1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.CodeViewGHash) { 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 463 } 464 if (CodeGenOpts.ControlFlowGuard) { 465 // We want function ID tables for Control Flow Guard. 466 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 467 } 468 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 469 // We don't support LTO with 2 with different StrictVTablePointers 470 // FIXME: we could support it by stripping all the information introduced 471 // by StrictVTablePointers. 472 473 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 474 475 llvm::Metadata *Ops[2] = { 476 llvm::MDString::get(VMContext, "StrictVTablePointers"), 477 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 478 llvm::Type::getInt32Ty(VMContext), 1))}; 479 480 getModule().addModuleFlag(llvm::Module::Require, 481 "StrictVTablePointersRequirement", 482 llvm::MDNode::get(VMContext, Ops)); 483 } 484 if (DebugInfo) 485 // We support a single version in the linked module. The LLVM 486 // parser will drop debug info with a different version number 487 // (and warn about it, too). 488 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 489 llvm::DEBUG_METADATA_VERSION); 490 491 // We need to record the widths of enums and wchar_t, so that we can generate 492 // the correct build attributes in the ARM backend. wchar_size is also used by 493 // TargetLibraryInfo. 494 uint64_t WCharWidth = 495 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 496 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 497 498 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 499 if ( Arch == llvm::Triple::arm 500 || Arch == llvm::Triple::armeb 501 || Arch == llvm::Triple::thumb 502 || Arch == llvm::Triple::thumbeb) { 503 // The minimum width of an enum in bytes 504 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 505 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 506 } 507 508 if (CodeGenOpts.SanitizeCfiCrossDso) { 509 // Indicate that we want cross-DSO control flow integrity checks. 510 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 511 } 512 513 if (CodeGenOpts.CFProtectionReturn && 514 Target.checkCFProtectionReturnSupported(getDiags())) { 515 // Indicate that we want to instrument return control flow protection. 516 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 517 1); 518 } 519 520 if (CodeGenOpts.CFProtectionBranch && 521 Target.checkCFProtectionBranchSupported(getDiags())) { 522 // Indicate that we want to instrument branch control flow protection. 523 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 524 1); 525 } 526 527 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 528 // Indicate whether __nvvm_reflect should be configured to flush denormal 529 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 530 // property.) 531 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 532 CodeGenOpts.FlushDenorm ? 1 : 0); 533 } 534 535 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 536 if (LangOpts.OpenCL) { 537 EmitOpenCLMetadata(); 538 // Emit SPIR version. 539 if (getTriple().getArch() == llvm::Triple::spir || 540 getTriple().getArch() == llvm::Triple::spir64) { 541 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 542 // opencl.spir.version named metadata. 543 llvm::Metadata *SPIRVerElts[] = { 544 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 545 Int32Ty, LangOpts.OpenCLVersion / 100)), 546 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 547 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 548 llvm::NamedMDNode *SPIRVerMD = 549 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 550 llvm::LLVMContext &Ctx = TheModule.getContext(); 551 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 552 } 553 } 554 555 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 556 assert(PLevel < 3 && "Invalid PIC Level"); 557 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 558 if (Context.getLangOpts().PIE) 559 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 560 } 561 562 if (getCodeGenOpts().CodeModel.size() > 0) { 563 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 564 .Case("tiny", llvm::CodeModel::Tiny) 565 .Case("small", llvm::CodeModel::Small) 566 .Case("kernel", llvm::CodeModel::Kernel) 567 .Case("medium", llvm::CodeModel::Medium) 568 .Case("large", llvm::CodeModel::Large) 569 .Default(~0u); 570 if (CM != ~0u) { 571 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 572 getModule().setCodeModel(codeModel); 573 } 574 } 575 576 if (CodeGenOpts.NoPLT) 577 getModule().setRtLibUseGOT(); 578 579 SimplifyPersonality(); 580 581 if (getCodeGenOpts().EmitDeclMetadata) 582 EmitDeclMetadata(); 583 584 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 585 EmitCoverageFile(); 586 587 if (DebugInfo) 588 DebugInfo->finalize(); 589 590 if (getCodeGenOpts().EmitVersionIdentMetadata) 591 EmitVersionIdentMetadata(); 592 593 if (!getCodeGenOpts().RecordCommandLine.empty()) 594 EmitCommandLineMetadata(); 595 596 EmitTargetMetadata(); 597 } 598 599 void CodeGenModule::EmitOpenCLMetadata() { 600 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 601 // opencl.ocl.version named metadata node. 602 llvm::Metadata *OCLVerElts[] = { 603 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 604 Int32Ty, LangOpts.OpenCLVersion / 100)), 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 607 llvm::NamedMDNode *OCLVerMD = 608 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 609 llvm::LLVMContext &Ctx = TheModule.getContext(); 610 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 611 } 612 613 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 614 // Make sure that this type is translated. 615 Types.UpdateCompletedType(TD); 616 } 617 618 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 619 // Make sure that this type is translated. 620 Types.RefreshTypeCacheForClass(RD); 621 } 622 623 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 624 if (!TBAA) 625 return nullptr; 626 return TBAA->getTypeInfo(QTy); 627 } 628 629 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 630 if (!TBAA) 631 return TBAAAccessInfo(); 632 return TBAA->getAccessInfo(AccessType); 633 } 634 635 TBAAAccessInfo 636 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 637 if (!TBAA) 638 return TBAAAccessInfo(); 639 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 640 } 641 642 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 643 if (!TBAA) 644 return nullptr; 645 return TBAA->getTBAAStructInfo(QTy); 646 } 647 648 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 649 if (!TBAA) 650 return nullptr; 651 return TBAA->getBaseTypeInfo(QTy); 652 } 653 654 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 655 if (!TBAA) 656 return nullptr; 657 return TBAA->getAccessTagInfo(Info); 658 } 659 660 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 661 TBAAAccessInfo TargetInfo) { 662 if (!TBAA) 663 return TBAAAccessInfo(); 664 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 665 } 666 667 TBAAAccessInfo 668 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 669 TBAAAccessInfo InfoB) { 670 if (!TBAA) 671 return TBAAAccessInfo(); 672 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 673 } 674 675 TBAAAccessInfo 676 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 677 TBAAAccessInfo SrcInfo) { 678 if (!TBAA) 679 return TBAAAccessInfo(); 680 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 681 } 682 683 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 684 TBAAAccessInfo TBAAInfo) { 685 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 686 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 687 } 688 689 void CodeGenModule::DecorateInstructionWithInvariantGroup( 690 llvm::Instruction *I, const CXXRecordDecl *RD) { 691 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 692 llvm::MDNode::get(getLLVMContext(), {})); 693 } 694 695 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 696 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 697 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 698 } 699 700 /// ErrorUnsupported - Print out an error that codegen doesn't support the 701 /// specified stmt yet. 702 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 703 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 704 "cannot compile this %0 yet"); 705 std::string Msg = Type; 706 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 707 << Msg << S->getSourceRange(); 708 } 709 710 /// ErrorUnsupported - Print out an error that codegen doesn't support the 711 /// specified decl yet. 712 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 713 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 714 "cannot compile this %0 yet"); 715 std::string Msg = Type; 716 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 717 } 718 719 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 720 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 721 } 722 723 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 724 const NamedDecl *D) const { 725 if (GV->hasDLLImportStorageClass()) 726 return; 727 // Internal definitions always have default visibility. 728 if (GV->hasLocalLinkage()) { 729 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 730 return; 731 } 732 if (!D) 733 return; 734 // Set visibility for definitions. 735 LinkageInfo LV = D->getLinkageAndVisibility(); 736 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 737 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 738 } 739 740 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 741 llvm::GlobalValue *GV) { 742 if (GV->hasLocalLinkage()) 743 return true; 744 745 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 746 return true; 747 748 // DLLImport explicitly marks the GV as external. 749 if (GV->hasDLLImportStorageClass()) 750 return false; 751 752 const llvm::Triple &TT = CGM.getTriple(); 753 if (TT.isWindowsGNUEnvironment()) { 754 // In MinGW, variables without DLLImport can still be automatically 755 // imported from a DLL by the linker; don't mark variables that 756 // potentially could come from another DLL as DSO local. 757 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 758 !GV->isThreadLocal()) 759 return false; 760 } 761 // Every other GV is local on COFF. 762 // Make an exception for windows OS in the triple: Some firmware builds use 763 // *-win32-macho triples. This (accidentally?) produced windows relocations 764 // without GOT tables in older clang versions; Keep this behaviour. 765 // FIXME: even thread local variables? 766 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 767 return true; 768 769 // Only handle COFF and ELF for now. 770 if (!TT.isOSBinFormatELF()) 771 return false; 772 773 // If this is not an executable, don't assume anything is local. 774 const auto &CGOpts = CGM.getCodeGenOpts(); 775 llvm::Reloc::Model RM = CGOpts.RelocationModel; 776 const auto &LOpts = CGM.getLangOpts(); 777 if (RM != llvm::Reloc::Static && !LOpts.PIE) 778 return false; 779 780 // A definition cannot be preempted from an executable. 781 if (!GV->isDeclarationForLinker()) 782 return true; 783 784 // Most PIC code sequences that assume that a symbol is local cannot produce a 785 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 786 // depended, it seems worth it to handle it here. 787 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 788 return false; 789 790 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 791 llvm::Triple::ArchType Arch = TT.getArch(); 792 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 793 Arch == llvm::Triple::ppc64le) 794 return false; 795 796 // If we can use copy relocations we can assume it is local. 797 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 798 if (!Var->isThreadLocal() && 799 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 800 return true; 801 802 // If we can use a plt entry as the symbol address we can assume it 803 // is local. 804 // FIXME: This should work for PIE, but the gold linker doesn't support it. 805 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 806 return true; 807 808 // Otherwise don't assue it is local. 809 return false; 810 } 811 812 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 813 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 814 } 815 816 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 817 GlobalDecl GD) const { 818 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 819 // C++ destructors have a few C++ ABI specific special cases. 820 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 821 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 822 return; 823 } 824 setDLLImportDLLExport(GV, D); 825 } 826 827 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 828 const NamedDecl *D) const { 829 if (D && D->isExternallyVisible()) { 830 if (D->hasAttr<DLLImportAttr>()) 831 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 832 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 833 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 834 } 835 } 836 837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 838 GlobalDecl GD) const { 839 setDLLImportDLLExport(GV, GD); 840 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 841 } 842 843 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 844 const NamedDecl *D) const { 845 setDLLImportDLLExport(GV, D); 846 setGlobalVisibilityAndLocal(GV, D); 847 } 848 849 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 850 const NamedDecl *D) const { 851 setGlobalVisibility(GV, D); 852 setDSOLocal(GV); 853 } 854 855 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 856 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 857 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 858 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 859 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 860 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 861 } 862 863 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 864 CodeGenOptions::TLSModel M) { 865 switch (M) { 866 case CodeGenOptions::GeneralDynamicTLSModel: 867 return llvm::GlobalVariable::GeneralDynamicTLSModel; 868 case CodeGenOptions::LocalDynamicTLSModel: 869 return llvm::GlobalVariable::LocalDynamicTLSModel; 870 case CodeGenOptions::InitialExecTLSModel: 871 return llvm::GlobalVariable::InitialExecTLSModel; 872 case CodeGenOptions::LocalExecTLSModel: 873 return llvm::GlobalVariable::LocalExecTLSModel; 874 } 875 llvm_unreachable("Invalid TLS model!"); 876 } 877 878 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 879 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 880 881 llvm::GlobalValue::ThreadLocalMode TLM; 882 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 883 884 // Override the TLS model if it is explicitly specified. 885 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 886 TLM = GetLLVMTLSModel(Attr->getModel()); 887 } 888 889 GV->setThreadLocalMode(TLM); 890 } 891 892 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 893 StringRef Name) { 894 const TargetInfo &Target = CGM.getTarget(); 895 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 896 } 897 898 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 899 const CPUSpecificAttr *Attr, 900 unsigned CPUIndex, 901 raw_ostream &Out) { 902 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 903 // supported. 904 if (Attr) 905 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 906 else if (CGM.getTarget().supportsIFunc()) 907 Out << ".resolver"; 908 } 909 910 static void AppendTargetMangling(const CodeGenModule &CGM, 911 const TargetAttr *Attr, raw_ostream &Out) { 912 if (Attr->isDefaultVersion()) 913 return; 914 915 Out << '.'; 916 const TargetInfo &Target = CGM.getTarget(); 917 TargetAttr::ParsedTargetAttr Info = 918 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 919 // Multiversioning doesn't allow "no-${feature}", so we can 920 // only have "+" prefixes here. 921 assert(LHS.startswith("+") && RHS.startswith("+") && 922 "Features should always have a prefix."); 923 return Target.multiVersionSortPriority(LHS.substr(1)) > 924 Target.multiVersionSortPriority(RHS.substr(1)); 925 }); 926 927 bool IsFirst = true; 928 929 if (!Info.Architecture.empty()) { 930 IsFirst = false; 931 Out << "arch_" << Info.Architecture; 932 } 933 934 for (StringRef Feat : Info.Features) { 935 if (!IsFirst) 936 Out << '_'; 937 IsFirst = false; 938 Out << Feat.substr(1); 939 } 940 } 941 942 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 943 const NamedDecl *ND, 944 bool OmitMultiVersionMangling = false) { 945 SmallString<256> Buffer; 946 llvm::raw_svector_ostream Out(Buffer); 947 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 948 if (MC.shouldMangleDeclName(ND)) { 949 llvm::raw_svector_ostream Out(Buffer); 950 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 951 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 952 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 953 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 954 else 955 MC.mangleName(ND, Out); 956 } else { 957 IdentifierInfo *II = ND->getIdentifier(); 958 assert(II && "Attempt to mangle unnamed decl."); 959 const auto *FD = dyn_cast<FunctionDecl>(ND); 960 961 if (FD && 962 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 963 llvm::raw_svector_ostream Out(Buffer); 964 Out << "__regcall3__" << II->getName(); 965 } else { 966 Out << II->getName(); 967 } 968 } 969 970 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 971 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 972 switch (FD->getMultiVersionKind()) { 973 case MultiVersionKind::CPUDispatch: 974 case MultiVersionKind::CPUSpecific: 975 AppendCPUSpecificCPUDispatchMangling(CGM, 976 FD->getAttr<CPUSpecificAttr>(), 977 GD.getMultiVersionIndex(), Out); 978 break; 979 case MultiVersionKind::Target: 980 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 981 break; 982 case MultiVersionKind::None: 983 llvm_unreachable("None multiversion type isn't valid here"); 984 } 985 } 986 987 return Out.str(); 988 } 989 990 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 991 const FunctionDecl *FD) { 992 if (!FD->isMultiVersion()) 993 return; 994 995 // Get the name of what this would be without the 'target' attribute. This 996 // allows us to lookup the version that was emitted when this wasn't a 997 // multiversion function. 998 std::string NonTargetName = 999 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1000 GlobalDecl OtherGD; 1001 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1002 assert(OtherGD.getCanonicalDecl() 1003 .getDecl() 1004 ->getAsFunction() 1005 ->isMultiVersion() && 1006 "Other GD should now be a multiversioned function"); 1007 // OtherFD is the version of this function that was mangled BEFORE 1008 // becoming a MultiVersion function. It potentially needs to be updated. 1009 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1010 .getDecl() 1011 ->getAsFunction() 1012 ->getMostRecentDecl(); 1013 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1014 // This is so that if the initial version was already the 'default' 1015 // version, we don't try to update it. 1016 if (OtherName != NonTargetName) { 1017 // Remove instead of erase, since others may have stored the StringRef 1018 // to this. 1019 const auto ExistingRecord = Manglings.find(NonTargetName); 1020 if (ExistingRecord != std::end(Manglings)) 1021 Manglings.remove(&(*ExistingRecord)); 1022 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1023 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1024 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1025 Entry->setName(OtherName); 1026 } 1027 } 1028 } 1029 1030 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1031 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1032 1033 // Some ABIs don't have constructor variants. Make sure that base and 1034 // complete constructors get mangled the same. 1035 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1036 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1037 CXXCtorType OrigCtorType = GD.getCtorType(); 1038 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1039 if (OrigCtorType == Ctor_Base) 1040 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1041 } 1042 } 1043 1044 auto FoundName = MangledDeclNames.find(CanonicalGD); 1045 if (FoundName != MangledDeclNames.end()) 1046 return FoundName->second; 1047 1048 // Keep the first result in the case of a mangling collision. 1049 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1050 auto Result = 1051 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1052 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1053 } 1054 1055 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1056 const BlockDecl *BD) { 1057 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1058 const Decl *D = GD.getDecl(); 1059 1060 SmallString<256> Buffer; 1061 llvm::raw_svector_ostream Out(Buffer); 1062 if (!D) 1063 MangleCtx.mangleGlobalBlock(BD, 1064 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1065 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1066 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1067 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1068 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1069 else 1070 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1071 1072 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1073 return Result.first->first(); 1074 } 1075 1076 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1077 return getModule().getNamedValue(Name); 1078 } 1079 1080 /// AddGlobalCtor - Add a function to the list that will be called before 1081 /// main() runs. 1082 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1083 llvm::Constant *AssociatedData) { 1084 // FIXME: Type coercion of void()* types. 1085 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1086 } 1087 1088 /// AddGlobalDtor - Add a function to the list that will be called 1089 /// when the module is unloaded. 1090 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1091 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1092 DtorsUsingAtExit[Priority].push_back(Dtor); 1093 return; 1094 } 1095 1096 // FIXME: Type coercion of void()* types. 1097 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1098 } 1099 1100 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1101 if (Fns.empty()) return; 1102 1103 // Ctor function type is void()*. 1104 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1105 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1106 TheModule.getDataLayout().getProgramAddressSpace()); 1107 1108 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1109 llvm::StructType *CtorStructTy = llvm::StructType::get( 1110 Int32Ty, CtorPFTy, VoidPtrTy); 1111 1112 // Construct the constructor and destructor arrays. 1113 ConstantInitBuilder builder(*this); 1114 auto ctors = builder.beginArray(CtorStructTy); 1115 for (const auto &I : Fns) { 1116 auto ctor = ctors.beginStruct(CtorStructTy); 1117 ctor.addInt(Int32Ty, I.Priority); 1118 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1119 if (I.AssociatedData) 1120 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1121 else 1122 ctor.addNullPointer(VoidPtrTy); 1123 ctor.finishAndAddTo(ctors); 1124 } 1125 1126 auto list = 1127 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1128 /*constant*/ false, 1129 llvm::GlobalValue::AppendingLinkage); 1130 1131 // The LTO linker doesn't seem to like it when we set an alignment 1132 // on appending variables. Take it off as a workaround. 