xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f00ffcdb58d6db902a8f86b0ce83a03874d113ad)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/DeclCXX.h"
34 #include "clang/AST/DeclObjC.h"
35 #include "clang/AST/DeclTemplate.h"
36 #include "clang/AST/Mangle.h"
37 #include "clang/AST/RecursiveASTVisitor.h"
38 #include "clang/AST/StmtVisitor.h"
39 #include "clang/Basic/Builtins.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/FileManager.h"
44 #include "clang/Basic/Module.h"
45 #include "clang/Basic/SourceManager.h"
46 #include "clang/Basic/TargetInfo.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/CodeGen/BackendUtil.h"
49 #include "clang/CodeGen/ConstantInitBuilder.h"
50 #include "clang/Frontend/FrontendDiagnostic.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/StringExtras.h"
53 #include "llvm/ADT/StringSwitch.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/AttributeMask.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/ProfileSummary.h"
63 #include "llvm/ProfileData/InstrProfReader.h"
64 #include "llvm/ProfileData/SampleProf.h"
65 #include "llvm/Support/CRC.h"
66 #include "llvm/Support/CodeGen.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/ConvertUTF.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/TimeProfiler.h"
71 #include "llvm/Support/xxhash.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include <optional>
75 
76 using namespace clang;
77 using namespace CodeGen;
78 
79 static llvm::cl::opt<bool> LimitedCoverage(
80     "limited-coverage-experimental", llvm::cl::Hidden,
81     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
82 
83 static const char AnnotationSection[] = "llvm.metadata";
84 
85 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
86   switch (CGM.getContext().getCXXABIKind()) {
87   case TargetCXXABI::AppleARM64:
88   case TargetCXXABI::Fuchsia:
89   case TargetCXXABI::GenericAArch64:
90   case TargetCXXABI::GenericARM:
91   case TargetCXXABI::iOS:
92   case TargetCXXABI::WatchOS:
93   case TargetCXXABI::GenericMIPS:
94   case TargetCXXABI::GenericItanium:
95   case TargetCXXABI::WebAssembly:
96   case TargetCXXABI::XL:
97     return CreateItaniumCXXABI(CGM);
98   case TargetCXXABI::Microsoft:
99     return CreateMicrosoftCXXABI(CGM);
100   }
101 
102   llvm_unreachable("invalid C++ ABI kind");
103 }
104 
105 static std::unique_ptr<TargetCodeGenInfo>
106 createTargetCodeGenInfo(CodeGenModule &CGM) {
107   const TargetInfo &Target = CGM.getTarget();
108   const llvm::Triple &Triple = Target.getTriple();
109   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
110 
111   switch (Triple.getArch()) {
112   default:
113     return createDefaultTargetCodeGenInfo(CGM);
114 
115   case llvm::Triple::le32:
116     return createPNaClTargetCodeGenInfo(CGM);
117   case llvm::Triple::m68k:
118     return createM68kTargetCodeGenInfo(CGM);
119   case llvm::Triple::mips:
120   case llvm::Triple::mipsel:
121     if (Triple.getOS() == llvm::Triple::NaCl)
122       return createPNaClTargetCodeGenInfo(CGM);
123     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
124 
125   case llvm::Triple::mips64:
126   case llvm::Triple::mips64el:
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
128 
129   case llvm::Triple::avr: {
130     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
131     // on avrtiny. For passing return value, R18~R25 are used on avr, and
132     // R22~R25 are used on avrtiny.
133     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
134     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
135     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
136   }
137 
138   case llvm::Triple::aarch64:
139   case llvm::Triple::aarch64_32:
140   case llvm::Triple::aarch64_be: {
141     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
142     if (Target.getABI() == "darwinpcs")
143       Kind = AArch64ABIKind::DarwinPCS;
144     else if (Triple.isOSWindows())
145       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
146 
147     return createAArch64TargetCodeGenInfo(CGM, Kind);
148   }
149 
150   case llvm::Triple::wasm32:
151   case llvm::Triple::wasm64: {
152     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
153     if (Target.getABI() == "experimental-mv")
154       Kind = WebAssemblyABIKind::ExperimentalMV;
155     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
156   }
157 
158   case llvm::Triple::arm:
159   case llvm::Triple::armeb:
160   case llvm::Triple::thumb:
161   case llvm::Triple::thumbeb: {
162     if (Triple.getOS() == llvm::Triple::Win32)
163       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
164 
165     ARMABIKind Kind = ARMABIKind::AAPCS;
166     StringRef ABIStr = Target.getABI();
167     if (ABIStr == "apcs-gnu")
168       Kind = ARMABIKind::APCS;
169     else if (ABIStr == "aapcs16")
170       Kind = ARMABIKind::AAPCS16_VFP;
171     else if (CodeGenOpts.FloatABI == "hard" ||
172              (CodeGenOpts.FloatABI != "soft" &&
173               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
175                Triple.getEnvironment() == llvm::Triple::EABIHF)))
176       Kind = ARMABIKind::AAPCS_VFP;
177 
178     return createARMTargetCodeGenInfo(CGM, Kind);
179   }
180 
181   case llvm::Triple::ppc: {
182     if (Triple.isOSAIX())
183       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
184 
185     bool IsSoftFloat =
186         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
188   }
189   case llvm::Triple::ppcle: {
190     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppc64:
194     if (Triple.isOSAIX())
195       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
196 
197     if (Triple.isOSBinFormatELF()) {
198       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199       if (Target.getABI() == "elfv2")
200         Kind = PPC64_SVR4_ABIKind::ELFv2;
201       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
202 
203       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
204     }
205     return createPPC64TargetCodeGenInfo(CGM);
206   case llvm::Triple::ppc64le: {
207     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209     if (Target.getABI() == "elfv1")
210       Kind = PPC64_SVR4_ABIKind::ELFv1;
211     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
212 
213     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
214   }
215 
216   case llvm::Triple::nvptx:
217   case llvm::Triple::nvptx64:
218     return createNVPTXTargetCodeGenInfo(CGM);
219 
220   case llvm::Triple::msp430:
221     return createMSP430TargetCodeGenInfo(CGM);
222 
223   case llvm::Triple::riscv32:
224   case llvm::Triple::riscv64: {
225     StringRef ABIStr = Target.getABI();
226     unsigned XLen = Target.getPointerWidth(LangAS::Default);
227     unsigned ABIFLen = 0;
228     if (ABIStr.endswith("f"))
229       ABIFLen = 32;
230     else if (ABIStr.endswith("d"))
231       ABIFLen = 64;
232     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
233   }
234 
235   case llvm::Triple::systemz: {
236     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
237     bool HasVector = !SoftFloat && Target.getABI() == "vector";
238     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
239   }
240 
241   case llvm::Triple::tce:
242   case llvm::Triple::tcele:
243     return createTCETargetCodeGenInfo(CGM);
244 
245   case llvm::Triple::x86: {
246     bool IsDarwinVectorABI = Triple.isOSDarwin();
247     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
248 
249     if (Triple.getOS() == llvm::Triple::Win32) {
250       return createWinX86_32TargetCodeGenInfo(
251           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
252           CodeGenOpts.NumRegisterParameters);
253     }
254     return createX86_32TargetCodeGenInfo(
255         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
256         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
257   }
258 
259   case llvm::Triple::x86_64: {
260     StringRef ABI = Target.getABI();
261     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
262                                : ABI == "avx"  ? X86AVXABILevel::AVX
263                                                : X86AVXABILevel::None);
264 
265     switch (Triple.getOS()) {
266     case llvm::Triple::Win32:
267       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
268     default:
269       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
270     }
271   }
272   case llvm::Triple::hexagon:
273     return createHexagonTargetCodeGenInfo(CGM);
274   case llvm::Triple::lanai:
275     return createLanaiTargetCodeGenInfo(CGM);
276   case llvm::Triple::r600:
277     return createAMDGPUTargetCodeGenInfo(CGM);
278   case llvm::Triple::amdgcn:
279     return createAMDGPUTargetCodeGenInfo(CGM);
280   case llvm::Triple::sparc:
281     return createSparcV8TargetCodeGenInfo(CGM);
282   case llvm::Triple::sparcv9:
283     return createSparcV9TargetCodeGenInfo(CGM);
284   case llvm::Triple::xcore:
285     return createXCoreTargetCodeGenInfo(CGM);
286   case llvm::Triple::arc:
287     return createARCTargetCodeGenInfo(CGM);
288   case llvm::Triple::spir:
289   case llvm::Triple::spir64:
290     return createCommonSPIRTargetCodeGenInfo(CGM);
291   case llvm::Triple::spirv32:
292   case llvm::Triple::spirv64:
293     return createSPIRVTargetCodeGenInfo(CGM);
294   case llvm::Triple::ve:
295     return createVETargetCodeGenInfo(CGM);
296   case llvm::Triple::csky: {
297     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
298     bool hasFP64 =
299         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
300     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
301                                             : hasFP64   ? 64
302                                                         : 32);
303   }
304   case llvm::Triple::bpfeb:
305   case llvm::Triple::bpfel:
306     return createBPFTargetCodeGenInfo(CGM);
307   case llvm::Triple::loongarch32:
308   case llvm::Triple::loongarch64: {
309     StringRef ABIStr = Target.getABI();
310     unsigned ABIFRLen = 0;
311     if (ABIStr.endswith("f"))
312       ABIFRLen = 32;
313     else if (ABIStr.endswith("d"))
314       ABIFRLen = 64;
315     return createLoongArchTargetCodeGenInfo(
316         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
317   }
318   }
319 }
320 
321 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
322   if (!TheTargetCodeGenInfo)
323     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
324   return *TheTargetCodeGenInfo;
325 }
326 
327 CodeGenModule::CodeGenModule(ASTContext &C,
328                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
329                              const HeaderSearchOptions &HSO,
330                              const PreprocessorOptions &PPO,
331                              const CodeGenOptions &CGO, llvm::Module &M,
332                              DiagnosticsEngine &diags,
333                              CoverageSourceInfo *CoverageInfo)
334     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
335       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
336       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
337       VMContext(M.getContext()), Types(*this), VTables(*this),
338       SanitizerMD(new SanitizerMetadata(*this)) {
339 
340   // Initialize the type cache.
341   llvm::LLVMContext &LLVMContext = M.getContext();
342   VoidTy = llvm::Type::getVoidTy(LLVMContext);
343   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
344   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
345   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
346   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
347   HalfTy = llvm::Type::getHalfTy(LLVMContext);
348   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
349   FloatTy = llvm::Type::getFloatTy(LLVMContext);
350   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
351   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
352   PointerAlignInBytes =
353       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
354           .getQuantity();
355   SizeSizeInBytes =
356     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
357   IntAlignInBytes =
358     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
359   CharTy =
360     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
361   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
362   IntPtrTy = llvm::IntegerType::get(LLVMContext,
363     C.getTargetInfo().getMaxPointerWidth());
364   Int8PtrTy = llvm::PointerType::get(LLVMContext, 0);
365   const llvm::DataLayout &DL = M.getDataLayout();
366   AllocaInt8PtrTy =
367       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
368   GlobalsInt8PtrTy =
369       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
370   ConstGlobalsPtrTy = llvm::PointerType::get(
371       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
372   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
373 
374   // Build C++20 Module initializers.
375   // TODO: Add Microsoft here once we know the mangling required for the
376   // initializers.
377   CXX20ModuleInits =
378       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
379                                        ItaniumMangleContext::MK_Itanium;
380 
381   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
382 
383   if (LangOpts.ObjC)
384     createObjCRuntime();
385   if (LangOpts.OpenCL)
386     createOpenCLRuntime();
387   if (LangOpts.OpenMP)
388     createOpenMPRuntime();
389   if (LangOpts.CUDA)
390     createCUDARuntime();
391   if (LangOpts.HLSL)
392     createHLSLRuntime();
393 
394   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
395   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
396       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
397     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
398                                getCXXABI().getMangleContext()));
399 
400   // If debug info or coverage generation is enabled, create the CGDebugInfo
401   // object.
402   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
403       CodeGenOpts.CoverageNotesFile.size() ||
404       CodeGenOpts.CoverageDataFile.size())
405     DebugInfo.reset(new CGDebugInfo(*this));
406 
407   Block.GlobalUniqueCount = 0;
408 
409   if (C.getLangOpts().ObjC)
410     ObjCData.reset(new ObjCEntrypoints());
411 
412   if (CodeGenOpts.hasProfileClangUse()) {
413     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
414         CodeGenOpts.ProfileInstrumentUsePath, *FS,
415         CodeGenOpts.ProfileRemappingFile);
416     // We're checking for profile read errors in CompilerInvocation, so if
417     // there was an error it should've already been caught. If it hasn't been
418     // somehow, trip an assertion.
419     assert(ReaderOrErr);
420     PGOReader = std::move(ReaderOrErr.get());
421   }
422 
423   // If coverage mapping generation is enabled, create the
424   // CoverageMappingModuleGen object.
425   if (CodeGenOpts.CoverageMapping)
426     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
427 
428   // Generate the module name hash here if needed.
429   if (CodeGenOpts.UniqueInternalLinkageNames &&
430       !getModule().getSourceFileName().empty()) {
431     std::string Path = getModule().getSourceFileName();
432     // Check if a path substitution is needed from the MacroPrefixMap.
433     for (const auto &Entry : LangOpts.MacroPrefixMap)
434       if (Path.rfind(Entry.first, 0) != std::string::npos) {
435         Path = Entry.second + Path.substr(Entry.first.size());
436         break;
437       }
438     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
439   }
440 }
441 
442 CodeGenModule::~CodeGenModule() {}
443 
444 void CodeGenModule::createObjCRuntime() {
445   // This is just isGNUFamily(), but we want to force implementors of
446   // new ABIs to decide how best to do this.
447   switch (LangOpts.ObjCRuntime.getKind()) {
448   case ObjCRuntime::GNUstep:
449   case ObjCRuntime::GCC:
450   case ObjCRuntime::ObjFW:
451     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
452     return;
453 
454   case ObjCRuntime::FragileMacOSX:
455   case ObjCRuntime::MacOSX:
456   case ObjCRuntime::iOS:
457   case ObjCRuntime::WatchOS:
458     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
459     return;
460   }
461   llvm_unreachable("bad runtime kind");
462 }
463 
464 void CodeGenModule::createOpenCLRuntime() {
465   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
466 }
467 
468 void CodeGenModule::createOpenMPRuntime() {
469   // Select a specialized code generation class based on the target, if any.
470   // If it does not exist use the default implementation.
471   switch (getTriple().getArch()) {
472   case llvm::Triple::nvptx:
473   case llvm::Triple::nvptx64:
474   case llvm::Triple::amdgcn:
475     assert(getLangOpts().OpenMPIsTargetDevice &&
476            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
477     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
478     break;
479   default:
480     if (LangOpts.OpenMPSimd)
481       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
482     else
483       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
484     break;
485   }
486 }
487 
488 void CodeGenModule::createCUDARuntime() {
489   CUDARuntime.reset(CreateNVCUDARuntime(*this));
490 }
491 
492 void CodeGenModule::createHLSLRuntime() {
493   HLSLRuntime.reset(new CGHLSLRuntime(*this));
494 }
495 
496 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
497   Replacements[Name] = C;
498 }
499 
500 void CodeGenModule::applyReplacements() {
501   for (auto &I : Replacements) {
502     StringRef MangledName = I.first;
503     llvm::Constant *Replacement = I.second;
504     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
505     if (!Entry)
506       continue;
507     auto *OldF = cast<llvm::Function>(Entry);
508     auto *NewF = dyn_cast<llvm::Function>(Replacement);
509     if (!NewF) {
510       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
511         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
512       } else {
513         auto *CE = cast<llvm::ConstantExpr>(Replacement);
514         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
515                CE->getOpcode() == llvm::Instruction::GetElementPtr);
516         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
517       }
518     }
519 
520     // Replace old with new, but keep the old order.
521     OldF->replaceAllUsesWith(Replacement);
522     if (NewF) {
523       NewF->removeFromParent();
524       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
525                                                        NewF);
526     }
527     OldF->eraseFromParent();
528   }
529 }
530 
531 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
532   GlobalValReplacements.push_back(std::make_pair(GV, C));
533 }
534 
535 void CodeGenModule::applyGlobalValReplacements() {
536   for (auto &I : GlobalValReplacements) {
537     llvm::GlobalValue *GV = I.first;
538     llvm::Constant *C = I.second;
539 
540     GV->replaceAllUsesWith(C);
541     GV->eraseFromParent();
542   }
543 }
544 
545 // This is only used in aliases that we created and we know they have a
546 // linear structure.
547 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
548   const llvm::Constant *C;
549   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
550     C = GA->getAliasee();
551   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
552     C = GI->getResolver();
553   else
554     return GV;
555 
556   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
557   if (!AliaseeGV)
558     return nullptr;
559 
560   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
561   if (FinalGV == GV)
562     return nullptr;
563 
564   return FinalGV;
565 }
566 
567 static bool checkAliasedGlobal(
568     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
569     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
570     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
571     SourceRange AliasRange) {
572   GV = getAliasedGlobal(Alias);
573   if (!GV) {
574     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
575     return false;
576   }
577 
578   if (GV->hasCommonLinkage()) {
579     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
580     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
581       Diags.Report(Location, diag::err_alias_to_common);
582       return false;
583     }
584   }
585 
586   if (GV->isDeclaration()) {
587     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
588     Diags.Report(Location, diag::note_alias_requires_mangled_name)
589         << IsIFunc << IsIFunc;
590     // Provide a note if the given function is not found and exists as a
591     // mangled name.
