm::GlobalValue::LinkageTypes Linkage = 4408 getLLVMLinkageVarDefinition(VD, Constant); 4409 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4410 const VarDecl *InitVD; 4411 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4412 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4413 // Temporaries defined inside a class get linkonce_odr linkage because the 4414 // class can be defined in multiple translation units. 4415 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4416 } else { 4417 // There is no need for this temporary to have external linkage if the 4418 // VarDecl has external linkage. 4419 Linkage = llvm::GlobalVariable::InternalLinkage; 4420 } 4421 } 4422 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4423 auto *GV = new llvm::GlobalVariable( 4424 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4425 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4426 if (emitter) emitter->finalize(GV); 4427 setGVProperties(GV, VD); 4428 GV->setAlignment(Align.getQuantity()); 4429 if (supportsCOMDAT() && GV->isWeakForLinker()) 4430 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4431 if (VD->getTLSKind()) 4432 setTLSMode(GV, *VD); 4433 llvm::Constant *CV = GV; 4434 if (AddrSpace != LangAS::Default) 4435 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4436 *this, GV, AddrSpace, LangAS::Default, 4437 Type->getPointerTo( 4438 getContext().getTargetAddressSpace(LangAS::Default))); 4439 MaterializedGlobalTemporaryMap[E] = CV; 4440 return ConstantAddress(CV, Align); 4441 } 4442 4443 /// EmitObjCPropertyImplementations - Emit information for synthesized 4444 /// properties for an implementation. 4445 void CodeGenModule::EmitObjCPropertyImplementations(const 4446 ObjCImplementationDecl *D) { 4447 for (const auto *PID : D->property_impls()) { 4448 // Dynamic is just for type-checking. 4449 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4450 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4451 4452 // Determine which methods need to be implemented, some may have 4453 // been overridden. Note that ::isPropertyAccessor is not the method 4454 // we want, that just indicates if the decl came from a 4455 // property. What we want to know is if the method is defined in 4456 // this implementation. 4457 if (!D->getInstanceMethod(PD->getGetterName())) 4458 CodeGenFunction(*this).GenerateObjCGetter( 4459 const_cast<ObjCImplementationDecl *>(D), PID); 4460 if (!PD->isReadOnly() && 4461 !D->getInstanceMethod(PD->getSetterName())) 4462 CodeGenFunction(*this).GenerateObjCSetter( 4463 const_cast<ObjCImplementationDecl *>(D), PID); 4464 } 4465 } 4466 } 4467 4468 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4469 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4470 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4471 ivar; ivar = ivar->getNextIvar()) 4472 if (ivar->getType().isDestructedType()) 4473 return true; 4474 4475 return false; 4476 } 4477 4478 static bool AllTrivialInitializers(CodeGenModule &CGM, 4479 ObjCImplementationDecl *D) { 4480 CodeGenFunction CGF(CGM); 4481 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4482 E = D->init_end(); B != E; ++B) { 4483 CXXCtorInitializer *CtorInitExp = *B; 4484 Expr *Init = CtorInitExp->getInit(); 4485 if (!CGF.isTrivialInitializer(Init)) 4486 return false; 4487 } 4488 return true; 4489 } 4490 4491 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4492 /// for an implementation. 4493 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4494 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4495 if (needsDestructMethod(D)) { 4496 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4497 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4498 ObjCMethodDecl *DTORMethod = 4499 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4500 cxxSelector, getContext().VoidTy, nullptr, D, 4501 /*isInstance=*/true, /*isVariadic=*/false, 4502 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4503 /*isDefined=*/false, ObjCMethodDecl::Required); 4504 D->addInstanceMethod(DTORMethod); 4505 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4506 D->setHasDestructors(true); 4507 } 4508 4509 // If the implementation doesn't have any ivar initializers, we don't need 4510 // a .cxx_construct. 4511 if (D->getNumIvarInitializers() == 0 || 4512 AllTrivialInitializers(*this, D)) 4513 return; 4514 4515 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4516 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4517 // The constructor returns 'self'. 