xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f10ca93f34d3c88dfed98bfef28f45c8088d4ace)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static const char AnnotationSection[] = "llvm.metadata";
64 
65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
66   switch (CGM.getTarget().getCXXABI().getKind()) {
67   case TargetCXXABI::GenericAArch64:
68   case TargetCXXABI::GenericARM:
69   case TargetCXXABI::iOS:
70   case TargetCXXABI::iOS64:
71   case TargetCXXABI::WatchOS:
72   case TargetCXXABI::GenericMIPS:
73   case TargetCXXABI::GenericItanium:
74   case TargetCXXABI::WebAssembly:
75     return CreateItaniumCXXABI(CGM);
76   case TargetCXXABI::Microsoft:
77     return CreateMicrosoftCXXABI(CGM);
78   }
79 
80   llvm_unreachable("invalid C++ ABI kind");
81 }
82 
83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
84                              const PreprocessorOptions &PPO,
85                              const CodeGenOptions &CGO, llvm::Module &M,
86                              DiagnosticsEngine &diags,
87                              CoverageSourceInfo *CoverageInfo)
88     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
89       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
90       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
91       VMContext(M.getContext()), Types(*this), VTables(*this),
92       SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   HalfTy = llvm::Type::getHalfTy(LLVMContext);
102   FloatTy = llvm::Type::getFloatTy(LLVMContext);
103   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105   PointerAlignInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107   SizeSizeInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
109   IntAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
111   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
112   IntPtrTy = llvm::IntegerType::get(LLVMContext,
113     C.getTargetInfo().getMaxPointerWidth());
114   Int8PtrTy = Int8Ty->getPointerTo(0);
115   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
116   AllocaInt8PtrTy = Int8Ty->getPointerTo(
117       M.getDataLayout().getAllocaAddrSpace());
118   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
119 
120   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
121   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
122 
123   if (LangOpts.ObjC1)
124     createObjCRuntime();
125   if (LangOpts.OpenCL)
126     createOpenCLRuntime();
127   if (LangOpts.OpenMP)
128     createOpenMPRuntime();
129   if (LangOpts.CUDA)
130     createCUDARuntime();
131 
132   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
133   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
134       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
135     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
136                                getCXXABI().getMangleContext()));
137 
138   // If debug info or coverage generation is enabled, create the CGDebugInfo
139   // object.
140   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
141       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
142     DebugInfo.reset(new CGDebugInfo(*this));
143 
144   Block.GlobalUniqueCount = 0;
145 
146   if (C.getLangOpts().ObjC1)
147     ObjCData.reset(new ObjCEntrypoints());
148 
149   if (CodeGenOpts.hasProfileClangUse()) {
150     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
151         CodeGenOpts.ProfileInstrumentUsePath);
152     if (auto E = ReaderOrErr.takeError()) {
153       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
154                                               "Could not read profile %0: %1");
155       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
156         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
157                                   << EI.message();
158       });
159     } else
160       PGOReader = std::move(ReaderOrErr.get());
161   }
162 
163   // If coverage mapping generation is enabled, create the
164   // CoverageMappingModuleGen object.
165   if (CodeGenOpts.CoverageMapping)
166     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
167 }
168 
169 CodeGenModule::~CodeGenModule() {}
170 
171 void CodeGenModule::createObjCRuntime() {
172   // This is just isGNUFamily(), but we want to force implementors of
173   // new ABIs to decide how best to do this.
174   switch (LangOpts.ObjCRuntime.getKind()) {
175   case ObjCRuntime::GNUstep:
176   case ObjCRuntime::GCC:
177   case ObjCRuntime::ObjFW:
178     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
179     return;
180 
181   case ObjCRuntime::FragileMacOSX:
182   case ObjCRuntime::MacOSX:
183   case ObjCRuntime::iOS:
184   case ObjCRuntime::WatchOS:
185     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
186     return;
187   }
188   llvm_unreachable("bad runtime kind");
189 }
190 
191 void CodeGenModule::createOpenCLRuntime() {
192   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
193 }
194 
195 void CodeGenModule::createOpenMPRuntime() {
196   // Select a specialized code generation class based on the target, if any.
197   // If it does not exist use the default implementation.
198   switch (getTriple().getArch()) {
199   case llvm::Triple::nvptx:
200   case llvm::Triple::nvptx64:
201     assert(getLangOpts().OpenMPIsDevice &&
202            "OpenMP NVPTX is only prepared to deal with device code.");
203     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
204     break;
205   default:
206     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
207     break;
208   }
209 }
210 
211 void CodeGenModule::createCUDARuntime() {
212   CUDARuntime.reset(CreateNVCUDARuntime(*this));
213 }
214 
215 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
216   Replacements[Name] = C;
217 }
218 
219 void CodeGenModule::applyReplacements() {
220   for (auto &I : Replacements) {
221     StringRef MangledName = I.first();
222     llvm::Constant *Replacement = I.second;
223     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
224     if (!Entry)
225       continue;
226     auto *OldF = cast<llvm::Function>(Entry);
227     auto *NewF = dyn_cast<llvm::Function>(Replacement);
228     if (!NewF) {
229       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
230         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
231       } else {
232         auto *CE = cast<llvm::ConstantExpr>(Replacement);
233         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
234                CE->getOpcode() == llvm::Instruction::GetElementPtr);
235         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
236       }
237     }
238 
239     // Replace old with new, but keep the old order.
240     OldF->replaceAllUsesWith(Replacement);
241     if (NewF) {
242       NewF->removeFromParent();
243       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
244                                                        NewF);
245     }
246     OldF->eraseFromParent();
247   }
248 }
249 
250 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
251   GlobalValReplacements.push_back(std::make_pair(GV, C));
252 }
253 
254 void CodeGenModule::applyGlobalValReplacements() {
255   for (auto &I : GlobalValReplacements) {
256     llvm::GlobalValue *GV = I.first;
257     llvm::Constant *C = I.second;
258 
259     GV->replaceAllUsesWith(C);
260     GV->eraseFromParent();
261   }
262 }
263 
264 // This is only used in aliases that we created and we know they have a
265 // linear structure.
266 static const llvm::GlobalObject *getAliasedGlobal(
267     const llvm::GlobalIndirectSymbol &GIS) {
268   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
269   const llvm::Constant *C = &GIS;
270   for (;;) {
271     C = C->stripPointerCasts();
272     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
273       return GO;
274     // stripPointerCasts will not walk over weak aliases.
275     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
276     if (!GIS2)
277       return nullptr;
278     if (!Visited.insert(GIS2).second)
279       return nullptr;
280     C = GIS2->getIndirectSymbol();
281   }
282 }
283 
284 void CodeGenModule::checkAliases() {
285   // Check if the constructed aliases are well formed. It is really unfortunate
286   // that we have to do this in CodeGen, but we only construct mangled names
287   // and aliases during codegen.
288   bool Error = false;
289   DiagnosticsEngine &Diags = getDiags();
290   for (const GlobalDecl &GD : Aliases) {
291     const auto *D = cast<ValueDecl>(GD.getDecl());
292     SourceLocation Location;
293     bool IsIFunc = D->hasAttr<IFuncAttr>();
294     if (const Attr *A = D->getDefiningAttr())
295       Location = A->getLocation();
296     else
297       llvm_unreachable("Not an alias or ifunc?");
298     StringRef MangledName = getMangledName(GD);
299     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
300     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
301     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
302     if (!GV) {
303       Error = true;
304       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
305     } else if (GV->isDeclaration()) {
306       Error = true;
307       Diags.Report(Location, diag::err_alias_to_undefined)
308           << IsIFunc << IsIFunc;
309     } else if (IsIFunc) {
310       // Check resolver function type.
311       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
312           GV->getType()->getPointerElementType());
313       assert(FTy);
314       if (!FTy->getReturnType()->isPointerTy())
315         Diags.Report(Location, diag::err_ifunc_resolver_return);
316       if (FTy->getNumParams())
317         Diags.Report(Location, diag::err_ifunc_resolver_params);
318     }
319 
320     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
321     llvm::GlobalValue *AliaseeGV;
322     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
323       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
324     else
325       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
326 
327     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
328       StringRef AliasSection = SA->getName();
329       if (AliasSection != AliaseeGV->getSection())
330         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
331             << AliasSection << IsIFunc << IsIFunc;
332     }
333 
334     // We have to handle alias to weak aliases in here. LLVM itself disallows
335     // this since the object semantics would not match the IL one. For
336     // compatibility with gcc we implement it by just pointing the alias
337     // to its aliasee's aliasee. We also warn, since the user is probably
338     // expecting the link to be weak.
339     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
340       if (GA->isInterposable()) {
341         Diags.Report(Location, diag::warn_alias_to_weak_alias)
342             << GV->getName() << GA->getName() << IsIFunc;
343         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
344             GA->getIndirectSymbol(), Alias->getType());
345         Alias->setIndirectSymbol(Aliasee);
346       }
347     }
348   }
349   if (!Error)
350     return;
351 
352   for (const GlobalDecl &GD : Aliases) {
353     StringRef MangledName = getMangledName(GD);
354     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
355     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
356     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
357     Alias->eraseFromParent();
358   }
359 }
360 
361 void CodeGenModule::clear() {
362   DeferredDeclsToEmit.clear();
363   if (OpenMPRuntime)
364     OpenMPRuntime->clear();
365 }
366 
367 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
368                                        StringRef MainFile) {
369   if (!hasDiagnostics())
370     return;
371   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
372     if (MainFile.empty())
373       MainFile = "<stdin>";
374     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
375   } else {
376     if (Mismatched > 0)
377       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
378 
379     if (Missing > 0)
380       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
381   }
382 }
383 
384 void CodeGenModule::Release() {
385   EmitDeferred();
386   EmitVTablesOpportunistically();
387   applyGlobalValReplacements();
388   applyReplacements();
389   checkAliases();
390   EmitCXXGlobalInitFunc();
391   EmitCXXGlobalDtorFunc();
392   EmitCXXThreadLocalInitFunc();
393   if (ObjCRuntime)
394     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
395       AddGlobalCtor(ObjCInitFunction);
396   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
397       CUDARuntime) {
398     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
399       AddGlobalCtor(CudaCtorFunction);
400     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
401       AddGlobalDtor(CudaDtorFunction);
402   }
403   if (OpenMPRuntime)
404     if (llvm::Function *OpenMPRegistrationFunction =
405             OpenMPRuntime->emitRegistrationFunction()) {
406       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
407         OpenMPRegistrationFunction : nullptr;
408       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
409     }
410   if (PGOReader) {
411     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
412     if (PGOStats.hasDiagnostics())
413       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
414   }
415   EmitCtorList(GlobalCtors, "llvm.global_ctors");
416   EmitCtorList(GlobalDtors, "llvm.global_dtors");
417   EmitGlobalAnnotations();
418   EmitStaticExternCAliases();
419   EmitDeferredUnusedCoverageMappings();
420   if (CoverageMapping)
421     CoverageMapping->emit();
422   if (CodeGenOpts.SanitizeCfiCrossDso) {
423     CodeGenFunction(*this).EmitCfiCheckFail();
424     CodeGenFunction(*this).EmitCfiCheckStub();
425   }
426   emitAtAvailableLinkGuard();
427   emitLLVMUsed();
428   if (SanStats)
429     SanStats->finish();
430 
431   if (CodeGenOpts.Autolink &&
432       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
433     EmitModuleLinkOptions();
434   }
435 
436   // Record mregparm value now so it is visible through rest of codegen.
437   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
438     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
439                               CodeGenOpts.NumRegisterParameters);
440 
441   if (CodeGenOpts.DwarfVersion) {
442     // We actually want the latest version when there are conflicts.
443     // We can change from Warning to Latest if such mode is supported.
444     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
445                               CodeGenOpts.DwarfVersion);
446   }
447   if (CodeGenOpts.EmitCodeView) {
448     // Indicate that we want CodeView in the metadata.
449     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
450   }
451   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
452     // We don't support LTO with 2 with different StrictVTablePointers
453     // FIXME: we could support it by stripping all the information introduced
454     // by StrictVTablePointers.
455 
456     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
457 
458     llvm::Metadata *Ops[2] = {
459               llvm::MDString::get(VMContext, "StrictVTablePointers"),
460               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
461                   llvm::Type::getInt32Ty(VMContext), 1))};
462 
463     getModule().addModuleFlag(llvm::Module::Require,
464                               "StrictVTablePointersRequirement",
465                               llvm::MDNode::get(VMContext, Ops));
466   }
467   if (DebugInfo)
468     // We support a single version in the linked module. The LLVM
469     // parser will drop debug info with a different version number
470     // (and warn about it, too).
471     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
472                               llvm::DEBUG_METADATA_VERSION);
473 
474   // Width of wchar_t in bytes
475   uint64_t WCharWidth =
476       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
477   assert((LangOpts.ShortWChar ||
478           llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) ==
479               Target.getWCharWidth() / 8) &&
480          "LLVM wchar_t size out of sync");
481 
482   // We need to record the widths of enums and wchar_t, so that we can generate
483   // the correct build attributes in the ARM backend. wchar_size is also used by
484   // TargetLibraryInfo.
485   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
486 
487   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
488   if (   Arch == llvm::Triple::arm
489       || Arch == llvm::Triple::armeb
490       || Arch == llvm::Triple::thumb
491       || Arch == llvm::Triple::thumbeb) {
492     // The minimum width of an enum in bytes
493     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
494     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
495   }
496 
497   if (CodeGenOpts.SanitizeCfiCrossDso) {
498     // Indicate that we want cross-DSO control flow integrity checks.
499     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
500   }
501 
502   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
503     // Indicate whether __nvvm_reflect should be configured to flush denormal
504     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
505     // property.)
506     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
507                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
508   }
509 
510   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
511   if (LangOpts.OpenCL) {
512     EmitOpenCLMetadata();
513     // Emit SPIR version.
514     if (getTriple().getArch() == llvm::Triple::spir ||
515         getTriple().getArch() == llvm::Triple::spir64) {
516       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
517       // opencl.spir.version named metadata.
518       llvm::Metadata *SPIRVerElts[] = {
519           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
520               Int32Ty, LangOpts.OpenCLVersion / 100)),
521           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
522               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
523       llvm::NamedMDNode *SPIRVerMD =
524           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
525       llvm::LLVMContext &Ctx = TheModule.getContext();
526       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
527     }
528   }
529 
530   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
531     assert(PLevel < 3 && "Invalid PIC Level");
532     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
533     if (Context.getLangOpts().PIE)
534       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
535   }
536 
537   SimplifyPersonality();
538 
539   if (getCodeGenOpts().EmitDeclMetadata)
540     EmitDeclMetadata();
541 
542   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
543     EmitCoverageFile();
544 
545   if (DebugInfo)
546     DebugInfo->finalize();
547 
548   EmitVersionIdentMetadata();
549 
550   EmitTargetMetadata();
551 }
552 
553 void CodeGenModule::EmitOpenCLMetadata() {
554   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
555   // opencl.ocl.version named metadata node.
556   llvm::Metadata *OCLVerElts[] = {
557       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
558           Int32Ty, LangOpts.OpenCLVersion / 100)),
559       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
560           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
561   llvm::NamedMDNode *OCLVerMD =
562       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
563   llvm::LLVMContext &Ctx = TheModule.getContext();
564   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
565 }
566 
567 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
568   // Make sure that this type is translated.
569   Types.UpdateCompletedType(TD);
570 }
571 
572 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
573   // Make sure that this type is translated.
574   Types.RefreshTypeCacheForClass(RD);
575 }
576 
577 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
578   if (!TBAA)
579     return nullptr;
580   return TBAA->getTBAAInfo(QTy);
581 }
582 
583 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
584   if (!TBAA)
585     return nullptr;
586   return TBAA->getTBAAInfoForVTablePtr();
587 }
588 
589 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
590   if (!TBAA)
591     return nullptr;
592   return TBAA->getTBAAStructInfo(QTy);
593 }
594 
595 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
596                                                   llvm::MDNode *AccessN,
597                                                   uint64_t O) {
598   if (!TBAA)
599     return nullptr;
600   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
601 }
602 
603 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
604 /// and struct-path aware TBAA, the tag has the same format:
605 /// base type, access type and offset.
606 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
607 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
608                                                 llvm::MDNode *TBAAInfo,
609                                                 bool ConvertTypeToTag) {
610   if (ConvertTypeToTag && TBAA)
611     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
612                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
613   else
614     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
615 }
616 
617 void CodeGenModule::DecorateInstructionWithInvariantGroup(
618     llvm::Instruction *I, const CXXRecordDecl *RD) {
619   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
620                  llvm::MDNode::get(getLLVMContext(), {}));
621 }
622 
623 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
624   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
625   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
626 }
627 
628 /// ErrorUnsupported - Print out an error that codegen doesn't support the
629 /// specified stmt yet.
630 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
631   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
632                                                "cannot compile this %0 yet");
633   std::string Msg = Type;
634   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
635     << Msg << S->getSourceRange();
636 }
637 
638 /// ErrorUnsupported - Print out an error that codegen doesn't support the
639 /// specified decl yet.
640 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
641   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
642                                                "cannot compile this %0 yet");
643   std::string Msg = Type;
644   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
645 }
646 
647 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
648   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
649 }
650 
651 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
652                                         const NamedDecl *D) const {
653   // Internal definitions always have default visibility.