592     for (const auto &[Decl, Name] : MangledDeclNames) {
593       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
594         if (ND->getName() == GV->getName()) {
595           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
596               << Name
597               << FixItHint::CreateReplacement(
598                      AliasRange,
599                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
600                          .str());
601         }
602       }
603     }
604     return false;
605   }
606 
607   if (IsIFunc) {
608     // Check resolver function type.
609     const auto *F = dyn_cast<llvm::Function>(GV);
610     if (!F) {
611       Diags.Report(Location, diag::err_alias_to_undefined)
612           << IsIFunc << IsIFunc;
613       return false;
614     }
615 
616     llvm::FunctionType *FTy = F->getFunctionType();
617     if (!FTy->getReturnType()->isPointerTy()) {
618       Diags.Report(Location, diag::err_ifunc_resolver_return);
619       return false;
620     }
621   }
622 
623   return true;
624 }
625 
626 void CodeGenModule::checkAliases() {
627   // Check if the constructed aliases are well formed. It is really unfortunate
628   // that we have to do this in CodeGen, but we only construct mangled names
629   // and aliases during codegen.
630   bool Error = false;
631   DiagnosticsEngine &Diags = getDiags();
632   for (const GlobalDecl &GD : Aliases) {
633     const auto *D = cast<ValueDecl>(GD.getDecl());
634     SourceLocation Location;
635     SourceRange Range;
636     bool IsIFunc = D->hasAttr<IFuncAttr>();
637     if (const Attr *A = D->getDefiningAttr()) {
638       Location = A->getLocation();
639       Range = A->getRange();
640     } else
641       llvm_unreachable("Not an alias or ifunc?");
642 
643     StringRef MangledName = getMangledName(GD);
644     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
645     const llvm::GlobalValue *GV = nullptr;
646     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
647                             MangledDeclNames, Range)) {
648       Error = true;
649       continue;
650     }
651 
652     llvm::Constant *Aliasee =
653         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
654                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
655 
656     llvm::GlobalValue *AliaseeGV;
657     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
658       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
659     else
660       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
661 
662     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
663       StringRef AliasSection = SA->getName();
664       if (AliasSection != AliaseeGV->getSection())
665         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
666             << AliasSection << IsIFunc << IsIFunc;
667     }
668 
669     // We have to handle alias to weak aliases in here. LLVM itself disallows
670     // this since the object semantics would not match the IL one. For
671     // compatibility with gcc we implement it by just pointing the alias
672     // to its aliasee's aliasee. We also warn, since the user is probably
673     // expecting the link to be weak.
674     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
675       if (GA->isInterposable()) {
676         Diags.Report(Location, diag::warn_alias_to_weak_alias)
677             << GV->getName() << GA->getName() << IsIFunc;
678         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
679             GA->getAliasee(), Alias->getType());
680 
681         if (IsIFunc)
682           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
683         else
684           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
685       }
686     }
687   }
688   if (!Error)
689     return;
690 
691   for (const GlobalDecl &GD : Aliases) {
692     StringRef MangledName = getMangledName(GD);
693     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
694     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
695     Alias->eraseFromParent();
696   }
697 }
698 
699 void CodeGenModule::clear() {
700   DeferredDeclsToEmit.clear();
701   EmittedDeferredDecls.clear();
702   if (OpenMPRuntime)
703     OpenMPRuntime->clear();
704 }
705 
706 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
707                                        StringRef MainFile) {
708   if (!hasDiagnostics())
709     return;
710   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
711     if (MainFile.empty())
712       MainFile = "<stdin>";
713     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
714   } else {
715     if (Mismatched > 0)
716       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
717 
718     if (Missing > 0)
719       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
720   }
721 }
722 
723 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
724                                              llvm::Module &M) {
725   if (!LO.VisibilityFromDLLStorageClass)
726     return;
727 
728   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
729       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
730   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
731       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
732   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
733       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
734   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
735       CodeGenModule::GetLLVMVisibility(
736           LO.getExternDeclNoDLLStorageClassVisibility());
737 
738   for (llvm::GlobalValue &GV : M.global_values()) {
739     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
740       continue;
741 
742     // Reset DSO locality before setting the visibility. This removes
743     // any effects that visibility options and annotations may have
744     // had on the DSO locality. Setting the visibility will implicitly set
745     // appropriate globals to DSO Local; however, this will be pessimistic
746     // w.r.t. to the normal compiler IRGen.
747     GV.setDSOLocal(false);
748 
749     if (GV.isDeclarationForLinker()) {
750       GV.setVisibility(GV.getDLLStorageClass() ==
751                                llvm::GlobalValue::DLLImportStorageClass
752                            ? ExternDeclDLLImportVisibility
753                            : ExternDeclNoDLLStorageClassVisibility);
754     } else {
755       GV.setVisibility(GV.getDLLStorageClass() ==
756                                llvm::GlobalValue::DLLExportStorageClass
757                            ? DLLExportVisibility
758                            : NoDLLStorageClassVisibility);
759     }
760 
761     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
762   }
763 }
764 
765 static bool isStackProtectorOn(const LangOptions &LangOpts,
766                                const llvm::Triple &Triple,
767                                clang::LangOptions::StackProtectorMode Mode) {
768   if (Triple.isAMDGPU() || Triple.isNVPTX())
769     return false;
770   return LangOpts.getStackProtector() == Mode;
771 }
772 
773 void CodeGenModule::Release() {
774   Module *Primary = getContext().getCurrentNamedModule();
775   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
776     EmitModuleInitializers(Primary);
777   EmitDeferred();
778   DeferredDecls.insert(EmittedDeferredDecls.begin(),
779                        EmittedDeferredDecls.end());
780   EmittedDeferredDecls.clear();
781   EmitVTablesOpportunistically();
782   applyGlobalValReplacements();
783   applyReplacements();
784   emitMultiVersionFunctions();
785 
786   if (Context.getLangOpts().IncrementalExtensions &&
787       GlobalTopLevelStmtBlockInFlight.first) {
788     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
789     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
790     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
791   }
792 
793   // Module implementations are initialized the same way as a regular TU that
794   // imports one or more modules.
795   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
796     EmitCXXModuleInitFunc(Primary);
797   else
798     EmitCXXGlobalInitFunc();
799   EmitCXXGlobalCleanUpFunc();
800   registerGlobalDtorsWithAtExit();
801   EmitCXXThreadLocalInitFunc();
802   if (ObjCRuntime)
803     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
804       AddGlobalCtor(ObjCInitFunction);
805   if (Context.getLangOpts().CUDA && CUDARuntime) {
806     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
807       AddGlobalCtor(CudaCtorFunction);
808   }
809   if (OpenMPRuntime) {
810     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
811             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
812       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
813     }
814     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
815     OpenMPRuntime->clear();
816   }
817   if (PGOReader) {
818     getModule().setProfileSummary(
819         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
820         llvm::ProfileSummary::PSK_Instr);
821     if (PGOStats.hasDiagnostics())
822       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
823   }
824   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
825     return L.LexOrder < R.LexOrder;
826   });
827   EmitCtorList(GlobalCtors, "llvm.global_ctors");
828   EmitCtorList(GlobalDtors, "llvm.global_dtors");
829   EmitGlobalAnnotations();
830   EmitStaticExternCAliases();
831   checkAliases();
832   EmitDeferredUnusedCoverageMappings();
833   CodeGenPGO(*this).setValueProfilingFlag(getModule());
834   if (CoverageMapping)
835     CoverageMapping->emit();
836   if (CodeGenOpts.SanitizeCfiCrossDso) {
837     CodeGenFunction(*this).EmitCfiCheckFail();
838     CodeGenFunction(*this).EmitCfiCheckStub();
839   }
840   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
841     finalizeKCFITypes();
842   emitAtAvailableLinkGuard();
843   if (Context.getTargetInfo().getTriple().isWasm())
844     EmitMainVoidAlias();
845 
846   if (getTriple().isAMDGPU()) {
847     // Emit amdgpu_code_object_version module flag, which is code object version
848     // times 100.
849     if (getTarget().getTargetOpts().CodeObjectVersion !=
850         TargetOptions::COV_None) {
851       getModule().addModuleFlag(llvm::Module::Error,
852                                 "amdgpu_code_object_version",
853                                 getTarget().getTargetOpts().CodeObjectVersion);
854     }
855 
856     // Currently, "-mprintf-kind" option is only supported for HIP
857     if (LangOpts.HIP) {
858       auto *MDStr = llvm::MDString::get(
859           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
860                              TargetOptions::AMDGPUPrintfKind::Hostcall)
861                                 ? "hostcall"
862                                 : "buffered");
863       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
864                                 MDStr);
865     }
866   }
867 
868   // Emit a global array containing all external kernels or device variables
869   // used by host functions and mark it as used for CUDA/HIP. This is necessary
870   // to get kernels or device variables in archives linked in even if these
871   // kernels or device variables are only used in host functions.
872   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
873     SmallVector<llvm::Constant *, 8> UsedArray;
874     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
875       GlobalDecl GD;
876       if (auto *FD = dyn_cast<FunctionDecl>(D))
877         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
878       else
879         GD = GlobalDecl(D);
880       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
881           GetAddrOfGlobal(GD), Int8PtrTy));
882     }
883 
884     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
885 
886     auto *GV = new llvm::GlobalVariable(
887         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
888         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
889     addCompilerUsedGlobal(GV);
890   }
891 
892   emitLLVMUsed();
893   if (SanStats)
894     SanStats->finish();
895 
896   if (CodeGenOpts.Autolink &&
897       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
898     EmitModuleLinkOptions();
899   }
900 
901   // On ELF we pass the dependent library specifiers directly to the linker
902   // without manipulating them. This is in contrast to other platforms where
903   // they are mapped to a specific linker option by the compiler. This
904   // difference is a result of the greater variety of ELF linkers and the fact
905   // that ELF linkers tend to handle libraries in a more complicated fashion
906   // than on other platforms. This forces us to defer handling the dependent
907   // libs to the linker.
908   //
909   // CUDA/HIP device and host libraries are different. Currently there is no
910   // way to differentiate dependent libraries for host or device. Existing
911   // usage of #pragma comment(lib, *) is intended for host libraries on
912   // Windows. Therefore emit llvm.dependent-libraries only for host.
913   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
914     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
915     for (auto *MD : ELFDependentLibraries)
916       NMD->addOperand(MD);
917   }
918 
919   // Record mregparm value now so it is visible through rest of codegen.
920   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
921     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
922                               CodeGenOpts.NumRegisterParameters);
923 
924   if (CodeGenOpts.DwarfVersion) {
925     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
926                               CodeGenOpts.DwarfVersion);
927   }
928 
929   if (CodeGenOpts.Dwarf64)
930     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
931 
932   if (Context.getLangOpts().SemanticInterposition)
933     // Require various optimization to respect semantic interposition.
934     getModule().setSemanticInterposition(true);
935 
936   if (CodeGenOpts.EmitCodeView) {
937     // Indicate that we want CodeView in the metadata.
938     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
939   }
940   if (CodeGenOpts.CodeViewGHash) {
941     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
942   }
943   if (CodeGenOpts.ControlFlowGuard) {
944     // Function ID tables and checks for Control Flow Guard (cfguard=2).
945     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
946   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
947     // Function ID tables for Control Flow Guard (cfguard=1).
948     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
949   }
950   if (CodeGenOpts.EHContGuard) {
951     // Function ID tables for EH Continuation Guard.
952     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
953   }
954   if (Context.getLangOpts().Kernel) {
955     // Note if we are compiling with /kernel.
956     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
957   }
958   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
959     // We don't support LTO with 2 with different StrictVTablePointers
960     // FIXME: we could support it by stripping all the information introduced
961     // by StrictVTablePointers.
962 
963     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
964 
965     llvm::Metadata *Ops[2] = {
966               llvm::MDString::get(VMContext, "StrictVTablePointers"),
967               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
968                   llvm::Type::getInt32Ty(VMContext), 1))};
969 
970     getModule().addModuleFlag(llvm::Module::Require,
971                               "StrictVTablePointersRequirement",
972                               llvm::MDNode::get(VMContext, Ops));
973   }
974   if (getModuleDebugInfo())
975     // We support a single version in the linked module. The LLVM
976     // parser will drop debug info with a different version number
977     // (and warn about it, too).
978     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
979                               llvm::DEBUG_METADATA_VERSION);
980 
981   // We need to record the widths of enums and wchar_t, so that we can generate
982   // the correct build attributes in the ARM backend. wchar_size is also used by
983   // TargetLibraryInfo.
984   uint64_t WCharWidth =
985       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
986   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
987 
988   if (getTriple().isOSzOS()) {
989     getModule().addModuleFlag(llvm::Module::Warning,
990                               "zos_product_major_version",
991                               uint32_t(CLANG_VERSION_MAJOR));
992     getModule().addModuleFlag(llvm::Module::Warning,
993                               "zos_product_minor_version",
994                               uint32_t(CLANG_VERSION_MINOR));
995     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
996                               uint32_t(CLANG_VERSION_PATCHLEVEL));
997     std::string ProductId;
998 #ifdef CLANG_VENDOR
999     ProductId = #CLANG_VENDOR;
1000 #else
1001     ProductId = "clang";
1002 #endif
1003     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1004                               llvm::MDString::get(VMContext, ProductId));
1005 
1006     // Record the language because we need it for the PPA2.
1007     StringRef lang_str = languageToString(
1008         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1009     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1010                               llvm::MDString::get(VMContext, lang_str));
1011 
1012     time_t TT = PreprocessorOpts.SourceDateEpoch
1013                     ? *PreprocessorOpts.SourceDateEpoch
1014                     : std::time(nullptr);
1015     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1016                               static_cast<uint64_t>(TT));
1017 
1018     // Multiple modes will be supported here.
1019     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1020                               llvm::MDString::get(VMContext, "ascii"));
1021   }
1022 
1023   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1024   if (   Arch == llvm::Triple::arm
1025       || Arch == llvm::Triple::armeb
1026       || Arch == llvm::Triple::thumb
1027       || Arch == llvm::Triple::thumbeb) {
1028     // The minimum width of an enum in bytes
1029     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1030     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1031   }
1032 
1033   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
1034     StringRef ABIStr = Target.getABI();
1035     llvm::LLVMContext &Ctx = TheModule.getContext();
1036     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1037                               llvm::MDString::get(Ctx, ABIStr));
1038   }
1039 
1040   if (CodeGenOpts.SanitizeCfiCrossDso) {
1041     // Indicate that we want cross-DSO control flow integrity checks.
1042     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1043   }
1044 
1045   if (CodeGenOpts.WholeProgramVTables) {
1046     // Indicate whether VFE was enabled for this module, so that the
1047     // vcall_visibility metadata added under whole program vtables is handled
1048     // appropriately in the optimizer.
1049     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1050                               CodeGenOpts.VirtualFunctionElimination);
1051   }
1052 
1053   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1054     getModule().addModuleFlag(llvm::Module::Override,
1055                               "CFI Canonical Jump Tables",
1056                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1057   }
1058 
1059   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1060     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1061     // KCFI assumes patchable-function-prefix is the same for all indirectly
1062     // called functions. Store the expected offset for code generation.
1063     if (CodeGenOpts.PatchableFunctionEntryOffset)
1064       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1065                                 CodeGenOpts.PatchableFunctionEntryOffset);
1066   }
1067 
1068   if (CodeGenOpts.CFProtectionReturn &&
1069       Target.checkCFProtectionReturnSupported(getDiags())) {
1070     // Indicate that we want to instrument return control flow protection.
1071     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1072                               1);
1073   }
1074 
1075   if (CodeGenOpts.CFProtectionBranch &&
1076       Target.checkCFProtectionBranchSupported(getDiags())) {
1077     // Indicate that we want to instrument branch control flow protection.
1078     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1079                               1);
1080   }
1081 
1082   if (CodeGenOpts.FunctionReturnThunks)
1083     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1084 
1085   if (CodeGenOpts.IndirectBranchCSPrefix)
1086     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1087 
1088   // Add module metadata for return address signing (ignoring
1089   // non-leaf/all) and stack tagging. These are actually turned on by function
1090   // attributes, but we use module metadata to emit build attributes. This is
1091   // needed for LTO, where the function attributes are inside bitcode
1092   // serialised into a global variable by the time build attributes are
1093   // emitted, so we can't access them. LTO objects could be compiled with
1094   // different flags therefore module flags are set to "Min" behavior to achieve
1095   // the same end result of the normal build where e.g BTI is off if any object
1096   // doesn't support it.
1097   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1098       LangOpts.getSignReturnAddressScope() !=
1099           LangOptions::SignReturnAddressScopeKind::None)
1100     getModule().addModuleFlag(llvm::Module::Override,
1101                               "sign-return-address-buildattr", 1);
1102   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1103     getModule().addModuleFlag(llvm::Module::Override,
1104                               "tag-stack-memory-buildattr", 1);
1105 
1106   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1107       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1108       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1109       Arch == llvm::Triple::aarch64_be) {
1110     if (LangOpts.BranchTargetEnforcement)
1111       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1112                                 1);
1113     if (LangOpts.hasSignReturnAddress())
1114       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1115     if (LangOpts.isSignReturnAddressScopeAll())
1116       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1117                                 1);
1118     if (!LangOpts.isSignReturnAddressWithAKey())
1119       getModule().addModuleFlag(llvm::Module::Min,
1120                                 "sign-return-address-with-bkey", 1);
1121   }
1122 
1123   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1124     llvm::LLVMContext &Ctx = TheModule.getContext();
1125     getModule().addModuleFlag(
1126         llvm::Module::Error, "MemProfProfileFilename",
1127         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1128   }
1129 
1130   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1131     // Indicate whether __nvvm_reflect should be configured to flush denormal
1132     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1133     // property.)
