xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f0fa2d7c292853b79b5bcd16be97940859a800ec)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
73 #include <optional>
74 
75 using namespace clang;
76 using namespace CodeGen;
77 
78 static llvm::cl::opt<bool> LimitedCoverage(
79     "limited-coverage-experimental", llvm::cl::Hidden,
80     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 
82 static const char AnnotationSection[] = "llvm.metadata";
83 
84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85   switch (CGM.getContext().getCXXABIKind()) {
86   case TargetCXXABI::AppleARM64:
87   case TargetCXXABI::Fuchsia:
88   case TargetCXXABI::GenericAArch64:
89   case TargetCXXABI::GenericARM:
90   case TargetCXXABI::iOS:
91   case TargetCXXABI::WatchOS:
92   case TargetCXXABI::GenericMIPS:
93   case TargetCXXABI::GenericItanium:
94   case TargetCXXABI::WebAssembly:
95   case TargetCXXABI::XL:
96     return CreateItaniumCXXABI(CGM);
97   case TargetCXXABI::Microsoft:
98     return CreateMicrosoftCXXABI(CGM);
99   }
100 
101   llvm_unreachable("invalid C++ ABI kind");
102 }
103 
104 static std::unique_ptr<TargetCodeGenInfo>
105 createTargetCodeGenInfo(CodeGenModule &CGM) {
106   const TargetInfo &Target = CGM.getTarget();
107   const llvm::Triple &Triple = Target.getTriple();
108   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109 
110   switch (Triple.getArch()) {
111   default:
112     return createDefaultTargetCodeGenInfo(CGM);
113 
114   case llvm::Triple::le32:
115     return createPNaClTargetCodeGenInfo(CGM);
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 
146     return createAArch64TargetCodeGenInfo(CGM, Kind);
147   }
148 
149   case llvm::Triple::wasm32:
150   case llvm::Triple::wasm64: {
151     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152     if (Target.getABI() == "experimental-mv")
153       Kind = WebAssemblyABIKind::ExperimentalMV;
154     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::arm:
158   case llvm::Triple::armeb:
159   case llvm::Triple::thumb:
160   case llvm::Triple::thumbeb: {
161     if (Triple.getOS() == llvm::Triple::Win32)
162       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163 
164     ARMABIKind Kind = ARMABIKind::AAPCS;
165     StringRef ABIStr = Target.getABI();
166     if (ABIStr == "apcs-gnu")
167       Kind = ARMABIKind::APCS;
168     else if (ABIStr == "aapcs16")
169       Kind = ARMABIKind::AAPCS16_VFP;
170     else if (CodeGenOpts.FloatABI == "hard" ||
171              (CodeGenOpts.FloatABI != "soft" &&
172               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::EABIHF)))
175       Kind = ARMABIKind::AAPCS_VFP;
176 
177     return createARMTargetCodeGenInfo(CGM, Kind);
178   }
179 
180   case llvm::Triple::ppc: {
181     if (Triple.isOSAIX())
182       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183 
184     bool IsSoftFloat =
185         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187   }
188   case llvm::Triple::ppcle: {
189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppc64:
193     if (Triple.isOSAIX())
194       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195 
196     if (Triple.isOSBinFormatELF()) {
197       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198       if (Target.getABI() == "elfv2")
199         Kind = PPC64_SVR4_ABIKind::ELFv2;
200       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201 
202       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203     }
204     return createPPC64TargetCodeGenInfo(CGM);
205   case llvm::Triple::ppc64le: {
206     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208     if (Target.getABI() == "elfv1")
209       Kind = PPC64_SVR4_ABIKind::ELFv1;
210     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211 
212     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213   }
214 
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     return createNVPTXTargetCodeGenInfo(CGM);
218 
219   case llvm::Triple::msp430:
220     return createMSP430TargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::riscv32:
223   case llvm::Triple::riscv64: {
224     StringRef ABIStr = Target.getABI();
225     unsigned XLen = Target.getPointerWidth(LangAS::Default);
226     unsigned ABIFLen = 0;
227     if (ABIStr.endswith("f"))
228       ABIFLen = 32;
229     else if (ABIStr.endswith("d"))
230       ABIFLen = 64;
231     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232   }
233 
234   case llvm::Triple::systemz: {
235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236     bool HasVector = !SoftFloat && Target.getABI() == "vector";
237     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238   }
239 
240   case llvm::Triple::tce:
241   case llvm::Triple::tcele:
242     return createTCETargetCodeGenInfo(CGM);
243 
244   case llvm::Triple::x86: {
245     bool IsDarwinVectorABI = Triple.isOSDarwin();
246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247 
248     if (Triple.getOS() == llvm::Triple::Win32) {
249       return createWinX86_32TargetCodeGenInfo(
250           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251           CodeGenOpts.NumRegisterParameters);
252     }
253     return createX86_32TargetCodeGenInfo(
254         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256   }
257 
258   case llvm::Triple::x86_64: {
259     StringRef ABI = Target.getABI();
260     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                : X86AVXABILevel::None);
263 
264     switch (Triple.getOS()) {
265     case llvm::Triple::Win32:
266       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267     default:
268       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     }
270   }
271   case llvm::Triple::hexagon:
272     return createHexagonTargetCodeGenInfo(CGM);
273   case llvm::Triple::lanai:
274     return createLanaiTargetCodeGenInfo(CGM);
275   case llvm::Triple::r600:
276     return createAMDGPUTargetCodeGenInfo(CGM);
277   case llvm::Triple::amdgcn:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::sparc:
280     return createSparcV8TargetCodeGenInfo(CGM);
281   case llvm::Triple::sparcv9:
282     return createSparcV9TargetCodeGenInfo(CGM);
283   case llvm::Triple::xcore:
284     return createXCoreTargetCodeGenInfo(CGM);
285   case llvm::Triple::arc:
286     return createARCTargetCodeGenInfo(CGM);
287   case llvm::Triple::spir:
288   case llvm::Triple::spir64:
289     return createCommonSPIRTargetCodeGenInfo(CGM);
290   case llvm::Triple::spirv32:
291   case llvm::Triple::spirv64:
292     return createSPIRVTargetCodeGenInfo(CGM);
293   case llvm::Triple::ve:
294     return createVETargetCodeGenInfo(CGM);
295   case llvm::Triple::csky: {
296     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297     bool hasFP64 =
298         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                             : hasFP64   ? 64
301                                                         : 32);
302   }
303   case llvm::Triple::bpfeb:
304   case llvm::Triple::bpfel:
305     return createBPFTargetCodeGenInfo(CGM);
306   case llvm::Triple::loongarch32:
307   case llvm::Triple::loongarch64: {
308     StringRef ABIStr = Target.getABI();
309     unsigned ABIFRLen = 0;
310     if (ABIStr.endswith("f"))
311       ABIFRLen = 32;
312     else if (ABIStr.endswith("d"))
313       ABIFRLen = 64;
314     return createLoongArchTargetCodeGenInfo(
315         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316   }
317   }
318 }
319 
320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321   if (!TheTargetCodeGenInfo)
322     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323   return *TheTargetCodeGenInfo;
324 }
325 
326 CodeGenModule::CodeGenModule(ASTContext &C,
327                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                              const HeaderSearchOptions &HSO,
329                              const PreprocessorOptions &PPO,
330                              const CodeGenOptions &CGO, llvm::Module &M,
331                              DiagnosticsEngine &diags,
332                              CoverageSourceInfo *CoverageInfo)
333     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336       VMContext(M.getContext()), Types(*this), VTables(*this),
337       SanitizerMD(new SanitizerMetadata(*this)) {
338 
339   // Initialize the type cache.
340   llvm::LLVMContext &LLVMContext = M.getContext();
341   VoidTy = llvm::Type::getVoidTy(LLVMContext);
342   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346   HalfTy = llvm::Type::getHalfTy(LLVMContext);
347   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348   FloatTy = llvm::Type::getFloatTy(LLVMContext);
349   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351   PointerAlignInBytes =
352       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353           .getQuantity();
354   SizeSizeInBytes =
355     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356   IntAlignInBytes =
357     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358   CharTy =
359     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361   IntPtrTy = llvm::IntegerType::get(LLVMContext,
362     C.getTargetInfo().getMaxPointerWidth());
363   Int8PtrTy = Int8Ty->getPointerTo(0);
364   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
365   const llvm::DataLayout &DL = M.getDataLayout();
366   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
367   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
368   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
369       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
371 
372   // Build C++20 Module initializers.
373   // TODO: Add Microsoft here once we know the mangling required for the
374   // initializers.
375   CXX20ModuleInits =
376       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
377                                        ItaniumMangleContext::MK_Itanium;
378 
379   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
380 
381   if (LangOpts.ObjC)
382     createObjCRuntime();
383   if (LangOpts.OpenCL)
384     createOpenCLRuntime();
385   if (LangOpts.OpenMP)
386     createOpenMPRuntime();
387   if (LangOpts.CUDA)
388     createCUDARuntime();
389   if (LangOpts.HLSL)
390     createHLSLRuntime();
391 
392   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
394       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
395     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
396                                getCXXABI().getMangleContext()));
397 
398   // If debug info or coverage generation is enabled, create the CGDebugInfo
399   // object.
400   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
401       CodeGenOpts.CoverageNotesFile.size() ||
402       CodeGenOpts.CoverageDataFile.size())
403     DebugInfo.reset(new CGDebugInfo(*this));
404 
405   Block.GlobalUniqueCount = 0;
406 
407   if (C.getLangOpts().ObjC)
408     ObjCData.reset(new ObjCEntrypoints());
409 
410   if (CodeGenOpts.hasProfileClangUse()) {
411     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
412         CodeGenOpts.ProfileInstrumentUsePath, *FS,
413         CodeGenOpts.ProfileRemappingFile);
414     // We're checking for profile read errors in CompilerInvocation, so if
415     // there was an error it should've already been caught. If it hasn't been
416     // somehow, trip an assertion.
417     assert(ReaderOrErr);
418     PGOReader = std::move(ReaderOrErr.get());
419   }
420 
421   // If coverage mapping generation is enabled, create the
422   // CoverageMappingModuleGen object.
423   if (CodeGenOpts.CoverageMapping)
424     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
425 
426   // Generate the module name hash here if needed.
427   if (CodeGenOpts.UniqueInternalLinkageNames &&
428       !getModule().getSourceFileName().empty()) {
429     std::string Path = getModule().getSourceFileName();
430     // Check if a path substitution is needed from the MacroPrefixMap.
431     for (const auto &Entry : LangOpts.MacroPrefixMap)
432       if (Path.rfind(Entry.first, 0) != std::string::npos) {
433         Path = Entry.second + Path.substr(Entry.first.size());
434         break;
435       }
436     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
437   }
438 }
439 
440 CodeGenModule::~CodeGenModule() {}
441 
442 void CodeGenModule::createObjCRuntime() {
443   // This is just isGNUFamily(), but we want to force implementors of
444   // new ABIs to decide how best to do this.
445   switch (LangOpts.ObjCRuntime.getKind()) {
446   case ObjCRuntime::GNUstep:
447   case ObjCRuntime::GCC:
448   case ObjCRuntime::ObjFW:
449     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
450     return;
451 
452   case ObjCRuntime::FragileMacOSX:
453   case ObjCRuntime::MacOSX:
454   case ObjCRuntime::iOS:
455   case ObjCRuntime::WatchOS:
456     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
457     return;
458   }
459   llvm_unreachable("bad runtime kind");
460 }
461 
462 void CodeGenModule::createOpenCLRuntime() {
463   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
464 }
465 
466 void CodeGenModule::createOpenMPRuntime() {
467   // Select a specialized code generation class based on the target, if any.
468   // If it does not exist use the default implementation.
469   switch (getTriple().getArch()) {
470   case llvm::Triple::nvptx:
471   case llvm::Triple::nvptx64:
472   case llvm::Triple::amdgcn:
473     assert(getLangOpts().OpenMPIsDevice &&
474            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
476     break;
477   default:
478     if (LangOpts.OpenMPSimd)
479       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
480     else
481       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
482     break;
483   }
484 }
485 
486 void CodeGenModule::createCUDARuntime() {
487   CUDARuntime.reset(CreateNVCUDARuntime(*this));
488 }
489 
490 void CodeGenModule::createHLSLRuntime() {
491   HLSLRuntime.reset(new CGHLSLRuntime(*this));
492 }
493 
494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
495   Replacements[Name] = C;
496 }
497 
498 void CodeGenModule::applyReplacements() {
499   for (auto &I : Replacements) {
500     StringRef MangledName = I.first();
501     llvm::Constant *Replacement = I.second;
502     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
503     if (!Entry)
504       continue;
505     auto *OldF = cast<llvm::Function>(Entry);
506     auto *NewF = dyn_cast<llvm::Function>(Replacement);
507     if (!NewF) {
508       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
509         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
510       } else {
511         auto *CE = cast<llvm::ConstantExpr>(Replacement);
512         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
513                CE->getOpcode() == llvm::Instruction::GetElementPtr);
514         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
515       }
516     }
517 
518     // Replace old with new, but keep the old order.
519     OldF->replaceAllUsesWith(Replacement);
520     if (NewF) {
521       NewF->removeFromParent();
522       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
523                                                        NewF);
524     }
525     OldF->eraseFromParent();
526   }
527 }
528 
529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
530   GlobalValReplacements.push_back(std::make_pair(GV, C));
531 }
532 
533 void CodeGenModule::applyGlobalValReplacements() {
534   for (auto &I : GlobalValReplacements) {
535     llvm::GlobalValue *GV = I.first;
536     llvm::Constant *C = I.second;
537 
538     GV->replaceAllUsesWith(C);
539     GV->eraseFromParent();
540   }
541 }
542 
543 // This is only used in aliases that we created and we know they have a
544 // linear structure.
545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
546   const llvm::Constant *C;
547   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
548     C = GA->getAliasee();
549   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
550     C = GI->getResolver();
551   else
552     return GV;
553 
554   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
555   if (!AliaseeGV)
556     return nullptr;
557 
558   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
559   if (FinalGV == GV)
560     return nullptr;
561 
562   return FinalGV;
563 }
564 
565 static bool checkAliasedGlobal(
566     DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc,
567     const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
568     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
569     SourceRange AliasRange) {
570   GV = getAliasedGlobal(Alias);
571   if (!GV) {
572     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
573     return false;
574   }
575 
576   if (GV->isDeclaration()) {
577     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
578     Diags.Report(Location, diag::note_alias_requires_mangled_name)
579         << IsIFunc << IsIFunc;
580     // Provide a note if the given function is not found and exists as a
581     // mangled name.
582     for (const auto &[Decl, Name] : MangledDeclNames) {
583       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
584         if (ND->getName() == GV->getName()) {
585           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
586               << Name
587               << FixItHint::CreateReplacement(
588                      AliasRange,
589                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
590                          .str());
591         }
592       }
593     }
594     return false;
595   }
596 
597   if (IsIFunc) {
598     // Check resolver function type.
599     const auto *F = dyn_cast<llvm::Function>(GV);
600     if (!F) {
601       Diags.Report(Location, diag::err_alias_to_undefined)
602           << IsIFunc << IsIFunc;
603       return false;
604     }
605 
606     llvm::FunctionType *FTy = F->getFunctionType();
607     if (!FTy->getReturnType()->isPointerTy()) {
608       Diags.Report(Location, diag::err_ifunc_resolver_return);
609       return false;
610     }
611   }
612 
613   return true;
614 }
615 
616 void CodeGenModule::checkAliases() {
617   // Check if the constructed aliases are well formed. It is really unfortunate
618   // that we have to do this in CodeGen, but we only construct mangled names
619   // and aliases during codegen.
620   bool Error = false;
621   DiagnosticsEngine &Diags = getDiags();
622   for (const GlobalDecl &GD : Aliases) {
623     const auto *D = cast<ValueDecl>(GD.getDecl());
624     SourceLocation Location;
625     SourceRange Range;
626     bool IsIFunc = D->hasAttr<IFuncAttr>();
627     if (const Attr *A = D->getDefiningAttr()) {
628       Location = A->getLocation();
629       Range = A->getRange();
630     } else
631       llvm_unreachable("Not an alias or ifunc?");
632 
633     StringRef MangledName = getMangledName(GD);
634     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
635     const llvm::GlobalValue *GV = nullptr;
636     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV,
637                             MangledDeclNames, Range)) {
638       Error = true;
639       continue;
640     }
641 
642     llvm::Constant *Aliasee =
643         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
644                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
645 
646     llvm::GlobalValue *AliaseeGV;
647     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
648       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
649     else
650       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
651 
652     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
653       StringRef AliasSection = SA->getName();
654       if (AliasSection != AliaseeGV->getSection())
655         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
656             << AliasSection << IsIFunc << IsIFunc;
657     }
658 
659     // We have to handle alias to weak aliases in here. LLVM itself disallows
660     // this since the object semantics would not match the IL one. For
661     // compatibility with gcc we implement it by just pointing the alias
662     // to its aliasee's aliasee. We also warn, since the user is probably
663     // expecting the link to be weak.
664     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
665       if (GA->isInterposable()) {
666         Diags.Report(Location, diag::warn_alias_to_weak_alias)
667             << GV->getName() << GA->getName() << IsIFunc;
668         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
669             GA->getAliasee(), Alias->getType());
670 
671         if (IsIFunc)
672           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
673         else
674           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
675       }
676     }
677   }
678   if (!Error)
679     return;
680 
681   for (const GlobalDecl &GD : Aliases) {
682     StringRef MangledName = getMangledName(GD);
683     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
684     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
685     Alias->eraseFromParent();
686   }
687 }
688 
689 void CodeGenModule::clear() {
690   DeferredDeclsToEmit.clear();
691   EmittedDeferredDecls.clear();
692   if (OpenMPRuntime)
693     OpenMPRuntime->clear();
694 }
695 
696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
697                                        StringRef MainFile) {
698   if (!hasDiagnostics())
699     return;
700   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
701     if (MainFile.empty())
702       MainFile = "<stdin>";
703     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
704   } else {
705     if (Mismatched > 0)
706       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
707 
708     if (Missing > 0)
709       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
710   }
711 }
712 
713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
714                                              llvm::Module &M) {
715   if (!LO.VisibilityFromDLLStorageClass)
716     return;
717 
718   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
719       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
720   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
721       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
722   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
723       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
724   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
725       CodeGenModule::GetLLVMVisibility(
726           LO.getExternDeclNoDLLStorageClassVisibility());
727 
728   for (llvm::GlobalValue &GV : M.global_values()) {
729     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
730       continue;
731 
732     // Reset DSO locality before setting the visibility. This removes
733     // any effects that visibility options and annotations may have
734     // had on the DSO locality. Setting the visibility will implicitly set
735     // appropriate globals to DSO Local; however, this will be pessimistic
736     // w.r.t. to the normal compiler IRGen.
737     GV.setDSOLocal(false);
738 
739     if (GV.isDeclarationForLinker()) {
740       GV.setVisibility(GV.getDLLStorageClass() ==
741                                llvm::GlobalValue::DLLImportStorageClass
742                            ? ExternDeclDLLImportVisibility
743                            : ExternDeclNoDLLStorageClassVisibility);
744     } else {
745       GV.setVisibility(GV.getDLLStorageClass() ==
746                                llvm::GlobalValue::DLLExportStorageClass
747                            ? DLLExportVisibility
748                            : NoDLLStorageClassVisibility);
749     }
750 
751     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
752   }
753 }
754 
755 void CodeGenModule::Release() {
756   Module *Primary = getContext().getCurrentNamedModule();
757   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
758     EmitModuleInitializers(Primary);
759   EmitDeferred();
760   DeferredDecls.insert(EmittedDeferredDecls.begin(),
761                        EmittedDeferredDecls.end());
762   EmittedDeferredDecls.clear();
763   EmitVTablesOpportunistically();
764   applyGlobalValReplacements();
765   applyReplacements();
766   emitMultiVersionFunctions();
767 
768   if (Context.getLangOpts().IncrementalExtensions &&
769       GlobalTopLevelStmtBlockInFlight.first) {
770     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
771     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
772     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
773   }
774 
775   // Module implementations are initialized the same way as a regular TU that
776   // imports one or more modules.
777   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
778     EmitCXXModuleInitFunc(Primary);
779   else
780     EmitCXXGlobalInitFunc();
781   EmitCXXGlobalCleanUpFunc();
782   registerGlobalDtorsWithAtExit();
783   EmitCXXThreadLocalInitFunc();
784   if (ObjCRuntime)
785     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
786       AddGlobalCtor(ObjCInitFunction);
787   if (Context.getLangOpts().CUDA && CUDARuntime) {
788     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
789       AddGlobalCtor(CudaCtorFunction);
790   }
791   if (OpenMPRuntime) {
792     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
793             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
794       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
795     }
796     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
797     OpenMPRuntime->clear();
798   }
799   if (PGOReader) {
800     getModule().setProfileSummary(
801         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
802         llvm::ProfileSummary::PSK_Instr);
803     if (PGOStats.hasDiagnostics())
804       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
805   }
806   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
807     return L.LexOrder < R.LexOrder;
808   });
809   EmitCtorList(GlobalCtors, "llvm.global_ctors");
810   EmitCtorList(GlobalDtors, "llvm.global_dtors");
811   EmitGlobalAnnotations();
812   EmitStaticExternCAliases();
813   checkAliases();
814   EmitDeferredUnusedCoverageMappings();
815   CodeGenPGO(*this).setValueProfilingFlag(getModule());
816   if (CoverageMapping)
817     CoverageMapping->emit();
818   if (CodeGenOpts.SanitizeCfiCrossDso) {
819     CodeGenFunction(*this).EmitCfiCheckFail();
820     CodeGenFunction(*this).EmitCfiCheckStub();
821   }
822   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
823     finalizeKCFITypes();
824   emitAtAvailableLinkGuard();
825   if (Context.getTargetInfo().getTriple().isWasm())
826     EmitMainVoidAlias();
827 
828   if (getTriple().isAMDGPU()) {
829     // Emit amdgpu_code_object_version module flag, which is code object version
830     // times 100.
831     if (getTarget().getTargetOpts().CodeObjectVersion !=
832         TargetOptions::COV_None) {
833       getModule().addModuleFlag(llvm::Module::Error,
834                                 "amdgpu_code_object_version",
835                                 getTarget().getTargetOpts().CodeObjectVersion);
836     }
837 
838     // Currently, "-mprintf-kind" option is only supported for HIP
839     if (LangOpts.HIP) {
840       auto *MDStr = llvm::MDString::get(
841           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
842                              TargetOptions::AMDGPUPrintfKind::Hostcall)
843                                 ? "hostcall"
844                                 : "buffered");
845       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
846                                 MDStr);
847     }
848   }
849 
850   // Emit a global array containing all external kernels or device variables
851   // used by host functions and mark it as used for CUDA/HIP. This is necessary
852   // to get kernels or device variables in archives linked in even if these
853   // kernels or device variables are only used in host functions.
854   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
855     SmallVector<llvm::Constant *, 8> UsedArray;
856     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
857       GlobalDecl GD;
858       if (auto *FD = dyn_cast<FunctionDecl>(D))
859         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
860       else
861         GD = GlobalDecl(D);
862       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
863           GetAddrOfGlobal(GD), Int8PtrTy));
864     }
865 
866     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
867 
868     auto *GV = new llvm::GlobalVariable(
869         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
870         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
871     addCompilerUsedGlobal(GV);
872   }
873 
874   emitLLVMUsed();
875   if (SanStats)
876     SanStats->finish();
877 
878   if (CodeGenOpts.Autolink &&
879       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
880     EmitModuleLinkOptions();
881   }
882 
883   // On ELF we pass the dependent library specifiers directly to the linker
884   // without manipulating them. This is in contrast to other platforms where
885   // they are mapped to a specific linker option by the compiler. This
886   // difference is a result of the greater variety of ELF linkers and the fact
887   // that ELF linkers tend to handle libraries in a more complicated fashion
888   // than on other platforms. This forces us to defer handling the dependent
889   // libs to the linker.
890   //
891   // CUDA/HIP device and host libraries are different. Currently there is no
892   // way to differentiate dependent libraries for host or device. Existing
893   // usage of #pragma comment(lib, *) is intended for host libraries on
894   // Windows. Therefore emit llvm.dependent-libraries only for host.
895   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
896     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
897     for (auto *MD : ELFDependentLibraries)
898       NMD->addOperand(MD);
899   }
900 
901   // Record mregparm value now so it is visible through rest of codegen.
902   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
903     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
904                               CodeGenOpts.NumRegisterParameters);
905 
906   if (CodeGenOpts.DwarfVersion) {
907     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
908                               CodeGenOpts.DwarfVersion);
909   }
910 
911   if (CodeGenOpts.Dwarf64)
912     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
913 
914   if (Context.getLangOpts().SemanticInterposition)
915     // Require various optimization to respect semantic interposition.
916     getModule().setSemanticInterposition(true);
917 
918   if (CodeGenOpts.EmitCodeView) {
919     // Indicate that we want CodeView in the metadata.
920     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
921   }
922   if (CodeGenOpts.CodeViewGHash) {
923     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
924   }
925   if (CodeGenOpts.ControlFlowGuard) {
926     // Function ID tables and checks for Control Flow Guard (cfguard=2).
927     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
928   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
929     // Function ID tables for Control Flow Guard (cfguard=1).
930     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
931   }
932   if (CodeGenOpts.EHContGuard) {
933     // Function ID tables for EH Continuation Guard.
934     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
935   }
936   if (Context.getLangOpts().Kernel) {
937     // Note if we are compiling with /kernel.
938     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
939   }
940   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
941     // We don't support LTO with 2 with different StrictVTablePointers
942     // FIXME: we could support it by stripping all the information introduced
943     // by StrictVTablePointers.
944 
945     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
946 
947     llvm::Metadata *Ops[2] = {
948               llvm::MDString::get(VMContext, "StrictVTablePointers"),
949               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
950                   llvm::Type::getInt32Ty(VMContext), 1))};
951 
952     getModule().addModuleFlag(llvm::Module::Require,
953                               "StrictVTablePointersRequirement",
954                               llvm::MDNode::get(VMContext, Ops));
955   }
956   if (getModuleDebugInfo())
957     // We support a single version in the linked module. The LLVM
958     // parser will drop debug info with a different version number
959     // (and warn about it, too).
960     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
961                               llvm::DEBUG_METADATA_VERSION);
962 
963   // We need to record the widths of enums and wchar_t, so that we can generate
964   // the correct build attributes in the ARM backend. wchar_size is also used by
965   // TargetLibraryInfo.
966   uint64_t WCharWidth =
967       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
968   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
969 
970   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
971   if (   Arch == llvm::Triple::arm
972       || Arch == llvm::Triple::armeb
973       || Arch == llvm::Triple::thumb
974       || Arch == llvm::Triple::thumbeb) {
975     // The minimum width of an enum in bytes
976     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
977     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
978   }
979 
980   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
981     StringRef ABIStr = Target.getABI();
982     llvm::LLVMContext &Ctx = TheModule.getContext();
983     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
984                               llvm::MDString::get(Ctx, ABIStr));
985   }
986 
987   if (CodeGenOpts.SanitizeCfiCrossDso) {
988     // Indicate that we want cross-DSO control flow integrity checks.
989     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
990   }
991 
992   if (CodeGenOpts.WholeProgramVTables) {
993     // Indicate whether VFE was enabled for this module, so that the
994     // vcall_visibility metadata added under whole program vtables is handled
995     // appropriately in the optimizer.
996     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
997                               CodeGenOpts.VirtualFunctionElimination);
998   }
999 
1000   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1001     getModule().addModuleFlag(llvm::Module::Override,
1002                               "CFI Canonical Jump Tables",
1003                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1004   }
1005 
1006   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1007     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1008     // KCFI assumes patchable-function-prefix is the same for all indirectly
1009     // called functions. Store the expected offset for code generation.
1010     if (CodeGenOpts.PatchableFunctionEntryOffset)
1011       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1012                                 CodeGenOpts.PatchableFunctionEntryOffset);
1013   }
1014 
1015   if (CodeGenOpts.CFProtectionReturn &&
1016       Target.checkCFProtectionReturnSupported(getDiags())) {
1017     // Indicate that we want to instrument return control flow protection.
1018     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1019                               1);
1020   }
1021 
1022   if (CodeGenOpts.CFProtectionBranch &&
1023       Target.checkCFProtectionBranchSupported(getDiags())) {
1024     // Indicate that we want to instrument branch control flow protection.
1025     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1026                               1);
1027   }
1028 
1029   if (CodeGenOpts.FunctionReturnThunks)
1030     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1031 
1032   if (CodeGenOpts.IndirectBranchCSPrefix)
1033     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1034 
1035   // Add module metadata for return address signing (ignoring
1036   // non-leaf/all) and stack tagging. These are actually turned on by function
1037   // attributes, but we use module metadata to emit build attributes. This is
1038   // needed for LTO, where the function attributes are inside bitcode
1039   // serialised into a global variable by the time build attributes are
1040   // emitted, so we can't access them. LTO objects could be compiled with
1041   // different flags therefore module flags are set to "Min" behavior to achieve
1042   // the same end result of the normal build where e.g BTI is off if any object
1043   // doesn't support it.