654   if (GV->hasLocalLinkage()) {
655     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
656     return;
657   }
658 
659   // Set visibility for definitions.
660   LinkageInfo LV = D->getLinkageAndVisibility();
661   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
662     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
663 }
664 
665 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
666   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
667       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
668       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
669       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
670       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
671 }
672 
673 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
674     CodeGenOptions::TLSModel M) {
675   switch (M) {
676   case CodeGenOptions::GeneralDynamicTLSModel:
677     return llvm::GlobalVariable::GeneralDynamicTLSModel;
678   case CodeGenOptions::LocalDynamicTLSModel:
679     return llvm::GlobalVariable::LocalDynamicTLSModel;
680   case CodeGenOptions::InitialExecTLSModel:
681     return llvm::GlobalVariable::InitialExecTLSModel;
682   case CodeGenOptions::LocalExecTLSModel:
683     return llvm::GlobalVariable::LocalExecTLSModel;
684   }
685   llvm_unreachable("Invalid TLS model!");
686 }
687 
688 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
689   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
690 
691   llvm::GlobalValue::ThreadLocalMode TLM;
692   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
693 
694   // Override the TLS model if it is explicitly specified.
695   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
696     TLM = GetLLVMTLSModel(Attr->getModel());
697   }
698 
699   GV->setThreadLocalMode(TLM);
700 }
701 
702 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
703   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
704 
705   // Some ABIs don't have constructor variants.  Make sure that base and
706   // complete constructors get mangled the same.
707   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
708     if (!getTarget().getCXXABI().hasConstructorVariants()) {
709       CXXCtorType OrigCtorType = GD.getCtorType();
710       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
711       if (OrigCtorType == Ctor_Base)
712         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
713     }
714   }
715 
716   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
717   if (!FoundStr.empty())
718     return FoundStr;
719 
720   const auto *ND = cast<NamedDecl>(GD.getDecl());
721   SmallString<256> Buffer;
722   StringRef Str;
723   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
724     llvm::raw_svector_ostream Out(Buffer);
725     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
726       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
727     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
728       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
729     else
730       getCXXABI().getMangleContext().mangleName(ND, Out);
731     Str = Out.str();
732   } else {
733     IdentifierInfo *II = ND->getIdentifier();
734     assert(II && "Attempt to mangle unnamed decl.");
735     const auto *FD = dyn_cast<FunctionDecl>(ND);
736 
737     if (FD &&
738         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
739       llvm::raw_svector_ostream Out(Buffer);
740       Out << "__regcall3__" << II->getName();
741       Str = Out.str();
742     } else {
743       Str = II->getName();
744     }
745   }
746 
747   // Keep the first result in the case of a mangling collision.
748   auto Result = Manglings.insert(std::make_pair(Str, GD));
749   return FoundStr = Result.first->first();
750 }
751 
752 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
753                                              const BlockDecl *BD) {
754   MangleContext &MangleCtx = getCXXABI().getMangleContext();
755   const Decl *D = GD.getDecl();
756 
757   SmallString<256> Buffer;
758   llvm::raw_svector_ostream Out(Buffer);
759   if (!D)
760     MangleCtx.mangleGlobalBlock(BD,
761       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
762   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
763     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
764   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
765     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
766   else
767     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
768 
769   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
770   return Result.first->first();
771 }
772 
773 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
774   return getModule().getNamedValue(Name);
775 }
776 
777 /// AddGlobalCtor - Add a function to the list that will be called before
778 /// main() runs.
779 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
780                                   llvm::Constant *AssociatedData) {
781   // FIXME: Type coercion of void()* types.
782   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
783 }
784 
785 /// AddGlobalDtor - Add a function to the list that will be called
786 /// when the module is unloaded.
787 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
788   // FIXME: Type coercion of void()* types.
789   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
790 }
791 
792 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
793   if (Fns.empty()) return;
794 
795   // Ctor function type is void()*.
796   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
797   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
798 
799   // Get the type of a ctor entry, { i32, void ()*, i8* }.
800   llvm::StructType *CtorStructTy = llvm::StructType::get(
801       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
802 
803   // Construct the constructor and destructor arrays.
804   ConstantInitBuilder builder(*this);
805   auto ctors = builder.beginArray(CtorStructTy);
806   for (const auto &I : Fns) {
807     auto ctor = ctors.beginStruct(CtorStructTy);
808     ctor.addInt(Int32Ty, I.Priority);
809     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
810     if (I.AssociatedData)
811       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
812     else
813       ctor.addNullPointer(VoidPtrTy);
814     ctor.finishAndAddTo(ctors);
815   }
816 
817   auto list =
818     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
819                                 /*constant*/ false,
820                                 llvm::GlobalValue::AppendingLinkage);
821 
822   // The LTO linker doesn't seem to like it when we set an alignment
823   // on appending variables.  Take it off as a workaround.
824   list->setAlignment(0);
825 
826   Fns.clear();
827 }
828 
829 llvm::GlobalValue::LinkageTypes
830 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
831   const auto *D = cast<FunctionDecl>(GD.getDecl());
832 
833   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
834 
835   if (isa<CXXDestructorDecl>(D) &&
836       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
837                                          GD.getDtorType())) {
838     // Destructor variants in the Microsoft C++ ABI are always internal or
839     // linkonce_odr thunks emitted on an as-needed basis.
840     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
841                                    : llvm::GlobalValue::LinkOnceODRLinkage;
842   }
843 
844   if (isa<CXXConstructorDecl>(D) &&
845       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
846       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
847     // Our approach to inheriting constructors is fundamentally different from
848     // that used by the MS ABI, so keep our inheriting constructor thunks
849     // internal rather than trying to pick an unambiguous mangling for them.
850     return llvm::GlobalValue::InternalLinkage;
851   }
852 
853   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
854 }
855 
856 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
857   const auto *FD = cast<FunctionDecl>(GD.getDecl());
858 
859   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
860     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
861       // Don't dllexport/import destructor thunks.
862       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
863       return;
864     }
865   }
866 
867   if (FD->hasAttr<DLLImportAttr>())
868     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
869   else if (FD->hasAttr<DLLExportAttr>())
870     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
871   else
872     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
873 }
874 
875 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
876   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
877   if (!MDS) return nullptr;
878 
879   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
880 }
881 
882 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
883                                                     llvm::Function *F) {
884   setNonAliasAttributes(D, F);
885 }
886 
887 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
888                                               const CGFunctionInfo &Info,
889                                               llvm::Function *F) {
890   unsigned CallingConv;
891   llvm::AttributeList PAL;
892   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
893   F->setAttributes(PAL);
894   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
895 }
896 
897 /// Determines whether the language options require us to model
898 /// unwind exceptions.  We treat -fexceptions as mandating this
899 /// except under the fragile ObjC ABI with only ObjC exceptions
900 /// enabled.  This means, for example, that C with -fexceptions
901 /// enables this.
902 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
903   // If exceptions are completely disabled, obviously this is false.
904   if (!LangOpts.Exceptions) return false;
905 
906   // If C++ exceptions are enabled, this is true.
907   if (LangOpts.CXXExceptions) return true;
908 
909   // If ObjC exceptions are enabled, this depends on the ABI.
910   if (LangOpts.ObjCExceptions) {
911     return LangOpts.ObjCRuntime.hasUnwindExceptions();
912   }
913 
914   return true;
915 }
916 
917 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
918                                                            llvm::Function *F) {
919   llvm::AttrBuilder B;
920 
921   if (CodeGenOpts.UnwindTables)
922     B.addAttribute(llvm::Attribute::UWTable);
923 
924   if (!hasUnwindExceptions(LangOpts))
925     B.addAttribute(llvm::Attribute::NoUnwind);
926 
927   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
928     B.addAttribute(llvm::Attribute::StackProtect);
929   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
930     B.addAttribute(llvm::Attribute::StackProtectStrong);
931   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
932     B.addAttribute(llvm::Attribute::StackProtectReq);
933 
934   if (!D) {
935     // If we don't have a declaration to control inlining, the function isn't
936     // explicitly marked as alwaysinline for semantic reasons, and inlining is
937     // disabled, mark the function as noinline.
938     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
939         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
940       B.addAttribute(llvm::Attribute::NoInline);
941 
942     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
943     return;
944   }
945 
946   // Track whether we need to add the optnone LLVM attribute,
947   // starting with the default for this optimization level.
948   bool ShouldAddOptNone =
949       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
950   // We can't add optnone in the following cases, it won't pass the verifier.
951   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
952   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
953   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
954 
955   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
956     B.addAttribute(llvm::Attribute::OptimizeNone);
957 
958     // OptimizeNone implies noinline; we should not be inlining such functions.
959     B.addAttribute(llvm::Attribute::NoInline);
960     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
961            "OptimizeNone and AlwaysInline on same function!");
962 
963     // We still need to handle naked functions even though optnone subsumes
964     // much of their semantics.
965     if (D->hasAttr<NakedAttr>())
966       B.addAttribute(llvm::Attribute::Naked);
967 
968     // OptimizeNone wins over OptimizeForSize and MinSize.
969     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
970     F->removeFnAttr(llvm::Attribute::MinSize);
971   } else if (D->hasAttr<NakedAttr>()) {
972     // Naked implies noinline: we should not be inlining such functions.
973     B.addAttribute(llvm::Attribute::Naked);
974     B.addAttribute(llvm::Attribute::NoInline);
975   } else if (D->hasAttr<NoDuplicateAttr>()) {
976     B.addAttribute(llvm::Attribute::NoDuplicate);
977   } else if (D->hasAttr<NoInlineAttr>()) {
978     B.addAttribute(llvm::Attribute::NoInline);
979   } else if (D->hasAttr<AlwaysInlineAttr>() &&
980              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
981     // (noinline wins over always_inline, and we can't specify both in IR)
982     B.addAttribute(llvm::Attribute::AlwaysInline);
983   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
984     // If we're not inlining, then force everything that isn't always_inline to
985     // carry an explicit noinline attribute.
986     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
987       B.addAttribute(llvm::Attribute::NoInline);
988   } else {
989     // Otherwise, propagate the inline hint attribute and potentially use its
990     // absence to mark things as noinline.
991     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
992       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
993             return Redecl->isInlineSpecified();
994           })) {
995         B.addAttribute(llvm::Attribute::InlineHint);
996       } else if (CodeGenOpts.getInlining() ==
997                      CodeGenOptions::OnlyHintInlining &&
998                  !FD->isInlined() &&
999                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1000         B.addAttribute(llvm::Attribute::NoInline);
1001       }
1002     }
1003   }
1004 
1005   // Add other optimization related attributes if we are optimizing this
1006   // function.
1007   if (!D->hasAttr<OptimizeNoneAttr>()) {
1008     if (D->hasAttr<ColdAttr>()) {
1009       if (!ShouldAddOptNone)
1010         B.addAttribute(llvm::Attribute::OptimizeForSize);
1011       B.addAttribute(llvm::Attribute::Cold);
1012     }
1013 
1014     if (D->hasAttr<MinSizeAttr>())
1015       B.addAttribute(llvm::Attribute::MinSize);
1016   }
1017 
1018   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1019 
1020   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1021   if (alignment)
1022     F->setAlignment(alignment);
1023 
1024   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1025   // reserve a bit for differentiating between virtual and non-virtual member
1026   // functions. If the current target's C++ ABI requires this and this is a
1027   // member function, set its alignment accordingly.
1028   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1029     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1030       F->setAlignment(2);
1031   }
1032 
1033   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1034   if (CodeGenOpts.SanitizeCfiCrossDso)
1035     if (auto *FD = dyn_cast<FunctionDecl>(D))
1036       CreateFunctionTypeMetadata(FD, F);
1037 }
1038 
1039 void CodeGenModule::SetCommonAttributes(const Decl *D,
1040                                         llvm::GlobalValue *GV) {
1041   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1042     setGlobalVisibility(GV, ND);
1043   else
1044     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1045 
1046   if (D && D->hasAttr<UsedAttr>())
1047     addUsedGlobal(GV);
1048 }
1049 
1050 void CodeGenModule::setAliasAttributes(const Decl *D,
1051                                        llvm::GlobalValue *GV) {
1052   SetCommonAttributes(D, GV);
1053 
1054   // Process the dllexport attribute based on whether the original definition
1055   // (not necessarily the aliasee) was exported.
1056   if (D->hasAttr<DLLExportAttr>())
1057     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1058 }
1059 
1060 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1061                                           llvm::GlobalObject *GO) {
1062   SetCommonAttributes(D, GO);
1063 
1064   if (D) {
1065     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1066       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1067         GV->addAttribute("bss-section", SA->getName());
1068       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1069         GV->addAttribute("data-section", SA->getName());
1070       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1071         GV->addAttribute("rodata-section", SA->getName());
1072     }
1073 
1074     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1075       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1076        if (!D->getAttr<SectionAttr>())
1077          F->addFnAttr("implicit-section-name", SA->getName());
1078     }
1079 
1080     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1081       GO->setSection(SA->getName());
1082   }
1083 
1084   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1085 }
1086 
1087 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1088                                                   llvm::Function *F,
1089                                                   const CGFunctionInfo &FI) {
1090   SetLLVMFunctionAttributes(D, FI, F);
1091   SetLLVMFunctionAttributesForDefinition(D, F);
1092 
1093   F->setLinkage(llvm::Function::InternalLinkage);
1094 
1095   setNonAliasAttributes(D, F);
1096 }
1097 
1098 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1099                                          const NamedDecl *ND) {
1100   // Set linkage and visibility in case we never see a definition.
1101   LinkageInfo LV = ND->getLinkageAndVisibility();
1102   if (LV.getLinkage() != ExternalLinkage) {
1103     // Don't set internal linkage on declarations.
1104   } else {
1105     if (ND->hasAttr<DLLImportAttr>()) {
1106       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1107       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1108     } else if (ND->hasAttr<DLLExportAttr>()) {
1109       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1110     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1111       // "extern_weak" is overloaded in LLVM; we probably should have
1112       // separate linkage types for this.
1113       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1114     }
1115 
1116     // Set visibility on a declaration only if it's explicit.
1117     if (LV.isVisibilityExplicit())
1118       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1119   }
1120 }
1121 
1122 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1123                                                llvm::Function *F) {
1124   // Only if we are checking indirect calls.
1125   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1126     return;
1127 
1128   // Non-static class methods are handled via vtable pointer checks elsewhere.
1129   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1130     return;
1131 
1132   // Additionally, if building with cross-DSO support...
1133   if (CodeGenOpts.SanitizeCfiCrossDso) {
1134     // Skip available_externally functions. They won't be codegen'ed in the
1135     // current module anyway.
1136     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1137       return;
1138   }
1139 
1140   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1141   F->addTypeMetadata(0, MD);
1142 
1143   // Emit a hash-based bit set entry for cross-DSO calls.
1144   if (CodeGenOpts.SanitizeCfiCrossDso)
1145     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1146       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1147 }
1148 
1149 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1150                                           bool IsIncompleteFunction,
1151                                           bool IsThunk) {
1152   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1153     // If this is an intrinsic function, set the function's attributes
1154     // to the intrinsic's attributes.
1155     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1156     return;
1157   }
1158 
1159   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1160 
1161   if (!IsIncompleteFunction)
1162     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1163 
1164   // Add the Returned attribute for "this", except for iOS 5 and earlier
1165   // where substantial code, including the libstdc++ dylib, was compiled with
1166   // GCC and does not actually return "this".
1167   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1168       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1169     assert(!F->arg_empty() &&
1170            F->arg_begin()->getType()
1171              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1172            "unexpected this return");
1173     F->addAttribute(1, llvm::Attribute::Returned);
1174   }
1175 
1176   // Only a few attributes are set on declarations; these may later be
1177   // overridden by a definition.
1178 
1179   setLinkageAndVisibilityForGV(F, FD);
1180 
1181   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1182     F->addFnAttr("implicit-section-name");
1183   }
1184 
1185   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1186     F->setSection(SA->getName());
1187 
1188   if (FD->isReplaceableGlobalAllocationFunction()) {
1189     // A replaceable global allocation function does not act like a builtin by
1190     // default, only if it is invoked by a new-expression or delete-expression.
1191     F->addAttribute(llvm::AttributeList::FunctionIndex,
1192                     llvm::Attribute::NoBuiltin);
1193 
1194     // A sane operator new returns a non-aliasing pointer.
1195     // FIXME: Also add NonNull attribute to the return value
1196     // for the non-nothrow forms?
1197     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1198     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1199         (Kind == OO_New || Kind == OO_Array_New))
1200       F->addAttribute(llvm::AttributeList::ReturnIndex,
1201                       llvm::Attribute::NoAlias);
1202   }
1203 
1204   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1205     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1206   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1207     if (MD->isVirtual())
1208       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1209 
1210   // Don't emit entries for function declarations in the cross-DSO mode. This
1211   // is handled with better precision by the receiving DSO.
1212   if (!CodeGenOpts.SanitizeCfiCrossDso)
1213     CreateFunctionTypeMetadata(FD, F);
1214 }
1215 
1216 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1217   assert(!GV->isDeclaration() &&
1218          "Only globals with definition can force usage.");
1219   LLVMUsed.emplace_back(GV);
1220 }
1221 
1222 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1223   assert(!GV->isDeclaration() &&
1224          "Only globals with definition can force usage.");
1225   LLVMCompilerUsed.emplace_back(GV);
1226 }
1227 
1228 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1229                      std::vector<llvm::WeakTrackingVH> &List) {
1230   // Don't create llvm.used if there is no need.