1133 list->setAlignment(0); 1134 1135 Fns.clear(); 1136 } 1137 1138 llvm::GlobalValue::LinkageTypes 1139 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1140 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1141 1142 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1143 1144 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1145 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1146 1147 if (isa<CXXConstructorDecl>(D) && 1148 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1149 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1150 // Our approach to inheriting constructors is fundamentally different from 1151 // that used by the MS ABI, so keep our inheriting constructor thunks 1152 // internal rather than trying to pick an unambiguous mangling for them. 1153 return llvm::GlobalValue::InternalLinkage; 1154 } 1155 1156 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1157 } 1158 1159 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1160 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1161 if (!MDS) return nullptr; 1162 1163 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1164 } 1165 1166 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1167 const CGFunctionInfo &Info, 1168 llvm::Function *F) { 1169 unsigned CallingConv; 1170 llvm::AttributeList PAL; 1171 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1172 F->setAttributes(PAL); 1173 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1174 } 1175 1176 /// Determines whether the language options require us to model 1177 /// unwind exceptions. We treat -fexceptions as mandating this 1178 /// except under the fragile ObjC ABI with only ObjC exceptions 1179 /// enabled. This means, for example, that C with -fexceptions 1180 /// enables this. 1181 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1182 // If exceptions are completely disabled, obviously this is false. 1183 if (!LangOpts.Exceptions) return false; 1184 1185 // If C++ exceptions are enabled, this is true. 1186 if (LangOpts.CXXExceptions) return true; 1187 1188 // If ObjC exceptions are enabled, this depends on the ABI. 1189 if (LangOpts.ObjCExceptions) { 1190 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1191 } 1192 1193 return true; 1194 } 1195 1196 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1197 const CXXMethodDecl *MD) { 1198 // Check that the type metadata can ever actually be used by a call. 1199 if (!CGM.getCodeGenOpts().LTOUnit || 1200 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1201 return false; 1202 1203 // Only functions whose address can be taken with a member function pointer 1204 // need this sort of type metadata. 1205 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1206 !isa<CXXDestructorDecl>(MD); 1207 } 1208 1209 std::vector<const CXXRecordDecl *> 1210 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1211 llvm::SetVector<const CXXRecordDecl *> MostBases; 1212 1213 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1214 CollectMostBases = [&](const CXXRecordDecl *RD) { 1215 if (RD->getNumBases() == 0) 1216 MostBases.insert(RD); 1217 for (const CXXBaseSpecifier &B : RD->bases()) 1218 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1219 }; 1220 CollectMostBases(RD); 1221 return MostBases.takeVector(); 1222 } 1223 1224 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1225 llvm::Function *F) { 1226 llvm::AttrBuilder B; 1227 1228 if (CodeGenOpts.UnwindTables) 1229 B.addAttribute(llvm::Attribute::UWTable); 1230 1231 if (!hasUnwindExceptions(LangOpts)) 1232 B.addAttribute(llvm::Attribute::NoUnwind); 1233 1234 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1235 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1236 B.addAttribute(llvm::Attribute::StackProtect); 1237 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1238 B.addAttribute(llvm::Attribute::StackProtectStrong); 1239 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1240 B.addAttribute(llvm::Attribute::StackProtectReq); 1241 } 1242 1243 if (!D) { 1244 // If we don't have a declaration to control inlining, the function isn't 1245 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1246 // disabled, mark the function as noinline. 1247 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1248 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1249 B.addAttribute(llvm::Attribute::NoInline); 1250 1251 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1252 return; 1253 } 1254 1255 // Track whether we need to add the optnone LLVM attribute, 1256 // starting with the default for this optimization level. 1257 bool ShouldAddOptNone = 1258 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1259 // We can't add optnone in the following cases, it won't pass the verifier. 1260 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1261 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1262 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1263 1264 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1265 B.addAttribute(llvm::Attribute::OptimizeNone); 1266 1267 // OptimizeNone implies noinline; we should not be inlining such functions. 1268 B.addAttribute(llvm::Attribute::NoInline); 1269 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1270 "OptimizeNone and AlwaysInline on same function!"); 1271 1272 // We still need to handle naked functions even though optnone subsumes 1273 // much of their semantics. 1274 if (D->hasAttr<NakedAttr>()) 1275 B.addAttribute(llvm::Attribute::Naked); 1276 1277 // OptimizeNone wins over OptimizeForSize and MinSize. 1278 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1279 F->removeFnAttr(llvm::Attribute::MinSize); 1280 } else if (D->hasAttr<NakedAttr>()) { 1281 // Naked implies noinline: we should not be inlining such functions. 1282 B.addAttribute(llvm::Attribute::Naked); 1283 B.addAttribute(llvm::Attribute::NoInline); 1284 } else if (D->hasAttr<NoDuplicateAttr>()) { 1285 B.addAttribute(llvm::Attribute::NoDuplicate); 1286 } else if (D->hasAttr<NoInlineAttr>()) { 1287 B.addAttribute(llvm::Attribute::NoInline); 1288 } else if (D->hasAttr<AlwaysInlineAttr>() && 1289 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1290 // (noinline wins over always_inline, and we can't specify both in IR) 1291 B.addAttribute(llvm::Attribute::AlwaysInline); 1292 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1293 // If we're not inlining, then force everything that isn't always_inline to 1294 // carry an explicit noinline attribute. 1295 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1296 B.addAttribute(llvm::Attribute::NoInline); 1297 } else { 1298 // Otherwise, propagate the inline hint attribute and potentially use its 1299 // absence to mark things as noinline. 1300 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1301 // Search function and template pattern redeclarations for inline. 1302 auto CheckForInline = [](const FunctionDecl *FD) { 1303 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1304 return Redecl->isInlineSpecified(); 1305 }; 1306 if (any_of(FD->redecls(), CheckRedeclForInline)) 1307 return true; 1308 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1309 if (!Pattern) 1310 return false; 1311 return any_of(Pattern->redecls(), CheckRedeclForInline); 1312 }; 1313 if (CheckForInline(FD)) { 1314 B.addAttribute(llvm::Attribute::InlineHint); 1315 } else if (CodeGenOpts.getInlining() == 1316 CodeGenOptions::OnlyHintInlining && 1317 !FD->isInlined() && 1318 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1319 B.addAttribute(llvm::Attribute::NoInline); 1320 } 1321 } 1322 } 1323 1324 // Add other optimization related attributes if we are optimizing this 1325 // function. 1326 if (!D->hasAttr<OptimizeNoneAttr>()) { 1327 if (D->hasAttr<ColdAttr>()) { 1328 if (!ShouldAddOptNone) 1329 B.addAttribute(llvm::Attribute::OptimizeForSize); 1330 B.addAttribute(llvm::Attribute::Cold); 1331 } 1332 1333 if (D->hasAttr<MinSizeAttr>()) 1334 B.addAttribute(llvm::Attribute::MinSize); 1335 } 1336 1337 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1338 1339 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1340 if (alignment) 1341 F->setAlignment(alignment); 1342 1343 if (!D->hasAttr<AlignedAttr>()) 1344 if (LangOpts.FunctionAlignment) 1345 F->setAlignment(1 << LangOpts.FunctionAlignment); 1346 1347 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1348 // reserve a bit for differentiating between virtual and non-virtual member 1349 // functions. If the current target's C++ ABI requires this and this is a 1350 // member function, set its alignment accordingly. 1351 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1352 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1353 F->setAlignment(2); 1354 } 1355 1356 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1357 if (CodeGenOpts.SanitizeCfiCrossDso) 1358 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1359 CreateFunctionTypeMetadataForIcall(FD, F); 1360 1361 // Emit type metadata on member functions for member function pointer checks. 1362 // These are only ever necessary on definitions; we're guaranteed that the 1363 // definition will be present in the LTO unit as a result of LTO visibility. 1364 auto *MD = dyn_cast<CXXMethodDecl>(D); 1365 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1366 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1367 llvm::Metadata *Id = 1368 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1369 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1370 F->addTypeMetadata(0, Id); 1371 } 1372 } 1373 } 1374 1375 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1376 const Decl *D = GD.getDecl(); 1377 if (dyn_cast_or_null<NamedDecl>(D)) 1378 setGVProperties(GV, GD); 1379 else 1380 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1381 1382 if (D && D->hasAttr<UsedAttr>()) 1383 addUsedGlobal(GV); 1384 1385 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1386 const auto *VD = cast<VarDecl>(D); 1387 if (VD->getType().isConstQualified() && 1388 VD->getStorageDuration() == SD_Static) 1389 addUsedGlobal(GV); 1390 } 1391 } 1392 1393 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1394 llvm::AttrBuilder &Attrs) { 1395 // Add target-cpu and target-features attributes to functions. If 1396 // we have a decl for the function and it has a target attribute then 1397 // parse that and add it to the feature set. 1398 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1399 std::vector<std::string> Features; 1400 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1401 FD = FD ? FD->getMostRecentDecl() : FD; 1402 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1403 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1404 bool AddedAttr = false; 1405 if (TD || SD) { 1406 llvm::StringMap<bool> FeatureMap; 1407 getFunctionFeatureMap(FeatureMap, GD); 1408 1409 // Produce the canonical string for this set of features. 1410 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1411 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1412 1413 // Now add the target-cpu and target-features to the function. 1414 // While we populated the feature map above, we still need to 1415 // get and parse the target attribute so we can get the cpu for 1416 // the function. 1417 if (TD) { 1418 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1419 if (ParsedAttr.Architecture != "" && 1420 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1421 TargetCPU = ParsedAttr.Architecture; 1422 } 1423 } else { 1424 // Otherwise just add the existing target cpu and target features to the 1425 // function. 1426 Features = getTarget().getTargetOpts().Features; 1427 } 1428 1429 if (TargetCPU != "") { 1430 Attrs.addAttribute("target-cpu", TargetCPU); 1431 AddedAttr = true; 1432 } 1433 if (!Features.empty()) { 1434 llvm::sort(Features); 1435 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1436 AddedAttr = true; 1437 } 1438 1439 return AddedAttr; 1440 } 1441 1442 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1443 llvm::GlobalObject *GO) { 1444 const Decl *D = GD.getDecl(); 1445 SetCommonAttributes(GD, GO); 1446 1447 if (D) { 1448 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1449 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1450 GV->addAttribute("bss-section", SA->getName()); 1451 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1452 GV->addAttribute("data-section", SA->getName()); 1453 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1454 GV->addAttribute("rodata-section", SA->getName()); 1455 } 1456 1457 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1458 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1459 if (!D->getAttr<SectionAttr>()) 1460 F->addFnAttr("implicit-section-name", SA->getName()); 1461 1462 llvm::AttrBuilder Attrs; 1463 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1464 // We know that GetCPUAndFeaturesAttributes will always have the 1465 // newest set, since it has the newest possible FunctionDecl, so the 1466 // new ones should replace the old. 1467 F->removeFnAttr("target-cpu"); 1468 F->removeFnAttr("target-features"); 1469 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1470 } 1471 } 1472 1473 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1474 GO->setSection(CSA->getName()); 1475 else if (const auto *SA = D->getAttr<SectionAttr>()) 1476 GO->setSection(SA->getName()); 1477 } 1478 1479 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1480 } 1481 1482 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1483 llvm::Function *F, 1484 const CGFunctionInfo &FI) { 1485 const Decl *D = GD.getDecl(); 1486 SetLLVMFunctionAttributes(GD, FI, F); 1487 SetLLVMFunctionAttributesForDefinition(D, F); 1488 1489 F->setLinkage(llvm::Function::InternalLinkage); 1490 1491 setNonAliasAttributes(GD, F); 1492 } 1493 1494 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1495 // Set linkage and visibility in case we never see a definition. 1496 LinkageInfo LV = ND->getLinkageAndVisibility(); 1497 // Don't set internal linkage on declarations. 1498 // "extern_weak" is overloaded in LLVM; we probably should have 1499 // separate linkage types for this. 1500 if (isExternallyVisible(LV.getLinkage()) && 1501 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1502 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1503 } 1504 1505 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1506 llvm::Function *F) { 1507 // Only if we are checking indirect calls. 1508 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1509 return; 1510 1511 // Non-static class methods are handled via vtable or member function pointer 1512 // checks elsewhere. 1513 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1514 return; 1515 1516 // Additionally, if building with cross-DSO support... 1517 if (CodeGenOpts.SanitizeCfiCrossDso) { 1518 // Skip available_externally functions. They won't be codegen'ed in the 1519 // current module anyway. 1520 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1521 return; 1522 } 1523 1524 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1525 F->addTypeMetadata(0, MD); 1526 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1527 1528 // Emit a hash-based bit set entry for cross-DSO calls. 1529 if (CodeGenOpts.SanitizeCfiCrossDso) 1530 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1531 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1532 } 1533 1534 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1535 bool IsIncompleteFunction, 1536 bool IsThunk) { 1537 1538 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1539 // If this is an intrinsic function, set the function's attributes 1540 // to the intrinsic's attributes. 1541 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1542 return; 1543 } 1544 1545 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1546 1547 if (!IsIncompleteFunction) { 1548 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1549 // Setup target-specific attributes. 1550 if (F->isDeclaration()) 1551 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1552 } 1553 1554 // Add the Returned attribute for "this", except for iOS 5 and earlier 1555 // where substantial code, including the libstdc++ dylib, was compiled with 1556 // GCC and does not actually return "this". 1557 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1558 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1559 assert(!F->arg_empty() && 1560 F->arg_begin()->getType() 1561 ->canLosslesslyBitCastTo(F->getReturnType()) && 1562 "unexpected this return"); 1563 F->addAttribute(1, llvm::Attribute::Returned); 1564 } 1565 1566 // Only a few attributes are set on declarations; these may later be 1567 // overridden by a definition. 1568 1569 setLinkageForGV(F, FD); 1570 setGVProperties(F, FD); 1571 1572 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1573 F->setSection(CSA->getName()); 1574 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1575 F->setSection(SA->getName()); 1576 1577 if (FD->isReplaceableGlobalAllocationFunction()) { 1578 // A replaceable global allocation function does not act like a builtin by 1579 // default, only if it is invoked by a new-expression or delete-expression. 1580 F->addAttribute(llvm::AttributeList::FunctionIndex, 1581 llvm::Attribute::NoBuiltin); 1582 1583 // A sane operator new returns a non-aliasing pointer. 1584 // FIXME: Also add NonNull attribute to the return value 1585 // for the non-nothrow forms? 1586 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1587 if (getCodeGenOpts().AssumeSaneOperatorNew && 1588 (Kind == OO_New || Kind == OO_Array_New)) 1589 F->addAttribute(llvm::AttributeList::ReturnIndex, 1590 llvm::Attribute::NoAlias); 1591 } 1592 1593 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1594 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1595 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1596 if (MD->isVirtual()) 1597 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1598 1599 // Don't emit entries for function declarations in the cross-DSO mode. This 1600 // is handled with better precision by the receiving DSO. 1601 if (!CodeGenOpts.SanitizeCfiCrossDso) 1602 CreateFunctionTypeMetadataForIcall(FD, F); 1603 1604 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1605 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1606 1607 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1608 // Annotate the callback behavior as metadata: 1609 // - The callback callee (as argument number). 1610 // - The callback payloads (as argument numbers). 1611 llvm::LLVMContext &Ctx = F->getContext(); 1612 llvm::MDBuilder MDB(Ctx); 1613 1614 // The payload indices are all but the first one in the encoding. The first 1615 // identifies the callback callee. 1616 int CalleeIdx = *CB->encoding_begin(); 1617 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1618 F->addMetadata(llvm::LLVMContext::MD_callback, 1619 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1620 CalleeIdx, PayloadIndices, 1621 /* VarArgsArePassed */ false)})); 1622 } 1623 } 1624 1625 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1626 assert(!GV->isDeclaration() && 1627 "Only globals with definition can force usage."); 1628 LLVMUsed.emplace_back(GV); 1629 } 1630 1631 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1632 assert(!GV->isDeclaration() && 1633 "Only globals with definition can force usage."); 1634 LLVMCompilerUsed.emplace_back(GV); 1635 } 1636 1637 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1638 std::vector<llvm::WeakTrackingVH> &List) { 1639 // Don't create llvm.used if there is no need. 1640 if (List.empty()) 1641 return; 1642 1643 // Convert List to what ConstantArray needs. 1644 SmallVector<llvm::Constant*, 8> UsedArray; 1645 UsedArray.resize(List.size()); 1646 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1647 UsedArray[i] = 1648 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1649 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1650 } 1651 1652 if (UsedArray.empty()) 1653 return; 1654 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1655 1656 auto *GV = new llvm::GlobalVariable( 1657 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1658 llvm::ConstantArray::get(ATy, UsedArray), Name); 1659 1660 GV->setSection("llvm.metadata"); 1661 } 1662 1663 void CodeGenModule::emitLLVMUsed() { 1664 emitUsed(*this, "llvm.used", LLVMUsed); 1665 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1666 } 1667 1668 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1669 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1670 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1671 } 1672 1673 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1674 llvm::SmallString<32> Opt; 1675 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1676 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1677 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1678 } 1679 1680 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1681 auto &C = getLLVMContext(); 1682 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1683 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1684 } 1685 1686 void CodeGenModule::AddDependentLib(StringRef Lib) { 1687 llvm::SmallString<24> Opt; 1688 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1689 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1690 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1691 } 1692 1693 /// Add link options implied by the given module, including modules 1694 /// it depends on, using a postorder walk. 1695 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1696 SmallVectorImpl<llvm::MDNode *> &Metadata, 1697 llvm::SmallPtrSet<Module *, 16> &Visited) { 1698 // Import this module's parent. 1699 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1700 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1701 } 1702 1703 // Import this module's dependencies. 1704 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1705 if (Visited.insert(Mod->Imports[I - 1]).second) 1706 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1707 } 1708 1709 // Add linker options to link against the libraries/frameworks 1710 // described by this module. 1711 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1712 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1713 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1714 1715 // For modules that use export_as for linking, use that module 1716 // name instead. 1717 if (Mod->UseExportAsModuleLinkName) 1718 return; 1719 1720 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1721 // Link against a framework. Frameworks are currently Darwin only, so we 1722 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1723 if (Mod->LinkLibraries[I-1].IsFramework) { 1724 llvm::Metadata *Args[2] = { 1725 llvm::MDString::get(Context, "-framework"), 1726 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1727 1728 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1729 continue; 1730 } 1731 1732 // Link against a library. 