1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/CallingConv.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::iOS64: 64 case TargetCXXABI::GenericItanium: 65 return CreateItaniumCXXABI(CGM); 66 case TargetCXXABI::Microsoft: 67 return CreateMicrosoftCXXABI(CGM); 68 } 69 70 llvm_unreachable("invalid C++ ABI kind"); 71 } 72 73 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 74 llvm::Module &M, const llvm::DataLayout &TD, 75 DiagnosticsEngine &diags) 76 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 77 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 78 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 79 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 80 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 81 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 82 CFConstantStringClassRef(0), 83 ConstantStringClassRef(0), NSConstantStringType(0), 84 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 85 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 86 LifetimeStartFn(0), LifetimeEndFn(0), 87 SanitizerBlacklist( 88 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 89 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 90 : LangOpts.Sanitize) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 105 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 106 Int8PtrTy = Int8Ty->getPointerTo(0); 107 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 108 109 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 110 111 if (LangOpts.ObjC1) 112 createObjCRuntime(); 113 if (LangOpts.OpenCL) 114 createOpenCLRuntime(); 115 if (LangOpts.CUDA) 116 createCUDARuntime(); 117 118 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 119 if (SanOpts.Thread || 120 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 121 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 122 getCXXABI().getMangleContext()); 123 124 // If debug info or coverage generation is enabled, create the CGDebugInfo 125 // object. 126 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 127 CodeGenOpts.EmitGcovArcs || 128 CodeGenOpts.EmitGcovNotes) 129 DebugInfo = new CGDebugInfo(*this); 130 131 Block.GlobalUniqueCount = 0; 132 133 if (C.getLangOpts().ObjCAutoRefCount) 134 ARCData = new ARCEntrypoints(); 135 RRData = new RREntrypoints(); 136 137 if (!CodeGenOpts.InstrProfileInput.empty()) 138 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 139 } 140 141 CodeGenModule::~CodeGenModule() { 142 delete ObjCRuntime; 143 delete OpenCLRuntime; 144 delete CUDARuntime; 145 delete TheTargetCodeGenInfo; 146 delete TBAA; 147 delete DebugInfo; 148 delete ARCData; 149 delete RRData; 150 } 151 152 void CodeGenModule::createObjCRuntime() { 153 // This is just isGNUFamily(), but we want to force implementors of 154 // new ABIs to decide how best to do this. 155 switch (LangOpts.ObjCRuntime.getKind()) { 156 case ObjCRuntime::GNUstep: 157 case ObjCRuntime::GCC: 158 case ObjCRuntime::ObjFW: 159 ObjCRuntime = CreateGNUObjCRuntime(*this); 160 return; 161 162 case ObjCRuntime::FragileMacOSX: 163 case ObjCRuntime::MacOSX: 164 case ObjCRuntime::iOS: 165 ObjCRuntime = CreateMacObjCRuntime(*this); 166 return; 167 } 168 llvm_unreachable("bad runtime kind"); 169 } 170 171 void CodeGenModule::createOpenCLRuntime() { 172 OpenCLRuntime = new CGOpenCLRuntime(*this); 173 } 174 175 void CodeGenModule::createCUDARuntime() { 176 CUDARuntime = CreateNVCUDARuntime(*this); 177 } 178 179 void CodeGenModule::applyReplacements() { 180 for (ReplacementsTy::iterator I = Replacements.begin(), 181 E = Replacements.end(); 182 I != E; ++I) { 183 StringRef MangledName = I->first(); 184 llvm::Constant *Replacement = I->second; 185 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 186 if (!Entry) 187 continue; 188 llvm::Function *OldF = cast<llvm::Function>(Entry); 189 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 190 if (!NewF) { 191 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 192 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 193 } else { 194 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 195 assert(CE->getOpcode() == llvm::Instruction::BitCast || 196 CE->getOpcode() == llvm::Instruction::GetElementPtr); 197 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 198 } 199 } 200 201 // Replace old with new, but keep the old order. 202 OldF->replaceAllUsesWith(Replacement); 203 if (NewF) { 204 NewF->removeFromParent(); 205 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 206 } 207 OldF->eraseFromParent(); 208 } 209 } 210 211 void CodeGenModule::checkAliases() { 212 // Check if the constructed aliases are well formed. It is really unfortunate 213 // that we have to do this in CodeGen, but we only construct mangled names 214 // and aliases during codegen. 215 bool Error = false; 216 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 217 E = Aliases.end(); I != E; ++I) { 218 const GlobalDecl &GD = *I; 219 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 220 const AliasAttr *AA = D->getAttr<AliasAttr>(); 221 StringRef MangledName = getMangledName(GD); 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 224 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 225 if (!GV) { 226 Error = true; 227 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 228 } else if (GV->isDeclaration()) { 229 Error = true; 230 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 231 } 232 233 // We have to handle alias to weak aliases in here. LLVM itself disallows 234 // this since the object semantics would not match the IL one. For 235 // compatibility with gcc we implement it by just pointing the alias 236 // to its aliasee's aliasee. We also warn, since the user is probably 237 // expecting the link to be weak. 238 llvm::Constant *Aliasee = Alias->getAliasee(); 239 llvm::GlobalValue *AliaseeGV; 240 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) { 241 assert((CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::AddrSpaceCast) && 243 "Unsupported aliasee"); 244 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 245 } else { 246 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 247 } 248 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 249 if (GA->mayBeOverridden()) { 250 getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 251 << GA->getAliasedGlobal()->getName() << GA->getName(); 252 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 253 GA->getAliasee(), Alias->getType()); 254 Alias->setAliasee(Aliasee); 255 } 256 } 257 } 258 if (!Error) 259 return; 260 261 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 262 E = Aliases.end(); I != E; ++I) { 263 const GlobalDecl &GD = *I; 264 StringRef MangledName = getMangledName(GD); 265 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 266 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 267 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 268 Alias->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::clear() { 273 DeferredDeclsToEmit.clear(); 274 } 275 276 void CodeGenModule::Release() { 277 EmitDeferred(); 278 applyReplacements(); 279 checkAliases(); 280 EmitCXXGlobalInitFunc(); 281 EmitCXXGlobalDtorFunc(); 282 EmitCXXThreadLocalInitFunc(); 283 if (ObjCRuntime) 284 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 285 AddGlobalCtor(ObjCInitFunction); 286 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 287 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 288 EmitGlobalAnnotations(); 289 EmitStaticExternCAliases(); 290 emitLLVMUsed(); 291 292 if (CodeGenOpts.Autolink && 293 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 294 EmitModuleLinkOptions(); 295 } 296 if (CodeGenOpts.DwarfVersion) 297 // We actually want the latest version when there are conflicts. 298 // We can change from Warning to Latest if such mode is supported. 299 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 300 CodeGenOpts.DwarfVersion); 301 if (DebugInfo) 302 // We support a single version in the linked module: error out when 303 // modules do not have the same version. We are going to implement dropping 304 // debug info when the version number is not up-to-date. Once that is 305 // done, the bitcode linker is not going to see modules with different 306 // version numbers. 307 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 308 llvm::DEBUG_METADATA_VERSION); 309 310 SimplifyPersonality(); 311 312 if (getCodeGenOpts().EmitDeclMetadata) 313 EmitDeclMetadata(); 314 315 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 316 EmitCoverageFile(); 317 318 if (DebugInfo) 319 DebugInfo->finalize(); 320 321 EmitVersionIdentMetadata(); 322 } 323 324 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 325 // Make sure that this type is translated. 326 Types.UpdateCompletedType(TD); 327 } 328 329 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 330 if (!TBAA) 331 return 0; 332 return TBAA->getTBAAInfo(QTy); 333 } 334 335 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 336 if (!TBAA) 337 return 0; 338 return TBAA->getTBAAInfoForVTablePtr(); 339 } 340 341 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 342 if (!TBAA) 343 return 0; 344 return TBAA->getTBAAStructInfo(QTy); 345 } 346 347 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 348 if (!TBAA) 349 return 0; 350 return TBAA->getTBAAStructTypeInfo(QTy); 351 } 352 353 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 354 llvm::MDNode *AccessN, 355 uint64_t O) { 356 if (!TBAA) 357 return 0; 358 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 359 } 360 361 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 362 /// and struct-path aware TBAA, the tag has the same format: 363 /// base type, access type and offset. 364 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 365 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 366 llvm::MDNode *TBAAInfo, 367 bool ConvertTypeToTag) { 368 if (ConvertTypeToTag && TBAA) 369 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 370 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 371 else 372 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 373 } 374 375 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 376 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 377 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 378 } 379 380 /// ErrorUnsupported - Print out an error that codegen doesn't support the 381 /// specified stmt yet. 382 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 383 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 384 "cannot compile this %0 yet"); 385 std::string Msg = Type; 386 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 387 << Msg << S->getSourceRange(); 388 } 389 390 /// ErrorUnsupported - Print out an error that codegen doesn't support the 391 /// specified decl yet. 392 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 393 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 394 "cannot compile this %0 yet"); 395 std::string Msg = Type; 396 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 397 } 398 399 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 400 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 401 } 402 403 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 404 const NamedDecl *D) const { 405 // Internal definitions always have default visibility. 406 if (GV->hasLocalLinkage()) { 407 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 408 return; 409 } 410 411 // Set visibility for definitions. 412 LinkageInfo LV = D->getLinkageAndVisibility(); 413 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 414 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 415 } 416 417 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 418 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 419 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 420 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 421 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 422 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 423 } 424 425 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 426 CodeGenOptions::TLSModel M) { 427 switch (M) { 428 case CodeGenOptions::GeneralDynamicTLSModel: 429 return llvm::GlobalVariable::GeneralDynamicTLSModel; 430 case CodeGenOptions::LocalDynamicTLSModel: 431 return llvm::GlobalVariable::LocalDynamicTLSModel; 432 case CodeGenOptions::InitialExecTLSModel: 433 return llvm::GlobalVariable::InitialExecTLSModel; 434 case CodeGenOptions::LocalExecTLSModel: 435 return llvm::GlobalVariable::LocalExecTLSModel; 436 } 437 llvm_unreachable("Invalid TLS model!"); 438 } 439 440 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 441 const VarDecl &D) const { 442 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 443 444 llvm::GlobalVariable::ThreadLocalMode TLM; 445 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 446 447 // Override the TLS model if it is explicitly specified. 448 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 449 TLM = GetLLVMTLSModel(Attr->getModel()); 450 } 451 452 GV->setThreadLocalMode(TLM); 453 } 454 455 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 456 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 457 458 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 459 if (!Str.empty()) 460 return Str; 461 462 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 463 IdentifierInfo *II = ND->getIdentifier(); 464 assert(II && "Attempt to mangle unnamed decl."); 465 466 Str = II->getName(); 467 return Str; 468 } 469 470 SmallString<256> Buffer; 471 llvm::raw_svector_ostream Out(Buffer); 472 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 473 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 474 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 475 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 476 else 477 getCXXABI().getMangleContext().mangleName(ND, Out); 478 479 // Allocate space for the mangled name. 480 Out.flush(); 481 size_t Length = Buffer.size(); 482 char *Name = MangledNamesAllocator.Allocate<char>(Length); 483 std::copy(Buffer.begin(), Buffer.end(), Name); 484 485 Str = StringRef(Name, Length); 486 487 return Str; 488 } 489 490 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 491 const BlockDecl *BD) { 492 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 493 const Decl *D = GD.getDecl(); 494 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 495 if (D == 0) 496 MangleCtx.mangleGlobalBlock(BD, 497 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 498 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 499 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 500 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 501 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 502 else 503 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 504 } 505 506 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 507 return getModule().getNamedValue(Name); 508 } 509 510 /// AddGlobalCtor - Add a function to the list that will be called before 511 /// main() runs. 512 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 513 // FIXME: Type coercion of void()* types. 