1134     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1135                               CodeGenOpts.FP32DenormalMode.Output !=
1136                                   llvm::DenormalMode::IEEE);
1137   }
1138 
1139   if (LangOpts.EHAsynch)
1140     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1141 
1142   // Indicate whether this Module was compiled with -fopenmp
1143   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1144     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1145   if (getLangOpts().OpenMPIsTargetDevice)
1146     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1147                               LangOpts.OpenMP);
1148 
1149   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1150   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1151     EmitOpenCLMetadata();
1152     // Emit SPIR version.
1153     if (getTriple().isSPIR()) {
1154       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1155       // opencl.spir.version named metadata.
1156       // C++ for OpenCL has a distinct mapping for version compatibility with
1157       // OpenCL.
1158       auto Version = LangOpts.getOpenCLCompatibleVersion();
1159       llvm::Metadata *SPIRVerElts[] = {
1160           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1161               Int32Ty, Version / 100)),
1162           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1163               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1164       llvm::NamedMDNode *SPIRVerMD =
1165           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1166       llvm::LLVMContext &Ctx = TheModule.getContext();
1167       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1168     }
1169   }
1170 
1171   // HLSL related end of code gen work items.
1172   if (LangOpts.HLSL)
1173     getHLSLRuntime().finishCodeGen();
1174 
1175   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1176     assert(PLevel < 3 && "Invalid PIC Level");
1177     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1178     if (Context.getLangOpts().PIE)
1179       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1180   }
1181 
1182   if (getCodeGenOpts().CodeModel.size() > 0) {
1183     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1184                   .Case("tiny", llvm::CodeModel::Tiny)
1185                   .Case("small", llvm::CodeModel::Small)
1186                   .Case("kernel", llvm::CodeModel::Kernel)
1187                   .Case("medium", llvm::CodeModel::Medium)
1188                   .Case("large", llvm::CodeModel::Large)
1189                   .Default(~0u);
1190     if (CM != ~0u) {
1191       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1192       getModule().setCodeModel(codeModel);
1193 
1194       if (CM == llvm::CodeModel::Medium &&
1195           Context.getTargetInfo().getTriple().getArch() ==
1196               llvm::Triple::x86_64) {
1197         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1198       }
1199     }
1200   }
1201 
1202   if (CodeGenOpts.NoPLT)
1203     getModule().setRtLibUseGOT();
1204   if (getTriple().isOSBinFormatELF() &&
1205       CodeGenOpts.DirectAccessExternalData !=
1206           getModule().getDirectAccessExternalData()) {
1207     getModule().setDirectAccessExternalData(
1208         CodeGenOpts.DirectAccessExternalData);
1209   }
1210   if (CodeGenOpts.UnwindTables)
1211     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1212 
1213   switch (CodeGenOpts.getFramePointer()) {
1214   case CodeGenOptions::FramePointerKind::None:
1215     // 0 ("none") is the default.
1216     break;
1217   case CodeGenOptions::FramePointerKind::NonLeaf:
1218     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1219     break;
1220   case CodeGenOptions::FramePointerKind::All:
1221     getModule().setFramePointer(llvm::FramePointerKind::All);
1222     break;
1223   }
1224 
1225   SimplifyPersonality();
1226 
1227   if (getCodeGenOpts().EmitDeclMetadata)
1228     EmitDeclMetadata();
1229 
1230   if (getCodeGenOpts().CoverageNotesFile.size() ||
1231       getCodeGenOpts().CoverageDataFile.size())
1232     EmitCoverageFile();
1233 
1234   if (CGDebugInfo *DI = getModuleDebugInfo())
1235     DI->finalize();
1236 
1237   if (getCodeGenOpts().EmitVersionIdentMetadata)
1238     EmitVersionIdentMetadata();
1239 
1240   if (!getCodeGenOpts().RecordCommandLine.empty())
1241     EmitCommandLineMetadata();
1242 
1243   if (!getCodeGenOpts().StackProtectorGuard.empty())
1244     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1245   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1246     getModule().setStackProtectorGuardReg(
1247         getCodeGenOpts().StackProtectorGuardReg);
1248   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1249     getModule().setStackProtectorGuardSymbol(
1250         getCodeGenOpts().StackProtectorGuardSymbol);
1251   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1252     getModule().setStackProtectorGuardOffset(
1253         getCodeGenOpts().StackProtectorGuardOffset);
1254   if (getCodeGenOpts().StackAlignment)
1255     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1256   if (getCodeGenOpts().SkipRaxSetup)
1257     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1258   if (getLangOpts().RegCall4)
1259     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1260 
1261   if (getContext().getTargetInfo().getMaxTLSAlign())
1262     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1263                               getContext().getTargetInfo().getMaxTLSAlign());
1264 
1265   getTargetCodeGenInfo().emitTargetGlobals(*this);
1266 
1267   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1268 
1269   EmitBackendOptionsMetadata(getCodeGenOpts());
1270 
1271   // If there is device offloading code embed it in the host now.
1272   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1273 
1274   // Set visibility from DLL storage class
1275   // We do this at the end of LLVM IR generation; after any operation
1276   // that might affect the DLL storage class or the visibility, and
1277   // before anything that might act on these.
1278   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1279 }
1280 
1281 void CodeGenModule::EmitOpenCLMetadata() {
1282   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1283   // opencl.ocl.version named metadata node.
1284   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1285   auto Version = LangOpts.getOpenCLCompatibleVersion();
1286   llvm::Metadata *OCLVerElts[] = {
1287       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1288           Int32Ty, Version / 100)),
1289       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1290           Int32Ty, (Version % 100) / 10))};
1291   llvm::NamedMDNode *OCLVerMD =
1292       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1293   llvm::LLVMContext &Ctx = TheModule.getContext();
1294   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1295 }
1296 
1297 void CodeGenModule::EmitBackendOptionsMetadata(
1298     const CodeGenOptions &CodeGenOpts) {
1299   if (getTriple().isRISCV()) {
1300     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1301                               CodeGenOpts.SmallDataLimit);
1302   }
1303 }
1304 
1305 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1306   // Make sure that this type is translated.
1307   Types.UpdateCompletedType(TD);
1308 }
1309 
1310 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1311   // Make sure that this type is translated.
1312   Types.RefreshTypeCacheForClass(RD);
1313 }
1314 
1315 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1316   if (!TBAA)
1317     return nullptr;
1318   return TBAA->getTypeInfo(QTy);
1319 }
1320 
1321 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1322   if (!TBAA)
1323     return TBAAAccessInfo();
1324   if (getLangOpts().CUDAIsDevice) {
1325     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1326     // access info.
1327     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1328       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1329           nullptr)
1330         return TBAAAccessInfo();
1331     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1332       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1333           nullptr)
1334         return TBAAAccessInfo();
1335     }
1336   }
1337   return TBAA->getAccessInfo(AccessType);
1338 }
1339 
1340 TBAAAccessInfo
1341 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1342   if (!TBAA)
1343     return TBAAAccessInfo();
1344   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1345 }
1346 
1347 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1348   if (!TBAA)
1349     return nullptr;
1350   return TBAA->getTBAAStructInfo(QTy);
1351 }
1352 
1353 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1354   if (!TBAA)
1355     return nullptr;
1356   return TBAA->getBaseTypeInfo(QTy);
1357 }
1358 
1359 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1360   if (!TBAA)
1361     return nullptr;
1362   return TBAA->getAccessTagInfo(Info);
1363 }
1364 
1365 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1366                                                    TBAAAccessInfo TargetInfo) {
1367   if (!TBAA)
1368     return TBAAAccessInfo();
1369   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1370 }
1371 
1372 TBAAAccessInfo
1373 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1374                                                    TBAAAccessInfo InfoB) {
1375   if (!TBAA)
1376     return TBAAAccessInfo();
1377   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1378 }
1379 
1380 TBAAAccessInfo
1381 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1382                                               TBAAAccessInfo SrcInfo) {
1383   if (!TBAA)
1384     return TBAAAccessInfo();
1385   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1386 }
1387 
1388 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1389                                                 TBAAAccessInfo TBAAInfo) {
1390   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1391     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1392 }
1393 
1394 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1395     llvm::Instruction *I, const CXXRecordDecl *RD) {
1396   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1397                  llvm::MDNode::get(getLLVMContext(), {}));
1398 }
1399 
1400 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1401   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1402   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1403 }
1404 
1405 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1406 /// specified stmt yet.
1407 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1408   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1409                                                "cannot compile this %0 yet");
1410   std::string Msg = Type;
1411   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1412       << Msg << S->getSourceRange();
1413 }
1414 
1415 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1416 /// specified decl yet.
1417 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1418   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1419                                                "cannot compile this %0 yet");
1420   std::string Msg = Type;
1421   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1422 }
1423 
1424 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1425   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1426 }
1427 
1428 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1429                                         const NamedDecl *D) const {
1430   // Internal definitions always have default visibility.
1431   if (GV->hasLocalLinkage()) {
1432     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1433     return;
1434   }
1435   if (!D)
1436     return;
1437 
1438   // Set visibility for definitions, and for declarations if requested globally
1439   // or set explicitly.
1440   LinkageInfo LV = D->getLinkageAndVisibility();
1441 
1442   // OpenMP declare target variables must be visible to the host so they can
1443   // be registered. We require protected visibility unless the variable has
1444   // the DT_nohost modifier and does not need to be registered.
1445   if (Context.getLangOpts().OpenMP &&
1446       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1447       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1448       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1449           OMPDeclareTargetDeclAttr::DT_NoHost &&
1450       LV.getVisibility() == HiddenVisibility) {
1451     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1452     return;
1453   }
1454 
1455   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1456     // Reject incompatible dlllstorage and visibility annotations.
1457     if (!LV.isVisibilityExplicit())
1458       return;
1459     if (GV->hasDLLExportStorageClass()) {
1460       if (LV.getVisibility() == HiddenVisibility)
1461         getDiags().Report(D->getLocation(),
1462                           diag::err_hidden_visibility_dllexport);
1463     } else if (LV.getVisibility() != DefaultVisibility) {
1464       getDiags().Report(D->getLocation(),
1465                         diag::err_non_default_visibility_dllimport);
1466     }
1467     return;
1468   }
1469 
1470   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1471       !GV->isDeclarationForLinker())
1472     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1473 }
1474 
1475 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1476                                  llvm::GlobalValue *GV) {
1477   if (GV->hasLocalLinkage())
1478     return true;
1479 
1480   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1481     return true;
1482 
1483   // DLLImport explicitly marks the GV as external.
1484   if (GV->hasDLLImportStorageClass())
1485     return false;
1486 
1487   const llvm::Triple &TT = CGM.getTriple();
1488   const auto &CGOpts = CGM.getCodeGenOpts();
1489   if (TT.isWindowsGNUEnvironment()) {
1490     // In MinGW, variables without DLLImport can still be automatically
1491     // imported from a DLL by the linker; don't mark variables that
1492     // potentially could come from another DLL as DSO local.
1493 
1494     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1495     // (and this actually happens in the public interface of libstdc++), so
1496     // such variables can't be marked as DSO local. (Native TLS variables
1497     // can't be dllimported at all, though.)
1498     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1499         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1500         CGOpts.AutoImport)
1501       return false;
1502   }
1503 
1504   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1505   // remain unresolved in the link, they can be resolved to zero, which is
1506   // outside the current DSO.
1507   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1508     return false;
1509 
1510   // Every other GV is local on COFF.
1511   // Make an exception for windows OS in the triple: Some firmware builds use
1512   // *-win32-macho triples. This (accidentally?) produced windows relocations
1513   // without GOT tables in older clang versions; Keep this behaviour.
1514   // FIXME: even thread local variables?
1515   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1516     return true;
1517 
1518   // Only handle COFF and ELF for now.
1519   if (!TT.isOSBinFormatELF())
1520     return false;
1521 
1522   // If this is not an executable, don't assume anything is local.
1523   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1524   const auto &LOpts = CGM.getLangOpts();
1525   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1526     // On ELF, if -fno-semantic-interposition is specified and the target
1527     // supports local aliases, there will be neither CC1
1528     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1529     // dso_local on the function if using a local alias is preferable (can avoid
1530     // PLT indirection).
1531     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1532       return false;
1533     return !(CGM.getLangOpts().SemanticInterposition ||
1534              CGM.getLangOpts().HalfNoSemanticInterposition);
1535   }
1536 
1537   // A definition cannot be preempted from an executable.
1538   if (!GV->isDeclarationForLinker())
1539     return true;
1540 
1541   // Most PIC code sequences that assume that a symbol is local cannot produce a
1542   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1543   // depended, it seems worth it to handle it here.
1544   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1545     return false;
1546 
1547   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1548   if (TT.isPPC64())
1549     return false;
1550 
1551   if (CGOpts.DirectAccessExternalData) {
1552     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1553     // for non-thread-local variables. If the symbol is not defined in the
1554     // executable, a copy relocation will be needed at link time. dso_local is
1555     // excluded for thread-local variables because they generally don't support
1556     // copy relocations.
1557     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1558       if (!Var->isThreadLocal())
1559         return true;
1560 
1561     // -fno-pic sets dso_local on a function declaration to allow direct
1562     // accesses when taking its address (similar to a data symbol). If the
1563     // function is not defined in the executable, a canonical PLT entry will be
1564     // needed at link time. -fno-direct-access-external-data can avoid the
1565     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1566     // it could just cause trouble without providing perceptible benefits.
1567     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1568       return true;
1569   }
1570 
1571   // If we can use copy relocations we can assume it is local.
1572 
1573   // Otherwise don't assume it is local.
1574   return false;
1575 }
1576 
1577 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1578   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1579 }
1580 
1581 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1582                                           GlobalDecl GD) const {
1583   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1584   // C++ destructors have a few C++ ABI specific special cases.
1585   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1586     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1587     return;
1588   }
1589   setDLLImportDLLExport(GV, D);
1590 }
1591 
1592 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1593                                           const NamedDecl *D) const {
1594   if (D && D->isExternallyVisible()) {
1595     if (D->hasAttr<DLLImportAttr>())
1596       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1597     else if ((D->hasAttr<DLLExportAttr>() ||
1598               shouldMapVisibilityToDLLExport(D)) &&
1599              !GV->isDeclarationForLinker())
1600       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1601   }
1602 }
1603 
1604 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1605                                     GlobalDecl GD) const {
1606   setDLLImportDLLExport(GV, GD);
1607   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1608 }
1609 
1610 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1611                                     const NamedDecl *D) const {
1612   setDLLImportDLLExport(GV, D);
1613   setGVPropertiesAux(GV, D);
1614 }
1615 
1616 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1617                                        const NamedDecl *D) const {
1618   setGlobalVisibility(GV, D);
1619   setDSOLocal(GV);
1620   GV->setPartition(CodeGenOpts.SymbolPartition);
1621 }
1622 
1623 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1624   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1625       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1626       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1627       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1628       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1629 }
1630 
1631 llvm::GlobalVariable::ThreadLocalMode
1632 CodeGenModule::GetDefaultLLVMTLSModel() const {
1633   switch (CodeGenOpts.getDefaultTLSModel()) {
1634   case CodeGenOptions::GeneralDynamicTLSModel:
1635     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1636   case CodeGenOptions::LocalDynamicTLSModel:
1637     return llvm::GlobalVariable::LocalDynamicTLSModel;
1638   case CodeGenOptions::InitialExecTLSModel:
1639     return llvm::GlobalVariable::InitialExecTLSModel;
1640   case CodeGenOptions::LocalExecTLSModel:
1641     return llvm::GlobalVariable::LocalExecTLSModel;
1642   }
1643   llvm_unreachable("Invalid TLS model!");
1644 }
1645 
1646 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1647   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1648 
1649   llvm::GlobalValue::ThreadLocalMode TLM;
1650   TLM = GetDefaultLLVMTLSModel();
1651 
1652   // Override the TLS model if it is explicitly specified.
1653   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1654     TLM = GetLLVMTLSModel(Attr->getModel());
1655   }
1656 
1657   GV->setThreadLocalMode(TLM);
1658 }
1659 
1660 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1661                                           StringRef Name) {
1662   const TargetInfo &Target = CGM.getTarget();
1663   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1664 }
1665 
1666 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1667                                                  const CPUSpecificAttr *Attr,
1668                                                  unsigned CPUIndex,
1669                                                  raw_ostream &Out) {
1670   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1671   // supported.