1733 if (IsELF && !IsPS4) { 1734 llvm::Metadata *Args[2] = { 1735 llvm::MDString::get(Context, "lib"), 1736 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1737 }; 1738 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1739 } else { 1740 llvm::SmallString<24> Opt; 1741 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1742 Mod->LinkLibraries[I - 1].Library, Opt); 1743 auto *OptString = llvm::MDString::get(Context, Opt); 1744 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1745 } 1746 } 1747 } 1748 1749 void CodeGenModule::EmitModuleLinkOptions() { 1750 // Collect the set of all of the modules we want to visit to emit link 1751 // options, which is essentially the imported modules and all of their 1752 // non-explicit child modules. 1753 llvm::SetVector<clang::Module *> LinkModules; 1754 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1755 SmallVector<clang::Module *, 16> Stack; 1756 1757 // Seed the stack with imported modules. 1758 for (Module *M : ImportedModules) { 1759 // Do not add any link flags when an implementation TU of a module imports 1760 // a header of that same module. 1761 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1762 !getLangOpts().isCompilingModule()) 1763 continue; 1764 if (Visited.insert(M).second) 1765 Stack.push_back(M); 1766 } 1767 1768 // Find all of the modules to import, making a little effort to prune 1769 // non-leaf modules. 1770 while (!Stack.empty()) { 1771 clang::Module *Mod = Stack.pop_back_val(); 1772 1773 bool AnyChildren = false; 1774 1775 // Visit the submodules of this module. 1776 for (const auto &SM : Mod->submodules()) { 1777 // Skip explicit children; they need to be explicitly imported to be 1778 // linked against. 1779 if (SM->IsExplicit) 1780 continue; 1781 1782 if (Visited.insert(SM).second) { 1783 Stack.push_back(SM); 1784 AnyChildren = true; 1785 } 1786 } 1787 1788 // We didn't find any children, so add this module to the list of 1789 // modules to link against. 1790 if (!AnyChildren) { 1791 LinkModules.insert(Mod); 1792 } 1793 } 1794 1795 // Add link options for all of the imported modules in reverse topological 1796 // order. We don't do anything to try to order import link flags with respect 1797 // to linker options inserted by things like #pragma comment(). 1798 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1799 Visited.clear(); 1800 for (Module *M : LinkModules) 1801 if (Visited.insert(M).second) 1802 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1803 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1804 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1805 1806 // Add the linker options metadata flag. 1807 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1808 for (auto *MD : LinkerOptionsMetadata) 1809 NMD->addOperand(MD); 1810 } 1811 1812 void CodeGenModule::EmitDeferred() { 1813 // Emit deferred declare target declarations. 1814 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1815 getOpenMPRuntime().emitDeferredTargetDecls(); 1816 1817 // Emit code for any potentially referenced deferred decls. Since a 1818 // previously unused static decl may become used during the generation of code 1819 // for a static function, iterate until no changes are made. 1820 1821 if (!DeferredVTables.empty()) { 1822 EmitDeferredVTables(); 1823 1824 // Emitting a vtable doesn't directly cause more vtables to 1825 // become deferred, although it can cause functions to be 1826 // emitted that then need those vtables. 1827 assert(DeferredVTables.empty()); 1828 } 1829 1830 // Stop if we're out of both deferred vtables and deferred declarations. 1831 if (DeferredDeclsToEmit.empty()) 1832 return; 1833 1834 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1835 // work, it will not interfere with this. 1836 std::vector<GlobalDecl> CurDeclsToEmit; 1837 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1838 1839 for (GlobalDecl &D : CurDeclsToEmit) { 1840 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1841 // to get GlobalValue with exactly the type we need, not something that 1842 // might had been created for another decl with the same mangled name but 1843 // different type. 1844 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1845 GetAddrOfGlobal(D, ForDefinition)); 1846 1847 // In case of different address spaces, we may still get a cast, even with 1848 // IsForDefinition equal to true. Query mangled names table to get 1849 // GlobalValue. 1850 if (!GV) 1851 GV = GetGlobalValue(getMangledName(D)); 1852 1853 // Make sure GetGlobalValue returned non-null. 1854 assert(GV); 1855 1856 // Check to see if we've already emitted this. This is necessary 1857 // for a couple of reasons: first, decls can end up in the 1858 // deferred-decls queue multiple times, and second, decls can end 1859 // up with definitions in unusual ways (e.g. by an extern inline 1860 // function acquiring a strong function redefinition). Just 1861 // ignore these cases. 1862 if (!GV->isDeclaration()) 1863 continue; 1864 1865 // Otherwise, emit the definition and move on to the next one. 1866 EmitGlobalDefinition(D, GV); 1867 1868 // If we found out that we need to emit more decls, do that recursively. 1869 // This has the advantage that the decls are emitted in a DFS and related 1870 // ones are close together, which is convenient for testing. 1871 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1872 EmitDeferred(); 1873 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1874 } 1875 } 1876 } 1877 1878 void CodeGenModule::EmitVTablesOpportunistically() { 1879 // Try to emit external vtables as available_externally if they have emitted 1880 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1881 // is not allowed to create new references to things that need to be emitted 1882 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1883 1884 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1885 && "Only emit opportunistic vtables with optimizations"); 1886 1887 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1888 assert(getVTables().isVTableExternal(RD) && 1889 "This queue should only contain external vtables"); 1890 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1891 VTables.GenerateClassData(RD); 1892 } 1893 OpportunisticVTables.clear(); 1894 } 1895 1896 void CodeGenModule::EmitGlobalAnnotations() { 1897 if (Annotations.empty()) 1898 return; 1899 1900 // Create a new global variable for the ConstantStruct in the Module. 1901 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1902 Annotations[0]->getType(), Annotations.size()), Annotations); 1903 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1904 llvm::GlobalValue::AppendingLinkage, 1905 Array, "llvm.global.annotations"); 1906 gv->setSection(AnnotationSection); 1907 } 1908 1909 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1910 llvm::Constant *&AStr = AnnotationStrings[Str]; 1911 if (AStr) 1912 return AStr; 1913 1914 // Not found yet, create a new global. 1915 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1916 auto *gv = 1917 new llvm::GlobalVariable(getModule(), s->getType(), true, 1918 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1919 gv->setSection(AnnotationSection); 1920 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1921 AStr = gv; 1922 return gv; 1923 } 1924 1925 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1926 SourceManager &SM = getContext().getSourceManager(); 1927 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1928 if (PLoc.isValid()) 1929 return EmitAnnotationString(PLoc.getFilename()); 1930 return EmitAnnotationString(SM.getBufferName(Loc)); 1931 } 1932 1933 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1934 SourceManager &SM = getContext().getSourceManager(); 1935 PresumedLoc PLoc = SM.getPresumedLoc(L); 1936 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1937 SM.getExpansionLineNumber(L); 1938 return llvm::ConstantInt::get(Int32Ty, LineNo); 1939 } 1940 1941 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1942 const AnnotateAttr *AA, 1943 SourceLocation L) { 1944 // Get the globals for file name, annotation, and the line number. 1945 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1946 *UnitGV = EmitAnnotationUnit(L), 1947 *LineNoCst = EmitAnnotationLineNo(L); 1948 1949 // Create the ConstantStruct for the global annotation. 1950 llvm::Constant *Fields[4] = { 1951 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1952 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1953 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1954 LineNoCst 1955 }; 1956 return llvm::ConstantStruct::getAnon(Fields); 1957 } 1958 1959 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1960 llvm::GlobalValue *GV) { 1961 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1962 // Get the struct elements for these annotations. 1963 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1964 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1965 } 1966 1967 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1968 llvm::Function *Fn, 1969 SourceLocation Loc) const { 1970 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1971 // Blacklist by function name. 1972 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1973 return true; 1974 // Blacklist by location. 1975 if (Loc.isValid()) 1976 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1977 // If location is unknown, this may be a compiler-generated function. Assume 1978 // it's located in the main file. 1979 auto &SM = Context.getSourceManager(); 1980 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1981 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1982 } 1983 return false; 1984 } 1985 1986 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1987 SourceLocation Loc, QualType Ty, 1988 StringRef Category) const { 1989 // For now globals can be blacklisted only in ASan and KASan. 1990 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1991 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1992 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1993 if (!EnabledAsanMask) 1994 return false; 1995 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1996 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1997 return true; 1998 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1999 return true; 2000 // Check global type. 2001 if (!Ty.isNull()) { 2002 // Drill down the array types: if global variable of a fixed type is 2003 // blacklisted, we also don't instrument arrays of them. 2004 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2005 Ty = AT->getElementType(); 2006 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2007 // We allow to blacklist only record types (classes, structs etc.) 2008 if (Ty->isRecordType()) { 2009 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2010 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2011 return true; 2012 } 2013 } 2014 return false; 2015 } 2016 2017 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2018 StringRef Category) const { 2019 const auto &XRayFilter = getContext().getXRayFilter(); 2020 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2021 auto Attr = ImbueAttr::NONE; 2022 if (Loc.isValid()) 2023 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2024 if (Attr == ImbueAttr::NONE) 2025 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2026 switch (Attr) { 2027 case ImbueAttr::NONE: 2028 return false; 2029 case ImbueAttr::ALWAYS: 2030 Fn->addFnAttr("function-instrument", "xray-always"); 2031 break; 2032 case ImbueAttr::ALWAYS_ARG1: 2033 Fn->addFnAttr("function-instrument", "xray-always"); 2034 Fn->addFnAttr("xray-log-args", "1"); 2035 break; 2036 case ImbueAttr::NEVER: 2037 Fn->addFnAttr("function-instrument", "xray-never"); 2038 break; 2039 } 2040 return true; 2041 } 2042 2043 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2044 // Never defer when EmitAllDecls is specified. 2045 if (LangOpts.EmitAllDecls) 2046 return true; 2047 2048 if (CodeGenOpts.KeepStaticConsts) { 2049 const auto *VD = dyn_cast<VarDecl>(Global); 2050 if (VD && VD->getType().isConstQualified() && 2051 VD->getStorageDuration() == SD_Static) 2052 return true; 2053 } 2054 2055 return getContext().DeclMustBeEmitted(Global); 2056 } 2057 2058 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2059 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2060 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2061 // Implicit template instantiations may change linkage if they are later 2062 // explicitly instantiated, so they should not be emitted eagerly. 2063 return false; 2064 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2065 if (Context.getInlineVariableDefinitionKind(VD) == 2066 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2067 // A definition of an inline constexpr static data member may change 2068 // linkage later if it's redeclared outside the class. 2069 return false; 2070 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2071 // codegen for global variables, because they may be marked as threadprivate. 2072 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2073 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2074 !isTypeConstant(Global->getType(), false) && 2075 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2076 return false; 2077 2078 return true; 2079 } 2080 2081 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2082 const CXXUuidofExpr* E) { 2083 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2084 // well-formed. 2085 StringRef Uuid = E->getUuidStr(); 2086 std::string Name = "_GUID_" + Uuid.lower(); 2087 std::replace(Name.begin(), Name.end(), '-', '_'); 2088 2089 // The UUID descriptor should be pointer aligned. 2090 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2091 2092 // Look for an existing global. 2093 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2094 return ConstantAddress(GV, Alignment); 2095 2096 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2097 assert(Init && "failed to initialize as constant"); 2098 2099 auto *GV = new llvm::GlobalVariable( 2100 getModule(), Init->getType(), 2101 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2102 if (supportsCOMDAT()) 2103 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2104 setDSOLocal(GV); 2105 return ConstantAddress(GV, Alignment); 2106 } 2107 2108 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2109 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2110 assert(AA && "No alias?"); 2111 2112 CharUnits Alignment = getContext().getDeclAlign(VD); 2113 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2114 2115 // See if there is already something with the target's name in the module. 2116 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2117 if (Entry) { 2118 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2119 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2120 return ConstantAddress(Ptr, Alignment); 2121 } 2122 2123 llvm::Constant *Aliasee; 2124 if (isa<llvm::FunctionType>(DeclTy)) 2125 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2126 GlobalDecl(cast<FunctionDecl>(VD)), 2127 /*ForVTable=*/false); 2128 else 2129 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2130 llvm::PointerType::getUnqual(DeclTy), 2131 nullptr); 2132 2133 auto *F = cast<llvm::GlobalValue>(Aliasee); 2134 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2135 WeakRefReferences.insert(F); 2136 2137 return ConstantAddress(Aliasee, Alignment); 2138 } 2139 2140 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2141 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2142 2143 // Weak references don't produce any output by themselves. 2144 if (Global->hasAttr<WeakRefAttr>()) 2145 return; 2146 2147 // If this is an alias definition (which otherwise looks like a declaration) 2148 // emit it now. 2149 if (Global->hasAttr<AliasAttr>()) 2150 return EmitAliasDefinition(GD); 2151 2152 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2153 if (Global->hasAttr<IFuncAttr>()) 2154 return emitIFuncDefinition(GD); 2155 2156 // If this is a cpu_dispatch multiversion function, emit the resolver. 2157 if (Global->hasAttr<CPUDispatchAttr>()) 2158 return emitCPUDispatchDefinition(GD); 2159 2160 // If this is CUDA, be selective about which declarations we emit. 2161 if (LangOpts.CUDA) { 2162 if (LangOpts.CUDAIsDevice) { 2163 if (!Global->hasAttr<CUDADeviceAttr>() && 2164 !Global->hasAttr<CUDAGlobalAttr>() && 2165 !Global->hasAttr<CUDAConstantAttr>() && 2166 !Global->hasAttr<CUDASharedAttr>()) 2167 return; 2168 } else { 2169 // We need to emit host-side 'shadows' for all global 2170 // device-side variables because the CUDA runtime needs their 2171 // size and host-side address in order to provide access to 2172 // their device-side incarnations. 2173 2174 // So device-only functions are the only things we skip. 2175 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2176 Global->hasAttr<CUDADeviceAttr>()) 2177 return; 2178 2179 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2180 "Expected Variable or Function"); 2181 } 2182 } 2183 2184 if (LangOpts.OpenMP) { 2185 // If this is OpenMP device, check if it is legal to emit this global 2186 // normally. 2187 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2188 return; 2189 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2190 if (MustBeEmitted(Global)) 2191 EmitOMPDeclareReduction(DRD); 2192 return; 2193 } 2194 } 2195 2196 // Ignore declarations, they will be emitted on their first use. 2197 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2198 // Forward declarations are emitted lazily on first use. 2199 if (!FD->doesThisDeclarationHaveABody()) { 2200 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2201 return; 2202 2203 StringRef MangledName = getMangledName(GD); 2204 2205 // Compute the function info and LLVM type. 2206 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2207 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2208 2209 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2210 /*DontDefer=*/false); 2211 return; 2212 } 2213 } else { 2214 const auto *VD = cast<VarDecl>(Global); 2215 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2216 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2217 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2218 if (LangOpts.OpenMP) { 2219 // Emit declaration of the must-be-emitted declare target variable. 2220 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2221 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2222 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2223 (void)GetAddrOfGlobalVar(VD); 2224 } else { 2225 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2226 "link claue expected."); 2227 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2228 } 2229 return; 2230 } 2231 } 2232 // If this declaration may have caused an inline variable definition to 2233 // change linkage, make sure that it's emitted. 2234 if (Context.getInlineVariableDefinitionKind(VD) == 2235 ASTContext::InlineVariableDefinitionKind::Strong) 2236 GetAddrOfGlobalVar(VD); 2237 return; 2238 } 2239 } 2240 2241 // Defer code generation to first use when possible, e.g. if this is an inline 2242 // function. If the global must always be emitted, do it eagerly if possible 2243 // to benefit from cache locality. 2244 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2245 // Emit the definition if it can't be deferred. 2246 EmitGlobalDefinition(GD); 2247 return; 2248 } 2249 2250 // If we're deferring emission of a C++ variable with an 2251 // initializer, remember the order in which it appeared in the file. 2252 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2253 cast<VarDecl>(Global)->hasInit()) { 2254 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2255 CXXGlobalInits.push_back(nullptr); 2256 } 2257 2258 StringRef MangledName = getMangledName(GD); 2259 if (GetGlobalValue(MangledName) != nullptr) { 2260 // The value has already been used and should therefore be emitted. 2261 addDeferredDeclToEmit(GD); 2262 } else if (MustBeEmitted(Global)) { 2263 // The value must be emitted, but cannot be emitted eagerly. 2264 assert(!MayBeEmittedEagerly(Global)); 2265 addDeferredDeclToEmit(GD); 2266 } else { 2267 // Otherwise, remember that we saw a deferred decl with this name. The 2268 // first use of the mangled name will cause it to move into 2269 // DeferredDeclsToEmit. 2270 DeferredDecls[MangledName] = GD; 2271 } 2272 } 2273 2274 // Check if T is a class type with a destructor that's not dllimport. 2275 static bool HasNonDllImportDtor(QualType T) { 2276 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2277 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2278 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2279 return true; 2280 2281 return false; 2282 } 2283 2284 namespace { 2285 struct FunctionIsDirectlyRecursive 2286 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2287 const StringRef Name; 2288 const Builtin::Context &BI; 2289 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2290 : Name(N), BI(C) {} 2291 2292 bool VisitCallExpr(const CallExpr *E) { 2293 const FunctionDecl *FD = E->getDirectCallee(); 2294 if (!FD) 2295 return false; 2296 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2297 if (Attr && Name == Attr->getLabel()) 2298 return true; 2299 unsigned BuiltinID = FD->getBuiltinID(); 2300 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2301 return false; 2302 StringRef BuiltinName = BI.getName(BuiltinID); 2303 if (BuiltinName.startswith("__builtin_") && 2304 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2305 return true; 2306 } 2307 return false; 2308 } 2309 2310 bool VisitStmt(const Stmt *S) { 2311 for (const Stmt *Child : S->children()) 2312 if (Child && this->Visit(Child)) 2313 return true; 2314 return false; 2315 } 2316 }; 2317 2318 // Make sure we're not referencing non-imported vars or functions. 2319 struct DLLImportFunctionVisitor 2320 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2321 bool SafeToInline = true; 2322 2323 bool shouldVisitImplicitCode() const { return true; } 2324 2325 bool VisitVarDecl(VarDecl *VD) { 2326 if (VD->getTLSKind()) { 2327 // A thread-local variable cannot be imported. 2328 SafeToInline = false; 2329 return SafeToInline; 2330 } 2331 2332 // A variable definition might imply a destructor call. 2333 if (VD->isThisDeclarationADefinition()) 2334 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2335 2336 return SafeToInline; 2337 } 2338 2339 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2340 if (const auto *D = E->getTemporary()->getDestructor()) 2341 SafeToInline = D->hasAttr<DLLImportAttr>(); 2342 return SafeToInline; 2343 } 2344 2345 bool VisitDeclRefExpr(DeclRefExpr *E) { 2346 ValueDecl *VD = E->getDecl(); 2347 if (isa<FunctionDecl>(VD)) 2348 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2349 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2350 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2351 return SafeToInline; 2352 } 2353 2354 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2355 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2356 return SafeToInline; 2357 } 2358 2359 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2360 CXXMethodDecl *M = E->getMethodDecl(); 2361 if (!M) { 2362 // Call through a pointer to member function. This is safe to inline. 