514 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 515 } 516 517 /// AddGlobalDtor - Add a function to the list that will be called 518 /// when the module is unloaded. 519 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 520 // FIXME: Type coercion of void()* types. 521 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 522 } 523 524 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 525 // Ctor function type is void()*. 526 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 527 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 528 529 // Get the type of a ctor entry, { i32, void ()* }. 530 llvm::StructType *CtorStructTy = 531 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 532 533 // Construct the constructor and destructor arrays. 534 SmallVector<llvm::Constant*, 8> Ctors; 535 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 536 llvm::Constant *S[] = { 537 llvm::ConstantInt::get(Int32Ty, I->second, false), 538 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 539 }; 540 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 541 } 542 543 if (!Ctors.empty()) { 544 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 545 new llvm::GlobalVariable(TheModule, AT, false, 546 llvm::GlobalValue::AppendingLinkage, 547 llvm::ConstantArray::get(AT, Ctors), 548 GlobalName); 549 } 550 } 551 552 llvm::GlobalValue::LinkageTypes 553 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 554 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 555 556 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 557 558 if (Linkage == GVA_Internal) 559 return llvm::Function::InternalLinkage; 560 561 if (D->hasAttr<DLLExportAttr>()) 562 return llvm::Function::ExternalLinkage; 563 564 if (D->hasAttr<WeakAttr>()) 565 return llvm::Function::WeakAnyLinkage; 566 567 // In C99 mode, 'inline' functions are guaranteed to have a strong 568 // definition somewhere else, so we can use available_externally linkage. 569 if (Linkage == GVA_C99Inline) 570 return llvm::Function::AvailableExternallyLinkage; 571 572 // Note that Apple's kernel linker doesn't support symbol 573 // coalescing, so we need to avoid linkonce and weak linkages there. 574 // Normally, this means we just map to internal, but for explicit 575 // instantiations we'll map to external. 576 577 // In C++, the compiler has to emit a definition in every translation unit 578 // that references the function. We should use linkonce_odr because 579 // a) if all references in this translation unit are optimized away, we 580 // don't need to codegen it. b) if the function persists, it needs to be 581 // merged with other definitions. c) C++ has the ODR, so we know the 582 // definition is dependable. 583 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 584 return !Context.getLangOpts().AppleKext 585 ? llvm::Function::LinkOnceODRLinkage 586 : llvm::Function::InternalLinkage; 587 588 // An explicit instantiation of a template has weak linkage, since 589 // explicit instantiations can occur in multiple translation units 590 // and must all be equivalent. However, we are not allowed to 591 // throw away these explicit instantiations. 592 if (Linkage == GVA_ExplicitTemplateInstantiation) 593 return !Context.getLangOpts().AppleKext 594 ? llvm::Function::WeakODRLinkage 595 : llvm::Function::ExternalLinkage; 596 597 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 598 // emitted on an as-needed basis. 599 if (isa<CXXDestructorDecl>(D) && 600 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 601 GD.getDtorType())) 602 return llvm::Function::LinkOnceODRLinkage; 603 604 // Otherwise, we have strong external linkage. 605 assert(Linkage == GVA_StrongExternal); 606 return llvm::Function::ExternalLinkage; 607 } 608 609 610 /// SetFunctionDefinitionAttributes - Set attributes for a global. 611 /// 612 /// FIXME: This is currently only done for aliases and functions, but not for 613 /// variables (these details are set in EmitGlobalVarDefinition for variables). 614 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 615 llvm::GlobalValue *GV) { 616 SetCommonAttributes(D, GV); 617 } 618 619 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 620 const CGFunctionInfo &Info, 621 llvm::Function *F) { 622 unsigned CallingConv; 623 AttributeListType AttributeList; 624 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 625 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 626 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 627 } 628 629 /// Determines whether the language options require us to model 630 /// unwind exceptions. We treat -fexceptions as mandating this 631 /// except under the fragile ObjC ABI with only ObjC exceptions 632 /// enabled. This means, for example, that C with -fexceptions 633 /// enables this. 634 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 635 // If exceptions are completely disabled, obviously this is false. 636 if (!LangOpts.Exceptions) return false; 637 638 // If C++ exceptions are enabled, this is true. 639 if (LangOpts.CXXExceptions) return true; 640 641 // If ObjC exceptions are enabled, this depends on the ABI. 642 if (LangOpts.ObjCExceptions) { 643 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 644 } 645 646 return true; 647 } 648 649 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 650 llvm::Function *F) { 651 llvm::AttrBuilder B; 652 653 if (CodeGenOpts.UnwindTables) 654 B.addAttribute(llvm::Attribute::UWTable); 655 656 if (!hasUnwindExceptions(LangOpts)) 657 B.addAttribute(llvm::Attribute::NoUnwind); 658 659 if (D->hasAttr<NakedAttr>()) { 660 // Naked implies noinline: we should not be inlining such functions. 661 B.addAttribute(llvm::Attribute::Naked); 662 B.addAttribute(llvm::Attribute::NoInline); 663 } else if (D->hasAttr<OptimizeNoneAttr>()) { 664 // OptimizeNone implies noinline; we should not be inlining such functions. 665 B.addAttribute(llvm::Attribute::OptimizeNone); 666 B.addAttribute(llvm::Attribute::NoInline); 667 } else if (D->hasAttr<NoDuplicateAttr>()) { 668 B.addAttribute(llvm::Attribute::NoDuplicate); 669 } else if (D->hasAttr<NoInlineAttr>()) { 670 B.addAttribute(llvm::Attribute::NoInline); 671 } else if (D->hasAttr<AlwaysInlineAttr>() && 672 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 673 llvm::Attribute::NoInline)) { 674 // (noinline wins over always_inline, and we can't specify both in IR) 675 B.addAttribute(llvm::Attribute::AlwaysInline); 676 } 677 678 if (D->hasAttr<ColdAttr>()) { 679 B.addAttribute(llvm::Attribute::OptimizeForSize); 680 B.addAttribute(llvm::Attribute::Cold); 681 } 682 683 if (D->hasAttr<MinSizeAttr>()) 684 B.addAttribute(llvm::Attribute::MinSize); 685 686 if (D->hasAttr<OptimizeNoneAttr>()) { 687 // OptimizeNone wins over OptimizeForSize and MinSize. 688 B.removeAttribute(llvm::Attribute::OptimizeForSize); 689 B.removeAttribute(llvm::Attribute::MinSize); 690 } 691 692 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 693 B.addAttribute(llvm::Attribute::StackProtect); 694 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 695 B.addAttribute(llvm::Attribute::StackProtectStrong); 696 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 697 B.addAttribute(llvm::Attribute::StackProtectReq); 698 699 // Add sanitizer attributes if function is not blacklisted. 700 if (!SanitizerBlacklist->isIn(*F)) { 701 // When AddressSanitizer is enabled, set SanitizeAddress attribute 702 // unless __attribute__((no_sanitize_address)) is used. 703 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 704 B.addAttribute(llvm::Attribute::SanitizeAddress); 705 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 706 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 707 B.addAttribute(llvm::Attribute::SanitizeThread); 708 } 709 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 710 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 711 B.addAttribute(llvm::Attribute::SanitizeMemory); 712 } 713 714 F->addAttributes(llvm::AttributeSet::FunctionIndex, 715 llvm::AttributeSet::get( 716 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 717 718 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 719 F->setUnnamedAddr(true); 720 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 721 if (MD->isVirtual()) 722 F->setUnnamedAddr(true); 723 724 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 725 if (alignment) 726 F->setAlignment(alignment); 727 728 // C++ ABI requires 2-byte alignment for member functions. 729 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 730 F->setAlignment(2); 731 } 732 733 void CodeGenModule::SetCommonAttributes(const Decl *D, 734 llvm::GlobalValue *GV) { 735 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 736 setGlobalVisibility(GV, ND); 737 else 738 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 739 740 if (D->hasAttr<UsedAttr>()) 741 addUsedGlobal(GV); 742 743 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 744 GV->setSection(SA->getName()); 745 746 // Alias cannot have attributes. Filter them here. 747 if (!isa<llvm::GlobalAlias>(GV)) 748 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 749 } 750 751 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 752 llvm::Function *F, 753 const CGFunctionInfo &FI) { 754 SetLLVMFunctionAttributes(D, FI, F); 755 SetLLVMFunctionAttributesForDefinition(D, F); 756 757 F->setLinkage(llvm::Function::InternalLinkage); 758 759 SetCommonAttributes(D, F); 760 } 761 762 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 763 llvm::Function *F, 764 bool IsIncompleteFunction) { 765 if (unsigned IID = F->getIntrinsicID()) { 766 // If this is an intrinsic function, set the function's attributes 767 // to the intrinsic's attributes. 768 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 769 (llvm::Intrinsic::ID)IID)); 770 return; 771 } 772 773 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 774 775 if (!IsIncompleteFunction) 776 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 777 778 if (getCXXABI().HasThisReturn(GD)) { 779 assert(!F->arg_empty() && 780 F->arg_begin()->getType() 781 ->canLosslesslyBitCastTo(F->getReturnType()) && 782 "unexpected this return"); 783 F->addAttribute(1, llvm::Attribute::Returned); 784 } 785 786 // Only a few attributes are set on declarations; these may later be 787 // overridden by a definition. 788 789 if (FD->hasAttr<DLLImportAttr>()) { 790 F->setLinkage(llvm::Function::ExternalLinkage); 791 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 792 } else if (FD->hasAttr<WeakAttr>() || 793 FD->isWeakImported()) { 794 // "extern_weak" is overloaded in LLVM; we probably should have 795 // separate linkage types for this. 796 F->setLinkage(llvm::Function::ExternalWeakLinkage); 797 } else { 798 F->setLinkage(llvm::Function::ExternalLinkage); 799 if (FD->hasAttr<DLLExportAttr>()) 800 F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 801 802 LinkageInfo LV = FD->getLinkageAndVisibility(); 803 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 804 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 805 } 806 } 807 808 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 809 F->setSection(SA->getName()); 810 811 // A replaceable global allocation function does not act like a builtin by 812 // default, only if it is invoked by a new-expression or delete-expression. 813 if (FD->isReplaceableGlobalAllocationFunction()) 814 F->addAttribute(llvm::AttributeSet::FunctionIndex, 815 llvm::Attribute::NoBuiltin); 816 } 817 818 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 819 assert(!GV->isDeclaration() && 820 "Only globals with definition can force usage."); 821 LLVMUsed.push_back(GV); 822 } 823 824 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 825 assert(!GV->isDeclaration() && 826 "Only globals with definition can force usage."); 827 LLVMCompilerUsed.push_back(GV); 828 } 829 830 static void emitUsed(CodeGenModule &CGM, StringRef Name, 831 std::vector<llvm::WeakVH> &List) { 832 // Don't create llvm.used if there is no need. 833 if (List.empty()) 834 return; 835 836 // Convert List to what ConstantArray needs. 837 SmallVector<llvm::Constant*, 8> UsedArray; 838 UsedArray.resize(List.size()); 839 for (unsigned i = 0, e = List.size(); i != e; ++i) { 840 UsedArray[i] = 841 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 842 CGM.Int8PtrTy); 843 } 844 845 if (UsedArray.empty()) 846 return; 847 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 848 849 llvm::GlobalVariable *GV = 850 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 851 llvm::GlobalValue::AppendingLinkage, 852 llvm::ConstantArray::get(ATy, UsedArray), 853 Name); 854 855 GV->setSection("llvm.metadata"); 856 } 857 858 void CodeGenModule::emitLLVMUsed() { 859 emitUsed(*this, "llvm.used", LLVMUsed); 860 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 861 } 862 863 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 864 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 865 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 866 } 867 868 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 869 llvm::SmallString<32> Opt; 870 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 871 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 872 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 873 } 874 875 void CodeGenModule::AddDependentLib(StringRef Lib) { 876 llvm::SmallString<24> Opt; 877 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 878 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 879 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 880 } 881 882 /// \brief Add link options implied by the given module, including modules 883 /// it depends on, using a postorder walk. 884 static void addLinkOptionsPostorder(CodeGenModule &CGM, 885 Module *Mod, 886 SmallVectorImpl<llvm::Value *> &Metadata, 887 llvm::SmallPtrSet<Module *, 16> &Visited) { 888 // Import this module's parent. 