4518 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4519 D->getLocation(), 4520 D->getLocation(), 4521 cxxSelector, 4522 getContext().getObjCIdType(), 4523 nullptr, D, /*isInstance=*/true, 4524 /*isVariadic=*/false, 4525 /*isPropertyAccessor=*/true, 4526 /*isImplicitlyDeclared=*/true, 4527 /*isDefined=*/false, 4528 ObjCMethodDecl::Required); 4529 D->addInstanceMethod(CTORMethod); 4530 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4531 D->setHasNonZeroConstructors(true); 4532 } 4533 4534 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4535 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4536 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4537 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4538 ErrorUnsupported(LSD, "linkage spec"); 4539 return; 4540 } 4541 4542 EmitDeclContext(LSD); 4543 } 4544 4545 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4546 for (auto *I : DC->decls()) { 4547 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4548 // are themselves considered "top-level", so EmitTopLevelDecl on an 4549 // ObjCImplDecl does not recursively visit them. We need to do that in 4550 // case they're nested inside another construct (LinkageSpecDecl / 4551 // ExportDecl) that does stop them from being considered "top-level". 4552 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4553 for (auto *M : OID->methods()) 4554 EmitTopLevelDecl(M); 4555 } 4556 4557 EmitTopLevelDecl(I); 4558 } 4559 } 4560 4561 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4562 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4563 // Ignore dependent declarations. 4564 if (D->isTemplated()) 4565 return; 4566 4567 switch (D->getKind()) { 4568 case Decl::CXXConversion: 4569 case Decl::CXXMethod: 4570 case Decl::Function: 4571 EmitGlobal(cast<FunctionDecl>(D)); 4572 // Always provide some coverage mapping 4573 // even for the functions that aren't emitted. 4574 AddDeferredUnusedCoverageMapping(D); 4575 break; 4576 4577 case Decl::CXXDeductionGuide: 4578 // Function-like, but does not result in code emission. 4579 break; 4580 4581 case Decl::Var: 4582 case Decl::Decomposition: 4583 case Decl::VarTemplateSpecialization: 4584 EmitGlobal(cast<VarDecl>(D)); 4585 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4586 for (auto *B : DD->bindings()) 4587 if (auto *HD = B->getHoldingVar()) 4588 EmitGlobal(HD); 4589 break; 4590 4591 // Indirect fields from global anonymous structs and unions can be 4592 // ignored; only the actual variable requires IR gen support. 4593 case Decl::IndirectField: 4594 break; 4595 4596 // C++ Decls 4597 case Decl::Namespace: 4598 EmitDeclContext(cast<NamespaceDecl>(D)); 4599 break; 4600 case Decl::ClassTemplateSpecialization: { 4601 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4602 if (DebugInfo && 4603 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4604 Spec->hasDefinition()) 4605 DebugInfo->completeTemplateDefinition(*Spec); 4606 } LLVM_FALLTHROUGH; 4607 case Decl::CXXRecord: 4608 if (DebugInfo) { 4609 if (auto *ES = D->getASTContext().getExternalSource()) 4610 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4611 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4612 } 4613 // Emit any static data members, they may be definitions. 4614 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4615 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4616 EmitTopLevelDecl(I); 4617 break; 4618 // No code generation needed. 4619 case Decl::UsingShadow: 4620 case Decl::ClassTemplate: 4621 case Decl::VarTemplate: 4622 case Decl::VarTemplatePartialSpecialization: 4623 case Decl::FunctionTemplate: 4624 case Decl::TypeAliasTemplate: 4625 case Decl::Block: 4626 case Decl::Empty: 4627 break; 4628 case Decl::Using: // using X; [C++] 4629 if (CGDebugInfo *DI = getModuleDebugInfo()) 4630 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4631 return; 4632 case Decl::NamespaceAlias: 4633 if (CGDebugInfo *DI = getModuleDebugInfo()) 4634 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4635 return; 4636 case Decl::UsingDirective: // using namespace X; [C++] 4637 if (CGDebugInfo *DI = getModuleDebugInfo()) 4638 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4639 return; 4640 case Decl::CXXConstructor: 4641 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4642 break; 4643 case Decl::CXXDestructor: 4644 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4645 break; 4646 4647 case Decl::StaticAssert: 4648 // Nothing to do. 4649 break; 4650 4651 // Objective-C Decls 4652 4653 // Forward declarations, no (immediate) code generation. 4654 case Decl::ObjCInterface: 4655 case Decl::ObjCCategory: 4656 break; 4657 4658 case Decl::ObjCProtocol: { 4659 auto *Proto = cast<ObjCProtocolDecl>(D); 4660 if (Proto->isThisDeclarationADefinition()) 4661 ObjCRuntime->GenerateProtocol(Proto); 4662 break; 4663 } 4664 4665 case Decl::ObjCCategoryImpl: 4666 // Categories have properties but don't support synthesize so we 4667 // can ignore them here. 4668 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4669 break; 4670 4671 case Decl::ObjCImplementation: { 4672 auto *OMD = cast<ObjCImplementationDecl>(D); 4673 EmitObjCPropertyImplementations(OMD); 4674 EmitObjCIvarInitializations(OMD); 4675 ObjCRuntime->GenerateClass(OMD); 4676 // Emit global variable debug information. 