1672   if (Attr)
1673     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1674   else if (CGM.getTarget().supportsIFunc())
1675     Out << ".resolver";
1676 }
1677 
1678 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1679                                         const TargetVersionAttr *Attr,
1680                                         raw_ostream &Out) {
1681   if (Attr->isDefaultVersion())
1682     return;
1683   Out << "._";
1684   const TargetInfo &TI = CGM.getTarget();
1685   llvm::SmallVector<StringRef, 8> Feats;
1686   Attr->getFeatures(Feats);
1687   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1688     return TI.multiVersionSortPriority(FeatL) <
1689            TI.multiVersionSortPriority(FeatR);
1690   });
1691   for (const auto &Feat : Feats) {
1692     Out << 'M';
1693     Out << Feat;
1694   }
1695 }
1696 
1697 static void AppendTargetMangling(const CodeGenModule &CGM,
1698                                  const TargetAttr *Attr, raw_ostream &Out) {
1699   if (Attr->isDefaultVersion())
1700     return;
1701 
1702   Out << '.';
1703   const TargetInfo &Target = CGM.getTarget();
1704   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1705   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1706     // Multiversioning doesn't allow "no-${feature}", so we can
1707     // only have "+" prefixes here.
1708     assert(LHS.startswith("+") && RHS.startswith("+") &&
1709            "Features should always have a prefix.");
1710     return Target.multiVersionSortPriority(LHS.substr(1)) >
1711            Target.multiVersionSortPriority(RHS.substr(1));
1712   });
1713 
1714   bool IsFirst = true;
1715 
1716   if (!Info.CPU.empty()) {
1717     IsFirst = false;
1718     Out << "arch_" << Info.CPU;
1719   }
1720 
1721   for (StringRef Feat : Info.Features) {
1722     if (!IsFirst)
1723       Out << '_';
1724     IsFirst = false;
1725     Out << Feat.substr(1);
1726   }
1727 }
1728 
1729 // Returns true if GD is a function decl with internal linkage and
1730 // needs a unique suffix after the mangled name.
1731 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1732                                         CodeGenModule &CGM) {
1733   const Decl *D = GD.getDecl();
1734   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1735          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1736 }
1737 
1738 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1739                                        const TargetClonesAttr *Attr,
1740                                        unsigned VersionIndex,
1741                                        raw_ostream &Out) {
1742   const TargetInfo &TI = CGM.getTarget();
1743   if (TI.getTriple().isAArch64()) {
1744     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1745     if (FeatureStr == "default")
1746       return;
1747     Out << "._";
1748     SmallVector<StringRef, 8> Features;
1749     FeatureStr.split(Features, "+");
1750     llvm::stable_sort(Features,
1751                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1752                         return TI.multiVersionSortPriority(FeatL) <
1753                                TI.multiVersionSortPriority(FeatR);
1754                       });
1755     for (auto &Feat : Features) {
1756       Out << 'M';
1757       Out << Feat;
1758     }
1759   } else {
1760     Out << '.';
1761     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1762     if (FeatureStr.startswith("arch="))
1763       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1764     else
1765       Out << FeatureStr;
1766 
1767     Out << '.' << Attr->getMangledIndex(VersionIndex);
1768   }
1769 }
1770 
1771 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1772                                       const NamedDecl *ND,
1773                                       bool OmitMultiVersionMangling = false) {
1774   SmallString<256> Buffer;
1775   llvm::raw_svector_ostream Out(Buffer);
1776   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1777   if (!CGM.getModuleNameHash().empty())
1778     MC.needsUniqueInternalLinkageNames();
1779   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1780   if (ShouldMangle)
1781     MC.mangleName(GD.getWithDecl(ND), Out);
1782   else {
1783     IdentifierInfo *II = ND->getIdentifier();
1784     assert(II && "Attempt to mangle unnamed decl.");
1785     const auto *FD = dyn_cast<FunctionDecl>(ND);
1786 
1787     if (FD &&
1788         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1789       if (CGM.getLangOpts().RegCall4)
1790         Out << "__regcall4__" << II->getName();
1791       else
1792         Out << "__regcall3__" << II->getName();
1793     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1794                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1795       Out << "__device_stub__" << II->getName();
1796     } else {
1797       Out << II->getName();
1798     }
1799   }
1800 
1801   // Check if the module name hash should be appended for internal linkage
1802   // symbols.   This should come before multi-version target suffixes are
1803   // appended. This is to keep the name and module hash suffix of the
1804   // internal linkage function together.  The unique suffix should only be
1805   // added when name mangling is done to make sure that the final name can
1806   // be properly demangled.  For example, for C functions without prototypes,
1807   // name mangling is not done and the unique suffix should not be appeneded
1808   // then.
1809   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1810     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1811            "Hash computed when not explicitly requested");
1812     Out << CGM.getModuleNameHash();
1813   }
1814 
1815   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1816     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1817       switch (FD->getMultiVersionKind()) {
1818       case MultiVersionKind::CPUDispatch:
1819       case MultiVersionKind::CPUSpecific:
1820         AppendCPUSpecificCPUDispatchMangling(CGM,
1821                                              FD->getAttr<CPUSpecificAttr>(),
1822                                              GD.getMultiVersionIndex(), Out);
1823         break;
1824       case MultiVersionKind::Target:
1825         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1826         break;
1827       case MultiVersionKind::TargetVersion:
1828         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1829         break;
1830       case MultiVersionKind::TargetClones:
1831         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1832                                    GD.getMultiVersionIndex(), Out);
1833         break;
1834       case MultiVersionKind::None:
1835         llvm_unreachable("None multiversion type isn't valid here");
1836       }
1837     }
1838 
1839   // Make unique name for device side static file-scope variable for HIP.
1840   if (CGM.getContext().shouldExternalize(ND) &&
1841       CGM.getLangOpts().GPURelocatableDeviceCode &&
1842       CGM.getLangOpts().CUDAIsDevice)
1843     CGM.printPostfixForExternalizedDecl(Out, ND);
1844 
1845   return std::string(Out.str());
1846 }
1847 
1848 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1849                                             const FunctionDecl *FD,
1850                                             StringRef &CurName) {
1851   if (!FD->isMultiVersion())
1852     return;
1853 
1854   // Get the name of what this would be without the 'target' attribute.  This
1855   // allows us to lookup the version that was emitted when this wasn't a
1856   // multiversion function.
1857   std::string NonTargetName =
1858       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1859   GlobalDecl OtherGD;
1860   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1861     assert(OtherGD.getCanonicalDecl()
1862                .getDecl()
1863                ->getAsFunction()
1864                ->isMultiVersion() &&
1865            "Other GD should now be a multiversioned function");
1866     // OtherFD is the version of this function that was mangled BEFORE
1867     // becoming a MultiVersion function.  It potentially needs to be updated.
1868     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1869                                       .getDecl()
1870                                       ->getAsFunction()
1871                                       ->getMostRecentDecl();
1872     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1873     // This is so that if the initial version was already the 'default'
1874     // version, we don't try to update it.
1875     if (OtherName != NonTargetName) {
1876       // Remove instead of erase, since others may have stored the StringRef
1877       // to this.
1878       const auto ExistingRecord = Manglings.find(NonTargetName);
1879       if (ExistingRecord != std::end(Manglings))
1880         Manglings.remove(&(*ExistingRecord));
1881       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1882       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1883           Result.first->first();
1884       // If this is the current decl is being created, make sure we update the name.
1885       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1886         CurName = OtherNameRef;
1887       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1888         Entry->setName(OtherName);
1889     }
1890   }
1891 }
1892 
1893 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1894   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1895 
1896   // Some ABIs don't have constructor variants.  Make sure that base and
1897   // complete constructors get mangled the same.
1898   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1899     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1900       CXXCtorType OrigCtorType = GD.getCtorType();
1901       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1902       if (OrigCtorType == Ctor_Base)
1903         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1904     }
1905   }
1906 
1907   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1908   // static device variable depends on whether the variable is referenced by
1909   // a host or device host function. Therefore the mangled name cannot be
1910   // cached.
1911   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1912     auto FoundName = MangledDeclNames.find(CanonicalGD);
1913     if (FoundName != MangledDeclNames.end())
1914       return FoundName->second;
1915   }
1916 
1917   // Keep the first result in the case of a mangling collision.
1918   const auto *ND = cast<NamedDecl>(GD.getDecl());
1919   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1920 
1921   // Ensure either we have different ABIs between host and device compilations,
1922   // says host compilation following MSVC ABI but device compilation follows
1923   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1924   // mangling should be the same after name stubbing. The later checking is
1925   // very important as the device kernel name being mangled in host-compilation
1926   // is used to resolve the device binaries to be executed. Inconsistent naming
1927   // result in undefined behavior. Even though we cannot check that naming
1928   // directly between host- and device-compilations, the host- and
1929   // device-mangling in host compilation could help catching certain ones.
1930   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1931          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1932          (getContext().getAuxTargetInfo() &&
1933           (getContext().getAuxTargetInfo()->getCXXABI() !=
1934            getContext().getTargetInfo().getCXXABI())) ||
1935          getCUDARuntime().getDeviceSideName(ND) ==
1936              getMangledNameImpl(
1937                  *this,
1938                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1939                  ND));
1940 
1941   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1942   return MangledDeclNames[CanonicalGD] = Result.first->first();
1943 }
1944 
1945 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1946                                              const BlockDecl *BD) {
1947   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1948   const Decl *D = GD.getDecl();
1949 
1950   SmallString<256> Buffer;
1951   llvm::raw_svector_ostream Out(Buffer);
1952   if (!D)
1953     MangleCtx.mangleGlobalBlock(BD,
1954       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1955   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1956     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1957   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1958     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1959   else
1960     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1961 
1962   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1963   return Result.first->first();
1964 }
1965 
1966 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1967   auto it = MangledDeclNames.begin();
1968   while (it != MangledDeclNames.end()) {
1969     if (it->second == Name)
1970       return it->first;
1971     it++;
1972   }
1973   return GlobalDecl();
1974 }
1975 
1976 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1977   return getModule().getNamedValue(Name);
1978 }
1979 
1980 /// AddGlobalCtor - Add a function to the list that will be called before
1981 /// main() runs.
1982 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1983                                   unsigned LexOrder,
1984                                   llvm::Constant *AssociatedData) {
1985   // FIXME: Type coercion of void()* types.
1986   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1987 }
1988 
1989 /// AddGlobalDtor - Add a function to the list that will be called
1990 /// when the module is unloaded.
1991 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1992                                   bool IsDtorAttrFunc) {
1993   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1994       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1995     DtorsUsingAtExit[Priority].push_back(Dtor);
1996     return;
1997   }
1998 
1999   // FIXME: Type coercion of void()* types.
2000   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2001 }
2002 
2003 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2004   if (Fns.empty()) return;
2005 
2006   // Ctor function type is void()*.
2007   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2008   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2009       TheModule.getDataLayout().getProgramAddressSpace());
2010 
2011   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2012   llvm::StructType *CtorStructTy = llvm::StructType::get(
2013       Int32Ty, CtorPFTy, VoidPtrTy);
2014 
2015   // Construct the constructor and destructor arrays.
2016   ConstantInitBuilder builder(*this);
2017   auto ctors = builder.beginArray(CtorStructTy);
2018   for (const auto &I : Fns) {
2019     auto ctor = ctors.beginStruct(CtorStructTy);
2020     ctor.addInt(Int32Ty, I.Priority);
2021     ctor.add(I.Initializer);
2022     if (I.AssociatedData)
2023       ctor.add(I.AssociatedData);
2024     else
2025       ctor.addNullPointer(VoidPtrTy);
2026     ctor.finishAndAddTo(ctors);
2027   }
2028 
2029   auto list =
2030     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2031                                 /*constant*/ false,
2032                                 llvm::GlobalValue::AppendingLinkage);
2033 
2034   // The LTO linker doesn't seem to like it when we set an alignment
2035   // on appending variables.  Take it off as a workaround.
2036   list->setAlignment(std::nullopt);
2037 
2038   Fns.clear();
2039 }
2040 
2041 llvm::GlobalValue::LinkageTypes
2042 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2043   const auto *D = cast<FunctionDecl>(GD.getDecl());
2044 
2045   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2046 
2047   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2048     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2049 
2050   return getLLVMLinkageForDeclarator(D, Linkage);
2051 }
2052 
2053 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2054   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2055   if (!MDS) return nullptr;
2056 
2057   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2058 }
2059 
2060 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2061   if (auto *FnType = T->getAs<FunctionProtoType>())
2062     T = getContext().getFunctionType(
2063         FnType->getReturnType(), FnType->getParamTypes(),
2064         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2065 
2066   std::string OutName;
2067   llvm::raw_string_ostream Out(OutName);
2068   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2069       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2070 
2071   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2072     Out << ".normalized";
2073 
2074   return llvm::ConstantInt::get(Int32Ty,
2075                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2076 }
2077 
2078 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2079                                               const CGFunctionInfo &Info,
2080                                               llvm::Function *F, bool IsThunk) {
2081   unsigned CallingConv;
2082   llvm::AttributeList PAL;
2083   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2084                          /*AttrOnCallSite=*/false, IsThunk);
2085   F->setAttributes(PAL);
2086   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2087 }
2088 
2089 static void removeImageAccessQualifier(std::string& TyName) {
2090   std::string ReadOnlyQual("__read_only");
2091   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2092   if (ReadOnlyPos != std::string::npos)
2093     // "+ 1" for the space after access qualifier.
2094     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2095   else {
2096     std::string WriteOnlyQual("__write_only");
2097     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2098     if (WriteOnlyPos != std::string::npos)
2099       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2100     else {
2101       std::string ReadWriteQual("__read_write");
2102       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2103       if (ReadWritePos != std::string::npos)
2104         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2105     }
2106   }
2107 }
2108 
2109 // Returns the address space id that should be produced to the
2110 // kernel_arg_addr_space metadata. This is always fixed to the ids
2111 // as specified in the SPIR 2.0 specification in order to differentiate
2112 // for example in clGetKernelArgInfo() implementation between the address
2113 // spaces with targets without unique mapping to the OpenCL address spaces
2114 // (basically all single AS CPUs).
2115 static unsigned ArgInfoAddressSpace(LangAS AS) {
2116   switch (AS) {
2117   case LangAS::opencl_global:
2118     return 1;
2119   case LangAS::opencl_constant:
2120     return 2;
2121   case LangAS::opencl_local:
2122     return 3;
2123   case LangAS::opencl_generic:
2124     return 4; // Not in SPIR 2.0 specs.
2125   case LangAS::opencl_global_device:
2126     return 5;
2127   case LangAS::opencl_global_host:
2128     return 6;
2129   default:
2130     return 0; // Assume private.
2131   }
2132 }
2133 
2134 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2135                                          const FunctionDecl *FD,
2136                                          CodeGenFunction *CGF) {
2137   assert(((FD && CGF) || (!FD && !CGF)) &&
2138          "Incorrect use - FD and CGF should either be both null or not!");
2139   // Create MDNodes that represent the kernel arg metadata.
2140   // Each MDNode is a list in the form of "key", N number of values which is
2141   // the same number of values as their are kernel arguments.
2142 
2143   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2144 
2145   // MDNode for the kernel argument address space qualifiers.
2146   SmallVector<llvm::Metadata *, 8> addressQuals;
2147 
2148   // MDNode for the kernel argument access qualifiers (images only).
2149   SmallVector<llvm::Metadata *, 8> accessQuals;
2150 
2151   // MDNode for the kernel argument type names.
2152   SmallVector<llvm::Metadata *, 8> argTypeNames;
2153 
2154   // MDNode for the kernel argument base type names.
2155   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2156 
2157   // MDNode for the kernel argument type qualifiers.
2158   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2159 
2160   // MDNode for the kernel argument names.
2161   SmallVector<llvm::Metadata *, 8> argNames;
2162 
2163   if (FD && CGF)
2164     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2165       const ParmVarDecl *parm = FD->getParamDecl(i);
2166       // Get argument name.
2167       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2168 
2169       if (!getLangOpts().OpenCL)
2170         continue;
2171       QualType ty = parm->getType();
2172       std::string typeQuals;
2173 
2174       // Get image and pipe access qualifier:
2175       if (ty->isImageType() || ty->isPipeType()) {
2176         const Decl *PDecl = parm;
2177         if (const auto *TD = ty->getAs<TypedefType>())
2178           PDecl = TD->getDecl();
2179         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2180         if (A && A->isWriteOnly())
2181           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2182         else if (A && A->isReadWrite())
2183           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2184         else
2185           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2186       } else
2187         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2188 
2189       auto getTypeSpelling = [&](QualType Ty) {
2190         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2191 
2192         if (Ty.isCanonical()) {
2193           StringRef typeNameRef = typeName;
2194           // Turn "unsigned type" to "utype"
2195           if (typeNameRef.consume_front("unsigned "))
2196             return std::string("u") + typeNameRef.str();
2197           if (typeNameRef.consume_front("signed "))
2198             return typeNameRef.str();
2199         }
2200 
2201         return typeName;
2202       };
2203 
2204       if (ty->isPointerType()) {
2205         QualType pointeeTy = ty->getPointeeType();
2206 
2207         // Get address qualifier.
2208         addressQuals.push_back(
2209             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2210                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2211 
2212         // Get argument type name.
2213         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2214         std::string baseTypeName =
2215             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2216         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2217         argBaseTypeNames.push_back(
2218             llvm::MDString::get(VMContext, baseTypeName));
2219 
2220         // Get argument type qualifiers:
2221         if (ty.isRestrictQualified())
2222           typeQuals = "restrict";
2223         if (pointeeTy.isConstQualified() ||
2224             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2225           typeQuals += typeQuals.empty() ? "const" : " const";
2226         if (pointeeTy.isVolatileQualified())
2227           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2228       } else {
2229         uint32_t AddrSpc = 0;
2230         bool isPipe = ty->isPipeType();
2231         if (ty->isImageType() || isPipe)
2232           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2233 
2234         addressQuals.push_back(
2235             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2236 
2237         // Get argument type name.