1044   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1045       LangOpts.getSignReturnAddressScope() !=
1046           LangOptions::SignReturnAddressScopeKind::None)
1047     getModule().addModuleFlag(llvm::Module::Override,
1048                               "sign-return-address-buildattr", 1);
1049   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1050     getModule().addModuleFlag(llvm::Module::Override,
1051                               "tag-stack-memory-buildattr", 1);
1052 
1053   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1054       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1055       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1056       Arch == llvm::Triple::aarch64_be) {
1057     if (LangOpts.BranchTargetEnforcement)
1058       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1059                                 1);
1060     if (LangOpts.hasSignReturnAddress())
1061       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1062     if (LangOpts.isSignReturnAddressScopeAll())
1063       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1064                                 1);
1065     if (!LangOpts.isSignReturnAddressWithAKey())
1066       getModule().addModuleFlag(llvm::Module::Min,
1067                                 "sign-return-address-with-bkey", 1);
1068   }
1069 
1070   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1071     llvm::LLVMContext &Ctx = TheModule.getContext();
1072     getModule().addModuleFlag(
1073         llvm::Module::Error, "MemProfProfileFilename",
1074         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1075   }
1076 
1077   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1078     // Indicate whether __nvvm_reflect should be configured to flush denormal
1079     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1080     // property.)
1081     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1082                               CodeGenOpts.FP32DenormalMode.Output !=
1083                                   llvm::DenormalMode::IEEE);
1084   }
1085 
1086   if (LangOpts.EHAsynch)
1087     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1088 
1089   // Indicate whether this Module was compiled with -fopenmp
1090   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1091     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1092   if (getLangOpts().OpenMPIsDevice)
1093     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1094                               LangOpts.OpenMP);
1095 
1096   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1097   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1098     EmitOpenCLMetadata();
1099     // Emit SPIR version.
1100     if (getTriple().isSPIR()) {
1101       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1102       // opencl.spir.version named metadata.
1103       // C++ for OpenCL has a distinct mapping for version compatibility with
1104       // OpenCL.
1105       auto Version = LangOpts.getOpenCLCompatibleVersion();
1106       llvm::Metadata *SPIRVerElts[] = {
1107           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1108               Int32Ty, Version / 100)),
1109           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1110               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1111       llvm::NamedMDNode *SPIRVerMD =
1112           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1113       llvm::LLVMContext &Ctx = TheModule.getContext();
1114       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1115     }
1116   }
1117 
1118   // HLSL related end of code gen work items.
1119   if (LangOpts.HLSL)
1120     getHLSLRuntime().finishCodeGen();
1121 
1122   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1123     assert(PLevel < 3 && "Invalid PIC Level");
1124     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1125     if (Context.getLangOpts().PIE)
1126       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1127   }
1128 
1129   if (getCodeGenOpts().CodeModel.size() > 0) {
1130     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1131                   .Case("tiny", llvm::CodeModel::Tiny)
1132                   .Case("small", llvm::CodeModel::Small)
1133                   .Case("kernel", llvm::CodeModel::Kernel)
1134                   .Case("medium", llvm::CodeModel::Medium)
1135                   .Case("large", llvm::CodeModel::Large)
1136                   .Default(~0u);
1137     if (CM != ~0u) {
1138       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1139       getModule().setCodeModel(codeModel);
1140     }
1141   }
1142 
1143   if (CodeGenOpts.NoPLT)
1144     getModule().setRtLibUseGOT();
1145   if (getTriple().isOSBinFormatELF() &&
1146       CodeGenOpts.DirectAccessExternalData !=
1147           getModule().getDirectAccessExternalData()) {
1148     getModule().setDirectAccessExternalData(
1149         CodeGenOpts.DirectAccessExternalData);
1150   }
1151   if (CodeGenOpts.UnwindTables)
1152     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1153 
1154   switch (CodeGenOpts.getFramePointer()) {
1155   case CodeGenOptions::FramePointerKind::None:
1156     // 0 ("none") is the default.
1157     break;
1158   case CodeGenOptions::FramePointerKind::NonLeaf:
1159     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1160     break;
1161   case CodeGenOptions::FramePointerKind::All:
1162     getModule().setFramePointer(llvm::FramePointerKind::All);
1163     break;
1164   }
1165 
1166   SimplifyPersonality();
1167 
1168   if (getCodeGenOpts().EmitDeclMetadata)
1169     EmitDeclMetadata();
1170 
1171   if (getCodeGenOpts().CoverageNotesFile.size() ||
1172       getCodeGenOpts().CoverageDataFile.size())
1173     EmitCoverageFile();
1174 
1175   if (CGDebugInfo *DI = getModuleDebugInfo())
1176     DI->finalize();
1177 
1178   if (getCodeGenOpts().EmitVersionIdentMetadata)
1179     EmitVersionIdentMetadata();
1180 
1181   if (!getCodeGenOpts().RecordCommandLine.empty())
1182     EmitCommandLineMetadata();
1183 
1184   if (!getCodeGenOpts().StackProtectorGuard.empty())
1185     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1186   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1187     getModule().setStackProtectorGuardReg(
1188         getCodeGenOpts().StackProtectorGuardReg);
1189   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1190     getModule().setStackProtectorGuardSymbol(
1191         getCodeGenOpts().StackProtectorGuardSymbol);
1192   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1193     getModule().setStackProtectorGuardOffset(
1194         getCodeGenOpts().StackProtectorGuardOffset);
1195   if (getCodeGenOpts().StackAlignment)
1196     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1197   if (getCodeGenOpts().SkipRaxSetup)
1198     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1199 
1200   if (getContext().getTargetInfo().getMaxTLSAlign())
1201     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1202                               getContext().getTargetInfo().getMaxTLSAlign());
1203 
1204   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1205 
1206   EmitBackendOptionsMetadata(getCodeGenOpts());
1207 
1208   // If there is device offloading code embed it in the host now.
1209   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1210 
1211   // Set visibility from DLL storage class
1212   // We do this at the end of LLVM IR generation; after any operation
1213   // that might affect the DLL storage class or the visibility, and
1214   // before anything that might act on these.
1215   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1216 }
1217 
1218 void CodeGenModule::EmitOpenCLMetadata() {
1219   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1220   // opencl.ocl.version named metadata node.
1221   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1222   auto Version = LangOpts.getOpenCLCompatibleVersion();
1223   llvm::Metadata *OCLVerElts[] = {
1224       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1225           Int32Ty, Version / 100)),
1226       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1227           Int32Ty, (Version % 100) / 10))};
1228   llvm::NamedMDNode *OCLVerMD =
1229       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1230   llvm::LLVMContext &Ctx = TheModule.getContext();
1231   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1232 }
1233 
1234 void CodeGenModule::EmitBackendOptionsMetadata(
1235     const CodeGenOptions &CodeGenOpts) {
1236   if (getTriple().isRISCV()) {
1237     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1238                               CodeGenOpts.SmallDataLimit);
1239   }
1240 }
1241 
1242 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1243   // Make sure that this type is translated.
1244   Types.UpdateCompletedType(TD);
1245 }
1246 
1247 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1248   // Make sure that this type is translated.
1249   Types.RefreshTypeCacheForClass(RD);
1250 }
1251 
1252 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1253   if (!TBAA)
1254     return nullptr;
1255   return TBAA->getTypeInfo(QTy);
1256 }
1257 
1258 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1259   if (!TBAA)
1260     return TBAAAccessInfo();
1261   if (getLangOpts().CUDAIsDevice) {
1262     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1263     // access info.
1264     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1265       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1266           nullptr)
1267         return TBAAAccessInfo();
1268     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1269       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1270           nullptr)
1271         return TBAAAccessInfo();
1272     }
1273   }
1274   return TBAA->getAccessInfo(AccessType);
1275 }
1276 
1277 TBAAAccessInfo
1278 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1279   if (!TBAA)
1280     return TBAAAccessInfo();
1281   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1282 }
1283 
1284 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1285   if (!TBAA)
1286     return nullptr;
1287   return TBAA->getTBAAStructInfo(QTy);
1288 }
1289 
1290 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1291   if (!TBAA)
1292     return nullptr;
1293   return TBAA->getBaseTypeInfo(QTy);
1294 }
1295 
1296 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1297   if (!TBAA)
1298     return nullptr;
1299   return TBAA->getAccessTagInfo(Info);
1300 }
1301 
1302 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1303                                                    TBAAAccessInfo TargetInfo) {
1304   if (!TBAA)
1305     return TBAAAccessInfo();
1306   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1307 }
1308 
1309 TBAAAccessInfo
1310 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1311                                                    TBAAAccessInfo InfoB) {
1312   if (!TBAA)
1313     return TBAAAccessInfo();
1314   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1315 }
1316 
1317 TBAAAccessInfo
1318 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1319                                               TBAAAccessInfo SrcInfo) {
1320   if (!TBAA)
1321     return TBAAAccessInfo();
1322   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1323 }
1324 
1325 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1326                                                 TBAAAccessInfo TBAAInfo) {
1327   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1328     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1329 }
1330 
1331 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1332     llvm::Instruction *I, const CXXRecordDecl *RD) {
1333   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1334                  llvm::MDNode::get(getLLVMContext(), {}));
1335 }
1336 
1337 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1338   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1339   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1340 }
1341 
1342 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1343 /// specified stmt yet.
1344 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1345   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1346                                                "cannot compile this %0 yet");
1347   std::string Msg = Type;
1348   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1349       << Msg << S->getSourceRange();
1350 }
1351 
1352 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1353 /// specified decl yet.
1354 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1355   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1356                                                "cannot compile this %0 yet");
1357   std::string Msg = Type;
1358   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1359 }
1360 
1361 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1362   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1363 }
1364 
1365 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1366                                         const NamedDecl *D) const {
1367   // Internal definitions always have default visibility.
1368   if (GV->hasLocalLinkage()) {
1369     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1370     return;
1371   }
1372   if (!D)
1373     return;
1374   // Set visibility for definitions, and for declarations if requested globally
1375   // or set explicitly.
1376   LinkageInfo LV = D->getLinkageAndVisibility();
1377   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1378     // Reject incompatible dlllstorage and visibility annotations.
1379     if (!LV.isVisibilityExplicit())
1380       return;
1381     if (GV->hasDLLExportStorageClass()) {
1382       if (LV.getVisibility() == HiddenVisibility)
1383         getDiags().Report(D->getLocation(),
1384                           diag::err_hidden_visibility_dllexport);
1385     } else if (LV.getVisibility() != DefaultVisibility) {
1386       getDiags().Report(D->getLocation(),
1387                         diag::err_non_default_visibility_dllimport);
1388     }
1389     return;
1390   }
1391 
1392   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1393       !GV->isDeclarationForLinker())
1394     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1395 }
1396 
1397 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1398                                  llvm::GlobalValue *GV) {
1399   if (GV->hasLocalLinkage())
1400     return true;
1401 
1402   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1403     return true;
1404 
1405   // DLLImport explicitly marks the GV as external.
1406   if (GV->hasDLLImportStorageClass())
1407     return false;
1408 
1409   const llvm::Triple &TT = CGM.getTriple();
1410   if (TT.isWindowsGNUEnvironment()) {
1411     // In MinGW, variables without DLLImport can still be automatically
1412     // imported from a DLL by the linker; don't mark variables that
1413     // potentially could come from another DLL as DSO local.
1414 
1415     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1416     // (and this actually happens in the public interface of libstdc++), so
1417     // such variables can't be marked as DSO local. (Native TLS variables
1418     // can't be dllimported at all, though.)
1419     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1420         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1421       return false;
1422   }
1423 
1424   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1425   // remain unresolved in the link, they can be resolved to zero, which is
1426   // outside the current DSO.
1427   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1428     return false;
1429 
1430   // Every other GV is local on COFF.
1431   // Make an exception for windows OS in the triple: Some firmware builds use
1432   // *-win32-macho triples. This (accidentally?) produced windows relocations
1433   // without GOT tables in older clang versions; Keep this behaviour.
1434   // FIXME: even thread local variables?
1435   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1436     return true;
1437 
1438   // Only handle COFF and ELF for now.
1439   if (!TT.isOSBinFormatELF())
1440     return false;
1441 
1442   // If this is not an executable, don't assume anything is local.
1443   const auto &CGOpts = CGM.getCodeGenOpts();
1444   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1445   const auto &LOpts = CGM.getLangOpts();
1446   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1447     // On ELF, if -fno-semantic-interposition is specified and the target
1448     // supports local aliases, there will be neither CC1
1449     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1450     // dso_local on the function if using a local alias is preferable (can avoid
1451     // PLT indirection).
1452     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1453       return false;
1454     return !(CGM.getLangOpts().SemanticInterposition ||
1455              CGM.getLangOpts().HalfNoSemanticInterposition);
1456   }
1457 
1458   // A definition cannot be preempted from an executable.
1459   if (!GV->isDeclarationForLinker())
1460     return true;
1461 
1462   // Most PIC code sequences that assume that a symbol is local cannot produce a
1463   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1464   // depended, it seems worth it to handle it here.
1465   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1466     return false;
1467 
1468   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1469   if (TT.isPPC64())
1470     return false;
1471 
1472   if (CGOpts.DirectAccessExternalData) {
1473     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1474     // for non-thread-local variables. If the symbol is not defined in the
1475     // executable, a copy relocation will be needed at link time. dso_local is
1476     // excluded for thread-local variables because they generally don't support
1477     // copy relocations.
1478     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1479       if (!Var->isThreadLocal())
1480         return true;
1481 
1482     // -fno-pic sets dso_local on a function declaration to allow direct
1483     // accesses when taking its address (similar to a data symbol). If the
1484     // function is not defined in the executable, a canonical PLT entry will be
1485     // needed at link time. -fno-direct-access-external-data can avoid the
1486     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1487     // it could just cause trouble without providing perceptible benefits.
1488     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1489       return true;
1490   }
1491 
1492   // If we can use copy relocations we can assume it is local.
1493 
1494   // Otherwise don't assume it is local.
1495   return false;
1496 }
1497 
1498 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1499   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1500 }
1501 
1502 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1503                                           GlobalDecl GD) const {
1504   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1505   // C++ destructors have a few C++ ABI specific special cases.
1506   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1507     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1508     return;
1509   }
1510   setDLLImportDLLExport(GV, D);
1511 }
1512 
1513 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1514                                           const NamedDecl *D) const {
1515   if (D && D->isExternallyVisible()) {
1516     if (D->hasAttr<DLLImportAttr>())
1517       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1518     else if ((D->hasAttr<DLLExportAttr>() ||
1519               shouldMapVisibilityToDLLExport(D)) &&
1520              !GV->isDeclarationForLinker())
1521       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1522   }
1523 }
1524 
1525 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1526                                     GlobalDecl GD) const {
1527   setDLLImportDLLExport(GV, GD);
1528   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1529 }
1530 
1531 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1532                                     const NamedDecl *D) const {
1533   setDLLImportDLLExport(GV, D);
1534   setGVPropertiesAux(GV, D);
1535 }
1536 
1537 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1538                                        const NamedDecl *D) const {
1539   setGlobalVisibility(GV, D);
1540   setDSOLocal(GV);
1541   GV->setPartition(CodeGenOpts.SymbolPartition);
1542 }
1543 
1544 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1545   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1546       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1547       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1548       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1549       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1550 }
1551 
1552 llvm::GlobalVariable::ThreadLocalMode
1553 CodeGenModule::GetDefaultLLVMTLSModel() const {
1554   switch (CodeGenOpts.getDefaultTLSModel()) {
1555   case CodeGenOptions::GeneralDynamicTLSModel:
1556     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1557   case CodeGenOptions::LocalDynamicTLSModel:
1558     return llvm::GlobalVariable::LocalDynamicTLSModel;
1559   case CodeGenOptions::InitialExecTLSModel:
1560     return llvm::GlobalVariable::InitialExecTLSModel;
1561   case CodeGenOptions::LocalExecTLSModel:
1562     return llvm::GlobalVariable::LocalExecTLSModel;
1563   }
1564   llvm_unreachable("Invalid TLS model!");
1565 }
1566 
1567 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1568   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1569 
1570   llvm::GlobalValue::ThreadLocalMode TLM;
1571   TLM = GetDefaultLLVMTLSModel();
1572 
1573   // Override the TLS model if it is explicitly specified.
1574   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1575     TLM = GetLLVMTLSModel(Attr->getModel());
1576   }
1577 
1578   GV->setThreadLocalMode(TLM);
1579 }
1580 
1581 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1582                                           StringRef Name) {
1583   const TargetInfo &Target = CGM.getTarget();
1584   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1585 }
1586 
1587 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1588                                                  const CPUSpecificAttr *Attr,
1589                                                  unsigned CPUIndex,
1590                                                  raw_ostream &Out) {
1591   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1592   // supported.
1593   if (Attr)
1594     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1595   else if (CGM.getTarget().supportsIFunc())
1596     Out << ".resolver";
1597 }
1598 
1599 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1600                                         const TargetVersionAttr *Attr,
1601                                         raw_ostream &Out) {
1602   if (Attr->isDefaultVersion())
1603     return;
1604   Out << "._";
1605   const TargetInfo &TI = CGM.getTarget();
1606   llvm::SmallVector<StringRef, 8> Feats;
1607   Attr->getFeatures(Feats);
1608   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1609     return TI.multiVersionSortPriority(FeatL) <
1610            TI.multiVersionSortPriority(FeatR);
1611   });
1612   for (const auto &Feat : Feats) {
1613     Out << 'M';
1614     Out << Feat;
1615   }
1616 }
1617 
1618 static void AppendTargetMangling(const CodeGenModule &CGM,
1619                                  const TargetAttr *Attr, raw_ostream &Out) {
1620   if (Attr->isDefaultVersion())
1621     return;
1622 
1623   Out << '.';
1624   const TargetInfo &Target = CGM.getTarget();
1625   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1626   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1627     // Multiversioning doesn't allow "no-${feature}", so we can
1628     // only have "+" prefixes here.
1629     assert(LHS.startswith("+") && RHS.startswith("+") &&
1630            "Features should always have a prefix.");
1631     return Target.multiVersionSortPriority(LHS.substr(1)) >
1632            Target.multiVersionSortPriority(RHS.substr(1));
1633   });
1634 
1635   bool IsFirst = true;
1636 
1637   if (!Info.CPU.empty()) {
1638     IsFirst = false;
1639     Out << "arch_" << Info.CPU;
1640   }
1641 
1642   for (StringRef Feat : Info.Features) {
1643     if (!IsFirst)
1644       Out << '_';
1645     IsFirst = false;
1646     Out << Feat.substr(1);
1647   }
1648 }
1649 
1650 // Returns true if GD is a function decl with internal linkage and
1651 // needs a unique suffix after the mangled name.
1652 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1653                                         CodeGenModule &CGM) {
1654   const Decl *D = GD.getDecl();
1655   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1656          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1657 }
1658 
1659 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1660                                        const TargetClonesAttr *Attr,
1661                                        unsigned VersionIndex,
1662                                        raw_ostream &Out) {
1663   const TargetInfo &TI = CGM.getTarget();
1664   if (TI.getTriple().isAArch64()) {
1665     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1666     if (FeatureStr == "default")
1667       return;
1668     Out << "._";
1669     SmallVector<StringRef, 8> Features;
1670     FeatureStr.split(Features, "+");
1671     llvm::stable_sort(Features,
1672                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1673                         return TI.multiVersionSortPriority(FeatL) <
1674                                TI.multiVersionSortPriority(FeatR);
1675                       });
1676     for (auto &Feat : Features) {
1677       Out << 'M';
1678       Out << Feat;
1679     }
1680   } else {
1681     Out << '.';
1682     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1683     if (FeatureStr.startswith("arch="))
1684       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1685     else
1686       Out << FeatureStr;
1687 
1688     Out << '.' << Attr->getMangledIndex(VersionIndex);
1689   }
1690 }
1691 
1692 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1693                                       const NamedDecl *ND,
1694                                       bool OmitMultiVersionMangling = false) {
1695   SmallString<256> Buffer;
1696   llvm::raw_svector_ostream Out(Buffer);
1697   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1698   if (!CGM.getModuleNameHash().empty())
1699     MC.needsUniqueInternalLinkageNames();
1700   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1701   if (ShouldMangle)
1702     MC.mangleName(GD.getWithDecl(ND), Out);
1703   else {
1704     IdentifierInfo *II = ND->getIdentifier();
1705     assert(II && "Attempt to mangle unnamed decl.");
1706     const auto *FD = dyn_cast<FunctionDecl>(ND);
1707 
1708     if (FD &&
1709         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1710       Out << "__regcall3__" << II->getName();
1711     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1712                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1713       Out << "__device_stub__" << II->getName();
1714     } else {
1715       Out << II->getName();
1716     }
1717   }
1718 
1719   // Check if the module name hash should be appended for internal linkage
1720   // symbols.   This should come before multi-version target suffixes are
1721   // appended. This is to keep the name and module hash suffix of the
1722   // internal linkage function together.  The unique suffix should only be
1723   // added when name mangling is done to make sure that the final name can
1724   // be properly demangled.  For example, for C functions without prototypes,
1725   // name mangling is not done and the unique suffix should not be appeneded
1726   // then.
1727   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1728     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1729            "Hash computed when not explicitly requested");
1730     Out << CGM.getModuleNameHash();
1731   }
1732 
1733   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1734     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1735       switch (FD->getMultiVersionKind()) {
1736       case MultiVersionKind::CPUDispatch:
1737       case MultiVersionKind::CPUSpecific:
1738         AppendCPUSpecificCPUDispatchMangling(CGM,
1739                                              FD->getAttr<CPUSpecificAttr>(),
1740                                              GD.getMultiVersionIndex(), Out);
1741         break;
1742       case MultiVersionKind::Target:
1743         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1744         break;
1745       case MultiVersionKind::TargetVersion:
1746         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1747         break;
1748       case MultiVersionKind::TargetClones:
1749         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1750                                    GD.getMultiVersionIndex(), Out);
1751         break;
1752       case MultiVersionKind::None:
1753         llvm_unreachable("None multiversion type isn't valid here");
1754       }
1755     }
1756 
1757   // Make unique name for device side static file-scope variable for HIP.
1758   if (CGM.getContext().shouldExternalize(ND) &&
1759       CGM.getLangOpts().GPURelocatableDeviceCode &&
1760       CGM.getLangOpts().CUDAIsDevice)
1761     CGM.printPostfixForExternalizedDecl(Out, ND);
1762 
1763   return std::string(Out.str());
1764 }
1765 
1766 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1767                                             const FunctionDecl *FD,
1768                                             StringRef &CurName) {
1769   if (!FD->isMultiVersion())
1770     return;
1771 
1772   // Get the name of what this would be without the 'target' attribute.  This
1773   // allows us to lookup the version that was emitted when this wasn't a
1774   // multiversion function.
1775   std::string NonTargetName =
1776       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1777   GlobalDecl OtherGD;
1778   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1779     assert(OtherGD.getCanonicalDecl()
1780                .getDecl()
1781                ->getAsFunction()
1782                ->isMultiVersion() &&
1783            "Other GD should now be a multiversioned function");
1784     // OtherFD is the version of this function that was mangled BEFORE
1785     // becoming a MultiVersion function.  It potentially needs to be updated.
1786     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1787                                       .getDecl()
1788                                       ->getAsFunction()
1789                                       ->getMostRecentDecl();
1790     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1791     // This is so that if the initial version was already the 'default'
1792     // version, we don't try to update it.
1793     if (OtherName != NonTargetName) {
1794       // Remove instead of erase, since others may have stored the StringRef
1795       // to this.
1796       const auto ExistingRecord = Manglings.find(NonTargetName);
1797       if (ExistingRecord != std::end(Manglings))
1798         Manglings.remove(&(*ExistingRecord));
1799       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1800       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1801           Result.first->first();
1802       // If this is the current decl is being created, make sure we update the name.
1803       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1804         CurName = OtherNameRef;
1805       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1806         Entry->setName(OtherName);
1807     }
1808   }
1809 }
1810 
1811 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1812   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1813 
1814   // Some ABIs don't have constructor variants.  Make sure that base and
1815   // complete constructors get mangled the same.
1816   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1817     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1818       CXXCtorType OrigCtorType = GD.getCtorType();
1819       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1820       if (OrigCtorType == Ctor_Base)
1821         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1822     }
1823   }
1824 
1825   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1826   // static device variable depends on whether the variable is referenced by
1827   // a host or device host function. Therefore the mangled name cannot be
1828   // cached.
1829   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1830     auto FoundName = MangledDeclNames.find(CanonicalGD);
1831     if (FoundName != MangledDeclNames.end())
1832       return FoundName->second;
1833   }
1834 
1835   // Keep the first result in the case of a mangling collision.
1836   const auto *ND = cast<NamedDecl>(GD.getDecl());
1837   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1838 
1839   // Ensure either we have different ABIs between host and device compilations,
1840   // says host compilation following MSVC ABI but device compilation follows
1841   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1842   // mangling should be the same after name stubbing. The later checking is
1843   // very important as the device kernel name being mangled in host-compilation
1844   // is used to resolve the device binaries to be executed. Inconsistent naming
1845   // result in undefined behavior. Even though we cannot check that naming
1846   // directly between host- and device-compilations, the host- and
1847   // device-mangling in host compilation could help catching certain ones.
1848   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1849          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1850          (getContext().getAuxTargetInfo() &&
1851           (getContext().getAuxTargetInfo()->getCXXABI() !=
1852            getContext().getTargetInfo().getCXXABI())) ||
1853          getCUDARuntime().getDeviceSideName(ND) ==
1854              getMangledNameImpl(
1855                  *this,
1856                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1857                  ND));
1858 
1859   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1860   return MangledDeclNames[CanonicalGD] = Result.first->first();
1861 }
1862 
1863 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1864                                              const BlockDecl *BD) {
1865   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1866   const Decl *D = GD.getDecl();
1867 
1868   SmallString<256> Buffer;
1869   llvm::raw_svector_ostream Out(Buffer);
1870   if (!D)
1871     MangleCtx.mangleGlobalBlock(BD,
1872       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1873   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1874     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1875   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1876     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1877   else
1878     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1879 
1880   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1881   return Result.first->first();
1882 }
1883 
1884 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1885   auto it = MangledDeclNames.begin();
1886   while (it != MangledDeclNames.end()) {
1887     if (it->second == Name)
1888       return it->first;
1889     it++;
1890   }
1891   return GlobalDecl();
1892 }
1893 
1894 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1895   return getModule().getNamedValue(Name);
1896 }
1897 
1898 /// AddGlobalCtor - Add a function to the list that will be called before
1899 /// main() runs.
1900 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1901                                   unsigned LexOrder,
1902                                   llvm::Constant *AssociatedData) {
1903   // FIXME: Type coercion of void()* types.
1904   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1905 }
1906 
1907 /// AddGlobalDtor - Add a function to the list that will be called
1908 /// when the module is unloaded.
1909 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1910                                   bool IsDtorAttrFunc) {
1911   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1912       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1913     DtorsUsingAtExit[Priority].push_back(Dtor);
1914     return;
1915   }
1916 
1917   // FIXME: Type coercion of void()* types.
1918   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1919 }
1920 
1921 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1922   if (Fns.empty()) return;
1923 
1924   // Ctor function type is void()*.
1925   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1926   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1927       TheModule.getDataLayout().getProgramAddressSpace());
1928 
1929   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1930   llvm::StructType *CtorStructTy = llvm::StructType::get(
1931       Int32Ty, CtorPFTy, VoidPtrTy);
1932 
1933   // Construct the constructor and destructor arrays.
1934   ConstantInitBuilder builder(*this);
1935   auto ctors = builder.beginArray(CtorStructTy);
1936   for (const auto &I : Fns) {
1937     auto ctor = ctors.beginStruct(CtorStructTy);
1938     ctor.addInt(Int32Ty, I.Priority);
1939     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1940     if (I.AssociatedData)
1941       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1942     else
1943       ctor.addNullPointer(VoidPtrTy);
1944     ctor.finishAndAddTo(ctors);
1945   }
1946 
1947   auto list =
1948     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1949                                 /*constant*/ false,
1950                                 llvm::GlobalValue::AppendingLinkage);
1951 
1952   // The LTO linker doesn't seem to like it when we set an alignment
1953   // on appending variables.  Take it off as a workaround.