889 if (Mod->Parent && Visited.insert(Mod->Parent)) { 890 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 891 } 892 893 // Import this module's dependencies. 894 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 895 if (Visited.insert(Mod->Imports[I-1])) 896 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 897 } 898 899 // Add linker options to link against the libraries/frameworks 900 // described by this module. 901 llvm::LLVMContext &Context = CGM.getLLVMContext(); 902 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 903 // Link against a framework. Frameworks are currently Darwin only, so we 904 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 905 if (Mod->LinkLibraries[I-1].IsFramework) { 906 llvm::Value *Args[2] = { 907 llvm::MDString::get(Context, "-framework"), 908 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 909 }; 910 911 Metadata.push_back(llvm::MDNode::get(Context, Args)); 912 continue; 913 } 914 915 // Link against a library. 916 llvm::SmallString<24> Opt; 917 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 918 Mod->LinkLibraries[I-1].Library, Opt); 919 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 920 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 921 } 922 } 923 924 void CodeGenModule::EmitModuleLinkOptions() { 925 // Collect the set of all of the modules we want to visit to emit link 926 // options, which is essentially the imported modules and all of their 927 // non-explicit child modules. 928 llvm::SetVector<clang::Module *> LinkModules; 929 llvm::SmallPtrSet<clang::Module *, 16> Visited; 930 SmallVector<clang::Module *, 16> Stack; 931 932 // Seed the stack with imported modules. 933 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 934 MEnd = ImportedModules.end(); 935 M != MEnd; ++M) { 936 if (Visited.insert(*M)) 937 Stack.push_back(*M); 938 } 939 940 // Find all of the modules to import, making a little effort to prune 941 // non-leaf modules. 942 while (!Stack.empty()) { 943 clang::Module *Mod = Stack.pop_back_val(); 944 945 bool AnyChildren = false; 946 947 // Visit the submodules of this module. 948 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 949 SubEnd = Mod->submodule_end(); 950 Sub != SubEnd; ++Sub) { 951 // Skip explicit children; they need to be explicitly imported to be 952 // linked against. 953 if ((*Sub)->IsExplicit) 954 continue; 955 956 if (Visited.insert(*Sub)) { 957 Stack.push_back(*Sub); 958 AnyChildren = true; 959 } 960 } 961 962 // We didn't find any children, so add this module to the list of 963 // modules to link against. 964 if (!AnyChildren) { 965 LinkModules.insert(Mod); 966 } 967 } 968 969 // Add link options for all of the imported modules in reverse topological 970 // order. We don't do anything to try to order import link flags with respect 971 // to linker options inserted by things like #pragma comment(). 972 SmallVector<llvm::Value *, 16> MetadataArgs; 973 Visited.clear(); 974 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 975 MEnd = LinkModules.end(); 976 M != MEnd; ++M) { 977 if (Visited.insert(*M)) 978 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 979 } 980 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 981 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 982 983 // Add the linker options metadata flag. 984 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 985 llvm::MDNode::get(getLLVMContext(), 986 LinkerOptionsMetadata)); 987 } 988 989 void CodeGenModule::EmitDeferred() { 990 // Emit code for any potentially referenced deferred decls. Since a 991 // previously unused static decl may become used during the generation of code 992 // for a static function, iterate until no changes are made. 993 994 while (true) { 995 if (!DeferredVTables.empty()) { 996 EmitDeferredVTables(); 997 998 // Emitting a v-table doesn't directly cause more v-tables to 999 // become deferred, although it can cause functions to be 1000 // emitted that then need those v-tables. 1001 assert(DeferredVTables.empty()); 1002 } 1003 1004 // Stop if we're out of both deferred v-tables and deferred declarations. 1005 if (DeferredDeclsToEmit.empty()) break; 1006 1007 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1008 GlobalDecl D = G.GD; 1009 llvm::GlobalValue *GV = G.GV; 1010 DeferredDeclsToEmit.pop_back(); 1011 1012 assert(GV == GetGlobalValue(getMangledName(D))); 1013 // Check to see if we've already emitted this. This is necessary 1014 // for a couple of reasons: first, decls can end up in the 1015 // deferred-decls queue multiple times, and second, decls can end 1016 // up with definitions in unusual ways (e.g. by an extern inline 1017 // function acquiring a strong function redefinition). Just 1018 // ignore these cases. 1019 if(!GV->isDeclaration()) 1020 continue; 1021 1022 // Otherwise, emit the definition and move on to the next one. 1023 EmitGlobalDefinition(D, GV); 1024 } 1025 } 1026 1027 void CodeGenModule::EmitGlobalAnnotations() { 1028 if (Annotations.empty()) 1029 return; 1030 1031 // Create a new global variable for the ConstantStruct in the Module. 1032 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1033 Annotations[0]->getType(), Annotations.size()), Annotations); 1034 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1035 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1036 "llvm.global.annotations"); 1037 gv->setSection(AnnotationSection); 1038 } 1039 1040 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1041 llvm::Constant *&AStr = AnnotationStrings[Str]; 1042 if (AStr) 1043 return AStr; 1044 1045 // Not found yet, create a new global. 1046 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1047 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1048 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1049 gv->setSection(AnnotationSection); 1050 gv->setUnnamedAddr(true); 1051 AStr = gv; 1052 return gv; 1053 } 1054 1055 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1056 SourceManager &SM = getContext().getSourceManager(); 1057 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1058 if (PLoc.isValid()) 1059 return EmitAnnotationString(PLoc.getFilename()); 1060 return EmitAnnotationString(SM.getBufferName(Loc)); 1061 } 1062 1063 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1064 SourceManager &SM = getContext().getSourceManager(); 1065 PresumedLoc PLoc = SM.getPresumedLoc(L); 1066 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1067 SM.getExpansionLineNumber(L); 1068 return llvm::ConstantInt::get(Int32Ty, LineNo); 1069 } 1070 1071 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1072 const AnnotateAttr *AA, 1073 SourceLocation L) { 1074 // Get the globals for file name, annotation, and the line number. 1075 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1076 *UnitGV = EmitAnnotationUnit(L), 1077 *LineNoCst = EmitAnnotationLineNo(L); 1078 1079 // Create the ConstantStruct for the global annotation. 1080 llvm::Constant *Fields[4] = { 1081 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1082 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1083 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1084 LineNoCst 1085 }; 1086 return llvm::ConstantStruct::getAnon(Fields); 1087 } 1088 1089 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1090 llvm::GlobalValue *GV) { 1091 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1092 // Get the struct elements for these annotations. 1093 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1094 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1095 } 1096 1097 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1098 // Never defer when EmitAllDecls is specified. 1099 if (LangOpts.EmitAllDecls) 1100 return false; 1101 1102 return !getContext().DeclMustBeEmitted(Global); 1103 } 1104 1105 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1106 const CXXUuidofExpr* E) { 1107 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1108 // well-formed. 1109 StringRef Uuid = E->getUuidAsStringRef(Context); 1110 std::string Name = "_GUID_" + Uuid.lower(); 1111 std::replace(Name.begin(), Name.end(), '-', '_'); 1112 1113 // Look for an existing global. 1114 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1115 return GV; 1116 1117 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1118 assert(Init && "failed to initialize as constant"); 1119 1120 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1121 getModule(), Init->getType(), 1122 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1123 return GV; 1124 } 1125 1126 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1127 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1128 assert(AA && "No alias?"); 1129 1130 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1131 1132 // See if there is already something with the target's name in the module. 1133 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1134 if (Entry) { 1135 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1136 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1137 } 1138 1139 llvm::Constant *Aliasee; 1140 if (isa<llvm::FunctionType>(DeclTy)) 1141 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1142 GlobalDecl(cast<FunctionDecl>(VD)), 1143 /*ForVTable=*/false); 1144 else 1145 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1146 llvm::PointerType::getUnqual(DeclTy), 0); 1147 1148 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1149 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1150 WeakRefReferences.insert(F); 1151 1152 return Aliasee; 1153 } 1154 1155 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1156 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1157 1158 // Weak references don't produce any output by themselves. 1159 if (Global->hasAttr<WeakRefAttr>()) 1160 return; 1161 1162 // If this is an alias definition (which otherwise looks like a declaration) 1163 // emit it now. 1164 if (Global->hasAttr<AliasAttr>()) 1165 return EmitAliasDefinition(GD); 1166 1167 // If this is CUDA, be selective about which declarations we emit. 1168 if (LangOpts.CUDA) { 1169 if (CodeGenOpts.CUDAIsDevice) { 1170 if (!Global->hasAttr<CUDADeviceAttr>() && 1171 !Global->hasAttr<CUDAGlobalAttr>() && 1172 !Global->hasAttr<CUDAConstantAttr>() && 1173 !Global->hasAttr<CUDASharedAttr>()) 1174 return; 1175 } else { 1176 if (!Global->hasAttr<CUDAHostAttr>() && ( 1177 Global->hasAttr<CUDADeviceAttr>() || 1178 Global->hasAttr<CUDAConstantAttr>() || 1179 Global->hasAttr<CUDASharedAttr>())) 1180 return; 1181 } 1182 } 1183 1184 // Ignore declarations, they will be emitted on their first use. 1185 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1186 // Forward declarations are emitted lazily on first use. 1187 if (!FD->doesThisDeclarationHaveABody()) { 1188 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1189 return; 1190 1191 StringRef MangledName = getMangledName(GD); 1192 1193 // Compute the function info and LLVM type. 1194 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1195 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1196 1197 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1198 /*DontDefer=*/false); 1199 return; 1200 } 1201 } else { 1202 const VarDecl *VD = cast<VarDecl>(Global); 1203 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1204 1205 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1206 return; 1207 } 1208 1209 // Defer code generation when possible if this is a static definition, inline 1210 // function etc. These we only want to emit if they are used. 1211 if (!MayDeferGeneration(Global)) { 1212 // Emit the definition if it can't be deferred. 1213 EmitGlobalDefinition(GD); 1214 return; 1215 } 1216 1217 // If we're deferring emission of a C++ variable with an 1218 // initializer, remember the order in which it appeared in the file. 1219 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1220 cast<VarDecl>(Global)->hasInit()) { 1221 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1222 CXXGlobalInits.push_back(0); 1223 } 1224 1225 // If the value has already been used, add it directly to the 1226 // DeferredDeclsToEmit list. 1227 StringRef MangledName = getMangledName(GD); 1228 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1229 addDeferredDeclToEmit(GV, GD); 1230 else { 1231 // Otherwise, remember that we saw a deferred decl with this name. The 1232 // first use of the mangled name will cause it to move into 1233 // DeferredDeclsToEmit. 1234 DeferredDecls[MangledName] = GD; 1235 } 1236 } 1237 1238 namespace { 1239 struct FunctionIsDirectlyRecursive : 1240 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1241 const StringRef Name; 1242 const Builtin::Context &BI; 1243 bool Result; 1244 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1245 Name(N), BI(C), Result(false) { 1246 } 1247 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1248 1249 bool TraverseCallExpr(CallExpr *E) { 1250 const FunctionDecl *FD = E->getDirectCallee(); 1251 if (!FD) 1252 return true; 1253 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1254 if (Attr && Name == Attr->getLabel()) { 1255 Result = true; 1256 return false; 1257 } 1258 unsigned BuiltinID = FD->getBuiltinID(); 1259 if (!BuiltinID) 1260 return true; 1261 StringRef BuiltinName = BI.GetName(BuiltinID); 1262 if (BuiltinName.startswith("__builtin_") && 1263 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1264 Result = true; 1265 return false; 1266 } 1267 return true; 1268 } 1269 }; 1270 } 1271 1272 // isTriviallyRecursive - Check if this function calls another 1273 // decl that, because of the asm attribute or the other decl being a builtin, 1274 // ends up pointing to itself. 1275 bool 1276 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1277 StringRef Name; 1278 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1279 // asm labels are a special kind of mangling we have to support. 