2363 SafeToInline = true; 2364 } else { 2365 SafeToInline = M->hasAttr<DLLImportAttr>(); 2366 } 2367 return SafeToInline; 2368 } 2369 2370 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2371 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2372 return SafeToInline; 2373 } 2374 2375 bool VisitCXXNewExpr(CXXNewExpr *E) { 2376 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2377 return SafeToInline; 2378 } 2379 }; 2380 } 2381 2382 // isTriviallyRecursive - Check if this function calls another 2383 // decl that, because of the asm attribute or the other decl being a builtin, 2384 // ends up pointing to itself. 2385 bool 2386 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2387 StringRef Name; 2388 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2389 // asm labels are a special kind of mangling we have to support. 2390 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2391 if (!Attr) 2392 return false; 2393 Name = Attr->getLabel(); 2394 } else { 2395 Name = FD->getName(); 2396 } 2397 2398 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2399 const Stmt *Body = FD->getBody(); 2400 return Body ? Walker.Visit(Body) : false; 2401 } 2402 2403 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2404 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2405 return true; 2406 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2407 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2408 return false; 2409 2410 if (F->hasAttr<DLLImportAttr>()) { 2411 // Check whether it would be safe to inline this dllimport function. 2412 DLLImportFunctionVisitor Visitor; 2413 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2414 if (!Visitor.SafeToInline) 2415 return false; 2416 2417 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2418 // Implicit destructor invocations aren't captured in the AST, so the 2419 // check above can't see them. Check for them manually here. 2420 for (const Decl *Member : Dtor->getParent()->decls()) 2421 if (isa<FieldDecl>(Member)) 2422 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2423 return false; 2424 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2425 if (HasNonDllImportDtor(B.getType())) 2426 return false; 2427 } 2428 } 2429 2430 // PR9614. Avoid cases where the source code is lying to us. An available 2431 // externally function should have an equivalent function somewhere else, 2432 // but a function that calls itself is clearly not equivalent to the real 2433 // implementation. 2434 // This happens in glibc's btowc and in some configure checks. 2435 return !isTriviallyRecursive(F); 2436 } 2437 2438 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2439 return CodeGenOpts.OptimizationLevel > 0; 2440 } 2441 2442 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2443 llvm::GlobalValue *GV) { 2444 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2445 2446 if (FD->isCPUSpecificMultiVersion()) { 2447 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2448 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2449 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2450 // Requires multiple emits. 2451 } else 2452 EmitGlobalFunctionDefinition(GD, GV); 2453 } 2454 2455 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2456 const auto *D = cast<ValueDecl>(GD.getDecl()); 2457 2458 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2459 Context.getSourceManager(), 2460 "Generating code for declaration"); 2461 2462 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2463 // At -O0, don't generate IR for functions with available_externally 2464 // linkage. 2465 if (!shouldEmitFunction(GD)) 2466 return; 2467 2468 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2469 // Make sure to emit the definition(s) before we emit the thunks. 2470 // This is necessary for the generation of certain thunks. 2471 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2472 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2473 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2474 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2475 else if (FD->isMultiVersion()) 2476 EmitMultiVersionFunctionDefinition(GD, GV); 2477 else 2478 EmitGlobalFunctionDefinition(GD, GV); 2479 2480 if (Method->isVirtual()) 2481 getVTables().EmitThunks(GD); 2482 2483 return; 2484 } 2485 2486 if (FD->isMultiVersion()) 2487 return EmitMultiVersionFunctionDefinition(GD, GV); 2488 return EmitGlobalFunctionDefinition(GD, GV); 2489 } 2490 2491 if (const auto *VD = dyn_cast<VarDecl>(D)) 2492 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2493 2494 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2495 } 2496 2497 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2498 llvm::Function *NewFn); 2499 2500 static unsigned 2501 TargetMVPriority(const TargetInfo &TI, 2502 const CodeGenFunction::MultiVersionResolverOption &RO) { 2503 unsigned Priority = 0; 2504 for (StringRef Feat : RO.Conditions.Features) 2505 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2506 2507 if (!RO.Conditions.Architecture.empty()) 2508 Priority = std::max( 2509 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2510 return Priority; 2511 } 2512 2513 void CodeGenModule::emitMultiVersionFunctions() { 2514 for (GlobalDecl GD : MultiVersionFuncs) { 2515 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2517 getContext().forEachMultiversionedFunctionVersion( 2518 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2519 GlobalDecl CurGD{ 2520 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2521 StringRef MangledName = getMangledName(CurGD); 2522 llvm::Constant *Func = GetGlobalValue(MangledName); 2523 if (!Func) { 2524 if (CurFD->isDefined()) { 2525 EmitGlobalFunctionDefinition(CurGD, nullptr); 2526 Func = GetGlobalValue(MangledName); 2527 } else { 2528 const CGFunctionInfo &FI = 2529 getTypes().arrangeGlobalDeclaration(GD); 2530 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2531 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2532 /*DontDefer=*/false, ForDefinition); 2533 } 2534 assert(Func && "This should have just been created"); 2535 } 2536 2537 const auto *TA = CurFD->getAttr<TargetAttr>(); 2538 llvm::SmallVector<StringRef, 8> Feats; 2539 TA->getAddedFeatures(Feats); 2540 2541 Options.emplace_back(cast<llvm::Function>(Func), 2542 TA->getArchitecture(), Feats); 2543 }); 2544 2545 llvm::Function *ResolverFunc; 2546 const TargetInfo &TI = getTarget(); 2547 2548 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2549 ResolverFunc = cast<llvm::Function>( 2550 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2551 else 2552 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2553 2554 if (supportsCOMDAT()) 2555 ResolverFunc->setComdat( 2556 getModule().getOrInsertComdat(ResolverFunc->getName())); 2557 2558 std::stable_sort( 2559 Options.begin(), Options.end(), 2560 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2561 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2562 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2563 }); 2564 CodeGenFunction CGF(*this); 2565 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2566 } 2567 } 2568 2569 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2570 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2571 assert(FD && "Not a FunctionDecl?"); 2572 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2573 assert(DD && "Not a cpu_dispatch Function?"); 2574 QualType CanonTy = Context.getCanonicalType(FD->getType()); 2575 llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD); 2576 2577 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2578 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2579 DeclTy = getTypes().GetFunctionType(FInfo); 2580 } 2581 2582 StringRef ResolverName = getMangledName(GD); 2583 2584 llvm::Type *ResolverType; 2585 GlobalDecl ResolverGD; 2586 if (getTarget().supportsIFunc()) 2587 ResolverType = llvm::FunctionType::get( 2588 llvm::PointerType::get(DeclTy, 2589 Context.getTargetAddressSpace(FD->getType())), 2590 false); 2591 else { 2592 ResolverType = DeclTy; 2593 ResolverGD = GD; 2594 } 2595 2596 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2597 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2598 2599 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2600 const TargetInfo &Target = getTarget(); 2601 unsigned Index = 0; 2602 for (const IdentifierInfo *II : DD->cpus()) { 2603 // Get the name of the target function so we can look it up/create it. 2604 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2605 getCPUSpecificMangling(*this, II->getName()); 2606 2607 llvm::Constant *Func = GetGlobalValue(MangledName); 2608 2609 if (!Func) { 2610 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2611 if (ExistingDecl.getDecl() && 2612 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2613 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2614 Func = GetGlobalValue(MangledName); 2615 } else { 2616 if (!ExistingDecl.getDecl()) 2617 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2618 2619 Func = GetOrCreateLLVMFunction( 2620 MangledName, DeclTy, ExistingDecl, 2621 /*ForVTable=*/false, /*DontDefer=*/true, 2622 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2623 } 2624 } 2625 2626 llvm::SmallVector<StringRef, 32> Features; 2627 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2628 llvm::transform(Features, Features.begin(), 2629 [](StringRef Str) { return Str.substr(1); }); 2630 Features.erase(std::remove_if( 2631 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2632 return !Target.validateCpuSupports(Feat); 2633 }), Features.end()); 2634 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2635 ++Index; 2636 } 2637 2638 llvm::sort( 2639 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2640 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2641 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2642 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2643 }); 2644 2645 // If the list contains multiple 'default' versions, such as when it contains 2646 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2647 // always run on at least a 'pentium'). We do this by deleting the 'least 2648 // advanced' (read, lowest mangling letter). 2649 while (Options.size() > 1 && 2650 CodeGenFunction::GetX86CpuSupportsMask( 2651 (Options.end() - 2)->Conditions.Features) == 0) { 2652 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2653 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2654 if (LHSName.compare(RHSName) < 0) 2655 Options.erase(Options.end() - 2); 2656 else 2657 Options.erase(Options.end() - 1); 2658 } 2659 2660 CodeGenFunction CGF(*this); 2661 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2662 } 2663 2664 /// If a dispatcher for the specified mangled name is not in the module, create 2665 /// and return an llvm Function with the specified type. 2666 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2667 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2668 std::string MangledName = 2669 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2670 2671 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2672 // a separate resolver). 2673 std::string ResolverName = MangledName; 2674 if (getTarget().supportsIFunc()) 2675 ResolverName += ".ifunc"; 2676 else if (FD->isTargetMultiVersion()) 2677 ResolverName += ".resolver"; 2678 2679 // If this already exists, just return that one. 2680 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2681 return ResolverGV; 2682 2683 // Since this is the first time we've created this IFunc, make sure 2684 // that we put this multiversioned function into the list to be 2685 // replaced later if necessary (target multiversioning only). 2686 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2687 MultiVersionFuncs.push_back(GD); 2688 2689 if (getTarget().supportsIFunc()) { 2690 llvm::Type *ResolverType = llvm::FunctionType::get( 2691 llvm::PointerType::get( 2692 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2693 false); 2694 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2695 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2696 /*ForVTable=*/false); 2697 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2698 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2699 GIF->setName(ResolverName); 2700 SetCommonAttributes(FD, GIF); 2701 2702 return GIF; 2703 } 2704 2705 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2706 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2707 assert(isa<llvm::GlobalValue>(Resolver) && 2708 "Resolver should be created for the first time"); 2709 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2710 return Resolver; 2711 } 2712 2713 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2714 /// module, create and return an llvm Function with the specified type. If there 2715 /// is something in the module with the specified name, return it potentially 2716 /// bitcasted to the right type. 2717 /// 2718 /// If D is non-null, it specifies a decl that correspond to this. This is used 2719 /// to set the attributes on the function when it is first created. 2720 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2721 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2722 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2723 ForDefinition_t IsForDefinition) { 2724 const Decl *D = GD.getDecl(); 2725 2726 // Any attempts to use a MultiVersion function should result in retrieving 2727 // the iFunc instead. Name Mangling will handle the rest of the changes. 2728 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2729 // For the device mark the function as one that should be emitted. 2730 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2731 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2732 !DontDefer && !IsForDefinition) { 2733 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2734 GlobalDecl GDDef; 2735 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2736 GDDef = GlobalDecl(CD, GD.getCtorType()); 2737 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2738 GDDef = GlobalDecl(DD, GD.getDtorType()); 2739 else 2740 GDDef = GlobalDecl(FDDef); 2741 EmitGlobal(GDDef); 2742 } 2743 } 2744 2745 if (FD->isMultiVersion()) { 2746 const auto *TA = FD->getAttr<TargetAttr>(); 2747 if (TA && TA->isDefaultVersion()) 2748 UpdateMultiVersionNames(GD, FD); 2749 if (!IsForDefinition) 2750 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2751 } 2752 } 2753 2754 // Lookup the entry, lazily creating it if necessary. 2755 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2756 if (Entry) { 2757 if (WeakRefReferences.erase(Entry)) { 2758 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2759 if (FD && !FD->hasAttr<WeakAttr>()) 2760 Entry->setLinkage(llvm::Function::ExternalLinkage); 2761 } 2762 2763 // Handle dropped DLL attributes. 2764 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2765 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2766 setDSOLocal(Entry); 2767 } 2768 2769 // If there are two attempts to define the same mangled name, issue an 2770 // error. 2771 if (IsForDefinition && !Entry->isDeclaration()) { 2772 GlobalDecl OtherGD; 2773 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2774 // to make sure that we issue an error only once. 2775 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2776 (GD.getCanonicalDecl().getDecl() != 2777 OtherGD.getCanonicalDecl().getDecl()) && 2778 DiagnosedConflictingDefinitions.insert(GD).second) { 2779 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2780 << MangledName; 2781 getDiags().Report(OtherGD.getDecl()->getLocation(), 2782 diag::note_previous_definition); 2783 } 2784 } 2785 2786 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2787 (Entry->getType()->getElementType() == Ty)) { 2788 return Entry; 2789 } 2790 2791 // Make sure the result is of the correct type. 2792 // (If function is requested for a definition, we always need to create a new 2793 // function, not just return a bitcast.) 2794 if (!IsForDefinition) 2795 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2796 } 2797 2798 // This function doesn't have a complete type (for example, the return 2799 // type is an incomplete struct). Use a fake type instead, and make 2800 // sure not to try to set attributes. 2801 bool IsIncompleteFunction = false; 2802 2803 llvm::FunctionType *FTy; 2804 if (isa<llvm::FunctionType>(Ty)) { 2805 FTy = cast<llvm::FunctionType>(Ty); 2806 } else { 2807 FTy = llvm::FunctionType::get(VoidTy, false); 2808 IsIncompleteFunction = true; 2809 } 2810 2811 llvm::Function *F = 2812 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2813 Entry ? StringRef() : MangledName, &getModule()); 2814 2815 // If we already created a function with the same mangled name (but different 2816 // type) before, take its name and add it to the list of functions to be 2817 // replaced with F at the end of CodeGen. 2818 // 2819 // This happens if there is a prototype for a function (e.g. "int f()") and 2820 // then a definition of a different type (e.g. "int f(int x)"). 2821 if (Entry) { 2822 F->takeName(Entry); 2823 2824 // This might be an implementation of a function without a prototype, in 2825 // which case, try to do special replacement of calls which match the new 2826 // prototype. The really key thing here is that we also potentially drop 2827 // arguments from the call site so as to make a direct call, which makes the 2828 // inliner happier and suppresses a number of optimizer warnings (!) about 2829 // dropping arguments. 2830 if (!Entry->use_empty()) { 2831 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2832 Entry->removeDeadConstantUsers(); 2833 } 2834 2835 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2836 F, Entry->getType()->getElementType()->getPointerTo()); 2837 addGlobalValReplacement(Entry, BC); 2838 } 2839 2840 assert(F->getName() == MangledName && "name was uniqued!"); 2841 if (D) 2842 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2843 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2844 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2845 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2846 } 2847 2848 if (!DontDefer) { 2849 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2850 // each other bottoming out with the base dtor. Therefore we emit non-base 2851 // dtors on usage, even if there is no dtor definition in the TU. 2852 if (D && isa<CXXDestructorDecl>(D) && 2853 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2854 GD.getDtorType())) 2855 addDeferredDeclToEmit(GD); 2856 2857 // This is the first use or definition of a mangled name. If there is a 2858 // deferred decl with this name, remember that we need to emit it at the end 2859 // of the file. 2860 auto DDI = DeferredDecls.find(MangledName); 2861 if (DDI != DeferredDecls.end()) { 2862 // Move the potentially referenced deferred decl to the 2863 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2864 // don't need it anymore). 2865 addDeferredDeclToEmit(DDI->second); 2866 DeferredDecls.erase(DDI); 2867 2868 // Otherwise, there are cases we have to worry about where we're 2869 // using a declaration for which we must emit a definition but where 2870 // we might not find a top-level definition: 2871 // - member functions defined inline in their classes 2872 // - friend functions defined inline in some class 2873 // - special member functions with implicit definitions 2874 // If we ever change our AST traversal to walk into class methods, 2875 // this will be unnecessary. 2876 // 2877 // We also don't emit a definition for a function if it's going to be an 2878 // entry in a vtable, unless it's already marked as used. 2879 } else if (getLangOpts().CPlusPlus && D) { 2880 // Look for a declaration that's lexically in a record. 2881 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2882 FD = FD->getPreviousDecl()) { 2883 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2884 if (FD->doesThisDeclarationHaveABody()) { 2885 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2886 break; 2887 } 2888 } 2889 } 2890 } 2891 } 2892 2893 // Make sure the result is of the requested type. 2894 if (!IsIncompleteFunction) { 2895 assert(F->getType()->getElementType() == Ty); 2896 return F; 2897 } 2898 2899 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2900 return llvm::ConstantExpr::getBitCast(F, PTy); 2901 } 2902 2903 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2904 /// non-null, then this function will use the specified type if it has to 2905 /// create it (this occurs when we see a definition of the function). 2906 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2907 llvm::Type *Ty, 2908 bool ForVTable, 2909 bool DontDefer, 2910 ForDefinition_t IsForDefinition) { 2911 // If there was no specific requested type, just convert it now. 2912 if (!Ty) { 2913 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2914 auto CanonTy = Context.getCanonicalType(FD->getType()); 2915 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2916 } 2917 2918 // Devirtualized destructor calls may come through here instead of via 2919 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2920 // of the complete destructor when necessary. 2921 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2922 if (getTarget().getCXXABI().isMicrosoft() && 2923 GD.getDtorType() == Dtor_Complete && 2924 DD->getParent()->getNumVBases() == 0) 2925 GD = GlobalDecl(DD, Dtor_Base); 2926 } 2927 2928 StringRef MangledName = getMangledName(GD); 2929 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2930 /*IsThunk=*/false, llvm::AttributeList(), 2931 IsForDefinition); 2932 } 2933 2934 static const FunctionDecl * 2935 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2936 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2937 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2938 2939 IdentifierInfo &CII = C.Idents.get(Name); 2940 for (const auto &Result : DC->lookup(&CII)) 2941 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2942 return FD; 2943 2944 if (!C.getLangOpts().CPlusPlus) 2945 return nullptr; 2946 2947 // Demangle the premangled name from getTerminateFn() 2948 IdentifierInfo &CXXII = 2949 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2950 ? C.Idents.get("terminate") 2951 : C.Idents.get(Name); 2952 2953 for (const auto &N : {"__cxxabiv1", "std"}) { 2954 IdentifierInfo &NS = C.Idents.get(N); 2955 for (const auto &Result : DC->lookup(&NS)) { 2956 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2957 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2958 for (const auto &Result : LSD->lookup(&NS)) 2959 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2960 break; 2961 2962 if (ND) 2963 for (const auto &Result : ND->lookup(&CXXII)) 2964 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2965 return FD; 2966 } 2967 } 2968 2969 return nullptr; 2970 } 2971 2972 /// CreateRuntimeFunction - Create a new runtime function with the specified 2973 /// type and name. 2974 llvm::Constant * 2975 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2976 llvm::AttributeList ExtraAttrs, 2977 bool Local) { 2978 llvm::Constant *C = 2979 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2980 /*DontDefer=*/false, /*IsThunk=*/false, 2981 ExtraAttrs); 2982 2983 if (auto *F = dyn_cast<llvm::Function>(C)) { 2984 if (F->empty()) { 2985 F->setCallingConv(getRuntimeCC()); 2986 2987 if (!Local && getTriple().isOSBinFormatCOFF() && 2988 !getCodeGenOpts().LTOVisibilityPublicStd && 2989 !getTriple().isWindowsGNUEnvironment()) { 2990 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2991 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2992 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2993 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2994 } 2995 } 2996 setDSOLocal(F); 2997 } 2998 } 2999 3000 return C; 3001 } 3002 3003 /// CreateBuiltinFunction - Create a new builtin function with the specified 3004 /// type and name. 3005 llvm::Constant * 3006 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 3007 llvm::AttributeList ExtraAttrs) { 3008 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 3009 } 3010 3011 /// isTypeConstant - Determine whether an object of this type can be emitted 3012 /// as a constant. 