1231   if (List.empty())
1232     return;
1233 
1234   // Convert List to what ConstantArray needs.
1235   SmallVector<llvm::Constant*, 8> UsedArray;
1236   UsedArray.resize(List.size());
1237   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1238     UsedArray[i] =
1239         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1240             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1241   }
1242 
1243   if (UsedArray.empty())
1244     return;
1245   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1246 
1247   auto *GV = new llvm::GlobalVariable(
1248       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1249       llvm::ConstantArray::get(ATy, UsedArray), Name);
1250 
1251   GV->setSection("llvm.metadata");
1252 }
1253 
1254 void CodeGenModule::emitLLVMUsed() {
1255   emitUsed(*this, "llvm.used", LLVMUsed);
1256   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1257 }
1258 
1259 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1260   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1261   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1262 }
1263 
1264 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1265   llvm::SmallString<32> Opt;
1266   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1267   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1268   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1269 }
1270 
1271 void CodeGenModule::AddDependentLib(StringRef Lib) {
1272   llvm::SmallString<24> Opt;
1273   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1274   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1275   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1276 }
1277 
1278 /// \brief Add link options implied by the given module, including modules
1279 /// it depends on, using a postorder walk.
1280 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1281                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1282                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1283   // Import this module's parent.
1284   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1285     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1286   }
1287 
1288   // Import this module's dependencies.
1289   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1290     if (Visited.insert(Mod->Imports[I - 1]).second)
1291       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1292   }
1293 
1294   // Add linker options to link against the libraries/frameworks
1295   // described by this module.
1296   llvm::LLVMContext &Context = CGM.getLLVMContext();
1297   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1298     // Link against a framework.  Frameworks are currently Darwin only, so we
1299     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1300     if (Mod->LinkLibraries[I-1].IsFramework) {
1301       llvm::Metadata *Args[2] = {
1302           llvm::MDString::get(Context, "-framework"),
1303           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1304 
1305       Metadata.push_back(llvm::MDNode::get(Context, Args));
1306       continue;
1307     }
1308 
1309     // Link against a library.
1310     llvm::SmallString<24> Opt;
1311     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1312       Mod->LinkLibraries[I-1].Library, Opt);
1313     auto *OptString = llvm::MDString::get(Context, Opt);
1314     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1315   }
1316 }
1317 
1318 void CodeGenModule::EmitModuleLinkOptions() {
1319   // Collect the set of all of the modules we want to visit to emit link
1320   // options, which is essentially the imported modules and all of their
1321   // non-explicit child modules.
1322   llvm::SetVector<clang::Module *> LinkModules;
1323   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1324   SmallVector<clang::Module *, 16> Stack;
1325 
1326   // Seed the stack with imported modules.
1327   for (Module *M : ImportedModules) {
1328     // Do not add any link flags when an implementation TU of a module imports
1329     // a header of that same module.
1330     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1331         !getLangOpts().isCompilingModule())
1332       continue;
1333     if (Visited.insert(M).second)
1334       Stack.push_back(M);
1335   }
1336 
1337   // Find all of the modules to import, making a little effort to prune
1338   // non-leaf modules.
1339   while (!Stack.empty()) {
1340     clang::Module *Mod = Stack.pop_back_val();
1341 
1342     bool AnyChildren = false;
1343 
1344     // Visit the submodules of this module.
1345     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1346                                         SubEnd = Mod->submodule_end();
1347          Sub != SubEnd; ++Sub) {
1348       // Skip explicit children; they need to be explicitly imported to be
1349       // linked against.
1350       if ((*Sub)->IsExplicit)
1351         continue;
1352 
1353       if (Visited.insert(*Sub).second) {
1354         Stack.push_back(*Sub);
1355         AnyChildren = true;
1356       }
1357     }
1358 
1359     // We didn't find any children, so add this module to the list of
1360     // modules to link against.
1361     if (!AnyChildren) {
1362       LinkModules.insert(Mod);
1363     }
1364   }
1365 
1366   // Add link options for all of the imported modules in reverse topological
1367   // order.  We don't do anything to try to order import link flags with respect
1368   // to linker options inserted by things like #pragma comment().
1369   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1370   Visited.clear();
1371   for (Module *M : LinkModules)
1372     if (Visited.insert(M).second)
1373       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1374   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1375   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1376 
1377   // Add the linker options metadata flag.
1378   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1379   for (auto *MD : LinkerOptionsMetadata)
1380     NMD->addOperand(MD);
1381 }
1382 
1383 void CodeGenModule::EmitDeferred() {
1384   // Emit code for any potentially referenced deferred decls.  Since a
1385   // previously unused static decl may become used during the generation of code
1386   // for a static function, iterate until no changes are made.
1387 
1388   if (!DeferredVTables.empty()) {
1389     EmitDeferredVTables();
1390 
1391     // Emitting a vtable doesn't directly cause more vtables to
1392     // become deferred, although it can cause functions to be
1393     // emitted that then need those vtables.
1394     assert(DeferredVTables.empty());
1395   }
1396 
1397   // Stop if we're out of both deferred vtables and deferred declarations.
1398   if (DeferredDeclsToEmit.empty())
1399     return;
1400 
1401   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1402   // work, it will not interfere with this.
1403   std::vector<GlobalDecl> CurDeclsToEmit;
1404   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1405 
1406   for (GlobalDecl &D : CurDeclsToEmit) {
1407     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1408     // to get GlobalValue with exactly the type we need, not something that
1409     // might had been created for another decl with the same mangled name but
1410     // different type.
1411     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1412         GetAddrOfGlobal(D, ForDefinition));
1413 
1414     // In case of different address spaces, we may still get a cast, even with
1415     // IsForDefinition equal to true. Query mangled names table to get
1416     // GlobalValue.
1417     if (!GV)
1418       GV = GetGlobalValue(getMangledName(D));
1419 
1420     // Make sure GetGlobalValue returned non-null.
1421     assert(GV);
1422 
1423     // Check to see if we've already emitted this.  This is necessary
1424     // for a couple of reasons: first, decls can end up in the
1425     // deferred-decls queue multiple times, and second, decls can end
1426     // up with definitions in unusual ways (e.g. by an extern inline
1427     // function acquiring a strong function redefinition).  Just
1428     // ignore these cases.
1429     if (!GV->isDeclaration())
1430       continue;
1431 
1432     // Otherwise, emit the definition and move on to the next one.
1433     EmitGlobalDefinition(D, GV);
1434 
1435     // If we found out that we need to emit more decls, do that recursively.
1436     // This has the advantage that the decls are emitted in a DFS and related
1437     // ones are close together, which is convenient for testing.
1438     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1439       EmitDeferred();
1440       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1441     }
1442   }
1443 }
1444 
1445 void CodeGenModule::EmitVTablesOpportunistically() {
1446   // Try to emit external vtables as available_externally if they have emitted
1447   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1448   // is not allowed to create new references to things that need to be emitted
1449   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1450 
1451   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1452          && "Only emit opportunistic vtables with optimizations");
1453 
1454   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1455     assert(getVTables().isVTableExternal(RD) &&
1456            "This queue should only contain external vtables");
1457     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1458       VTables.GenerateClassData(RD);
1459   }
1460   OpportunisticVTables.clear();
1461 }
1462 
1463 void CodeGenModule::EmitGlobalAnnotations() {
1464   if (Annotations.empty())
1465     return;
1466 
1467   // Create a new global variable for the ConstantStruct in the Module.
1468   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1469     Annotations[0]->getType(), Annotations.size()), Annotations);
1470   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1471                                       llvm::GlobalValue::AppendingLinkage,
1472                                       Array, "llvm.global.annotations");
1473   gv->setSection(AnnotationSection);
1474 }
1475 
1476 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1477   llvm::Constant *&AStr = AnnotationStrings[Str];
1478   if (AStr)
1479     return AStr;
1480 
1481   // Not found yet, create a new global.
1482   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1483   auto *gv =
1484       new llvm::GlobalVariable(getModule(), s->getType(), true,
1485                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1486   gv->setSection(AnnotationSection);
1487   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1488   AStr = gv;
1489   return gv;
1490 }
1491 
1492 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1493   SourceManager &SM = getContext().getSourceManager();
1494   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1495   if (PLoc.isValid())
1496     return EmitAnnotationString(PLoc.getFilename());
1497   return EmitAnnotationString(SM.getBufferName(Loc));
1498 }
1499 
1500 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1501   SourceManager &SM = getContext().getSourceManager();
1502   PresumedLoc PLoc = SM.getPresumedLoc(L);
1503   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1504     SM.getExpansionLineNumber(L);
1505   return llvm::ConstantInt::get(Int32Ty, LineNo);
1506 }
1507 
1508 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1509                                                 const AnnotateAttr *AA,
1510                                                 SourceLocation L) {
1511   // Get the globals for file name, annotation, and the line number.
1512   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1513                  *UnitGV = EmitAnnotationUnit(L),
1514                  *LineNoCst = EmitAnnotationLineNo(L);
1515 
1516   // Create the ConstantStruct for the global annotation.
1517   llvm::Constant *Fields[4] = {
1518     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1519     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1520     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1521     LineNoCst
1522   };
1523   return llvm::ConstantStruct::getAnon(Fields);
1524 }
1525 
1526 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1527                                          llvm::GlobalValue *GV) {
1528   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1529   // Get the struct elements for these annotations.
1530   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1531     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1532 }
1533 
1534 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1535                                            SourceLocation Loc) const {
1536   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1537   // Blacklist by function name.
1538   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1539     return true;
1540   // Blacklist by location.
1541   if (Loc.isValid())
1542     return SanitizerBL.isBlacklistedLocation(Loc);
1543   // If location is unknown, this may be a compiler-generated function. Assume
1544   // it's located in the main file.
1545   auto &SM = Context.getSourceManager();
1546   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1547     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1548   }
1549   return false;
1550 }
1551 
1552 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1553                                            SourceLocation Loc, QualType Ty,
1554                                            StringRef Category) const {
1555   // For now globals can be blacklisted only in ASan and KASan.
1556   if (!LangOpts.Sanitize.hasOneOf(
1557           SanitizerKind::Address | SanitizerKind::KernelAddress))
1558     return false;
1559   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1560   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1561     return true;
1562   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1563     return true;
1564   // Check global type.
1565   if (!Ty.isNull()) {
1566     // Drill down the array types: if global variable of a fixed type is
1567     // blacklisted, we also don't instrument arrays of them.
1568     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1569       Ty = AT->getElementType();
1570     Ty = Ty.getCanonicalType().getUnqualifiedType();
1571     // We allow to blacklist only record types (classes, structs etc.)
1572     if (Ty->isRecordType()) {
1573       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1574       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1575         return true;
1576     }
1577   }
1578   return false;
1579 }
1580 
1581 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1582                                    StringRef Category) const {
1583   if (!LangOpts.XRayInstrument)
1584     return false;
1585   const auto &XRayFilter = getContext().getXRayFilter();
1586   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1587   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1588   if (Loc.isValid())
1589     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1590   if (Attr == ImbueAttr::NONE)
1591     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1592   switch (Attr) {
1593   case ImbueAttr::NONE:
1594     return false;
1595   case ImbueAttr::ALWAYS:
1596     Fn->addFnAttr("function-instrument", "xray-always");
1597     break;
1598   case ImbueAttr::ALWAYS_ARG1:
1599     Fn->addFnAttr("function-instrument", "xray-always");
1600     Fn->addFnAttr("xray-log-args", "1");
1601     break;
1602   case ImbueAttr::NEVER:
1603     Fn->addFnAttr("function-instrument", "xray-never");
1604     break;
1605   }
1606   return true;
1607 }
1608 
1609 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1610   // Never defer when EmitAllDecls is specified.
1611   if (LangOpts.EmitAllDecls)
1612     return true;
1613 
1614   return getContext().DeclMustBeEmitted(Global);
1615 }
1616 
1617 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1618   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1619     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1620       // Implicit template instantiations may change linkage if they are later
1621       // explicitly instantiated, so they should not be emitted eagerly.
1622       return false;
1623   if (const auto *VD = dyn_cast<VarDecl>(Global))
1624     if (Context.getInlineVariableDefinitionKind(VD) ==
1625         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1626       // A definition of an inline constexpr static data member may change
1627       // linkage later if it's redeclared outside the class.
1628       return false;
1629   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1630   // codegen for global variables, because they may be marked as threadprivate.
1631   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1632       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1633     return false;
1634 
1635   return true;
1636 }
1637 
1638 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1639     const CXXUuidofExpr* E) {
1640   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1641   // well-formed.
1642   StringRef Uuid = E->getUuidStr();
1643   std::string Name = "_GUID_" + Uuid.lower();
1644   std::replace(Name.begin(), Name.end(), '-', '_');
1645 
1646   // The UUID descriptor should be pointer aligned.
1647   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1648 
1649   // Look for an existing global.
1650   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1651     return ConstantAddress(GV, Alignment);
1652 
1653   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1654   assert(Init && "failed to initialize as constant");
1655 
1656   auto *GV = new llvm::GlobalVariable(
1657       getModule(), Init->getType(),
1658       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1659   if (supportsCOMDAT())
1660     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1661   return ConstantAddress(GV, Alignment);
1662 }
1663 
1664 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1665   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1666   assert(AA && "No alias?");
1667 
1668   CharUnits Alignment = getContext().getDeclAlign(VD);
1669   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1670 
1671   // See if there is already something with the target's name in the module.
1672   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1673   if (Entry) {
1674     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1675     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1676     return ConstantAddress(Ptr, Alignment);
1677   }
1678 
1679   llvm::Constant *Aliasee;
1680   if (isa<llvm::FunctionType>(DeclTy))
1681     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1682                                       GlobalDecl(cast<FunctionDecl>(VD)),
1683                                       /*ForVTable=*/false);
1684   else
1685     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1686                                     llvm::PointerType::getUnqual(DeclTy),
1687                                     nullptr);
1688 
1689   auto *F = cast<llvm::GlobalValue>(Aliasee);
1690   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1691   WeakRefReferences.insert(F);
1692 
1693   return ConstantAddress(Aliasee, Alignment);
1694 }
1695 
1696 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1697   const auto *Global = cast<ValueDecl>(GD.getDecl());
1698 
1699   // Weak references don't produce any output by themselves.
1700   if (Global->hasAttr<WeakRefAttr>())
1701     return;
1702 
1703   // If this is an alias definition (which otherwise looks like a declaration)
1704   // emit it now.
1705   if (Global->hasAttr<AliasAttr>())
1706     return EmitAliasDefinition(GD);
1707 
1708   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1709   if (Global->hasAttr<IFuncAttr>())
1710     return emitIFuncDefinition(GD);
1711 
1712   // If this is CUDA, be selective about which declarations we emit.
1713   if (LangOpts.CUDA) {
1714     if (LangOpts.CUDAIsDevice) {
1715       if (!Global->hasAttr<CUDADeviceAttr>() &&
1716           !Global->hasAttr<CUDAGlobalAttr>() &&
1717           !Global->hasAttr<CUDAConstantAttr>() &&
1718           !Global->hasAttr<CUDASharedAttr>())
1719         return;
1720     } else {
1721       // We need to emit host-side 'shadows' for all global
1722       // device-side variables because the CUDA runtime needs their
1723       // size and host-side address in order to provide access to
1724       // their device-side incarnations.
1725 
1726       // So device-only functions are the only things we skip.
1727       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1728           Global->hasAttr<CUDADeviceAttr>())
1729         return;
1730 
1731       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1732              "Expected Variable or Function");
1733     }
1734   }
1735 
1736   if (LangOpts.OpenMP) {
1737     // If this is OpenMP device, check if it is legal to emit this global
1738     // normally.
1739     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1740       return;
1741     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1742       if (MustBeEmitted(Global))
1743         EmitOMPDeclareReduction(DRD);
1744       return;
1745     }
1746   }
1747 
1748   // Ignore declarations, they will be emitted on their first use.
1749   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1750     // Forward declarations are emitted lazily on first use.
1751     if (!FD->doesThisDeclarationHaveABody()) {
1752       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1753         return;
1754 
1755       StringRef MangledName = getMangledName(GD);
1756 
1757       // Compute the function info and LLVM type.
1758       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1759       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1760 
1761       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1762                               /*DontDefer=*/false);
1763       return;
1764     }
1765   } else {
1766     const auto *VD = cast<VarDecl>(Global);
1767     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1768     // We need to emit device-side global CUDA variables even if a
1769     // variable does not have a definition -- we still need to define
1770     // host-side shadow for it.
1771     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1772                            !VD->hasDefinition() &&
1773                            (VD->hasAttr<CUDAConstantAttr>() ||
1774                             VD->hasAttr<CUDADeviceAttr>());
1775     if (!MustEmitForCuda &&
1776         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1777         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1778       // If this declaration may have caused an inline variable definition to
1779       // change linkage, make sure that it's emitted.