1954   list->setAlignment(std::nullopt);
1955 
1956   Fns.clear();
1957 }
1958 
1959 llvm::GlobalValue::LinkageTypes
1960 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1961   const auto *D = cast<FunctionDecl>(GD.getDecl());
1962 
1963   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1964 
1965   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1966     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1967 
1968   if (isa<CXXConstructorDecl>(D) &&
1969       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1970       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1971     // Our approach to inheriting constructors is fundamentally different from
1972     // that used by the MS ABI, so keep our inheriting constructor thunks
1973     // internal rather than trying to pick an unambiguous mangling for them.
1974     return llvm::GlobalValue::InternalLinkage;
1975   }
1976 
1977   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1978 }
1979 
1980 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1981   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1982   if (!MDS) return nullptr;
1983 
1984   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1985 }
1986 
1987 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1988   if (auto *FnType = T->getAs<FunctionProtoType>())
1989     T = getContext().getFunctionType(
1990         FnType->getReturnType(), FnType->getParamTypes(),
1991         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1992 
1993   std::string OutName;
1994   llvm::raw_string_ostream Out(OutName);
1995   getCXXABI().getMangleContext().mangleTypeName(
1996       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
1997 
1998   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
1999     Out << ".normalized";
2000 
2001   return llvm::ConstantInt::get(Int32Ty,
2002                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2003 }
2004 
2005 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2006                                               const CGFunctionInfo &Info,
2007                                               llvm::Function *F, bool IsThunk) {
2008   unsigned CallingConv;
2009   llvm::AttributeList PAL;
2010   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2011                          /*AttrOnCallSite=*/false, IsThunk);
2012   F->setAttributes(PAL);
2013   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2014 }
2015 
2016 static void removeImageAccessQualifier(std::string& TyName) {
2017   std::string ReadOnlyQual("__read_only");
2018   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2019   if (ReadOnlyPos != std::string::npos)
2020     // "+ 1" for the space after access qualifier.
2021     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2022   else {
2023     std::string WriteOnlyQual("__write_only");
2024     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2025     if (WriteOnlyPos != std::string::npos)
2026       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2027     else {
2028       std::string ReadWriteQual("__read_write");
2029       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2030       if (ReadWritePos != std::string::npos)
2031         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2032     }
2033   }
2034 }
2035 
2036 // Returns the address space id that should be produced to the
2037 // kernel_arg_addr_space metadata. This is always fixed to the ids
2038 // as specified in the SPIR 2.0 specification in order to differentiate
2039 // for example in clGetKernelArgInfo() implementation between the address
2040 // spaces with targets without unique mapping to the OpenCL address spaces
2041 // (basically all single AS CPUs).
2042 static unsigned ArgInfoAddressSpace(LangAS AS) {
2043   switch (AS) {
2044   case LangAS::opencl_global:
2045     return 1;
2046   case LangAS::opencl_constant:
2047     return 2;
2048   case LangAS::opencl_local:
2049     return 3;
2050   case LangAS::opencl_generic:
2051     return 4; // Not in SPIR 2.0 specs.
2052   case LangAS::opencl_global_device:
2053     return 5;
2054   case LangAS::opencl_global_host:
2055     return 6;
2056   default:
2057     return 0; // Assume private.
2058   }
2059 }
2060 
2061 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2062                                          const FunctionDecl *FD,
2063                                          CodeGenFunction *CGF) {
2064   assert(((FD && CGF) || (!FD && !CGF)) &&
2065          "Incorrect use - FD and CGF should either be both null or not!");
2066   // Create MDNodes that represent the kernel arg metadata.
2067   // Each MDNode is a list in the form of "key", N number of values which is
2068   // the same number of values as their are kernel arguments.
2069 
2070   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2071 
2072   // MDNode for the kernel argument address space qualifiers.
2073   SmallVector<llvm::Metadata *, 8> addressQuals;
2074 
2075   // MDNode for the kernel argument access qualifiers (images only).
2076   SmallVector<llvm::Metadata *, 8> accessQuals;
2077 
2078   // MDNode for the kernel argument type names.
2079   SmallVector<llvm::Metadata *, 8> argTypeNames;
2080 
2081   // MDNode for the kernel argument base type names.
2082   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2083 
2084   // MDNode for the kernel argument type qualifiers.
2085   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2086 
2087   // MDNode for the kernel argument names.
2088   SmallVector<llvm::Metadata *, 8> argNames;
2089 
2090   if (FD && CGF)
2091     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2092       const ParmVarDecl *parm = FD->getParamDecl(i);
2093       // Get argument name.
2094       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2095 
2096       if (!getLangOpts().OpenCL)
2097         continue;
2098       QualType ty = parm->getType();
2099       std::string typeQuals;
2100 
2101       // Get image and pipe access qualifier:
2102       if (ty->isImageType() || ty->isPipeType()) {
2103         const Decl *PDecl = parm;
2104         if (const auto *TD = ty->getAs<TypedefType>())
2105           PDecl = TD->getDecl();
2106         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2107         if (A && A->isWriteOnly())
2108           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2109         else if (A && A->isReadWrite())
2110           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2111         else
2112           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2113       } else
2114         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2115 
2116       auto getTypeSpelling = [&](QualType Ty) {
2117         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2118 
2119         if (Ty.isCanonical()) {
2120           StringRef typeNameRef = typeName;
2121           // Turn "unsigned type" to "utype"
2122           if (typeNameRef.consume_front("unsigned "))
2123             return std::string("u") + typeNameRef.str();
2124           if (typeNameRef.consume_front("signed "))
2125             return typeNameRef.str();
2126         }
2127 
2128         return typeName;
2129       };
2130 
2131       if (ty->isPointerType()) {
2132         QualType pointeeTy = ty->getPointeeType();
2133 
2134         // Get address qualifier.
2135         addressQuals.push_back(
2136             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2137                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2138 
2139         // Get argument type name.
2140         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2141         std::string baseTypeName =
2142             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2143         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2144         argBaseTypeNames.push_back(
2145             llvm::MDString::get(VMContext, baseTypeName));
2146 
2147         // Get argument type qualifiers:
2148         if (ty.isRestrictQualified())
2149           typeQuals = "restrict";
2150         if (pointeeTy.isConstQualified() ||
2151             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2152           typeQuals += typeQuals.empty() ? "const" : " const";
2153         if (pointeeTy.isVolatileQualified())
2154           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2155       } else {
2156         uint32_t AddrSpc = 0;
2157         bool isPipe = ty->isPipeType();
2158         if (ty->isImageType() || isPipe)
2159           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2160 
2161         addressQuals.push_back(
2162             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2163 
2164         // Get argument type name.
2165         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2166         std::string typeName = getTypeSpelling(ty);
2167         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2168 
2169         // Remove access qualifiers on images
2170         // (as they are inseparable from type in clang implementation,
2171         // but OpenCL spec provides a special query to get access qualifier
2172         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2173         if (ty->isImageType()) {
2174           removeImageAccessQualifier(typeName);
2175           removeImageAccessQualifier(baseTypeName);
2176         }
2177 
2178         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2179         argBaseTypeNames.push_back(
2180             llvm::MDString::get(VMContext, baseTypeName));
2181 
2182         if (isPipe)
2183           typeQuals = "pipe";
2184       }
2185       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2186     }
2187 
2188   if (getLangOpts().OpenCL) {
2189     Fn->setMetadata("kernel_arg_addr_space",
2190                     llvm::MDNode::get(VMContext, addressQuals));
2191     Fn->setMetadata("kernel_arg_access_qual",
2192                     llvm::MDNode::get(VMContext, accessQuals));
2193     Fn->setMetadata("kernel_arg_type",
2194                     llvm::MDNode::get(VMContext, argTypeNames));
2195     Fn->setMetadata("kernel_arg_base_type",
2196                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2197     Fn->setMetadata("kernel_arg_type_qual",
2198                     llvm::MDNode::get(VMContext, argTypeQuals));
2199   }
2200   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2201       getCodeGenOpts().HIPSaveKernelArgName)
2202     Fn->setMetadata("kernel_arg_name",
2203                     llvm::MDNode::get(VMContext, argNames));
2204 }
2205 
2206 /// Determines whether the language options require us to model
2207 /// unwind exceptions.  We treat -fexceptions as mandating this
2208 /// except under the fragile ObjC ABI with only ObjC exceptions
2209 /// enabled.  This means, for example, that C with -fexceptions
2210 /// enables this.
2211 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2212   // If exceptions are completely disabled, obviously this is false.
2213   if (!LangOpts.Exceptions) return false;
2214 
2215   // If C++ exceptions are enabled, this is true.
2216   if (LangOpts.CXXExceptions) return true;
2217 
2218   // If ObjC exceptions are enabled, this depends on the ABI.
2219   if (LangOpts.ObjCExceptions) {
2220     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2221   }
2222 
2223   return true;
2224 }
2225 
2226 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2227                                                       const CXXMethodDecl *MD) {
2228   // Check that the type metadata can ever actually be used by a call.
2229   if (!CGM.getCodeGenOpts().LTOUnit ||
2230       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2231     return false;
2232 
2233   // Only functions whose address can be taken with a member function pointer
2234   // need this sort of type metadata.
2235   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
2236          !isa<CXXDestructorDecl>(MD);
2237 }
2238 
2239 std::vector<const CXXRecordDecl *>
2240 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2241   llvm::SetVector<const CXXRecordDecl *> MostBases;
2242 
2243   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2244   CollectMostBases = [&](const CXXRecordDecl *RD) {
2245     if (RD->getNumBases() == 0)
2246       MostBases.insert(RD);
2247     for (const CXXBaseSpecifier &B : RD->bases())
2248       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2249   };
2250   CollectMostBases(RD);
2251   return MostBases.takeVector();
2252 }
2253 
2254 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2255                                                            llvm::Function *F) {
2256   llvm::AttrBuilder B(F->getContext());
2257 
2258   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2259     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2260 
2261   if (CodeGenOpts.StackClashProtector)
2262     B.addAttribute("probe-stack", "inline-asm");
2263 
2264   if (!hasUnwindExceptions(LangOpts))
2265     B.addAttribute(llvm::Attribute::NoUnwind);
2266 
2267   if (D && D->hasAttr<NoStackProtectorAttr>())
2268     ; // Do nothing.
2269   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2270            LangOpts.getStackProtector() == LangOptions::SSPOn)
2271     B.addAttribute(llvm::Attribute::StackProtectStrong);
2272   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2273     B.addAttribute(llvm::Attribute::StackProtect);
2274   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2275     B.addAttribute(llvm::Attribute::StackProtectStrong);
2276   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2277     B.addAttribute(llvm::Attribute::StackProtectReq);
2278 
2279   if (!D) {
2280     // If we don't have a declaration to control inlining, the function isn't
2281     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2282     // disabled, mark the function as noinline.
2283     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2284         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2285       B.addAttribute(llvm::Attribute::NoInline);
2286 
2287     F->addFnAttrs(B);
2288     return;
2289   }
2290 
2291   // Track whether we need to add the optnone LLVM attribute,
2292   // starting with the default for this optimization level.
2293   bool ShouldAddOptNone =
2294       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2295   // We can't add optnone in the following cases, it won't pass the verifier.
2296   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2297   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2298 
2299   // Add optnone, but do so only if the function isn't always_inline.
2300   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2301       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2302     B.addAttribute(llvm::Attribute::OptimizeNone);
2303 
2304     // OptimizeNone implies noinline; we should not be inlining such functions.
2305     B.addAttribute(llvm::Attribute::NoInline);
2306 
2307     // We still need to handle naked functions even though optnone subsumes
2308     // much of their semantics.
2309     if (D->hasAttr<NakedAttr>())
2310       B.addAttribute(llvm::Attribute::Naked);
2311 
2312     // OptimizeNone wins over OptimizeForSize and MinSize.
2313     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2314     F->removeFnAttr(llvm::Attribute::MinSize);
2315   } else if (D->hasAttr<NakedAttr>()) {
2316     // Naked implies noinline: we should not be inlining such functions.
2317     B.addAttribute(llvm::Attribute::Naked);
2318     B.addAttribute(llvm::Attribute::NoInline);
2319   } else if (D->hasAttr<NoDuplicateAttr>()) {
2320     B.addAttribute(llvm::Attribute::NoDuplicate);
2321   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2322     // Add noinline if the function isn't always_inline.
2323     B.addAttribute(llvm::Attribute::NoInline);
2324   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2325              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2326     // (noinline wins over always_inline, and we can't specify both in IR)
2327     B.addAttribute(llvm::Attribute::AlwaysInline);
2328   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2329     // If we're not inlining, then force everything that isn't always_inline to
2330     // carry an explicit noinline attribute.
2331     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2332       B.addAttribute(llvm::Attribute::NoInline);
2333   } else {
2334     // Otherwise, propagate the inline hint attribute and potentially use its
2335     // absence to mark things as noinline.
2336     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2337       // Search function and template pattern redeclarations for inline.
2338       auto CheckForInline = [](const FunctionDecl *FD) {
2339         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2340           return Redecl->isInlineSpecified();
2341         };
2342         if (any_of(FD->redecls(), CheckRedeclForInline))
2343           return true;
2344         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2345         if (!Pattern)
2346           return false;
2347         return any_of(Pattern->redecls(), CheckRedeclForInline);
2348       };
2349       if (CheckForInline(FD)) {
2350         B.addAttribute(llvm::Attribute::InlineHint);
2351       } else if (CodeGenOpts.getInlining() ==
2352                      CodeGenOptions::OnlyHintInlining &&
2353                  !FD->isInlined() &&
2354                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2355         B.addAttribute(llvm::Attribute::NoInline);
2356       }
2357     }
2358   }
2359 
2360   // Add other optimization related attributes if we are optimizing this
2361   // function.
2362   if (!D->hasAttr<OptimizeNoneAttr>()) {
2363     if (D->hasAttr<ColdAttr>()) {
2364       if (!ShouldAddOptNone)
2365         B.addAttribute(llvm::Attribute::OptimizeForSize);
2366       B.addAttribute(llvm::Attribute::Cold);
2367     }
2368     if (D->hasAttr<HotAttr>())
2369       B.addAttribute(llvm::Attribute::Hot);
2370     if (D->hasAttr<MinSizeAttr>())
2371       B.addAttribute(llvm::Attribute::MinSize);
2372   }
2373 
2374   F->addFnAttrs(B);
2375 
2376   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2377   if (alignment)
2378     F->setAlignment(llvm::Align(alignment));
2379 
2380   if (!D->hasAttr<AlignedAttr>())
2381     if (LangOpts.FunctionAlignment)
2382       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2383 
2384   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2385   // reserve a bit for differentiating between virtual and non-virtual member
2386   // functions. If the current target's C++ ABI requires this and this is a
2387   // member function, set its alignment accordingly.
2388   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2389     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2390       F->setAlignment(llvm::Align(2));
2391   }
2392 
2393   // In the cross-dso CFI mode with canonical jump tables, we want !type
2394   // attributes on definitions only.
2395   if (CodeGenOpts.SanitizeCfiCrossDso &&
2396       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2397     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2398       // Skip available_externally functions. They won't be codegen'ed in the
2399       // current module anyway.
2400       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2401         CreateFunctionTypeMetadataForIcall(FD, F);
2402     }
2403   }
2404 
2405   // Emit type metadata on member functions for member function pointer checks.
2406   // These are only ever necessary on definitions; we're guaranteed that the
2407   // definition will be present in the LTO unit as a result of LTO visibility.
2408   auto *MD = dyn_cast<CXXMethodDecl>(D);
2409   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2410     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2411       llvm::Metadata *Id =
2412           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2413               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2414       F->addTypeMetadata(0, Id);
2415     }
2416   }
2417 }
2418 
2419 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2420                                                   llvm::Function *F) {
2421   if (D->hasAttr<StrictFPAttr>()) {
2422     llvm::AttrBuilder FuncAttrs(F->getContext());
2423     FuncAttrs.addAttribute("strictfp");
2424     F->addFnAttrs(FuncAttrs);
2425   }
2426 }
2427 
2428 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2429   const Decl *D = GD.getDecl();
2430   if (isa_and_nonnull<NamedDecl>(D))
2431     setGVProperties(GV, GD);
2432   else
2433     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2434 
2435   if (D && D->hasAttr<UsedAttr>())
2436     addUsedOrCompilerUsedGlobal(GV);
2437 
2438   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2439     const auto *VD = cast<VarDecl>(D);
2440     if (VD->getType().isConstQualified() &&
2441         VD->getStorageDuration() == SD_Static)
2442       addUsedOrCompilerUsedGlobal(GV);
2443   }
2444 }
2445 
2446 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2447                                                 llvm::AttrBuilder &Attrs,
2448                                                 bool SetTargetFeatures) {
2449   // Add target-cpu and target-features attributes to functions. If
2450   // we have a decl for the function and it has a target attribute then
2451   // parse that and add it to the feature set.
2452   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2453   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2454   std::vector<std::string> Features;
2455   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2456   FD = FD ? FD->getMostRecentDecl() : FD;
2457   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2458   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2459   assert((!TD || !TV) && "both target_version and target specified");
2460   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2461   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2462   bool AddedAttr = false;
2463   if (TD || TV || SD || TC) {
2464     llvm::StringMap<bool> FeatureMap;
2465     getContext().getFunctionFeatureMap(FeatureMap, GD);
2466 
2467     // Produce the canonical string for this set of features.
2468     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2469       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2470 
2471     // Now add the target-cpu and target-features to the function.
2472     // While we populated the feature map above, we still need to
2473     // get and parse the target attribute so we can get the cpu for
2474     // the function.
2475     if (TD) {
2476       ParsedTargetAttr ParsedAttr =
2477           Target.parseTargetAttr(TD->getFeaturesStr());
2478       if (!ParsedAttr.CPU.empty() &&
2479           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2480         TargetCPU = ParsedAttr.CPU;
2481         TuneCPU = ""; // Clear the tune CPU.
2482       }
2483       if (!ParsedAttr.Tune.empty() &&
2484           getTarget().isValidCPUName(ParsedAttr.Tune))
2485         TuneCPU = ParsedAttr.Tune;
2486     }
2487 
2488     if (SD) {
2489       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2490       // favor this processor.
2491       TuneCPU = getTarget().getCPUSpecificTuneName(
2492           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2493     }
2494   } else {
2495     // Otherwise just add the existing target cpu and target features to the
2496     // function.
2497     Features = getTarget().getTargetOpts().Features;
2498   }
2499 
2500   if (!TargetCPU.empty()) {
2501     Attrs.addAttribute("target-cpu", TargetCPU);
2502     AddedAttr = true;
2503   }
2504   if (!TuneCPU.empty()) {
2505     Attrs.addAttribute("tune-cpu", TuneCPU);
2506     AddedAttr = true;
2507   }
2508   if (!Features.empty() && SetTargetFeatures) {
2509     llvm::erase_if(Features, [&](const std::string& F) {
2510        return getTarget().isReadOnlyFeature(F.substr(1));
2511     });
2512     llvm::sort(Features);
2513     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2514     AddedAttr = true;
2515   }
2516 
2517   return AddedAttr;
2518 }
2519 
2520 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2521                                           llvm::GlobalObject *GO) {
2522   const Decl *D = GD.getDecl();
2523   SetCommonAttributes(GD, GO);
2524 
2525   if (D) {
2526     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2527       if (D->hasAttr<RetainAttr>())
2528         addUsedGlobal(GV);
2529       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2530         GV->addAttribute("bss-section", SA->getName());
2531       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2532         GV->addAttribute("data-section", SA->getName());
2533       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2534         GV->addAttribute("rodata-section", SA->getName());
2535       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2536         GV->addAttribute("relro-section", SA->getName());
2537     }
2538 
2539     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2540       if (D->hasAttr<RetainAttr>())
2541         addUsedGlobal(F);
2542       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2543         if (!D->getAttr<SectionAttr>())
2544           F->addFnAttr("implicit-section-name", SA->getName());
2545 
2546       llvm::AttrBuilder Attrs(F->getContext());
2547       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2548         // We know that GetCPUAndFeaturesAttributes will always have the
2549         // newest set, since it has the newest possible FunctionDecl, so the
2550         // new ones should replace the old.
2551         llvm::AttributeMask RemoveAttrs;
2552         RemoveAttrs.addAttribute("target-cpu");
2553         RemoveAttrs.addAttribute("target-features");
2554         RemoveAttrs.addAttribute("tune-cpu");
2555         F->removeFnAttrs(RemoveAttrs);
2556         F->addFnAttrs(Attrs);
2557       }
2558     }
2559 
2560     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2561       GO->setSection(CSA->getName());
2562     else if (const auto *SA = D->getAttr<SectionAttr>())
2563       GO->setSection(SA->getName());
2564   }
2565 
2566   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2567 }
2568 
2569 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2570                                                   llvm::Function *F,
2571                                                   const CGFunctionInfo &FI) {
2572   const Decl *D = GD.getDecl();
2573   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2574   SetLLVMFunctionAttributesForDefinition(D, F);
2575 
2576   F->setLinkage(llvm::Function::InternalLinkage);
2577 
2578   setNonAliasAttributes(GD, F);
2579 }
2580 
2581 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2582   // Set linkage and visibility in case we never see a definition.
2583   LinkageInfo LV = ND->getLinkageAndVisibility();
2584   // Don't set internal linkage on declarations.
2585   // "extern_weak" is overloaded in LLVM; we probably should have
2586   // separate linkage types for this.
2587   if (isExternallyVisible(LV.getLinkage()) &&
2588       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2589     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2590 }
2591 
2592 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2593                                                        llvm::Function *F) {
2594   // Only if we are checking indirect calls.
2595   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2596     return;
2597 
2598   // Non-static class methods are handled via vtable or member function pointer
2599   // checks elsewhere.
2600   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2601     return;
2602 
2603   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2604   F->addTypeMetadata(0, MD);
2605   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2606 
2607   // Emit a hash-based bit set entry for cross-DSO calls.
2608   if (CodeGenOpts.SanitizeCfiCrossDso)
2609     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2610       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2611 }
2612 
2613 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2614   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2615     return;
2616 
2617   llvm::LLVMContext &Ctx = F->getContext();
2618   llvm::MDBuilder MDB(Ctx);
2619   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2620                  llvm::MDNode::get(
2621                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2622 }
2623 
2624 static bool allowKCFIIdentifier(StringRef Name) {
2625   // KCFI type identifier constants are only necessary for external assembly
2626   // functions, which means it's safe to skip unusual names. Subset of
2627   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2628   return llvm::all_of(Name, [](const char &C) {
2629     return llvm::isAlnum(C) || C == '_' || C == '.';
2630   });
2631 }
2632 
2633 void CodeGenModule::finalizeKCFITypes() {
2634   llvm::Module &M = getModule();
2635   for (auto &F : M.functions()) {
2636     // Remove KCFI type metadata from non-address-taken local functions.
2637     bool AddressTaken = F.hasAddressTaken();
2638     if (!AddressTaken && F.hasLocalLinkage())
2639       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2640 
2641     // Generate a constant with the expected KCFI type identifier for all
2642     // address-taken function declarations to support annotating indirectly
2643     // called assembly functions.
2644     if (!AddressTaken || !F.isDeclaration())
2645       continue;
2646 
2647     const llvm::ConstantInt *Type;
2648     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2649       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2650     else
2651       continue;
2652 
2653     StringRef Name = F.getName();
2654     if (!allowKCFIIdentifier(Name))
2655       continue;
2656 
2657     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2658                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2659                           .str();
2660     M.appendModuleInlineAsm(Asm);
2661   }
2662 }
2663 
2664 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2665                                           bool IsIncompleteFunction,
2666                                           bool IsThunk) {
2667 
2668   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2669     // If this is an intrinsic function, set the function's attributes
2670     // to the intrinsic's attributes.
2671     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2672     return;
2673   }
2674 
2675   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2676 
2677   if (!IsIncompleteFunction)
2678     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2679                               IsThunk);
2680 
2681   // Add the Returned attribute for "this", except for iOS 5 and earlier
2682   // where substantial code, including the libstdc++ dylib, was compiled with
2683   // GCC and does not actually return "this".
2684   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2685       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2686     assert(!F->arg_empty() &&
2687            F->arg_begin()->getType()
2688              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2689            "unexpected this return");
2690     F->addParamAttr(0, llvm::Attribute::Returned);
2691   }
2692 
2693   // Only a few attributes are set on declarations; these may later be
2694   // overridden by a definition.
2695 
2696   setLinkageForGV(F, FD);
2697   setGVProperties(F, FD);
2698 
2699   // Setup target-specific attributes.
2700   if (!IsIncompleteFunction && F->isDeclaration())
2701     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2702 
2703   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2704     F->setSection(CSA->getName());
2705   else if (const auto *SA = FD->getAttr<SectionAttr>())
2706      F->setSection(SA->getName());
2707 
2708   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2709     if (EA->isError())
2710       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2711     else if (EA->isWarning())
2712       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2713   }
2714 
2715   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2716   if (FD->isInlineBuiltinDeclaration()) {
2717     const FunctionDecl *FDBody;
2718     bool HasBody = FD->hasBody(FDBody);
2719     (void)HasBody;
2720     assert(HasBody && "Inline builtin declarations should always have an "
2721                       "available body!");
2722     if (shouldEmitFunction(FDBody))
2723       F->addFnAttr(llvm::Attribute::NoBuiltin);
2724   }
2725 
2726   if (FD->isReplaceableGlobalAllocationFunction()) {
2727     // A replaceable global allocation function does not act like a builtin by
2728     // default, only if it is invoked by a new-expression or delete-expression.
2729     F->addFnAttr(llvm::Attribute::NoBuiltin);
2730   }
2731 
2732   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2733     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2734   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2735     if (MD->isVirtual())
2736       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2737 
2738   // Don't emit entries for function declarations in the cross-DSO mode. This
2739   // is handled with better precision by the receiving DSO. But if jump tables
2740   // are non-canonical then we need type metadata in order to produce the local
2741   // jump table.
2742   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2743       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2744     CreateFunctionTypeMetadataForIcall(FD, F);
2745 
2746   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2747     setKCFIType(FD, F);
2748 
2749   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2750     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2751 
2752   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2753     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2754 
2755   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2756     // Annotate the callback behavior as metadata:
2757     //  - The callback callee (as argument number).
2758     //  - The callback payloads (as argument numbers).
2759     llvm::LLVMContext &Ctx = F->getContext();
2760     llvm::MDBuilder MDB(Ctx);
2761 
2762     // The payload indices are all but the first one in the encoding. The first
2763     // identifies the callback callee.
2764     int CalleeIdx = *CB->encoding_begin();
2765     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2766     F->addMetadata(llvm::LLVMContext::MD_callback,
2767                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2768                                                CalleeIdx, PayloadIndices,
2769                                                /* VarArgsArePassed */ false)}));
2770   }
2771 }
2772 
2773 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2774   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2775          "Only globals with definition can force usage.");
2776   LLVMUsed.emplace_back(GV);
2777 }
2778 
2779 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2780   assert(!GV->isDeclaration() &&
2781          "Only globals with definition can force usage.");
2782   LLVMCompilerUsed.emplace_back(GV);
2783 }
2784 
2785 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2786   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2787          "Only globals with definition can force usage.");
2788   if (getTriple().isOSBinFormatELF())
2789     LLVMCompilerUsed.emplace_back(GV);
2790   else
2791     LLVMUsed.emplace_back(GV);
2792 }
2793 
2794 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2795                      std::vector<llvm::WeakTrackingVH> &List) {
2796   // Don't create llvm.used if there is no need.
2797   if (List.empty())
2798     return;
2799 
2800   // Convert List to what ConstantArray needs.
2801   SmallVector<llvm::Constant*, 8> UsedArray;
2802   UsedArray.resize(List.size());
2803   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2804     UsedArray[i] =
2805         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2806             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2807   }
2808 
2809   if (UsedArray.empty())
2810     return;
2811   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2812 
2813   auto *GV = new llvm::GlobalVariable(
2814       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2815       llvm::ConstantArray::get(ATy, UsedArray), Name);
2816 
2817   GV->setSection("llvm.metadata");
2818 }
2819 
2820 void CodeGenModule::emitLLVMUsed() {
2821   emitUsed(*this, "llvm.used", LLVMUsed);
2822   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2823 }
2824 
2825 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2826   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2827   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2828 }
2829 
2830 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2831   llvm::SmallString<32> Opt;
2832   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2833   if (Opt.empty())
2834     return;
2835   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2836   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2837 }
2838 
2839 void CodeGenModule::AddDependentLib(StringRef Lib) {
2840   auto &C = getLLVMContext();
2841   if (getTarget().getTriple().isOSBinFormatELF()) {
2842       ELFDependentLibraries.push_back(
2843         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2844     return;
2845   }
2846 
2847   llvm::SmallString<24> Opt;
2848   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2849   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2850   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2851 }
2852 
2853 /// Add link options implied by the given module, including modules
2854 /// it depends on, using a postorder walk.
2855 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2856                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2857                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2858   // Import this module's parent.
2859   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2860     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2861   }
2862 
2863   // Import this module's dependencies.