1280 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1281 if (!Attr) 1282 return false; 1283 Name = Attr->getLabel(); 1284 } else { 1285 Name = FD->getName(); 1286 } 1287 1288 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1289 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1290 return Walker.Result; 1291 } 1292 1293 bool 1294 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1295 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1296 return true; 1297 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1298 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1299 return false; 1300 // PR9614. Avoid cases where the source code is lying to us. An available 1301 // externally function should have an equivalent function somewhere else, 1302 // but a function that calls itself is clearly not equivalent to the real 1303 // implementation. 1304 // This happens in glibc's btowc and in some configure checks. 1305 return !isTriviallyRecursive(F); 1306 } 1307 1308 /// If the type for the method's class was generated by 1309 /// CGDebugInfo::createContextChain(), the cache contains only a 1310 /// limited DIType without any declarations. Since EmitFunctionStart() 1311 /// needs to find the canonical declaration for each method, we need 1312 /// to construct the complete type prior to emitting the method. 1313 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1314 if (!D->isInstance()) 1315 return; 1316 1317 if (CGDebugInfo *DI = getModuleDebugInfo()) 1318 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1319 const PointerType *ThisPtr = 1320 cast<PointerType>(D->getThisType(getContext())); 1321 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1322 } 1323 } 1324 1325 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1326 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1327 1328 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1329 Context.getSourceManager(), 1330 "Generating code for declaration"); 1331 1332 if (isa<FunctionDecl>(D)) { 1333 // At -O0, don't generate IR for functions with available_externally 1334 // linkage. 1335 if (!shouldEmitFunction(GD)) 1336 return; 1337 1338 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1339 CompleteDIClassType(Method); 1340 // Make sure to emit the definition(s) before we emit the thunks. 1341 // This is necessary for the generation of certain thunks. 1342 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1343 EmitCXXConstructor(CD, GD.getCtorType()); 1344 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1345 EmitCXXDestructor(DD, GD.getDtorType()); 1346 else 1347 EmitGlobalFunctionDefinition(GD, GV); 1348 1349 if (Method->isVirtual()) 1350 getVTables().EmitThunks(GD); 1351 1352 return; 1353 } 1354 1355 return EmitGlobalFunctionDefinition(GD, GV); 1356 } 1357 1358 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1359 return EmitGlobalVarDefinition(VD); 1360 1361 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1362 } 1363 1364 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1365 /// module, create and return an llvm Function with the specified type. If there 1366 /// is something in the module with the specified name, return it potentially 1367 /// bitcasted to the right type. 1368 /// 1369 /// If D is non-null, it specifies a decl that correspond to this. This is used 1370 /// to set the attributes on the function when it is first created. 1371 llvm::Constant * 1372 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1373 llvm::Type *Ty, 1374 GlobalDecl GD, bool ForVTable, 1375 bool DontDefer, 1376 llvm::AttributeSet ExtraAttrs) { 1377 const Decl *D = GD.getDecl(); 1378 1379 // Lookup the entry, lazily creating it if necessary. 1380 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1381 if (Entry) { 1382 if (WeakRefReferences.erase(Entry)) { 1383 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1384 if (FD && !FD->hasAttr<WeakAttr>()) 1385 Entry->setLinkage(llvm::Function::ExternalLinkage); 1386 } 1387 1388 if (Entry->getType()->getElementType() == Ty) 1389 return Entry; 1390 1391 // Make sure the result is of the correct type. 1392 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1393 } 1394 1395 // This function doesn't have a complete type (for example, the return 1396 // type is an incomplete struct). Use a fake type instead, and make 1397 // sure not to try to set attributes. 1398 bool IsIncompleteFunction = false; 1399 1400 llvm::FunctionType *FTy; 1401 if (isa<llvm::FunctionType>(Ty)) { 1402 FTy = cast<llvm::FunctionType>(Ty); 1403 } else { 1404 FTy = llvm::FunctionType::get(VoidTy, false); 1405 IsIncompleteFunction = true; 1406 } 1407 1408 llvm::Function *F = llvm::Function::Create(FTy, 1409 llvm::Function::ExternalLinkage, 1410 MangledName, &getModule()); 1411 assert(F->getName() == MangledName && "name was uniqued!"); 1412 if (D) 1413 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1414 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1415 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1416 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1417 llvm::AttributeSet::get(VMContext, 1418 llvm::AttributeSet::FunctionIndex, 1419 B)); 1420 } 1421 1422 if (!DontDefer) { 1423 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1424 // each other bottoming out with the base dtor. Therefore we emit non-base 1425 // dtors on usage, even if there is no dtor definition in the TU. 1426 if (D && isa<CXXDestructorDecl>(D) && 1427 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1428 GD.getDtorType())) 1429 addDeferredDeclToEmit(F, GD); 1430 1431 // This is the first use or definition of a mangled name. If there is a 1432 // deferred decl with this name, remember that we need to emit it at the end 1433 // of the file. 1434 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1435 if (DDI != DeferredDecls.end()) { 1436 // Move the potentially referenced deferred decl to the 1437 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1438 // don't need it anymore). 1439 addDeferredDeclToEmit(F, DDI->second); 1440 DeferredDecls.erase(DDI); 1441 1442 // Otherwise, if this is a sized deallocation function, emit a weak 1443 // definition 1444 // for it at the end of the translation unit. 1445 } else if (D && cast<FunctionDecl>(D) 1446 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1447 addDeferredDeclToEmit(F, GD); 1448 1449 // Otherwise, there are cases we have to worry about where we're 1450 // using a declaration for which we must emit a definition but where 1451 // we might not find a top-level definition: 1452 // - member functions defined inline in their classes 1453 // - friend functions defined inline in some class 1454 // - special member functions with implicit definitions 1455 // If we ever change our AST traversal to walk into class methods, 1456 // this will be unnecessary. 1457 // 1458 // We also don't emit a definition for a function if it's going to be an 1459 // entry 1460 // in a vtable, unless it's already marked as used. 1461 } else if (getLangOpts().CPlusPlus && D) { 1462 // Look for a declaration that's lexically in a record. 1463 const FunctionDecl *FD = cast<FunctionDecl>(D); 1464 FD = FD->getMostRecentDecl(); 1465 do { 1466 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1467 if (FD->isImplicit() && !ForVTable) { 1468 assert(FD->isUsed() && 1469 "Sema didn't mark implicit function as used!"); 1470 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1471 break; 1472 } else if (FD->doesThisDeclarationHaveABody()) { 1473 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1474 break; 1475 } 1476 } 1477 FD = FD->getPreviousDecl(); 1478 } while (FD); 1479 } 1480 } 1481 1482 // Make sure the result is of the requested type. 1483 if (!IsIncompleteFunction) { 1484 assert(F->getType()->getElementType() == Ty); 1485 return F; 1486 } 1487 1488 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1489 return llvm::ConstantExpr::getBitCast(F, PTy); 1490 } 1491 1492 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1493 /// non-null, then this function will use the specified type if it has to 1494 /// create it (this occurs when we see a definition of the function). 1495 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1496 llvm::Type *Ty, 1497 bool ForVTable, 1498 bool DontDefer) { 1499 // If there was no specific requested type, just convert it now. 1500 if (!Ty) 1501 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1502 1503 StringRef MangledName = getMangledName(GD); 1504 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1505 } 1506 1507 /// CreateRuntimeFunction - Create a new runtime function with the specified 1508 /// type and name. 1509 llvm::Constant * 1510 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1511 StringRef Name, 1512 llvm::AttributeSet ExtraAttrs) { 1513 llvm::Constant *C = 1514 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1515 /*DontDefer=*/false, ExtraAttrs); 1516 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1517 if (F->empty()) 1518 F->setCallingConv(getRuntimeCC()); 1519 return C; 1520 } 1521 1522 /// isTypeConstant - Determine whether an object of this type can be emitted 1523 /// as a constant. 1524 /// 1525 /// If ExcludeCtor is true, the duration when the object's constructor runs 1526 /// will not be considered. The caller will need to verify that the object is 1527 /// not written to during its construction. 1528 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1529 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1530 return false; 1531 1532 if (Context.getLangOpts().CPlusPlus) { 1533 if (const CXXRecordDecl *Record 1534 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1535 return ExcludeCtor && !Record->hasMutableFields() && 1536 Record->hasTrivialDestructor(); 1537 } 1538 1539 return true; 1540 } 1541 1542 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1543 /// create and return an llvm GlobalVariable with the specified type. If there 1544 /// is something in the module with the specified name, return it potentially 1545 /// bitcasted to the right type. 1546 /// 1547 /// If D is non-null, it specifies a decl that correspond to this. This is used 1548 /// to set the attributes on the global when it is first created. 1549 llvm::Constant * 1550 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1551 llvm::PointerType *Ty, 1552 const VarDecl *D, 1553 bool UnnamedAddr) { 1554 // Lookup the entry, lazily creating it if necessary. 1555 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1556 if (Entry) { 1557 if (WeakRefReferences.erase(Entry)) { 1558 if (D && !D->hasAttr<WeakAttr>()) 1559 Entry->setLinkage(llvm::Function::ExternalLinkage); 1560 } 1561 1562 if (UnnamedAddr) 1563 Entry->setUnnamedAddr(true); 1564 1565 if (Entry->getType() == Ty) 1566 return Entry; 1567 1568 // Make sure the result is of the correct type. 1569 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1570 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1571 1572 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1573 } 1574 1575 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1576 llvm::GlobalVariable *GV = 1577 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1578 llvm::GlobalValue::ExternalLinkage, 1579 0, MangledName, 0, 1580 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1581 1582 // This is the first use or definition of a mangled name. If there is a 1583 // deferred decl with this name, remember that we need to emit it at the end 1584 // of the file. 1585 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1586 if (DDI != DeferredDecls.end()) { 1587 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1588 // list, and remove it from DeferredDecls (since we don't need it anymore). 1589 addDeferredDeclToEmit(GV, DDI->second); 1590 DeferredDecls.erase(DDI); 1591 } 1592 1593 // Handle things which are present even on external declarations. 1594 if (D) { 1595 // FIXME: This code is overly simple and should be merged with other global 1596 // handling. 1597 GV->setConstant(isTypeConstant(D->getType(), false)); 1598 1599 // Set linkage and visibility in case we never see a definition. 1600 LinkageInfo LV = D->getLinkageAndVisibility(); 1601 if (LV.getLinkage() != ExternalLinkage) { 1602 // Don't set internal linkage on declarations. 1603 } else { 1604 if (D->hasAttr<DLLImportAttr>()) { 1605 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1606 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1607 } else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1608 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1609 1610 // Set visibility on a declaration only if it's explicit. 1611 if (LV.isVisibilityExplicit()) 1612 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1613 } 1614 1615 if (D->getTLSKind()) { 1616 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1617 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1618 setTLSMode(GV, *D); 1619 } 1620 1621 // If required by the ABI, treat declarations of static data members with 1622 // inline initializers as definitions. 1623 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1624 D->isStaticDataMember() && D->hasInit() && 1625 !D->isThisDeclarationADefinition()) 1626 EmitGlobalVarDefinition(D); 1627 } 1628 1629 if (AddrSpace != Ty->getAddressSpace()) 1630 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1631 1632 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1633 D->getLanguageLinkage() == CLanguageLinkage && 1634 D->getType().isConstant(Context) && 1635 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1636 GV->setSection(".cp.rodata"); 1637 1638 return GV; 1639 } 1640 1641 1642 llvm::GlobalVariable * 1643 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1644 llvm::Type *Ty, 1645 llvm::GlobalValue::LinkageTypes Linkage) { 1646 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1647 llvm::GlobalVariable *OldGV = 0; 1648 1649 1650 if (GV) { 1651 // Check if the variable has the right type. 1652 if (GV->getType()->getElementType() == Ty) 1653 return GV; 1654 1655 // Because C++ name mangling, the only way we can end up with an already 1656 // existing global with the same name is if it has been declared extern "C". 1657 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1658 OldGV = GV; 1659 } 1660 1661 // Create a new variable. 1662 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1663 Linkage, 0, Name); 1664 1665 if (OldGV) { 1666 // Replace occurrences of the old variable if needed. 