4677 if (CGDebugInfo *DI = getModuleDebugInfo()) 4678 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4679 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4680 OMD->getClassInterface()), OMD->getLocation()); 4681 break; 4682 } 4683 case Decl::ObjCMethod: { 4684 auto *OMD = cast<ObjCMethodDecl>(D); 4685 // If this is not a prototype, emit the body. 4686 if (OMD->getBody()) 4687 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4688 break; 4689 } 4690 case Decl::ObjCCompatibleAlias: 4691 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4692 break; 4693 4694 case Decl::PragmaComment: { 4695 const auto *PCD = cast<PragmaCommentDecl>(D); 4696 switch (PCD->getCommentKind()) { 4697 case PCK_Unknown: 4698 llvm_unreachable("unexpected pragma comment kind"); 4699 case PCK_Linker: 4700 AppendLinkerOptions(PCD->getArg()); 4701 break; 4702 case PCK_Lib: 4703 if (getTarget().getTriple().isOSBinFormatELF() && 4704 !getTarget().getTriple().isPS4()) 4705 AddELFLibDirective(PCD->getArg()); 4706 else 4707 AddDependentLib(PCD->getArg()); 4708 break; 4709 case PCK_Compiler: 4710 case PCK_ExeStr: 4711 case PCK_User: 4712 break; // We ignore all of these. 4713 } 4714 break; 4715 } 4716 4717 case Decl::PragmaDetectMismatch: { 4718 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4719 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4720 break; 4721 } 4722 4723 case Decl::LinkageSpec: 4724 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4725 break; 4726 4727 case Decl::FileScopeAsm: { 4728 // File-scope asm is ignored during device-side CUDA compilation. 4729 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4730 break; 4731 // File-scope asm is ignored during device-side OpenMP compilation. 4732 if (LangOpts.OpenMPIsDevice) 4733 break; 4734 auto *AD = cast<FileScopeAsmDecl>(D); 4735 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4736 break; 4737 } 4738 4739 case Decl::Import: { 4740 auto *Import = cast<ImportDecl>(D); 4741 4742 // If we've already imported this module, we're done. 4743 if (!ImportedModules.insert(Import->getImportedModule())) 4744 break; 4745 4746 // Emit debug information for direct imports. 4747 if (!Import->getImportedOwningModule()) { 4748 if (CGDebugInfo *DI = getModuleDebugInfo()) 4749 DI->EmitImportDecl(*Import); 4750 } 4751 4752 // Find all of the submodules and emit the module initializers. 4753 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4754 SmallVector<clang::Module *, 16> Stack; 4755 Visited.insert(Import->getImportedModule()); 4756 Stack.push_back(Import->getImportedModule()); 4757 4758 while (!Stack.empty()) { 4759 clang::Module *Mod = Stack.pop_back_val(); 4760 if (!EmittedModuleInitializers.insert(Mod).second) 4761 continue; 4762 4763 for (auto *D : Context.getModuleInitializers(Mod)) 4764 EmitTopLevelDecl(D); 4765 4766 // Visit the submodules of this module. 4767 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4768 SubEnd = Mod->submodule_end(); 4769 Sub != SubEnd; ++Sub) { 4770 // Skip explicit children; they need to be explicitly imported to emit 4771 // the initializers. 4772 if ((*Sub)->IsExplicit) 4773 continue; 4774 4775 if (Visited.insert(*Sub).second) 4776 Stack.push_back(*Sub); 4777 } 4778 } 4779 break; 4780 } 4781 4782 case Decl::Export: 4783 EmitDeclContext(cast<ExportDecl>(D)); 4784 break; 4785 4786 case Decl::OMPThreadPrivate: 4787 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4788 break; 4789 4790 case Decl::OMPDeclareReduction: 4791 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4792 break; 4793 4794 default: 4795 // Make sure we handled everything we should, every other kind is a 4796 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4797 // function. Need to recode Decl::Kind to do that easily. 4798 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4799 break; 4800 } 4801 } 4802 4803 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4804 // Do we need to generate coverage mapping? 4805 if (!CodeGenOpts.CoverageMapping) 4806 return; 4807 switch (D->getKind()) { 4808 case Decl::CXXConversion: 4809 case Decl::CXXMethod: 4810 case Decl::Function: 4811 case Decl::ObjCMethod: 4812 case Decl::CXXConstructor: 4813 case Decl::CXXDestructor: { 4814 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4815 return; 4816 SourceManager &SM = getContext().getSourceManager(); 4817 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 4818 return; 4819 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4820 if (I == DeferredEmptyCoverageMappingDecls.end()) 4821 DeferredEmptyCoverageMappingDecls[D] = true; 4822 break; 4823 } 4824 default: 4825 break; 4826 }; 4827 } 4828 4829 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4830 // Do we need to generate coverage mapping? 