1780       if (Context.getInlineVariableDefinitionKind(VD) ==
1781           ASTContext::InlineVariableDefinitionKind::Strong)
1782         GetAddrOfGlobalVar(VD);
1783       return;
1784     }
1785   }
1786 
1787   // Defer code generation to first use when possible, e.g. if this is an inline
1788   // function. If the global must always be emitted, do it eagerly if possible
1789   // to benefit from cache locality.
1790   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1791     // Emit the definition if it can't be deferred.
1792     EmitGlobalDefinition(GD);
1793     return;
1794   }
1795 
1796   // If we're deferring emission of a C++ variable with an
1797   // initializer, remember the order in which it appeared in the file.
1798   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1799       cast<VarDecl>(Global)->hasInit()) {
1800     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1801     CXXGlobalInits.push_back(nullptr);
1802   }
1803 
1804   StringRef MangledName = getMangledName(GD);
1805   if (GetGlobalValue(MangledName) != nullptr) {
1806     // The value has already been used and should therefore be emitted.
1807     addDeferredDeclToEmit(GD);
1808   } else if (MustBeEmitted(Global)) {
1809     // The value must be emitted, but cannot be emitted eagerly.
1810     assert(!MayBeEmittedEagerly(Global));
1811     addDeferredDeclToEmit(GD);
1812   } else {
1813     // Otherwise, remember that we saw a deferred decl with this name.  The
1814     // first use of the mangled name will cause it to move into
1815     // DeferredDeclsToEmit.
1816     DeferredDecls[MangledName] = GD;
1817   }
1818 }
1819 
1820 // Check if T is a class type with a destructor that's not dllimport.
1821 static bool HasNonDllImportDtor(QualType T) {
1822   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1823     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1824       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1825         return true;
1826 
1827   return false;
1828 }
1829 
1830 namespace {
1831   struct FunctionIsDirectlyRecursive :
1832     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1833     const StringRef Name;
1834     const Builtin::Context &BI;
1835     bool Result;
1836     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1837       Name(N), BI(C), Result(false) {
1838     }
1839     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1840 
1841     bool TraverseCallExpr(CallExpr *E) {
1842       const FunctionDecl *FD = E->getDirectCallee();
1843       if (!FD)
1844         return true;
1845       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1846       if (Attr && Name == Attr->getLabel()) {
1847         Result = true;
1848         return false;
1849       }
1850       unsigned BuiltinID = FD->getBuiltinID();
1851       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1852         return true;
1853       StringRef BuiltinName = BI.getName(BuiltinID);
1854       if (BuiltinName.startswith("__builtin_") &&
1855           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1856         Result = true;
1857         return false;
1858       }
1859       return true;
1860     }
1861   };
1862 
1863   // Make sure we're not referencing non-imported vars or functions.
1864   struct DLLImportFunctionVisitor
1865       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1866     bool SafeToInline = true;
1867 
1868     bool shouldVisitImplicitCode() const { return true; }
1869 
1870     bool VisitVarDecl(VarDecl *VD) {
1871       if (VD->getTLSKind()) {
1872         // A thread-local variable cannot be imported.
1873         SafeToInline = false;
1874         return SafeToInline;
1875       }
1876 
1877       // A variable definition might imply a destructor call.
1878       if (VD->isThisDeclarationADefinition())
1879         SafeToInline = !HasNonDllImportDtor(VD->getType());
1880 
1881       return SafeToInline;
1882     }
1883 
1884     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1885       if (const auto *D = E->getTemporary()->getDestructor())
1886         SafeToInline = D->hasAttr<DLLImportAttr>();
1887       return SafeToInline;
1888     }
1889 
1890     bool VisitDeclRefExpr(DeclRefExpr *E) {
1891       ValueDecl *VD = E->getDecl();
1892       if (isa<FunctionDecl>(VD))
1893         SafeToInline = VD->hasAttr<DLLImportAttr>();
1894       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1895         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1896       return SafeToInline;
1897     }
1898 
1899     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1900       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1901       return SafeToInline;
1902     }
1903 
1904     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1905       CXXMethodDecl *M = E->getMethodDecl();
1906       if (!M) {
1907         // Call through a pointer to member function. This is safe to inline.
1908         SafeToInline = true;
1909       } else {
1910         SafeToInline = M->hasAttr<DLLImportAttr>();
1911       }
1912       return SafeToInline;
1913     }
1914 
1915     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1916       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1917       return SafeToInline;
1918     }
1919 
1920     bool VisitCXXNewExpr(CXXNewExpr *E) {
1921       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1922       return SafeToInline;
1923     }
1924   };
1925 }
1926 
1927 // isTriviallyRecursive - Check if this function calls another
1928 // decl that, because of the asm attribute or the other decl being a builtin,
1929 // ends up pointing to itself.
1930 bool
1931 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1932   StringRef Name;
1933   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1934     // asm labels are a special kind of mangling we have to support.
1935     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1936     if (!Attr)
1937       return false;
1938     Name = Attr->getLabel();
1939   } else {
1940     Name = FD->getName();
1941   }
1942 
1943   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1944   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1945   return Walker.Result;
1946 }
1947 
1948 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1949   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1950     return true;
1951   const auto *F = cast<FunctionDecl>(GD.getDecl());
1952   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1953     return false;
1954 
1955   if (F->hasAttr<DLLImportAttr>()) {
1956     // Check whether it would be safe to inline this dllimport function.
1957     DLLImportFunctionVisitor Visitor;
1958     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1959     if (!Visitor.SafeToInline)
1960       return false;
1961 
1962     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1963       // Implicit destructor invocations aren't captured in the AST, so the
1964       // check above can't see them. Check for them manually here.
1965       for (const Decl *Member : Dtor->getParent()->decls())
1966         if (isa<FieldDecl>(Member))
1967           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1968             return false;
1969       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1970         if (HasNonDllImportDtor(B.getType()))
1971           return false;
1972     }
1973   }
1974 
1975   // PR9614. Avoid cases where the source code is lying to us. An available
1976   // externally function should have an equivalent function somewhere else,
1977   // but a function that calls itself is clearly not equivalent to the real
1978   // implementation.
1979   // This happens in glibc's btowc and in some configure checks.
1980   return !isTriviallyRecursive(F);
1981 }
1982 
1983 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
1984   return CodeGenOpts.OptimizationLevel > 0;
1985 }
1986 
1987 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1988   const auto *D = cast<ValueDecl>(GD.getDecl());
1989 
1990   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1991                                  Context.getSourceManager(),
1992                                  "Generating code for declaration");
1993 
1994   if (isa<FunctionDecl>(D)) {
1995     // At -O0, don't generate IR for functions with available_externally
1996     // linkage.
1997     if (!shouldEmitFunction(GD))
1998       return;
1999 
2000     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2001       // Make sure to emit the definition(s) before we emit the thunks.
2002       // This is necessary for the generation of certain thunks.
2003       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2004         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2005       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2006         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2007       else
2008         EmitGlobalFunctionDefinition(GD, GV);
2009 
2010       if (Method->isVirtual())
2011         getVTables().EmitThunks(GD);
2012 
2013       return;
2014     }
2015 
2016     return EmitGlobalFunctionDefinition(GD, GV);
2017   }
2018 
2019   if (const auto *VD = dyn_cast<VarDecl>(D))
2020     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2021 
2022   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2023 }
2024 
2025 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2026                                                       llvm::Function *NewFn);
2027 
2028 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2029 /// module, create and return an llvm Function with the specified type. If there
2030 /// is something in the module with the specified name, return it potentially
2031 /// bitcasted to the right type.
2032 ///
2033 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2034 /// to set the attributes on the function when it is first created.
2035 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2036     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2037     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2038     ForDefinition_t IsForDefinition) {
2039   const Decl *D = GD.getDecl();
2040 
2041   // Lookup the entry, lazily creating it if necessary.
2042   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2043   if (Entry) {
2044     if (WeakRefReferences.erase(Entry)) {
2045       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2046       if (FD && !FD->hasAttr<WeakAttr>())
2047         Entry->setLinkage(llvm::Function::ExternalLinkage);
2048     }
2049 
2050     // Handle dropped DLL attributes.
2051     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2052       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2053 
2054     // If there are two attempts to define the same mangled name, issue an
2055     // error.
2056     if (IsForDefinition && !Entry->isDeclaration()) {
2057       GlobalDecl OtherGD;
2058       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2059       // to make sure that we issue an error only once.
2060       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2061           (GD.getCanonicalDecl().getDecl() !=
2062            OtherGD.getCanonicalDecl().getDecl()) &&
2063           DiagnosedConflictingDefinitions.insert(GD).second) {
2064         getDiags().Report(D->getLocation(),
2065                           diag::err_duplicate_mangled_name);
2066         getDiags().Report(OtherGD.getDecl()->getLocation(),
2067                           diag::note_previous_definition);
2068       }
2069     }
2070 
2071     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2072         (Entry->getType()->getElementType() == Ty)) {
2073       return Entry;
2074     }
2075 
2076     // Make sure the result is of the correct type.
2077     // (If function is requested for a definition, we always need to create a new
2078     // function, not just return a bitcast.)
2079     if (!IsForDefinition)
2080       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2081   }
2082 
2083   // This function doesn't have a complete type (for example, the return
2084   // type is an incomplete struct). Use a fake type instead, and make
2085   // sure not to try to set attributes.
2086   bool IsIncompleteFunction = false;
2087 
2088   llvm::FunctionType *FTy;
2089   if (isa<llvm::FunctionType>(Ty)) {
2090     FTy = cast<llvm::FunctionType>(Ty);
2091   } else {
2092     FTy = llvm::FunctionType::get(VoidTy, false);
2093     IsIncompleteFunction = true;
2094   }
2095 
2096   llvm::Function *F =
2097       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2098                              Entry ? StringRef() : MangledName, &getModule());
2099 
2100   // If we already created a function with the same mangled name (but different
2101   // type) before, take its name and add it to the list of functions to be
2102   // replaced with F at the end of CodeGen.
2103   //
2104   // This happens if there is a prototype for a function (e.g. "int f()") and
2105   // then a definition of a different type (e.g. "int f(int x)").
2106   if (Entry) {
2107     F->takeName(Entry);
2108 
2109     // This might be an implementation of a function without a prototype, in
2110     // which case, try to do special replacement of calls which match the new
2111     // prototype.  The really key thing here is that we also potentially drop
2112     // arguments from the call site so as to make a direct call, which makes the
2113     // inliner happier and suppresses a number of optimizer warnings (!) about
2114     // dropping arguments.
2115     if (!Entry->use_empty()) {
2116       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2117       Entry->removeDeadConstantUsers();
2118     }
2119 
2120     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2121         F, Entry->getType()->getElementType()->getPointerTo());
2122     addGlobalValReplacement(Entry, BC);
2123   }
2124 
2125   assert(F->getName() == MangledName && "name was uniqued!");
2126   if (D)
2127     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2128   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2129     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2130     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2131   }
2132 
2133   if (!DontDefer) {
2134     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2135     // each other bottoming out with the base dtor.  Therefore we emit non-base
2136     // dtors on usage, even if there is no dtor definition in the TU.
2137     if (D && isa<CXXDestructorDecl>(D) &&
2138         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2139                                            GD.getDtorType()))
2140       addDeferredDeclToEmit(GD);
2141 
2142     // This is the first use or definition of a mangled name.  If there is a
2143     // deferred decl with this name, remember that we need to emit it at the end
2144     // of the file.
2145     auto DDI = DeferredDecls.find(MangledName);
2146     if (DDI != DeferredDecls.end()) {
2147       // Move the potentially referenced deferred decl to the
2148       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2149       // don't need it anymore).
2150       addDeferredDeclToEmit(DDI->second);
2151       DeferredDecls.erase(DDI);
2152 
2153       // Otherwise, there are cases we have to worry about where we're
2154       // using a declaration for which we must emit a definition but where
2155       // we might not find a top-level definition:
2156       //   - member functions defined inline in their classes
2157       //   - friend functions defined inline in some class
2158       //   - special member functions with implicit definitions
2159       // If we ever change our AST traversal to walk into class methods,
2160       // this will be unnecessary.
2161       //
2162       // We also don't emit a definition for a function if it's going to be an
2163       // entry in a vtable, unless it's already marked as used.
2164     } else if (getLangOpts().CPlusPlus && D) {
2165       // Look for a declaration that's lexically in a record.
2166       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2167            FD = FD->getPreviousDecl()) {
2168         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2169           if (FD->doesThisDeclarationHaveABody()) {
2170             addDeferredDeclToEmit(GD.getWithDecl(FD));
2171             break;
2172           }
2173         }
2174       }
2175     }
2176   }
2177 
2178   // Make sure the result is of the requested type.
2179   if (!IsIncompleteFunction) {
2180     assert(F->getType()->getElementType() == Ty);
2181     return F;
2182   }
2183 
2184   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2185   return llvm::ConstantExpr::getBitCast(F, PTy);
2186 }
2187 
2188 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2189 /// non-null, then this function will use the specified type if it has to
2190 /// create it (this occurs when we see a definition of the function).
2191 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2192                                                  llvm::Type *Ty,
2193                                                  bool ForVTable,
2194                                                  bool DontDefer,
2195                                               ForDefinition_t IsForDefinition) {
2196   // If there was no specific requested type, just convert it now.
2197   if (!Ty) {
2198     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2199     auto CanonTy = Context.getCanonicalType(FD->getType());
2200     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2201   }
2202 
2203   StringRef MangledName = getMangledName(GD);
2204   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2205                                  /*IsThunk=*/false, llvm::AttributeList(),
2206                                  IsForDefinition);
2207 }
2208 
2209 static const FunctionDecl *
2210 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2211   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2212   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2213 
2214   IdentifierInfo &CII = C.Idents.get(Name);
2215   for (const auto &Result : DC->lookup(&CII))
2216     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2217       return FD;
2218 
2219   if (!C.getLangOpts().CPlusPlus)
2220     return nullptr;
2221 
2222   // Demangle the premangled name from getTerminateFn()
2223   IdentifierInfo &CXXII =
2224       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2225           ? C.Idents.get("terminate")
2226           : C.Idents.get(Name);
2227 
2228   for (const auto &N : {"__cxxabiv1", "std"}) {
2229     IdentifierInfo &NS = C.Idents.get(N);
2230     for (const auto &Result : DC->lookup(&NS)) {
2231       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2232       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2233         for (const auto &Result : LSD->lookup(&NS))
2234           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2235             break;
2236 
2237       if (ND)
2238         for (const auto &Result : ND->lookup(&CXXII))
2239           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2240             return FD;
2241     }
2242   }
2243 
2244   return nullptr;
2245 }
2246 
2247 /// CreateRuntimeFunction - Create a new runtime function with the specified
2248 /// type and name.
2249 llvm::Constant *
2250 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2251                                      llvm::AttributeList ExtraAttrs,
2252                                      bool Local) {
2253   llvm::Constant *C =
2254       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2255                               /*DontDefer=*/false, /*IsThunk=*/false,
2256                               ExtraAttrs);
2257 
2258   if (auto *F = dyn_cast<llvm::Function>(C)) {
2259     if (F->empty()) {
2260       F->setCallingConv(getRuntimeCC());
2261 
2262       if (!Local && getTriple().isOSBinFormatCOFF() &&
2263           !getCodeGenOpts().LTOVisibilityPublicStd) {
2264         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2265         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2266           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2267           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2268         }
2269       }
2270     }
2271   }
2272 
2273   return C;
2274 }
2275 
2276 /// CreateBuiltinFunction - Create a new builtin function with the specified
2277 /// type and name.
2278 llvm::Constant *
2279 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2280                                      llvm::AttributeList ExtraAttrs) {
2281   llvm::Constant *C =
2282       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2283                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2284   if (auto *F = dyn_cast<llvm::Function>(C))
2285     if (F->empty())
2286       F->setCallingConv(getBuiltinCC());
2287   return C;
2288 }
2289 
2290 /// isTypeConstant - Determine whether an object of this type can be emitted
2291 /// as a constant.
2292 ///
2293 /// If ExcludeCtor is true, the duration when the object's constructor runs
2294 /// will not be considered. The caller will need to verify that the object is
2295 /// not written to during its construction.
2296 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2297   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2298     return false;
2299 
2300   if (Context.getLangOpts().CPlusPlus) {
2301     if (const CXXRecordDecl *Record
2302           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2303       return ExcludeCtor && !Record->hasMutableFields() &&
2304              Record->hasTrivialDestructor();
2305   }
2306 
2307   return true;
2308 }
2309 
2310 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2311 /// create and return an llvm GlobalVariable with the specified type.  If there
2312 /// is something in the module with the specified name, return it potentially
2313 /// bitcasted to the right type.
2314 ///
2315 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2316 /// to set the attributes on the global when it is first created.
2317 ///
2318 /// If IsForDefinition is true, it is guranteed that an actual global with
2319 /// type Ty will be returned, not conversion of a variable with the same
2320 /// mangled name but some other type.
2321 llvm::Constant *
2322 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2323                                      llvm::PointerType *Ty,
2324                                      const VarDecl *D,
2325                                      ForDefinition_t IsForDefinition) {
2326   // Lookup the entry, lazily creating it if necessary.
2327   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2328   if (Entry) {
2329     if (WeakRefReferences.erase(Entry)) {
2330       if (D && !D->hasAttr<WeakAttr>())
2331         Entry->setLinkage(llvm::Function::ExternalLinkage);
2332     }
2333 
2334     // Handle dropped DLL attributes.