2864   for (Module *Import : llvm::reverse(Mod->Imports)) {
2865     if (Visited.insert(Import).second)
2866       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2867   }
2868 
2869   // Add linker options to link against the libraries/frameworks
2870   // described by this module.
2871   llvm::LLVMContext &Context = CGM.getLLVMContext();
2872   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2873 
2874   // For modules that use export_as for linking, use that module
2875   // name instead.
2876   if (Mod->UseExportAsModuleLinkName)
2877     return;
2878 
2879   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2880     // Link against a framework.  Frameworks are currently Darwin only, so we
2881     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2882     if (LL.IsFramework) {
2883       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2884                                  llvm::MDString::get(Context, LL.Library)};
2885 
2886       Metadata.push_back(llvm::MDNode::get(Context, Args));
2887       continue;
2888     }
2889 
2890     // Link against a library.
2891     if (IsELF) {
2892       llvm::Metadata *Args[2] = {
2893           llvm::MDString::get(Context, "lib"),
2894           llvm::MDString::get(Context, LL.Library),
2895       };
2896       Metadata.push_back(llvm::MDNode::get(Context, Args));
2897     } else {
2898       llvm::SmallString<24> Opt;
2899       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2900       auto *OptString = llvm::MDString::get(Context, Opt);
2901       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2902     }
2903   }
2904 }
2905 
2906 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2907   // Emit the initializers in the order that sub-modules appear in the
2908   // source, first Global Module Fragments, if present.
2909   if (auto GMF = Primary->getGlobalModuleFragment()) {
2910     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2911       if (isa<ImportDecl>(D))
2912         continue;
2913       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2914       EmitTopLevelDecl(D);
2915     }
2916   }
2917   // Second any associated with the module, itself.
2918   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2919     // Skip import decls, the inits for those are called explicitly.
2920     if (isa<ImportDecl>(D))
2921       continue;
2922     EmitTopLevelDecl(D);
2923   }
2924   // Third any associated with the Privat eMOdule Fragment, if present.
2925   if (auto PMF = Primary->getPrivateModuleFragment()) {
2926     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2927       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2928       EmitTopLevelDecl(D);
2929     }
2930   }
2931 }
2932 
2933 void CodeGenModule::EmitModuleLinkOptions() {
2934   // Collect the set of all of the modules we want to visit to emit link
2935   // options, which is essentially the imported modules and all of their
2936   // non-explicit child modules.
2937   llvm::SetVector<clang::Module *> LinkModules;
2938   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2939   SmallVector<clang::Module *, 16> Stack;
2940 
2941   // Seed the stack with imported modules.
2942   for (Module *M : ImportedModules) {
2943     // Do not add any link flags when an implementation TU of a module imports
2944     // a header of that same module.
2945     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2946         !getLangOpts().isCompilingModule())
2947       continue;
2948     if (Visited.insert(M).second)
2949       Stack.push_back(M);
2950   }
2951 
2952   // Find all of the modules to import, making a little effort to prune
2953   // non-leaf modules.
2954   while (!Stack.empty()) {
2955     clang::Module *Mod = Stack.pop_back_val();
2956 
2957     bool AnyChildren = false;
2958 
2959     // Visit the submodules of this module.
2960     for (const auto &SM : Mod->submodules()) {
2961       // Skip explicit children; they need to be explicitly imported to be
2962       // linked against.
2963       if (SM->IsExplicit)
2964         continue;
2965 
2966       if (Visited.insert(SM).second) {
2967         Stack.push_back(SM);
2968         AnyChildren = true;
2969       }
2970     }
2971 
2972     // We didn't find any children, so add this module to the list of
2973     // modules to link against.
2974     if (!AnyChildren) {
2975       LinkModules.insert(Mod);
2976     }
2977   }
2978 
2979   // Add link options for all of the imported modules in reverse topological
2980   // order.  We don't do anything to try to order import link flags with respect
2981   // to linker options inserted by things like #pragma comment().
2982   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2983   Visited.clear();
2984   for (Module *M : LinkModules)
2985     if (Visited.insert(M).second)
2986       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2987   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2988   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2989 
2990   // Add the linker options metadata flag.
2991   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2992   for (auto *MD : LinkerOptionsMetadata)
2993     NMD->addOperand(MD);
2994 }
2995 
2996 void CodeGenModule::EmitDeferred() {
2997   // Emit deferred declare target declarations.
2998   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2999     getOpenMPRuntime().emitDeferredTargetDecls();
3000 
3001   // Emit code for any potentially referenced deferred decls.  Since a
3002   // previously unused static decl may become used during the generation of code
3003   // for a static function, iterate until no changes are made.
3004 
3005   if (!DeferredVTables.empty()) {
3006     EmitDeferredVTables();
3007 
3008     // Emitting a vtable doesn't directly cause more vtables to
3009     // become deferred, although it can cause functions to be
3010     // emitted that then need those vtables.
3011     assert(DeferredVTables.empty());
3012   }
3013 
3014   // Emit CUDA/HIP static device variables referenced by host code only.
3015   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3016   // needed for further handling.
3017   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3018     llvm::append_range(DeferredDeclsToEmit,
3019                        getContext().CUDADeviceVarODRUsedByHost);
3020 
3021   // Stop if we're out of both deferred vtables and deferred declarations.
3022   if (DeferredDeclsToEmit.empty())
3023     return;
3024 
3025   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3026   // work, it will not interfere with this.
3027   std::vector<GlobalDecl> CurDeclsToEmit;
3028   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3029 
3030   for (GlobalDecl &D : CurDeclsToEmit) {
3031     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3032     // to get GlobalValue with exactly the type we need, not something that
3033     // might had been created for another decl with the same mangled name but
3034     // different type.
3035     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3036         GetAddrOfGlobal(D, ForDefinition));
3037 
3038     // In case of different address spaces, we may still get a cast, even with
3039     // IsForDefinition equal to true. Query mangled names table to get
3040     // GlobalValue.
3041     if (!GV)
3042       GV = GetGlobalValue(getMangledName(D));
3043 
3044     // Make sure GetGlobalValue returned non-null.
3045     assert(GV);
3046 
3047     // Check to see if we've already emitted this.  This is necessary
3048     // for a couple of reasons: first, decls can end up in the
3049     // deferred-decls queue multiple times, and second, decls can end
3050     // up with definitions in unusual ways (e.g. by an extern inline
3051     // function acquiring a strong function redefinition).  Just
3052     // ignore these cases.
3053     if (!GV->isDeclaration())
3054       continue;
3055 
3056     // If this is OpenMP, check if it is legal to emit this global normally.
3057     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3058       continue;
3059 
3060     // Otherwise, emit the definition and move on to the next one.
3061     EmitGlobalDefinition(D, GV);
3062 
3063     // If we found out that we need to emit more decls, do that recursively.
3064     // This has the advantage that the decls are emitted in a DFS and related
3065     // ones are close together, which is convenient for testing.
3066     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3067       EmitDeferred();
3068       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3069     }
3070   }
3071 }
3072 
3073 void CodeGenModule::EmitVTablesOpportunistically() {
3074   // Try to emit external vtables as available_externally if they have emitted
3075   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3076   // is not allowed to create new references to things that need to be emitted
3077   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3078 
3079   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3080          && "Only emit opportunistic vtables with optimizations");
3081 
3082   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3083     assert(getVTables().isVTableExternal(RD) &&
3084            "This queue should only contain external vtables");
3085     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3086       VTables.GenerateClassData(RD);
3087   }
3088   OpportunisticVTables.clear();
3089 }
3090 
3091 void CodeGenModule::EmitGlobalAnnotations() {
3092   if (Annotations.empty())
3093     return;
3094 
3095   // Create a new global variable for the ConstantStruct in the Module.
3096   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3097     Annotations[0]->getType(), Annotations.size()), Annotations);
3098   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3099                                       llvm::GlobalValue::AppendingLinkage,
3100                                       Array, "llvm.global.annotations");
3101   gv->setSection(AnnotationSection);
3102 }
3103 
3104 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3105   llvm::Constant *&AStr = AnnotationStrings[Str];
3106   if (AStr)
3107     return AStr;
3108 
3109   // Not found yet, create a new global.
3110   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3111   auto *gv = new llvm::GlobalVariable(
3112       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3113       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3114       ConstGlobalsPtrTy->getAddressSpace());
3115   gv->setSection(AnnotationSection);
3116   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3117   AStr = gv;
3118   return gv;
3119 }
3120 
3121 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3122   SourceManager &SM = getContext().getSourceManager();
3123   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3124   if (PLoc.isValid())
3125     return EmitAnnotationString(PLoc.getFilename());
3126   return EmitAnnotationString(SM.getBufferName(Loc));
3127 }
3128 
3129 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3130   SourceManager &SM = getContext().getSourceManager();
3131   PresumedLoc PLoc = SM.getPresumedLoc(L);
3132   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3133     SM.getExpansionLineNumber(L);
3134   return llvm::ConstantInt::get(Int32Ty, LineNo);
3135 }
3136 
3137 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3138   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3139   if (Exprs.empty())
3140     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3141 
3142   llvm::FoldingSetNodeID ID;
3143   for (Expr *E : Exprs) {
3144     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3145   }
3146   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3147   if (Lookup)
3148     return Lookup;
3149 
3150   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3151   LLVMArgs.reserve(Exprs.size());
3152   ConstantEmitter ConstEmiter(*this);
3153   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3154     const auto *CE = cast<clang::ConstantExpr>(E);
3155     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3156                                     CE->getType());
3157   });
3158   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3159   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3160                                       llvm::GlobalValue::PrivateLinkage, Struct,
3161                                       ".args");
3162   GV->setSection(AnnotationSection);
3163   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3164   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
3165 
3166   Lookup = Bitcasted;
3167   return Bitcasted;
3168 }
3169 
3170 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3171                                                 const AnnotateAttr *AA,
3172                                                 SourceLocation L) {
3173   // Get the globals for file name, annotation, and the line number.
3174   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3175                  *UnitGV = EmitAnnotationUnit(L),
3176                  *LineNoCst = EmitAnnotationLineNo(L),
3177                  *Args = EmitAnnotationArgs(AA);
3178 
3179   llvm::Constant *GVInGlobalsAS = GV;
3180   if (GV->getAddressSpace() !=
3181       getDataLayout().getDefaultGlobalsAddressSpace()) {
3182     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3183         GV, GV->getValueType()->getPointerTo(
3184                 getDataLayout().getDefaultGlobalsAddressSpace()));
3185   }
3186 
3187   // Create the ConstantStruct for the global annotation.
3188   llvm::Constant *Fields[] = {
3189       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
3190       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
3191       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
3192       LineNoCst,
3193       Args,
3194   };
3195   return llvm::ConstantStruct::getAnon(Fields);
3196 }
3197 
3198 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3199                                          llvm::GlobalValue *GV) {
3200   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3201   // Get the struct elements for these annotations.
3202   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3203     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3204 }
3205 
3206 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3207                                        SourceLocation Loc) const {
3208   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3209   // NoSanitize by function name.
3210   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3211     return true;
3212   // NoSanitize by location. Check "mainfile" prefix.
3213   auto &SM = Context.getSourceManager();
3214   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
3215   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3216     return true;
3217 
3218   // Check "src" prefix.
3219   if (Loc.isValid())
3220     return NoSanitizeL.containsLocation(Kind, Loc);
3221   // If location is unknown, this may be a compiler-generated function. Assume
3222   // it's located in the main file.
3223   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3224 }
3225 
3226 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3227                                        llvm::GlobalVariable *GV,
3228                                        SourceLocation Loc, QualType Ty,
3229                                        StringRef Category) const {
3230   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3231   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3232     return true;
3233   auto &SM = Context.getSourceManager();
3234   if (NoSanitizeL.containsMainFile(
3235           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
3236     return true;
3237   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3238     return true;
3239 
3240   // Check global type.
3241   if (!Ty.isNull()) {
3242     // Drill down the array types: if global variable of a fixed type is
3243     // not sanitized, we also don't instrument arrays of them.
3244     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3245       Ty = AT->getElementType();
3246     Ty = Ty.getCanonicalType().getUnqualifiedType();
3247     // Only record types (classes, structs etc.) are ignored.
3248     if (Ty->isRecordType()) {
3249       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3250       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3251         return true;
3252     }
3253   }
3254   return false;
3255 }
3256 
3257 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3258                                    StringRef Category) const {
3259   const auto &XRayFilter = getContext().getXRayFilter();
3260   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3261   auto Attr = ImbueAttr::NONE;
3262   if (Loc.isValid())
3263     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3264   if (Attr == ImbueAttr::NONE)
3265     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3266   switch (Attr) {
3267   case ImbueAttr::NONE:
3268     return false;
3269   case ImbueAttr::ALWAYS:
3270     Fn->addFnAttr("function-instrument", "xray-always");
3271     break;
3272   case ImbueAttr::ALWAYS_ARG1:
3273     Fn->addFnAttr("function-instrument", "xray-always");
3274     Fn->addFnAttr("xray-log-args", "1");
3275     break;
3276   case ImbueAttr::NEVER:
3277     Fn->addFnAttr("function-instrument", "xray-never");
3278     break;
3279   }
3280   return true;
3281 }
3282 
3283 ProfileList::ExclusionType
3284 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3285                                               SourceLocation Loc) const {
3286   const auto &ProfileList = getContext().getProfileList();
3287   // If the profile list is empty, then instrument everything.
3288   if (ProfileList.isEmpty())
3289     return ProfileList::Allow;
3290   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3291   // First, check the function name.
3292   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3293     return *V;
3294   // Next, check the source location.
3295   if (Loc.isValid())
3296     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3297       return *V;
3298   // If location is unknown, this may be a compiler-generated function. Assume
3299   // it's located in the main file.
3300   auto &SM = Context.getSourceManager();
3301   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3302     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3303       return *V;
3304   return ProfileList.getDefault(Kind);
3305 }
3306 
3307 ProfileList::ExclusionType
3308 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3309                                                  SourceLocation Loc) const {
3310   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3311   if (V != ProfileList::Allow)
3312     return V;
3313 
3314   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3315   if (NumGroups > 1) {
3316     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3317     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3318       return ProfileList::Skip;
3319   }
3320   return ProfileList::Allow;
3321 }
3322 
3323 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3324   // Never defer when EmitAllDecls is specified.
3325   if (LangOpts.EmitAllDecls)
3326     return true;
3327 
3328   if (CodeGenOpts.KeepStaticConsts) {
3329     const auto *VD = dyn_cast<VarDecl>(Global);
3330     if (VD && VD->getType().isConstQualified() &&
3331         VD->getStorageDuration() == SD_Static)
3332       return true;
3333   }
3334 
3335   return getContext().DeclMustBeEmitted(Global);
3336 }
3337 
3338 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3339   // In OpenMP 5.0 variables and function may be marked as
3340   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3341   // that they must be emitted on the host/device. To be sure we need to have
3342   // seen a declare target with an explicit mentioning of the function, we know
3343   // we have if the level of the declare target attribute is -1. Note that we
3344   // check somewhere else if we should emit this at all.
3345   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3346     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3347         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3348     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3349       return false;
3350   }
3351 
3352   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3353     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3354       // Implicit template instantiations may change linkage if they are later
3355       // explicitly instantiated, so they should not be emitted eagerly.
3356       return false;
3357   }
3358   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3359     if (Context.getInlineVariableDefinitionKind(VD) ==
3360         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3361       // A definition of an inline constexpr static data member may change
3362       // linkage later if it's redeclared outside the class.
3363       return false;
3364     if (CXX20ModuleInits && VD->getOwningModule() &&
3365         !VD->getOwningModule()->isModuleMapModule()) {
3366       // For CXX20, module-owned initializers need to be deferred, since it is
3367       // not known at this point if they will be run for the current module or
3368       // as part of the initializer for an imported one.
3369       return false;
3370     }
3371   }
3372   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3373   // codegen for global variables, because they may be marked as threadprivate.
3374   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3375       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3376       !isTypeConstant(Global->getType(), false, false) &&
3377       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3378     return false;
3379 
3380   return true;
3381 }
3382 
3383 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3384   StringRef Name = getMangledName(GD);
3385 
3386   // The UUID descriptor should be pointer aligned.
3387   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3388 
3389   // Look for an existing global.
3390   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3391     return ConstantAddress(GV, GV->getValueType(), Alignment);
3392 
3393   ConstantEmitter Emitter(*this);
3394   llvm::Constant *Init;
3395 
3396   APValue &V = GD->getAsAPValue();
3397   if (!V.isAbsent()) {
3398     // If possible, emit the APValue version of the initializer. In particular,
3399     // this gets the type of the constant right.
3400     Init = Emitter.emitForInitializer(
3401         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3402   } else {
3403     // As a fallback, directly construct the constant.
3404     // FIXME: This may get padding wrong under esoteric struct layout rules.
3405     // MSVC appears to create a complete type 'struct __s_GUID' that it
3406     // presumably uses to represent these constants.
3407     MSGuidDecl::Parts Parts = GD->getParts();
3408     llvm::Constant *Fields[4] = {
3409         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3410         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3411         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3412         llvm::ConstantDataArray::getRaw(
3413             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3414             Int8Ty)};
3415     Init = llvm::ConstantStruct::getAnon(Fields);
3416   }
3417 
3418   auto *GV = new llvm::GlobalVariable(
3419       getModule(), Init->getType(),
3420       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3421   if (supportsCOMDAT())
3422     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3423   setDSOLocal(GV);
3424 
3425   if (!V.isAbsent()) {
3426     Emitter.finalize(GV);
3427     return ConstantAddress(GV, GV->getValueType(), Alignment);
3428   }
3429 
3430   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3431   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3432       GV, Ty->getPointerTo(GV->getAddressSpace()));
3433   return ConstantAddress(Addr, Ty, Alignment);
3434 }
3435 
3436 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3437     const UnnamedGlobalConstantDecl *GCD) {
3438   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3439 
3440   llvm::GlobalVariable **Entry = nullptr;
3441   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3442   if (*Entry)
3443     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3444 
3445   ConstantEmitter Emitter(*this);
3446   llvm::Constant *Init;
3447 
3448   const APValue &V = GCD->getValue();
3449 
3450   assert(!V.isAbsent());
3451   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3452                                     GCD->getType());
3453 
3454   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3455                                       /*isConstant=*/true,
3456                                       llvm::GlobalValue::PrivateLinkage, Init,
3457                                       ".constant");
3458   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3459   GV->setAlignment(Alignment.getAsAlign());
3460 
3461   Emitter.finalize(GV);
3462 
3463   *Entry = GV;
3464   return ConstantAddress(GV, GV->getValueType(), Alignment);
3465 }
3466 
3467 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3468     const TemplateParamObjectDecl *TPO) {
3469   StringRef Name = getMangledName(TPO);
3470   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3471 
3472   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3473     return ConstantAddress(GV, GV->getValueType(), Alignment);
3474 
3475   ConstantEmitter Emitter(*this);
3476   llvm::Constant *Init = Emitter.emitForInitializer(
3477         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3478 
3479   if (!Init) {
3480     ErrorUnsupported(TPO, "template parameter object");
3481     return ConstantAddress::invalid();
3482   }
3483 
3484   llvm::GlobalValue::LinkageTypes Linkage =
3485       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3486           ? llvm::GlobalValue::LinkOnceODRLinkage
3487           : llvm::GlobalValue::InternalLinkage;
3488   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3489                                       /*isConstant=*/true, Linkage, Init, Name);
3490   setGVProperties(GV, TPO);
3491   if (supportsCOMDAT())
3492     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3493   Emitter.finalize(GV);
3494 
3495   return ConstantAddress(GV, GV->getValueType(), Alignment);
3496 }
3497 
3498 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3499   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3500   assert(AA && "No alias?");
3501 
3502   CharUnits Alignment = getContext().getDeclAlign(VD);
3503   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3504 
3505   // See if there is already something with the target's name in the module.
3506   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3507   if (Entry) {
3508     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3509     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3510     return ConstantAddress(Ptr, DeclTy, Alignment);
3511   }
3512 
3513   llvm::Constant *Aliasee;
3514   if (isa<llvm::FunctionType>(DeclTy))
3515     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3516                                       GlobalDecl(cast<FunctionDecl>(VD)),
3517                                       /*ForVTable=*/false);
3518   else
3519     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3520                                     nullptr);
3521 
3522   auto *F = cast<llvm::GlobalValue>(Aliasee);
3523   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3524   WeakRefReferences.insert(F);
3525 
3526   return ConstantAddress(Aliasee, DeclTy, Alignment);
3527 }
3528 
3529 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3530   const auto *Global = cast<ValueDecl>(GD.getDecl());
3531 
3532   // Weak references don't produce any output by themselves.
3533   if (Global->hasAttr<WeakRefAttr>())
3534     return;
3535 
3536   // If this is an alias definition (which otherwise looks like a declaration)
3537   // emit it now.
3538   if (Global->hasAttr<AliasAttr>())
3539     return EmitAliasDefinition(GD);
3540 
3541   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3542   if (Global->hasAttr<IFuncAttr>())
3543     return emitIFuncDefinition(GD);
3544 
3545   // If this is a cpu_dispatch multiversion function, emit the resolver.
3546   if (Global->hasAttr<CPUDispatchAttr>())
3547     return emitCPUDispatchDefinition(GD);
3548 
3549   // If this is CUDA, be selective about which declarations we emit.
3550   if (LangOpts.CUDA) {
3551     if (LangOpts.CUDAIsDevice) {
3552       if (!Global->hasAttr<CUDADeviceAttr>() &&
3553           !Global->hasAttr<CUDAGlobalAttr>() &&
3554           !Global->hasAttr<CUDAConstantAttr>() &&
3555           !Global->hasAttr<CUDASharedAttr>() &&
3556           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3557           !Global->getType()->isCUDADeviceBuiltinTextureType())
3558         return;
3559     } else {
3560       // We need to emit host-side 'shadows' for all global
3561       // device-side variables because the CUDA runtime needs their
3562       // size and host-side address in order to provide access to
3563       // their device-side incarnations.
3564 
3565       // So device-only functions are the only things we skip.
3566       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3567           Global->hasAttr<CUDADeviceAttr>())
3568         return;
3569 
3570       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3571              "Expected Variable or Function");
3572     }
3573   }
3574 
3575   if (LangOpts.OpenMP) {
3576     // If this is OpenMP, check if it is legal to emit this global normally.
3577     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3578       return;
3579     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3580       if (MustBeEmitted(Global))
3581         EmitOMPDeclareReduction(DRD);
3582       return;
3583     }
3584     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3585       if (MustBeEmitted(Global))
3586         EmitOMPDeclareMapper(DMD);
3587       return;
3588     }
3589   }
3590 
3591   // Ignore declarations, they will be emitted on their first use.
3592   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3593     // Forward declarations are emitted lazily on first use.
3594     if (!FD->doesThisDeclarationHaveABody()) {
3595       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3596         return;
3597 
3598       StringRef MangledName = getMangledName(GD);
3599 
3600       // Compute the function info and LLVM type.
3601       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3602       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3603 
3604       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3605                               /*DontDefer=*/false);
3606       return;
3607     }
3608   } else {
3609     const auto *VD = cast<VarDecl>(Global);
3610     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3611     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3612         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3613       if (LangOpts.OpenMP) {
3614         // Emit declaration of the must-be-emitted declare target variable.
3615         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3616                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3617           bool UnifiedMemoryEnabled =
3618               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3619           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3620                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3621               !UnifiedMemoryEnabled) {
3622             (void)GetAddrOfGlobalVar(VD);
3623           } else {
3624             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3625                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3626                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3627                      UnifiedMemoryEnabled)) &&
3628                    "Link clause or to clause with unified memory expected.");
3629             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3630           }
3631 
3632           return;
3633         }
3634       }
3635       // If this declaration may have caused an inline variable definition to
3636       // change linkage, make sure that it's emitted.
3637       if (Context.getInlineVariableDefinitionKind(VD) ==
3638           ASTContext::InlineVariableDefinitionKind::Strong)
3639         GetAddrOfGlobalVar(VD);
3640       return;
3641     }
3642   }
3643 
3644   // Defer code generation to first use when possible, e.g. if this is an inline
3645   // function. If the global must always be emitted, do it eagerly if possible
3646   // to benefit from cache locality.
3647   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3648     // Emit the definition if it can't be deferred.
3649     EmitGlobalDefinition(GD);
3650     return;
3651   }
3652 
3653   // If we're deferring emission of a C++ variable with an
3654   // initializer, remember the order in which it appeared in the file.
3655   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3656       cast<VarDecl>(Global)->hasInit()) {
3657     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3658     CXXGlobalInits.push_back(nullptr);
3659   }
3660 
3661   StringRef MangledName = getMangledName(GD);
3662   if (GetGlobalValue(MangledName) != nullptr) {
3663     // The value has already been used and should therefore be emitted.
3664     addDeferredDeclToEmit(GD);
3665   } else if (MustBeEmitted(Global)) {
3666     // The value must be emitted, but cannot be emitted eagerly.
3667     assert(!MayBeEmittedEagerly(Global));
3668     addDeferredDeclToEmit(GD);
3669     EmittedDeferredDecls[MangledName] = GD;
3670   } else {
3671     // Otherwise, remember that we saw a deferred decl with this name.  The
3672     // first use of the mangled name will cause it to move into
3673     // DeferredDeclsToEmit.
3674     DeferredDecls[MangledName] = GD;
3675   }
3676 }
3677 
3678 // Check if T is a class type with a destructor that's not dllimport.
3679 static bool HasNonDllImportDtor(QualType T) {
3680   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3681     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3682       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3683         return true;
3684 
3685   return false;
3686 }
3687 
3688 namespace {
3689   struct FunctionIsDirectlyRecursive
3690       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3691     const StringRef Name;
3692     const Builtin::Context &BI;
3693     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3694         : Name(N), BI(C) {}
3695 
3696     bool VisitCallExpr(const CallExpr *E) {
3697       const FunctionDecl *FD = E->getDirectCallee();
3698       if (!FD)
3699         return false;
3700       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3701       if (Attr && Name == Attr->getLabel())
3702         return true;
3703       unsigned BuiltinID = FD->getBuiltinID();
3704       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3705         return false;
3706       StringRef BuiltinName = BI.getName(BuiltinID);
3707       if (BuiltinName.startswith("__builtin_") &&
3708           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3709         return true;
3710       }
3711       return false;
3712     }
3713 
3714     bool VisitStmt(const Stmt *S) {
3715       for (const Stmt *Child : S->children())
3716         if (Child && this->Visit(Child))
3717           return true;
3718       return false;
3719     }
3720   };
3721 
3722   // Make sure we're not referencing non-imported vars or functions.
3723   struct DLLImportFunctionVisitor
3724       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3725     bool SafeToInline = true;
3726 
3727     bool shouldVisitImplicitCode() const { return true; }
3728 
3729     bool VisitVarDecl(VarDecl *VD) {
3730       if (VD->getTLSKind()) {
3731         // A thread-local variable cannot be imported.
3732         SafeToInline = false;
3733         return SafeToInline;
3734       }
3735 
3736       // A variable definition might imply a destructor call.
3737       if (VD->isThisDeclarationADefinition())
3738         SafeToInline = !HasNonDllImportDtor(VD->getType());
3739 
3740       return SafeToInline;
3741     }
3742 
3743     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3744       if (const auto *D = E->getTemporary()->getDestructor())
3745         SafeToInline = D->hasAttr<DLLImportAttr>();
3746       return SafeToInline;
3747     }
3748 
3749     bool VisitDeclRefExpr(DeclRefExpr *E) {
3750       ValueDecl *VD = E->getDecl();
3751       if (isa<FunctionDecl>(VD))
3752         SafeToInline = VD->hasAttr<DLLImportAttr>();
3753       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3754         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3755       return SafeToInline;
3756     }
3757 
3758     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3759       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3760       return SafeToInline;
3761     }
3762 
3763     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3764       CXXMethodDecl *M = E->getMethodDecl();
3765       if (!M) {
3766         // Call through a pointer to member function. This is safe to inline.
3767         SafeToInline = true;
3768       } else {
3769         SafeToInline = M->hasAttr<DLLImportAttr>();
3770       }
3771       return SafeToInline;
3772     }
3773 
3774     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3775       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3776       return SafeToInline;
3777     }
3778 
3779     bool VisitCXXNewExpr(CXXNewExpr *E) {
3780       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3781       return SafeToInline;
3782     }
3783   };
3784 }
3785 
3786 // isTriviallyRecursive - Check if this function calls another
3787 // decl that, because of the asm attribute or the other decl being a builtin,
3788 // ends up pointing to itself.
3789 bool
3790 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3791   StringRef Name;
3792   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3793     // asm labels are a special kind of mangling we have to support.