3013 /// 3014 /// If ExcludeCtor is true, the duration when the object's constructor runs 3015 /// will not be considered. The caller will need to verify that the object is 3016 /// not written to during its construction. 3017 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3018 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3019 return false; 3020 3021 if (Context.getLangOpts().CPlusPlus) { 3022 if (const CXXRecordDecl *Record 3023 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3024 return ExcludeCtor && !Record->hasMutableFields() && 3025 Record->hasTrivialDestructor(); 3026 } 3027 3028 return true; 3029 } 3030 3031 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3032 /// create and return an llvm GlobalVariable with the specified type. If there 3033 /// is something in the module with the specified name, return it potentially 3034 /// bitcasted to the right type. 3035 /// 3036 /// If D is non-null, it specifies a decl that correspond to this. This is used 3037 /// to set the attributes on the global when it is first created. 3038 /// 3039 /// If IsForDefinition is true, it is guaranteed that an actual global with 3040 /// type Ty will be returned, not conversion of a variable with the same 3041 /// mangled name but some other type. 3042 llvm::Constant * 3043 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3044 llvm::PointerType *Ty, 3045 const VarDecl *D, 3046 ForDefinition_t IsForDefinition) { 3047 // Lookup the entry, lazily creating it if necessary. 3048 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3049 if (Entry) { 3050 if (WeakRefReferences.erase(Entry)) { 3051 if (D && !D->hasAttr<WeakAttr>()) 3052 Entry->setLinkage(llvm::Function::ExternalLinkage); 3053 } 3054 3055 // Handle dropped DLL attributes. 3056 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3057 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3058 3059 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3060 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3061 3062 if (Entry->getType() == Ty) 3063 return Entry; 3064 3065 // If there are two attempts to define the same mangled name, issue an 3066 // error. 3067 if (IsForDefinition && !Entry->isDeclaration()) { 3068 GlobalDecl OtherGD; 3069 const VarDecl *OtherD; 3070 3071 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3072 // to make sure that we issue an error only once. 3073 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3074 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3075 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3076 OtherD->hasInit() && 3077 DiagnosedConflictingDefinitions.insert(D).second) { 3078 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3079 << MangledName; 3080 getDiags().Report(OtherGD.getDecl()->getLocation(), 3081 diag::note_previous_definition); 3082 } 3083 } 3084 3085 // Make sure the result is of the correct type. 3086 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3087 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3088 3089 // (If global is requested for a definition, we always need to create a new 3090 // global, not just return a bitcast.) 3091 if (!IsForDefinition) 3092 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3093 } 3094 3095 auto AddrSpace = GetGlobalVarAddressSpace(D); 3096 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3097 3098 auto *GV = new llvm::GlobalVariable( 3099 getModule(), Ty->getElementType(), false, 3100 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3101 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3102 3103 // If we already created a global with the same mangled name (but different 3104 // type) before, take its name and remove it from its parent. 3105 if (Entry) { 3106 GV->takeName(Entry); 3107 3108 if (!Entry->use_empty()) { 3109 llvm::Constant *NewPtrForOldDecl = 3110 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3111 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3112 } 3113 3114 Entry->eraseFromParent(); 3115 } 3116 3117 // This is the first use or definition of a mangled name. If there is a 3118 // deferred decl with this name, remember that we need to emit it at the end 3119 // of the file. 3120 auto DDI = DeferredDecls.find(MangledName); 3121 if (DDI != DeferredDecls.end()) { 3122 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3123 // list, and remove it from DeferredDecls (since we don't need it anymore). 3124 addDeferredDeclToEmit(DDI->second); 3125 DeferredDecls.erase(DDI); 3126 } 3127 3128 // Handle things which are present even on external declarations. 3129 if (D) { 3130 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3131 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3132 3133 // FIXME: This code is overly simple and should be merged with other global 3134 // handling. 3135 GV->setConstant(isTypeConstant(D->getType(), false)); 3136 3137 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3138 3139 setLinkageForGV(GV, D); 3140 3141 if (D->getTLSKind()) { 3142 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3143 CXXThreadLocals.push_back(D); 3144 setTLSMode(GV, *D); 3145 } 3146 3147 setGVProperties(GV, D); 3148 3149 // If required by the ABI, treat declarations of static data members with 3150 // inline initializers as definitions. 3151 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3152 EmitGlobalVarDefinition(D); 3153 } 3154 3155 // Emit section information for extern variables. 3156 if (D->hasExternalStorage()) { 3157 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3158 GV->setSection(SA->getName()); 3159 } 3160 3161 // Handle XCore specific ABI requirements. 3162 if (getTriple().getArch() == llvm::Triple::xcore && 3163 D->getLanguageLinkage() == CLanguageLinkage && 3164 D->getType().isConstant(Context) && 3165 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3166 GV->setSection(".cp.rodata"); 3167 3168 // Check if we a have a const declaration with an initializer, we may be 3169 // able to emit it as available_externally to expose it's value to the 3170 // optimizer. 3171 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3172 D->getType().isConstQualified() && !GV->hasInitializer() && 3173 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3174 const auto *Record = 3175 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3176 bool HasMutableFields = Record && Record->hasMutableFields(); 3177 if (!HasMutableFields) { 3178 const VarDecl *InitDecl; 3179 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3180 if (InitExpr) { 3181 ConstantEmitter emitter(*this); 3182 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3183 if (Init) { 3184 auto *InitType = Init->getType(); 3185 if (GV->getType()->getElementType() != InitType) { 3186 // The type of the initializer does not match the definition. 3187 // This happens when an initializer has a different type from 3188 // the type of the global (because of padding at the end of a 3189 // structure for instance). 3190 GV->setName(StringRef()); 3191 // Make a new global with the correct type, this is now guaranteed 3192 // to work. 3193 auto *NewGV = cast<llvm::GlobalVariable>( 3194 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3195 3196 // Erase the old global, since it is no longer used. 3197 GV->eraseFromParent(); 3198 GV = NewGV; 3199 } else { 3200 GV->setInitializer(Init); 3201 GV->setConstant(true); 3202 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3203 } 3204 emitter.finalize(GV); 3205 } 3206 } 3207 } 3208 } 3209 } 3210 3211 LangAS ExpectedAS = 3212 D ? D->getType().getAddressSpace() 3213 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3214 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3215 Ty->getPointerAddressSpace()); 3216 if (AddrSpace != ExpectedAS) 3217 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3218 ExpectedAS, Ty); 3219 3220 return GV; 3221 } 3222 3223 llvm::Constant * 3224 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3225 ForDefinition_t IsForDefinition) { 3226 const Decl *D = GD.getDecl(); 3227 if (isa<CXXConstructorDecl>(D)) 3228 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3229 getFromCtorType(GD.getCtorType()), 3230 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3231 /*DontDefer=*/false, IsForDefinition); 3232 else if (isa<CXXDestructorDecl>(D)) 3233 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3234 getFromDtorType(GD.getDtorType()), 3235 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3236 /*DontDefer=*/false, IsForDefinition); 3237 else if (isa<CXXMethodDecl>(D)) { 3238 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3239 cast<CXXMethodDecl>(D)); 3240 auto Ty = getTypes().GetFunctionType(*FInfo); 3241 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3242 IsForDefinition); 3243 } else if (isa<FunctionDecl>(D)) { 3244 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3245 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3246 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3247 IsForDefinition); 3248 } else 3249 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3250 IsForDefinition); 3251 } 3252 3253 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3254 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3255 unsigned Alignment) { 3256 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3257 llvm::GlobalVariable *OldGV = nullptr; 3258 3259 if (GV) { 3260 // Check if the variable has the right type. 3261 if (GV->getType()->getElementType() == Ty) 3262 return GV; 3263 3264 // Because C++ name mangling, the only way we can end up with an already 3265 // existing global with the same name is if it has been declared extern "C". 3266 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3267 OldGV = GV; 3268 } 3269 3270 // Create a new variable. 3271 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3272 Linkage, nullptr, Name); 3273 3274 if (OldGV) { 3275 // Replace occurrences of the old variable if needed. 3276 GV->takeName(OldGV); 3277 3278 if (!OldGV->use_empty()) { 3279 llvm::Constant *NewPtrForOldDecl = 3280 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3281 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3282 } 3283 3284 OldGV->eraseFromParent(); 3285 } 3286 3287 if (supportsCOMDAT() && GV->isWeakForLinker() && 3288 !GV->hasAvailableExternallyLinkage()) 3289 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3290 3291 GV->setAlignment(Alignment); 3292 3293 return GV; 3294 } 3295 3296 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3297 /// given global variable. If Ty is non-null and if the global doesn't exist, 3298 /// then it will be created with the specified type instead of whatever the 3299 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3300 /// that an actual global with type Ty will be returned, not conversion of a 3301 /// variable with the same mangled name but some other type. 3302 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3303 llvm::Type *Ty, 3304 ForDefinition_t IsForDefinition) { 3305 assert(D->hasGlobalStorage() && "Not a global variable"); 3306 QualType ASTTy = D->getType(); 3307 if (!Ty) 3308 Ty = getTypes().ConvertTypeForMem(ASTTy); 3309 3310 llvm::PointerType *PTy = 3311 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3312 3313 StringRef MangledName = getMangledName(D); 3314 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3315 } 3316 3317 /// CreateRuntimeVariable - Create a new runtime global variable with the 3318 /// specified type and name. 3319 llvm::Constant * 3320 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3321 StringRef Name) { 3322 auto *Ret = 3323 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3324 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3325 return Ret; 3326 } 3327 3328 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3329 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3330 3331 StringRef MangledName = getMangledName(D); 3332 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3333 3334 // We already have a definition, not declaration, with the same mangled name. 3335 // Emitting of declaration is not required (and actually overwrites emitted 3336 // definition). 3337 if (GV && !GV->isDeclaration()) 3338 return; 3339 3340 // If we have not seen a reference to this variable yet, place it into the 3341 // deferred declarations table to be emitted if needed later. 3342 if (!MustBeEmitted(D) && !GV) { 3343 DeferredDecls[MangledName] = D; 3344 return; 3345 } 3346 3347 // The tentative definition is the only definition. 3348 EmitGlobalVarDefinition(D); 3349 } 3350 3351 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3352 return Context.toCharUnitsFromBits( 3353 getDataLayout().getTypeStoreSizeInBits(Ty)); 3354 } 3355 3356 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3357 LangAS AddrSpace = LangAS::Default; 3358 if (LangOpts.OpenCL) { 3359 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3360 assert(AddrSpace == LangAS::opencl_global || 3361 AddrSpace == LangAS::opencl_constant || 3362 AddrSpace == LangAS::opencl_local || 3363 AddrSpace >= LangAS::FirstTargetAddressSpace); 3364 return AddrSpace; 3365 } 3366 3367 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3368 if (D && D->hasAttr<CUDAConstantAttr>()) 3369 return LangAS::cuda_constant; 3370 else if (D && D->hasAttr<CUDASharedAttr>()) 3371 return LangAS::cuda_shared; 3372 else if (D && D->hasAttr<CUDADeviceAttr>()) 3373 return LangAS::cuda_device; 3374 else if (D && D->getType().isConstQualified()) 3375 return LangAS::cuda_constant; 3376 else 3377 return LangAS::cuda_device; 3378 } 3379 3380 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3381 } 3382 3383 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3384 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3385 if (LangOpts.OpenCL) 3386 return LangAS::opencl_constant; 3387 if (auto AS = getTarget().getConstantAddressSpace()) 3388 return AS.getValue(); 3389 return LangAS::Default; 3390 } 3391 3392 // In address space agnostic languages, string literals are in default address 3393 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3394 // emitted in constant address space in LLVM IR. To be consistent with other 3395 // parts of AST, string literal global variables in constant address space 3396 // need to be casted to default address space before being put into address 3397 // map and referenced by other part of CodeGen. 3398 // In OpenCL, string literals are in constant address space in AST, therefore 3399 // they should not be casted to default address space. 3400 static llvm::Constant * 3401 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3402 llvm::GlobalVariable *GV) { 3403 llvm::Constant *Cast = GV; 3404 if (!CGM.getLangOpts().OpenCL) { 3405 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3406 if (AS != LangAS::Default) 3407 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3408 CGM, GV, AS.getValue(), LangAS::Default, 3409 GV->getValueType()->getPointerTo( 3410 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3411 } 3412 } 3413 return Cast; 3414 } 3415 3416 template<typename SomeDecl> 3417 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3418 llvm::GlobalValue *GV) { 3419 if (!getLangOpts().CPlusPlus) 3420 return; 3421 3422 // Must have 'used' attribute, or else inline assembly can't rely on 3423 // the name existing. 3424 if (!D->template hasAttr<UsedAttr>()) 3425 return; 3426 3427 // Must have internal linkage and an ordinary name. 3428 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3429 return; 3430 3431 // Must be in an extern "C" context. Entities declared directly within 3432 // a record are not extern "C" even if the record is in such a context. 3433 const SomeDecl *First = D->getFirstDecl(); 3434 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3435 return; 3436 3437 // OK, this is an internal linkage entity inside an extern "C" linkage 3438 // specification. Make a note of that so we can give it the "expected" 3439 // mangled name if nothing else is using that name. 3440 std::pair<StaticExternCMap::iterator, bool> R = 3441 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3442 3443 // If we have multiple internal linkage entities with the same name 3444 // in extern "C" regions, none of them gets that name. 3445 if (!R.second) 3446 R.first->second = nullptr; 3447 } 3448 3449 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3450 if (!CGM.supportsCOMDAT()) 3451 return false; 3452 3453 if (D.hasAttr<SelectAnyAttr>()) 3454 return true; 3455 3456 GVALinkage Linkage; 3457 if (auto *VD = dyn_cast<VarDecl>(&D)) 3458 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3459 else 3460 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3461 3462 switch (Linkage) { 3463 case GVA_Internal: 3464 case GVA_AvailableExternally: 3465 case GVA_StrongExternal: 3466 return false; 3467 case GVA_DiscardableODR: 3468 case GVA_StrongODR: 3469 return true; 3470 } 3471 llvm_unreachable("No such linkage"); 3472 } 3473 3474 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3475 llvm::GlobalObject &GO) { 3476 if (!shouldBeInCOMDAT(*this, D)) 3477 return; 3478 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3479 } 3480 3481 /// Pass IsTentative as true if you want to create a tentative definition. 3482 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3483 bool IsTentative) { 3484 // OpenCL global variables of sampler type are translated to function calls, 3485 // therefore no need to be translated. 3486 QualType ASTTy = D->getType(); 3487 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3488 return; 3489 3490 // If this is OpenMP device, check if it is legal to emit this global 3491 // normally. 3492 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3493 OpenMPRuntime->emitTargetGlobalVariable(D)) 3494 return; 3495 3496 llvm::Constant *Init = nullptr; 3497 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3498 bool NeedsGlobalCtor = false; 3499 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3500 3501 const VarDecl *InitDecl; 3502 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3503 3504 Optional<ConstantEmitter> emitter; 3505 3506 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3507 // as part of their declaration." Sema has already checked for 3508 // error cases, so we just need to set Init to UndefValue. 3509 bool IsCUDASharedVar = 3510 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3511 // Shadows of initialized device-side global variables are also left 3512 // undefined. 3513 bool IsCUDAShadowVar = 3514 !getLangOpts().CUDAIsDevice && 3515 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3516 D->hasAttr<CUDASharedAttr>()); 3517 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3518 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3519 else if (!InitExpr) { 3520 // This is a tentative definition; tentative definitions are 3521 // implicitly initialized with { 0 }. 3522 // 3523 // Note that tentative definitions are only emitted at the end of 3524 // a translation unit, so they should never have incomplete 3525 // type. In addition, EmitTentativeDefinition makes sure that we 3526 // never attempt to emit a tentative definition if a real one 3527 // exists. A use may still exists, however, so we still may need 3528 // to do a RAUW. 3529 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3530 Init = EmitNullConstant(D->getType()); 3531 } else { 3532 initializedGlobalDecl = GlobalDecl(D); 3533 emitter.emplace(*this); 3534 Init = emitter->tryEmitForInitializer(*InitDecl); 3535 3536 if (!Init) { 3537 QualType T = InitExpr->getType(); 3538 if (D->getType()->isReferenceType()) 3539 T = D->getType(); 3540 3541 if (getLangOpts().CPlusPlus) { 3542 Init = EmitNullConstant(T); 3543 NeedsGlobalCtor = true; 3544 } else { 3545 ErrorUnsupported(D, "static initializer"); 3546 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3547 } 3548 } else { 3549 // We don't need an initializer, so remove the entry for the delayed 3550 // initializer position (just in case this entry was delayed) if we 3551 // also don't need to register a destructor. 3552 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3553 DelayedCXXInitPosition.erase(D); 3554 } 3555 } 3556 3557 llvm::Type* InitType = Init->getType(); 3558 llvm::Constant *Entry = 3559 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3560 3561 // Strip off a bitcast if we got one back. 3562 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3563 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3564 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3565 // All zero index gep. 3566 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3567 Entry = CE->getOperand(0); 3568 } 3569 3570 // Entry is now either a Function or GlobalVariable. 3571 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3572 3573 // We have a definition after a declaration with the wrong type. 3574 // We must make a new GlobalVariable* and update everything that used OldGV 3575 // (a declaration or tentative definition) with the new GlobalVariable* 3576 // (which will be a definition). 3577 // 3578 // This happens if there is a prototype for a global (e.g. 3579 // "extern int x[];") and then a definition of a different type (e.g. 3580 // "int x[10];"). This also happens when an initializer has a different type 3581 // from the type of the global (this happens with unions). 3582 if (!GV || GV->getType()->getElementType() != InitType || 3583 GV->getType()->getAddressSpace() != 3584 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3585 3586 // Move the old entry aside so that we'll create a new one. 3587 Entry->setName(StringRef()); 3588 3589 // Make a new global with the correct type, this is now guaranteed to work. 3590 GV = cast<llvm::GlobalVariable>( 3591 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3592 3593 // Replace all uses of the old global with the new global 3594 llvm::Constant *NewPtrForOldDecl = 3595 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3596 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3597 3598 // Erase the old global, since it is no longer used. 3599 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3600 } 3601 3602 MaybeHandleStaticInExternC(D, GV); 3603 3604 if (D->hasAttr<AnnotateAttr>()) 3605 AddGlobalAnnotations(D, GV); 3606 3607 // Set the llvm linkage type as appropriate. 