2335     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2336       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2337 
2338     if (Entry->getType() == Ty)
2339       return Entry;
2340 
2341     // If there are two attempts to define the same mangled name, issue an
2342     // error.
2343     if (IsForDefinition && !Entry->isDeclaration()) {
2344       GlobalDecl OtherGD;
2345       const VarDecl *OtherD;
2346 
2347       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2348       // to make sure that we issue an error only once.
2349       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2350           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2351           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2352           OtherD->hasInit() &&
2353           DiagnosedConflictingDefinitions.insert(D).second) {
2354         getDiags().Report(D->getLocation(),
2355                           diag::err_duplicate_mangled_name);
2356         getDiags().Report(OtherGD.getDecl()->getLocation(),
2357                           diag::note_previous_definition);
2358       }
2359     }
2360 
2361     // Make sure the result is of the correct type.
2362     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2363       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2364 
2365     // (If global is requested for a definition, we always need to create a new
2366     // global, not just return a bitcast.)
2367     if (!IsForDefinition)
2368       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2369   }
2370 
2371   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2372   auto *GV = new llvm::GlobalVariable(
2373       getModule(), Ty->getElementType(), false,
2374       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2375       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2376 
2377   // If we already created a global with the same mangled name (but different
2378   // type) before, take its name and remove it from its parent.
2379   if (Entry) {
2380     GV->takeName(Entry);
2381 
2382     if (!Entry->use_empty()) {
2383       llvm::Constant *NewPtrForOldDecl =
2384           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2385       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2386     }
2387 
2388     Entry->eraseFromParent();
2389   }
2390 
2391   // This is the first use or definition of a mangled name.  If there is a
2392   // deferred decl with this name, remember that we need to emit it at the end
2393   // of the file.
2394   auto DDI = DeferredDecls.find(MangledName);
2395   if (DDI != DeferredDecls.end()) {
2396     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2397     // list, and remove it from DeferredDecls (since we don't need it anymore).
2398     addDeferredDeclToEmit(DDI->second);
2399     DeferredDecls.erase(DDI);
2400   }
2401 
2402   // Handle things which are present even on external declarations.
2403   if (D) {
2404     // FIXME: This code is overly simple and should be merged with other global
2405     // handling.
2406     GV->setConstant(isTypeConstant(D->getType(), false));
2407 
2408     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2409 
2410     setLinkageAndVisibilityForGV(GV, D);
2411 
2412     if (D->getTLSKind()) {
2413       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2414         CXXThreadLocals.push_back(D);
2415       setTLSMode(GV, *D);
2416     }
2417 
2418     // If required by the ABI, treat declarations of static data members with
2419     // inline initializers as definitions.
2420     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2421       EmitGlobalVarDefinition(D);
2422     }
2423 
2424     // Handle XCore specific ABI requirements.
2425     if (getTriple().getArch() == llvm::Triple::xcore &&
2426         D->getLanguageLinkage() == CLanguageLinkage &&
2427         D->getType().isConstant(Context) &&
2428         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2429       GV->setSection(".cp.rodata");
2430   }
2431 
2432   if (AddrSpace != Ty->getAddressSpace())
2433     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2434 
2435   return GV;
2436 }
2437 
2438 llvm::Constant *
2439 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2440                                ForDefinition_t IsForDefinition) {
2441   const Decl *D = GD.getDecl();
2442   if (isa<CXXConstructorDecl>(D))
2443     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2444                                 getFromCtorType(GD.getCtorType()),
2445                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2446                                 /*DontDefer=*/false, IsForDefinition);
2447   else if (isa<CXXDestructorDecl>(D))
2448     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2449                                 getFromDtorType(GD.getDtorType()),
2450                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2451                                 /*DontDefer=*/false, IsForDefinition);
2452   else if (isa<CXXMethodDecl>(D)) {
2453     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2454         cast<CXXMethodDecl>(D));
2455     auto Ty = getTypes().GetFunctionType(*FInfo);
2456     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2457                              IsForDefinition);
2458   } else if (isa<FunctionDecl>(D)) {
2459     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2460     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2461     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2462                              IsForDefinition);
2463   } else
2464     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2465                               IsForDefinition);
2466 }
2467 
2468 llvm::GlobalVariable *
2469 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2470                                       llvm::Type *Ty,
2471                                       llvm::GlobalValue::LinkageTypes Linkage) {
2472   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2473   llvm::GlobalVariable *OldGV = nullptr;
2474 
2475   if (GV) {
2476     // Check if the variable has the right type.
2477     if (GV->getType()->getElementType() == Ty)
2478       return GV;
2479 
2480     // Because C++ name mangling, the only way we can end up with an already
2481     // existing global with the same name is if it has been declared extern "C".
2482     assert(GV->isDeclaration() && "Declaration has wrong type!");
2483     OldGV = GV;
2484   }
2485 
2486   // Create a new variable.
2487   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2488                                 Linkage, nullptr, Name);
2489 
2490   if (OldGV) {
2491     // Replace occurrences of the old variable if needed.
2492     GV->takeName(OldGV);
2493 
2494     if (!OldGV->use_empty()) {
2495       llvm::Constant *NewPtrForOldDecl =
2496       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2497       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2498     }
2499 
2500     OldGV->eraseFromParent();
2501   }
2502 
2503   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2504       !GV->hasAvailableExternallyLinkage())
2505     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2506 
2507   return GV;
2508 }
2509 
2510 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2511 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2512 /// then it will be created with the specified type instead of whatever the
2513 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2514 /// that an actual global with type Ty will be returned, not conversion of a
2515 /// variable with the same mangled name but some other type.
2516 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2517                                                   llvm::Type *Ty,
2518                                            ForDefinition_t IsForDefinition) {
2519   assert(D->hasGlobalStorage() && "Not a global variable");
2520   QualType ASTTy = D->getType();
2521   if (!Ty)
2522     Ty = getTypes().ConvertTypeForMem(ASTTy);
2523 
2524   llvm::PointerType *PTy =
2525     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2526 
2527   StringRef MangledName = getMangledName(D);
2528   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2529 }
2530 
2531 /// CreateRuntimeVariable - Create a new runtime global variable with the
2532 /// specified type and name.
2533 llvm::Constant *
2534 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2535                                      StringRef Name) {
2536   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2537 }
2538 
2539 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2540   assert(!D->getInit() && "Cannot emit definite definitions here!");
2541 
2542   StringRef MangledName = getMangledName(D);
2543   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2544 
2545   // We already have a definition, not declaration, with the same mangled name.
2546   // Emitting of declaration is not required (and actually overwrites emitted
2547   // definition).
2548   if (GV && !GV->isDeclaration())
2549     return;
2550 
2551   // If we have not seen a reference to this variable yet, place it into the
2552   // deferred declarations table to be emitted if needed later.
2553   if (!MustBeEmitted(D) && !GV) {
2554       DeferredDecls[MangledName] = D;
2555       return;
2556   }
2557 
2558   // The tentative definition is the only definition.
2559   EmitGlobalVarDefinition(D);
2560 }
2561 
2562 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2563   return Context.toCharUnitsFromBits(
2564       getDataLayout().getTypeStoreSizeInBits(Ty));
2565 }
2566 
2567 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2568                                                  unsigned AddrSpace) {
2569   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2570     if (D->hasAttr<CUDAConstantAttr>())
2571       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2572     else if (D->hasAttr<CUDASharedAttr>())
2573       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2574     else
2575       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2576   }
2577 
2578   return AddrSpace;
2579 }
2580 
2581 template<typename SomeDecl>
2582 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2583                                                llvm::GlobalValue *GV) {
2584   if (!getLangOpts().CPlusPlus)
2585     return;
2586 
2587   // Must have 'used' attribute, or else inline assembly can't rely on
2588   // the name existing.
2589   if (!D->template hasAttr<UsedAttr>())
2590     return;
2591 
2592   // Must have internal linkage and an ordinary name.
2593   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2594     return;
2595 
2596   // Must be in an extern "C" context. Entities declared directly within
2597   // a record are not extern "C" even if the record is in such a context.
2598   const SomeDecl *First = D->getFirstDecl();
2599   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2600     return;
2601 
2602   // OK, this is an internal linkage entity inside an extern "C" linkage
2603   // specification. Make a note of that so we can give it the "expected"
2604   // mangled name if nothing else is using that name.
2605   std::pair<StaticExternCMap::iterator, bool> R =
2606       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2607 
2608   // If we have multiple internal linkage entities with the same name
2609   // in extern "C" regions, none of them gets that name.
2610   if (!R.second)
2611     R.first->second = nullptr;
2612 }
2613 
2614 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2615   if (!CGM.supportsCOMDAT())
2616     return false;
2617 
2618   if (D.hasAttr<SelectAnyAttr>())
2619     return true;
2620 
2621   GVALinkage Linkage;
2622   if (auto *VD = dyn_cast<VarDecl>(&D))
2623     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2624   else
2625     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2626 
2627   switch (Linkage) {
2628   case GVA_Internal:
2629   case GVA_AvailableExternally:
2630   case GVA_StrongExternal:
2631     return false;
2632   case GVA_DiscardableODR:
2633   case GVA_StrongODR:
2634     return true;
2635   }
2636   llvm_unreachable("No such linkage");
2637 }
2638 
2639 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2640                                           llvm::GlobalObject &GO) {
2641   if (!shouldBeInCOMDAT(*this, D))
2642     return;
2643   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2644 }
2645 
2646 /// Pass IsTentative as true if you want to create a tentative definition.
2647 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2648                                             bool IsTentative) {
2649   // OpenCL global variables of sampler type are translated to function calls,
2650   // therefore no need to be translated.
2651   QualType ASTTy = D->getType();
2652   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2653     return;
2654 
2655   llvm::Constant *Init = nullptr;
2656   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2657   bool NeedsGlobalCtor = false;
2658   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2659 
2660   const VarDecl *InitDecl;
2661   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2662 
2663   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2664   // as part of their declaration."  Sema has already checked for
2665   // error cases, so we just need to set Init to UndefValue.
2666   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2667       D->hasAttr<CUDASharedAttr>())
2668     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2669   else if (!InitExpr) {
2670     // This is a tentative definition; tentative definitions are
2671     // implicitly initialized with { 0 }.
2672     //
2673     // Note that tentative definitions are only emitted at the end of
2674     // a translation unit, so they should never have incomplete
2675     // type. In addition, EmitTentativeDefinition makes sure that we
2676     // never attempt to emit a tentative definition if a real one
2677     // exists. A use may still exists, however, so we still may need
2678     // to do a RAUW.
2679     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2680     Init = EmitNullConstant(D->getType());
2681   } else {
2682     initializedGlobalDecl = GlobalDecl(D);
2683     Init = EmitConstantInit(*InitDecl);
2684 
2685     if (!Init) {
2686       QualType T = InitExpr->getType();
2687       if (D->getType()->isReferenceType())
2688         T = D->getType();
2689 
2690       if (getLangOpts().CPlusPlus) {
2691         Init = EmitNullConstant(T);
2692         NeedsGlobalCtor = true;
2693       } else {
2694         ErrorUnsupported(D, "static initializer");
2695         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2696       }
2697     } else {
2698       // We don't need an initializer, so remove the entry for the delayed
2699       // initializer position (just in case this entry was delayed) if we
2700       // also don't need to register a destructor.
2701       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2702         DelayedCXXInitPosition.erase(D);
2703     }
2704   }
2705 
2706   llvm::Type* InitType = Init->getType();
2707   llvm::Constant *Entry =
2708       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2709 
2710   // Strip off a bitcast if we got one back.
2711   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2712     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2713            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2714            // All zero index gep.
2715            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2716     Entry = CE->getOperand(0);
2717   }
2718 
2719   // Entry is now either a Function or GlobalVariable.
2720   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2721 
2722   // We have a definition after a declaration with the wrong type.
2723   // We must make a new GlobalVariable* and update everything that used OldGV
2724   // (a declaration or tentative definition) with the new GlobalVariable*
2725   // (which will be a definition).
2726   //
2727   // This happens if there is a prototype for a global (e.g.
2728   // "extern int x[];") and then a definition of a different type (e.g.
2729   // "int x[10];"). This also happens when an initializer has a different type
2730   // from the type of the global (this happens with unions).
2731   if (!GV ||
2732       GV->getType()->getElementType() != InitType ||
2733       GV->getType()->getAddressSpace() !=
2734        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2735 
2736     // Move the old entry aside so that we'll create a new one.
2737     Entry->setName(StringRef());
2738 
2739     // Make a new global with the correct type, this is now guaranteed to work.
2740     GV = cast<llvm::GlobalVariable>(
2741         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2742 
2743     // Replace all uses of the old global with the new global
2744     llvm::Constant *NewPtrForOldDecl =
2745         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2746     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2747 
2748     // Erase the old global, since it is no longer used.
2749     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2750   }
2751 
2752   MaybeHandleStaticInExternC(D, GV);
2753 
2754   if (D->hasAttr<AnnotateAttr>())
2755     AddGlobalAnnotations(D, GV);
2756 
2757   // Set the llvm linkage type as appropriate.
2758   llvm::GlobalValue::LinkageTypes Linkage =
2759       getLLVMLinkageVarDefinition(D, GV->isConstant());
2760 
2761   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2762   // the device. [...]"
2763   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2764   // __device__, declares a variable that: [...]
2765   // Is accessible from all the threads within the grid and from the host
2766   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2767   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2768   if (GV && LangOpts.CUDA) {
2769     if (LangOpts.CUDAIsDevice) {
2770       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2771         GV->setExternallyInitialized(true);
2772     } else {
2773       // Host-side shadows of external declarations of device-side
2774       // global variables become internal definitions. These have to
2775       // be internal in order to prevent name conflicts with global
2776       // host variables with the same name in a different TUs.
2777       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2778         Linkage = llvm::GlobalValue::InternalLinkage;
2779 
2780         // Shadow variables and their properties must be registered
2781         // with CUDA runtime.
2782         unsigned Flags = 0;
2783         if (!D->hasDefinition())
2784           Flags |= CGCUDARuntime::ExternDeviceVar;
2785         if (D->hasAttr<CUDAConstantAttr>())
2786           Flags |= CGCUDARuntime::ConstantDeviceVar;
2787         getCUDARuntime().registerDeviceVar(*GV, Flags);
2788       } else if (D->hasAttr<CUDASharedAttr>())
2789         // __shared__ variables are odd. Shadows do get created, but
2790         // they are not registered with the CUDA runtime, so they
2791         // can't really be used to access their device-side
2792         // counterparts. It's not clear yet whether it's nvcc's bug or
2793         // a feature, but we've got to do the same for compatibility.
2794         Linkage = llvm::GlobalValue::InternalLinkage;
2795     }
2796   }
2797   GV->setInitializer(Init);
2798 
2799   // If it is safe to mark the global 'constant', do so now.
2800   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2801                   isTypeConstant(D->getType(), true));
2802 
2803   // If it is in a read-only section, mark it 'constant'.
2804   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2805     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2806     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2807       GV->setConstant(true);
2808   }
2809 
2810   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2811 
2812 
2813   // On Darwin, if the normal linkage of a C++ thread_local variable is
2814   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2815   // copies within a linkage unit; otherwise, the backing variable has
2816   // internal linkage and all accesses should just be calls to the
2817   // Itanium-specified entry point, which has the normal linkage of the
2818   // variable. This is to preserve the ability to change the implementation
2819   // behind the scenes.
2820   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2821       Context.getTargetInfo().getTriple().isOSDarwin() &&
2822       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2823       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2824     Linkage = llvm::GlobalValue::InternalLinkage;
2825 
2826   GV->setLinkage(Linkage);
2827   if (D->hasAttr<DLLImportAttr>())
2828     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2829   else if (D->hasAttr<DLLExportAttr>())
2830     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2831   else
2832     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2833 
2834   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2835     // common vars aren't constant even if declared const.
2836     GV->setConstant(false);
2837     // Tentative definition of global variables may be initialized with
2838     // non-zero null pointers. In this case they should have weak linkage
2839     // since common linkage must have zero initializer and must not have
2840     // explicit section therefore cannot have non-zero initial value.
2841     if (!GV->getInitializer()->isNullValue())
2842       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2843   }
2844 
2845   setNonAliasAttributes(D, GV);
2846 
2847   if (D->getTLSKind() && !GV->isThreadLocal()) {
2848     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2849       CXXThreadLocals.push_back(D);
2850     setTLSMode(GV, *D);
2851   }
2852 
2853   maybeSetTrivialComdat(*D, *GV);
2854 
2855   // Emit the initializer function if necessary.
2856   if (NeedsGlobalCtor || NeedsGlobalDtor)
2857     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2858 
2859   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2860 
2861   // Emit global variable debug information.
2862   if (CGDebugInfo *DI = getModuleDebugInfo())
2863     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2864       DI->EmitGlobalVariable(GV, D);
2865 }
2866 
2867 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2868                                       CodeGenModule &CGM, const VarDecl *D,
2869                                       bool NoCommon) {
2870   // Don't give variables common linkage if -fno-common was specified unless it
2871   // was overridden by a NoCommon attribute.
2872   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2873     return true;
2874 
2875   // C11 6.9.2/2:
2876   //   A declaration of an identifier for an object that has file scope without
2877   //   an initializer, and without a storage-class specifier or with the
2878   //   storage-class specifier static, constitutes a tentative definition.