3794     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3795     if (!Attr)
3796       return false;
3797     Name = Attr->getLabel();
3798   } else {
3799     Name = FD->getName();
3800   }
3801 
3802   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3803   const Stmt *Body = FD->getBody();
3804   return Body ? Walker.Visit(Body) : false;
3805 }
3806 
3807 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3808   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3809     return true;
3810   const auto *F = cast<FunctionDecl>(GD.getDecl());
3811   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3812     return false;
3813 
3814   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3815     // Check whether it would be safe to inline this dllimport function.
3816     DLLImportFunctionVisitor Visitor;
3817     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3818     if (!Visitor.SafeToInline)
3819       return false;
3820 
3821     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3822       // Implicit destructor invocations aren't captured in the AST, so the
3823       // check above can't see them. Check for them manually here.
3824       for (const Decl *Member : Dtor->getParent()->decls())
3825         if (isa<FieldDecl>(Member))
3826           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3827             return false;
3828       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3829         if (HasNonDllImportDtor(B.getType()))
3830           return false;
3831     }
3832   }
3833 
3834   // Inline builtins declaration must be emitted. They often are fortified
3835   // functions.
3836   if (F->isInlineBuiltinDeclaration())
3837     return true;
3838 
3839   // PR9614. Avoid cases where the source code is lying to us. An available
3840   // externally function should have an equivalent function somewhere else,
3841   // but a function that calls itself through asm label/`__builtin_` trickery is
3842   // clearly not equivalent to the real implementation.
3843   // This happens in glibc's btowc and in some configure checks.
3844   return !isTriviallyRecursive(F);
3845 }
3846 
3847 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3848   return CodeGenOpts.OptimizationLevel > 0;
3849 }
3850 
3851 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3852                                                        llvm::GlobalValue *GV) {
3853   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3854 
3855   if (FD->isCPUSpecificMultiVersion()) {
3856     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3857     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3858       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3859   } else if (FD->isTargetClonesMultiVersion()) {
3860     auto *Clone = FD->getAttr<TargetClonesAttr>();
3861     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3862       if (Clone->isFirstOfVersion(I))
3863         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3864     // Ensure that the resolver function is also emitted.
3865     GetOrCreateMultiVersionResolver(GD);
3866   } else
3867     EmitGlobalFunctionDefinition(GD, GV);
3868 }
3869 
3870 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3871   const auto *D = cast<ValueDecl>(GD.getDecl());
3872 
3873   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3874                                  Context.getSourceManager(),
3875                                  "Generating code for declaration");
3876 
3877   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3878     // At -O0, don't generate IR for functions with available_externally
3879     // linkage.
3880     if (!shouldEmitFunction(GD))
3881       return;
3882 
3883     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3884       std::string Name;
3885       llvm::raw_string_ostream OS(Name);
3886       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3887                                /*Qualified=*/true);
3888       return Name;
3889     });
3890 
3891     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3892       // Make sure to emit the definition(s) before we emit the thunks.
3893       // This is necessary for the generation of certain thunks.
3894       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3895         ABI->emitCXXStructor(GD);
3896       else if (FD->isMultiVersion())
3897         EmitMultiVersionFunctionDefinition(GD, GV);
3898       else
3899         EmitGlobalFunctionDefinition(GD, GV);
3900 
3901       if (Method->isVirtual())
3902         getVTables().EmitThunks(GD);
3903 
3904       return;
3905     }
3906 
3907     if (FD->isMultiVersion())
3908       return EmitMultiVersionFunctionDefinition(GD, GV);
3909     return EmitGlobalFunctionDefinition(GD, GV);
3910   }
3911 
3912   if (const auto *VD = dyn_cast<VarDecl>(D))
3913     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3914 
3915   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3916 }
3917 
3918 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3919                                                       llvm::Function *NewFn);
3920 
3921 static unsigned
3922 TargetMVPriority(const TargetInfo &TI,
3923                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3924   unsigned Priority = 0;
3925   unsigned NumFeatures = 0;
3926   for (StringRef Feat : RO.Conditions.Features) {
3927     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3928     NumFeatures++;
3929   }
3930 
3931   if (!RO.Conditions.Architecture.empty())
3932     Priority = std::max(
3933         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3934 
3935   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3936 
3937   return Priority;
3938 }
3939 
3940 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3941 // TU can forward declare the function without causing problems.  Particularly
3942 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3943 // work with internal linkage functions, so that the same function name can be
3944 // used with internal linkage in multiple TUs.
3945 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3946                                                        GlobalDecl GD) {
3947   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3948   if (FD->getFormalLinkage() == InternalLinkage)
3949     return llvm::GlobalValue::InternalLinkage;
3950   return llvm::GlobalValue::WeakODRLinkage;
3951 }
3952 
3953 void CodeGenModule::emitMultiVersionFunctions() {
3954   std::vector<GlobalDecl> MVFuncsToEmit;
3955   MultiVersionFuncs.swap(MVFuncsToEmit);
3956   for (GlobalDecl GD : MVFuncsToEmit) {
3957     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3958     assert(FD && "Expected a FunctionDecl");
3959 
3960     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3961     if (FD->isTargetMultiVersion()) {
3962       getContext().forEachMultiversionedFunctionVersion(
3963           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3964             GlobalDecl CurGD{
3965                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3966             StringRef MangledName = getMangledName(CurGD);
3967             llvm::Constant *Func = GetGlobalValue(MangledName);
3968             if (!Func) {
3969               if (CurFD->isDefined()) {
3970                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3971                 Func = GetGlobalValue(MangledName);
3972               } else {
3973                 const CGFunctionInfo &FI =
3974                     getTypes().arrangeGlobalDeclaration(GD);
3975                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3976                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3977                                          /*DontDefer=*/false, ForDefinition);
3978               }
3979               assert(Func && "This should have just been created");
3980             }
3981             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3982               const auto *TA = CurFD->getAttr<TargetAttr>();
3983               llvm::SmallVector<StringRef, 8> Feats;
3984               TA->getAddedFeatures(Feats);
3985               Options.emplace_back(cast<llvm::Function>(Func),
3986                                    TA->getArchitecture(), Feats);
3987             } else {
3988               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3989               llvm::SmallVector<StringRef, 8> Feats;
3990               TVA->getFeatures(Feats);
3991               Options.emplace_back(cast<llvm::Function>(Func),
3992                                    /*Architecture*/ "", Feats);
3993             }
3994           });
3995     } else if (FD->isTargetClonesMultiVersion()) {
3996       const auto *TC = FD->getAttr<TargetClonesAttr>();
3997       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3998            ++VersionIndex) {
3999         if (!TC->isFirstOfVersion(VersionIndex))
4000           continue;
4001         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4002                          VersionIndex};
4003         StringRef Version = TC->getFeatureStr(VersionIndex);
4004         StringRef MangledName = getMangledName(CurGD);
4005         llvm::Constant *Func = GetGlobalValue(MangledName);
4006         if (!Func) {
4007           if (FD->isDefined()) {
4008             EmitGlobalFunctionDefinition(CurGD, nullptr);
4009             Func = GetGlobalValue(MangledName);
4010           } else {
4011             const CGFunctionInfo &FI =
4012                 getTypes().arrangeGlobalDeclaration(CurGD);
4013             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4014             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4015                                      /*DontDefer=*/false, ForDefinition);
4016           }
4017           assert(Func && "This should have just been created");
4018         }
4019 
4020         StringRef Architecture;
4021         llvm::SmallVector<StringRef, 1> Feature;
4022 
4023         if (getTarget().getTriple().isAArch64()) {
4024           if (Version != "default") {
4025             llvm::SmallVector<StringRef, 8> VerFeats;
4026             Version.split(VerFeats, "+");
4027             for (auto &CurFeat : VerFeats)
4028               Feature.push_back(CurFeat.trim());
4029           }
4030         } else {
4031           if (Version.startswith("arch="))
4032             Architecture = Version.drop_front(sizeof("arch=") - 1);
4033           else if (Version != "default")
4034             Feature.push_back(Version);
4035         }
4036 
4037         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4038       }
4039     } else {
4040       assert(0 && "Expected a target or target_clones multiversion function");
4041       continue;
4042     }
4043 
4044     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4045     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4046       ResolverConstant = IFunc->getResolver();
4047     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4048 
4049     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4050 
4051     if (supportsCOMDAT())
4052       ResolverFunc->setComdat(
4053           getModule().getOrInsertComdat(ResolverFunc->getName()));
4054 
4055     const TargetInfo &TI = getTarget();
4056     llvm::stable_sort(
4057         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4058                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4059           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4060         });
4061     CodeGenFunction CGF(*this);
4062     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4063   }
4064 
4065   // Ensure that any additions to the deferred decls list caused by emitting a
4066   // variant are emitted.  This can happen when the variant itself is inline and
4067   // calls a function without linkage.
4068   if (!MVFuncsToEmit.empty())
4069     EmitDeferred();
4070 
4071   // Ensure that any additions to the multiversion funcs list from either the
4072   // deferred decls or the multiversion functions themselves are emitted.
4073   if (!MultiVersionFuncs.empty())
4074     emitMultiVersionFunctions();
4075 }
4076 
4077 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4078   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4079   assert(FD && "Not a FunctionDecl?");
4080   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4081   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4082   assert(DD && "Not a cpu_dispatch Function?");
4083 
4084   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4085   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4086 
4087   StringRef ResolverName = getMangledName(GD);
4088   UpdateMultiVersionNames(GD, FD, ResolverName);
4089 
4090   llvm::Type *ResolverType;
4091   GlobalDecl ResolverGD;
4092   if (getTarget().supportsIFunc()) {
4093     ResolverType = llvm::FunctionType::get(
4094         llvm::PointerType::get(DeclTy,
4095                                getTypes().getTargetAddressSpace(FD->getType())),
4096         false);
4097   }
4098   else {
4099     ResolverType = DeclTy;
4100     ResolverGD = GD;
4101   }
4102 
4103   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4104       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4105   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4106   if (supportsCOMDAT())
4107     ResolverFunc->setComdat(
4108         getModule().getOrInsertComdat(ResolverFunc->getName()));
4109 
4110   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4111   const TargetInfo &Target = getTarget();
4112   unsigned Index = 0;
4113   for (const IdentifierInfo *II : DD->cpus()) {
4114     // Get the name of the target function so we can look it up/create it.
4115     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4116                               getCPUSpecificMangling(*this, II->getName());
4117 
4118     llvm::Constant *Func = GetGlobalValue(MangledName);
4119 
4120     if (!Func) {
4121       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4122       if (ExistingDecl.getDecl() &&
4123           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4124         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4125         Func = GetGlobalValue(MangledName);
4126       } else {
4127         if (!ExistingDecl.getDecl())
4128           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4129 
4130       Func = GetOrCreateLLVMFunction(
4131           MangledName, DeclTy, ExistingDecl,
4132           /*ForVTable=*/false, /*DontDefer=*/true,
4133           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4134       }
4135     }
4136 
4137     llvm::SmallVector<StringRef, 32> Features;
4138     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4139     llvm::transform(Features, Features.begin(),
4140                     [](StringRef Str) { return Str.substr(1); });
4141     llvm::erase_if(Features, [&Target](StringRef Feat) {
4142       return !Target.validateCpuSupports(Feat);
4143     });
4144     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4145     ++Index;
4146   }
4147 
4148   llvm::stable_sort(
4149       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4150                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4151         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4152                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4153       });
4154 
4155   // If the list contains multiple 'default' versions, such as when it contains
4156   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4157   // always run on at least a 'pentium'). We do this by deleting the 'least
4158   // advanced' (read, lowest mangling letter).
4159   while (Options.size() > 1 &&
4160          llvm::X86::getCpuSupportsMask(
4161              (Options.end() - 2)->Conditions.Features) == 0) {
4162     StringRef LHSName = (Options.end() - 2)->Function->getName();
4163     StringRef RHSName = (Options.end() - 1)->Function->getName();
4164     if (LHSName.compare(RHSName) < 0)
4165       Options.erase(Options.end() - 2);
4166     else
4167       Options.erase(Options.end() - 1);
4168   }
4169 
4170   CodeGenFunction CGF(*this);
4171   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4172 
4173   if (getTarget().supportsIFunc()) {
4174     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4175     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4176 
4177     // Fix up function declarations that were created for cpu_specific before
4178     // cpu_dispatch was known
4179     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4180       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4181       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4182                                            &getModule());
4183       GI->takeName(IFunc);
4184       IFunc->replaceAllUsesWith(GI);
4185       IFunc->eraseFromParent();
4186       IFunc = GI;
4187     }
4188 
4189     std::string AliasName = getMangledNameImpl(
4190         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4191     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4192     if (!AliasFunc) {
4193       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4194                                            &getModule());
4195       SetCommonAttributes(GD, GA);
4196     }
4197   }
4198 }
4199 
4200 /// If a dispatcher for the specified mangled name is not in the module, create
4201 /// and return an llvm Function with the specified type.
4202 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4203   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4204   assert(FD && "Not a FunctionDecl?");
4205 
4206   std::string MangledName =
4207       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4208 
4209   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4210   // a separate resolver).
4211   std::string ResolverName = MangledName;
4212   if (getTarget().supportsIFunc())
4213     ResolverName += ".ifunc";
4214   else if (FD->isTargetMultiVersion())
4215     ResolverName += ".resolver";
4216 
4217   // If the resolver has already been created, just return it.
4218   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4219     return ResolverGV;
4220 
4221   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4222   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4223 
4224   // The resolver needs to be created. For target and target_clones, defer
4225   // creation until the end of the TU.
4226   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4227     MultiVersionFuncs.push_back(GD);
4228 
4229   // For cpu_specific, don't create an ifunc yet because we don't know if the
4230   // cpu_dispatch will be emitted in this translation unit.
4231   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4232     llvm::Type *ResolverType = llvm::FunctionType::get(
4233         llvm::PointerType::get(DeclTy,
4234                                getTypes().getTargetAddressSpace(FD->getType())),
4235         false);
4236     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4237         MangledName + ".resolver", ResolverType, GlobalDecl{},
4238         /*ForVTable=*/false);
4239     llvm::GlobalIFunc *GIF =
4240         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4241                                   "", Resolver, &getModule());
4242     GIF->setName(ResolverName);
4243     SetCommonAttributes(FD, GIF);
4244 
4245     return GIF;
4246   }
4247 
4248   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4249       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4250   assert(isa<llvm::GlobalValue>(Resolver) &&
4251          "Resolver should be created for the first time");
4252   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4253   return Resolver;
4254 }
4255 
4256 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4257 /// module, create and return an llvm Function with the specified type. If there
4258 /// is something in the module with the specified name, return it potentially
4259 /// bitcasted to the right type.
4260 ///
4261 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4262 /// to set the attributes on the function when it is first created.
4263 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4264     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4265     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4266     ForDefinition_t IsForDefinition) {
4267   const Decl *D = GD.getDecl();
4268 
4269   // Any attempts to use a MultiVersion function should result in retrieving
4270   // the iFunc instead. Name Mangling will handle the rest of the changes.
4271   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4272     // For the device mark the function as one that should be emitted.
4273     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
4274         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4275         !DontDefer && !IsForDefinition) {
4276       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4277         GlobalDecl GDDef;
4278         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4279           GDDef = GlobalDecl(CD, GD.getCtorType());
4280         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4281           GDDef = GlobalDecl(DD, GD.getDtorType());
4282         else
4283           GDDef = GlobalDecl(FDDef);
4284         EmitGlobal(GDDef);
4285       }
4286     }
4287 
4288     if (FD->isMultiVersion()) {
4289       UpdateMultiVersionNames(GD, FD, MangledName);
4290       if (!IsForDefinition)
4291         return GetOrCreateMultiVersionResolver(GD);
4292     }
4293   }
4294 
4295   // Lookup the entry, lazily creating it if necessary.
4296   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4297   if (Entry) {
4298     if (WeakRefReferences.erase(Entry)) {
4299       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4300       if (FD && !FD->hasAttr<WeakAttr>())
4301         Entry->setLinkage(llvm::Function::ExternalLinkage);
4302     }
4303 
4304     // Handle dropped DLL attributes.
4305     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4306         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4307       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4308       setDSOLocal(Entry);
4309     }
4310 
4311     // If there are two attempts to define the same mangled name, issue an
4312     // error.
4313     if (IsForDefinition && !Entry->isDeclaration()) {
4314       GlobalDecl OtherGD;
4315       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4316       // to make sure that we issue an error only once.
4317       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4318           (GD.getCanonicalDecl().getDecl() !=
4319            OtherGD.getCanonicalDecl().getDecl()) &&
4320           DiagnosedConflictingDefinitions.insert(GD).second) {
4321         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4322             << MangledName;
4323         getDiags().Report(OtherGD.getDecl()->getLocation(),
4324                           diag::note_previous_definition);
4325       }
4326     }
4327 
4328     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4329         (Entry->getValueType() == Ty)) {
4330       return Entry;
4331     }
4332 
4333     // Make sure the result is of the correct type.
4334     // (If function is requested for a definition, we always need to create a new
4335     // function, not just return a bitcast.)
4336     if (!IsForDefinition)
4337       return llvm::ConstantExpr::getBitCast(
4338           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4339   }
4340 
4341   // This function doesn't have a complete type (for example, the return
4342   // type is an incomplete struct). Use a fake type instead, and make
4343   // sure not to try to set attributes.
4344   bool IsIncompleteFunction = false;
4345 
4346   llvm::FunctionType *FTy;
4347   if (isa<llvm::FunctionType>(Ty)) {
4348     FTy = cast<llvm::FunctionType>(Ty);
4349   } else {
4350     FTy = llvm::FunctionType::get(VoidTy, false);
4351     IsIncompleteFunction = true;
4352   }
4353 
4354   llvm::Function *F =
4355       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4356                              Entry ? StringRef() : MangledName, &getModule());
4357 
4358   // If we already created a function with the same mangled name (but different
4359   // type) before, take its name and add it to the list of functions to be
4360   // replaced with F at the end of CodeGen.
4361   //
4362   // This happens if there is a prototype for a function (e.g. "int f()") and
4363   // then a definition of a different type (e.g. "int f(int x)").
4364   if (Entry) {
4365     F->takeName(Entry);
4366 
4367     // This might be an implementation of a function without a prototype, in
4368     // which case, try to do special replacement of calls which match the new
4369     // prototype.  The really key thing here is that we also potentially drop
4370     // arguments from the call site so as to make a direct call, which makes the
4371     // inliner happier and suppresses a number of optimizer warnings (!) about
4372     // dropping arguments.
4373     if (!Entry->use_empty()) {
4374       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4375       Entry->removeDeadConstantUsers();
4376     }
4377 
4378     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4379         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4380     addGlobalValReplacement(Entry, BC);
4381   }
4382 
4383   assert(F->getName() == MangledName && "name was uniqued!");
4384   if (D)
4385     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4386   if (ExtraAttrs.hasFnAttrs()) {
4387     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4388     F->addFnAttrs(B);
4389   }
4390 
4391   if (!DontDefer) {
4392     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4393     // each other bottoming out with the base dtor.  Therefore we emit non-base
4394     // dtors on usage, even if there is no dtor definition in the TU.
4395     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4396         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4397                                            GD.getDtorType()))
4398       addDeferredDeclToEmit(GD);
4399 
4400     // This is the first use or definition of a mangled name.  If there is a
4401     // deferred decl with this name, remember that we need to emit it at the end
4402     // of the file.
4403     auto DDI = DeferredDecls.find(MangledName);
4404     if (DDI != DeferredDecls.end()) {
4405       // Move the potentially referenced deferred decl to the
4406       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4407       // don't need it anymore).
4408       addDeferredDeclToEmit(DDI->second);
4409       EmittedDeferredDecls[DDI->first] = DDI->second;
4410       DeferredDecls.erase(DDI);
4411 
4412       // Otherwise, there are cases we have to worry about where we're
4413       // using a declaration for which we must emit a definition but where
4414       // we might not find a top-level definition:
4415       //   - member functions defined inline in their classes
4416       //   - friend functions defined inline in some class
4417       //   - special member functions with implicit definitions
4418       // If we ever change our AST traversal to walk into class methods,
4419       // this will be unnecessary.
4420       //
4421       // We also don't emit a definition for a function if it's going to be an
4422       // entry in a vtable, unless it's already marked as used.
4423     } else if (getLangOpts().CPlusPlus && D) {
4424       // Look for a declaration that's lexically in a record.
4425       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4426            FD = FD->getPreviousDecl()) {
4427         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4428           if (FD->doesThisDeclarationHaveABody()) {
4429             addDeferredDeclToEmit(GD.getWithDecl(FD));
4430             break;
4431           }
4432         }
4433       }
4434     }
4435   }
4436 
4437   // Make sure the result is of the requested type.
4438   if (!IsIncompleteFunction) {
4439     assert(F->getFunctionType() == Ty);
4440     return F;
4441   }
4442 
4443   return llvm::ConstantExpr::getBitCast(F,
4444                                         Ty->getPointerTo(F->getAddressSpace()));
4445 }
4446 
4447 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4448 /// non-null, then this function will use the specified type if it has to
4449 /// create it (this occurs when we see a definition of the function).
4450 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4451                                                  llvm::Type *Ty,
4452                                                  bool ForVTable,
4453                                                  bool DontDefer,
4454                                               ForDefinition_t IsForDefinition) {
4455   assert(!cast<FunctionDecl>(GD.getDecl())->isImmediateFunction() &&
4456          "an immediate function should never be emitted");
4457   // If there was no specific requested type, just convert it now.
4458   if (!Ty) {
4459     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4460     Ty = getTypes().ConvertType(FD->getType());
4461   }
4462 
4463   // Devirtualized destructor calls may come through here instead of via
4464   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4465   // of the complete destructor when necessary.
4466   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4467     if (getTarget().getCXXABI().isMicrosoft() &&
4468         GD.getDtorType() == Dtor_Complete &&
4469         DD->getParent()->getNumVBases() == 0)
4470       GD = GlobalDecl(DD, Dtor_Base);
4471   }
4472 
4473   StringRef MangledName = getMangledName(GD);
4474   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4475                                     /*IsThunk=*/false, llvm::AttributeList(),
4476                                     IsForDefinition);
4477   // Returns kernel handle for HIP kernel stub function.
4478   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4479       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4480     auto *Handle = getCUDARuntime().getKernelHandle(
4481         cast<llvm::Function>(F->stripPointerCasts()), GD);
4482     if (IsForDefinition)
4483       return F;
4484     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4485   }
4486   return F;
4487 }
4488 
4489 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4490   llvm::GlobalValue *F =
4491       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4492 
4493   return llvm::ConstantExpr::getBitCast(
4494       llvm::NoCFIValue::get(F),
4495       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4496 }
4497 
4498 static const FunctionDecl *
4499 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4500   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4501   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4502 
4503   IdentifierInfo &CII = C.Idents.get(Name);
4504   for (const auto *Result : DC->lookup(&CII))
4505     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4506       return FD;
4507 
4508   if (!C.getLangOpts().CPlusPlus)
4509     return nullptr;
4510 
4511   // Demangle the premangled name from getTerminateFn()
4512   IdentifierInfo &CXXII =
4513       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4514           ? C.Idents.get("terminate")
4515           : C.Idents.get(Name);
4516 
4517   for (const auto &N : {"__cxxabiv1", "std"}) {
4518     IdentifierInfo &NS = C.Idents.get(N);
4519     for (const auto *Result : DC->lookup(&NS)) {
4520       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4521       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4522         for (const auto *Result : LSD->lookup(&NS))
4523           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4524             break;
4525 
4526       if (ND)
4527         for (const auto *Result : ND->lookup(&CXXII))
4528           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4529             return FD;
4530     }
4531   }
4532 
4533   return nullptr;
4534 }
4535 
4536 /// CreateRuntimeFunction - Create a new runtime function with the specified
4537 /// type and name.
4538 llvm::FunctionCallee
4539 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4540                                      llvm::AttributeList ExtraAttrs, bool Local,
4541                                      bool AssumeConvergent) {
4542   if (AssumeConvergent) {
4543     ExtraAttrs =
4544         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4545   }
4546 
4547   llvm::Constant *C =
4548       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4549                               /*DontDefer=*/false, /*IsThunk=*/false,
4550                               ExtraAttrs);
4551 
4552   if (auto *F = dyn_cast<llvm::Function>(C)) {
4553     if (F->empty()) {
4554       F->setCallingConv(getRuntimeCC());
4555 
4556       // In Windows Itanium environments, try to mark runtime functions
4557       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4558       // will link their standard library statically or dynamically. Marking
4559       // functions imported when they are not imported can cause linker errors
4560       // and warnings.
4561       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4562           !getCodeGenOpts().LTOVisibilityPublicStd) {
4563         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4564         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4565           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4566           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4567         }
4568       }
4569       setDSOLocal(F);
4570     }
4571   }
4572 
4573   return {FTy, C};
4574 }
4575 
4576 /// isTypeConstant - Determine whether an object of this type can be emitted
4577 /// as a constant.
4578 ///
4579 /// If ExcludeCtor is true, the duration when the object's constructor runs
4580 /// will not be considered. The caller will need to verify that the object is
4581 /// not written to during its construction. ExcludeDtor works similarly.
4582 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor,
4583                                    bool ExcludeDtor) {
4584   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4585     return false;
4586 
4587   if (Context.getLangOpts().CPlusPlus) {
4588     if (const CXXRecordDecl *Record
4589           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4590       return ExcludeCtor && !Record->hasMutableFields() &&
4591              (Record->hasTrivialDestructor() || ExcludeDtor);
4592   }
4593 
4594   return true;
4595 }
4596 
4597 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4598 /// create and return an llvm GlobalVariable with the specified type and address
4599 /// space. If there is something in the module with the specified name, return
4600 /// it potentially bitcasted to the right type.
4601 ///
4602 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4603 /// to set the attributes on the global when it is first created.
4604 ///
4605 /// If IsForDefinition is true, it is guaranteed that an actual global with
4606 /// type Ty will be returned, not conversion of a variable with the same
4607 /// mangled name but some other type.
4608 llvm::Constant *
4609 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4610                                      LangAS AddrSpace, const VarDecl *D,
4611                                      ForDefinition_t IsForDefinition) {
4612   // Lookup the entry, lazily creating it if necessary.
4613   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4614   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4615   if (Entry) {
4616     if (WeakRefReferences.erase(Entry)) {
4617       if (D && !D->hasAttr<WeakAttr>())
4618         Entry->setLinkage(llvm::Function::ExternalLinkage);
4619     }
4620 
4621     // Handle dropped DLL attributes.
4622     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4623         !shouldMapVisibilityToDLLExport(D))
4624       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4625 
4626     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4627       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4628 
4629     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4630       return Entry;
4631 
4632     // If there are two attempts to define the same mangled name, issue an
4633     // error.
4634     if (IsForDefinition && !Entry->isDeclaration()) {
4635       GlobalDecl OtherGD;
4636       const VarDecl *OtherD;
4637 
4638       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4639       // to make sure that we issue an error only once.
4640       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4641           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4642           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4643           OtherD->hasInit() &&
4644           DiagnosedConflictingDefinitions.insert(D).second) {
4645         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4646             << MangledName;
4647         getDiags().Report(OtherGD.getDecl()->getLocation(),
4648                           diag::note_previous_definition);
4649       }
4650     }
4651 
4652     // Make sure the result is of the correct type.
4653     if (Entry->getType()->getAddressSpace() != TargetAS) {
4654       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4655                                                   Ty->getPointerTo(TargetAS));
4656     }
4657 
4658     // (If global is requested for a definition, we always need to create a new
4659     // global, not just return a bitcast.)
4660     if (!IsForDefinition)
4661       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4662   }
4663 
4664   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4665 
4666   auto *GV = new llvm::GlobalVariable(
4667       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4668       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4669       getContext().getTargetAddressSpace(DAddrSpace));
4670 
4671   // If we already created a global with the same mangled name (but different
4672   // type) before, take its name and remove it from its parent.
4673   if (Entry) {
4674     GV->takeName(Entry);
4675 
4676     if (!Entry->use_empty()) {
4677       llvm::Constant *NewPtrForOldDecl =
4678           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4679       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4680     }
4681 
4682     Entry->eraseFromParent();
4683   }
4684 
4685   // This is the first use or definition of a mangled name.  If there is a
4686   // deferred decl with this name, remember that we need to emit it at the end
4687   // of the file.
4688   auto DDI = DeferredDecls.find(MangledName);
4689   if (DDI != DeferredDecls.end()) {
4690     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4691     // list, and remove it from DeferredDecls (since we don't need it anymore).
4692     addDeferredDeclToEmit(DDI->second);
4693     EmittedDeferredDecls[DDI->first] = DDI->second;
4694     DeferredDecls.erase(DDI);
4695   }
4696 
4697   // Handle things which are present even on external declarations.
4698   if (D) {
4699     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4700       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4701 
4702     // FIXME: This code is overly simple and should be merged with other global
4703     // handling.