1667 GV->takeName(OldGV); 1668 1669 if (!OldGV->use_empty()) { 1670 llvm::Constant *NewPtrForOldDecl = 1671 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1672 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1673 } 1674 1675 OldGV->eraseFromParent(); 1676 } 1677 1678 return GV; 1679 } 1680 1681 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1682 /// given global variable. If Ty is non-null and if the global doesn't exist, 1683 /// then it will be created with the specified type instead of whatever the 1684 /// normal requested type would be. 1685 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1686 llvm::Type *Ty) { 1687 assert(D->hasGlobalStorage() && "Not a global variable"); 1688 QualType ASTTy = D->getType(); 1689 if (Ty == 0) 1690 Ty = getTypes().ConvertTypeForMem(ASTTy); 1691 1692 llvm::PointerType *PTy = 1693 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1694 1695 StringRef MangledName = getMangledName(D); 1696 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1697 } 1698 1699 /// CreateRuntimeVariable - Create a new runtime global variable with the 1700 /// specified type and name. 1701 llvm::Constant * 1702 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1703 StringRef Name) { 1704 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1705 true); 1706 } 1707 1708 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1709 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1710 1711 if (MayDeferGeneration(D)) { 1712 // If we have not seen a reference to this variable yet, place it 1713 // into the deferred declarations table to be emitted if needed 1714 // later. 1715 StringRef MangledName = getMangledName(D); 1716 if (!GetGlobalValue(MangledName)) { 1717 DeferredDecls[MangledName] = D; 1718 return; 1719 } 1720 } 1721 1722 // The tentative definition is the only definition. 1723 EmitGlobalVarDefinition(D); 1724 } 1725 1726 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1727 return Context.toCharUnitsFromBits( 1728 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1729 } 1730 1731 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1732 unsigned AddrSpace) { 1733 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1734 if (D->hasAttr<CUDAConstantAttr>()) 1735 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1736 else if (D->hasAttr<CUDASharedAttr>()) 1737 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1738 else 1739 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1740 } 1741 1742 return AddrSpace; 1743 } 1744 1745 template<typename SomeDecl> 1746 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1747 llvm::GlobalValue *GV) { 1748 if (!getLangOpts().CPlusPlus) 1749 return; 1750 1751 // Must have 'used' attribute, or else inline assembly can't rely on 1752 // the name existing. 1753 if (!D->template hasAttr<UsedAttr>()) 1754 return; 1755 1756 // Must have internal linkage and an ordinary name. 1757 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1758 return; 1759 1760 // Must be in an extern "C" context. Entities declared directly within 1761 // a record are not extern "C" even if the record is in such a context. 1762 const SomeDecl *First = D->getFirstDecl(); 1763 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1764 return; 1765 1766 // OK, this is an internal linkage entity inside an extern "C" linkage 1767 // specification. Make a note of that so we can give it the "expected" 1768 // mangled name if nothing else is using that name. 1769 std::pair<StaticExternCMap::iterator, bool> R = 1770 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1771 1772 // If we have multiple internal linkage entities with the same name 1773 // in extern "C" regions, none of them gets that name. 1774 if (!R.second) 1775 R.first->second = 0; 1776 } 1777 1778 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1779 llvm::Constant *Init = 0; 1780 QualType ASTTy = D->getType(); 1781 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1782 bool NeedsGlobalCtor = false; 1783 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1784 1785 const VarDecl *InitDecl; 1786 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1787 1788 if (!InitExpr) { 1789 // This is a tentative definition; tentative definitions are 1790 // implicitly initialized with { 0 }. 1791 // 1792 // Note that tentative definitions are only emitted at the end of 1793 // a translation unit, so they should never have incomplete 1794 // type. In addition, EmitTentativeDefinition makes sure that we 1795 // never attempt to emit a tentative definition if a real one 1796 // exists. A use may still exists, however, so we still may need 1797 // to do a RAUW. 1798 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1799 Init = EmitNullConstant(D->getType()); 1800 } else { 1801 initializedGlobalDecl = GlobalDecl(D); 1802 Init = EmitConstantInit(*InitDecl); 1803 1804 if (!Init) { 1805 QualType T = InitExpr->getType(); 1806 if (D->getType()->isReferenceType()) 1807 T = D->getType(); 1808 1809 if (getLangOpts().CPlusPlus) { 1810 Init = EmitNullConstant(T); 1811 NeedsGlobalCtor = true; 1812 } else { 1813 ErrorUnsupported(D, "static initializer"); 1814 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1815 } 1816 } else { 1817 // We don't need an initializer, so remove the entry for the delayed 1818 // initializer position (just in case this entry was delayed) if we 1819 // also don't need to register a destructor. 1820 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1821 DelayedCXXInitPosition.erase(D); 1822 } 1823 } 1824 1825 llvm::Type* InitType = Init->getType(); 1826 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1827 1828 // Strip off a bitcast if we got one back. 1829 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1830 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1831 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1832 // All zero index gep. 1833 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1834 Entry = CE->getOperand(0); 1835 } 1836 1837 // Entry is now either a Function or GlobalVariable. 1838 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1839 1840 // We have a definition after a declaration with the wrong type. 1841 // We must make a new GlobalVariable* and update everything that used OldGV 1842 // (a declaration or tentative definition) with the new GlobalVariable* 1843 // (which will be a definition). 1844 // 1845 // This happens if there is a prototype for a global (e.g. 1846 // "extern int x[];") and then a definition of a different type (e.g. 1847 // "int x[10];"). This also happens when an initializer has a different type 1848 // from the type of the global (this happens with unions). 1849 if (GV == 0 || 1850 GV->getType()->getElementType() != InitType || 1851 GV->getType()->getAddressSpace() != 1852 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1853 1854 // Move the old entry aside so that we'll create a new one. 1855 Entry->setName(StringRef()); 1856 1857 // Make a new global with the correct type, this is now guaranteed to work. 1858 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1859 1860 // Replace all uses of the old global with the new global 1861 llvm::Constant *NewPtrForOldDecl = 1862 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1863 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1864 1865 // Erase the old global, since it is no longer used. 1866 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1867 } 1868 1869 MaybeHandleStaticInExternC(D, GV); 1870 1871 if (D->hasAttr<AnnotateAttr>()) 1872 AddGlobalAnnotations(D, GV); 1873 1874 GV->setInitializer(Init); 1875 1876 // If it is safe to mark the global 'constant', do so now. 1877 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1878 isTypeConstant(D->getType(), true)); 1879 1880 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1881 1882 // Set the llvm linkage type as appropriate. 1883 llvm::GlobalValue::LinkageTypes Linkage = 1884 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1885 GV->setLinkage(Linkage); 1886 if (D->hasAttr<DLLImportAttr>()) 1887 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1888 else if (D->hasAttr<DLLExportAttr>()) 1889 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1890 1891 // If required by the ABI, give definitions of static data members with inline 1892 // initializers linkonce_odr linkage. 1893 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1894 D->isStaticDataMember() && InitExpr && 1895 !InitDecl->isThisDeclarationADefinition()) 1896 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1897 1898 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1899 // common vars aren't constant even if declared const. 1900 GV->setConstant(false); 1901 1902 SetCommonAttributes(D, GV); 1903 1904 // Emit the initializer function if necessary. 1905 if (NeedsGlobalCtor || NeedsGlobalDtor) 1906 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1907 1908 // If we are compiling with ASan, add metadata indicating dynamically 1909 // initialized globals. 1910 if (SanOpts.Address && NeedsGlobalCtor) { 1911 llvm::Module &M = getModule(); 1912 1913 llvm::NamedMDNode *DynamicInitializers = 1914 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1915 llvm::Value *GlobalToAdd[] = { GV }; 1916 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1917 DynamicInitializers->addOperand(ThisGlobal); 1918 } 1919 1920 // Emit global variable debug information. 1921 if (CGDebugInfo *DI = getModuleDebugInfo()) 1922 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1923 DI->EmitGlobalVariable(GV, D); 1924 } 1925 1926 llvm::GlobalValue::LinkageTypes 1927 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1928 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1929 if (Linkage == GVA_Internal) 1930 return llvm::Function::InternalLinkage; 1931 else if (D->hasAttr<DLLImportAttr>()) 1932 return llvm::Function::ExternalLinkage; 1933 else if (D->hasAttr<DLLExportAttr>()) 1934 return llvm::Function::ExternalLinkage; 1935 else if (D->hasAttr<SelectAnyAttr>()) { 1936 // selectany symbols are externally visible, so use weak instead of 1937 // linkonce. MSVC optimizes away references to const selectany globals, so 1938 // all definitions should be the same and ODR linkage should be used. 1939 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1940 return llvm::GlobalVariable::WeakODRLinkage; 1941 } else if (D->hasAttr<WeakAttr>()) { 1942 if (isConstant) 1943 return llvm::GlobalVariable::WeakODRLinkage; 1944 else 1945 return llvm::GlobalVariable::WeakAnyLinkage; 1946 } else if (Linkage == GVA_TemplateInstantiation || 1947 Linkage == GVA_ExplicitTemplateInstantiation) 1948 return llvm::GlobalVariable::WeakODRLinkage; 1949 else if (!getLangOpts().CPlusPlus && 1950 ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) || 1951 D->hasAttr<CommonAttr>()) && 1952 !D->hasExternalStorage() && !D->getInit() && 1953 !D->hasAttr<SectionAttr>() && !D->getTLSKind() && 1954 !D->hasAttr<WeakImportAttr>()) { 1955 // Thread local vars aren't considered common linkage. 1956 return llvm::GlobalVariable::CommonLinkage; 1957 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1958 getTarget().getTriple().isMacOSX()) 1959 // On Darwin, the backing variable for a C++11 thread_local variable always 1960 // has internal linkage; all accesses should just be calls to the 1961 // Itanium-specified entry point, which has the normal linkage of the 1962 // variable. 1963 return llvm::GlobalValue::InternalLinkage; 1964 return llvm::GlobalVariable::ExternalLinkage; 1965 } 1966 1967 /// Replace the uses of a function that was declared with a non-proto type. 1968 /// We want to silently drop extra arguments from call sites 1969 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1970 llvm::Function *newFn) { 1971 // Fast path. 1972 if (old->use_empty()) return; 1973 1974 llvm::Type *newRetTy = newFn->getReturnType(); 1975 SmallVector<llvm::Value*, 4> newArgs; 1976 1977 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1978 ui != ue; ) { 1979 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1980 llvm::User *user = use->getUser(); 1981 1982 // Recognize and replace uses of bitcasts. Most calls to 1983 // unprototyped functions will use bitcasts. 1984 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1985 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1986 replaceUsesOfNonProtoConstant(bitcast, newFn); 1987 continue; 1988 } 1989 1990 // Recognize calls to the function. 1991 llvm::CallSite callSite(user); 1992 if (!callSite) continue; 1993 if (!callSite.isCallee(&*use)) continue; 1994 1995 // If the return types don't match exactly, then we can't 1996 // transform this call unless it's dead. 1997 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1998 continue; 1999 2000 // Get the call site's attribute list. 2001 SmallVector<llvm::AttributeSet, 8> newAttrs; 2002 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2003 2004 // Collect any return attributes from the call. 2005 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2006 newAttrs.push_back( 2007 llvm::AttributeSet::get(newFn->getContext(), 2008 oldAttrs.getRetAttributes())); 2009 2010 // If the function was passed too few arguments, don't transform. 2011 unsigned newNumArgs = newFn->arg_size(); 2012 if (callSite.arg_size() < newNumArgs) continue; 2013 2014 // If extra arguments were passed, we silently drop them. 2015 // If any of the types mismatch, we don't transform. 2016 unsigned argNo = 0; 2017 bool dontTransform = false; 2018 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2019 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2020 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2021 dontTransform = true; 2022 break; 2023 } 2024 2025 // Add any parameter attributes. 2026 if (oldAttrs.hasAttributes(argNo + 1)) 2027 newAttrs. 2028 push_back(llvm:: 2029 AttributeSet::get(newFn->getContext(), 2030 oldAttrs.getParamAttributes(argNo + 1))); 2031 } 2032 if (dontTransform) 2033 continue; 2034 2035 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2036 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2037 oldAttrs.getFnAttributes())); 2038 2039 // Okay, we can transform this. Create the new call instruction and copy 2040 // over the required information. 