3608 llvm::GlobalValue::LinkageTypes Linkage = 3609 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3610 3611 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3612 // the device. [...]" 3613 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3614 // __device__, declares a variable that: [...] 3615 // Is accessible from all the threads within the grid and from the host 3616 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3617 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3618 if (GV && LangOpts.CUDA) { 3619 if (LangOpts.CUDAIsDevice) { 3620 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3621 GV->setExternallyInitialized(true); 3622 } else { 3623 // Host-side shadows of external declarations of device-side 3624 // global variables become internal definitions. These have to 3625 // be internal in order to prevent name conflicts with global 3626 // host variables with the same name in a different TUs. 3627 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3628 Linkage = llvm::GlobalValue::InternalLinkage; 3629 3630 // Shadow variables and their properties must be registered 3631 // with CUDA runtime. 3632 unsigned Flags = 0; 3633 if (!D->hasDefinition()) 3634 Flags |= CGCUDARuntime::ExternDeviceVar; 3635 if (D->hasAttr<CUDAConstantAttr>()) 3636 Flags |= CGCUDARuntime::ConstantDeviceVar; 3637 // Extern global variables will be registered in the TU where they are 3638 // defined. 3639 if (!D->hasExternalStorage()) 3640 getCUDARuntime().registerDeviceVar(*GV, Flags); 3641 } else if (D->hasAttr<CUDASharedAttr>()) 3642 // __shared__ variables are odd. Shadows do get created, but 3643 // they are not registered with the CUDA runtime, so they 3644 // can't really be used to access their device-side 3645 // counterparts. It's not clear yet whether it's nvcc's bug or 3646 // a feature, but we've got to do the same for compatibility. 3647 Linkage = llvm::GlobalValue::InternalLinkage; 3648 } 3649 } 3650 3651 GV->setInitializer(Init); 3652 if (emitter) emitter->finalize(GV); 3653 3654 // If it is safe to mark the global 'constant', do so now. 3655 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3656 isTypeConstant(D->getType(), true)); 3657 3658 // If it is in a read-only section, mark it 'constant'. 3659 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3660 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3661 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3662 GV->setConstant(true); 3663 } 3664 3665 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3666 3667 3668 // On Darwin, if the normal linkage of a C++ thread_local variable is 3669 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3670 // copies within a linkage unit; otherwise, the backing variable has 3671 // internal linkage and all accesses should just be calls to the 3672 // Itanium-specified entry point, which has the normal linkage of the 3673 // variable. This is to preserve the ability to change the implementation 3674 // behind the scenes. 3675 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3676 Context.getTargetInfo().getTriple().isOSDarwin() && 3677 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3678 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3679 Linkage = llvm::GlobalValue::InternalLinkage; 3680 3681 GV->setLinkage(Linkage); 3682 if (D->hasAttr<DLLImportAttr>()) 3683 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3684 else if (D->hasAttr<DLLExportAttr>()) 3685 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3686 else 3687 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3688 3689 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3690 // common vars aren't constant even if declared const. 3691 GV->setConstant(false); 3692 // Tentative definition of global variables may be initialized with 3693 // non-zero null pointers. In this case they should have weak linkage 3694 // since common linkage must have zero initializer and must not have 3695 // explicit section therefore cannot have non-zero initial value. 3696 if (!GV->getInitializer()->isNullValue()) 3697 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3698 } 3699 3700 setNonAliasAttributes(D, GV); 3701 3702 if (D->getTLSKind() && !GV->isThreadLocal()) { 3703 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3704 CXXThreadLocals.push_back(D); 3705 setTLSMode(GV, *D); 3706 } 3707 3708 maybeSetTrivialComdat(*D, *GV); 3709 3710 // Emit the initializer function if necessary. 3711 if (NeedsGlobalCtor || NeedsGlobalDtor) 3712 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3713 3714 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3715 3716 // Emit global variable debug information. 3717 if (CGDebugInfo *DI = getModuleDebugInfo()) 3718 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3719 DI->EmitGlobalVariable(GV, D); 3720 } 3721 3722 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3723 CodeGenModule &CGM, const VarDecl *D, 3724 bool NoCommon) { 3725 // Don't give variables common linkage if -fno-common was specified unless it 3726 // was overridden by a NoCommon attribute. 3727 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3728 return true; 3729 3730 // C11 6.9.2/2: 3731 // A declaration of an identifier for an object that has file scope without 3732 // an initializer, and without a storage-class specifier or with the 3733 // storage-class specifier static, constitutes a tentative definition. 3734 if (D->getInit() || D->hasExternalStorage()) 3735 return true; 3736 3737 // A variable cannot be both common and exist in a section. 3738 if (D->hasAttr<SectionAttr>()) 3739 return true; 3740 3741 // A variable cannot be both common and exist in a section. 3742 // We don't try to determine which is the right section in the front-end. 3743 // If no specialized section name is applicable, it will resort to default. 3744 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3745 D->hasAttr<PragmaClangDataSectionAttr>() || 3746 D->hasAttr<PragmaClangRodataSectionAttr>()) 3747 return true; 3748 3749 // Thread local vars aren't considered common linkage. 3750 if (D->getTLSKind()) 3751 return true; 3752 3753 // Tentative definitions marked with WeakImportAttr are true definitions. 3754 if (D->hasAttr<WeakImportAttr>()) 3755 return true; 3756 3757 // A variable cannot be both common and exist in a comdat. 3758 if (shouldBeInCOMDAT(CGM, *D)) 3759 return true; 3760 3761 // Declarations with a required alignment do not have common linkage in MSVC 3762 // mode. 3763 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3764 if (D->hasAttr<AlignedAttr>()) 3765 return true; 3766 QualType VarType = D->getType(); 3767 if (Context.isAlignmentRequired(VarType)) 3768 return true; 3769 3770 if (const auto *RT = VarType->getAs<RecordType>()) { 3771 const RecordDecl *RD = RT->getDecl(); 3772 for (const FieldDecl *FD : RD->fields()) { 3773 if (FD->isBitField()) 3774 continue; 3775 if (FD->hasAttr<AlignedAttr>()) 3776 return true; 3777 if (Context.isAlignmentRequired(FD->getType())) 3778 return true; 3779 } 3780 } 3781 } 3782 3783 // Microsoft's link.exe doesn't support alignments greater than 32 for common 3784 // symbols, so symbols with greater alignment requirements cannot be common. 3785 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 3786 // alignments for common symbols via the aligncomm directive, so this 3787 // restriction only applies to MSVC environments. 3788 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 3789 Context.getTypeAlignIfKnown(D->getType()) > 32) 3790 return true; 3791 3792 return false; 3793 } 3794 3795 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3796 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3797 if (Linkage == GVA_Internal) 3798 return llvm::Function::InternalLinkage; 3799 3800 if (D->hasAttr<WeakAttr>()) { 3801 if (IsConstantVariable) 3802 return llvm::GlobalVariable::WeakODRLinkage; 3803 else 3804 return llvm::GlobalVariable::WeakAnyLinkage; 3805 } 3806 3807 if (const auto *FD = D->getAsFunction()) 3808 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3809 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3810 3811 // We are guaranteed to have a strong definition somewhere else, 3812 // so we can use available_externally linkage. 3813 if (Linkage == GVA_AvailableExternally) 3814 return llvm::GlobalValue::AvailableExternallyLinkage; 3815 3816 // Note that Apple's kernel linker doesn't support symbol 3817 // coalescing, so we need to avoid linkonce and weak linkages there. 3818 // Normally, this means we just map to internal, but for explicit 3819 // instantiations we'll map to external. 3820 3821 // In C++, the compiler has to emit a definition in every translation unit 3822 // that references the function. We should use linkonce_odr because 3823 // a) if all references in this translation unit are optimized away, we 3824 // don't need to codegen it. b) if the function persists, it needs to be 3825 // merged with other definitions. c) C++ has the ODR, so we know the 3826 // definition is dependable. 3827 if (Linkage == GVA_DiscardableODR) 3828 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3829 : llvm::Function::InternalLinkage; 3830 3831 // An explicit instantiation of a template has weak linkage, since 3832 // explicit instantiations can occur in multiple translation units 3833 // and must all be equivalent. However, we are not allowed to 3834 // throw away these explicit instantiations. 3835 // 3836 // We don't currently support CUDA device code spread out across multiple TUs, 3837 // so say that CUDA templates are either external (for kernels) or internal. 3838 // This lets llvm perform aggressive inter-procedural optimizations. 3839 if (Linkage == GVA_StrongODR) { 3840 if (Context.getLangOpts().AppleKext) 3841 return llvm::Function::ExternalLinkage; 3842 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3843 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3844 : llvm::Function::InternalLinkage; 3845 return llvm::Function::WeakODRLinkage; 3846 } 3847 3848 // C++ doesn't have tentative definitions and thus cannot have common 3849 // linkage. 3850 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3851 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3852 CodeGenOpts.NoCommon)) 3853 return llvm::GlobalVariable::CommonLinkage; 3854 3855 // selectany symbols are externally visible, so use weak instead of 3856 // linkonce. MSVC optimizes away references to const selectany globals, so 3857 // all definitions should be the same and ODR linkage should be used. 3858 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3859 if (D->hasAttr<SelectAnyAttr>()) 3860 return llvm::GlobalVariable::WeakODRLinkage; 3861 3862 // Otherwise, we have strong external linkage. 3863 assert(Linkage == GVA_StrongExternal); 3864 return llvm::GlobalVariable::ExternalLinkage; 3865 } 3866 3867 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3868 const VarDecl *VD, bool IsConstant) { 3869 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3870 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3871 } 3872 3873 /// Replace the uses of a function that was declared with a non-proto type. 3874 /// We want to silently drop extra arguments from call sites 3875 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3876 llvm::Function *newFn) { 3877 // Fast path. 3878 if (old->use_empty()) return; 3879 3880 llvm::Type *newRetTy = newFn->getReturnType(); 3881 SmallVector<llvm::Value*, 4> newArgs; 3882 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3883 3884 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3885 ui != ue; ) { 3886 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3887 llvm::User *user = use->getUser(); 3888 3889 // Recognize and replace uses of bitcasts. Most calls to 3890 // unprototyped functions will use bitcasts. 3891 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3892 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3893 replaceUsesOfNonProtoConstant(bitcast, newFn); 3894 continue; 3895 } 3896 3897 // Recognize calls to the function. 3898 llvm::CallSite callSite(user); 3899 if (!callSite) continue; 3900 if (!callSite.isCallee(&*use)) continue; 3901 3902 // If the return types don't match exactly, then we can't 3903 // transform this call unless it's dead. 3904 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3905 continue; 3906 3907 // Get the call site's attribute list. 3908 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3909 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3910 3911 // If the function was passed too few arguments, don't transform. 3912 unsigned newNumArgs = newFn->arg_size(); 3913 if (callSite.arg_size() < newNumArgs) continue; 3914 3915 // If extra arguments were passed, we silently drop them. 3916 // If any of the types mismatch, we don't transform. 3917 unsigned argNo = 0; 3918 bool dontTransform = false; 3919 for (llvm::Argument &A : newFn->args()) { 3920 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3921 dontTransform = true; 3922 break; 3923 } 3924 3925 // Add any parameter attributes. 3926 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3927 argNo++; 3928 } 3929 if (dontTransform) 3930 continue; 3931 3932 // Okay, we can transform this. Create the new call instruction and copy 3933 // over the required information. 3934 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3935 3936 // Copy over any operand bundles. 3937 callSite.getOperandBundlesAsDefs(newBundles); 3938 3939 llvm::CallSite newCall; 3940 if (callSite.isCall()) { 3941 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3942 callSite.getInstruction()); 3943 } else { 3944 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3945 newCall = llvm::InvokeInst::Create(newFn, 3946 oldInvoke->getNormalDest(), 3947 oldInvoke->getUnwindDest(), 3948 newArgs, newBundles, "", 3949 callSite.getInstruction()); 3950 } 3951 newArgs.clear(); // for the next iteration 3952 3953 if (!newCall->getType()->isVoidTy()) 3954 newCall->takeName(callSite.getInstruction()); 3955 newCall.setAttributes(llvm::AttributeList::get( 3956 newFn->getContext(), oldAttrs.getFnAttributes(), 3957 oldAttrs.getRetAttributes(), newArgAttrs)); 3958 newCall.setCallingConv(callSite.getCallingConv()); 3959 3960 // Finally, remove the old call, replacing any uses with the new one. 3961 if (!callSite->use_empty()) 3962 callSite->replaceAllUsesWith(newCall.getInstruction()); 3963 3964 // Copy debug location attached to CI. 3965 if (callSite->getDebugLoc()) 3966 newCall->setDebugLoc(callSite->getDebugLoc()); 3967 3968 callSite->eraseFromParent(); 3969 } 3970 } 3971 3972 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3973 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3974 /// existing call uses of the old function in the module, this adjusts them to 3975 /// call the new function directly. 3976 /// 3977 /// This is not just a cleanup: the always_inline pass requires direct calls to 3978 /// functions to be able to inline them. If there is a bitcast in the way, it 3979 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3980 /// run at -O0. 3981 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3982 llvm::Function *NewFn) { 3983 // If we're redefining a global as a function, don't transform it. 3984 if (!isa<llvm::Function>(Old)) return; 3985 3986 replaceUsesOfNonProtoConstant(Old, NewFn); 3987 } 3988 3989 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3990 auto DK = VD->isThisDeclarationADefinition(); 3991 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3992 return; 3993 3994 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3995 // If we have a definition, this might be a deferred decl. If the 3996 // instantiation is explicit, make sure we emit it at the end. 3997 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3998 GetAddrOfGlobalVar(VD); 3999 4000 EmitTopLevelDecl(VD); 4001 } 4002 4003 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4004 llvm::GlobalValue *GV) { 4005 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4006 4007 // Compute the function info and LLVM type. 4008 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4009 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4010 4011 // Get or create the prototype for the function. 4012 if (!GV || (GV->getType()->getElementType() != Ty)) 4013 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4014 /*DontDefer=*/true, 4015 ForDefinition)); 4016 4017 // Already emitted. 4018 if (!GV->isDeclaration()) 4019 return; 4020 4021 // We need to set linkage and visibility on the function before 4022 // generating code for it because various parts of IR generation 4023 // want to propagate this information down (e.g. to local static 4024 // declarations). 4025 auto *Fn = cast<llvm::Function>(GV); 4026 setFunctionLinkage(GD, Fn); 4027 4028 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4029 setGVProperties(Fn, GD); 4030 4031 MaybeHandleStaticInExternC(D, Fn); 4032 4033 4034 maybeSetTrivialComdat(*D, *Fn); 4035 4036 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4037 4038 setNonAliasAttributes(GD, Fn); 4039 SetLLVMFunctionAttributesForDefinition(D, Fn); 4040 4041 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4042 AddGlobalCtor(Fn, CA->getPriority()); 4043 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4044 AddGlobalDtor(Fn, DA->getPriority()); 4045 if (D->hasAttr<AnnotateAttr>()) 4046 AddGlobalAnnotations(D, Fn); 4047 } 4048 4049 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4050 const auto *D = cast<ValueDecl>(GD.getDecl()); 4051 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4052 assert(AA && "Not an alias?"); 4053 4054 StringRef MangledName = getMangledName(GD); 4055 4056 if (AA->getAliasee() == MangledName) { 4057 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4058 return; 4059 } 4060 4061 // If there is a definition in the module, then it wins over the alias. 4062 // This is dubious, but allow it to be safe. Just ignore the alias. 4063 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4064 if (Entry && !Entry->isDeclaration()) 4065 return; 4066 4067 Aliases.push_back(GD); 4068 4069 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4070 4071 // Create a reference to the named value. This ensures that it is emitted 4072 // if a deferred decl. 4073 llvm::Constant *Aliasee; 4074 if (isa<llvm::FunctionType>(DeclTy)) 4075 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4076 /*ForVTable=*/false); 4077 else 4078 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4079 llvm::PointerType::getUnqual(DeclTy), 4080 /*D=*/nullptr); 4081 4082 // Create the new alias itself, but don't set a name yet. 4083 auto *GA = llvm::GlobalAlias::create( 4084 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4085 4086 if (Entry) { 4087 if (GA->getAliasee() == Entry) { 4088 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4089 return; 4090 } 4091 4092 assert(Entry->isDeclaration()); 4093 4094 // If there is a declaration in the module, then we had an extern followed 4095 // by the alias, as in: 4096 // extern int test6(); 4097 // ... 4098 // int test6() __attribute__((alias("test7"))); 4099 // 4100 // Remove it and replace uses of it with the alias. 4101 GA->takeName(Entry); 4102 4103 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4104 Entry->getType())); 4105 Entry->eraseFromParent(); 4106 } else { 4107 GA->setName(MangledName); 4108 } 4109 4110 // Set attributes which are particular to an alias; this is a 4111 // specialization of the attributes which may be set on a global 4112 // variable/function. 4113 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4114 D->isWeakImported()) { 4115 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4116 } 4117 4118 if (const auto *VD = dyn_cast<VarDecl>(D)) 4119 if (VD->getTLSKind()) 4120 setTLSMode(GA, *VD); 4121 4122 SetCommonAttributes(GD, GA); 4123 } 4124 4125 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4126 const auto *D = cast<ValueDecl>(GD.getDecl()); 4127 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4128 assert(IFA && "Not an ifunc?"); 4129 4130 StringRef MangledName = getMangledName(GD); 4131 4132 if (IFA->getResolver() == MangledName) { 4133 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4134 return; 4135 } 4136 4137 // Report an error if some definition overrides ifunc. 4138 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4139 if (Entry && !Entry->isDeclaration()) { 4140 GlobalDecl OtherGD; 4141 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4142 DiagnosedConflictingDefinitions.insert(GD).second) { 4143 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4144 << MangledName; 4145 Diags.Report(OtherGD.getDecl()->getLocation(), 4146 diag::note_previous_definition); 4147 } 4148 return; 4149 } 4150 4151 Aliases.push_back(GD); 4152 4153 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4154 llvm::Constant *Resolver = 4155 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4156 /*ForVTable=*/false); 4157 llvm::GlobalIFunc *GIF = 4158 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4159 "", Resolver, &getModule()); 4160 if (Entry) { 4161 if (GIF->getResolver() == Entry) { 4162 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4163 return; 4164 } 4165 assert(Entry->isDeclaration()); 4166 4167 // If there is a declaration in the module, then we had an extern followed 4168 // by the ifunc, as in: 4169 // extern int test(); 4170 // ... 4171 // int test() __attribute__((ifunc("resolver"))); 4172 // 4173 // Remove it and replace uses of it with the ifunc. 4174 GIF->takeName(Entry); 4175 4176 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4177 Entry->getType())); 4178 Entry->eraseFromParent(); 4179 } else 4180 GIF->setName(MangledName); 4181 4182 SetCommonAttributes(GD, GIF); 4183 } 4184 4185 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4186 ArrayRef<llvm::Type*> Tys) { 4187 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4188 Tys); 4189 } 4190 4191 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4192 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4193 const StringLiteral *Literal, bool TargetIsLSB, 4194 bool &IsUTF16, unsigned &StringLength) { 4195 StringRef String = Literal->getString(); 4196 unsigned NumBytes = String.size(); 4197 4198 // Check for simple case. 4199 if (!Literal->containsNonAsciiOrNull()) { 4200 StringLength = NumBytes; 4201 return *Map.insert(std::make_pair(String, nullptr)).first; 4202 } 4203 4204 // Otherwise, convert the UTF8 literals into a string of shorts. 4205 IsUTF16 = true; 4206 4207 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4208 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4209 llvm::UTF16 *ToPtr = &ToBuf[0]; 4210 4211 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4212 ToPtr + NumBytes, llvm::strictConversion); 4213 4214 // ConvertUTF8toUTF16 returns the length in ToPtr. 