2238         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2239         std::string typeName = getTypeSpelling(ty);
2240         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2241 
2242         // Remove access qualifiers on images
2243         // (as they are inseparable from type in clang implementation,
2244         // but OpenCL spec provides a special query to get access qualifier
2245         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2246         if (ty->isImageType()) {
2247           removeImageAccessQualifier(typeName);
2248           removeImageAccessQualifier(baseTypeName);
2249         }
2250 
2251         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2252         argBaseTypeNames.push_back(
2253             llvm::MDString::get(VMContext, baseTypeName));
2254 
2255         if (isPipe)
2256           typeQuals = "pipe";
2257       }
2258       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2259     }
2260 
2261   if (getLangOpts().OpenCL) {
2262     Fn->setMetadata("kernel_arg_addr_space",
2263                     llvm::MDNode::get(VMContext, addressQuals));
2264     Fn->setMetadata("kernel_arg_access_qual",
2265                     llvm::MDNode::get(VMContext, accessQuals));
2266     Fn->setMetadata("kernel_arg_type",
2267                     llvm::MDNode::get(VMContext, argTypeNames));
2268     Fn->setMetadata("kernel_arg_base_type",
2269                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2270     Fn->setMetadata("kernel_arg_type_qual",
2271                     llvm::MDNode::get(VMContext, argTypeQuals));
2272   }
2273   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2274       getCodeGenOpts().HIPSaveKernelArgName)
2275     Fn->setMetadata("kernel_arg_name",
2276                     llvm::MDNode::get(VMContext, argNames));
2277 }
2278 
2279 /// Determines whether the language options require us to model
2280 /// unwind exceptions.  We treat -fexceptions as mandating this
2281 /// except under the fragile ObjC ABI with only ObjC exceptions
2282 /// enabled.  This means, for example, that C with -fexceptions
2283 /// enables this.
2284 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2285   // If exceptions are completely disabled, obviously this is false.
2286   if (!LangOpts.Exceptions) return false;
2287 
2288   // If C++ exceptions are enabled, this is true.
2289   if (LangOpts.CXXExceptions) return true;
2290 
2291   // If ObjC exceptions are enabled, this depends on the ABI.
2292   if (LangOpts.ObjCExceptions) {
2293     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2294   }
2295 
2296   return true;
2297 }
2298 
2299 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2300                                                       const CXXMethodDecl *MD) {
2301   // Check that the type metadata can ever actually be used by a call.
2302   if (!CGM.getCodeGenOpts().LTOUnit ||
2303       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2304     return false;
2305 
2306   // Only functions whose address can be taken with a member function pointer
2307   // need this sort of type metadata.
2308   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2309          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2310 }
2311 
2312 SmallVector<const CXXRecordDecl *, 0>
2313 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2314   llvm::SetVector<const CXXRecordDecl *> MostBases;
2315 
2316   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2317   CollectMostBases = [&](const CXXRecordDecl *RD) {
2318     if (RD->getNumBases() == 0)
2319       MostBases.insert(RD);
2320     for (const CXXBaseSpecifier &B : RD->bases())
2321       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2322   };
2323   CollectMostBases(RD);
2324   return MostBases.takeVector();
2325 }
2326 
2327 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2328                                                            llvm::Function *F) {
2329   llvm::AttrBuilder B(F->getContext());
2330 
2331   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2332     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2333 
2334   if (CodeGenOpts.StackClashProtector)
2335     B.addAttribute("probe-stack", "inline-asm");
2336 
2337   if (!hasUnwindExceptions(LangOpts))
2338     B.addAttribute(llvm::Attribute::NoUnwind);
2339 
2340   if (D && D->hasAttr<NoStackProtectorAttr>())
2341     ; // Do nothing.
2342   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2343            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2344     B.addAttribute(llvm::Attribute::StackProtectStrong);
2345   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2346     B.addAttribute(llvm::Attribute::StackProtect);
2347   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2348     B.addAttribute(llvm::Attribute::StackProtectStrong);
2349   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2350     B.addAttribute(llvm::Attribute::StackProtectReq);
2351 
2352   if (!D) {
2353     // If we don't have a declaration to control inlining, the function isn't
2354     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2355     // disabled, mark the function as noinline.
2356     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2357         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2358       B.addAttribute(llvm::Attribute::NoInline);
2359 
2360     F->addFnAttrs(B);
2361     return;
2362   }
2363 
2364   // Handle SME attributes that apply to function definitions,
2365   // rather than to function prototypes.
2366   if (D->hasAttr<ArmLocallyStreamingAttr>())
2367     B.addAttribute("aarch64_pstate_sm_body");
2368 
2369   if (D->hasAttr<ArmNewZAAttr>())
2370     B.addAttribute("aarch64_pstate_za_new");
2371 
2372   // Track whether we need to add the optnone LLVM attribute,
2373   // starting with the default for this optimization level.
2374   bool ShouldAddOptNone =
2375       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2376   // We can't add optnone in the following cases, it won't pass the verifier.
2377   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2378   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2379 
2380   // Add optnone, but do so only if the function isn't always_inline.
2381   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2382       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2383     B.addAttribute(llvm::Attribute::OptimizeNone);
2384 
2385     // OptimizeNone implies noinline; we should not be inlining such functions.
2386     B.addAttribute(llvm::Attribute::NoInline);
2387 
2388     // We still need to handle naked functions even though optnone subsumes
2389     // much of their semantics.
2390     if (D->hasAttr<NakedAttr>())
2391       B.addAttribute(llvm::Attribute::Naked);
2392 
2393     // OptimizeNone wins over OptimizeForSize and MinSize.
2394     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2395     F->removeFnAttr(llvm::Attribute::MinSize);
2396   } else if (D->hasAttr<NakedAttr>()) {
2397     // Naked implies noinline: we should not be inlining such functions.
2398     B.addAttribute(llvm::Attribute::Naked);
2399     B.addAttribute(llvm::Attribute::NoInline);
2400   } else if (D->hasAttr<NoDuplicateAttr>()) {
2401     B.addAttribute(llvm::Attribute::NoDuplicate);
2402   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2403     // Add noinline if the function isn't always_inline.
2404     B.addAttribute(llvm::Attribute::NoInline);
2405   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2406              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2407     // (noinline wins over always_inline, and we can't specify both in IR)
2408     B.addAttribute(llvm::Attribute::AlwaysInline);
2409   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2410     // If we're not inlining, then force everything that isn't always_inline to
2411     // carry an explicit noinline attribute.
2412     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2413       B.addAttribute(llvm::Attribute::NoInline);
2414   } else {
2415     // Otherwise, propagate the inline hint attribute and potentially use its
2416     // absence to mark things as noinline.
2417     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2418       // Search function and template pattern redeclarations for inline.
2419       auto CheckForInline = [](const FunctionDecl *FD) {
2420         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2421           return Redecl->isInlineSpecified();
2422         };
2423         if (any_of(FD->redecls(), CheckRedeclForInline))
2424           return true;
2425         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2426         if (!Pattern)
2427           return false;
2428         return any_of(Pattern->redecls(), CheckRedeclForInline);
2429       };
2430       if (CheckForInline(FD)) {
2431         B.addAttribute(llvm::Attribute::InlineHint);
2432       } else if (CodeGenOpts.getInlining() ==
2433                      CodeGenOptions::OnlyHintInlining &&
2434                  !FD->isInlined() &&
2435                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2436         B.addAttribute(llvm::Attribute::NoInline);
2437       }
2438     }
2439   }
2440 
2441   // Add other optimization related attributes if we are optimizing this
2442   // function.
2443   if (!D->hasAttr<OptimizeNoneAttr>()) {
2444     if (D->hasAttr<ColdAttr>()) {
2445       if (!ShouldAddOptNone)
2446         B.addAttribute(llvm::Attribute::OptimizeForSize);
2447       B.addAttribute(llvm::Attribute::Cold);
2448     }
2449     if (D->hasAttr<HotAttr>())
2450       B.addAttribute(llvm::Attribute::Hot);
2451     if (D->hasAttr<MinSizeAttr>())
2452       B.addAttribute(llvm::Attribute::MinSize);
2453   }
2454 
2455   F->addFnAttrs(B);
2456 
2457   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2458   if (alignment)
2459     F->setAlignment(llvm::Align(alignment));
2460 
2461   if (!D->hasAttr<AlignedAttr>())
2462     if (LangOpts.FunctionAlignment)
2463       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2464 
2465   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2466   // reserve a bit for differentiating between virtual and non-virtual member
2467   // functions. If the current target's C++ ABI requires this and this is a
2468   // member function, set its alignment accordingly.
2469   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2470     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2471       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2472   }
2473 
2474   // In the cross-dso CFI mode with canonical jump tables, we want !type
2475   // attributes on definitions only.
2476   if (CodeGenOpts.SanitizeCfiCrossDso &&
2477       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2478     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2479       // Skip available_externally functions. They won't be codegen'ed in the
2480       // current module anyway.
2481       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2482         CreateFunctionTypeMetadataForIcall(FD, F);
2483     }
2484   }
2485 
2486   // Emit type metadata on member functions for member function pointer checks.
2487   // These are only ever necessary on definitions; we're guaranteed that the
2488   // definition will be present in the LTO unit as a result of LTO visibility.
2489   auto *MD = dyn_cast<CXXMethodDecl>(D);
2490   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2491     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2492       llvm::Metadata *Id =
2493           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2494               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2495       F->addTypeMetadata(0, Id);
2496     }
2497   }
2498 }
2499 
2500 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2501   const Decl *D = GD.getDecl();
2502   if (isa_and_nonnull<NamedDecl>(D))
2503     setGVProperties(GV, GD);
2504   else
2505     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2506 
2507   if (D && D->hasAttr<UsedAttr>())
2508     addUsedOrCompilerUsedGlobal(GV);
2509 
2510   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2511       VD &&
2512       ((CodeGenOpts.KeepPersistentStorageVariables &&
2513         (VD->getStorageDuration() == SD_Static ||
2514          VD->getStorageDuration() == SD_Thread)) ||
2515        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2516         VD->getType().isConstQualified())))
2517     addUsedOrCompilerUsedGlobal(GV);
2518 }
2519 
2520 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2521                                                 llvm::AttrBuilder &Attrs,
2522                                                 bool SetTargetFeatures) {
2523   // Add target-cpu and target-features attributes to functions. If
2524   // we have a decl for the function and it has a target attribute then
2525   // parse that and add it to the feature set.
2526   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2527   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2528   std::vector<std::string> Features;
2529   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2530   FD = FD ? FD->getMostRecentDecl() : FD;
2531   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2532   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2533   assert((!TD || !TV) && "both target_version and target specified");
2534   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2535   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2536   bool AddedAttr = false;
2537   if (TD || TV || SD || TC) {
2538     llvm::StringMap<bool> FeatureMap;
2539     getContext().getFunctionFeatureMap(FeatureMap, GD);
2540 
2541     // Produce the canonical string for this set of features.
2542     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2543       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2544 
2545     // Now add the target-cpu and target-features to the function.
2546     // While we populated the feature map above, we still need to
2547     // get and parse the target attribute so we can get the cpu for
2548     // the function.
2549     if (TD) {
2550       ParsedTargetAttr ParsedAttr =
2551           Target.parseTargetAttr(TD->getFeaturesStr());
2552       if (!ParsedAttr.CPU.empty() &&
2553           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2554         TargetCPU = ParsedAttr.CPU;
2555         TuneCPU = ""; // Clear the tune CPU.
2556       }
2557       if (!ParsedAttr.Tune.empty() &&
2558           getTarget().isValidCPUName(ParsedAttr.Tune))
2559         TuneCPU = ParsedAttr.Tune;
2560     }
2561 
2562     if (SD) {
2563       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2564       // favor this processor.
2565       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2566     }
2567   } else {
2568     // Otherwise just add the existing target cpu and target features to the
2569     // function.
2570     Features = getTarget().getTargetOpts().Features;
2571   }
2572 
2573   if (!TargetCPU.empty()) {
2574     Attrs.addAttribute("target-cpu", TargetCPU);
2575     AddedAttr = true;
2576   }
2577   if (!TuneCPU.empty()) {
2578     Attrs.addAttribute("tune-cpu", TuneCPU);
2579     AddedAttr = true;
2580   }
2581   if (!Features.empty() && SetTargetFeatures) {
2582     llvm::erase_if(Features, [&](const std::string& F) {
2583        return getTarget().isReadOnlyFeature(F.substr(1));
2584     });
2585     llvm::sort(Features);
2586     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2587     AddedAttr = true;
2588   }
2589 
2590   return AddedAttr;
2591 }
2592 
2593 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2594                                           llvm::GlobalObject *GO) {
2595   const Decl *D = GD.getDecl();
2596   SetCommonAttributes(GD, GO);
2597 
2598   if (D) {
2599     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2600       if (D->hasAttr<RetainAttr>())
2601         addUsedGlobal(GV);
2602       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2603         GV->addAttribute("bss-section", SA->getName());
2604       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2605         GV->addAttribute("data-section", SA->getName());
2606       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2607         GV->addAttribute("rodata-section", SA->getName());
2608       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2609         GV->addAttribute("relro-section", SA->getName());
2610     }
2611 
2612     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2613       if (D->hasAttr<RetainAttr>())
2614         addUsedGlobal(F);
2615       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2616         if (!D->getAttr<SectionAttr>())
2617           F->addFnAttr("implicit-section-name", SA->getName());
2618 
2619       llvm::AttrBuilder Attrs(F->getContext());
2620       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2621         // We know that GetCPUAndFeaturesAttributes will always have the
2622         // newest set, since it has the newest possible FunctionDecl, so the
2623         // new ones should replace the old.
2624         llvm::AttributeMask RemoveAttrs;
2625         RemoveAttrs.addAttribute("target-cpu");
2626         RemoveAttrs.addAttribute("target-features");
2627         RemoveAttrs.addAttribute("tune-cpu");
2628         F->removeFnAttrs(RemoveAttrs);
2629         F->addFnAttrs(Attrs);
2630       }
2631     }
2632 
2633     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2634       GO->setSection(CSA->getName());
2635     else if (const auto *SA = D->getAttr<SectionAttr>())
2636       GO->setSection(SA->getName());
2637   }
2638 
2639   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2640 }
2641 
2642 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2643                                                   llvm::Function *F,
2644                                                   const CGFunctionInfo &FI) {
2645   const Decl *D = GD.getDecl();
2646   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2647   SetLLVMFunctionAttributesForDefinition(D, F);
2648 
2649   F->setLinkage(llvm::Function::InternalLinkage);
2650 
2651   setNonAliasAttributes(GD, F);
2652 }
2653 
2654 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2655   // Set linkage and visibility in case we never see a definition.
2656   LinkageInfo LV = ND->getLinkageAndVisibility();
2657   // Don't set internal linkage on declarations.
2658   // "extern_weak" is overloaded in LLVM; we probably should have
2659   // separate linkage types for this.
2660   if (isExternallyVisible(LV.getLinkage()) &&
2661       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2662     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2663 }
2664 
2665 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2666                                                        llvm::Function *F) {
2667   // Only if we are checking indirect calls.
2668   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2669     return;
2670 
2671   // Non-static class methods are handled via vtable or member function pointer
2672   // checks elsewhere.
2673   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2674     return;
2675 
2676   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2677   F->addTypeMetadata(0, MD);
2678   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2679 
2680   // Emit a hash-based bit set entry for cross-DSO calls.
2681   if (CodeGenOpts.SanitizeCfiCrossDso)
2682     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2683       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2684 }
2685 
2686 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2687   llvm::LLVMContext &Ctx = F->getContext();
2688   llvm::MDBuilder MDB(Ctx);
2689   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2690                  llvm::MDNode::get(
2691                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2692 }
2693 
2694 static bool allowKCFIIdentifier(StringRef Name) {
2695   // KCFI type identifier constants are only necessary for external assembly
2696   // functions, which means it's safe to skip unusual names. Subset of
2697   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2698   return llvm::all_of(Name, [](const char &C) {
2699     return llvm::isAlnum(C) || C == '_' || C == '.';
2700   });
2701 }
2702 
2703 void CodeGenModule::finalizeKCFITypes() {
2704   llvm::Module &M = getModule();
2705   for (auto &F : M.functions()) {
2706     // Remove KCFI type metadata from non-address-taken local functions.
2707     bool AddressTaken = F.hasAddressTaken();
2708     if (!AddressTaken && F.hasLocalLinkage())
2709       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2710 
2711     // Generate a constant with the expected KCFI type identifier for all
2712     // address-taken function declarations to support annotating indirectly
2713     // called assembly functions.
2714     if (!AddressTaken || !F.isDeclaration())
2715       continue;
2716 
2717     const llvm::ConstantInt *Type;
2718     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2719       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2720     else
2721       continue;
2722 
2723     StringRef Name = F.getName();
2724     if (!allowKCFIIdentifier(Name))
2725       continue;
2726 
2727     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2728                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2729                           .str();
2730     M.appendModuleInlineAsm(Asm);
2731   }
2732 }
2733 
2734 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2735                                           bool IsIncompleteFunction,
2736                                           bool IsThunk) {
2737 
2738   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2739     // If this is an intrinsic function, set the function's attributes
2740     // to the intrinsic's attributes.