2041 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2042 2043 llvm::CallSite newCall; 2044 if (callSite.isCall()) { 2045 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2046 callSite.getInstruction()); 2047 } else { 2048 llvm::InvokeInst *oldInvoke = 2049 cast<llvm::InvokeInst>(callSite.getInstruction()); 2050 newCall = llvm::InvokeInst::Create(newFn, 2051 oldInvoke->getNormalDest(), 2052 oldInvoke->getUnwindDest(), 2053 newArgs, "", 2054 callSite.getInstruction()); 2055 } 2056 newArgs.clear(); // for the next iteration 2057 2058 if (!newCall->getType()->isVoidTy()) 2059 newCall->takeName(callSite.getInstruction()); 2060 newCall.setAttributes( 2061 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2062 newCall.setCallingConv(callSite.getCallingConv()); 2063 2064 // Finally, remove the old call, replacing any uses with the new one. 2065 if (!callSite->use_empty()) 2066 callSite->replaceAllUsesWith(newCall.getInstruction()); 2067 2068 // Copy debug location attached to CI. 2069 if (!callSite->getDebugLoc().isUnknown()) 2070 newCall->setDebugLoc(callSite->getDebugLoc()); 2071 callSite->eraseFromParent(); 2072 } 2073 } 2074 2075 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2076 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2077 /// existing call uses of the old function in the module, this adjusts them to 2078 /// call the new function directly. 2079 /// 2080 /// This is not just a cleanup: the always_inline pass requires direct calls to 2081 /// functions to be able to inline them. If there is a bitcast in the way, it 2082 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2083 /// run at -O0. 2084 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2085 llvm::Function *NewFn) { 2086 // If we're redefining a global as a function, don't transform it. 2087 if (!isa<llvm::Function>(Old)) return; 2088 2089 replaceUsesOfNonProtoConstant(Old, NewFn); 2090 } 2091 2092 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2093 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2094 // If we have a definition, this might be a deferred decl. If the 2095 // instantiation is explicit, make sure we emit it at the end. 2096 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2097 GetAddrOfGlobalVar(VD); 2098 2099 EmitTopLevelDecl(VD); 2100 } 2101 2102 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2103 llvm::GlobalValue *GV) { 2104 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2105 2106 // Compute the function info and LLVM type. 2107 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2108 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2109 2110 // Get or create the prototype for the function. 2111 llvm::Constant *Entry = 2112 GV ? GV 2113 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2114 2115 // Strip off a bitcast if we got one back. 2116 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2117 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2118 Entry = CE->getOperand(0); 2119 } 2120 2121 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2122 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2123 return; 2124 } 2125 2126 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2127 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2128 2129 // If the types mismatch then we have to rewrite the definition. 2130 assert(OldFn->isDeclaration() && 2131 "Shouldn't replace non-declaration"); 2132 2133 // F is the Function* for the one with the wrong type, we must make a new 2134 // Function* and update everything that used F (a declaration) with the new 2135 // Function* (which will be a definition). 2136 // 2137 // This happens if there is a prototype for a function 2138 // (e.g. "int f()") and then a definition of a different type 2139 // (e.g. "int f(int x)"). Move the old function aside so that it 2140 // doesn't interfere with GetAddrOfFunction. 2141 OldFn->setName(StringRef()); 2142 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2143 2144 // This might be an implementation of a function without a 2145 // prototype, in which case, try to do special replacement of 2146 // calls which match the new prototype. The really key thing here 2147 // is that we also potentially drop arguments from the call site 2148 // so as to make a direct call, which makes the inliner happier 2149 // and suppresses a number of optimizer warnings (!) about 2150 // dropping arguments. 2151 if (!OldFn->use_empty()) { 2152 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2153 OldFn->removeDeadConstantUsers(); 2154 } 2155 2156 // Replace uses of F with the Function we will endow with a body. 2157 if (!Entry->use_empty()) { 2158 llvm::Constant *NewPtrForOldDecl = 2159 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2160 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2161 } 2162 2163 // Ok, delete the old function now, which is dead. 2164 OldFn->eraseFromParent(); 2165 2166 Entry = NewFn; 2167 } 2168 2169 // We need to set linkage and visibility on the function before 2170 // generating code for it because various parts of IR generation 2171 // want to propagate this information down (e.g. to local static 2172 // declarations). 2173 llvm::Function *Fn = cast<llvm::Function>(Entry); 2174 setFunctionLinkage(GD, Fn); 2175 2176 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2177 setGlobalVisibility(Fn, D); 2178 2179 MaybeHandleStaticInExternC(D, Fn); 2180 2181 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2182 2183 SetFunctionDefinitionAttributes(D, Fn); 2184 SetLLVMFunctionAttributesForDefinition(D, Fn); 2185 2186 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2187 AddGlobalCtor(Fn, CA->getPriority()); 2188 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2189 AddGlobalDtor(Fn, DA->getPriority()); 2190 if (D->hasAttr<AnnotateAttr>()) 2191 AddGlobalAnnotations(D, Fn); 2192 2193 llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this); 2194 if (PGOInit) 2195 AddGlobalCtor(PGOInit, 0); 2196 } 2197 2198 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2199 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2200 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2201 assert(AA && "Not an alias?"); 2202 2203 StringRef MangledName = getMangledName(GD); 2204 2205 // If there is a definition in the module, then it wins over the alias. 2206 // This is dubious, but allow it to be safe. Just ignore the alias. 2207 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2208 if (Entry && !Entry->isDeclaration()) 2209 return; 2210 2211 Aliases.push_back(GD); 2212 2213 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2214 2215 // Create a reference to the named value. This ensures that it is emitted 2216 // if a deferred decl. 2217 llvm::Constant *Aliasee; 2218 if (isa<llvm::FunctionType>(DeclTy)) 2219 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2220 /*ForVTable=*/false); 2221 else 2222 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2223 llvm::PointerType::getUnqual(DeclTy), 0); 2224 2225 // Create the new alias itself, but don't set a name yet. 2226 llvm::GlobalValue *GA = 2227 new llvm::GlobalAlias(Aliasee->getType(), 2228 llvm::Function::ExternalLinkage, 2229 "", Aliasee, &getModule()); 2230 2231 if (Entry) { 2232 assert(Entry->isDeclaration()); 2233 2234 // If there is a declaration in the module, then we had an extern followed 2235 // by the alias, as in: 2236 // extern int test6(); 2237 // ... 2238 // int test6() __attribute__((alias("test7"))); 2239 // 2240 // Remove it and replace uses of it with the alias. 2241 GA->takeName(Entry); 2242 2243 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2244 Entry->getType())); 2245 Entry->eraseFromParent(); 2246 } else { 2247 GA->setName(MangledName); 2248 } 2249 2250 // Set attributes which are particular to an alias; this is a 2251 // specialization of the attributes which may be set on a global 2252 // variable/function. 2253 if (D->hasAttr<DLLExportAttr>()) { 2254 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2255 // The dllexport attribute is ignored for undefined symbols. 2256 if (FD->hasBody()) 2257 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2258 } else { 2259 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2260 } 2261 } else if (D->hasAttr<WeakAttr>() || 2262 D->hasAttr<WeakRefAttr>() || 2263 D->isWeakImported()) { 2264 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2265 } 2266 2267 SetCommonAttributes(D, GA); 2268 } 2269 2270 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2271 ArrayRef<llvm::Type*> Tys) { 2272 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2273 Tys); 2274 } 2275 2276 static llvm::StringMapEntry<llvm::Constant*> & 2277 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2278 const StringLiteral *Literal, 2279 bool TargetIsLSB, 2280 bool &IsUTF16, 2281 unsigned &StringLength) { 2282 StringRef String = Literal->getString(); 2283 unsigned NumBytes = String.size(); 2284 2285 // Check for simple case. 2286 if (!Literal->containsNonAsciiOrNull()) { 2287 StringLength = NumBytes; 2288 return Map.GetOrCreateValue(String); 2289 } 2290 2291 // Otherwise, convert the UTF8 literals into a string of shorts. 2292 IsUTF16 = true; 2293 2294 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2295 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2296 UTF16 *ToPtr = &ToBuf[0]; 2297 2298 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2299 &ToPtr, ToPtr + NumBytes, 2300 strictConversion); 2301 2302 // ConvertUTF8toUTF16 returns the length in ToPtr. 2303 StringLength = ToPtr - &ToBuf[0]; 2304 2305 // Add an explicit null. 2306 *ToPtr = 0; 2307 return Map. 2308 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2309 (StringLength + 1) * 2)); 2310 } 2311 2312 static llvm::StringMapEntry<llvm::Constant*> & 2313 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2314 const StringLiteral *Literal, 2315 unsigned &StringLength) { 2316 StringRef String = Literal->getString(); 2317 StringLength = String.size(); 2318 return Map.GetOrCreateValue(String); 2319 } 2320 2321 llvm::Constant * 2322 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2323 unsigned StringLength = 0; 2324 bool isUTF16 = false; 2325 llvm::StringMapEntry<llvm::Constant*> &Entry = 2326 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2327 getDataLayout().isLittleEndian(), 2328 isUTF16, StringLength); 2329 2330 if (llvm::Constant *C = Entry.getValue()) 2331 return C; 2332 2333 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2334 llvm::Constant *Zeros[] = { Zero, Zero }; 2335 llvm::Value *V; 2336 2337 // If we don't already have it, get __CFConstantStringClassReference. 2338 if (!CFConstantStringClassRef) { 2339 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2340 Ty = llvm::ArrayType::get(Ty, 0); 2341 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2342 "__CFConstantStringClassReference"); 2343 // Decay array -> ptr 2344 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2345 CFConstantStringClassRef = V; 2346 } 2347 else 2348 V = CFConstantStringClassRef; 2349 2350 QualType CFTy = getContext().getCFConstantStringType(); 2351 2352 llvm::StructType *STy = 2353 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2354 2355 llvm::Constant *Fields[4]; 2356 2357 // Class pointer. 2358 Fields[0] = cast<llvm::ConstantExpr>(V); 2359 2360 // Flags. 2361 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2362 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2363 llvm::ConstantInt::get(Ty, 0x07C8); 2364 2365 // String pointer. 2366 llvm::Constant *C = 0; 2367 if (isUTF16) { 2368 ArrayRef<uint16_t> Arr = 2369 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2370 const_cast<char *>(Entry.getKey().data())), 2371 Entry.getKey().size() / 2); 2372 C = llvm::ConstantDataArray::get(VMContext, Arr); 2373 } else { 2374 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2375 } 2376 2377 // Note: -fwritable-strings doesn't make the backing store strings of 2378 // CFStrings writable. (See <rdar://problem/10657500>) 2379 llvm::GlobalVariable *GV = 2380 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2381 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2382 GV->setUnnamedAddr(true); 2383 // Don't enforce the target's minimum global alignment, since the only use 2384 // of the string is via this class initializer. 2385 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2386 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2387 // that changes the section it ends in, which surprises ld64. 2388 if (isUTF16) { 2389 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2390 GV->setAlignment(Align.getQuantity()); 2391 GV->setSection("__TEXT,__ustring"); 2392 } else { 2393 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2394 GV->setAlignment(Align.getQuantity()); 2395 GV->setSection("__TEXT,__cstring,cstring_literals"); 2396 } 2397 2398 // String. 2399 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2400 2401 if (isUTF16) 2402 // Cast the UTF16 string to the correct type. 2403 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2404 2405 // String length. 2406 Ty = getTypes().ConvertType(getContext().LongTy); 2407 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2408 2409 // The struct. 2410 C = llvm::ConstantStruct::get(STy, Fields); 2411 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2412 llvm::GlobalVariable::PrivateLinkage, C, 2413 "_unnamed_cfstring_"); 2414 GV->setSection("__DATA,__cfstring"); 2415 Entry.setValue(GV); 2416 2417 return GV; 2418 } 2419 2420 llvm::Constant * 2421 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2422 unsigned StringLength = 0; 2423 llvm::StringMapEntry<llvm::Constant*> &Entry = 2424 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2425 2426 if (llvm::Constant *C = Entry.getValue()) 2427 return C; 2428 2429 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2430 llvm::Constant *Zeros[] = { Zero, Zero }; 2431 llvm::Value *V; 2432 // If we don't already have it, get _NSConstantStringClassReference. 