4704     GV->setConstant(isTypeConstant(D->getType(), false, false));
4705 
4706     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4707 
4708     setLinkageForGV(GV, D);
4709 
4710     if (D->getTLSKind()) {
4711       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4712         CXXThreadLocals.push_back(D);
4713       setTLSMode(GV, *D);
4714     }
4715 
4716     setGVProperties(GV, D);
4717 
4718     // If required by the ABI, treat declarations of static data members with
4719     // inline initializers as definitions.
4720     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4721       EmitGlobalVarDefinition(D);
4722     }
4723 
4724     // Emit section information for extern variables.
4725     if (D->hasExternalStorage()) {
4726       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4727         GV->setSection(SA->getName());
4728     }
4729 
4730     // Handle XCore specific ABI requirements.
4731     if (getTriple().getArch() == llvm::Triple::xcore &&
4732         D->getLanguageLinkage() == CLanguageLinkage &&
4733         D->getType().isConstant(Context) &&
4734         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4735       GV->setSection(".cp.rodata");
4736 
4737     // Check if we a have a const declaration with an initializer, we may be
4738     // able to emit it as available_externally to expose it's value to the
4739     // optimizer.
4740     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4741         D->getType().isConstQualified() && !GV->hasInitializer() &&
4742         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4743       const auto *Record =
4744           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4745       bool HasMutableFields = Record && Record->hasMutableFields();
4746       if (!HasMutableFields) {
4747         const VarDecl *InitDecl;
4748         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4749         if (InitExpr) {
4750           ConstantEmitter emitter(*this);
4751           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4752           if (Init) {
4753             auto *InitType = Init->getType();
4754             if (GV->getValueType() != InitType) {
4755               // The type of the initializer does not match the definition.
4756               // This happens when an initializer has a different type from
4757               // the type of the global (because of padding at the end of a
4758               // structure for instance).
4759               GV->setName(StringRef());
4760               // Make a new global with the correct type, this is now guaranteed
4761               // to work.
4762               auto *NewGV = cast<llvm::GlobalVariable>(
4763                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4764                       ->stripPointerCasts());
4765 
4766               // Erase the old global, since it is no longer used.
4767               GV->eraseFromParent();
4768               GV = NewGV;
4769             } else {
4770               GV->setInitializer(Init);
4771               GV->setConstant(true);
4772               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4773             }
4774             emitter.finalize(GV);
4775           }
4776         }
4777       }
4778     }
4779   }
4780 
4781   if (GV->isDeclaration()) {
4782     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4783     // External HIP managed variables needed to be recorded for transformation
4784     // in both device and host compilations.
4785     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4786         D->hasExternalStorage())
4787       getCUDARuntime().handleVarRegistration(D, *GV);
4788   }
4789 
4790   if (D)
4791     SanitizerMD->reportGlobal(GV, *D);
4792 
4793   LangAS ExpectedAS =
4794       D ? D->getType().getAddressSpace()
4795         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4796   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4797   if (DAddrSpace != ExpectedAS) {
4798     return getTargetCodeGenInfo().performAddrSpaceCast(
4799         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4800   }
4801 
4802   return GV;
4803 }
4804 
4805 llvm::Constant *
4806 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4807   const Decl *D = GD.getDecl();
4808 
4809   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4810     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4811                                 /*DontDefer=*/false, IsForDefinition);
4812 
4813   if (isa<CXXMethodDecl>(D)) {
4814     auto FInfo =
4815         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4816     auto Ty = getTypes().GetFunctionType(*FInfo);
4817     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4818                              IsForDefinition);
4819   }
4820 
4821   if (isa<FunctionDecl>(D)) {
4822     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4823     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4824     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4825                              IsForDefinition);
4826   }
4827 
4828   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4829 }
4830 
4831 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4832     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4833     llvm::Align Alignment) {
4834   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4835   llvm::GlobalVariable *OldGV = nullptr;
4836 
4837   if (GV) {
4838     // Check if the variable has the right type.
4839     if (GV->getValueType() == Ty)
4840       return GV;
4841 
4842     // Because C++ name mangling, the only way we can end up with an already
4843     // existing global with the same name is if it has been declared extern "C".
4844     assert(GV->isDeclaration() && "Declaration has wrong type!");
4845     OldGV = GV;
4846   }
4847 
4848   // Create a new variable.
4849   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4850                                 Linkage, nullptr, Name);
4851 
4852   if (OldGV) {
4853     // Replace occurrences of the old variable if needed.
4854     GV->takeName(OldGV);
4855 
4856     if (!OldGV->use_empty()) {
4857       llvm::Constant *NewPtrForOldDecl =
4858       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4859       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4860     }
4861 
4862     OldGV->eraseFromParent();
4863   }
4864 
4865   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4866       !GV->hasAvailableExternallyLinkage())
4867     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4868 
4869   GV->setAlignment(Alignment);
4870 
4871   return GV;
4872 }
4873 
4874 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4875 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4876 /// then it will be created with the specified type instead of whatever the
4877 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4878 /// that an actual global with type Ty will be returned, not conversion of a
4879 /// variable with the same mangled name but some other type.
4880 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4881                                                   llvm::Type *Ty,
4882                                            ForDefinition_t IsForDefinition) {
4883   assert(D->hasGlobalStorage() && "Not a global variable");
4884   QualType ASTTy = D->getType();
4885   if (!Ty)
4886     Ty = getTypes().ConvertTypeForMem(ASTTy);
4887 
4888   StringRef MangledName = getMangledName(D);
4889   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4890                                IsForDefinition);
4891 }
4892 
4893 /// CreateRuntimeVariable - Create a new runtime global variable with the
4894 /// specified type and name.
4895 llvm::Constant *
4896 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4897                                      StringRef Name) {
4898   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4899                                                        : LangAS::Default;
4900   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4901   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4902   return Ret;
4903 }
4904 
4905 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4906   assert(!D->getInit() && "Cannot emit definite definitions here!");
4907 
4908   StringRef MangledName = getMangledName(D);
4909   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4910 
4911   // We already have a definition, not declaration, with the same mangled name.
4912   // Emitting of declaration is not required (and actually overwrites emitted
4913   // definition).
4914   if (GV && !GV->isDeclaration())
4915     return;
4916 
4917   // If we have not seen a reference to this variable yet, place it into the
4918   // deferred declarations table to be emitted if needed later.
4919   if (!MustBeEmitted(D) && !GV) {
4920       DeferredDecls[MangledName] = D;
4921       return;
4922   }
4923 
4924   // The tentative definition is the only definition.
4925   EmitGlobalVarDefinition(D);
4926 }
4927 
4928 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4929   EmitExternalVarDeclaration(D);
4930 }
4931 
4932 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4933   return Context.toCharUnitsFromBits(
4934       getDataLayout().getTypeStoreSizeInBits(Ty));
4935 }
4936 
4937 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4938   if (LangOpts.OpenCL) {
4939     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4940     assert(AS == LangAS::opencl_global ||
4941            AS == LangAS::opencl_global_device ||
4942            AS == LangAS::opencl_global_host ||
4943            AS == LangAS::opencl_constant ||
4944            AS == LangAS::opencl_local ||
4945            AS >= LangAS::FirstTargetAddressSpace);
4946     return AS;
4947   }
4948 
4949   if (LangOpts.SYCLIsDevice &&
4950       (!D || D->getType().getAddressSpace() == LangAS::Default))
4951     return LangAS::sycl_global;
4952 
4953   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4954     if (D) {
4955       if (D->hasAttr<CUDAConstantAttr>())
4956         return LangAS::cuda_constant;
4957       if (D->hasAttr<CUDASharedAttr>())
4958         return LangAS::cuda_shared;
4959       if (D->hasAttr<CUDADeviceAttr>())
4960         return LangAS::cuda_device;
4961       if (D->getType().isConstQualified())
4962         return LangAS::cuda_constant;
4963     }
4964     return LangAS::cuda_device;
4965   }
4966 
4967   if (LangOpts.OpenMP) {
4968     LangAS AS;
4969     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4970       return AS;
4971   }
4972   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4973 }
4974 
4975 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4976   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4977   if (LangOpts.OpenCL)
4978     return LangAS::opencl_constant;
4979   if (LangOpts.SYCLIsDevice)
4980     return LangAS::sycl_global;
4981   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4982     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4983     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4984     // with OpVariable instructions with Generic storage class which is not
4985     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4986     // UniformConstant storage class is not viable as pointers to it may not be
4987     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4988     return LangAS::cuda_device;
4989   if (auto AS = getTarget().getConstantAddressSpace())
4990     return *AS;
4991   return LangAS::Default;
4992 }
4993 
4994 // In address space agnostic languages, string literals are in default address
4995 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4996 // emitted in constant address space in LLVM IR. To be consistent with other
4997 // parts of AST, string literal global variables in constant address space
4998 // need to be casted to default address space before being put into address
4999 // map and referenced by other part of CodeGen.
5000 // In OpenCL, string literals are in constant address space in AST, therefore
5001 // they should not be casted to default address space.
5002 static llvm::Constant *
5003 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5004                                        llvm::GlobalVariable *GV) {
5005   llvm::Constant *Cast = GV;
5006   if (!CGM.getLangOpts().OpenCL) {
5007     auto AS = CGM.GetGlobalConstantAddressSpace();
5008     if (AS != LangAS::Default)
5009       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5010           CGM, GV, AS, LangAS::Default,
5011           GV->getValueType()->getPointerTo(
5012               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5013   }
5014   return Cast;
5015 }
5016 
5017 template<typename SomeDecl>
5018 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5019                                                llvm::GlobalValue *GV) {
5020   if (!getLangOpts().CPlusPlus)
5021     return;
5022 
5023   // Must have 'used' attribute, or else inline assembly can't rely on
5024   // the name existing.
5025   if (!D->template hasAttr<UsedAttr>())
5026     return;
5027 
5028   // Must have internal linkage and an ordinary name.
5029   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
5030     return;
5031 
5032   // Must be in an extern "C" context. Entities declared directly within
5033   // a record are not extern "C" even if the record is in such a context.
5034   const SomeDecl *First = D->getFirstDecl();
5035   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5036     return;
5037 
5038   // OK, this is an internal linkage entity inside an extern "C" linkage
5039   // specification. Make a note of that so we can give it the "expected"
5040   // mangled name if nothing else is using that name.
5041   std::pair<StaticExternCMap::iterator, bool> R =
5042       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5043 
5044   // If we have multiple internal linkage entities with the same name
5045   // in extern "C" regions, none of them gets that name.
5046   if (!R.second)
5047     R.first->second = nullptr;
5048 }
5049 
5050 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5051   if (!CGM.supportsCOMDAT())
5052     return false;
5053 
5054   if (D.hasAttr<SelectAnyAttr>())
5055     return true;
5056 
5057   GVALinkage Linkage;
5058   if (auto *VD = dyn_cast<VarDecl>(&D))
5059     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5060   else
5061     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5062 
5063   switch (Linkage) {
5064   case GVA_Internal:
5065   case GVA_AvailableExternally:
5066   case GVA_StrongExternal:
5067     return false;
5068   case GVA_DiscardableODR:
5069   case GVA_StrongODR:
5070     return true;
5071   }
5072   llvm_unreachable("No such linkage");
5073 }
5074 
5075 bool CodeGenModule::supportsCOMDAT() const {
5076   return getTriple().supportsCOMDAT();
5077 }
5078 
5079 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5080                                           llvm::GlobalObject &GO) {
5081   if (!shouldBeInCOMDAT(*this, D))
5082     return;
5083   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5084 }
5085 
5086 /// Pass IsTentative as true if you want to create a tentative definition.
5087 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5088                                             bool IsTentative) {
5089   // OpenCL global variables of sampler type are translated to function calls,
5090   // therefore no need to be translated.
5091   QualType ASTTy = D->getType();
5092   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5093     return;
5094 
5095   // If this is OpenMP device, check if it is legal to emit this global
5096   // normally.
5097   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
5098       OpenMPRuntime->emitTargetGlobalVariable(D))
5099     return;
5100 
5101   llvm::TrackingVH<llvm::Constant> Init;
5102   bool NeedsGlobalCtor = false;
5103   // Whether the definition of the variable is available externally.
5104   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5105   // since this is the job for its original source.
5106   bool IsDefinitionAvailableExternally =
5107       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5108   bool NeedsGlobalDtor =
5109       !IsDefinitionAvailableExternally &&
5110       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5111 
5112   const VarDecl *InitDecl;
5113   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5114 
5115   std::optional<ConstantEmitter> emitter;
5116 
5117   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5118   // as part of their declaration."  Sema has already checked for
5119   // error cases, so we just need to set Init to UndefValue.
5120   bool IsCUDASharedVar =
5121       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5122   // Shadows of initialized device-side global variables are also left
5123   // undefined.
5124   // Managed Variables should be initialized on both host side and device side.
5125   bool IsCUDAShadowVar =
5126       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5127       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5128        D->hasAttr<CUDASharedAttr>());
5129   bool IsCUDADeviceShadowVar =
5130       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5131       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5132        D->getType()->isCUDADeviceBuiltinTextureType());
5133   if (getLangOpts().CUDA &&
5134       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5135     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5136   else if (D->hasAttr<LoaderUninitializedAttr>())
5137     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5138   else if (!InitExpr) {
5139     // This is a tentative definition; tentative definitions are
5140     // implicitly initialized with { 0 }.
5141     //
5142     // Note that tentative definitions are only emitted at the end of
5143     // a translation unit, so they should never have incomplete
5144     // type. In addition, EmitTentativeDefinition makes sure that we
5145     // never attempt to emit a tentative definition if a real one
5146     // exists. A use may still exists, however, so we still may need
5147     // to do a RAUW.
5148     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5149     Init = EmitNullConstant(D->getType());
5150   } else {
5151     initializedGlobalDecl = GlobalDecl(D);
5152     emitter.emplace(*this);
5153     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5154     if (!Initializer) {
5155       QualType T = InitExpr->getType();
5156       if (D->getType()->isReferenceType())
5157         T = D->getType();
5158 
5159       if (getLangOpts().CPlusPlus) {
5160         if (InitDecl->hasFlexibleArrayInit(getContext()))
5161           ErrorUnsupported(D, "flexible array initializer");
5162         Init = EmitNullConstant(T);
5163 
5164         if (!IsDefinitionAvailableExternally)
5165           NeedsGlobalCtor = true;
5166       } else {
5167         ErrorUnsupported(D, "static initializer");
5168         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5169       }
5170     } else {
5171       Init = Initializer;
5172       // We don't need an initializer, so remove the entry for the delayed
5173       // initializer position (just in case this entry was delayed) if we
5174       // also don't need to register a destructor.
5175       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5176         DelayedCXXInitPosition.erase(D);
5177 
5178 #ifndef NDEBUG
5179       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5180                           InitDecl->getFlexibleArrayInitChars(getContext());
5181       CharUnits CstSize = CharUnits::fromQuantity(
5182           getDataLayout().getTypeAllocSize(Init->getType()));
5183       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5184 #endif
5185     }
5186   }
5187 
5188   llvm::Type* InitType = Init->getType();
5189   llvm::Constant *Entry =
5190       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5191 
5192   // Strip off pointer casts if we got them.
5193   Entry = Entry->stripPointerCasts();
5194 
5195   // Entry is now either a Function or GlobalVariable.
5196   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5197 
5198   // We have a definition after a declaration with the wrong type.
5199   // We must make a new GlobalVariable* and update everything that used OldGV
5200   // (a declaration or tentative definition) with the new GlobalVariable*
5201   // (which will be a definition).
5202   //
5203   // This happens if there is a prototype for a global (e.g.
5204   // "extern int x[];") and then a definition of a different type (e.g.
5205   // "int x[10];"). This also happens when an initializer has a different type
5206   // from the type of the global (this happens with unions).
5207   if (!GV || GV->getValueType() != InitType ||
5208       GV->getType()->getAddressSpace() !=
5209           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5210 
5211     // Move the old entry aside so that we'll create a new one.
5212     Entry->setName(StringRef());
5213 
5214     // Make a new global with the correct type, this is now guaranteed to work.
5215     GV = cast<llvm::GlobalVariable>(
5216         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5217             ->stripPointerCasts());
5218 
5219     // Replace all uses of the old global with the new global
5220     llvm::Constant *NewPtrForOldDecl =
5221         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5222                                                              Entry->getType());
5223     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5224 
5225     // Erase the old global, since it is no longer used.
5226     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5227   }
5228 
5229   MaybeHandleStaticInExternC(D, GV);
5230 
5231   if (D->hasAttr<AnnotateAttr>())
5232     AddGlobalAnnotations(D, GV);
5233 
5234   // Set the llvm linkage type as appropriate.
5235   llvm::GlobalValue::LinkageTypes Linkage =
5236       getLLVMLinkageVarDefinition(D, GV->isConstant());
5237 
5238   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5239   // the device. [...]"
5240   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5241   // __device__, declares a variable that: [...]
5242   // Is accessible from all the threads within the grid and from the host
5243   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5244   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5245   if (GV && LangOpts.CUDA) {
5246     if (LangOpts.CUDAIsDevice) {
5247       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5248           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5249            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5250            D->getType()->isCUDADeviceBuiltinTextureType()))
5251         GV->setExternallyInitialized(true);
5252     } else {
5253       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5254     }
5255     getCUDARuntime().handleVarRegistration(D, *GV);
5256   }
5257 
5258   GV->setInitializer(Init);
5259   if (emitter)
5260     emitter->finalize(GV);
5261 
5262   // If it is safe to mark the global 'constant', do so now.
5263   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5264                   isTypeConstant(D->getType(), true, true));
5265 
5266   // If it is in a read-only section, mark it 'constant'.
5267   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5268     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5269     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5270       GV->setConstant(true);
5271   }
5272 
5273   CharUnits AlignVal = getContext().getDeclAlign(D);
5274   // Check for alignment specifed in an 'omp allocate' directive.
5275   if (std::optional<CharUnits> AlignValFromAllocate =
5276           getOMPAllocateAlignment(D))
5277     AlignVal = *AlignValFromAllocate;
5278   GV->setAlignment(AlignVal.getAsAlign());
5279 
5280   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5281   // function is only defined alongside the variable, not also alongside
5282   // callers. Normally, all accesses to a thread_local go through the
5283   // thread-wrapper in order to ensure initialization has occurred, underlying
5284   // variable will never be used other than the thread-wrapper, so it can be
5285   // converted to internal linkage.
5286   //
5287   // However, if the variable has the 'constinit' attribute, it _can_ be
5288   // referenced directly, without calling the thread-wrapper, so the linkage
5289   // must not be changed.
5290   //
5291   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5292   // weak or linkonce, the de-duplication semantics are important to preserve,
5293   // so we don't change the linkage.
5294   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5295       Linkage == llvm::GlobalValue::ExternalLinkage &&
5296       Context.getTargetInfo().getTriple().isOSDarwin() &&
5297       !D->hasAttr<ConstInitAttr>())
5298     Linkage = llvm::GlobalValue::InternalLinkage;
5299 
5300   GV->setLinkage(Linkage);
5301   if (D->hasAttr<DLLImportAttr>())
5302     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5303   else if (D->hasAttr<DLLExportAttr>())
5304     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5305   else
5306     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5307 
5308   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5309     // common vars aren't constant even if declared const.
5310     GV->setConstant(false);
5311     // Tentative definition of global variables may be initialized with
5312     // non-zero null pointers. In this case they should have weak linkage
5313     // since common linkage must have zero initializer and must not have
5314     // explicit section therefore cannot have non-zero initial value.
5315     if (!GV->getInitializer()->isNullValue())
5316       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5317   }
5318 
5319   setNonAliasAttributes(D, GV);
5320 
5321   if (D->getTLSKind() && !GV->isThreadLocal()) {
5322     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5323       CXXThreadLocals.push_back(D);
5324     setTLSMode(GV, *D);
5325   }
5326 
5327   maybeSetTrivialComdat(*D, *GV);
5328 
5329   // Emit the initializer function if necessary.
5330   if (NeedsGlobalCtor || NeedsGlobalDtor)
5331     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5332 
5333   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5334 
5335   // Emit global variable debug information.
5336   if (CGDebugInfo *DI = getModuleDebugInfo())
5337     if (getCodeGenOpts().hasReducedDebugInfo())
5338       DI->EmitGlobalVariable(GV, D);
5339 }
5340 
5341 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5342   if (CGDebugInfo *DI = getModuleDebugInfo())
5343     if (getCodeGenOpts().hasReducedDebugInfo()) {
5344       QualType ASTTy = D->getType();
5345       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5346       llvm::Constant *GV =
5347           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5348       DI->EmitExternalVariable(
5349           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5350     }
5351 }
5352 
5353 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5354                                       CodeGenModule &CGM, const VarDecl *D,
5355                                       bool NoCommon) {
5356   // Don't give variables common linkage if -fno-common was specified unless it
5357   // was overridden by a NoCommon attribute.
5358   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5359     return true;
5360 
5361   // C11 6.9.2/2:
5362   //   A declaration of an identifier for an object that has file scope without
5363   //   an initializer, and without a storage-class specifier or with the
5364   //   storage-class specifier static, constitutes a tentative definition.
5365   if (D->getInit() || D->hasExternalStorage())
5366     return true;
5367 
5368   // A variable cannot be both common and exist in a section.
5369   if (D->hasAttr<SectionAttr>())
5370     return true;
5371 
5372   // A variable cannot be both common and exist in a section.
5373   // We don't try to determine which is the right section in the front-end.
5374   // If no specialized section name is applicable, it will resort to default.
5375   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5376       D->hasAttr<PragmaClangDataSectionAttr>() ||
5377       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5378       D->hasAttr<PragmaClangRodataSectionAttr>())
5379     return true;
5380 
5381   // Thread local vars aren't considered common linkage.
5382   if (D->getTLSKind())
5383     return true;
5384 
5385   // Tentative definitions marked with WeakImportAttr are true definitions.
5386   if (D->hasAttr<WeakImportAttr>())
5387     return true;
5388 
5389   // A variable cannot be both common and exist in a comdat.
5390   if (shouldBeInCOMDAT(CGM, *D))
5391     return true;
5392 
5393   // Declarations with a required alignment do not have common linkage in MSVC
5394   // mode.
5395   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5396     if (D->hasAttr<AlignedAttr>())
5397       return true;
5398     QualType VarType = D->getType();
5399     if (Context.isAlignmentRequired(VarType))
5400       return true;
5401 
5402     if (const auto *RT = VarType->getAs<RecordType>()) {
5403       const RecordDecl *RD = RT->getDecl();
5404       for (const FieldDecl *FD : RD->fields()) {
5405         if (FD->isBitField())
5406           continue;
5407         if (FD->hasAttr<AlignedAttr>())
5408           return true;
5409         if (Context.isAlignmentRequired(FD->getType()))
5410           return true;
5411       }
5412     }
5413   }
5414 
5415   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5416   // common symbols, so symbols with greater alignment requirements cannot be
5417   // common.
5418   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5419   // alignments for common symbols via the aligncomm directive, so this
5420   // restriction only applies to MSVC environments.
5421   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5422       Context.getTypeAlignIfKnown(D->getType()) >
5423           Context.toBits(CharUnits::fromQuantity(32)))
5424     return true;
5425 
5426   return false;
5427 }
5428 
5429 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5430     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5431   if (Linkage == GVA_Internal)
5432     return llvm::Function::InternalLinkage;
5433 
5434   if (D->hasAttr<WeakAttr>())
5435     return llvm::GlobalVariable::WeakAnyLinkage;
5436 
5437   if (const auto *FD = D->getAsFunction())
5438     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5439       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5440 
5441   // We are guaranteed to have a strong definition somewhere else,
5442   // so we can use available_externally linkage.
5443   if (Linkage == GVA_AvailableExternally)
5444     return llvm::GlobalValue::AvailableExternallyLinkage;
5445 
5446   // Note that Apple's kernel linker doesn't support symbol
5447   // coalescing, so we need to avoid linkonce and weak linkages there.
5448   // Normally, this means we just map to internal, but for explicit
5449   // instantiations we'll map to external.
5450 
5451   // In C++, the compiler has to emit a definition in every translation unit
5452   // that references the function.  We should use linkonce_odr because
5453   // a) if all references in this translation unit are optimized away, we
5454   // don't need to codegen it.  b) if the function persists, it needs to be
5455   // merged with other definitions. c) C++ has the ODR, so we know the
5456   // definition is dependable.
5457   if (Linkage == GVA_DiscardableODR)
5458     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5459                                             : llvm::Function::InternalLinkage;
5460 
5461   // An explicit instantiation of a template has weak linkage, since
5462   // explicit instantiations can occur in multiple translation units
5463   // and must all be equivalent. However, we are not allowed to
5464   // throw away these explicit instantiations.
5465   //
5466   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5467   // so say that CUDA templates are either external (for kernels) or internal.
5468   // This lets llvm perform aggressive inter-procedural optimizations. For
5469   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5470   // therefore we need to follow the normal linkage paradigm.
5471   if (Linkage == GVA_StrongODR) {
5472     if (getLangOpts().AppleKext)
5473       return llvm::Function::ExternalLinkage;
5474     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5475         !getLangOpts().GPURelocatableDeviceCode)
5476       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5477                                           : llvm::Function::InternalLinkage;
5478     return llvm::Function::WeakODRLinkage;
5479   }
5480 
5481   // C++ doesn't have tentative definitions and thus cannot have common
5482   // linkage.
5483   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5484       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5485                                  CodeGenOpts.NoCommon))
5486     return llvm::GlobalVariable::CommonLinkage;
5487 
5488   // selectany symbols are externally visible, so use weak instead of
5489   // linkonce.  MSVC optimizes away references to const selectany globals, so
5490   // all definitions should be the same and ODR linkage should be used.
5491   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5492   if (D->hasAttr<SelectAnyAttr>())
5493     return llvm::GlobalVariable::WeakODRLinkage;
5494 
5495   // Otherwise, we have strong external linkage.
5496   assert(Linkage == GVA_StrongExternal);
5497   return llvm::GlobalVariable::ExternalLinkage;
5498 }
5499 
5500 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5501     const VarDecl *VD, bool IsConstant) {
5502   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5503   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5504 }
5505 
5506 /// Replace the uses of a function that was declared with a non-proto type.
5507 /// We want to silently drop extra arguments from call sites
5508 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5509                                           llvm::Function *newFn) {
5510   // Fast path.
5511   if (old->use_empty()) return;
5512 
5513   llvm::Type *newRetTy = newFn->getReturnType();
5514   SmallVector<llvm::Value*, 4> newArgs;
5515 
5516   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5517          ui != ue; ) {
5518     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5519     llvm::User *user = use->getUser();
5520 
5521     // Recognize and replace uses of bitcasts.  Most calls to
5522     // unprototyped functions will use bitcasts.
5523     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5524       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5525         replaceUsesOfNonProtoConstant(bitcast, newFn);
5526       continue;
5527     }
5528 
5529     // Recognize calls to the function.
5530     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5531     if (!callSite) continue;
5532     if (!callSite->isCallee(&*use))
5533       continue;
5534 
5535     // If the return types don't match exactly, then we can't
5536     // transform this call unless it's dead.
5537     if (callSite->getType() != newRetTy && !callSite->use_empty())
5538       continue;
5539 
5540     // Get the call site's attribute list.
5541     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5542     llvm::AttributeList oldAttrs = callSite->getAttributes();
5543 
5544     // If the function was passed too few arguments, don't transform.
5545     unsigned newNumArgs = newFn->arg_size();
5546     if (callSite->arg_size() < newNumArgs)
5547       continue;
5548 
5549     // If extra arguments were passed, we silently drop them.
5550     // If any of the types mismatch, we don't transform.
5551     unsigned argNo = 0;
5552     bool dontTransform = false;
5553     for (llvm::Argument &A : newFn->args()) {
5554       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5555         dontTransform = true;
5556         break;
5557       }
5558 
5559       // Add any parameter attributes.
5560       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5561       argNo++;
5562     }
5563     if (dontTransform)
5564       continue;
5565 
5566     // Okay, we can transform this.  Create the new call instruction and copy
5567     // over the required information.
5568     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5569 
5570     // Copy over any operand bundles.
5571     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5572     callSite->getOperandBundlesAsDefs(newBundles);
5573 
5574     llvm::CallBase *newCall;
5575     if (isa<llvm::CallInst>(callSite)) {
5576       newCall =
5577           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5578     } else {
5579       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5580       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5581                                          oldInvoke->getUnwindDest(), newArgs,
5582                                          newBundles, "", callSite);
5583     }
5584     newArgs.clear(); // for the next iteration
5585 
5586     if (!newCall->getType()->isVoidTy())
5587       newCall->takeName(callSite);
5588     newCall->setAttributes(
5589         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5590                                  oldAttrs.getRetAttrs(), newArgAttrs));
5591     newCall->setCallingConv(callSite->getCallingConv());
5592 
5593     // Finally, remove the old call, replacing any uses with the new one.