4831 if (!CodeGenOpts.CoverageMapping) 4832 return; 4833 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4834 if (Fn->isTemplateInstantiation()) 4835 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4836 } 4837 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4838 if (I == DeferredEmptyCoverageMappingDecls.end()) 4839 DeferredEmptyCoverageMappingDecls[D] = false; 4840 else 4841 I->second = false; 4842 } 4843 4844 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4845 // We call takeVector() here to avoid use-after-free. 4846 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4847 // we deserialize function bodies to emit coverage info for them, and that 4848 // deserializes more declarations. How should we handle that case? 4849 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4850 if (!Entry.second) 4851 continue; 4852 const Decl *D = Entry.first; 4853 switch (D->getKind()) { 4854 case Decl::CXXConversion: 4855 case Decl::CXXMethod: 4856 case Decl::Function: 4857 case Decl::ObjCMethod: { 4858 CodeGenPGO PGO(*this); 4859 GlobalDecl GD(cast<FunctionDecl>(D)); 4860 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4861 getFunctionLinkage(GD)); 4862 break; 4863 } 4864 case Decl::CXXConstructor: { 4865 CodeGenPGO PGO(*this); 4866 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4867 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4868 getFunctionLinkage(GD)); 4869 break; 4870 } 4871 case Decl::CXXDestructor: { 4872 CodeGenPGO PGO(*this); 4873 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4874 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4875 getFunctionLinkage(GD)); 4876 break; 4877 } 4878 default: 4879 break; 4880 }; 4881 } 4882 } 4883 4884 /// Turns the given pointer into a constant. 4885 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4886 const void *Ptr) { 4887 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4888 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4889 return llvm::ConstantInt::get(i64, PtrInt); 4890 } 4891 4892 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4893 llvm::NamedMDNode *&GlobalMetadata, 4894 GlobalDecl D, 4895 llvm::GlobalValue *Addr) { 4896 if (!GlobalMetadata) 4897 GlobalMetadata = 4898 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4899 4900 // TODO: should we report variant information for ctors/dtors? 4901 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4902 llvm::ConstantAsMetadata::get(GetPointerConstant( 4903 CGM.getLLVMContext(), D.getDecl()))}; 4904 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4905 } 4906 4907 /// For each function which is declared within an extern "C" region and marked 4908 /// as 'used', but has internal linkage, create an alias from the unmangled 4909 /// name to the mangled name if possible. People expect to be able to refer 4910 /// to such functions with an unmangled name from inline assembly within the 4911 /// same translation unit. 4912 void CodeGenModule::EmitStaticExternCAliases() { 4913 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4914 return; 4915 for (auto &I : StaticExternCValues) { 4916 IdentifierInfo *Name = I.first; 4917 llvm::GlobalValue *Val = I.second; 4918 if (Val && !getModule().getNamedValue(Name->getName())) 4919 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4920 } 4921 } 4922 4923 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4924 GlobalDecl &Result) const { 4925 auto Res = Manglings.find(MangledName); 4926 if (Res == Manglings.end()) 4927 return false; 4928 Result = Res->getValue(); 4929 return true; 4930 } 4931 4932 /// Emits metadata nodes associating all the global values in the 4933 /// current module with the Decls they came from. This is useful for 4934 /// projects using IR gen as a subroutine. 4935 /// 4936 /// Since there's currently no way to associate an MDNode directly 4937 /// with an llvm::GlobalValue, we create a global named metadata 4938 /// with the name 'clang.global.decl.ptrs'. 4939 void CodeGenModule::EmitDeclMetadata() { 4940 llvm::NamedMDNode *GlobalMetadata = nullptr; 4941 4942 for (auto &I : MangledDeclNames) { 4943 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4944 // Some mangled names don't necessarily have an associated GlobalValue 4945 // in this module, e.g. if we mangled it for DebugInfo. 4946 if (Addr) 4947 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4948 } 4949 } 4950 4951 /// Emits metadata nodes for all the local variables in the current 4952 /// function. 4953 void CodeGenFunction::EmitDeclMetadata() { 4954 if (LocalDeclMap.empty()) return; 4955 4956 llvm::LLVMContext &Context = getLLVMContext(); 4957 4958 // Find the unique metadata ID for this name. 4959 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4960 4961 llvm::NamedMDNode *GlobalMetadata = nullptr; 4962 4963 for (auto &I : LocalDeclMap) { 4964 const Decl *D = I.first; 4965 llvm::Value *Addr = I.second.getPointer(); 4966 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4967 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4968 Alloca->setMetadata( 4969 DeclPtrKind, llvm::MDNode::get( 4970 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4971 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4972 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4973 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4974 } 4975 } 4976 } 4977 4978 void CodeGenModule::EmitVersionIdentMetadata() { 4979 llvm::NamedMDNode *IdentMetadata = 4980 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4981 std::string Version = getClangFullVersion(); 4982 llvm::LLVMContext &Ctx = TheModule.getContext(); 4983 4984 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4985 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4986 } 4987 4988 void CodeGenModule::EmitTargetMetadata() { 4989 // Warning, new MangledDeclNames may be appended within this loop. 4990 // We rely on MapVector insertions adding new elements to the end 4991 // of the container. 