2433 if (!ConstantStringClassRef) { 2434 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2435 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2436 llvm::Constant *GV; 2437 if (LangOpts.ObjCRuntime.isNonFragile()) { 2438 std::string str = 2439 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2440 : "OBJC_CLASS_$_" + StringClass; 2441 GV = getObjCRuntime().GetClassGlobal(str); 2442 // Make sure the result is of the correct type. 2443 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2444 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2445 ConstantStringClassRef = V; 2446 } else { 2447 std::string str = 2448 StringClass.empty() ? "_NSConstantStringClassReference" 2449 : "_" + StringClass + "ClassReference"; 2450 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2451 GV = CreateRuntimeVariable(PTy, str); 2452 // Decay array -> ptr 2453 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2454 ConstantStringClassRef = V; 2455 } 2456 } 2457 else 2458 V = ConstantStringClassRef; 2459 2460 if (!NSConstantStringType) { 2461 // Construct the type for a constant NSString. 2462 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2463 D->startDefinition(); 2464 2465 QualType FieldTypes[3]; 2466 2467 // const int *isa; 2468 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2469 // const char *str; 2470 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2471 // unsigned int length; 2472 FieldTypes[2] = Context.UnsignedIntTy; 2473 2474 // Create fields 2475 for (unsigned i = 0; i < 3; ++i) { 2476 FieldDecl *Field = FieldDecl::Create(Context, D, 2477 SourceLocation(), 2478 SourceLocation(), 0, 2479 FieldTypes[i], /*TInfo=*/0, 2480 /*BitWidth=*/0, 2481 /*Mutable=*/false, 2482 ICIS_NoInit); 2483 Field->setAccess(AS_public); 2484 D->addDecl(Field); 2485 } 2486 2487 D->completeDefinition(); 2488 QualType NSTy = Context.getTagDeclType(D); 2489 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2490 } 2491 2492 llvm::Constant *Fields[3]; 2493 2494 // Class pointer. 2495 Fields[0] = cast<llvm::ConstantExpr>(V); 2496 2497 // String pointer. 2498 llvm::Constant *C = 2499 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2500 2501 llvm::GlobalValue::LinkageTypes Linkage; 2502 bool isConstant; 2503 Linkage = llvm::GlobalValue::PrivateLinkage; 2504 isConstant = !LangOpts.WritableStrings; 2505 2506 llvm::GlobalVariable *GV = 2507 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2508 ".str"); 2509 GV->setUnnamedAddr(true); 2510 // Don't enforce the target's minimum global alignment, since the only use 2511 // of the string is via this class initializer. 2512 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2513 GV->setAlignment(Align.getQuantity()); 2514 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2515 2516 // String length. 2517 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2518 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2519 2520 // The struct. 2521 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2522 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2523 llvm::GlobalVariable::PrivateLinkage, C, 2524 "_unnamed_nsstring_"); 2525 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2526 const char *NSStringNonFragileABISection = 2527 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2528 // FIXME. Fix section. 2529 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2530 ? NSStringNonFragileABISection 2531 : NSStringSection); 2532 Entry.setValue(GV); 2533 2534 return GV; 2535 } 2536 2537 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2538 if (ObjCFastEnumerationStateType.isNull()) { 2539 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2540 D->startDefinition(); 2541 2542 QualType FieldTypes[] = { 2543 Context.UnsignedLongTy, 2544 Context.getPointerType(Context.getObjCIdType()), 2545 Context.getPointerType(Context.UnsignedLongTy), 2546 Context.getConstantArrayType(Context.UnsignedLongTy, 2547 llvm::APInt(32, 5), ArrayType::Normal, 0) 2548 }; 2549 2550 for (size_t i = 0; i < 4; ++i) { 2551 FieldDecl *Field = FieldDecl::Create(Context, 2552 D, 2553 SourceLocation(), 2554 SourceLocation(), 0, 2555 FieldTypes[i], /*TInfo=*/0, 2556 /*BitWidth=*/0, 2557 /*Mutable=*/false, 2558 ICIS_NoInit); 2559 Field->setAccess(AS_public); 2560 D->addDecl(Field); 2561 } 2562 2563 D->completeDefinition(); 2564 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2565 } 2566 2567 return ObjCFastEnumerationStateType; 2568 } 2569 2570 llvm::Constant * 2571 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2572 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2573 2574 // Don't emit it as the address of the string, emit the string data itself 2575 // as an inline array. 2576 if (E->getCharByteWidth() == 1) { 2577 SmallString<64> Str(E->getString()); 2578 2579 // Resize the string to the right size, which is indicated by its type. 2580 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2581 Str.resize(CAT->getSize().getZExtValue()); 2582 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2583 } 2584 2585 llvm::ArrayType *AType = 2586 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2587 llvm::Type *ElemTy = AType->getElementType(); 2588 unsigned NumElements = AType->getNumElements(); 2589 2590 // Wide strings have either 2-byte or 4-byte elements. 2591 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2592 SmallVector<uint16_t, 32> Elements; 2593 Elements.reserve(NumElements); 2594 2595 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2596 Elements.push_back(E->getCodeUnit(i)); 2597 Elements.resize(NumElements); 2598 return llvm::ConstantDataArray::get(VMContext, Elements); 2599 } 2600 2601 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2602 SmallVector<uint32_t, 32> Elements; 2603 Elements.reserve(NumElements); 2604 2605 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2606 Elements.push_back(E->getCodeUnit(i)); 2607 Elements.resize(NumElements); 2608 return llvm::ConstantDataArray::get(VMContext, Elements); 2609 } 2610 2611 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2612 /// constant array for the given string literal. 2613 llvm::Constant * 2614 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2615 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2616 2617 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2618 llvm::GlobalVariable *GV = nullptr; 2619 if (!LangOpts.WritableStrings) { 2620 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2621 switch (S->getCharByteWidth()) { 2622 case 1: 2623 ConstantStringMap = &Constant1ByteStringMap; 2624 break; 2625 case 2: 2626 ConstantStringMap = &Constant2ByteStringMap; 2627 break; 2628 case 4: 2629 ConstantStringMap = &Constant4ByteStringMap; 2630 break; 2631 default: 2632 llvm_unreachable("unhandled byte width!"); 2633 } 2634 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2635 GV = Entry->getValue(); 2636 } 2637 2638 if (!GV) { 2639 SmallString<256> MangledNameBuffer; 2640 StringRef GlobalVariableName; 2641 llvm::GlobalValue::LinkageTypes LT; 2642 2643 // Mangle the string literal if the ABI allows for it. However, we cannot 2644 // do this if we are compiling with ASan or -fwritable-strings because they 2645 // rely on strings having normal linkage. 2646 if (!LangOpts.WritableStrings && !SanOpts.Address && 2647 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2648 llvm::raw_svector_ostream Out(MangledNameBuffer); 2649 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2650 Out.flush(); 2651 2652 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2653 GlobalVariableName = MangledNameBuffer; 2654 } else { 2655 LT = llvm::GlobalValue::PrivateLinkage;; 2656 GlobalVariableName = ".str"; 2657 } 2658 2659 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2660 unsigned AddrSpace = 0; 2661 if (getLangOpts().OpenCL) 2662 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2663 2664 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2665 GV = new llvm::GlobalVariable( 2666 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2667 GlobalVariableName, /*InsertBefore=*/nullptr, 2668 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2669 GV->setUnnamedAddr(true); 2670 if (Entry) 2671 Entry->setValue(GV); 2672 } 2673 2674 if (Align.getQuantity() > GV->getAlignment()) 2675 GV->setAlignment(Align.getQuantity()); 2676 2677 return GV; 2678 } 2679 2680 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2681 /// array for the given ObjCEncodeExpr node. 2682 llvm::Constant * 2683 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2684 std::string Str; 2685 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2686 2687 return GetAddrOfConstantCString(Str); 2688 } 2689 2690 2691 /// GenerateWritableString -- Creates storage for a string literal. 2692 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2693 bool constant, 2694 CodeGenModule &CGM, 2695 const char *GlobalName, 2696 unsigned Alignment) { 2697 // Create Constant for this string literal. Don't add a '\0'. 2698 llvm::Constant *C = 2699 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2700 2701 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2702 unsigned AddrSpace = 0; 2703 if (CGM.getLangOpts().OpenCL) 2704 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2705 2706 // Create a global variable for this string 2707 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2708 CGM.getModule(), C->getType(), constant, 2709 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2710 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2711 GV->setAlignment(Alignment); 2712 GV->setUnnamedAddr(true); 2713 return GV; 2714 } 2715 2716 /// GetAddrOfConstantString - Returns a pointer to a character array 2717 /// containing the literal. This contents are exactly that of the 2718 /// given string, i.e. it will not be null terminated automatically; 2719 /// see GetAddrOfConstantCString. Note that whether the result is 2720 /// actually a pointer to an LLVM constant depends on 2721 /// Feature.WriteableStrings. 2722 /// 2723 /// The result has pointer to array type. 2724 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2725 const char *GlobalName, 2726 unsigned Alignment) { 2727 // Get the default prefix if a name wasn't specified. 2728 if (!GlobalName) 2729 GlobalName = ".str"; 2730 2731 if (Alignment == 0) 2732 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2733 .getQuantity(); 2734 2735 // Don't share any string literals if strings aren't constant. 2736 if (LangOpts.WritableStrings) 2737 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2738 2739 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2740 Constant1ByteStringMap.GetOrCreateValue(Str); 2741 2742 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2743 if (Alignment > GV->getAlignment()) { 2744 GV->setAlignment(Alignment); 2745 } 2746 return GV; 2747 } 2748 2749 // Create a global variable for this. 2750 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2751 Alignment); 2752 Entry.setValue(GV); 2753 return GV; 2754 } 2755 2756 /// GetAddrOfConstantCString - Returns a pointer to a character 2757 /// array containing the literal and a terminating '\0' 2758 /// character. The result has pointer to array type. 2759 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2760 const char *GlobalName, 2761 unsigned Alignment) { 2762 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2763 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2764 } 2765 2766 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2767 const MaterializeTemporaryExpr *E, const Expr *Init) { 2768 assert((E->getStorageDuration() == SD_Static || 2769 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2770 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2771 2772 // If we're not materializing a subobject of the temporary, keep the 2773 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2774 QualType MaterializedType = Init->getType(); 2775 if (Init == E->GetTemporaryExpr()) 2776 MaterializedType = E->getType(); 2777 2778 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2779 if (Slot) 2780 return Slot; 2781 2782 // FIXME: If an externally-visible declaration extends multiple temporaries, 2783 // we need to give each temporary the same name in every translation unit (and 2784 // we also need to make the temporaries externally-visible). 2785 SmallString<256> Name; 2786 llvm::raw_svector_ostream Out(Name); 2787 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2788 Out.flush(); 2789 2790 APValue *Value = 0; 2791 if (E->getStorageDuration() == SD_Static) { 2792 // We might have a cached constant initializer for this temporary. Note 2793 // that this might have a different value from the value computed by 2794 // evaluating the initializer if the surrounding constant expression 2795 // modifies the temporary. 2796 Value = getContext().getMaterializedTemporaryValue(E, false); 2797 if (Value && Value->isUninit()) 2798 Value = 0; 2799 } 2800 2801 // Try evaluating it now, it might have a constant initializer. 2802 Expr::EvalResult EvalResult; 2803 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2804 !EvalResult.hasSideEffects()) 2805 Value = &EvalResult.Val; 2806 2807 llvm::Constant *InitialValue = 0; 2808 bool Constant = false; 2809 llvm::Type *Type; 2810 if (Value) { 2811 // The temporary has a constant initializer, use it. 2812 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2813 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2814 Type = InitialValue->getType(); 2815 } else { 2816 // No initializer, the initialization will be provided when we 2817 // initialize the declaration which performed lifetime extension. 2818 Type = getTypes().ConvertTypeForMem(MaterializedType); 2819 } 2820 2821 // Create a global variable for this lifetime-extended temporary. 2822 llvm::GlobalVariable *GV = 2823 new llvm::GlobalVariable(getModule(), Type, Constant, 2824 llvm::GlobalValue::PrivateLinkage, 2825 InitialValue, Name.c_str()); 2826 GV->setAlignment( 2827 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2828 if (VD->getTLSKind()) 2829 setTLSMode(GV, *VD); 2830 Slot = GV; 2831 return GV; 2832 } 2833 2834 /// EmitObjCPropertyImplementations - Emit information for synthesized 2835 /// properties for an implementation. 2836 void CodeGenModule::EmitObjCPropertyImplementations(const 2837 ObjCImplementationDecl *D) { 2838 for (const auto *PID : D->property_impls()) { 2839 // Dynamic is just for type-checking. 