2879   if (D->getInit() || D->hasExternalStorage())
2880     return true;
2881 
2882   // A variable cannot be both common and exist in a section.
2883   if (D->hasAttr<SectionAttr>())
2884     return true;
2885 
2886   // A variable cannot be both common and exist in a section.
2887   // We dont try to determine which is the right section in the front-end.
2888   // If no specialized section name is applicable, it will resort to default.
2889   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
2890       D->hasAttr<PragmaClangDataSectionAttr>() ||
2891       D->hasAttr<PragmaClangRodataSectionAttr>())
2892     return true;
2893 
2894   // Thread local vars aren't considered common linkage.
2895   if (D->getTLSKind())
2896     return true;
2897 
2898   // Tentative definitions marked with WeakImportAttr are true definitions.
2899   if (D->hasAttr<WeakImportAttr>())
2900     return true;
2901 
2902   // A variable cannot be both common and exist in a comdat.
2903   if (shouldBeInCOMDAT(CGM, *D))
2904     return true;
2905 
2906   // Declarations with a required alignment do not have common linkage in MSVC
2907   // mode.
2908   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2909     if (D->hasAttr<AlignedAttr>())
2910       return true;
2911     QualType VarType = D->getType();
2912     if (Context.isAlignmentRequired(VarType))
2913       return true;
2914 
2915     if (const auto *RT = VarType->getAs<RecordType>()) {
2916       const RecordDecl *RD = RT->getDecl();
2917       for (const FieldDecl *FD : RD->fields()) {
2918         if (FD->isBitField())
2919           continue;
2920         if (FD->hasAttr<AlignedAttr>())
2921           return true;
2922         if (Context.isAlignmentRequired(FD->getType()))
2923           return true;
2924       }
2925     }
2926   }
2927 
2928   return false;
2929 }
2930 
2931 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2932     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2933   if (Linkage == GVA_Internal)
2934     return llvm::Function::InternalLinkage;
2935 
2936   if (D->hasAttr<WeakAttr>()) {
2937     if (IsConstantVariable)
2938       return llvm::GlobalVariable::WeakODRLinkage;
2939     else
2940       return llvm::GlobalVariable::WeakAnyLinkage;
2941   }
2942 
2943   // We are guaranteed to have a strong definition somewhere else,
2944   // so we can use available_externally linkage.
2945   if (Linkage == GVA_AvailableExternally)
2946     return llvm::GlobalValue::AvailableExternallyLinkage;
2947 
2948   // Note that Apple's kernel linker doesn't support symbol
2949   // coalescing, so we need to avoid linkonce and weak linkages there.
2950   // Normally, this means we just map to internal, but for explicit
2951   // instantiations we'll map to external.
2952 
2953   // In C++, the compiler has to emit a definition in every translation unit
2954   // that references the function.  We should use linkonce_odr because
2955   // a) if all references in this translation unit are optimized away, we
2956   // don't need to codegen it.  b) if the function persists, it needs to be
2957   // merged with other definitions. c) C++ has the ODR, so we know the
2958   // definition is dependable.
2959   if (Linkage == GVA_DiscardableODR)
2960     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2961                                             : llvm::Function::InternalLinkage;
2962 
2963   // An explicit instantiation of a template has weak linkage, since
2964   // explicit instantiations can occur in multiple translation units
2965   // and must all be equivalent. However, we are not allowed to
2966   // throw away these explicit instantiations.
2967   //
2968   // We don't currently support CUDA device code spread out across multiple TUs,
2969   // so say that CUDA templates are either external (for kernels) or internal.
2970   // This lets llvm perform aggressive inter-procedural optimizations.
2971   if (Linkage == GVA_StrongODR) {
2972     if (Context.getLangOpts().AppleKext)
2973       return llvm::Function::ExternalLinkage;
2974     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2975       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2976                                           : llvm::Function::InternalLinkage;
2977     return llvm::Function::WeakODRLinkage;
2978   }
2979 
2980   // C++ doesn't have tentative definitions and thus cannot have common
2981   // linkage.
2982   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2983       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2984                                  CodeGenOpts.NoCommon))
2985     return llvm::GlobalVariable::CommonLinkage;
2986 
2987   // selectany symbols are externally visible, so use weak instead of
2988   // linkonce.  MSVC optimizes away references to const selectany globals, so
2989   // all definitions should be the same and ODR linkage should be used.
2990   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2991   if (D->hasAttr<SelectAnyAttr>())
2992     return llvm::GlobalVariable::WeakODRLinkage;
2993 
2994   // Otherwise, we have strong external linkage.
2995   assert(Linkage == GVA_StrongExternal);
2996   return llvm::GlobalVariable::ExternalLinkage;
2997 }
2998 
2999 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3000     const VarDecl *VD, bool IsConstant) {
3001   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3002   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3003 }
3004 
3005 /// Replace the uses of a function that was declared with a non-proto type.
3006 /// We want to silently drop extra arguments from call sites
3007 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3008                                           llvm::Function *newFn) {
3009   // Fast path.
3010   if (old->use_empty()) return;
3011 
3012   llvm::Type *newRetTy = newFn->getReturnType();
3013   SmallVector<llvm::Value*, 4> newArgs;
3014   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3015 
3016   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3017          ui != ue; ) {
3018     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3019     llvm::User *user = use->getUser();
3020 
3021     // Recognize and replace uses of bitcasts.  Most calls to
3022     // unprototyped functions will use bitcasts.
3023     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3024       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3025         replaceUsesOfNonProtoConstant(bitcast, newFn);
3026       continue;
3027     }
3028 
3029     // Recognize calls to the function.
3030     llvm::CallSite callSite(user);
3031     if (!callSite) continue;
3032     if (!callSite.isCallee(&*use)) continue;
3033 
3034     // If the return types don't match exactly, then we can't
3035     // transform this call unless it's dead.
3036     if (callSite->getType() != newRetTy && !callSite->use_empty())
3037       continue;
3038 
3039     // Get the call site's attribute list.
3040     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3041     llvm::AttributeList oldAttrs = callSite.getAttributes();
3042 
3043     // If the function was passed too few arguments, don't transform.
3044     unsigned newNumArgs = newFn->arg_size();
3045     if (callSite.arg_size() < newNumArgs) continue;
3046 
3047     // If extra arguments were passed, we silently drop them.
3048     // If any of the types mismatch, we don't transform.
3049     unsigned argNo = 0;
3050     bool dontTransform = false;
3051     for (llvm::Argument &A : newFn->args()) {
3052       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3053         dontTransform = true;
3054         break;
3055       }
3056 
3057       // Add any parameter attributes.
3058       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3059       argNo++;
3060     }
3061     if (dontTransform)
3062       continue;
3063 
3064     // Okay, we can transform this.  Create the new call instruction and copy
3065     // over the required information.
3066     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3067 
3068     // Copy over any operand bundles.
3069     callSite.getOperandBundlesAsDefs(newBundles);
3070 
3071     llvm::CallSite newCall;
3072     if (callSite.isCall()) {
3073       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3074                                        callSite.getInstruction());
3075     } else {
3076       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3077       newCall = llvm::InvokeInst::Create(newFn,
3078                                          oldInvoke->getNormalDest(),
3079                                          oldInvoke->getUnwindDest(),
3080                                          newArgs, newBundles, "",
3081                                          callSite.getInstruction());
3082     }
3083     newArgs.clear(); // for the next iteration
3084 
3085     if (!newCall->getType()->isVoidTy())
3086       newCall->takeName(callSite.getInstruction());
3087     newCall.setAttributes(llvm::AttributeList::get(
3088         newFn->getContext(), oldAttrs.getFnAttributes(),
3089         oldAttrs.getRetAttributes(), newArgAttrs));
3090     newCall.setCallingConv(callSite.getCallingConv());
3091 
3092     // Finally, remove the old call, replacing any uses with the new one.
3093     if (!callSite->use_empty())
3094       callSite->replaceAllUsesWith(newCall.getInstruction());
3095 
3096     // Copy debug location attached to CI.
3097     if (callSite->getDebugLoc())
3098       newCall->setDebugLoc(callSite->getDebugLoc());
3099 
3100     callSite->eraseFromParent();
3101   }
3102 }
3103 
3104 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3105 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3106 /// existing call uses of the old function in the module, this adjusts them to
3107 /// call the new function directly.
3108 ///
3109 /// This is not just a cleanup: the always_inline pass requires direct calls to
3110 /// functions to be able to inline them.  If there is a bitcast in the way, it
3111 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3112 /// run at -O0.
3113 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3114                                                       llvm::Function *NewFn) {
3115   // If we're redefining a global as a function, don't transform it.
3116   if (!isa<llvm::Function>(Old)) return;
3117 
3118   replaceUsesOfNonProtoConstant(Old, NewFn);
3119 }
3120 
3121 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3122   auto DK = VD->isThisDeclarationADefinition();
3123   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3124     return;
3125 
3126   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3127   // If we have a definition, this might be a deferred decl. If the
3128   // instantiation is explicit, make sure we emit it at the end.
3129   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3130     GetAddrOfGlobalVar(VD);
3131 
3132   EmitTopLevelDecl(VD);
3133 }
3134 
3135 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3136                                                  llvm::GlobalValue *GV) {
3137   const auto *D = cast<FunctionDecl>(GD.getDecl());
3138 
3139   // Compute the function info and LLVM type.
3140   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3141   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3142 
3143   // Get or create the prototype for the function.
3144   if (!GV || (GV->getType()->getElementType() != Ty))
3145     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3146                                                    /*DontDefer=*/true,
3147                                                    ForDefinition));
3148 
3149   // Already emitted.
3150   if (!GV->isDeclaration())
3151     return;
3152 
3153   // We need to set linkage and visibility on the function before
3154   // generating code for it because various parts of IR generation
3155   // want to propagate this information down (e.g. to local static
3156   // declarations).
3157   auto *Fn = cast<llvm::Function>(GV);
3158   setFunctionLinkage(GD, Fn);
3159   setFunctionDLLStorageClass(GD, Fn);
3160 
3161   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3162   setGlobalVisibility(Fn, D);
3163 
3164   MaybeHandleStaticInExternC(D, Fn);
3165 
3166   maybeSetTrivialComdat(*D, *Fn);
3167 
3168   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3169 
3170   setFunctionDefinitionAttributes(D, Fn);
3171   SetLLVMFunctionAttributesForDefinition(D, Fn);
3172 
3173   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3174     AddGlobalCtor(Fn, CA->getPriority());
3175   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3176     AddGlobalDtor(Fn, DA->getPriority());
3177   if (D->hasAttr<AnnotateAttr>())
3178     AddGlobalAnnotations(D, Fn);
3179 }
3180 
3181 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3182   const auto *D = cast<ValueDecl>(GD.getDecl());
3183   const AliasAttr *AA = D->getAttr<AliasAttr>();
3184   assert(AA && "Not an alias?");
3185 
3186   StringRef MangledName = getMangledName(GD);
3187 
3188   if (AA->getAliasee() == MangledName) {
3189     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3190     return;
3191   }
3192 
3193   // If there is a definition in the module, then it wins over the alias.
3194   // This is dubious, but allow it to be safe.  Just ignore the alias.
3195   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3196   if (Entry && !Entry->isDeclaration())
3197     return;
3198 
3199   Aliases.push_back(GD);
3200 
3201   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3202 
3203   // Create a reference to the named value.  This ensures that it is emitted
3204   // if a deferred decl.
3205   llvm::Constant *Aliasee;
3206   if (isa<llvm::FunctionType>(DeclTy))
3207     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3208                                       /*ForVTable=*/false);
3209   else
3210     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3211                                     llvm::PointerType::getUnqual(DeclTy),
3212                                     /*D=*/nullptr);
3213 
3214   // Create the new alias itself, but don't set a name yet.
3215   auto *GA = llvm::GlobalAlias::create(
3216       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3217 
3218   if (Entry) {
3219     if (GA->getAliasee() == Entry) {
3220       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3221       return;
3222     }
3223 
3224     assert(Entry->isDeclaration());
3225 
3226     // If there is a declaration in the module, then we had an extern followed
3227     // by the alias, as in:
3228     //   extern int test6();
3229     //   ...
3230     //   int test6() __attribute__((alias("test7")));
3231     //
3232     // Remove it and replace uses of it with the alias.
3233     GA->takeName(Entry);
3234 
3235     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3236                                                           Entry->getType()));
3237     Entry->eraseFromParent();
3238   } else {
3239     GA->setName(MangledName);
3240   }
3241 
3242   // Set attributes which are particular to an alias; this is a
3243   // specialization of the attributes which may be set on a global
3244   // variable/function.
3245   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3246       D->isWeakImported()) {
3247     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3248   }
3249 
3250   if (const auto *VD = dyn_cast<VarDecl>(D))
3251     if (VD->getTLSKind())
3252       setTLSMode(GA, *VD);
3253 
3254   setAliasAttributes(D, GA);
3255 }
3256 
3257 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3258   const auto *D = cast<ValueDecl>(GD.getDecl());
3259   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3260   assert(IFA && "Not an ifunc?");
3261 
3262   StringRef MangledName = getMangledName(GD);
3263 
3264   if (IFA->getResolver() == MangledName) {
3265     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3266     return;
3267   }
3268 
3269   // Report an error if some definition overrides ifunc.
3270   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3271   if (Entry && !Entry->isDeclaration()) {
3272     GlobalDecl OtherGD;
3273     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3274         DiagnosedConflictingDefinitions.insert(GD).second) {
3275       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3276       Diags.Report(OtherGD.getDecl()->getLocation(),
3277                    diag::note_previous_definition);
3278     }
3279     return;
3280   }
3281 
3282   Aliases.push_back(GD);
3283 
3284   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3285   llvm::Constant *Resolver =
3286       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3287                               /*ForVTable=*/false);
3288   llvm::GlobalIFunc *GIF =
3289       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3290                                 "", Resolver, &getModule());
3291   if (Entry) {
3292     if (GIF->getResolver() == Entry) {
3293       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3294       return;
3295     }
3296     assert(Entry->isDeclaration());
3297 
3298     // If there is a declaration in the module, then we had an extern followed
3299     // by the ifunc, as in:
3300     //   extern int test();
3301     //   ...
3302     //   int test() __attribute__((ifunc("resolver")));
3303     //
3304     // Remove it and replace uses of it with the ifunc.
3305     GIF->takeName(Entry);
3306 
3307     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3308                                                           Entry->getType()));
3309     Entry->eraseFromParent();
3310   } else
3311     GIF->setName(MangledName);
3312 
3313   SetCommonAttributes(D, GIF);
3314 }
3315 
3316 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3317                                             ArrayRef<llvm::Type*> Tys) {
3318   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3319                                          Tys);
3320 }
3321 
3322 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3323 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3324                          const StringLiteral *Literal, bool TargetIsLSB,
3325                          bool &IsUTF16, unsigned &StringLength) {
3326   StringRef String = Literal->getString();
3327   unsigned NumBytes = String.size();
3328 
3329   // Check for simple case.
3330   if (!Literal->containsNonAsciiOrNull()) {
3331     StringLength = NumBytes;
3332     return *Map.insert(std::make_pair(String, nullptr)).first;
3333   }
3334 
3335   // Otherwise, convert the UTF8 literals into a string of shorts.
3336   IsUTF16 = true;
3337 
3338   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3339   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3340   llvm::UTF16 *ToPtr = &ToBuf[0];
3341 
3342   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3343                                  ToPtr + NumBytes, llvm::strictConversion);
3344 
3345   // ConvertUTF8toUTF16 returns the length in ToPtr.
3346   StringLength = ToPtr - &ToBuf[0];
3347 
3348   // Add an explicit null.
3349   *ToPtr = 0;
3350   return *Map.insert(std::make_pair(
3351                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3352                                    (StringLength + 1) * 2),
3353                          nullptr)).first;
3354 }
3355 
3356 ConstantAddress
3357 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3358   unsigned StringLength = 0;
3359   bool isUTF16 = false;
3360   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3361       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3362                                getDataLayout().isLittleEndian(), isUTF16,
3363                                StringLength);
3364 
3365   if (auto *C = Entry.second)
3366     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3367 
3368   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3369   llvm::Constant *Zeros[] = { Zero, Zero };
3370 
3371   // If we don't already have it, get __CFConstantStringClassReference.
3372   if (!CFConstantStringClassRef) {
3373     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3374     Ty = llvm::ArrayType::get(Ty, 0);
3375     llvm::Constant *GV =
3376         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3377 
3378     if (getTriple().isOSBinFormatCOFF()) {
3379       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3380       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3381       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3382       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3383 
3384       const VarDecl *VD = nullptr;
3385       for (const auto &Result : DC->lookup(&II))
3386         if ((VD = dyn_cast<VarDecl>(Result)))
3387           break;
3388 
3389       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3390         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3391         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3392       } else {
3393         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3394         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3395       }
3396     }
3397 
3398     // Decay array -> ptr
3399     CFConstantStringClassRef =
3400         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3401   }
3402 
3403   QualType CFTy = getContext().getCFConstantStringType();
3404 
3405   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3406 
3407   ConstantInitBuilder Builder(*this);
3408   auto Fields = Builder.beginStruct(STy);
3409 
3410   // Class pointer.