5594     if (!callSite->use_empty())
5595       callSite->replaceAllUsesWith(newCall);
5596 
5597     // Copy debug location attached to CI.
5598     if (callSite->getDebugLoc())
5599       newCall->setDebugLoc(callSite->getDebugLoc());
5600 
5601     callSite->eraseFromParent();
5602   }
5603 }
5604 
5605 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5606 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5607 /// existing call uses of the old function in the module, this adjusts them to
5608 /// call the new function directly.
5609 ///
5610 /// This is not just a cleanup: the always_inline pass requires direct calls to
5611 /// functions to be able to inline them.  If there is a bitcast in the way, it
5612 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5613 /// run at -O0.
5614 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5615                                                       llvm::Function *NewFn) {
5616   // If we're redefining a global as a function, don't transform it.
5617   if (!isa<llvm::Function>(Old)) return;
5618 
5619   replaceUsesOfNonProtoConstant(Old, NewFn);
5620 }
5621 
5622 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5623   auto DK = VD->isThisDeclarationADefinition();
5624   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5625     return;
5626 
5627   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5628   // If we have a definition, this might be a deferred decl. If the
5629   // instantiation is explicit, make sure we emit it at the end.
5630   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5631     GetAddrOfGlobalVar(VD);
5632 
5633   EmitTopLevelDecl(VD);
5634 }
5635 
5636 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5637                                                  llvm::GlobalValue *GV) {
5638   const auto *D = cast<FunctionDecl>(GD.getDecl());
5639 
5640   // Compute the function info and LLVM type.
5641   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5642   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5643 
5644   // Get or create the prototype for the function.
5645   if (!GV || (GV->getValueType() != Ty))
5646     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5647                                                    /*DontDefer=*/true,
5648                                                    ForDefinition));
5649 
5650   // Already emitted.
5651   if (!GV->isDeclaration())
5652     return;
5653 
5654   // We need to set linkage and visibility on the function before
5655   // generating code for it because various parts of IR generation
5656   // want to propagate this information down (e.g. to local static
5657   // declarations).
5658   auto *Fn = cast<llvm::Function>(GV);
5659   setFunctionLinkage(GD, Fn);
5660 
5661   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5662   setGVProperties(Fn, GD);
5663 
5664   MaybeHandleStaticInExternC(D, Fn);
5665 
5666   maybeSetTrivialComdat(*D, *Fn);
5667 
5668   // Set CodeGen attributes that represent floating point environment.
5669   setLLVMFunctionFEnvAttributes(D, Fn);
5670 
5671   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5672 
5673   setNonAliasAttributes(GD, Fn);
5674   SetLLVMFunctionAttributesForDefinition(D, Fn);
5675 
5676   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5677     AddGlobalCtor(Fn, CA->getPriority());
5678   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5679     AddGlobalDtor(Fn, DA->getPriority(), true);
5680   if (D->hasAttr<AnnotateAttr>())
5681     AddGlobalAnnotations(D, Fn);
5682 }
5683 
5684 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5685   const auto *D = cast<ValueDecl>(GD.getDecl());
5686   const AliasAttr *AA = D->getAttr<AliasAttr>();
5687   assert(AA && "Not an alias?");
5688 
5689   StringRef MangledName = getMangledName(GD);
5690 
5691   if (AA->getAliasee() == MangledName) {
5692     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5693     return;
5694   }
5695 
5696   // If there is a definition in the module, then it wins over the alias.
5697   // This is dubious, but allow it to be safe.  Just ignore the alias.
5698   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5699   if (Entry && !Entry->isDeclaration())
5700     return;
5701 
5702   Aliases.push_back(GD);
5703 
5704   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5705 
5706   // Create a reference to the named value.  This ensures that it is emitted
5707   // if a deferred decl.
5708   llvm::Constant *Aliasee;
5709   llvm::GlobalValue::LinkageTypes LT;
5710   if (isa<llvm::FunctionType>(DeclTy)) {
5711     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5712                                       /*ForVTable=*/false);
5713     LT = getFunctionLinkage(GD);
5714   } else {
5715     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5716                                     /*D=*/nullptr);
5717     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5718       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5719     else
5720       LT = getFunctionLinkage(GD);
5721   }
5722 
5723   // Create the new alias itself, but don't set a name yet.
5724   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5725   auto *GA =
5726       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5727 
5728   if (Entry) {
5729     if (GA->getAliasee() == Entry) {
5730       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5731       return;
5732     }
5733 
5734     assert(Entry->isDeclaration());
5735 
5736     // If there is a declaration in the module, then we had an extern followed
5737     // by the alias, as in:
5738     //   extern int test6();
5739     //   ...
5740     //   int test6() __attribute__((alias("test7")));
5741     //
5742     // Remove it and replace uses of it with the alias.
5743     GA->takeName(Entry);
5744 
5745     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5746                                                           Entry->getType()));
5747     Entry->eraseFromParent();
5748   } else {
5749     GA->setName(MangledName);
5750   }
5751 
5752   // Set attributes which are particular to an alias; this is a
5753   // specialization of the attributes which may be set on a global
5754   // variable/function.
5755   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5756       D->isWeakImported()) {
5757     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5758   }
5759 
5760   if (const auto *VD = dyn_cast<VarDecl>(D))
5761     if (VD->getTLSKind())
5762       setTLSMode(GA, *VD);
5763 
5764   SetCommonAttributes(GD, GA);
5765 
5766   // Emit global alias debug information.
5767   if (isa<VarDecl>(D))
5768     if (CGDebugInfo *DI = getModuleDebugInfo())
5769       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5770 }
5771 
5772 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5773   const auto *D = cast<ValueDecl>(GD.getDecl());
5774   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5775   assert(IFA && "Not an ifunc?");
5776 
5777   StringRef MangledName = getMangledName(GD);
5778 
5779   if (IFA->getResolver() == MangledName) {
5780     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5781     return;
5782   }
5783 
5784   // Report an error if some definition overrides ifunc.
5785   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5786   if (Entry && !Entry->isDeclaration()) {
5787     GlobalDecl OtherGD;
5788     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5789         DiagnosedConflictingDefinitions.insert(GD).second) {
5790       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5791           << MangledName;
5792       Diags.Report(OtherGD.getDecl()->getLocation(),
5793                    diag::note_previous_definition);
5794     }
5795     return;
5796   }
5797 
5798   Aliases.push_back(GD);
5799 
5800   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5801   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5802   llvm::Constant *Resolver =
5803       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5804                               /*ForVTable=*/false);
5805   llvm::GlobalIFunc *GIF =
5806       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5807                                 "", Resolver, &getModule());
5808   if (Entry) {
5809     if (GIF->getResolver() == Entry) {
5810       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5811       return;
5812     }
5813     assert(Entry->isDeclaration());
5814 
5815     // If there is a declaration in the module, then we had an extern followed
5816     // by the ifunc, as in:
5817     //   extern int test();
5818     //   ...
5819     //   int test() __attribute__((ifunc("resolver")));
5820     //
5821     // Remove it and replace uses of it with the ifunc.
5822     GIF->takeName(Entry);
5823 
5824     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5825                                                           Entry->getType()));
5826     Entry->eraseFromParent();
5827   } else
5828     GIF->setName(MangledName);
5829 
5830   SetCommonAttributes(GD, GIF);
5831 }
5832 
5833 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5834                                             ArrayRef<llvm::Type*> Tys) {
5835   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5836                                          Tys);
5837 }
5838 
5839 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5840 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5841                          const StringLiteral *Literal, bool TargetIsLSB,
5842                          bool &IsUTF16, unsigned &StringLength) {
5843   StringRef String = Literal->getString();
5844   unsigned NumBytes = String.size();
5845 
5846   // Check for simple case.
5847   if (!Literal->containsNonAsciiOrNull()) {
5848     StringLength = NumBytes;
5849     return *Map.insert(std::make_pair(String, nullptr)).first;
5850   }
5851 
5852   // Otherwise, convert the UTF8 literals into a string of shorts.
5853   IsUTF16 = true;
5854 
5855   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5856   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5857   llvm::UTF16 *ToPtr = &ToBuf[0];
5858 
5859   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5860                                  ToPtr + NumBytes, llvm::strictConversion);
5861 
5862   // ConvertUTF8toUTF16 returns the length in ToPtr.
5863   StringLength = ToPtr - &ToBuf[0];
5864 
5865   // Add an explicit null.
5866   *ToPtr = 0;
5867   return *Map.insert(std::make_pair(
5868                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5869                                    (StringLength + 1) * 2),
5870                          nullptr)).first;
5871 }
5872 
5873 ConstantAddress
5874 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5875   unsigned StringLength = 0;
5876   bool isUTF16 = false;
5877   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5878       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5879                                getDataLayout().isLittleEndian(), isUTF16,
5880                                StringLength);
5881 
5882   if (auto *C = Entry.second)
5883     return ConstantAddress(
5884         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5885 
5886   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5887   llvm::Constant *Zeros[] = { Zero, Zero };
5888 
5889   const ASTContext &Context = getContext();
5890   const llvm::Triple &Triple = getTriple();
5891 
5892   const auto CFRuntime = getLangOpts().CFRuntime;
5893   const bool IsSwiftABI =
5894       static_cast<unsigned>(CFRuntime) >=
5895       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5896   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5897 
5898   // If we don't already have it, get __CFConstantStringClassReference.
5899   if (!CFConstantStringClassRef) {
5900     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5901     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5902     Ty = llvm::ArrayType::get(Ty, 0);
5903 
5904     switch (CFRuntime) {
5905     default: break;
5906     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5907     case LangOptions::CoreFoundationABI::Swift5_0:
5908       CFConstantStringClassName =
5909           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5910                               : "$s10Foundation19_NSCFConstantStringCN";
5911       Ty = IntPtrTy;
5912       break;
5913     case LangOptions::CoreFoundationABI::Swift4_2:
5914       CFConstantStringClassName =
5915           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5916                               : "$S10Foundation19_NSCFConstantStringCN";
5917       Ty = IntPtrTy;
5918       break;
5919     case LangOptions::CoreFoundationABI::Swift4_1:
5920       CFConstantStringClassName =
5921           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5922                               : "__T010Foundation19_NSCFConstantStringCN";
5923       Ty = IntPtrTy;
5924       break;
5925     }
5926 
5927     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5928 
5929     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5930       llvm::GlobalValue *GV = nullptr;
5931 
5932       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5933         IdentifierInfo &II = Context.Idents.get(GV->getName());
5934         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5935         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5936 
5937         const VarDecl *VD = nullptr;
5938         for (const auto *Result : DC->lookup(&II))
5939           if ((VD = dyn_cast<VarDecl>(Result)))
5940             break;
5941 
5942         if (Triple.isOSBinFormatELF()) {
5943           if (!VD)
5944             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5945         } else {
5946           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5947           if (!VD || !VD->hasAttr<DLLExportAttr>())
5948             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5949           else
5950             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5951         }
5952 
5953         setDSOLocal(GV);
5954       }
5955     }
5956 
5957     // Decay array -> ptr
5958     CFConstantStringClassRef =
5959         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5960                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5961   }
5962 
5963   QualType CFTy = Context.getCFConstantStringType();
5964 
5965   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5966 
5967   ConstantInitBuilder Builder(*this);
5968   auto Fields = Builder.beginStruct(STy);
5969 
5970   // Class pointer.
5971   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5972 
5973   // Flags.
5974   if (IsSwiftABI) {
5975     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5976     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5977   } else {
5978     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5979   }
5980 
5981   // String pointer.
5982   llvm::Constant *C = nullptr;
5983   if (isUTF16) {
5984     auto Arr = llvm::ArrayRef(
5985         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5986         Entry.first().size() / 2);
5987     C = llvm::ConstantDataArray::get(VMContext, Arr);
5988   } else {
5989     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5990   }
5991 
5992   // Note: -fwritable-strings doesn't make the backing store strings of
5993   // CFStrings writable. (See <rdar://problem/10657500>)
5994   auto *GV =
5995       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5996                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5997   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5998   // Don't enforce the target's minimum global alignment, since the only use
5999   // of the string is via this class initializer.
6000   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6001                             : Context.getTypeAlignInChars(Context.CharTy);
6002   GV->setAlignment(Align.getAsAlign());
6003 
6004   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6005   // Without it LLVM can merge the string with a non unnamed_addr one during
6006   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6007   if (Triple.isOSBinFormatMachO())
6008     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6009                            : "__TEXT,__cstring,cstring_literals");
6010   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6011   // the static linker to adjust permissions to read-only later on.
6012   else if (Triple.isOSBinFormatELF())
6013     GV->setSection(".rodata");
6014 
6015   // String.
6016   llvm::Constant *Str =
6017       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6018 
6019   if (isUTF16)
6020     // Cast the UTF16 string to the correct type.
6021     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
6022   Fields.add(Str);
6023 
6024   // String length.
6025   llvm::IntegerType *LengthTy =
6026       llvm::IntegerType::get(getModule().getContext(),
6027                              Context.getTargetInfo().getLongWidth());
6028   if (IsSwiftABI) {
6029     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6030         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6031       LengthTy = Int32Ty;
6032     else
6033       LengthTy = IntPtrTy;
6034   }
6035   Fields.addInt(LengthTy, StringLength);
6036 
6037   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6038   // properly aligned on 32-bit platforms.
6039   CharUnits Alignment =
6040       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6041 
6042   // The struct.
6043   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6044                                     /*isConstant=*/false,
6045                                     llvm::GlobalVariable::PrivateLinkage);
6046   GV->addAttribute("objc_arc_inert");
6047   switch (Triple.getObjectFormat()) {
6048   case llvm::Triple::UnknownObjectFormat:
6049     llvm_unreachable("unknown file format");
6050   case llvm::Triple::DXContainer:
6051   case llvm::Triple::GOFF:
6052   case llvm::Triple::SPIRV:
6053   case llvm::Triple::XCOFF:
6054     llvm_unreachable("unimplemented");
6055   case llvm::Triple::COFF:
6056   case llvm::Triple::ELF:
6057   case llvm::Triple::Wasm:
6058     GV->setSection("cfstring");
6059     break;
6060   case llvm::Triple::MachO:
6061     GV->setSection("__DATA,__cfstring");
6062     break;
6063   }
6064   Entry.second = GV;
6065 
6066   return ConstantAddress(GV, GV->getValueType(), Alignment);
6067 }
6068 
6069 bool CodeGenModule::getExpressionLocationsEnabled() const {
6070   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6071 }
6072 
6073 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6074   if (ObjCFastEnumerationStateType.isNull()) {
6075     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6076     D->startDefinition();
6077 
6078     QualType FieldTypes[] = {
6079       Context.UnsignedLongTy,
6080       Context.getPointerType(Context.getObjCIdType()),
6081       Context.getPointerType(Context.UnsignedLongTy),
6082       Context.getConstantArrayType(Context.UnsignedLongTy,
6083                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
6084     };
6085 
6086     for (size_t i = 0; i < 4; ++i) {
6087       FieldDecl *Field = FieldDecl::Create(Context,
6088                                            D,
6089                                            SourceLocation(),
6090                                            SourceLocation(), nullptr,
6091                                            FieldTypes[i], /*TInfo=*/nullptr,
6092                                            /*BitWidth=*/nullptr,
6093                                            /*Mutable=*/false,
6094                                            ICIS_NoInit);
6095       Field->setAccess(AS_public);
6096       D->addDecl(Field);
6097     }
6098 
6099     D->completeDefinition();
6100     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6101   }
6102 
6103   return ObjCFastEnumerationStateType;
6104 }
6105 
6106 llvm::Constant *
6107 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6108   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6109 
6110   // Don't emit it as the address of the string, emit the string data itself
6111   // as an inline array.
6112   if (E->getCharByteWidth() == 1) {
6113     SmallString<64> Str(E->getString());
6114 
6115     // Resize the string to the right size, which is indicated by its type.
6116     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6117     assert(CAT && "String literal not of constant array type!");
6118     Str.resize(CAT->getSize().getZExtValue());
6119     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6120   }
6121 
6122   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6123   llvm::Type *ElemTy = AType->getElementType();
6124   unsigned NumElements = AType->getNumElements();
6125 
6126   // Wide strings have either 2-byte or 4-byte elements.
6127   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6128     SmallVector<uint16_t, 32> Elements;
6129     Elements.reserve(NumElements);
6130 
6131     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6132       Elements.push_back(E->getCodeUnit(i));
6133     Elements.resize(NumElements);
6134     return llvm::ConstantDataArray::get(VMContext, Elements);
6135   }
6136 
6137   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6138   SmallVector<uint32_t, 32> Elements;
6139   Elements.reserve(NumElements);
6140 
6141   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6142     Elements.push_back(E->getCodeUnit(i));
6143   Elements.resize(NumElements);
6144   return llvm::ConstantDataArray::get(VMContext, Elements);
6145 }
6146 
6147 static llvm::GlobalVariable *
6148 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6149                       CodeGenModule &CGM, StringRef GlobalName,
6150                       CharUnits Alignment) {
6151   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6152       CGM.GetGlobalConstantAddressSpace());
6153 
6154   llvm::Module &M = CGM.getModule();
6155   // Create a global variable for this string
6156   auto *GV = new llvm::GlobalVariable(
6157       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6158       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6159   GV->setAlignment(Alignment.getAsAlign());
6160   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6161   if (GV->isWeakForLinker()) {
6162     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6163     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6164   }
6165   CGM.setDSOLocal(GV);
6166 
6167   return GV;
6168 }
6169 
6170 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6171 /// constant array for the given string literal.
6172 ConstantAddress
6173 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6174                                                   StringRef Name) {
6175   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6176 
6177   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6178   llvm::GlobalVariable **Entry = nullptr;
6179   if (!LangOpts.WritableStrings) {
6180     Entry = &ConstantStringMap[C];
6181     if (auto GV = *Entry) {
6182       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6183         GV->setAlignment(Alignment.getAsAlign());
6184       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6185                              GV->getValueType(), Alignment);
6186     }
6187   }
6188 
6189   SmallString<256> MangledNameBuffer;
6190   StringRef GlobalVariableName;
6191   llvm::GlobalValue::LinkageTypes LT;
6192 
6193   // Mangle the string literal if that's how the ABI merges duplicate strings.
6194   // Don't do it if they are writable, since we don't want writes in one TU to
6195   // affect strings in another.
6196   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6197       !LangOpts.WritableStrings) {
6198     llvm::raw_svector_ostream Out(MangledNameBuffer);
6199     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6200     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6201     GlobalVariableName = MangledNameBuffer;
6202   } else {
6203     LT = llvm::GlobalValue::PrivateLinkage;
6204     GlobalVariableName = Name;
6205   }
6206 
6207   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6208 
6209   CGDebugInfo *DI = getModuleDebugInfo();
6210   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6211     DI->AddStringLiteralDebugInfo(GV, S);
6212 
6213   if (Entry)
6214     *Entry = GV;
6215 
6216   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6217 
6218   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6219                          GV->getValueType(), Alignment);
6220 }
6221 
6222 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6223 /// array for the given ObjCEncodeExpr node.
6224 ConstantAddress
6225 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6226   std::string Str;
6227   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6228 
6229   return GetAddrOfConstantCString(Str);
6230 }
6231 
6232 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6233 /// the literal and a terminating '\0' character.
6234 /// The result has pointer to array type.
6235 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6236     const std::string &Str, const char *GlobalName) {
6237   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6238   CharUnits Alignment =
6239     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6240 
6241   llvm::Constant *C =
6242       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6243 
6244   // Don't share any string literals if strings aren't constant.
6245   llvm::GlobalVariable **Entry = nullptr;
6246   if (!LangOpts.WritableStrings) {
6247     Entry = &ConstantStringMap[C];
6248     if (auto GV = *Entry) {
6249       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6250         GV->setAlignment(Alignment.getAsAlign());
6251       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6252                              GV->getValueType(), Alignment);
6253     }
6254   }
6255 
6256   // Get the default prefix if a name wasn't specified.
6257   if (!GlobalName)
6258     GlobalName = ".str";
6259   // Create a global variable for this.
6260   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6261                                   GlobalName, Alignment);
6262   if (Entry)
6263     *Entry = GV;
6264 
6265   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6266                          GV->getValueType(), Alignment);
6267 }
6268 
6269 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6270     const MaterializeTemporaryExpr *E, const Expr *Init) {
6271   assert((E->getStorageDuration() == SD_Static ||
6272           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6273   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6274 
6275   // If we're not materializing a subobject of the temporary, keep the
6276   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6277   QualType MaterializedType = Init->getType();
6278   if (Init == E->getSubExpr())
6279     MaterializedType = E->getType();
6280 
6281   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6282 
6283   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6284   if (!InsertResult.second) {
6285     // We've seen this before: either we already created it or we're in the
6286     // process of doing so.
6287     if (!InsertResult.first->second) {
6288       // We recursively re-entered this function, probably during emission of
6289       // the initializer. Create a placeholder. We'll clean this up in the
6290       // outer call, at the end of this function.
6291       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6292       InsertResult.first->second = new llvm::GlobalVariable(
6293           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6294           nullptr);
6295     }
6296     return ConstantAddress(InsertResult.first->second,
6297                            llvm::cast<llvm::GlobalVariable>(
6298                                InsertResult.first->second->stripPointerCasts())
6299                                ->getValueType(),
6300                            Align);
6301   }
6302 
6303   // FIXME: If an externally-visible declaration extends multiple temporaries,
6304   // we need to give each temporary the same name in every translation unit (and
6305   // we also need to make the temporaries externally-visible).
6306   SmallString<256> Name;
6307   llvm::raw_svector_ostream Out(Name);
6308   getCXXABI().getMangleContext().mangleReferenceTemporary(
6309       VD, E->getManglingNumber(), Out);
6310 
6311   APValue *Value = nullptr;
6312   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6313     // If the initializer of the extending declaration is a constant
6314     // initializer, we should have a cached constant initializer for this
6315     // temporary. Note that this might have a different value from the value
6316     // computed by evaluating the initializer if the surrounding constant
6317     // expression modifies the temporary.
6318     Value = E->getOrCreateValue(false);
6319   }
6320 
6321   // Try evaluating it now, it might have a constant initializer.
6322   Expr::EvalResult EvalResult;
6323   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6324       !EvalResult.hasSideEffects())
6325     Value = &EvalResult.Val;
6326 
6327   LangAS AddrSpace =
6328       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6329 
6330   std::optional<ConstantEmitter> emitter;
6331   llvm::Constant *InitialValue = nullptr;
6332   bool Constant = false;
6333   llvm::Type *Type;
6334   if (Value) {
6335     // The temporary has a constant initializer, use it.
6336     emitter.emplace(*this);
6337     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6338                                                MaterializedType);
6339     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value,
6340                               /*ExcludeDtor*/ false);
6341     Type = InitialValue->getType();
6342   } else {
6343     // No initializer, the initialization will be provided when we
6344     // initialize the declaration which performed lifetime extension.
6345     Type = getTypes().ConvertTypeForMem(MaterializedType);
6346   }
6347 
6348   // Create a global variable for this lifetime-extended temporary.
6349   llvm::GlobalValue::LinkageTypes Linkage =
6350       getLLVMLinkageVarDefinition(VD, Constant);
6351   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6352     const VarDecl *InitVD;
6353     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6354         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6355       // Temporaries defined inside a class get linkonce_odr linkage because the
6356       // class can be defined in multiple translation units.
6357       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6358     } else {
6359       // There is no need for this temporary to have external linkage if the
6360       // VarDecl has external linkage.
6361       Linkage = llvm::GlobalVariable::InternalLinkage;
6362     }
6363   }
6364   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6365   auto *GV = new llvm::GlobalVariable(
6366       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6367       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6368   if (emitter) emitter->finalize(GV);
6369   // Don't assign dllimport or dllexport to local linkage globals.
6370   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6371     setGVProperties(GV, VD);
6372     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6373       // The reference temporary should never be dllexport.
6374       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6375   }
6376   GV->setAlignment(Align.getAsAlign());
6377   if (supportsCOMDAT() && GV->isWeakForLinker())
6378     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6379   if (VD->getTLSKind())
6380     setTLSMode(GV, *VD);
6381   llvm::Constant *CV = GV;
6382   if (AddrSpace != LangAS::Default)
6383     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6384         *this, GV, AddrSpace, LangAS::Default,
6385         Type->getPointerTo(
6386             getContext().getTargetAddressSpace(LangAS::Default)));
6387 
6388   // Update the map with the new temporary. If we created a placeholder above,
6389   // replace it with the new global now.
6390   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6391   if (Entry) {
6392     Entry->replaceAllUsesWith(
6393         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6394     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6395   }
6396   Entry = CV;
6397 
6398   return ConstantAddress(CV, Type, Align);
6399 }
6400 
6401 /// EmitObjCPropertyImplementations - Emit information for synthesized
6402 /// properties for an implementation.
6403 void CodeGenModule::EmitObjCPropertyImplementations(const
6404                                                     ObjCImplementationDecl *D) {
6405   for (const auto *PID : D->property_impls()) {
6406     // Dynamic is just for type-checking.
6407     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6408       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6409 
6410       // Determine which methods need to be implemented, some may have
6411       // been overridden. Note that ::isPropertyAccessor is not the method
6412       // we want, that just indicates if the decl came from a
6413       // property. What we want to know is if the method is defined in
6414       // this implementation.
6415       auto *Getter = PID->getGetterMethodDecl();
6416       if (!Getter || Getter->isSynthesizedAccessorStub())
6417         CodeGenFunction(*this).GenerateObjCGetter(
6418             const_cast<ObjCImplementationDecl *>(D), PID);
6419       auto *Setter = PID->getSetterMethodDecl();
6420       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6421         CodeGenFunction(*this).GenerateObjCSetter(
6422                                  const_cast<ObjCImplementationDecl *>(D), PID);
6423     }
6424   }
6425 }
6426 
6427 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6428   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6429   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6430        ivar; ivar = ivar->getNextIvar())
6431     if (ivar->getType().isDestructedType())
6432       return true;
6433 
6434   return false;
6435 }
6436 
6437 static bool AllTrivialInitializers(CodeGenModule &CGM,
6438                                    ObjCImplementationDecl *D) {
6439   CodeGenFunction CGF(CGM);
6440   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6441        E = D->init_end(); B != E; ++B) {
6442     CXXCtorInitializer *CtorInitExp = *B;
6443     Expr *Init = CtorInitExp->getInit();
6444     if (!CGF.isTrivialInitializer(Init))
6445       return false;
6446   }
6447   return true;
6448 }
6449 
6450 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6451 /// for an implementation.
6452 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6453   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6454   if (needsDestructMethod(D)) {
6455     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6456     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6457     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6458         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6459         getContext().VoidTy, nullptr, D,
6460         /*isInstance=*/true, /*isVariadic=*/false,
6461         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6462         /*isImplicitlyDeclared=*/true,
6463         /*isDefined=*/false, ObjCMethodDecl::Required);
6464     D->addInstanceMethod(DTORMethod);
6465     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6466     D->setHasDestructors(true);
6467   }
6468 
6469   // If the implementation doesn't have any ivar initializers, we don't need
6470   // a .cxx_construct.
6471   if (D->getNumIvarInitializers() == 0 ||
6472       AllTrivialInitializers(*this, D))
6473     return;
6474 
6475   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6476   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6477   // The constructor returns 'self'.
6478   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6479       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6480       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6481       /*isVariadic=*/false,
6482       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6483       /*isImplicitlyDeclared=*/true,
6484       /*isDefined=*/false, ObjCMethodDecl::Required);
6485   D->addInstanceMethod(CTORMethod);
6486   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6487   D->setHasNonZeroConstructors(true);
6488 }
6489 
6490 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6491 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6492   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6493       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6494     ErrorUnsupported(LSD, "linkage spec");
6495     return;
6496   }
6497 
6498   EmitDeclContext(LSD);
6499 }
6500 
6501 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6502   // Device code should not be at top level.
6503   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6504     return;
6505 
6506   std::unique_ptr<CodeGenFunction> &CurCGF =
6507       GlobalTopLevelStmtBlockInFlight.first;
6508 
6509   // We emitted a top-level stmt but after it there is initialization.
6510   // Stop squashing the top-level stmts into a single function.
6511   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6512     CurCGF->FinishFunction(D->getEndLoc());
6513     CurCGF = nullptr;
6514   }
6515 
6516   if (!CurCGF) {
6517     // void __stmts__N(void)
6518     // FIXME: Ask the ABI name mangler to pick a name.
6519     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6520     FunctionArgList Args;
6521     QualType RetTy = getContext().VoidTy;
6522     const CGFunctionInfo &FnInfo =
6523         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6524     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6525     llvm::Function *Fn = llvm::Function::Create(
6526         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6527 
6528     CurCGF.reset(new CodeGenFunction(*this));
6529     GlobalTopLevelStmtBlockInFlight.second = D;
6530     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6531                           D->getBeginLoc(), D->getBeginLoc());
6532     CXXGlobalInits.push_back(Fn);
6533   }
6534 
6535   CurCGF->EmitStmt(D->getStmt());
6536 }
6537 
6538 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6539   for (auto *I : DC->decls()) {
6540     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6541     // are themselves considered "top-level", so EmitTopLevelDecl on an
6542     // ObjCImplDecl does not recursively visit them. We need to do that in
6543     // case they're nested inside another construct (LinkageSpecDecl /
6544     // ExportDecl) that does stop them from being considered "top-level".