2840 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2841 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2842 2843 // Determine which methods need to be implemented, some may have 2844 // been overridden. Note that ::isPropertyAccessor is not the method 2845 // we want, that just indicates if the decl came from a 2846 // property. What we want to know is if the method is defined in 2847 // this implementation. 2848 if (!D->getInstanceMethod(PD->getGetterName())) 2849 CodeGenFunction(*this).GenerateObjCGetter( 2850 const_cast<ObjCImplementationDecl *>(D), PID); 2851 if (!PD->isReadOnly() && 2852 !D->getInstanceMethod(PD->getSetterName())) 2853 CodeGenFunction(*this).GenerateObjCSetter( 2854 const_cast<ObjCImplementationDecl *>(D), PID); 2855 } 2856 } 2857 } 2858 2859 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2860 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2861 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2862 ivar; ivar = ivar->getNextIvar()) 2863 if (ivar->getType().isDestructedType()) 2864 return true; 2865 2866 return false; 2867 } 2868 2869 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2870 /// for an implementation. 2871 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2872 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2873 if (needsDestructMethod(D)) { 2874 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2875 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2876 ObjCMethodDecl *DTORMethod = 2877 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2878 cxxSelector, getContext().VoidTy, 0, D, 2879 /*isInstance=*/true, /*isVariadic=*/false, 2880 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2881 /*isDefined=*/false, ObjCMethodDecl::Required); 2882 D->addInstanceMethod(DTORMethod); 2883 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2884 D->setHasDestructors(true); 2885 } 2886 2887 // If the implementation doesn't have any ivar initializers, we don't need 2888 // a .cxx_construct. 2889 if (D->getNumIvarInitializers() == 0) 2890 return; 2891 2892 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2893 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2894 // The constructor returns 'self'. 2895 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2896 D->getLocation(), 2897 D->getLocation(), 2898 cxxSelector, 2899 getContext().getObjCIdType(), 0, 2900 D, /*isInstance=*/true, 2901 /*isVariadic=*/false, 2902 /*isPropertyAccessor=*/true, 2903 /*isImplicitlyDeclared=*/true, 2904 /*isDefined=*/false, 2905 ObjCMethodDecl::Required); 2906 D->addInstanceMethod(CTORMethod); 2907 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2908 D->setHasNonZeroConstructors(true); 2909 } 2910 2911 /// EmitNamespace - Emit all declarations in a namespace. 2912 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2913 for (auto *I : ND->decls()) { 2914 if (const auto *VD = dyn_cast<VarDecl>(I)) 2915 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2916 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2917 continue; 2918 EmitTopLevelDecl(I); 2919 } 2920 } 2921 2922 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2923 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2924 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2925 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2926 ErrorUnsupported(LSD, "linkage spec"); 2927 return; 2928 } 2929 2930 for (auto *I : LSD->decls()) { 2931 // Meta-data for ObjC class includes references to implemented methods. 2932 // Generate class's method definitions first. 2933 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2934 for (auto *M : OID->methods()) 2935 EmitTopLevelDecl(M); 2936 } 2937 EmitTopLevelDecl(I); 2938 } 2939 } 2940 2941 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2942 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2943 // Ignore dependent declarations. 2944 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2945 return; 2946 2947 switch (D->getKind()) { 2948 case Decl::CXXConversion: 2949 case Decl::CXXMethod: 2950 case Decl::Function: 2951 // Skip function templates 2952 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2953 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2954 return; 2955 2956 EmitGlobal(cast<FunctionDecl>(D)); 2957 break; 2958 2959 case Decl::Var: 2960 // Skip variable templates 2961 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2962 return; 2963 case Decl::VarTemplateSpecialization: 2964 EmitGlobal(cast<VarDecl>(D)); 2965 break; 2966 2967 // Indirect fields from global anonymous structs and unions can be 2968 // ignored; only the actual variable requires IR gen support. 2969 case Decl::IndirectField: 2970 break; 2971 2972 // C++ Decls 2973 case Decl::Namespace: 2974 EmitNamespace(cast<NamespaceDecl>(D)); 2975 break; 2976 // No code generation needed. 2977 case Decl::UsingShadow: 2978 case Decl::ClassTemplate: 2979 case Decl::VarTemplate: 2980 case Decl::VarTemplatePartialSpecialization: 2981 case Decl::FunctionTemplate: 2982 case Decl::TypeAliasTemplate: 2983 case Decl::Block: 2984 case Decl::Empty: 2985 break; 2986 case Decl::Using: // using X; [C++] 2987 if (CGDebugInfo *DI = getModuleDebugInfo()) 2988 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 2989 return; 2990 case Decl::NamespaceAlias: 2991 if (CGDebugInfo *DI = getModuleDebugInfo()) 2992 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2993 return; 2994 case Decl::UsingDirective: // using namespace X; [C++] 2995 if (CGDebugInfo *DI = getModuleDebugInfo()) 2996 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2997 return; 2998 case Decl::CXXConstructor: 2999 // Skip function templates 3000 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3001 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3002 return; 3003 3004 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3005 break; 3006 case Decl::CXXDestructor: 3007 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3008 return; 3009 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3010 break; 3011 3012 case Decl::StaticAssert: 3013 // Nothing to do. 3014 break; 3015 3016 // Objective-C Decls 3017 3018 // Forward declarations, no (immediate) code generation. 3019 case Decl::ObjCInterface: 3020 case Decl::ObjCCategory: 3021 break; 3022 3023 case Decl::ObjCProtocol: { 3024 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 3025 if (Proto->isThisDeclarationADefinition()) 3026 ObjCRuntime->GenerateProtocol(Proto); 3027 break; 3028 } 3029 3030 case Decl::ObjCCategoryImpl: 3031 // Categories have properties but don't support synthesize so we 3032 // can ignore them here. 3033 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3034 break; 3035 3036 case Decl::ObjCImplementation: { 3037 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3038 EmitObjCPropertyImplementations(OMD); 3039 EmitObjCIvarInitializations(OMD); 3040 ObjCRuntime->GenerateClass(OMD); 3041 // Emit global variable debug information. 3042 if (CGDebugInfo *DI = getModuleDebugInfo()) 3043 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3044 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3045 OMD->getClassInterface()), OMD->getLocation()); 3046 break; 3047 } 3048 case Decl::ObjCMethod: { 3049 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3050 // If this is not a prototype, emit the body. 3051 if (OMD->getBody()) 3052 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3053 break; 3054 } 3055 case Decl::ObjCCompatibleAlias: 3056 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3057 break; 3058 3059 case Decl::LinkageSpec: 3060 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3061 break; 3062 3063 case Decl::FileScopeAsm: { 3064 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3065 StringRef AsmString = AD->getAsmString()->getString(); 3066 3067 const std::string &S = getModule().getModuleInlineAsm(); 3068 if (S.empty()) 3069 getModule().setModuleInlineAsm(AsmString); 3070 else if (S.end()[-1] == '\n') 3071 getModule().setModuleInlineAsm(S + AsmString.str()); 3072 else 3073 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3074 break; 3075 } 3076 3077 case Decl::Import: { 3078 ImportDecl *Import = cast<ImportDecl>(D); 3079 3080 // Ignore import declarations that come from imported modules. 3081 if (clang::Module *Owner = Import->getOwningModule()) { 3082 if (getLangOpts().CurrentModule.empty() || 3083 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3084 break; 3085 } 3086 3087 ImportedModules.insert(Import->getImportedModule()); 3088 break; 3089 } 3090 3091 case Decl::ClassTemplateSpecialization: { 3092 const ClassTemplateSpecializationDecl *Spec = 3093 cast<ClassTemplateSpecializationDecl>(D); 3094 if (DebugInfo && 3095 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3096 DebugInfo->completeTemplateDefinition(*Spec); 3097 } 3098 3099 default: 3100 // Make sure we handled everything we should, every other kind is a 3101 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3102 // function. Need to recode Decl::Kind to do that easily. 3103 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3104 } 3105 } 3106 3107 /// Turns the given pointer into a constant. 3108 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3109 const void *Ptr) { 3110 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3111 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3112 return llvm::ConstantInt::get(i64, PtrInt); 3113 } 3114 3115 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3116 llvm::NamedMDNode *&GlobalMetadata, 3117 GlobalDecl D, 3118 llvm::GlobalValue *Addr) { 3119 if (!GlobalMetadata) 3120 GlobalMetadata = 3121 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3122 3123 // TODO: should we report variant information for ctors/dtors? 3124 llvm::Value *Ops[] = { 3125 Addr, 3126 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3127 }; 3128 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3129 } 3130 3131 /// For each function which is declared within an extern "C" region and marked 3132 /// as 'used', but has internal linkage, create an alias from the unmangled 3133 /// name to the mangled name if possible. People expect to be able to refer 3134 /// to such functions with an unmangled name from inline assembly within the 3135 /// same translation unit. 3136 void CodeGenModule::EmitStaticExternCAliases() { 3137 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3138 E = StaticExternCValues.end(); 3139 I != E; ++I) { 3140 IdentifierInfo *Name = I->first; 3141 llvm::GlobalValue *Val = I->second; 3142 if (Val && !getModule().getNamedValue(Name->getName())) 3143 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3144 Name->getName(), Val, &getModule())); 3145 } 3146 } 3147 3148 /// Emits metadata nodes associating all the global values in the 3149 /// current module with the Decls they came from. This is useful for 3150 /// projects using IR gen as a subroutine. 3151 /// 3152 /// Since there's currently no way to associate an MDNode directly 3153 /// with an llvm::GlobalValue, we create a global named metadata 3154 /// with the name 'clang.global.decl.ptrs'. 3155 void CodeGenModule::EmitDeclMetadata() { 3156 llvm::NamedMDNode *GlobalMetadata = 0; 3157 3158 // StaticLocalDeclMap 3159 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3160 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3161 I != E; ++I) { 3162 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3163 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3164 } 3165 } 3166 3167 /// Emits metadata nodes for all the local variables in the current 3168 /// function. 3169 void CodeGenFunction::EmitDeclMetadata() { 3170 if (LocalDeclMap.empty()) return; 3171 3172 llvm::LLVMContext &Context = getLLVMContext(); 3173 3174 // Find the unique metadata ID for this name. 3175 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3176 3177 llvm::NamedMDNode *GlobalMetadata = 0; 3178 3179 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3180 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3181 const Decl *D = I->first; 3182 llvm::Value *Addr = I->second; 3183 3184 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3185 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3186 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3187 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3188 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3189 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3190 } 3191 } 3192 } 3193 3194 void CodeGenModule::EmitVersionIdentMetadata() { 3195 llvm::NamedMDNode *IdentMetadata = 3196 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3197 std::string Version = getClangFullVersion(); 3198 llvm::LLVMContext &Ctx = TheModule.getContext(); 3199 3200 llvm::Value *IdentNode[] = { 3201 llvm::MDString::get(Ctx, Version) 3202 }; 3203 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3204 } 3205 3206 void CodeGenModule::EmitCoverageFile() { 3207 if (!getCodeGenOpts().CoverageFile.empty()) { 3208 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3209 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3210 llvm::LLVMContext &Ctx = TheModule.getContext(); 3211 llvm::MDString *CoverageFile = 3212 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3213 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3214 llvm::MDNode *CU = CUNode->getOperand(i); 3215 llvm::Value *node[] = { CoverageFile, CU }; 3216 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3217 GCov->addOperand(N); 3218 } 3219 } 3220 } 3221 } 3222 3223 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3224 QualType GuidType) { 3225 // Sema has checked that all uuid strings are of the form 3226 // "12345678-1234-1234-1234-1234567890ab". 3227 assert(Uuid.size() == 36); 3228 for (unsigned i = 0; i < 36; ++i) { 3229 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3230 else assert(isHexDigit(Uuid[i])); 3231 } 3232 3233 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3234 3235 llvm::Constant *Field3[8]; 3236 for (unsigned Idx = 0; Idx < 8; ++Idx) 3237 Field3[Idx] = llvm::ConstantInt::get( 3238 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3239 3240 llvm::Constant *Fields[4] = { 3241 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3242 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3243 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3244 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3245 }; 3246 3247 return llvm::ConstantStruct::getAnon(Fields); 3248 } 3249