3411   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3412 
3413   // Flags.
3414   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3415 
3416   // String pointer.
3417   llvm::Constant *C = nullptr;
3418   if (isUTF16) {
3419     auto Arr = llvm::makeArrayRef(
3420         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3421         Entry.first().size() / 2);
3422     C = llvm::ConstantDataArray::get(VMContext, Arr);
3423   } else {
3424     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3425   }
3426 
3427   // Note: -fwritable-strings doesn't make the backing store strings of
3428   // CFStrings writable. (See <rdar://problem/10657500>)
3429   auto *GV =
3430       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3431                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3432   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3433   // Don't enforce the target's minimum global alignment, since the only use
3434   // of the string is via this class initializer.
3435   CharUnits Align = isUTF16
3436                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3437                         : getContext().getTypeAlignInChars(getContext().CharTy);
3438   GV->setAlignment(Align.getQuantity());
3439 
3440   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3441   // Without it LLVM can merge the string with a non unnamed_addr one during
3442   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3443   if (getTriple().isOSBinFormatMachO())
3444     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3445                            : "__TEXT,__cstring,cstring_literals");
3446 
3447   // String.
3448   llvm::Constant *Str =
3449       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3450 
3451   if (isUTF16)
3452     // Cast the UTF16 string to the correct type.
3453     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3454   Fields.add(Str);
3455 
3456   // String length.
3457   auto Ty = getTypes().ConvertType(getContext().LongTy);
3458   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3459 
3460   CharUnits Alignment = getPointerAlign();
3461 
3462   // The struct.
3463   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3464                                     /*isConstant=*/false,
3465                                     llvm::GlobalVariable::PrivateLinkage);
3466   switch (getTriple().getObjectFormat()) {
3467   case llvm::Triple::UnknownObjectFormat:
3468     llvm_unreachable("unknown file format");
3469   case llvm::Triple::COFF:
3470   case llvm::Triple::ELF:
3471   case llvm::Triple::Wasm:
3472     GV->setSection("cfstring");
3473     break;
3474   case llvm::Triple::MachO:
3475     GV->setSection("__DATA,__cfstring");
3476     break;
3477   }
3478   Entry.second = GV;
3479 
3480   return ConstantAddress(GV, Alignment);
3481 }
3482 
3483 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3484   if (ObjCFastEnumerationStateType.isNull()) {
3485     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3486     D->startDefinition();
3487 
3488     QualType FieldTypes[] = {
3489       Context.UnsignedLongTy,
3490       Context.getPointerType(Context.getObjCIdType()),
3491       Context.getPointerType(Context.UnsignedLongTy),
3492       Context.getConstantArrayType(Context.UnsignedLongTy,
3493                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3494     };
3495 
3496     for (size_t i = 0; i < 4; ++i) {
3497       FieldDecl *Field = FieldDecl::Create(Context,
3498                                            D,
3499                                            SourceLocation(),
3500                                            SourceLocation(), nullptr,
3501                                            FieldTypes[i], /*TInfo=*/nullptr,
3502                                            /*BitWidth=*/nullptr,
3503                                            /*Mutable=*/false,
3504                                            ICIS_NoInit);
3505       Field->setAccess(AS_public);
3506       D->addDecl(Field);
3507     }
3508 
3509     D->completeDefinition();
3510     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3511   }
3512 
3513   return ObjCFastEnumerationStateType;
3514 }
3515 
3516 llvm::Constant *
3517 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3518   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3519 
3520   // Don't emit it as the address of the string, emit the string data itself
3521   // as an inline array.
3522   if (E->getCharByteWidth() == 1) {
3523     SmallString<64> Str(E->getString());
3524 
3525     // Resize the string to the right size, which is indicated by its type.
3526     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3527     Str.resize(CAT->getSize().getZExtValue());
3528     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3529   }
3530 
3531   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3532   llvm::Type *ElemTy = AType->getElementType();
3533   unsigned NumElements = AType->getNumElements();
3534 
3535   // Wide strings have either 2-byte or 4-byte elements.
3536   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3537     SmallVector<uint16_t, 32> Elements;
3538     Elements.reserve(NumElements);
3539 
3540     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3541       Elements.push_back(E->getCodeUnit(i));
3542     Elements.resize(NumElements);
3543     return llvm::ConstantDataArray::get(VMContext, Elements);
3544   }
3545 
3546   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3547   SmallVector<uint32_t, 32> Elements;
3548   Elements.reserve(NumElements);
3549 
3550   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3551     Elements.push_back(E->getCodeUnit(i));
3552   Elements.resize(NumElements);
3553   return llvm::ConstantDataArray::get(VMContext, Elements);
3554 }
3555 
3556 static llvm::GlobalVariable *
3557 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3558                       CodeGenModule &CGM, StringRef GlobalName,
3559                       CharUnits Alignment) {
3560   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3561   unsigned AddrSpace = 0;
3562   if (CGM.getLangOpts().OpenCL)
3563     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3564 
3565   llvm::Module &M = CGM.getModule();
3566   // Create a global variable for this string
3567   auto *GV = new llvm::GlobalVariable(
3568       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3569       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3570   GV->setAlignment(Alignment.getQuantity());
3571   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3572   if (GV->isWeakForLinker()) {
3573     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3574     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3575   }
3576 
3577   return GV;
3578 }
3579 
3580 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3581 /// constant array for the given string literal.
3582 ConstantAddress
3583 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3584                                                   StringRef Name) {
3585   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3586 
3587   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3588   llvm::GlobalVariable **Entry = nullptr;
3589   if (!LangOpts.WritableStrings) {
3590     Entry = &ConstantStringMap[C];
3591     if (auto GV = *Entry) {
3592       if (Alignment.getQuantity() > GV->getAlignment())
3593         GV->setAlignment(Alignment.getQuantity());
3594       return ConstantAddress(GV, Alignment);
3595     }
3596   }
3597 
3598   SmallString<256> MangledNameBuffer;
3599   StringRef GlobalVariableName;
3600   llvm::GlobalValue::LinkageTypes LT;
3601 
3602   // Mangle the string literal if the ABI allows for it.  However, we cannot
3603   // do this if  we are compiling with ASan or -fwritable-strings because they
3604   // rely on strings having normal linkage.
3605   if (!LangOpts.WritableStrings &&
3606       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3607       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3608     llvm::raw_svector_ostream Out(MangledNameBuffer);
3609     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3610 
3611     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3612     GlobalVariableName = MangledNameBuffer;
3613   } else {
3614     LT = llvm::GlobalValue::PrivateLinkage;
3615     GlobalVariableName = Name;
3616   }
3617 
3618   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3619   if (Entry)
3620     *Entry = GV;
3621 
3622   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3623                                   QualType());
3624   return ConstantAddress(GV, Alignment);
3625 }
3626 
3627 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3628 /// array for the given ObjCEncodeExpr node.
3629 ConstantAddress
3630 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3631   std::string Str;
3632   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3633 
3634   return GetAddrOfConstantCString(Str);
3635 }
3636 
3637 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3638 /// the literal and a terminating '\0' character.
3639 /// The result has pointer to array type.
3640 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3641     const std::string &Str, const char *GlobalName) {
3642   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3643   CharUnits Alignment =
3644     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3645 
3646   llvm::Constant *C =
3647       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3648 
3649   // Don't share any string literals if strings aren't constant.
3650   llvm::GlobalVariable **Entry = nullptr;
3651   if (!LangOpts.WritableStrings) {
3652     Entry = &ConstantStringMap[C];
3653     if (auto GV = *Entry) {
3654       if (Alignment.getQuantity() > GV->getAlignment())
3655         GV->setAlignment(Alignment.getQuantity());
3656       return ConstantAddress(GV, Alignment);
3657     }
3658   }
3659 
3660   // Get the default prefix if a name wasn't specified.
3661   if (!GlobalName)
3662     GlobalName = ".str";
3663   // Create a global variable for this.
3664   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3665                                   GlobalName, Alignment);
3666   if (Entry)
3667     *Entry = GV;
3668   return ConstantAddress(GV, Alignment);
3669 }
3670 
3671 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3672     const MaterializeTemporaryExpr *E, const Expr *Init) {
3673   assert((E->getStorageDuration() == SD_Static ||
3674           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3675   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3676 
3677   // If we're not materializing a subobject of the temporary, keep the
3678   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3679   QualType MaterializedType = Init->getType();
3680   if (Init == E->GetTemporaryExpr())
3681     MaterializedType = E->getType();
3682 
3683   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3684 
3685   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3686     return ConstantAddress(Slot, Align);
3687 
3688   // FIXME: If an externally-visible declaration extends multiple temporaries,
3689   // we need to give each temporary the same name in every translation unit (and
3690   // we also need to make the temporaries externally-visible).
3691   SmallString<256> Name;
3692   llvm::raw_svector_ostream Out(Name);
3693   getCXXABI().getMangleContext().mangleReferenceTemporary(
3694       VD, E->getManglingNumber(), Out);
3695 
3696   APValue *Value = nullptr;
3697   if (E->getStorageDuration() == SD_Static) {
3698     // We might have a cached constant initializer for this temporary. Note
3699     // that this might have a different value from the value computed by
3700     // evaluating the initializer if the surrounding constant expression
3701     // modifies the temporary.
3702     Value = getContext().getMaterializedTemporaryValue(E, false);
3703     if (Value && Value->isUninit())
3704       Value = nullptr;
3705   }
3706 
3707   // Try evaluating it now, it might have a constant initializer.
3708   Expr::EvalResult EvalResult;
3709   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3710       !EvalResult.hasSideEffects())
3711     Value = &EvalResult.Val;
3712 
3713   llvm::Constant *InitialValue = nullptr;
3714   bool Constant = false;
3715   llvm::Type *Type;
3716   if (Value) {
3717     // The temporary has a constant initializer, use it.
3718     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3719     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3720     Type = InitialValue->getType();
3721   } else {
3722     // No initializer, the initialization will be provided when we
3723     // initialize the declaration which performed lifetime extension.
3724     Type = getTypes().ConvertTypeForMem(MaterializedType);
3725   }
3726 
3727   // Create a global variable for this lifetime-extended temporary.
3728   llvm::GlobalValue::LinkageTypes Linkage =
3729       getLLVMLinkageVarDefinition(VD, Constant);
3730   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3731     const VarDecl *InitVD;
3732     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3733         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3734       // Temporaries defined inside a class get linkonce_odr linkage because the
3735       // class can be defined in multipe translation units.
3736       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3737     } else {
3738       // There is no need for this temporary to have external linkage if the
3739       // VarDecl has external linkage.
3740       Linkage = llvm::GlobalVariable::InternalLinkage;
3741     }
3742   }
3743   unsigned AddrSpace = GetGlobalVarAddressSpace(
3744       VD, getContext().getTargetAddressSpace(MaterializedType));
3745   auto *GV = new llvm::GlobalVariable(
3746       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3747       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3748       AddrSpace);
3749   setGlobalVisibility(GV, VD);
3750   GV->setAlignment(Align.getQuantity());
3751   if (supportsCOMDAT() && GV->isWeakForLinker())
3752     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3753   if (VD->getTLSKind())
3754     setTLSMode(GV, *VD);
3755   MaterializedGlobalTemporaryMap[E] = GV;
3756   return ConstantAddress(GV, Align);
3757 }
3758 
3759 /// EmitObjCPropertyImplementations - Emit information for synthesized
3760 /// properties for an implementation.
3761 void CodeGenModule::EmitObjCPropertyImplementations(const
3762                                                     ObjCImplementationDecl *D) {
3763   for (const auto *PID : D->property_impls()) {
3764     // Dynamic is just for type-checking.
3765     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3766       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3767 
3768       // Determine which methods need to be implemented, some may have
3769       // been overridden. Note that ::isPropertyAccessor is not the method
3770       // we want, that just indicates if the decl came from a
3771       // property. What we want to know is if the method is defined in
3772       // this implementation.
3773       if (!D->getInstanceMethod(PD->getGetterName()))
3774         CodeGenFunction(*this).GenerateObjCGetter(
3775                                  const_cast<ObjCImplementationDecl *>(D), PID);
3776       if (!PD->isReadOnly() &&
3777           !D->getInstanceMethod(PD->getSetterName()))
3778         CodeGenFunction(*this).GenerateObjCSetter(
3779                                  const_cast<ObjCImplementationDecl *>(D), PID);
3780     }
3781   }
3782 }
3783 
3784 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3785   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3786   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3787        ivar; ivar = ivar->getNextIvar())
3788     if (ivar->getType().isDestructedType())
3789       return true;
3790 
3791   return false;
3792 }
3793 
3794 static bool AllTrivialInitializers(CodeGenModule &CGM,
3795                                    ObjCImplementationDecl *D) {
3796   CodeGenFunction CGF(CGM);
3797   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3798        E = D->init_end(); B != E; ++B) {
3799     CXXCtorInitializer *CtorInitExp = *B;
3800     Expr *Init = CtorInitExp->getInit();
3801     if (!CGF.isTrivialInitializer(Init))
3802       return false;
3803   }
3804   return true;
3805 }
3806 
3807 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3808 /// for an implementation.
3809 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3810   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3811   if (needsDestructMethod(D)) {
3812     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3813     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3814     ObjCMethodDecl *DTORMethod =
3815       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3816                              cxxSelector, getContext().VoidTy, nullptr, D,
3817                              /*isInstance=*/true, /*isVariadic=*/false,
3818                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3819                              /*isDefined=*/false, ObjCMethodDecl::Required);
3820     D->addInstanceMethod(DTORMethod);
3821     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3822     D->setHasDestructors(true);
3823   }
3824 
3825   // If the implementation doesn't have any ivar initializers, we don't need
3826   // a .cxx_construct.
3827   if (D->getNumIvarInitializers() == 0 ||
3828       AllTrivialInitializers(*this, D))
3829     return;
3830 
3831   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3832   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3833   // The constructor returns 'self'.
3834   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3835                                                 D->getLocation(),
3836                                                 D->getLocation(),
3837                                                 cxxSelector,
3838                                                 getContext().getObjCIdType(),
3839                                                 nullptr, D, /*isInstance=*/true,
3840                                                 /*isVariadic=*/false,
3841                                                 /*isPropertyAccessor=*/true,
3842                                                 /*isImplicitlyDeclared=*/true,
3843                                                 /*isDefined=*/false,
3844                                                 ObjCMethodDecl::Required);
3845   D->addInstanceMethod(CTORMethod);
3846   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3847   D->setHasNonZeroConstructors(true);
3848 }
3849 
3850 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3851 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3852   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3853       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3854     ErrorUnsupported(LSD, "linkage spec");
3855     return;
3856   }
3857 
3858   EmitDeclContext(LSD);
3859 }
3860 
3861 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3862   for (auto *I : DC->decls()) {
3863     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3864     // are themselves considered "top-level", so EmitTopLevelDecl on an
3865     // ObjCImplDecl does not recursively visit them. We need to do that in
3866     // case they're nested inside another construct (LinkageSpecDecl /
3867     // ExportDecl) that does stop them from being considered "top-level".
3868     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3869       for (auto *M : OID->methods())
3870         EmitTopLevelDecl(M);
3871     }
3872 
3873     EmitTopLevelDecl(I);
3874   }
3875 }
3876 
3877 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3878 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3879   // Ignore dependent declarations.
3880   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3881     return;
3882 
3883   switch (D->getKind()) {
3884   case Decl::CXXConversion:
3885   case Decl::CXXMethod:
3886   case Decl::Function:
3887     // Skip function templates
3888     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3889         cast<FunctionDecl>(D)->isLateTemplateParsed())
3890       return;
3891 
3892     EmitGlobal(cast<FunctionDecl>(D));
3893     // Always provide some coverage mapping
3894     // even for the functions that aren't emitted.
3895     AddDeferredUnusedCoverageMapping(D);
3896     break;
3897 
3898   case Decl::CXXDeductionGuide:
3899     // Function-like, but does not result in code emission.
3900     break;
3901 
3902   case Decl::Var:
3903   case Decl::Decomposition:
3904     // Skip variable templates
3905     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3906       return;
3907     LLVM_FALLTHROUGH;
3908   case Decl::VarTemplateSpecialization:
3909     EmitGlobal(cast<VarDecl>(D));
3910     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3911       for (auto *B : DD->bindings())
3912         if (auto *HD = B->getHoldingVar())
3913           EmitGlobal(HD);
3914     break;
3915 
3916   // Indirect fields from global anonymous structs and unions can be
3917   // ignored; only the actual variable requires IR gen support.
3918   case Decl::IndirectField:
3919     break;
3920 
3921   // C++ Decls
3922   case Decl::Namespace:
3923     EmitDeclContext(cast<NamespaceDecl>(D));
3924     break;
3925   case Decl::CXXRecord:
3926     if (DebugInfo) {
3927       if (auto *ES = D->getASTContext().getExternalSource())
3928         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3929           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3930     }
3931     // Emit any static data members, they may be definitions.
3932     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3933       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3934         EmitTopLevelDecl(I);
3935     break;
3936     // No code generation needed.