4992 // FIXME: Move this loop into the one target that needs it, and only 4993 // loop over those declarations for which we couldn't emit the target 4994 // metadata when we emitted the declaration. 4995 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4996 auto Val = *(MangledDeclNames.begin() + I); 4997 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4998 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4999 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5000 } 5001 } 5002 5003 void CodeGenModule::EmitCoverageFile() { 5004 if (getCodeGenOpts().CoverageDataFile.empty() && 5005 getCodeGenOpts().CoverageNotesFile.empty()) 5006 return; 5007 5008 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5009 if (!CUNode) 5010 return; 5011 5012 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5013 llvm::LLVMContext &Ctx = TheModule.getContext(); 5014 auto *CoverageDataFile = 5015 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5016 auto *CoverageNotesFile = 5017 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5018 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5019 llvm::MDNode *CU = CUNode->getOperand(i); 5020 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5021 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5022 } 5023 } 5024 5025 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5026 // Sema has checked that all uuid strings are of the form 5027 // "12345678-1234-1234-1234-1234567890ab". 5028 assert(Uuid.size() == 36); 5029 for (unsigned i = 0; i < 36; ++i) { 5030 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5031 else assert(isHexDigit(Uuid[i])); 5032 } 5033 5034 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5035 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5036 5037 llvm::Constant *Field3[8]; 5038 for (unsigned Idx = 0; Idx < 8; ++Idx) 5039 Field3[Idx] = llvm::ConstantInt::get( 5040 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5041 5042 llvm::Constant *Fields[4] = { 5043 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5044 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5045 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5046 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5047 }; 5048 5049 return llvm::ConstantStruct::getAnon(Fields); 5050 } 5051 5052 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5053 bool ForEH) { 5054 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5055 // FIXME: should we even be calling this method if RTTI is disabled 5056 // and it's not for EH? 5057 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5058 return llvm::Constant::getNullValue(Int8PtrTy); 5059 5060 if (ForEH && Ty->isObjCObjectPointerType() && 5061 LangOpts.ObjCRuntime.isGNUFamily()) 5062 return ObjCRuntime->GetEHType(Ty); 5063 5064 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5065 } 5066 5067 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5068 // Do not emit threadprivates in simd-only mode. 5069 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5070 return; 5071 for (auto RefExpr : D->varlists()) { 5072 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5073 bool PerformInit = 5074 VD->getAnyInitializer() && 5075 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5076 /*ForRef=*/false); 5077 5078 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5079 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5080 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5081 CXXGlobalInits.push_back(InitFunction); 5082 } 5083 } 5084 5085 llvm::Metadata * 5086 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5087 StringRef Suffix) { 5088 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5089 if (InternalId) 5090 return InternalId; 5091 5092 if (isExternallyVisible(T->getLinkage())) { 5093 std::string OutName; 5094 llvm::raw_string_ostream Out(OutName); 5095 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5096 Out << Suffix; 5097 5098 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5099 } else { 5100 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5101 llvm::ArrayRef<llvm::Metadata *>()); 5102 } 5103 5104 return InternalId; 5105 } 5106 5107 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5108 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5109 } 5110 5111 llvm::Metadata * 5112 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5113 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5114 } 5115 5116 // Generalize pointer types to a void pointer with the qualifiers of the 5117 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5118 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5119 // 'void *'. 