4215 StringLength = ToPtr - &ToBuf[0]; 4216 4217 // Add an explicit null. 4218 *ToPtr = 0; 4219 return *Map.insert(std::make_pair( 4220 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4221 (StringLength + 1) * 2), 4222 nullptr)).first; 4223 } 4224 4225 ConstantAddress 4226 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4227 unsigned StringLength = 0; 4228 bool isUTF16 = false; 4229 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4230 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4231 getDataLayout().isLittleEndian(), isUTF16, 4232 StringLength); 4233 4234 if (auto *C = Entry.second) 4235 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4236 4237 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4238 llvm::Constant *Zeros[] = { Zero, Zero }; 4239 4240 const ASTContext &Context = getContext(); 4241 const llvm::Triple &Triple = getTriple(); 4242 4243 const auto CFRuntime = getLangOpts().CFRuntime; 4244 const bool IsSwiftABI = 4245 static_cast<unsigned>(CFRuntime) >= 4246 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4247 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4248 4249 // If we don't already have it, get __CFConstantStringClassReference. 4250 if (!CFConstantStringClassRef) { 4251 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4252 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4253 Ty = llvm::ArrayType::get(Ty, 0); 4254 4255 switch (CFRuntime) { 4256 default: break; 4257 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4258 case LangOptions::CoreFoundationABI::Swift5_0: 4259 CFConstantStringClassName = 4260 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4261 : "$s10Foundation19_NSCFConstantStringCN"; 4262 Ty = IntPtrTy; 4263 break; 4264 case LangOptions::CoreFoundationABI::Swift4_2: 4265 CFConstantStringClassName = 4266 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4267 : "$S10Foundation19_NSCFConstantStringCN"; 4268 Ty = IntPtrTy; 4269 break; 4270 case LangOptions::CoreFoundationABI::Swift4_1: 4271 CFConstantStringClassName = 4272 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4273 : "__T010Foundation19_NSCFConstantStringCN"; 4274 Ty = IntPtrTy; 4275 break; 4276 } 4277 4278 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4279 4280 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4281 llvm::GlobalValue *GV = nullptr; 4282 4283 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4284 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4285 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4286 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4287 4288 const VarDecl *VD = nullptr; 4289 for (const auto &Result : DC->lookup(&II)) 4290 if ((VD = dyn_cast<VarDecl>(Result))) 4291 break; 4292 4293 if (Triple.isOSBinFormatELF()) { 4294 if (!VD) 4295 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4296 } else { 4297 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4298 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4299 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4300 else 4301 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4302 } 4303 4304 setDSOLocal(GV); 4305 } 4306 } 4307 4308 // Decay array -> ptr 4309 CFConstantStringClassRef = 4310 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4311 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4312 } 4313 4314 QualType CFTy = Context.getCFConstantStringType(); 4315 4316 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4317 4318 ConstantInitBuilder Builder(*this); 4319 auto Fields = Builder.beginStruct(STy); 4320 4321 // Class pointer. 4322 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4323 4324 // Flags. 4325 if (IsSwiftABI) { 4326 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4327 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4328 } else { 4329 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4330 } 4331 4332 // String pointer. 4333 llvm::Constant *C = nullptr; 4334 if (isUTF16) { 4335 auto Arr = llvm::makeArrayRef( 4336 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4337 Entry.first().size() / 2); 4338 C = llvm::ConstantDataArray::get(VMContext, Arr); 4339 } else { 4340 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4341 } 4342 4343 // Note: -fwritable-strings doesn't make the backing store strings of 4344 // CFStrings writable. (See <rdar://problem/10657500>) 4345 auto *GV = 4346 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4347 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4348 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4349 // Don't enforce the target's minimum global alignment, since the only use 4350 // of the string is via this class initializer. 4351 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4352 : Context.getTypeAlignInChars(Context.CharTy); 4353 GV->setAlignment(Align.getQuantity()); 4354 4355 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4356 // Without it LLVM can merge the string with a non unnamed_addr one during 4357 // LTO. Doing that changes the section it ends in, which surprises ld64. 4358 if (Triple.isOSBinFormatMachO()) 4359 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4360 : "__TEXT,__cstring,cstring_literals"); 4361 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4362 // the static linker to adjust permissions to read-only later on. 4363 else if (Triple.isOSBinFormatELF()) 4364 GV->setSection(".rodata"); 4365 4366 // String. 4367 llvm::Constant *Str = 4368 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4369 4370 if (isUTF16) 4371 // Cast the UTF16 string to the correct type. 4372 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4373 Fields.add(Str); 4374 4375 // String length. 4376 llvm::IntegerType *LengthTy = 4377 llvm::IntegerType::get(getModule().getContext(), 4378 Context.getTargetInfo().getLongWidth()); 4379 if (IsSwiftABI) { 4380 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4381 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4382 LengthTy = Int32Ty; 4383 else 4384 LengthTy = IntPtrTy; 4385 } 4386 Fields.addInt(LengthTy, StringLength); 4387 4388 CharUnits Alignment = getPointerAlign(); 4389 4390 // The struct. 4391 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4392 /*isConstant=*/false, 4393 llvm::GlobalVariable::PrivateLinkage); 4394 switch (Triple.getObjectFormat()) { 4395 case llvm::Triple::UnknownObjectFormat: 4396 llvm_unreachable("unknown file format"); 4397 case llvm::Triple::COFF: 4398 case llvm::Triple::ELF: 4399 case llvm::Triple::Wasm: 4400 GV->setSection("cfstring"); 4401 break; 4402 case llvm::Triple::MachO: 4403 GV->setSection("__DATA,__cfstring"); 4404 break; 4405 } 4406 Entry.second = GV; 4407 4408 return ConstantAddress(GV, Alignment); 4409 } 4410 4411 bool CodeGenModule::getExpressionLocationsEnabled() const { 4412 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4413 } 4414 4415 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4416 if (ObjCFastEnumerationStateType.isNull()) { 4417 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4418 D->startDefinition(); 4419 4420 QualType FieldTypes[] = { 4421 Context.UnsignedLongTy, 4422 Context.getPointerType(Context.getObjCIdType()), 4423 Context.getPointerType(Context.UnsignedLongTy), 4424 Context.getConstantArrayType(Context.UnsignedLongTy, 4425 llvm::APInt(32, 5), ArrayType::Normal, 0) 4426 }; 4427 4428 for (size_t i = 0; i < 4; ++i) { 4429 FieldDecl *Field = FieldDecl::Create(Context, 4430 D, 4431 SourceLocation(), 4432 SourceLocation(), nullptr, 4433 FieldTypes[i], /*TInfo=*/nullptr, 4434 /*BitWidth=*/nullptr, 4435 /*Mutable=*/false, 4436 ICIS_NoInit); 4437 Field->setAccess(AS_public); 4438 D->addDecl(Field); 4439 } 4440 4441 D->completeDefinition(); 4442 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4443 } 4444 4445 return ObjCFastEnumerationStateType; 4446 } 4447 4448 llvm::Constant * 4449 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4450 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4451 4452 // Don't emit it as the address of the string, emit the string data itself 4453 // as an inline array. 4454 if (E->getCharByteWidth() == 1) { 4455 SmallString<64> Str(E->getString()); 4456 4457 // Resize the string to the right size, which is indicated by its type. 4458 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4459 Str.resize(CAT->getSize().getZExtValue()); 4460 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4461 } 4462 4463 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4464 llvm::Type *ElemTy = AType->getElementType(); 4465 unsigned NumElements = AType->getNumElements(); 4466 4467 // Wide strings have either 2-byte or 4-byte elements. 4468 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4469 SmallVector<uint16_t, 32> Elements; 4470 Elements.reserve(NumElements); 4471 4472 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4473 Elements.push_back(E->getCodeUnit(i)); 4474 Elements.resize(NumElements); 4475 return llvm::ConstantDataArray::get(VMContext, Elements); 4476 } 4477 4478 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4479 SmallVector<uint32_t, 32> Elements; 4480 Elements.reserve(NumElements); 4481 4482 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4483 Elements.push_back(E->getCodeUnit(i)); 4484 Elements.resize(NumElements); 4485 return llvm::ConstantDataArray::get(VMContext, Elements); 4486 } 4487 4488 static llvm::GlobalVariable * 4489 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4490 CodeGenModule &CGM, StringRef GlobalName, 4491 CharUnits Alignment) { 4492 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4493 CGM.getStringLiteralAddressSpace()); 4494 4495 llvm::Module &M = CGM.getModule(); 4496 // Create a global variable for this string 4497 auto *GV = new llvm::GlobalVariable( 4498 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4499 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4500 GV->setAlignment(Alignment.getQuantity()); 4501 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4502 if (GV->isWeakForLinker()) { 4503 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4504 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4505 } 4506 CGM.setDSOLocal(GV); 4507 4508 return GV; 4509 } 4510 4511 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4512 /// constant array for the given string literal. 4513 ConstantAddress 4514 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4515 StringRef Name) { 4516 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4517 4518 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4519 llvm::GlobalVariable **Entry = nullptr; 4520 if (!LangOpts.WritableStrings) { 4521 Entry = &ConstantStringMap[C]; 4522 if (auto GV = *Entry) { 4523 if (Alignment.getQuantity() > GV->getAlignment()) 4524 GV->setAlignment(Alignment.getQuantity()); 4525 return ConstantAddress(GV, Alignment); 4526 } 4527 } 4528 4529 SmallString<256> MangledNameBuffer; 4530 StringRef GlobalVariableName; 4531 llvm::GlobalValue::LinkageTypes LT; 4532 4533 // Mangle the string literal if that's how the ABI merges duplicate strings. 4534 // Don't do it if they are writable, since we don't want writes in one TU to 4535 // affect strings in another. 4536 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4537 !LangOpts.WritableStrings) { 4538 llvm::raw_svector_ostream Out(MangledNameBuffer); 4539 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4540 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4541 GlobalVariableName = MangledNameBuffer; 4542 } else { 4543 LT = llvm::GlobalValue::PrivateLinkage; 4544 GlobalVariableName = Name; 4545 } 4546 4547 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4548 if (Entry) 4549 *Entry = GV; 4550 4551 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4552 QualType()); 4553 4554 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4555 Alignment); 4556 } 4557 4558 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4559 /// array for the given ObjCEncodeExpr node. 4560 ConstantAddress 4561 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4562 std::string Str; 4563 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4564 4565 return GetAddrOfConstantCString(Str); 4566 } 4567 4568 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4569 /// the literal and a terminating '\0' character. 4570 /// The result has pointer to array type. 4571 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4572 const std::string &Str, const char *GlobalName) { 4573 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4574 CharUnits Alignment = 4575 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4576 4577 llvm::Constant *C = 4578 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4579 4580 // Don't share any string literals if strings aren't constant. 4581 llvm::GlobalVariable **Entry = nullptr; 4582 if (!LangOpts.WritableStrings) { 4583 Entry = &ConstantStringMap[C]; 4584 if (auto GV = *Entry) { 4585 if (Alignment.getQuantity() > GV->getAlignment()) 4586 GV->setAlignment(Alignment.getQuantity()); 4587 return ConstantAddress(GV, Alignment); 4588 } 4589 } 4590 4591 // Get the default prefix if a name wasn't specified. 4592 if (!GlobalName) 4593 GlobalName = ".str"; 4594 // Create a global variable for this. 4595 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4596 GlobalName, Alignment); 4597 if (Entry) 4598 *Entry = GV; 4599 4600 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4601 Alignment); 4602 } 4603 4604 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4605 const MaterializeTemporaryExpr *E, const Expr *Init) { 4606 assert((E->getStorageDuration() == SD_Static || 4607 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4608 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4609 4610 // If we're not materializing a subobject of the temporary, keep the 4611 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4612 QualType MaterializedType = Init->getType(); 4613 if (Init == E->GetTemporaryExpr()) 4614 MaterializedType = E->getType(); 4615 4616 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4617 4618 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4619 return ConstantAddress(Slot, Align); 4620 4621 // FIXME: If an externally-visible declaration extends multiple temporaries, 4622 // we need to give each temporary the same name in every translation unit (and 4623 // we also need to make the temporaries externally-visible). 4624 SmallString<256> Name; 4625 llvm::raw_svector_ostream Out(Name); 4626 getCXXABI().getMangleContext().mangleReferenceTemporary( 4627 VD, E->getManglingNumber(), Out); 4628 4629 APValue *Value = nullptr; 4630 if (E->getStorageDuration() == SD_Static) { 4631 // We might have a cached constant initializer for this temporary. Note 4632 // that this might have a different value from the value computed by 4633 // evaluating the initializer if the surrounding constant expression 4634 // modifies the temporary. 4635 Value = getContext().getMaterializedTemporaryValue(E, false); 4636 if (Value && Value->isUninit()) 4637 Value = nullptr; 4638 } 4639 4640 // Try evaluating it now, it might have a constant initializer. 4641 Expr::EvalResult EvalResult; 4642 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4643 !EvalResult.hasSideEffects()) 4644 Value = &EvalResult.Val; 4645 4646 LangAS AddrSpace = 4647 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4648 4649 Optional<ConstantEmitter> emitter; 4650 llvm::Constant *InitialValue = nullptr; 4651 bool Constant = false; 4652 llvm::Type *Type; 4653 if (Value) { 4654 // The temporary has a constant initializer, use it. 4655 emitter.emplace(*this); 4656 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4657 MaterializedType); 4658 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4659 Type = InitialValue->getType(); 4660 } else { 4661 // No initializer, the initialization will be provided when we 4662 // initialize the declaration which performed lifetime extension. 4663 Type = getTypes().ConvertTypeForMem(MaterializedType); 4664 } 4665 4666 // Create a global variable for this lifetime-extended temporary. 4667 llvm::GlobalValue::LinkageTypes Linkage = 4668 getLLVMLinkageVarDefinition(VD, Constant); 4669 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4670 const VarDecl *InitVD; 4671 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4672 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4673 // Temporaries defined inside a class get linkonce_odr linkage because the 4674 // class can be defined in multiple translation units. 4675 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4676 } else { 4677 // There is no need for this temporary to have external linkage if the 4678 // VarDecl has external linkage. 4679 Linkage = llvm::GlobalVariable::InternalLinkage; 4680 } 4681 } 4682 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4683 auto *GV = new llvm::GlobalVariable( 4684 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4685 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4686 if (emitter) emitter->finalize(GV); 4687 setGVProperties(GV, VD); 4688 GV->setAlignment(Align.getQuantity()); 4689 if (supportsCOMDAT() && GV->isWeakForLinker()) 4690 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4691 if (VD->getTLSKind()) 4692 setTLSMode(GV, *VD); 4693 llvm::Constant *CV = GV; 4694 if (AddrSpace != LangAS::Default) 4695 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4696 *this, GV, AddrSpace, LangAS::Default, 4697 Type->getPointerTo( 4698 getContext().getTargetAddressSpace(LangAS::Default))); 4699 MaterializedGlobalTemporaryMap[E] = CV; 4700 return ConstantAddress(CV, Align); 4701 } 4702 4703 /// EmitObjCPropertyImplementations - Emit information for synthesized 4704 /// properties for an implementation. 4705 void CodeGenModule::EmitObjCPropertyImplementations(const 4706 ObjCImplementationDecl *D) { 4707 for (const auto *PID : D->property_impls()) { 4708 // Dynamic is just for type-checking. 4709 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4710 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4711 4712 // Determine which methods need to be implemented, some may have 4713 // been overridden. Note that ::isPropertyAccessor is not the method 4714 // we want, that just indicates if the decl came from a 4715 // property. What we want to know is if the method is defined in 4716 // this implementation. 4717 if (!D->getInstanceMethod(PD->getGetterName())) 4718 CodeGenFunction(*this).GenerateObjCGetter( 4719 const_cast<ObjCImplementationDecl *>(D), PID); 4720 if (!PD->isReadOnly() && 4721 !D->getInstanceMethod(PD->getSetterName())) 4722 CodeGenFunction(*this).GenerateObjCSetter( 4723 const_cast<ObjCImplementationDecl *>(D), PID); 4724 } 4725 } 4726 } 4727 4728 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4729 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4730 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4731 ivar; ivar = ivar->getNextIvar()) 4732 if (ivar->getType().isDestructedType()) 4733 return true; 4734 4735 return false; 4736 } 4737 4738 static bool AllTrivialInitializers(CodeGenModule &CGM, 4739 ObjCImplementationDecl *D) { 4740 CodeGenFunction CGF(CGM); 4741 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4742 E = D->init_end(); B != E; ++B) { 4743 CXXCtorInitializer *CtorInitExp = *B; 4744 Expr *Init = CtorInitExp->getInit(); 4745 if (!CGF.isTrivialInitializer(Init)) 4746 return false; 4747 } 4748 return true; 4749 } 4750 4751 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4752 /// for an implementation. 4753 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4754 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4755 if (needsDestructMethod(D)) { 4756 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4757 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4758 ObjCMethodDecl *DTORMethod = 4759 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4760 cxxSelector, getContext().VoidTy, nullptr, D, 4761 /*isInstance=*/true, /*isVariadic=*/false, 4762 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4763 /*isDefined=*/false, ObjCMethodDecl::Required); 4764 D->addInstanceMethod(DTORMethod); 4765 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4766 D->setHasDestructors(true); 4767 } 4768 4769 // If the implementation doesn't have any ivar initializers, we don't need 4770 // a .cxx_construct. 4771 if (D->getNumIvarInitializers() == 0 || 4772 AllTrivialInitializers(*this, D)) 4773 return; 4774 4775 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4776 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4777 // The constructor returns 'self'. 4778 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4779 D->getLocation(), 4780 D->getLocation(), 4781 cxxSelector, 4782 getContext().getObjCIdType(), 4783 nullptr, D, /*isInstance=*/true, 4784 /*isVariadic=*/false, 4785 /*isPropertyAccessor=*/true, 4786 /*isImplicitlyDeclared=*/true, 4787 /*isDefined=*/false, 4788 ObjCMethodDecl::Required); 4789 D->addInstanceMethod(CTORMethod); 4790 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4791 D->setHasNonZeroConstructors(true); 4792 } 4793 4794 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4795 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4796 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4797 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4798 ErrorUnsupported(LSD, "linkage spec"); 4799 return; 4800 } 4801 4802 EmitDeclContext(LSD); 4803 } 4804 4805 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4806 for (auto *I : DC->decls()) { 4807 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4808 // are themselves considered "top-level", so EmitTopLevelDecl on an 4809 // ObjCImplDecl does not recursively visit them. We need to do that in 4810 // case they're nested inside another construct (LinkageSpecDecl / 4811 // ExportDecl) that does stop them from being considered "top-level". 4812 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4813 for (auto *M : OID->methods()) 4814 EmitTopLevelDecl(M); 4815 } 4816 4817 EmitTopLevelDecl(I); 4818 } 4819 } 4820 4821 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4822 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4823 // Ignore dependent declarations. 4824 if (D->isTemplated()) 4825 return; 4826 4827 switch (D->getKind()) { 4828 case Decl::CXXConversion: 4829 case Decl::CXXMethod: 4830 case Decl::Function: 4831 EmitGlobal(cast<FunctionDecl>(D)); 4832 // Always provide some coverage mapping 4833 // even for the functions that aren't emitted. 4834 AddDeferredUnusedCoverageMapping(D); 4835 break; 4836 4837 case Decl::CXXDeductionGuide: 4838 // Function-like, but does not result in code emission. 4839 break; 4840 4841 case Decl::Var: 4842 case Decl::Decomposition: 4843 case Decl::VarTemplateSpecialization: 4844 EmitGlobal(cast<VarDecl>(D)); 4845 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4846 for (auto *B : DD->bindings()) 4847 if (auto *HD = B->getHoldingVar()) 4848 EmitGlobal(HD); 4849 break; 4850 4851 // Indirect fields from global anonymous structs and unions can be 4852 // ignored; only the actual variable requires IR gen support. 4853 case Decl::IndirectField: 4854 break; 4855 4856 // C++ Decls 4857 case Decl::Namespace: 4858 EmitDeclContext(cast<NamespaceDecl>(D)); 4859 break; 4860 case Decl::ClassTemplateSpecialization: { 4861 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4862 if (DebugInfo && 4863 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4864 Spec->hasDefinition()) 4865 DebugInfo->completeTemplateDefinition(*Spec); 4866 } LLVM_FALLTHROUGH; 4867 case Decl::CXXRecord: 4868 if (DebugInfo) { 4869 if (auto *ES = D->getASTContext().getExternalSource()) 4870 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4871 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4872 } 4873 // Emit any static data members, they may be definitions. 