2741     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2742     return;
2743   }
2744 
2745   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2746 
2747   if (!IsIncompleteFunction)
2748     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2749                               IsThunk);
2750 
2751   // Add the Returned attribute for "this", except for iOS 5 and earlier
2752   // where substantial code, including the libstdc++ dylib, was compiled with
2753   // GCC and does not actually return "this".
2754   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2755       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2756     assert(!F->arg_empty() &&
2757            F->arg_begin()->getType()
2758              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2759            "unexpected this return");
2760     F->addParamAttr(0, llvm::Attribute::Returned);
2761   }
2762 
2763   // Only a few attributes are set on declarations; these may later be
2764   // overridden by a definition.
2765 
2766   setLinkageForGV(F, FD);
2767   setGVProperties(F, FD);
2768 
2769   // Setup target-specific attributes.
2770   if (!IsIncompleteFunction && F->isDeclaration())
2771     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2772 
2773   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2774     F->setSection(CSA->getName());
2775   else if (const auto *SA = FD->getAttr<SectionAttr>())
2776      F->setSection(SA->getName());
2777 
2778   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2779     if (EA->isError())
2780       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2781     else if (EA->isWarning())
2782       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2783   }
2784 
2785   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2786   if (FD->isInlineBuiltinDeclaration()) {
2787     const FunctionDecl *FDBody;
2788     bool HasBody = FD->hasBody(FDBody);
2789     (void)HasBody;
2790     assert(HasBody && "Inline builtin declarations should always have an "
2791                       "available body!");
2792     if (shouldEmitFunction(FDBody))
2793       F->addFnAttr(llvm::Attribute::NoBuiltin);
2794   }
2795 
2796   if (FD->isReplaceableGlobalAllocationFunction()) {
2797     // A replaceable global allocation function does not act like a builtin by
2798     // default, only if it is invoked by a new-expression or delete-expression.
2799     F->addFnAttr(llvm::Attribute::NoBuiltin);
2800   }
2801 
2802   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2803     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2804   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2805     if (MD->isVirtual())
2806       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2807 
2808   // Don't emit entries for function declarations in the cross-DSO mode. This
2809   // is handled with better precision by the receiving DSO. But if jump tables
2810   // are non-canonical then we need type metadata in order to produce the local
2811   // jump table.
2812   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2813       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2814     CreateFunctionTypeMetadataForIcall(FD, F);
2815 
2816   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2817     setKCFIType(FD, F);
2818 
2819   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2820     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2821 
2822   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2823     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2824 
2825   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2826     // Annotate the callback behavior as metadata:
2827     //  - The callback callee (as argument number).
2828     //  - The callback payloads (as argument numbers).
2829     llvm::LLVMContext &Ctx = F->getContext();
2830     llvm::MDBuilder MDB(Ctx);
2831 
2832     // The payload indices are all but the first one in the encoding. The first
2833     // identifies the callback callee.
2834     int CalleeIdx = *CB->encoding_begin();
2835     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2836     F->addMetadata(llvm::LLVMContext::MD_callback,
2837                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2838                                                CalleeIdx, PayloadIndices,
2839                                                /* VarArgsArePassed */ false)}));
2840   }
2841 }
2842 
2843 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2844   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2845          "Only globals with definition can force usage.");
2846   LLVMUsed.emplace_back(GV);
2847 }
2848 
2849 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2850   assert(!GV->isDeclaration() &&
2851          "Only globals with definition can force usage.");
2852   LLVMCompilerUsed.emplace_back(GV);
2853 }
2854 
2855 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2856   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2857          "Only globals with definition can force usage.");
2858   if (getTriple().isOSBinFormatELF())
2859     LLVMCompilerUsed.emplace_back(GV);
2860   else
2861     LLVMUsed.emplace_back(GV);
2862 }
2863 
2864 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2865                      std::vector<llvm::WeakTrackingVH> &List) {
2866   // Don't create llvm.used if there is no need.
2867   if (List.empty())
2868     return;
2869 
2870   // Convert List to what ConstantArray needs.
2871   SmallVector<llvm::Constant*, 8> UsedArray;
2872   UsedArray.resize(List.size());
2873   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2874     UsedArray[i] =
2875         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2876             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2877   }
2878 
2879   if (UsedArray.empty())
2880     return;
2881   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2882 
2883   auto *GV = new llvm::GlobalVariable(
2884       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2885       llvm::ConstantArray::get(ATy, UsedArray), Name);
2886 
2887   GV->setSection("llvm.metadata");
2888 }
2889 
2890 void CodeGenModule::emitLLVMUsed() {
2891   emitUsed(*this, "llvm.used", LLVMUsed);
2892   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2893 }
2894 
2895 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2896   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2897   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2898 }
2899 
2900 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2901   llvm::SmallString<32> Opt;
2902   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2903   if (Opt.empty())
2904     return;
2905   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2906   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2907 }
2908 
2909 void CodeGenModule::AddDependentLib(StringRef Lib) {
2910   auto &C = getLLVMContext();
2911   if (getTarget().getTriple().isOSBinFormatELF()) {
2912       ELFDependentLibraries.push_back(
2913         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2914     return;
2915   }
2916 
2917   llvm::SmallString<24> Opt;
2918   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2919   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2920   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2921 }
2922 
2923 /// Add link options implied by the given module, including modules
2924 /// it depends on, using a postorder walk.
2925 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2926                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2927                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2928   // Import this module's parent.
2929   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2930     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2931   }
2932 
2933   // Import this module's dependencies.
2934   for (Module *Import : llvm::reverse(Mod->Imports)) {
2935     if (Visited.insert(Import).second)
2936       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2937   }
2938 
2939   // Add linker options to link against the libraries/frameworks
2940   // described by this module.
2941   llvm::LLVMContext &Context = CGM.getLLVMContext();
2942   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2943 
2944   // For modules that use export_as for linking, use that module
2945   // name instead.
2946   if (Mod->UseExportAsModuleLinkName)
2947     return;
2948 
2949   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2950     // Link against a framework.  Frameworks are currently Darwin only, so we
2951     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2952     if (LL.IsFramework) {
2953       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2954                                  llvm::MDString::get(Context, LL.Library)};
2955 
2956       Metadata.push_back(llvm::MDNode::get(Context, Args));
2957       continue;
2958     }
2959 
2960     // Link against a library.
2961     if (IsELF) {
2962       llvm::Metadata *Args[2] = {
2963           llvm::MDString::get(Context, "lib"),
2964           llvm::MDString::get(Context, LL.Library),
2965       };
2966       Metadata.push_back(llvm::MDNode::get(Context, Args));
2967     } else {
2968       llvm::SmallString<24> Opt;
2969       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2970       auto *OptString = llvm::MDString::get(Context, Opt);
2971       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2972     }
2973   }
2974 }
2975 
2976 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2977   assert(Primary->isNamedModuleUnit() &&
2978          "We should only emit module initializers for named modules.");
2979 
2980   // Emit the initializers in the order that sub-modules appear in the
2981   // source, first Global Module Fragments, if present.
2982   if (auto GMF = Primary->getGlobalModuleFragment()) {
2983     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2984       if (isa<ImportDecl>(D))
2985         continue;
2986       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2987       EmitTopLevelDecl(D);
2988     }
2989   }
2990   // Second any associated with the module, itself.
2991   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2992     // Skip import decls, the inits for those are called explicitly.
2993     if (isa<ImportDecl>(D))
2994       continue;
2995     EmitTopLevelDecl(D);
2996   }
2997   // Third any associated with the Privat eMOdule Fragment, if present.
2998   if (auto PMF = Primary->getPrivateModuleFragment()) {
2999     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3000       // Skip import decls, the inits for those are called explicitly.
3001       if (isa<ImportDecl>(D))
3002         continue;
3003       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3004       EmitTopLevelDecl(D);
3005     }
3006   }
3007 }
3008 
3009 void CodeGenModule::EmitModuleLinkOptions() {
3010   // Collect the set of all of the modules we want to visit to emit link
3011   // options, which is essentially the imported modules and all of their
3012   // non-explicit child modules.
3013   llvm::SetVector<clang::Module *> LinkModules;
3014   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3015   SmallVector<clang::Module *, 16> Stack;
3016 
3017   // Seed the stack with imported modules.
3018   for (Module *M : ImportedModules) {
3019     // Do not add any link flags when an implementation TU of a module imports
3020     // a header of that same module.
3021     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3022         !getLangOpts().isCompilingModule())
3023       continue;
3024     if (Visited.insert(M).second)
3025       Stack.push_back(M);
3026   }
3027 
3028   // Find all of the modules to import, making a little effort to prune
3029   // non-leaf modules.
3030   while (!Stack.empty()) {
3031     clang::Module *Mod = Stack.pop_back_val();
3032 
3033     bool AnyChildren = false;
3034 
3035     // Visit the submodules of this module.
3036     for (const auto &SM : Mod->submodules()) {
3037       // Skip explicit children; they need to be explicitly imported to be
3038       // linked against.
3039       if (SM->IsExplicit)
3040         continue;
3041 
3042       if (Visited.insert(SM).second) {
3043         Stack.push_back(SM);
3044         AnyChildren = true;
3045       }
3046     }
3047 
3048     // We didn't find any children, so add this module to the list of
3049     // modules to link against.
3050     if (!AnyChildren) {
3051       LinkModules.insert(Mod);
3052     }
3053   }
3054 
3055   // Add link options for all of the imported modules in reverse topological
3056   // order.  We don't do anything to try to order import link flags with respect
3057   // to linker options inserted by things like #pragma comment().
3058   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3059   Visited.clear();
3060   for (Module *M : LinkModules)
3061     if (Visited.insert(M).second)
3062       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3063   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3064   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3065 
3066   // Add the linker options metadata flag.
3067   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3068   for (auto *MD : LinkerOptionsMetadata)
3069     NMD->addOperand(MD);
3070 }
3071 
3072 void CodeGenModule::EmitDeferred() {
3073   // Emit deferred declare target declarations.
3074   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3075     getOpenMPRuntime().emitDeferredTargetDecls();
3076 
3077   // Emit code for any potentially referenced deferred decls.  Since a
3078   // previously unused static decl may become used during the generation of code
3079   // for a static function, iterate until no changes are made.
3080 
3081   if (!DeferredVTables.empty()) {
3082     EmitDeferredVTables();
3083 
3084     // Emitting a vtable doesn't directly cause more vtables to
3085     // become deferred, although it can cause functions to be
3086     // emitted that then need those vtables.
3087     assert(DeferredVTables.empty());
3088   }
3089 
3090   // Emit CUDA/HIP static device variables referenced by host code only.
3091   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3092   // needed for further handling.
3093   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3094     llvm::append_range(DeferredDeclsToEmit,
3095                        getContext().CUDADeviceVarODRUsedByHost);
3096 
3097   // Stop if we're out of both deferred vtables and deferred declarations.
3098   if (DeferredDeclsToEmit.empty())
3099     return;
3100 
3101   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3102   // work, it will not interfere with this.
3103   std::vector<GlobalDecl> CurDeclsToEmit;
3104   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3105 
3106   for (GlobalDecl &D : CurDeclsToEmit) {
3107     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3108     // to get GlobalValue with exactly the type we need, not something that
3109     // might had been created for another decl with the same mangled name but
3110     // different type.
3111     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3112         GetAddrOfGlobal(D, ForDefinition));
3113 
3114     // In case of different address spaces, we may still get a cast, even with
3115     // IsForDefinition equal to true. Query mangled names table to get
3116     // GlobalValue.
3117     if (!GV)
3118       GV = GetGlobalValue(getMangledName(D));
3119 
3120     // Make sure GetGlobalValue returned non-null.
3121     assert(GV);
3122 
3123     // Check to see if we've already emitted this.  This is necessary
3124     // for a couple of reasons: first, decls can end up in the
3125     // deferred-decls queue multiple times, and second, decls can end
3126     // up with definitions in unusual ways (e.g. by an extern inline
3127     // function acquiring a strong function redefinition).  Just
3128     // ignore these cases.
3129     if (!GV->isDeclaration())
3130       continue;
3131 
3132     // If this is OpenMP, check if it is legal to emit this global normally.
3133     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3134       continue;
3135 
3136     // Otherwise, emit the definition and move on to the next one.
3137     EmitGlobalDefinition(D, GV);
3138 
3139     // If we found out that we need to emit more decls, do that recursively.
3140     // This has the advantage that the decls are emitted in a DFS and related
3141     // ones are close together, which is convenient for testing.
3142     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3143       EmitDeferred();
3144       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3145     }
3146   }
3147 }
3148 
3149 void CodeGenModule::EmitVTablesOpportunistically() {
3150   // Try to emit external vtables as available_externally if they have emitted
3151   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3152   // is not allowed to create new references to things that need to be emitted
3153   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3154 
3155   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3156          && "Only emit opportunistic vtables with optimizations");
3157 
3158   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3159     assert(getVTables().isVTableExternal(RD) &&
3160            "This queue should only contain external vtables");
3161     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3162       VTables.GenerateClassData(RD);
3163   }
3164   OpportunisticVTables.clear();
3165 }
3166 
3167 void CodeGenModule::EmitGlobalAnnotations() {
3168   if (Annotations.empty())
3169     return;
3170 
3171   // Create a new global variable for the ConstantStruct in the Module.
3172   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3173     Annotations[0]->getType(), Annotations.size()), Annotations);
3174   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3175                                       llvm::GlobalValue::AppendingLinkage,
3176                                       Array, "llvm.global.annotations");
3177   gv->setSection(AnnotationSection);
3178 }
3179 
3180 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3181   llvm::Constant *&AStr = AnnotationStrings[Str];
3182   if (AStr)
3183     return AStr;
3184 
3185   // Not found yet, create a new global.
3186   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3187   auto *gv = new llvm::GlobalVariable(
3188       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3189       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3190       ConstGlobalsPtrTy->getAddressSpace());
3191   gv->setSection(AnnotationSection);
3192   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3193   AStr = gv;
3194   return gv;
3195 }
3196 
3197 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3198   SourceManager &SM = getContext().getSourceManager();
3199   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3200   if (PLoc.isValid())
3201     return EmitAnnotationString(PLoc.getFilename());
3202   return EmitAnnotationString(SM.getBufferName(Loc));
3203 }
3204 
3205 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3206   SourceManager &SM = getContext().getSourceManager();
3207   PresumedLoc PLoc = SM.getPresumedLoc(L);
3208   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3209     SM.getExpansionLineNumber(L);
3210   return llvm::ConstantInt::get(Int32Ty, LineNo);
3211 }
3212 
3213 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3214   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3215   if (Exprs.empty())
3216     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3217 
3218   llvm::FoldingSetNodeID ID;
3219   for (Expr *E : Exprs) {
3220     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3221   }
3222   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3223   if (Lookup)
3224     return Lookup;
3225 
3226   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3227   LLVMArgs.reserve(Exprs.size());
3228   ConstantEmitter ConstEmiter(*this);
3229   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3230     const auto *CE = cast<clang::ConstantExpr>(E);
3231     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3232                                     CE->getType());
3233   });
3234   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3235   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3236                                       llvm::GlobalValue::PrivateLinkage, Struct,
3237                                       ".args");
3238   GV->setSection(AnnotationSection);
3239   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3240 
3241   Lookup = GV;
3242   return GV;
3243 }
3244 
3245 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3246                                                 const AnnotateAttr *AA,
3247                                                 SourceLocation L) {
3248   // Get the globals for file name, annotation, and the line number.
3249   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3250                  *UnitGV = EmitAnnotationUnit(L),
3251                  *LineNoCst = EmitAnnotationLineNo(L),
3252                  *Args = EmitAnnotationArgs(AA);
3253 
3254   llvm::Constant *GVInGlobalsAS = GV;
3255   if (GV->getAddressSpace() !=
3256       getDataLayout().getDefaultGlobalsAddressSpace()) {
3257     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3258         GV,
3259         llvm::PointerType::get(
3260             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3261   }
3262 
3263   // Create the ConstantStruct for the global annotation.
3264   llvm::Constant *Fields[] = {
3265       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3266   };
3267   return llvm::ConstantStruct::getAnon(Fields);
3268 }
3269 
3270 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3271                                          llvm::GlobalValue *GV) {
3272   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3273   // Get the struct elements for these annotations.
3274   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3275     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3276 }
3277 
3278 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3279                                        SourceLocation Loc) const {
3280   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3281   // NoSanitize by function name.
3282   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3283     return true;
3284   // NoSanitize by location. Check "mainfile" prefix.
3285   auto &SM = Context.getSourceManager();
3286   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3287   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3288     return true;
3289 
3290   // Check "src" prefix.
3291   if (Loc.isValid())
3292     return NoSanitizeL.containsLocation(Kind, Loc);
3293   // If location is unknown, this may be a compiler-generated function. Assume
3294   // it's located in the main file.
3295   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3296 }
3297 
3298 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3299                                        llvm::GlobalVariable *GV,
3300                                        SourceLocation Loc, QualType Ty,
3301                                        StringRef Category) const {
3302   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3303   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3304     return true;
3305   auto &SM = Context.getSourceManager();
3306   if (NoSanitizeL.containsMainFile(
3307           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3308           Category))
3309     return true;
3310   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3311     return true;
3312 
3313   // Check global type.
3314   if (!Ty.isNull()) {
3315     // Drill down the array types: if global variable of a fixed type is
3316     // not sanitized, we also don't instrument arrays of them.