3937   case Decl::UsingShadow:
3938   case Decl::ClassTemplate:
3939   case Decl::VarTemplate:
3940   case Decl::VarTemplatePartialSpecialization:
3941   case Decl::FunctionTemplate:
3942   case Decl::TypeAliasTemplate:
3943   case Decl::Block:
3944   case Decl::Empty:
3945     break;
3946   case Decl::Using:          // using X; [C++]
3947     if (CGDebugInfo *DI = getModuleDebugInfo())
3948         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3949     return;
3950   case Decl::NamespaceAlias:
3951     if (CGDebugInfo *DI = getModuleDebugInfo())
3952         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3953     return;
3954   case Decl::UsingDirective: // using namespace X; [C++]
3955     if (CGDebugInfo *DI = getModuleDebugInfo())
3956       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3957     return;
3958   case Decl::CXXConstructor:
3959     // Skip function templates
3960     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3961         cast<FunctionDecl>(D)->isLateTemplateParsed())
3962       return;
3963 
3964     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3965     break;
3966   case Decl::CXXDestructor:
3967     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3968       return;
3969     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3970     break;
3971 
3972   case Decl::StaticAssert:
3973     // Nothing to do.
3974     break;
3975 
3976   // Objective-C Decls
3977 
3978   // Forward declarations, no (immediate) code generation.
3979   case Decl::ObjCInterface:
3980   case Decl::ObjCCategory:
3981     break;
3982 
3983   case Decl::ObjCProtocol: {
3984     auto *Proto = cast<ObjCProtocolDecl>(D);
3985     if (Proto->isThisDeclarationADefinition())
3986       ObjCRuntime->GenerateProtocol(Proto);
3987     break;
3988   }
3989 
3990   case Decl::ObjCCategoryImpl:
3991     // Categories have properties but don't support synthesize so we
3992     // can ignore them here.
3993     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3994     break;
3995 
3996   case Decl::ObjCImplementation: {
3997     auto *OMD = cast<ObjCImplementationDecl>(D);
3998     EmitObjCPropertyImplementations(OMD);
3999     EmitObjCIvarInitializations(OMD);
4000     ObjCRuntime->GenerateClass(OMD);
4001     // Emit global variable debug information.
4002     if (CGDebugInfo *DI = getModuleDebugInfo())
4003       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4004         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4005             OMD->getClassInterface()), OMD->getLocation());
4006     break;
4007   }
4008   case Decl::ObjCMethod: {
4009     auto *OMD = cast<ObjCMethodDecl>(D);
4010     // If this is not a prototype, emit the body.
4011     if (OMD->getBody())
4012       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4013     break;
4014   }
4015   case Decl::ObjCCompatibleAlias:
4016     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4017     break;
4018 
4019   case Decl::PragmaComment: {
4020     const auto *PCD = cast<PragmaCommentDecl>(D);
4021     switch (PCD->getCommentKind()) {
4022     case PCK_Unknown:
4023       llvm_unreachable("unexpected pragma comment kind");
4024     case PCK_Linker:
4025       AppendLinkerOptions(PCD->getArg());
4026       break;
4027     case PCK_Lib:
4028       AddDependentLib(PCD->getArg());
4029       break;
4030     case PCK_Compiler:
4031     case PCK_ExeStr:
4032     case PCK_User:
4033       break; // We ignore all of these.
4034     }
4035     break;
4036   }
4037 
4038   case Decl::PragmaDetectMismatch: {
4039     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4040     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4041     break;
4042   }
4043 
4044   case Decl::LinkageSpec:
4045     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4046     break;
4047 
4048   case Decl::FileScopeAsm: {
4049     // File-scope asm is ignored during device-side CUDA compilation.
4050     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4051       break;
4052     // File-scope asm is ignored during device-side OpenMP compilation.
4053     if (LangOpts.OpenMPIsDevice)
4054       break;
4055     auto *AD = cast<FileScopeAsmDecl>(D);
4056     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4057     break;
4058   }
4059 
4060   case Decl::Import: {
4061     auto *Import = cast<ImportDecl>(D);
4062 
4063     // If we've already imported this module, we're done.
4064     if (!ImportedModules.insert(Import->getImportedModule()))
4065       break;
4066 
4067     // Emit debug information for direct imports.
4068     if (!Import->getImportedOwningModule()) {
4069       if (CGDebugInfo *DI = getModuleDebugInfo())
4070         DI->EmitImportDecl(*Import);
4071     }
4072 
4073     // Find all of the submodules and emit the module initializers.
4074     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4075     SmallVector<clang::Module *, 16> Stack;
4076     Visited.insert(Import->getImportedModule());
4077     Stack.push_back(Import->getImportedModule());
4078 
4079     while (!Stack.empty()) {
4080       clang::Module *Mod = Stack.pop_back_val();
4081       if (!EmittedModuleInitializers.insert(Mod).second)
4082         continue;
4083 
4084       for (auto *D : Context.getModuleInitializers(Mod))
4085         EmitTopLevelDecl(D);
4086 
4087       // Visit the submodules of this module.
4088       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4089                                              SubEnd = Mod->submodule_end();
4090            Sub != SubEnd; ++Sub) {
4091         // Skip explicit children; they need to be explicitly imported to emit
4092         // the initializers.
4093         if ((*Sub)->IsExplicit)
4094           continue;
4095 
4096         if (Visited.insert(*Sub).second)
4097           Stack.push_back(*Sub);
4098       }
4099     }
4100     break;
4101   }
4102 
4103   case Decl::Export:
4104     EmitDeclContext(cast<ExportDecl>(D));
4105     break;
4106 
4107   case Decl::OMPThreadPrivate:
4108     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4109     break;
4110 
4111   case Decl::ClassTemplateSpecialization: {
4112     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4113     if (DebugInfo &&
4114         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4115         Spec->hasDefinition())
4116       DebugInfo->completeTemplateDefinition(*Spec);
4117     break;
4118   }
4119 
4120   case Decl::OMPDeclareReduction:
4121     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4122     break;
4123 
4124   default:
4125     // Make sure we handled everything we should, every other kind is a
4126     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4127     // function. Need to recode Decl::Kind to do that easily.
4128     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4129     break;
4130   }
4131 }
4132 
4133 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4134   // Do we need to generate coverage mapping?
4135   if (!CodeGenOpts.CoverageMapping)
4136     return;
4137   switch (D->getKind()) {
4138   case Decl::CXXConversion:
4139   case Decl::CXXMethod:
4140   case Decl::Function:
4141   case Decl::ObjCMethod:
4142   case Decl::CXXConstructor:
4143   case Decl::CXXDestructor: {
4144     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4145       return;
4146     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4147     if (I == DeferredEmptyCoverageMappingDecls.end())
4148       DeferredEmptyCoverageMappingDecls[D] = true;
4149     break;
4150   }
4151   default:
4152     break;
4153   };
4154 }
4155 
4156 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4157   // Do we need to generate coverage mapping?
4158   if (!CodeGenOpts.CoverageMapping)
4159     return;
4160   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4161     if (Fn->isTemplateInstantiation())
4162       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4163   }
4164   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4165   if (I == DeferredEmptyCoverageMappingDecls.end())
4166     DeferredEmptyCoverageMappingDecls[D] = false;
4167   else
4168     I->second = false;
4169 }
4170 
4171 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4172   std::vector<const Decl *> DeferredDecls;
4173   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4174     if (!I.second)
4175       continue;
4176     DeferredDecls.push_back(I.first);
4177   }
4178   // Sort the declarations by their location to make sure that the tests get a
4179   // predictable order for the coverage mapping for the unused declarations.
4180   if (CodeGenOpts.DumpCoverageMapping)
4181     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4182               [] (const Decl *LHS, const Decl *RHS) {
4183       return LHS->getLocStart() < RHS->getLocStart();
4184     });
4185   for (const auto *D : DeferredDecls) {
4186     switch (D->getKind()) {
4187     case Decl::CXXConversion:
4188     case Decl::CXXMethod:
4189     case Decl::Function:
4190     case Decl::ObjCMethod: {
4191       CodeGenPGO PGO(*this);
4192       GlobalDecl GD(cast<FunctionDecl>(D));
4193       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4194                                   getFunctionLinkage(GD));
4195       break;
4196     }
4197     case Decl::CXXConstructor: {
4198       CodeGenPGO PGO(*this);
4199       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4200       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4201                                   getFunctionLinkage(GD));
4202       break;
4203     }
4204     case Decl::CXXDestructor: {
4205       CodeGenPGO PGO(*this);
4206       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4207       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4208                                   getFunctionLinkage(GD));
4209       break;
4210     }
4211     default:
4212       break;
4213     };
4214   }
4215 }
4216 
4217 /// Turns the given pointer into a constant.
4218 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4219                                           const void *Ptr) {
4220   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4221   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4222   return llvm::ConstantInt::get(i64, PtrInt);
4223 }
4224 
4225 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4226                                    llvm::NamedMDNode *&GlobalMetadata,
4227                                    GlobalDecl D,
4228                                    llvm::GlobalValue *Addr) {
4229   if (!GlobalMetadata)
4230     GlobalMetadata =
4231       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4232 
4233   // TODO: should we report variant information for ctors/dtors?
4234   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4235                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4236                                CGM.getLLVMContext(), D.getDecl()))};
4237   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4238 }
4239 
4240 /// For each function which is declared within an extern "C" region and marked
4241 /// as 'used', but has internal linkage, create an alias from the unmangled
4242 /// name to the mangled name if possible. People expect to be able to refer
4243 /// to such functions with an unmangled name from inline assembly within the
4244 /// same translation unit.
4245 void CodeGenModule::EmitStaticExternCAliases() {
4246   // Don't do anything if we're generating CUDA device code -- the NVPTX
4247   // assembly target doesn't support aliases.
4248   if (Context.getTargetInfo().getTriple().isNVPTX())
4249     return;
4250   for (auto &I : StaticExternCValues) {
4251     IdentifierInfo *Name = I.first;
4252     llvm::GlobalValue *Val = I.second;
4253     if (Val && !getModule().getNamedValue(Name->getName()))
4254       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4255   }
4256 }
4257 
4258 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4259                                              GlobalDecl &Result) const {
4260   auto Res = Manglings.find(MangledName);
4261   if (Res == Manglings.end())
4262     return false;
4263   Result = Res->getValue();
4264   return true;
4265 }
4266 
4267 /// Emits metadata nodes associating all the global values in the
4268 /// current module with the Decls they came from.  This is useful for
4269 /// projects using IR gen as a subroutine.
4270 ///
4271 /// Since there's currently no way to associate an MDNode directly
4272 /// with an llvm::GlobalValue, we create a global named metadata
4273 /// with the name 'clang.global.decl.ptrs'.
4274 void CodeGenModule::EmitDeclMetadata() {
4275   llvm::NamedMDNode *GlobalMetadata = nullptr;
4276 
4277   for (auto &I : MangledDeclNames) {
4278     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4279     // Some mangled names don't necessarily have an associated GlobalValue
4280     // in this module, e.g. if we mangled it for DebugInfo.
4281     if (Addr)
4282       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4283   }
4284 }
4285 
4286 /// Emits metadata nodes for all the local variables in the current
4287 /// function.
4288 void CodeGenFunction::EmitDeclMetadata() {
4289   if (LocalDeclMap.empty()) return;
4290 
4291   llvm::LLVMContext &Context = getLLVMContext();
4292 
4293   // Find the unique metadata ID for this name.
4294   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4295 
4296   llvm::NamedMDNode *GlobalMetadata = nullptr;
4297 
4298   for (auto &I : LocalDeclMap) {
4299     const Decl *D = I.first;
4300     llvm::Value *Addr = I.second.getPointer();
4301     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4302       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4303       Alloca->setMetadata(
4304           DeclPtrKind, llvm::MDNode::get(
4305                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4306     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4307       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4308       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4309     }
4310   }
4311 }
4312 
4313 void CodeGenModule::EmitVersionIdentMetadata() {
4314   llvm::NamedMDNode *IdentMetadata =
4315     TheModule.getOrInsertNamedMetadata("llvm.ident");
4316   std::string Version = getClangFullVersion();
4317   llvm::LLVMContext &Ctx = TheModule.getContext();
4318 
4319   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4320   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4321 }
4322 
4323 void CodeGenModule::EmitTargetMetadata() {
4324   // Warning, new MangledDeclNames may be appended within this loop.
4325   // We rely on MapVector insertions adding new elements to the end
4326   // of the container.
4327   // FIXME: Move this loop into the one target that needs it, and only
4328   // loop over those declarations for which we couldn't emit the target
4329   // metadata when we emitted the declaration.
4330   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4331     auto Val = *(MangledDeclNames.begin() + I);
4332     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4333     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4334     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4335   }
4336 }
4337 
4338 void CodeGenModule::EmitCoverageFile() {
4339   if (getCodeGenOpts().CoverageDataFile.empty() &&
4340       getCodeGenOpts().CoverageNotesFile.empty())
4341     return;
4342 
4343   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4344   if (!CUNode)
4345     return;
4346 
4347   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4348   llvm::LLVMContext &Ctx = TheModule.getContext();
4349   auto *CoverageDataFile =
4350       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4351   auto *CoverageNotesFile =
4352       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4353   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4354     llvm::MDNode *CU = CUNode->getOperand(i);
4355     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4356     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4357   }
4358 }
4359 
4360 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4361   // Sema has checked that all uuid strings are of the form
4362   // "12345678-1234-1234-1234-1234567890ab".
4363   assert(Uuid.size() == 36);
4364   for (unsigned i = 0; i < 36; ++i) {
4365     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4366     else                                         assert(isHexDigit(Uuid[i]));
4367   }
4368 
4369   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4370   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4371 
4372   llvm::Constant *Field3[8];
4373   for (unsigned Idx = 0; Idx < 8; ++Idx)
4374     Field3[Idx] = llvm::ConstantInt::get(
4375         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4376 
4377   llvm::Constant *Fields[4] = {
4378     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4379     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4380     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4381     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4382   };
4383 
4384   return llvm::ConstantStruct::getAnon(Fields);
4385 }
4386 
4387 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4388                                                        bool ForEH) {
4389   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4390   // FIXME: should we even be calling this method if RTTI is disabled
4391   // and it's not for EH?
4392   if (!ForEH && !getLangOpts().RTTI)
4393     return llvm::Constant::getNullValue(Int8PtrTy);
4394 
4395   if (ForEH && Ty->isObjCObjectPointerType() &&
4396       LangOpts.ObjCRuntime.isGNUFamily())
4397     return ObjCRuntime->GetEHType(Ty);
4398 
4399   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4400 }
4401 
4402 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4403   for (auto RefExpr : D->varlists()) {
4404     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4405     bool PerformInit =
4406         VD->getAnyInitializer() &&
4407         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4408                                                         /*ForRef=*/false);
4409 
4410     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4411     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4412             VD, Addr, RefExpr->getLocStart(), PerformInit))
4413       CXXGlobalInits.push_back(InitFunction);
4414   }
4415 }
4416 
4417 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4418   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4419   if (InternalId)
4420     return InternalId;
4421 
4422   if (isExternallyVisible(T->getLinkage())) {
4423     std::string OutName;
4424     llvm::raw_string_ostream Out(OutName);
4425     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4426 
4427     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4428   } else {
4429     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4430                                            llvm::ArrayRef<llvm::Metadata *>());
4431   }
4432 
4433   return InternalId;
4434 }
4435 
4436 /// Returns whether this module needs the "all-vtables" type identifier.
4437 bool CodeGenModule::NeedAllVtablesTypeId() const {
4438   // Returns true if at least one of vtable-based CFI checkers is enabled and
4439   // is not in the trapping mode.
4440   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4441            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4442           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4443            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4444           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4445            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4446           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4447            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4448 }
4449 
4450 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4451                                           CharUnits Offset,
4452                                           const CXXRecordDecl *RD) {
4453   llvm::Metadata *MD =
4454       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4455   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4456 
4457   if (CodeGenOpts.SanitizeCfiCrossDso)
4458     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4459       VTable->addTypeMetadata(Offset.getQuantity(),
4460                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4461 
4462   if (NeedAllVtablesTypeId()) {
4463     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4464     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4465   }
4466 }
4467 
4468 // Fills in the supplied string map with the set of target features for the
4469 // passed in function.
4470 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4471                                           const FunctionDecl *FD) {
4472   StringRef TargetCPU = Target.getTargetOpts().CPU;
4473   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4474     // If we have a TargetAttr build up the feature map based on that.
4475     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4476 
4477     // Make a copy of the features as passed on the command line into the
4478     // beginning of the additional features from the function to override.
4479     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4480                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4481                             Target.getTargetOpts().FeaturesAsWritten.end());
4482 
4483     if (ParsedAttr.second != "")
4484       TargetCPU = ParsedAttr.second;
4485 
4486     // Now populate the feature map, first with the TargetCPU which is either
4487     // the default or a new one from the target attribute string. Then we'll use
4488     // the passed in features (FeaturesAsWritten) along with the new ones from
4489     // the attribute.
4490     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4491   } else {
4492     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4493                           Target.getTargetOpts().Features);
4494   }
4495 }
4496 
4497 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4498   if (!SanStats)
4499     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4500 
4501   return *SanStats;
4502 }
4503 llvm::Value *
4504 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4505                                                   CodeGenFunction &CGF) {
4506   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4507   auto SamplerT = getOpenCLRuntime().getSamplerType();
4508   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4509   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4510                                 "__translate_sampler_initializer"),
4511                                 {C});
4512 }
4513