4874 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4875 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4876 EmitTopLevelDecl(I); 4877 break; 4878 // No code generation needed. 4879 case Decl::UsingShadow: 4880 case Decl::ClassTemplate: 4881 case Decl::VarTemplate: 4882 case Decl::VarTemplatePartialSpecialization: 4883 case Decl::FunctionTemplate: 4884 case Decl::TypeAliasTemplate: 4885 case Decl::Block: 4886 case Decl::Empty: 4887 case Decl::Binding: 4888 break; 4889 case Decl::Using: // using X; [C++] 4890 if (CGDebugInfo *DI = getModuleDebugInfo()) 4891 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4892 return; 4893 case Decl::NamespaceAlias: 4894 if (CGDebugInfo *DI = getModuleDebugInfo()) 4895 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4896 return; 4897 case Decl::UsingDirective: // using namespace X; [C++] 4898 if (CGDebugInfo *DI = getModuleDebugInfo()) 4899 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4900 return; 4901 case Decl::CXXConstructor: 4902 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4903 break; 4904 case Decl::CXXDestructor: 4905 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4906 break; 4907 4908 case Decl::StaticAssert: 4909 // Nothing to do. 4910 break; 4911 4912 // Objective-C Decls 4913 4914 // Forward declarations, no (immediate) code generation. 4915 case Decl::ObjCInterface: 4916 case Decl::ObjCCategory: 4917 break; 4918 4919 case Decl::ObjCProtocol: { 4920 auto *Proto = cast<ObjCProtocolDecl>(D); 4921 if (Proto->isThisDeclarationADefinition()) 4922 ObjCRuntime->GenerateProtocol(Proto); 4923 break; 4924 } 4925 4926 case Decl::ObjCCategoryImpl: 4927 // Categories have properties but don't support synthesize so we 4928 // can ignore them here. 4929 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4930 break; 4931 4932 case Decl::ObjCImplementation: { 4933 auto *OMD = cast<ObjCImplementationDecl>(D); 4934 EmitObjCPropertyImplementations(OMD); 4935 EmitObjCIvarInitializations(OMD); 4936 ObjCRuntime->GenerateClass(OMD); 4937 // Emit global variable debug information. 4938 if (CGDebugInfo *DI = getModuleDebugInfo()) 4939 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4940 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4941 OMD->getClassInterface()), OMD->getLocation()); 4942 break; 4943 } 4944 case Decl::ObjCMethod: { 4945 auto *OMD = cast<ObjCMethodDecl>(D); 4946 // If this is not a prototype, emit the body. 4947 if (OMD->getBody()) 4948 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4949 break; 4950 } 4951 case Decl::ObjCCompatibleAlias: 4952 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4953 break; 4954 4955 case Decl::PragmaComment: { 4956 const auto *PCD = cast<PragmaCommentDecl>(D); 4957 switch (PCD->getCommentKind()) { 4958 case PCK_Unknown: 4959 llvm_unreachable("unexpected pragma comment kind"); 4960 case PCK_Linker: 4961 AppendLinkerOptions(PCD->getArg()); 4962 break; 4963 case PCK_Lib: 4964 if (getTarget().getTriple().isOSBinFormatELF() && 4965 !getTarget().getTriple().isPS4()) 4966 AddELFLibDirective(PCD->getArg()); 4967 else 4968 AddDependentLib(PCD->getArg()); 4969 break; 4970 case PCK_Compiler: 4971 case PCK_ExeStr: 4972 case PCK_User: 4973 break; // We ignore all of these. 4974 } 4975 break; 4976 } 4977 4978 case Decl::PragmaDetectMismatch: { 4979 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4980 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4981 break; 4982 } 4983 4984 case Decl::LinkageSpec: 4985 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4986 break; 4987 4988 case Decl::FileScopeAsm: { 4989 // File-scope asm is ignored during device-side CUDA compilation. 4990 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4991 break; 4992 // File-scope asm is ignored during device-side OpenMP compilation. 4993 if (LangOpts.OpenMPIsDevice) 4994 break; 4995 auto *AD = cast<FileScopeAsmDecl>(D); 4996 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4997 break; 4998 } 4999 5000 case Decl::Import: { 5001 auto *Import = cast<ImportDecl>(D); 5002 5003 // If we've already imported this module, we're done. 5004 if (!ImportedModules.insert(Import->getImportedModule())) 5005 break; 5006 5007 // Emit debug information for direct imports. 5008 if (!Import->getImportedOwningModule()) { 5009 if (CGDebugInfo *DI = getModuleDebugInfo()) 5010 DI->EmitImportDecl(*Import); 5011 } 5012 5013 // Find all of the submodules and emit the module initializers. 5014 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5015 SmallVector<clang::Module *, 16> Stack; 5016 Visited.insert(Import->getImportedModule()); 5017 Stack.push_back(Import->getImportedModule()); 5018 5019 while (!Stack.empty()) { 5020 clang::Module *Mod = Stack.pop_back_val(); 5021 if (!EmittedModuleInitializers.insert(Mod).second) 5022 continue; 5023 5024 for (auto *D : Context.getModuleInitializers(Mod)) 5025 EmitTopLevelDecl(D); 5026 5027 // Visit the submodules of this module. 5028 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5029 SubEnd = Mod->submodule_end(); 5030 Sub != SubEnd; ++Sub) { 5031 // Skip explicit children; they need to be explicitly imported to emit 5032 // the initializers. 5033 if ((*Sub)->IsExplicit) 5034 continue; 5035 5036 if (Visited.insert(*Sub).second) 5037 Stack.push_back(*Sub); 5038 } 5039 } 5040 break; 5041 } 5042 5043 case Decl::Export: 5044 EmitDeclContext(cast<ExportDecl>(D)); 5045 break; 5046 5047 case Decl::OMPThreadPrivate: 5048 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5049 break; 5050 5051 case Decl::OMPDeclareReduction: 5052 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5053 break; 5054 5055 case Decl::OMPRequires: 5056 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5057 break; 5058 5059 default: 5060 // Make sure we handled everything we should, every other kind is a 5061 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5062 // function. Need to recode Decl::Kind to do that easily. 5063 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5064 break; 5065 } 5066 } 5067 5068 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5069 // Do we need to generate coverage mapping? 5070 if (!CodeGenOpts.CoverageMapping) 5071 return; 5072 switch (D->getKind()) { 5073 case Decl::CXXConversion: 5074 case Decl::CXXMethod: 5075 case Decl::Function: 5076 case Decl::ObjCMethod: 5077 case Decl::CXXConstructor: 5078 case Decl::CXXDestructor: { 5079 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5080 return; 5081 SourceManager &SM = getContext().getSourceManager(); 5082 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5083 return; 5084 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5085 if (I == DeferredEmptyCoverageMappingDecls.end()) 5086 DeferredEmptyCoverageMappingDecls[D] = true; 5087 break; 5088 } 5089 default: 5090 break; 5091 }; 5092 } 5093 5094 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5095 // Do we need to generate coverage mapping? 5096 if (!CodeGenOpts.CoverageMapping) 5097 return; 5098 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5099 if (Fn->isTemplateInstantiation()) 5100 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5101 } 5102 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5103 if (I == DeferredEmptyCoverageMappingDecls.end()) 5104 DeferredEmptyCoverageMappingDecls[D] = false; 5105 else 5106 I->second = false; 5107 } 5108 5109 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5110 // We call takeVector() here to avoid use-after-free. 5111 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5112 // we deserialize function bodies to emit coverage info for them, and that 5113 // deserializes more declarations. How should we handle that case? 5114 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5115 if (!Entry.second) 5116 continue; 5117 const Decl *D = Entry.first; 5118 switch (D->getKind()) { 5119 case Decl::CXXConversion: 5120 case Decl::CXXMethod: 5121 case Decl::Function: 5122 case Decl::ObjCMethod: { 5123 CodeGenPGO PGO(*this); 5124 GlobalDecl GD(cast<FunctionDecl>(D)); 5125 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5126 getFunctionLinkage(GD)); 5127 break; 5128 } 5129 case Decl::CXXConstructor: { 5130 CodeGenPGO PGO(*this); 5131 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5132 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5133 getFunctionLinkage(GD)); 5134 break; 5135 } 5136 case Decl::CXXDestructor: { 5137 CodeGenPGO PGO(*this); 5138 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5139 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5140 getFunctionLinkage(GD)); 5141 break; 5142 } 5143 default: 5144 break; 5145 }; 5146 } 5147 } 5148 5149 /// Turns the given pointer into a constant. 5150 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5151 const void *Ptr) { 5152 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5153 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5154 return llvm::ConstantInt::get(i64, PtrInt); 5155 } 5156 5157 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5158 llvm::NamedMDNode *&GlobalMetadata, 5159 GlobalDecl D, 5160 llvm::GlobalValue *Addr) { 5161 if (!GlobalMetadata) 5162 GlobalMetadata = 5163 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5164 5165 // TODO: should we report variant information for ctors/dtors? 5166 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5167 llvm::ConstantAsMetadata::get(GetPointerConstant( 5168 CGM.getLLVMContext(), D.getDecl()))}; 5169 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5170 } 5171 5172 /// For each function which is declared within an extern "C" region and marked 5173 /// as 'used', but has internal linkage, create an alias from the unmangled 5174 /// name to the mangled name if possible. People expect to be able to refer 5175 /// to such functions with an unmangled name from inline assembly within the 5176 /// same translation unit. 5177 void CodeGenModule::EmitStaticExternCAliases() { 5178 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5179 return; 5180 for (auto &I : StaticExternCValues) { 5181 IdentifierInfo *Name = I.first; 5182 llvm::GlobalValue *Val = I.second; 5183 if (Val && !getModule().getNamedValue(Name->getName())) 5184 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5185 } 5186 } 5187 5188 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5189 GlobalDecl &Result) const { 5190 auto Res = Manglings.find(MangledName); 5191 if (Res == Manglings.end()) 5192 return false; 5193 Result = Res->getValue(); 5194 return true; 5195 } 5196 5197 /// Emits metadata nodes associating all the global values in the 5198 /// current module with the Decls they came from. This is useful for 5199 /// projects using IR gen as a subroutine. 5200 /// 5201 /// Since there's currently no way to associate an MDNode directly 5202 /// with an llvm::GlobalValue, we create a global named metadata 5203 /// with the name 'clang.global.decl.ptrs'. 5204 void CodeGenModule::EmitDeclMetadata() { 5205 llvm::NamedMDNode *GlobalMetadata = nullptr; 5206 5207 for (auto &I : MangledDeclNames) { 5208 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5209 // Some mangled names don't necessarily have an associated GlobalValue 5210 // in this module, e.g. if we mangled it for DebugInfo. 5211 if (Addr) 5212 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5213 } 5214 } 5215 5216 /// Emits metadata nodes for all the local variables in the current 5217 /// function. 5218 void CodeGenFunction::EmitDeclMetadata() { 5219 if (LocalDeclMap.empty()) return; 5220 5221 llvm::LLVMContext &Context = getLLVMContext(); 5222 5223 // Find the unique metadata ID for this name. 5224 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5225 5226 llvm::NamedMDNode *GlobalMetadata = nullptr; 5227 5228 for (auto &I : LocalDeclMap) { 5229 const Decl *D = I.first; 5230 llvm::Value *Addr = I.second.getPointer(); 5231 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5232 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5233 Alloca->setMetadata( 5234 DeclPtrKind, llvm::MDNode::get( 5235 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5236 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5237 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5238 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5239 } 5240 } 5241 } 5242 5243 void CodeGenModule::EmitVersionIdentMetadata() { 5244 llvm::NamedMDNode *IdentMetadata = 5245 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5246 std::string Version = getClangFullVersion(); 5247 llvm::LLVMContext &Ctx = TheModule.getContext(); 5248 5249 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5250 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5251 } 5252 5253 void CodeGenModule::EmitCommandLineMetadata() { 5254 llvm::NamedMDNode *CommandLineMetadata = 5255 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5256 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5257 llvm::LLVMContext &Ctx = TheModule.getContext(); 5258 5259 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5260 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5261 } 5262 5263 void CodeGenModule::EmitTargetMetadata() { 5264 // Warning, new MangledDeclNames may be appended within this loop. 5265 // We rely on MapVector insertions adding new elements to the end 5266 // of the container. 5267 // FIXME: Move this loop into the one target that needs it, and only 5268 // loop over those declarations for which we couldn't emit the target 5269 // metadata when we emitted the declaration. 5270 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5271 auto Val = *(MangledDeclNames.begin() + I); 5272 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5273 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5274 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5275 } 5276 } 5277 5278 void CodeGenModule::EmitCoverageFile() { 5279 if (getCodeGenOpts().CoverageDataFile.empty() && 5280 getCodeGenOpts().CoverageNotesFile.empty()) 5281 return; 5282 5283 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5284 if (!CUNode) 5285 return; 5286 5287 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5288 llvm::LLVMContext &Ctx = TheModule.getContext(); 5289 auto *CoverageDataFile = 5290 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5291 auto *CoverageNotesFile = 5292 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5293 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5294 llvm::MDNode *CU = CUNode->getOperand(i); 5295 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5296 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5297 } 5298 } 5299 5300 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5301 // Sema has checked that all uuid strings are of the form 5302 // "12345678-1234-1234-1234-1234567890ab". 5303 assert(Uuid.size() == 36); 5304 for (unsigned i = 0; i < 36; ++i) { 5305 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5306 else assert(isHexDigit(Uuid[i])); 5307 } 5308 5309 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5310 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5311 5312 llvm::Constant *Field3[8]; 5313 for (unsigned Idx = 0; Idx < 8; ++Idx) 5314 Field3[Idx] = llvm::ConstantInt::get( 5315 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5316 5317 llvm::Constant *Fields[4] = { 5318 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5319 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5320 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5321 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5322 }; 5323 5324 return llvm::ConstantStruct::getAnon(Fields); 5325 } 5326 5327 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5328 bool ForEH) { 5329 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5330 // FIXME: should we even be calling this method if RTTI is disabled 5331 // and it's not for EH? 5332 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5333 return llvm::Constant::getNullValue(Int8PtrTy); 5334 5335 if (ForEH && Ty->isObjCObjectPointerType() && 5336 LangOpts.ObjCRuntime.isGNUFamily()) 5337 return ObjCRuntime->GetEHType(Ty); 5338 5339 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5340 } 5341 5342 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5343 // Do not emit threadprivates in simd-only mode. 5344 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5345 return; 5346 for (auto RefExpr : D->varlists()) { 5347 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5348 bool PerformInit = 5349 VD->getAnyInitializer() && 5350 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5351 /*ForRef=*/false); 5352 5353 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5354 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5355 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5356 CXXGlobalInits.push_back(InitFunction); 5357 } 5358 } 5359 5360 llvm::Metadata * 5361 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5362 StringRef Suffix) { 5363 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5364 if (InternalId) 5365 return InternalId; 5366 5367 if (isExternallyVisible(T->getLinkage())) { 5368 std::string OutName; 5369 llvm::raw_string_ostream Out(OutName); 5370 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5371 Out << Suffix; 5372 5373 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5374 } else { 5375 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5376 llvm::ArrayRef<llvm::Metadata *>()); 5377 } 5378 5379 return InternalId; 5380 } 5381 5382 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5383 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5384 } 5385 5386 llvm::Metadata * 5387 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5388 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5389 } 5390 5391 // Generalize pointer types to a void pointer with the qualifiers of the 5392 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5393 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5394 // 'void *'. 5395 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5396 if (!Ty->isPointerType()) 5397 return Ty; 5398 5399 return Ctx.getPointerType( 5400 QualType(Ctx.VoidTy).withCVRQualifiers( 5401 Ty->getPointeeType().getCVRQualifiers())); 5402 } 5403 5404 // Apply type generalization to a FunctionType's return and argument types 5405 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5406 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5407 SmallVector<QualType, 8> GeneralizedParams; 5408 for (auto &Param : FnType->param_types()) 5409 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5410 5411 return Ctx.getFunctionType( 5412 GeneralizeType(Ctx, FnType->getReturnType()), 5413 GeneralizedParams, FnType->getExtProtoInfo()); 5414 } 5415 5416 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5417 return Ctx.getFunctionNoProtoType( 5418 GeneralizeType(Ctx, FnType->getReturnType())); 5419 5420 llvm_unreachable("Encountered unknown FunctionType"); 5421 } 5422 5423 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5424 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5425 GeneralizedMetadataIdMap, ".generalized"); 5426 } 5427 5428 /// Returns whether this module needs the "all-vtables" type identifier. 5429 bool CodeGenModule::NeedAllVtablesTypeId() const { 5430 // Returns true if at least one of vtable-based CFI checkers is enabled and 5431 // is not in the trapping mode. 5432 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5433 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5434 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5435 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5436 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5437 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5438 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5439 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5440 } 5441 5442 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5443 CharUnits Offset, 5444 const CXXRecordDecl *RD) { 5445 llvm::Metadata *MD = 5446 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5447 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5448 5449 if (CodeGenOpts.SanitizeCfiCrossDso) 5450 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5451 VTable->addTypeMetadata(Offset.getQuantity(), 5452 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5453 5454 if (NeedAllVtablesTypeId()) { 5455 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5456 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5457 } 5458 } 5459 5460 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5461 assert(TD != nullptr); 5462 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5463 5464 ParsedAttr.Features.erase( 5465 llvm::remove_if(ParsedAttr.Features, 5466 [&](const std::string &Feat) { 5467 return !Target.isValidFeatureName( 5468 StringRef{Feat}.substr(1)); 5469 }), 5470 ParsedAttr.Features.end()); 5471 return ParsedAttr; 5472 } 5473 5474 5475 // Fills in the supplied string map with the set of target features for the 5476 // passed in function. 5477 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5478 GlobalDecl GD) { 5479 StringRef TargetCPU = Target.getTargetOpts().CPU; 5480 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5481 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5482 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5483 5484 // Make a copy of the features as passed on the command line into the 5485 // beginning of the additional features from the function to override. 5486 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5487 Target.getTargetOpts().FeaturesAsWritten.begin(), 5488 Target.getTargetOpts().FeaturesAsWritten.end()); 5489 5490 if (ParsedAttr.Architecture != "" && 5491 Target.isValidCPUName(ParsedAttr.Architecture)) 5492 TargetCPU = ParsedAttr.Architecture; 5493 5494 // Now populate the feature map, first with the TargetCPU which is either 5495 // the default or a new one from the target attribute string. Then we'll use 5496 // the passed in features (FeaturesAsWritten) along with the new ones from 5497 // the attribute. 5498 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5499 ParsedAttr.Features); 5500 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5501 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5502 Target.getCPUSpecificCPUDispatchFeatures( 5503 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5504 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5505 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5506 } else { 5507 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5508 Target.getTargetOpts().Features); 5509 } 5510 } 5511 5512 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5513 if (!SanStats) 5514 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5515 5516 return *SanStats; 5517 } 5518 llvm::Value * 5519 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5520 CodeGenFunction &CGF) { 5521 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5522 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5523 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5524 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5525 "__translate_sampler_initializer"), 5526 {C}); 5527 } 5528