3317     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3318       Ty = AT->getElementType();
3319     Ty = Ty.getCanonicalType().getUnqualifiedType();
3320     // Only record types (classes, structs etc.) are ignored.
3321     if (Ty->isRecordType()) {
3322       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3323       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3324         return true;
3325     }
3326   }
3327   return false;
3328 }
3329 
3330 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3331                                    StringRef Category) const {
3332   const auto &XRayFilter = getContext().getXRayFilter();
3333   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3334   auto Attr = ImbueAttr::NONE;
3335   if (Loc.isValid())
3336     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3337   if (Attr == ImbueAttr::NONE)
3338     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3339   switch (Attr) {
3340   case ImbueAttr::NONE:
3341     return false;
3342   case ImbueAttr::ALWAYS:
3343     Fn->addFnAttr("function-instrument", "xray-always");
3344     break;
3345   case ImbueAttr::ALWAYS_ARG1:
3346     Fn->addFnAttr("function-instrument", "xray-always");
3347     Fn->addFnAttr("xray-log-args", "1");
3348     break;
3349   case ImbueAttr::NEVER:
3350     Fn->addFnAttr("function-instrument", "xray-never");
3351     break;
3352   }
3353   return true;
3354 }
3355 
3356 ProfileList::ExclusionType
3357 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3358                                               SourceLocation Loc) const {
3359   const auto &ProfileList = getContext().getProfileList();
3360   // If the profile list is empty, then instrument everything.
3361   if (ProfileList.isEmpty())
3362     return ProfileList::Allow;
3363   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3364   // First, check the function name.
3365   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3366     return *V;
3367   // Next, check the source location.
3368   if (Loc.isValid())
3369     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3370       return *V;
3371   // If location is unknown, this may be a compiler-generated function. Assume
3372   // it's located in the main file.
3373   auto &SM = Context.getSourceManager();
3374   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3375     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3376       return *V;
3377   return ProfileList.getDefault(Kind);
3378 }
3379 
3380 ProfileList::ExclusionType
3381 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3382                                                  SourceLocation Loc) const {
3383   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3384   if (V != ProfileList::Allow)
3385     return V;
3386 
3387   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3388   if (NumGroups > 1) {
3389     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3390     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3391       return ProfileList::Skip;
3392   }
3393   return ProfileList::Allow;
3394 }
3395 
3396 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3397   // Never defer when EmitAllDecls is specified.
3398   if (LangOpts.EmitAllDecls)
3399     return true;
3400 
3401   const auto *VD = dyn_cast<VarDecl>(Global);
3402   if (VD &&
3403       ((CodeGenOpts.KeepPersistentStorageVariables &&
3404         (VD->getStorageDuration() == SD_Static ||
3405          VD->getStorageDuration() == SD_Thread)) ||
3406        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3407         VD->getType().isConstQualified())))
3408     return true;
3409 
3410   return getContext().DeclMustBeEmitted(Global);
3411 }
3412 
3413 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3414   // In OpenMP 5.0 variables and function may be marked as
3415   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3416   // that they must be emitted on the host/device. To be sure we need to have
3417   // seen a declare target with an explicit mentioning of the function, we know
3418   // we have if the level of the declare target attribute is -1. Note that we
3419   // check somewhere else if we should emit this at all.
3420   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3421     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3422         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3423     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3424       return false;
3425   }
3426 
3427   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3428     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3429       // Implicit template instantiations may change linkage if they are later
3430       // explicitly instantiated, so they should not be emitted eagerly.
3431       return false;
3432   }
3433   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3434     if (Context.getInlineVariableDefinitionKind(VD) ==
3435         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3436       // A definition of an inline constexpr static data member may change
3437       // linkage later if it's redeclared outside the class.
3438       return false;
3439     if (CXX20ModuleInits && VD->getOwningModule() &&
3440         !VD->getOwningModule()->isModuleMapModule()) {
3441       // For CXX20, module-owned initializers need to be deferred, since it is
3442       // not known at this point if they will be run for the current module or
3443       // as part of the initializer for an imported one.
3444       return false;
3445     }
3446   }
3447   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3448   // codegen for global variables, because they may be marked as threadprivate.
3449   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3450       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3451       !Global->getType().isConstantStorage(getContext(), false, false) &&
3452       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3453     return false;
3454 
3455   return true;
3456 }
3457 
3458 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3459   StringRef Name = getMangledName(GD);
3460 
3461   // The UUID descriptor should be pointer aligned.
3462   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3463 
3464   // Look for an existing global.
3465   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3466     return ConstantAddress(GV, GV->getValueType(), Alignment);
3467 
3468   ConstantEmitter Emitter(*this);
3469   llvm::Constant *Init;
3470 
3471   APValue &V = GD->getAsAPValue();
3472   if (!V.isAbsent()) {
3473     // If possible, emit the APValue version of the initializer. In particular,
3474     // this gets the type of the constant right.
3475     Init = Emitter.emitForInitializer(
3476         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3477   } else {
3478     // As a fallback, directly construct the constant.
3479     // FIXME: This may get padding wrong under esoteric struct layout rules.
3480     // MSVC appears to create a complete type 'struct __s_GUID' that it
3481     // presumably uses to represent these constants.
3482     MSGuidDecl::Parts Parts = GD->getParts();
3483     llvm::Constant *Fields[4] = {
3484         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3485         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3486         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3487         llvm::ConstantDataArray::getRaw(
3488             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3489             Int8Ty)};
3490     Init = llvm::ConstantStruct::getAnon(Fields);
3491   }
3492 
3493   auto *GV = new llvm::GlobalVariable(
3494       getModule(), Init->getType(),
3495       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3496   if (supportsCOMDAT())
3497     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3498   setDSOLocal(GV);
3499 
3500   if (!V.isAbsent()) {
3501     Emitter.finalize(GV);
3502     return ConstantAddress(GV, GV->getValueType(), Alignment);
3503   }
3504 
3505   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3506   return ConstantAddress(GV, Ty, Alignment);
3507 }
3508 
3509 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3510     const UnnamedGlobalConstantDecl *GCD) {
3511   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3512 
3513   llvm::GlobalVariable **Entry = nullptr;
3514   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3515   if (*Entry)
3516     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3517 
3518   ConstantEmitter Emitter(*this);
3519   llvm::Constant *Init;
3520 
3521   const APValue &V = GCD->getValue();
3522 
3523   assert(!V.isAbsent());
3524   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3525                                     GCD->getType());
3526 
3527   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3528                                       /*isConstant=*/true,
3529                                       llvm::GlobalValue::PrivateLinkage, Init,
3530                                       ".constant");
3531   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3532   GV->setAlignment(Alignment.getAsAlign());
3533 
3534   Emitter.finalize(GV);
3535 
3536   *Entry = GV;
3537   return ConstantAddress(GV, GV->getValueType(), Alignment);
3538 }
3539 
3540 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3541     const TemplateParamObjectDecl *TPO) {
3542   StringRef Name = getMangledName(TPO);
3543   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3544 
3545   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3546     return ConstantAddress(GV, GV->getValueType(), Alignment);
3547 
3548   ConstantEmitter Emitter(*this);
3549   llvm::Constant *Init = Emitter.emitForInitializer(
3550         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3551 
3552   if (!Init) {
3553     ErrorUnsupported(TPO, "template parameter object");
3554     return ConstantAddress::invalid();
3555   }
3556 
3557   llvm::GlobalValue::LinkageTypes Linkage =
3558       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3559           ? llvm::GlobalValue::LinkOnceODRLinkage
3560           : llvm::GlobalValue::InternalLinkage;
3561   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3562                                       /*isConstant=*/true, Linkage, Init, Name);
3563   setGVProperties(GV, TPO);
3564   if (supportsCOMDAT())
3565     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3566   Emitter.finalize(GV);
3567 
3568     return ConstantAddress(GV, GV->getValueType(), Alignment);
3569 }
3570 
3571 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3572   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3573   assert(AA && "No alias?");
3574 
3575   CharUnits Alignment = getContext().getDeclAlign(VD);
3576   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3577 
3578   // See if there is already something with the target's name in the module.
3579   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3580   if (Entry)
3581     return ConstantAddress(Entry, DeclTy, Alignment);
3582 
3583   llvm::Constant *Aliasee;
3584   if (isa<llvm::FunctionType>(DeclTy))
3585     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3586                                       GlobalDecl(cast<FunctionDecl>(VD)),
3587                                       /*ForVTable=*/false);
3588   else
3589     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3590                                     nullptr);
3591 
3592   auto *F = cast<llvm::GlobalValue>(Aliasee);
3593   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3594   WeakRefReferences.insert(F);
3595 
3596   return ConstantAddress(Aliasee, DeclTy, Alignment);
3597 }
3598 
3599 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3600   if (!D)
3601     return false;
3602   if (auto *A = D->getAttr<AttrT>())
3603     return A->isImplicit();
3604   return D->isImplicit();
3605 }
3606 
3607 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3608   const auto *Global = cast<ValueDecl>(GD.getDecl());
3609 
3610   // Weak references don't produce any output by themselves.
3611   if (Global->hasAttr<WeakRefAttr>())
3612     return;
3613 
3614   // If this is an alias definition (which otherwise looks like a declaration)
3615   // emit it now.
3616   if (Global->hasAttr<AliasAttr>())
3617     return EmitAliasDefinition(GD);
3618 
3619   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3620   if (Global->hasAttr<IFuncAttr>())
3621     return emitIFuncDefinition(GD);
3622 
3623   // If this is a cpu_dispatch multiversion function, emit the resolver.
3624   if (Global->hasAttr<CPUDispatchAttr>())
3625     return emitCPUDispatchDefinition(GD);
3626 
3627   // If this is CUDA, be selective about which declarations we emit.
3628   // Non-constexpr non-lambda implicit host device functions are not emitted
3629   // unless they are used on device side.
3630   if (LangOpts.CUDA) {
3631     if (LangOpts.CUDAIsDevice) {
3632       const auto *FD = dyn_cast<FunctionDecl>(Global);
3633       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3634            (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3635             hasImplicitAttr<CUDAHostAttr>(FD) &&
3636             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3637             !isLambdaCallOperator(FD) &&
3638             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3639           !Global->hasAttr<CUDAGlobalAttr>() &&
3640           !Global->hasAttr<CUDAConstantAttr>() &&
3641           !Global->hasAttr<CUDASharedAttr>() &&
3642           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3643           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3644           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3645             !Global->hasAttr<CUDAHostAttr>()))
3646         return;
3647     } else {
3648       // We need to emit host-side 'shadows' for all global
3649       // device-side variables because the CUDA runtime needs their
3650       // size and host-side address in order to provide access to
3651       // their device-side incarnations.
3652 
3653       // So device-only functions are the only things we skip.
3654       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3655           Global->hasAttr<CUDADeviceAttr>())
3656         return;
3657 
3658       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3659              "Expected Variable or Function");
3660     }
3661   }
3662 
3663   if (LangOpts.OpenMP) {
3664     // If this is OpenMP, check if it is legal to emit this global normally.
3665     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3666       return;
3667     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3668       if (MustBeEmitted(Global))
3669         EmitOMPDeclareReduction(DRD);
3670       return;
3671     }
3672     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3673       if (MustBeEmitted(Global))
3674         EmitOMPDeclareMapper(DMD);
3675       return;
3676     }
3677   }
3678 
3679   // Ignore declarations, they will be emitted on their first use.
3680   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3681     // Forward declarations are emitted lazily on first use.
3682     if (!FD->doesThisDeclarationHaveABody()) {
3683       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3684         return;
3685 
3686       StringRef MangledName = getMangledName(GD);
3687 
3688       // Compute the function info and LLVM type.
3689       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3690       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3691 
3692       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3693                               /*DontDefer=*/false);
3694       return;
3695     }
3696   } else {
3697     const auto *VD = cast<VarDecl>(Global);
3698     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3699     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3700         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3701       if (LangOpts.OpenMP) {
3702         // Emit declaration of the must-be-emitted declare target variable.
3703         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3704                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3705 
3706           // If this variable has external storage and doesn't require special
3707           // link handling we defer to its canonical definition.
3708           if (VD->hasExternalStorage() &&
3709               Res != OMPDeclareTargetDeclAttr::MT_Link)
3710             return;
3711 
3712           bool UnifiedMemoryEnabled =
3713               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3714           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3715                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3716               !UnifiedMemoryEnabled) {
3717             (void)GetAddrOfGlobalVar(VD);
3718           } else {
3719             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3720                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3721                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3722                      UnifiedMemoryEnabled)) &&
3723                    "Link clause or to clause with unified memory expected.");
3724             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3725           }
3726 
3727           return;
3728         }
3729       }
3730       // If this declaration may have caused an inline variable definition to
3731       // change linkage, make sure that it's emitted.
3732       if (Context.getInlineVariableDefinitionKind(VD) ==
3733           ASTContext::InlineVariableDefinitionKind::Strong)
3734         GetAddrOfGlobalVar(VD);
3735       return;
3736     }
3737   }
3738 
3739   // Defer code generation to first use when possible, e.g. if this is an inline
3740   // function. If the global must always be emitted, do it eagerly if possible
3741   // to benefit from cache locality.
3742   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3743     // Emit the definition if it can't be deferred.
3744     EmitGlobalDefinition(GD);
3745     addEmittedDeferredDecl(GD);
3746     return;
3747   }
3748 
3749   // If we're deferring emission of a C++ variable with an
3750   // initializer, remember the order in which it appeared in the file.
3751   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3752       cast<VarDecl>(Global)->hasInit()) {
3753     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3754     CXXGlobalInits.push_back(nullptr);
3755   }
3756 
3757   StringRef MangledName = getMangledName(GD);
3758   if (GetGlobalValue(MangledName) != nullptr) {
3759     // The value has already been used and should therefore be emitted.
3760     addDeferredDeclToEmit(GD);
3761   } else if (MustBeEmitted(Global)) {
3762     // The value must be emitted, but cannot be emitted eagerly.
3763     assert(!MayBeEmittedEagerly(Global));
3764     addDeferredDeclToEmit(GD);
3765   } else {
3766     // Otherwise, remember that we saw a deferred decl with this name.  The
3767     // first use of the mangled name will cause it to move into
3768     // DeferredDeclsToEmit.
3769     DeferredDecls[MangledName] = GD;
3770   }
3771 }
3772 
3773 // Check if T is a class type with a destructor that's not dllimport.
3774 static bool HasNonDllImportDtor(QualType T) {
3775   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3776     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3777       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3778         return true;
3779 
3780   return false;
3781 }
3782 
3783 namespace {
3784   struct FunctionIsDirectlyRecursive
3785       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3786     const StringRef Name;
3787     const Builtin::Context &BI;
3788     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3789         : Name(N), BI(C) {}
3790 
3791     bool VisitCallExpr(const CallExpr *E) {
3792       const FunctionDecl *FD = E->getDirectCallee();
3793       if (!FD)
3794         return false;
3795       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3796       if (Attr && Name == Attr->getLabel())
3797         return true;
3798       unsigned BuiltinID = FD->getBuiltinID();
3799       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3800         return false;
3801       StringRef BuiltinName = BI.getName(BuiltinID);
3802       if (BuiltinName.startswith("__builtin_") &&
3803           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3804         return true;
3805       }
3806       return false;
3807     }
3808 
3809     bool VisitStmt(const Stmt *S) {
3810       for (const Stmt *Child : S->children())
3811         if (Child && this->Visit(Child))
3812           return true;
3813       return false;
3814     }
3815   };
3816 
3817   // Make sure we're not referencing non-imported vars or functions.
3818   struct DLLImportFunctionVisitor
3819       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3820     bool SafeToInline = true;
3821 
3822     bool shouldVisitImplicitCode() const { return true; }
3823 
3824     bool VisitVarDecl(VarDecl *VD) {
3825       if (VD->getTLSKind()) {
3826         // A thread-local variable cannot be imported.
3827         SafeToInline = false;
3828         return SafeToInline;
3829       }
3830 
3831       // A variable definition might imply a destructor call.
3832       if (VD->isThisDeclarationADefinition())
3833         SafeToInline = !HasNonDllImportDtor(VD->getType());
3834 
3835       return SafeToInline;
3836     }
3837 
3838     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3839       if (const auto *D = E->getTemporary()->getDestructor())
3840         SafeToInline = D->hasAttr<DLLImportAttr>();
3841       return SafeToInline;
3842     }
3843 
3844     bool VisitDeclRefExpr(DeclRefExpr *E) {
3845       ValueDecl *VD = E->getDecl();
3846       if (isa<FunctionDecl>(VD))
3847         SafeToInline = VD->hasAttr<DLLImportAttr>();
3848       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3849         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3850       return SafeToInline;
3851     }
3852 
3853     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3854       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3855       return SafeToInline;
3856     }
3857 
3858     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3859       CXXMethodDecl *M = E->getMethodDecl();
3860       if (!M) {
3861         // Call through a pointer to member function. This is safe to inline.
3862         SafeToInline = true;
3863       } else {
3864         SafeToInline = M->hasAttr<DLLImportAttr>();
3865       }
3866       return SafeToInline;
3867     }
3868 
3869     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3870       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3871       return SafeToInline;
3872     }
3873 
3874     bool VisitCXXNewExpr(CXXNewExpr *E) {
3875       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3876       return SafeToInline;
3877     }
3878   };
3879 }
3880 
3881 // isTriviallyRecursive - Check if this function calls another
3882 // decl that, because of the asm attribute or the other decl being a builtin,
3883 // ends up pointing to itself.