5120 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5121 if (!Ty->isPointerType()) 5122 return Ty; 5123 5124 return Ctx.getPointerType( 5125 QualType(Ctx.VoidTy).withCVRQualifiers( 5126 Ty->getPointeeType().getCVRQualifiers())); 5127 } 5128 5129 // Apply type generalization to a FunctionType's return and argument types 5130 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5131 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5132 SmallVector<QualType, 8> GeneralizedParams; 5133 for (auto &Param : FnType->param_types()) 5134 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5135 5136 return Ctx.getFunctionType( 5137 GeneralizeType(Ctx, FnType->getReturnType()), 5138 GeneralizedParams, FnType->getExtProtoInfo()); 5139 } 5140 5141 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5142 return Ctx.getFunctionNoProtoType( 5143 GeneralizeType(Ctx, FnType->getReturnType())); 5144 5145 llvm_unreachable("Encountered unknown FunctionType"); 5146 } 5147 5148 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5149 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5150 GeneralizedMetadataIdMap, ".generalized"); 5151 } 5152 5153 /// Returns whether this module needs the "all-vtables" type identifier. 5154 bool CodeGenModule::NeedAllVtablesTypeId() const { 5155 // Returns true if at least one of vtable-based CFI checkers is enabled and 5156 // is not in the trapping mode. 5157 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5158 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5159 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5160 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5161 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5162 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5163 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5164 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5165 } 5166 5167 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5168 CharUnits Offset, 5169 const CXXRecordDecl *RD) { 5170 llvm::Metadata *MD = 5171 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5172 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5173 5174 if (CodeGenOpts.SanitizeCfiCrossDso) 5175 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5176 VTable->addTypeMetadata(Offset.getQuantity(), 5177 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5178 5179 if (NeedAllVtablesTypeId()) { 5180 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5181 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5182 } 5183 } 5184 5185 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5186 assert(TD != nullptr); 5187 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5188 5189 ParsedAttr.Features.erase( 5190 llvm::remove_if(ParsedAttr.Features, 5191 [&](const std::string &Feat) { 5192 return !Target.isValidFeatureName( 5193 StringRef{Feat}.substr(1)); 5194 }), 5195 ParsedAttr.Features.end()); 5196 return ParsedAttr; 5197 } 5198 5199 5200 // Fills in the supplied string map with the set of target features for the 5201 // passed in function. 5202 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5203 const FunctionDecl *FD) { 5204 StringRef TargetCPU = Target.getTargetOpts().CPU; 5205 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5206 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5207 5208 // Make a copy of the features as passed on the command line into the 5209 // beginning of the additional features from the function to override. 5210 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5211 Target.getTargetOpts().FeaturesAsWritten.begin(), 5212 Target.getTargetOpts().FeaturesAsWritten.end()); 5213 5214 if (ParsedAttr.Architecture != "" && 5215 Target.isValidCPUName(ParsedAttr.Architecture)) 5216 TargetCPU = ParsedAttr.Architecture; 5217 5218 // Now populate the feature map, first with the TargetCPU which is either 5219 // the default or a new one from the target attribute string. Then we'll use 5220 // the passed in features (FeaturesAsWritten) along with the new ones from 5221 // the attribute. 5222 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5223 ParsedAttr.Features); 5224 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5225 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5226 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5227 FeaturesTmp); 5228 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5229 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5230 } else { 5231 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5232 Target.getTargetOpts().Features); 5233 } 5234 } 5235 5236 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5237 if (!SanStats) 5238 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5239 5240 return *SanStats; 5241 } 5242 llvm::Value * 5243 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5244 CodeGenFunction &CGF) { 5245 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5246 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5247 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5248 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5249 "__translate_sampler_initializer"), 5250 {C}); 5251 } 5252