6545     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6546       for (auto *M : OID->methods())
6547         EmitTopLevelDecl(M);
6548     }
6549 
6550     EmitTopLevelDecl(I);
6551   }
6552 }
6553 
6554 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6555 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6556   // Ignore dependent declarations.
6557   if (D->isTemplated())
6558     return;
6559 
6560   // Consteval function shouldn't be emitted.
6561   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6562     return;
6563 
6564   switch (D->getKind()) {
6565   case Decl::CXXConversion:
6566   case Decl::CXXMethod:
6567   case Decl::Function:
6568     EmitGlobal(cast<FunctionDecl>(D));
6569     // Always provide some coverage mapping
6570     // even for the functions that aren't emitted.
6571     AddDeferredUnusedCoverageMapping(D);
6572     break;
6573 
6574   case Decl::CXXDeductionGuide:
6575     // Function-like, but does not result in code emission.
6576     break;
6577 
6578   case Decl::Var:
6579   case Decl::Decomposition:
6580   case Decl::VarTemplateSpecialization:
6581     EmitGlobal(cast<VarDecl>(D));
6582     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6583       for (auto *B : DD->bindings())
6584         if (auto *HD = B->getHoldingVar())
6585           EmitGlobal(HD);
6586     break;
6587 
6588   // Indirect fields from global anonymous structs and unions can be
6589   // ignored; only the actual variable requires IR gen support.
6590   case Decl::IndirectField:
6591     break;
6592 
6593   // C++ Decls
6594   case Decl::Namespace:
6595     EmitDeclContext(cast<NamespaceDecl>(D));
6596     break;
6597   case Decl::ClassTemplateSpecialization: {
6598     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6599     if (CGDebugInfo *DI = getModuleDebugInfo())
6600       if (Spec->getSpecializationKind() ==
6601               TSK_ExplicitInstantiationDefinition &&
6602           Spec->hasDefinition())
6603         DI->completeTemplateDefinition(*Spec);
6604   } [[fallthrough]];
6605   case Decl::CXXRecord: {
6606     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6607     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6608       if (CRD->hasDefinition())
6609         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6610       if (auto *ES = D->getASTContext().getExternalSource())
6611         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6612           DI->completeUnusedClass(*CRD);
6613     }
6614     // Emit any static data members, they may be definitions.
6615     for (auto *I : CRD->decls())
6616       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6617         EmitTopLevelDecl(I);
6618     break;
6619   }
6620     // No code generation needed.
6621   case Decl::UsingShadow:
6622   case Decl::ClassTemplate:
6623   case Decl::VarTemplate:
6624   case Decl::Concept:
6625   case Decl::VarTemplatePartialSpecialization:
6626   case Decl::FunctionTemplate:
6627   case Decl::TypeAliasTemplate:
6628   case Decl::Block:
6629   case Decl::Empty:
6630   case Decl::Binding:
6631     break;
6632   case Decl::Using:          // using X; [C++]
6633     if (CGDebugInfo *DI = getModuleDebugInfo())
6634         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6635     break;
6636   case Decl::UsingEnum: // using enum X; [C++]
6637     if (CGDebugInfo *DI = getModuleDebugInfo())
6638       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6639     break;
6640   case Decl::NamespaceAlias:
6641     if (CGDebugInfo *DI = getModuleDebugInfo())
6642         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6643     break;
6644   case Decl::UsingDirective: // using namespace X; [C++]
6645     if (CGDebugInfo *DI = getModuleDebugInfo())
6646       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6647     break;
6648   case Decl::CXXConstructor:
6649     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6650     break;
6651   case Decl::CXXDestructor:
6652     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6653     break;
6654 
6655   case Decl::StaticAssert:
6656     // Nothing to do.
6657     break;
6658 
6659   // Objective-C Decls
6660 
6661   // Forward declarations, no (immediate) code generation.
6662   case Decl::ObjCInterface:
6663   case Decl::ObjCCategory:
6664     break;
6665 
6666   case Decl::ObjCProtocol: {
6667     auto *Proto = cast<ObjCProtocolDecl>(D);
6668     if (Proto->isThisDeclarationADefinition())
6669       ObjCRuntime->GenerateProtocol(Proto);
6670     break;
6671   }
6672 
6673   case Decl::ObjCCategoryImpl:
6674     // Categories have properties but don't support synthesize so we
6675     // can ignore them here.
6676     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6677     break;
6678 
6679   case Decl::ObjCImplementation: {
6680     auto *OMD = cast<ObjCImplementationDecl>(D);
6681     EmitObjCPropertyImplementations(OMD);
6682     EmitObjCIvarInitializations(OMD);
6683     ObjCRuntime->GenerateClass(OMD);
6684     // Emit global variable debug information.
6685     if (CGDebugInfo *DI = getModuleDebugInfo())
6686       if (getCodeGenOpts().hasReducedDebugInfo())
6687         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6688             OMD->getClassInterface()), OMD->getLocation());
6689     break;
6690   }
6691   case Decl::ObjCMethod: {
6692     auto *OMD = cast<ObjCMethodDecl>(D);
6693     // If this is not a prototype, emit the body.
6694     if (OMD->getBody())
6695       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6696     break;
6697   }
6698   case Decl::ObjCCompatibleAlias:
6699     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6700     break;
6701 
6702   case Decl::PragmaComment: {
6703     const auto *PCD = cast<PragmaCommentDecl>(D);
6704     switch (PCD->getCommentKind()) {
6705     case PCK_Unknown:
6706       llvm_unreachable("unexpected pragma comment kind");
6707     case PCK_Linker:
6708       AppendLinkerOptions(PCD->getArg());
6709       break;
6710     case PCK_Lib:
6711         AddDependentLib(PCD->getArg());
6712       break;
6713     case PCK_Compiler:
6714     case PCK_ExeStr:
6715     case PCK_User:
6716       break; // We ignore all of these.
6717     }
6718     break;
6719   }
6720 
6721   case Decl::PragmaDetectMismatch: {
6722     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6723     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6724     break;
6725   }
6726 
6727   case Decl::LinkageSpec:
6728     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6729     break;
6730 
6731   case Decl::FileScopeAsm: {
6732     // File-scope asm is ignored during device-side CUDA compilation.
6733     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6734       break;
6735     // File-scope asm is ignored during device-side OpenMP compilation.
6736     if (LangOpts.OpenMPIsDevice)
6737       break;
6738     // File-scope asm is ignored during device-side SYCL compilation.
6739     if (LangOpts.SYCLIsDevice)
6740       break;
6741     auto *AD = cast<FileScopeAsmDecl>(D);
6742     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6743     break;
6744   }
6745 
6746   case Decl::TopLevelStmt:
6747     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6748     break;
6749 
6750   case Decl::Import: {
6751     auto *Import = cast<ImportDecl>(D);
6752 
6753     // If we've already imported this module, we're done.
6754     if (!ImportedModules.insert(Import->getImportedModule()))
6755       break;
6756 
6757     // Emit debug information for direct imports.
6758     if (!Import->getImportedOwningModule()) {
6759       if (CGDebugInfo *DI = getModuleDebugInfo())
6760         DI->EmitImportDecl(*Import);
6761     }
6762 
6763     // For C++ standard modules we are done - we will call the module
6764     // initializer for imported modules, and that will likewise call those for
6765     // any imports it has.
6766     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6767         !Import->getImportedOwningModule()->isModuleMapModule())
6768       break;
6769 
6770     // For clang C++ module map modules the initializers for sub-modules are
6771     // emitted here.
6772 
6773     // Find all of the submodules and emit the module initializers.
6774     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6775     SmallVector<clang::Module *, 16> Stack;
6776     Visited.insert(Import->getImportedModule());
6777     Stack.push_back(Import->getImportedModule());
6778 
6779     while (!Stack.empty()) {
6780       clang::Module *Mod = Stack.pop_back_val();
6781       if (!EmittedModuleInitializers.insert(Mod).second)
6782         continue;
6783 
6784       for (auto *D : Context.getModuleInitializers(Mod))
6785         EmitTopLevelDecl(D);
6786 
6787       // Visit the submodules of this module.
6788       for (auto *Submodule : Mod->submodules()) {
6789         // Skip explicit children; they need to be explicitly imported to emit
6790         // the initializers.
6791         if (Submodule->IsExplicit)
6792           continue;
6793 
6794         if (Visited.insert(Submodule).second)
6795           Stack.push_back(Submodule);
6796       }
6797     }
6798     break;
6799   }
6800 
6801   case Decl::Export:
6802     EmitDeclContext(cast<ExportDecl>(D));
6803     break;
6804 
6805   case Decl::OMPThreadPrivate:
6806     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6807     break;
6808 
6809   case Decl::OMPAllocate:
6810     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6811     break;
6812 
6813   case Decl::OMPDeclareReduction:
6814     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6815     break;
6816 
6817   case Decl::OMPDeclareMapper:
6818     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6819     break;
6820 
6821   case Decl::OMPRequires:
6822     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6823     break;
6824 
6825   case Decl::Typedef:
6826   case Decl::TypeAlias: // using foo = bar; [C++11]
6827     if (CGDebugInfo *DI = getModuleDebugInfo())
6828       DI->EmitAndRetainType(
6829           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6830     break;
6831 
6832   case Decl::Record:
6833     if (CGDebugInfo *DI = getModuleDebugInfo())
6834       if (cast<RecordDecl>(D)->getDefinition())
6835         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6836     break;
6837 
6838   case Decl::Enum:
6839     if (CGDebugInfo *DI = getModuleDebugInfo())
6840       if (cast<EnumDecl>(D)->getDefinition())
6841         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6842     break;
6843 
6844   case Decl::HLSLBuffer:
6845     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6846     break;
6847 
6848   default:
6849     // Make sure we handled everything we should, every other kind is a
6850     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6851     // function. Need to recode Decl::Kind to do that easily.
6852     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6853     break;
6854   }
6855 }
6856 
6857 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6858   // Do we need to generate coverage mapping?
6859   if (!CodeGenOpts.CoverageMapping)
6860     return;
6861   switch (D->getKind()) {
6862   case Decl::CXXConversion:
6863   case Decl::CXXMethod:
6864   case Decl::Function:
6865   case Decl::ObjCMethod:
6866   case Decl::CXXConstructor:
6867   case Decl::CXXDestructor: {
6868     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6869       break;
6870     SourceManager &SM = getContext().getSourceManager();
6871     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6872       break;
6873     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6874     if (I == DeferredEmptyCoverageMappingDecls.end())
6875       DeferredEmptyCoverageMappingDecls[D] = true;
6876     break;
6877   }
6878   default:
6879     break;
6880   };
6881 }
6882 
6883 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6884   // Do we need to generate coverage mapping?
6885   if (!CodeGenOpts.CoverageMapping)
6886     return;
6887   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6888     if (Fn->isTemplateInstantiation())
6889       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6890   }
6891   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6892   if (I == DeferredEmptyCoverageMappingDecls.end())
6893     DeferredEmptyCoverageMappingDecls[D] = false;
6894   else
6895     I->second = false;
6896 }
6897 
6898 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6899   // We call takeVector() here to avoid use-after-free.
6900   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6901   // we deserialize function bodies to emit coverage info for them, and that
6902   // deserializes more declarations. How should we handle that case?
6903   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6904     if (!Entry.second)
6905       continue;
6906     const Decl *D = Entry.first;
6907     switch (D->getKind()) {
6908     case Decl::CXXConversion:
6909     case Decl::CXXMethod:
6910     case Decl::Function:
6911     case Decl::ObjCMethod: {
6912       CodeGenPGO PGO(*this);
6913       GlobalDecl GD(cast<FunctionDecl>(D));
6914       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6915                                   getFunctionLinkage(GD));
6916       break;
6917     }
6918     case Decl::CXXConstructor: {
6919       CodeGenPGO PGO(*this);
6920       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6921       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6922                                   getFunctionLinkage(GD));
6923       break;
6924     }
6925     case Decl::CXXDestructor: {
6926       CodeGenPGO PGO(*this);
6927       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6928       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6929                                   getFunctionLinkage(GD));
6930       break;
6931     }
6932     default:
6933       break;
6934     };
6935   }
6936 }
6937 
6938 void CodeGenModule::EmitMainVoidAlias() {
6939   // In order to transition away from "__original_main" gracefully, emit an
6940   // alias for "main" in the no-argument case so that libc can detect when
6941   // new-style no-argument main is in used.
6942   if (llvm::Function *F = getModule().getFunction("main")) {
6943     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6944         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6945       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6946       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6947     }
6948   }
6949 }
6950 
6951 /// Turns the given pointer into a constant.
6952 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6953                                           const void *Ptr) {
6954   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6955   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6956   return llvm::ConstantInt::get(i64, PtrInt);
6957 }
6958 
6959 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6960                                    llvm::NamedMDNode *&GlobalMetadata,
6961                                    GlobalDecl D,
6962                                    llvm::GlobalValue *Addr) {
6963   if (!GlobalMetadata)
6964     GlobalMetadata =
6965       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6966 
6967   // TODO: should we report variant information for ctors/dtors?
6968   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6969                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6970                                CGM.getLLVMContext(), D.getDecl()))};
6971   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6972 }
6973 
6974 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6975                                                  llvm::GlobalValue *CppFunc) {
6976   // Store the list of ifuncs we need to replace uses in.
6977   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6978   // List of ConstantExprs that we should be able to delete when we're done
6979   // here.
6980   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6981 
6982   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6983   if (Elem == CppFunc)
6984     return false;
6985 
6986   // First make sure that all users of this are ifuncs (or ifuncs via a
6987   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6988   // later.
6989   for (llvm::User *User : Elem->users()) {
6990     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6991     // ifunc directly. In any other case, just give up, as we don't know what we
6992     // could break by changing those.
6993     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6994       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6995         return false;
6996 
6997       for (llvm::User *CEUser : ConstExpr->users()) {
6998         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6999           IFuncs.push_back(IFunc);
7000         } else {
7001           return false;
7002         }
7003       }
7004       CEs.push_back(ConstExpr);
7005     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7006       IFuncs.push_back(IFunc);
7007     } else {
7008       // This user is one we don't know how to handle, so fail redirection. This
7009       // will result in an ifunc retaining a resolver name that will ultimately
7010       // fail to be resolved to a defined function.
7011       return false;
7012     }
7013   }
7014 
7015   // Now we know this is a valid case where we can do this alias replacement, we
7016   // need to remove all of the references to Elem (and the bitcasts!) so we can
7017   // delete it.
7018   for (llvm::GlobalIFunc *IFunc : IFuncs)
7019     IFunc->setResolver(nullptr);
7020   for (llvm::ConstantExpr *ConstExpr : CEs)
7021     ConstExpr->destroyConstant();
7022 
7023   // We should now be out of uses for the 'old' version of this function, so we
7024   // can erase it as well.
7025   Elem->eraseFromParent();
7026 
7027   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7028     // The type of the resolver is always just a function-type that returns the
7029     // type of the IFunc, so create that here. If the type of the actual
7030     // resolver doesn't match, it just gets bitcast to the right thing.
7031     auto *ResolverTy =
7032         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7033     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7034         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7035     IFunc->setResolver(Resolver);
7036   }
7037   return true;
7038 }
7039 
7040 /// For each function which is declared within an extern "C" region and marked
7041 /// as 'used', but has internal linkage, create an alias from the unmangled
7042 /// name to the mangled name if possible. People expect to be able to refer
7043 /// to such functions with an unmangled name from inline assembly within the
7044 /// same translation unit.
7045 void CodeGenModule::EmitStaticExternCAliases() {
7046   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7047     return;
7048   for (auto &I : StaticExternCValues) {
7049     IdentifierInfo *Name = I.first;
7050     llvm::GlobalValue *Val = I.second;
7051 
7052     // If Val is null, that implies there were multiple declarations that each
7053     // had a claim to the unmangled name. In this case, generation of the alias
7054     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7055     if (!Val)
7056       break;
7057 
7058     llvm::GlobalValue *ExistingElem =
7059         getModule().getNamedValue(Name->getName());
7060 
7061     // If there is either not something already by this name, or we were able to
7062     // replace all uses from IFuncs, create the alias.
7063     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7064       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7065   }
7066 }
7067 
7068 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7069                                              GlobalDecl &Result) const {
7070   auto Res = Manglings.find(MangledName);
7071   if (Res == Manglings.end())
7072     return false;
7073   Result = Res->getValue();
7074   return true;
7075 }
7076 
7077 /// Emits metadata nodes associating all the global values in the
7078 /// current module with the Decls they came from.  This is useful for
7079 /// projects using IR gen as a subroutine.
7080 ///
7081 /// Since there's currently no way to associate an MDNode directly
7082 /// with an llvm::GlobalValue, we create a global named metadata
7083 /// with the name 'clang.global.decl.ptrs'.
7084 void CodeGenModule::EmitDeclMetadata() {
7085   llvm::NamedMDNode *GlobalMetadata = nullptr;
7086 
7087   for (auto &I : MangledDeclNames) {
7088     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7089     // Some mangled names don't necessarily have an associated GlobalValue
7090     // in this module, e.g. if we mangled it for DebugInfo.
7091     if (Addr)
7092       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7093   }
7094 }
7095 
7096 /// Emits metadata nodes for all the local variables in the current
7097 /// function.
7098 void CodeGenFunction::EmitDeclMetadata() {
7099   if (LocalDeclMap.empty()) return;
7100 
7101   llvm::LLVMContext &Context = getLLVMContext();
7102 
7103   // Find the unique metadata ID for this name.
7104   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7105 
7106   llvm::NamedMDNode *GlobalMetadata = nullptr;
7107 
7108   for (auto &I : LocalDeclMap) {
7109     const Decl *D = I.first;
7110     llvm::Value *Addr = I.second.getPointer();
7111     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7112       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7113       Alloca->setMetadata(
7114           DeclPtrKind, llvm::MDNode::get(
7115                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7116     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7117       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7118       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7119     }
7120   }
7121 }
7122 
7123 void CodeGenModule::EmitVersionIdentMetadata() {
7124   llvm::NamedMDNode *IdentMetadata =
7125     TheModule.getOrInsertNamedMetadata("llvm.ident");
7126   std::string Version = getClangFullVersion();
7127   llvm::LLVMContext &Ctx = TheModule.getContext();
7128 
7129   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7130   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7131 }
7132 
7133 void CodeGenModule::EmitCommandLineMetadata() {
7134   llvm::NamedMDNode *CommandLineMetadata =
7135     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7136   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7137   llvm::LLVMContext &Ctx = TheModule.getContext();
7138 
7139   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7140   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7141 }
7142 
7143 void CodeGenModule::EmitCoverageFile() {
7144   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7145   if (!CUNode)
7146     return;
7147 
7148   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7149   llvm::LLVMContext &Ctx = TheModule.getContext();
7150   auto *CoverageDataFile =
7151       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7152   auto *CoverageNotesFile =
7153       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7154   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7155     llvm::MDNode *CU = CUNode->getOperand(i);
7156     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7157     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7158   }
7159 }
7160 
7161 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7162                                                        bool ForEH) {
7163   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7164   // FIXME: should we even be calling this method if RTTI is disabled
7165   // and it's not for EH?
7166   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
7167       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
7168        getTriple().isNVPTX()))
7169     return llvm::Constant::getNullValue(Int8PtrTy);
7170 
7171   if (ForEH && Ty->isObjCObjectPointerType() &&
7172       LangOpts.ObjCRuntime.isGNUFamily())
7173     return ObjCRuntime->GetEHType(Ty);
7174 
7175   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7176 }
7177 
7178 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7179   // Do not emit threadprivates in simd-only mode.
7180   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7181     return;
7182   for (auto RefExpr : D->varlists()) {
7183     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7184     bool PerformInit =
7185         VD->getAnyInitializer() &&
7186         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7187                                                         /*ForRef=*/false);
7188 
7189     Address Addr(GetAddrOfGlobalVar(VD),
7190                  getTypes().ConvertTypeForMem(VD->getType()),
7191                  getContext().getDeclAlign(VD));
7192     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7193             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7194       CXXGlobalInits.push_back(InitFunction);
7195   }
7196 }
7197 
7198 llvm::Metadata *
7199 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7200                                             StringRef Suffix) {
7201   if (auto *FnType = T->getAs<FunctionProtoType>())
7202     T = getContext().getFunctionType(
7203         FnType->getReturnType(), FnType->getParamTypes(),
7204         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7205 
7206   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7207   if (InternalId)
7208     return InternalId;
7209 
7210   if (isExternallyVisible(T->getLinkage())) {
7211     std::string OutName;
7212     llvm::raw_string_ostream Out(OutName);
7213     getCXXABI().getMangleContext().mangleTypeName(
7214         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7215 
7216     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7217       Out << ".normalized";
7218 
7219     Out << Suffix;
7220 
7221     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7222   } else {
7223     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7224                                            llvm::ArrayRef<llvm::Metadata *>());
7225   }
7226 
7227   return InternalId;
7228 }
7229 
7230 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7231   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7232 }
7233 
7234 llvm::Metadata *
7235 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7236   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7237 }
7238 
7239 // Generalize pointer types to a void pointer with the qualifiers of the
7240 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7241 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7242 // 'void *'.
7243 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7244   if (!Ty->isPointerType())
7245     return Ty;
7246 
7247   return Ctx.getPointerType(
7248       QualType(Ctx.VoidTy).withCVRQualifiers(
7249           Ty->getPointeeType().getCVRQualifiers()));
7250 }
7251 
7252 // Apply type generalization to a FunctionType's return and argument types
7253 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7254   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7255     SmallVector<QualType, 8> GeneralizedParams;
7256     for (auto &Param : FnType->param_types())
7257       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7258 
7259     return Ctx.getFunctionType(
7260         GeneralizeType(Ctx, FnType->getReturnType()),
7261         GeneralizedParams, FnType->getExtProtoInfo());
7262   }
7263 
7264   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7265     return Ctx.getFunctionNoProtoType(
7266         GeneralizeType(Ctx, FnType->getReturnType()));
7267 
7268   llvm_unreachable("Encountered unknown FunctionType");
7269 }
7270 
7271 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7272   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7273                                       GeneralizedMetadataIdMap, ".generalized");
7274 }
7275 
7276 /// Returns whether this module needs the "all-vtables" type identifier.
7277 bool CodeGenModule::NeedAllVtablesTypeId() const {
7278   // Returns true if at least one of vtable-based CFI checkers is enabled and
7279   // is not in the trapping mode.
7280   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7281            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7282           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7283            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7284           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7285            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7286           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7287            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7288 }
7289 
7290 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7291                                           CharUnits Offset,
7292                                           const CXXRecordDecl *RD) {
7293   llvm::Metadata *MD =
7294       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7295   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7296 
7297   if (CodeGenOpts.SanitizeCfiCrossDso)
7298     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7299       VTable->addTypeMetadata(Offset.getQuantity(),
7300                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7301 
7302   if (NeedAllVtablesTypeId()) {
7303     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7304     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7305   }
7306 }
7307 
7308 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7309   if (!SanStats)
7310     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7311 
7312   return *SanStats;
7313 }
7314 
7315 llvm::Value *
7316 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7317                                                   CodeGenFunction &CGF) {
7318   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7319   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7320   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7321   auto *Call = CGF.EmitRuntimeCall(
7322       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7323   return Call;
7324 }
7325 
7326 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7327     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7328   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7329                                  /* forPointeeType= */ true);
7330 }
7331 
7332 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7333                                                  LValueBaseInfo *BaseInfo,
7334                                                  TBAAAccessInfo *TBAAInfo,
7335                                                  bool forPointeeType) {
7336   if (TBAAInfo)
7337     *TBAAInfo = getTBAAAccessInfo(T);
7338 
7339   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7340   // that doesn't return the information we need to compute BaseInfo.
7341 
7342   // Honor alignment typedef attributes even on incomplete types.
7343   // We also honor them straight for C++ class types, even as pointees;
7344   // there's an expressivity gap here.
7345   if (auto TT = T->getAs<TypedefType>()) {
7346     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7347       if (BaseInfo)
7348         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7349       return getContext().toCharUnitsFromBits(Align);
7350     }
7351   }
7352 
7353   bool AlignForArray = T->isArrayType();
7354 
7355   // Analyze the base element type, so we don't get confused by incomplete
7356   // array types.
7357   T = getContext().getBaseElementType(T);
7358 
7359   if (T->isIncompleteType()) {
7360     // We could try to replicate the logic from
7361     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7362     // type is incomplete, so it's impossible to test. We could try to reuse
7363     // getTypeAlignIfKnown, but that doesn't return the information we need
7364     // to set BaseInfo.  So just ignore the possibility that the alignment is
7365     // greater than one.
7366     if (BaseInfo)
7367       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7368     return CharUnits::One();
7369   }
7370 
7371   if (BaseInfo)
7372     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7373 
7374   CharUnits Alignment;
7375   const CXXRecordDecl *RD;
7376   if (T.getQualifiers().hasUnaligned()) {
7377     Alignment = CharUnits::One();
7378   } else if (forPointeeType && !AlignForArray &&
7379              (RD = T->getAsCXXRecordDecl())) {
7380     // For C++ class pointees, we don't know whether we're pointing at a
7381     // base or a complete object, so we generally need to use the
7382     // non-virtual alignment.
7383     Alignment = getClassPointerAlignment(RD);
7384   } else {
7385     Alignment = getContext().getTypeAlignInChars(T);
7386   }
7387 
7388   // Cap to the global maximum type alignment unless the alignment
7389   // was somehow explicit on the type.
7390   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7391     if (Alignment.getQuantity() > MaxAlign &&
7392         !getContext().isAlignmentRequired(T))
7393       Alignment = CharUnits::fromQuantity(MaxAlign);
7394   }
7395   return Alignment;
7396 }
7397 
7398 bool CodeGenModule::stopAutoInit() {
7399   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7400   if (StopAfter) {
7401     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7402     // used
7403     if (NumAutoVarInit >= StopAfter) {
7404       return true;
7405     }
7406     if (!NumAutoVarInit) {
7407       unsigned DiagID = getDiags().getCustomDiagID(
7408           DiagnosticsEngine::Warning,
7409           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7410           "number of times ftrivial-auto-var-init=%1 gets applied.");
7411       getDiags().Report(DiagID)
7412           << StopAfter
7413           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7414                       LangOptions::TrivialAutoVarInitKind::Zero
7415                   ? "zero"
7416                   : "pattern");
7417     }
7418     ++NumAutoVarInit;
7419   }
7420   return false;
7421 }
7422 
7423 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7424                                                     const Decl *D) const {
7425   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7426   // postfix beginning with '.' since the symbol name can be demangled.
7427   if (LangOpts.HIP)
7428     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7429   else
7430     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7431 
7432   // If the CUID is not specified we try to generate a unique postfix.
7433   if (getLangOpts().CUID.empty()) {
7434     SourceManager &SM = getContext().getSourceManager();
7435     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7436     assert(PLoc.isValid() && "Source location is expected to be valid.");
7437 
7438     // Get the hash of the user defined macros.
7439     llvm::MD5 Hash;
7440     llvm::MD5::MD5Result Result;
7441     for (const auto &Arg : PreprocessorOpts.Macros)
7442       Hash.update(Arg.first);
7443     Hash.final(Result);
7444 
7445     // Get the UniqueID for the file containing the decl.
7446     llvm::sys::fs::UniqueID ID;
7447     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7448       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7449       assert(PLoc.isValid() && "Source location is expected to be valid.");
7450       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7451         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7452             << PLoc.getFilename() << EC.message();
7453     }
7454     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7455        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7456   } else {
7457     OS << getContext().getCUIDHash();
7458   }
7459 }
7460 
7461 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7462   assert(DeferredDeclsToEmit.empty() &&
7463          "Should have emitted all decls deferred to emit.");
7464   assert(NewBuilder->DeferredDecls.empty() &&
7465          "Newly created module should not have deferred decls");
7466   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7467 
7468   assert(NewBuilder->DeferredVTables.empty() &&
7469          "Newly created module should not have deferred vtables");
7470   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7471 
7472   assert(NewBuilder->MangledDeclNames.empty() &&
7473          "Newly created module should not have mangled decl names");
7474   assert(NewBuilder->Manglings.empty() &&
7475          "Newly created module should not have manglings");
7476   NewBuilder->Manglings = std::move(Manglings);
7477 
7478   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7479 
7480   NewBuilder->TBAA = std::move(TBAA);
7481 
7482   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7483          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7484 
7485   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7486 
7487   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7488 }
7489