3884 bool
3885 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3886   StringRef Name;
3887   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3888     // asm labels are a special kind of mangling we have to support.
3889     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3890     if (!Attr)
3891       return false;
3892     Name = Attr->getLabel();
3893   } else {
3894     Name = FD->getName();
3895   }
3896 
3897   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3898   const Stmt *Body = FD->getBody();
3899   return Body ? Walker.Visit(Body) : false;
3900 }
3901 
3902 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3903   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3904     return true;
3905 
3906   const auto *F = cast<FunctionDecl>(GD.getDecl());
3907   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3908     return false;
3909 
3910   // We don't import function bodies from other named module units since that
3911   // behavior may break ABI compatibility of the current unit.
3912   if (const Module *M = F->getOwningModule();
3913       M && M->getTopLevelModule()->isNamedModule() &&
3914       getContext().getCurrentNamedModule() != M->getTopLevelModule() &&
3915       !F->hasAttr<AlwaysInlineAttr>())
3916     return false;
3917 
3918   if (F->hasAttr<NoInlineAttr>())
3919     return false;
3920 
3921   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3922     // Check whether it would be safe to inline this dllimport function.
3923     DLLImportFunctionVisitor Visitor;
3924     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3925     if (!Visitor.SafeToInline)
3926       return false;
3927 
3928     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3929       // Implicit destructor invocations aren't captured in the AST, so the
3930       // check above can't see them. Check for them manually here.
3931       for (const Decl *Member : Dtor->getParent()->decls())
3932         if (isa<FieldDecl>(Member))
3933           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3934             return false;
3935       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3936         if (HasNonDllImportDtor(B.getType()))
3937           return false;
3938     }
3939   }
3940 
3941   // Inline builtins declaration must be emitted. They often are fortified
3942   // functions.
3943   if (F->isInlineBuiltinDeclaration())
3944     return true;
3945 
3946   // PR9614. Avoid cases where the source code is lying to us. An available
3947   // externally function should have an equivalent function somewhere else,
3948   // but a function that calls itself through asm label/`__builtin_` trickery is
3949   // clearly not equivalent to the real implementation.
3950   // This happens in glibc's btowc and in some configure checks.
3951   return !isTriviallyRecursive(F);
3952 }
3953 
3954 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3955   return CodeGenOpts.OptimizationLevel > 0;
3956 }
3957 
3958 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3959                                                        llvm::GlobalValue *GV) {
3960   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3961 
3962   if (FD->isCPUSpecificMultiVersion()) {
3963     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3964     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3965       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3966   } else if (FD->isTargetClonesMultiVersion()) {
3967     auto *Clone = FD->getAttr<TargetClonesAttr>();
3968     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3969       if (Clone->isFirstOfVersion(I))
3970         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3971     // Ensure that the resolver function is also emitted.
3972     GetOrCreateMultiVersionResolver(GD);
3973   } else
3974     EmitGlobalFunctionDefinition(GD, GV);
3975 }
3976 
3977 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3978   const auto *D = cast<ValueDecl>(GD.getDecl());
3979 
3980   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3981                                  Context.getSourceManager(),
3982                                  "Generating code for declaration");
3983 
3984   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3985     // At -O0, don't generate IR for functions with available_externally
3986     // linkage.
3987     if (!shouldEmitFunction(GD))
3988       return;
3989 
3990     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3991       std::string Name;
3992       llvm::raw_string_ostream OS(Name);
3993       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3994                                /*Qualified=*/true);
3995       return Name;
3996     });
3997 
3998     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3999       // Make sure to emit the definition(s) before we emit the thunks.
4000       // This is necessary for the generation of certain thunks.
4001       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4002         ABI->emitCXXStructor(GD);
4003       else if (FD->isMultiVersion())
4004         EmitMultiVersionFunctionDefinition(GD, GV);
4005       else
4006         EmitGlobalFunctionDefinition(GD, GV);
4007 
4008       if (Method->isVirtual())
4009         getVTables().EmitThunks(GD);
4010 
4011       return;
4012     }
4013 
4014     if (FD->isMultiVersion())
4015       return EmitMultiVersionFunctionDefinition(GD, GV);
4016     return EmitGlobalFunctionDefinition(GD, GV);
4017   }
4018 
4019   if (const auto *VD = dyn_cast<VarDecl>(D))
4020     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4021 
4022   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4023 }
4024 
4025 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4026                                                       llvm::Function *NewFn);
4027 
4028 static unsigned
4029 TargetMVPriority(const TargetInfo &TI,
4030                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4031   unsigned Priority = 0;
4032   unsigned NumFeatures = 0;
4033   for (StringRef Feat : RO.Conditions.Features) {
4034     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4035     NumFeatures++;
4036   }
4037 
4038   if (!RO.Conditions.Architecture.empty())
4039     Priority = std::max(
4040         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4041 
4042   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4043 
4044   return Priority;
4045 }
4046 
4047 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4048 // TU can forward declare the function without causing problems.  Particularly
4049 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4050 // work with internal linkage functions, so that the same function name can be
4051 // used with internal linkage in multiple TUs.
4052 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4053                                                        GlobalDecl GD) {
4054   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4055   if (FD->getFormalLinkage() == Linkage::Internal)
4056     return llvm::GlobalValue::InternalLinkage;
4057   return llvm::GlobalValue::WeakODRLinkage;
4058 }
4059 
4060 void CodeGenModule::emitMultiVersionFunctions() {
4061   std::vector<GlobalDecl> MVFuncsToEmit;
4062   MultiVersionFuncs.swap(MVFuncsToEmit);
4063   for (GlobalDecl GD : MVFuncsToEmit) {
4064     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4065     assert(FD && "Expected a FunctionDecl");
4066 
4067     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4068     if (FD->isTargetMultiVersion()) {
4069       getContext().forEachMultiversionedFunctionVersion(
4070           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
4071             GlobalDecl CurGD{
4072                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
4073             StringRef MangledName = getMangledName(CurGD);
4074             llvm::Constant *Func = GetGlobalValue(MangledName);
4075             if (!Func) {
4076               if (CurFD->isDefined()) {
4077                 EmitGlobalFunctionDefinition(CurGD, nullptr);
4078                 Func = GetGlobalValue(MangledName);
4079               } else {
4080                 const CGFunctionInfo &FI =
4081                     getTypes().arrangeGlobalDeclaration(GD);
4082                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4083                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4084                                          /*DontDefer=*/false, ForDefinition);
4085               }
4086               assert(Func && "This should have just been created");
4087             }
4088             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
4089               const auto *TA = CurFD->getAttr<TargetAttr>();
4090               llvm::SmallVector<StringRef, 8> Feats;
4091               TA->getAddedFeatures(Feats);
4092               Options.emplace_back(cast<llvm::Function>(Func),
4093                                    TA->getArchitecture(), Feats);
4094             } else {
4095               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
4096               llvm::SmallVector<StringRef, 8> Feats;
4097               TVA->getFeatures(Feats);
4098               Options.emplace_back(cast<llvm::Function>(Func),
4099                                    /*Architecture*/ "", Feats);
4100             }
4101           });
4102     } else if (FD->isTargetClonesMultiVersion()) {
4103       const auto *TC = FD->getAttr<TargetClonesAttr>();
4104       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4105            ++VersionIndex) {
4106         if (!TC->isFirstOfVersion(VersionIndex))
4107           continue;
4108         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4109                          VersionIndex};
4110         StringRef Version = TC->getFeatureStr(VersionIndex);
4111         StringRef MangledName = getMangledName(CurGD);
4112         llvm::Constant *Func = GetGlobalValue(MangledName);
4113         if (!Func) {
4114           if (FD->isDefined()) {
4115             EmitGlobalFunctionDefinition(CurGD, nullptr);
4116             Func = GetGlobalValue(MangledName);
4117           } else {
4118             const CGFunctionInfo &FI =
4119                 getTypes().arrangeGlobalDeclaration(CurGD);
4120             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4121             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4122                                      /*DontDefer=*/false, ForDefinition);
4123           }
4124           assert(Func && "This should have just been created");
4125         }
4126 
4127         StringRef Architecture;
4128         llvm::SmallVector<StringRef, 1> Feature;
4129 
4130         if (getTarget().getTriple().isAArch64()) {
4131           if (Version != "default") {
4132             llvm::SmallVector<StringRef, 8> VerFeats;
4133             Version.split(VerFeats, "+");
4134             for (auto &CurFeat : VerFeats)
4135               Feature.push_back(CurFeat.trim());
4136           }
4137         } else {
4138           if (Version.startswith("arch="))
4139             Architecture = Version.drop_front(sizeof("arch=") - 1);
4140           else if (Version != "default")
4141             Feature.push_back(Version);
4142         }
4143 
4144         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4145       }
4146     } else {
4147       assert(0 && "Expected a target or target_clones multiversion function");
4148       continue;
4149     }
4150 
4151     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4152     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4153       ResolverConstant = IFunc->getResolver();
4154     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4155 
4156     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4157 
4158     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4159       ResolverFunc->setComdat(
4160           getModule().getOrInsertComdat(ResolverFunc->getName()));
4161 
4162     const TargetInfo &TI = getTarget();
4163     llvm::stable_sort(
4164         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4165                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4166           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4167         });
4168     CodeGenFunction CGF(*this);
4169     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4170   }
4171 
4172   // Ensure that any additions to the deferred decls list caused by emitting a
4173   // variant are emitted.  This can happen when the variant itself is inline and
4174   // calls a function without linkage.
4175   if (!MVFuncsToEmit.empty())
4176     EmitDeferred();
4177 
4178   // Ensure that any additions to the multiversion funcs list from either the
4179   // deferred decls or the multiversion functions themselves are emitted.
4180   if (!MultiVersionFuncs.empty())
4181     emitMultiVersionFunctions();
4182 }
4183 
4184 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4185   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4186   assert(FD && "Not a FunctionDecl?");
4187   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4188   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4189   assert(DD && "Not a cpu_dispatch Function?");
4190 
4191   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4192   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4193 
4194   StringRef ResolverName = getMangledName(GD);
4195   UpdateMultiVersionNames(GD, FD, ResolverName);
4196 
4197   llvm::Type *ResolverType;
4198   GlobalDecl ResolverGD;
4199   if (getTarget().supportsIFunc()) {
4200     ResolverType = llvm::FunctionType::get(
4201         llvm::PointerType::get(DeclTy,
4202                                getTypes().getTargetAddressSpace(FD->getType())),
4203         false);
4204   }
4205   else {
4206     ResolverType = DeclTy;
4207     ResolverGD = GD;
4208   }
4209 
4210   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4211       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4212   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4213   if (supportsCOMDAT())
4214     ResolverFunc->setComdat(
4215         getModule().getOrInsertComdat(ResolverFunc->getName()));
4216 
4217   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4218   const TargetInfo &Target = getTarget();
4219   unsigned Index = 0;
4220   for (const IdentifierInfo *II : DD->cpus()) {
4221     // Get the name of the target function so we can look it up/create it.
4222     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4223                               getCPUSpecificMangling(*this, II->getName());
4224 
4225     llvm::Constant *Func = GetGlobalValue(MangledName);
4226 
4227     if (!Func) {
4228       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4229       if (ExistingDecl.getDecl() &&
4230           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4231         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4232         Func = GetGlobalValue(MangledName);
4233       } else {
4234         if (!ExistingDecl.getDecl())
4235           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4236 
4237       Func = GetOrCreateLLVMFunction(
4238           MangledName, DeclTy, ExistingDecl,
4239           /*ForVTable=*/false, /*DontDefer=*/true,
4240           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4241       }
4242     }
4243 
4244     llvm::SmallVector<StringRef, 32> Features;
4245     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4246     llvm::transform(Features, Features.begin(),
4247                     [](StringRef Str) { return Str.substr(1); });
4248     llvm::erase_if(Features, [&Target](StringRef Feat) {
4249       return !Target.validateCpuSupports(Feat);
4250     });
4251     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4252     ++Index;
4253   }
4254 
4255   llvm::stable_sort(
4256       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4257                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4258         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4259                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4260       });
4261 
4262   // If the list contains multiple 'default' versions, such as when it contains
4263   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4264   // always run on at least a 'pentium'). We do this by deleting the 'least
4265   // advanced' (read, lowest mangling letter).
4266   while (Options.size() > 1 &&
4267          llvm::all_of(llvm::X86::getCpuSupportsMask(
4268                           (Options.end() - 2)->Conditions.Features),
4269                       [](auto X) { return X == 0; })) {
4270     StringRef LHSName = (Options.end() - 2)->Function->getName();
4271     StringRef RHSName = (Options.end() - 1)->Function->getName();
4272     if (LHSName.compare(RHSName) < 0)
4273       Options.erase(Options.end() - 2);
4274     else
4275       Options.erase(Options.end() - 1);
4276   }
4277 
4278   CodeGenFunction CGF(*this);
4279   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4280 
4281   if (getTarget().supportsIFunc()) {
4282     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4283     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4284 
4285     // Fix up function declarations that were created for cpu_specific before
4286     // cpu_dispatch was known
4287     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4288       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4289       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4290                                            &getModule());
4291       GI->takeName(IFunc);
4292       IFunc->replaceAllUsesWith(GI);
4293       IFunc->eraseFromParent();
4294       IFunc = GI;
4295     }
4296 
4297     std::string AliasName = getMangledNameImpl(
4298         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4299     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4300     if (!AliasFunc) {
4301       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4302                                            &getModule());
4303       SetCommonAttributes(GD, GA);
4304     }
4305   }
4306 }
4307 
4308 /// If a dispatcher for the specified mangled name is not in the module, create
4309 /// and return an llvm Function with the specified type.
4310 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4311   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4312   assert(FD && "Not a FunctionDecl?");
4313 
4314   std::string MangledName =
4315       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4316 
4317   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4318   // a separate resolver).
4319   std::string ResolverName = MangledName;
4320   if (getTarget().supportsIFunc())
4321     ResolverName += ".ifunc";
4322   else if (FD->isTargetMultiVersion())
4323     ResolverName += ".resolver";
4324 
4325   // If the resolver has already been created, just return it.
4326   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4327     return ResolverGV;
4328 
4329   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4330   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4331 
4332   // The resolver needs to be created. For target and target_clones, defer
4333   // creation until the end of the TU.
4334   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4335     MultiVersionFuncs.push_back(GD);
4336 
4337   // For cpu_specific, don't create an ifunc yet because we don't know if the
4338   // cpu_dispatch will be emitted in this translation unit.
4339   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4340     llvm::Type *ResolverType = llvm::FunctionType::get(
4341         llvm::PointerType::get(DeclTy,
4342                                getTypes().getTargetAddressSpace(FD->getType())),
4343         false);
4344     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4345         MangledName + ".resolver", ResolverType, GlobalDecl{},
4346         /*ForVTable=*/false);
4347     llvm::GlobalIFunc *GIF =
4348         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4349                                   "", Resolver, &getModule());
4350     GIF->setName(ResolverName);
4351     SetCommonAttributes(FD, GIF);
4352 
4353     return GIF;
4354   }
4355 
4356   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4357       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4358   assert(isa<llvm::GlobalValue>(Resolver) &&
4359          "Resolver should be created for the first time");
4360   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4361   return Resolver;
4362 }
4363 
4364 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4365 /// module, create and return an llvm Function with the specified type. If there
4366 /// is something in the module with the specified name, return it potentially
4367 /// bitcasted to the right type.
4368 ///
4369 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4370 /// to set the attributes on the function when it is first created.
4371 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4372     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4373     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4374     ForDefinition_t IsForDefinition) {
4375   const Decl *D = GD.getDecl();
4376 
4377   // Any attempts to use a MultiVersion function should result in retrieving
4378   // the iFunc instead. Name Mangling will handle the rest of the changes.
4379   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4380     // For the device mark the function as one that should be emitted.
4381     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4382         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4383         !DontDefer && !IsForDefinition) {
4384       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4385         GlobalDecl GDDef;
4386         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4387           GDDef = GlobalDecl(CD, GD.getCtorType());
4388         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4389           GDDef = GlobalDecl(DD, GD.getDtorType());
4390         else
4391           GDDef = GlobalDecl(FDDef);
4392         EmitGlobal(GDDef);
4393       }
4394     }
4395 
4396     if (FD->isMultiVersion()) {
4397       UpdateMultiVersionNames(GD, FD, MangledName);
4398       if (!IsForDefinition)
4399         return GetOrCreateMultiVersionResolver(GD);
4400     }
4401   }
4402 
4403   // Lookup the entry, lazily creating it if necessary.
4404   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4405   if (Entry) {
4406     if (WeakRefReferences.erase(Entry)) {
4407       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4408       if (FD && !FD->hasAttr<WeakAttr>())
4409         Entry->setLinkage(llvm::Function::ExternalLinkage);
4410     }
4411 
4412     // Handle dropped DLL attributes.
4413     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4414         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4415       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4416       setDSOLocal(Entry);
4417     }
4418 
4419     // If there are two attempts to define the same mangled name, issue an
4420     // error.
4421     if (IsForDefinition && !Entry->isDeclaration()) {
4422       GlobalDecl OtherGD;
4423       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4424       // to make sure that we issue an error only once.
4425       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4426           (GD.getCanonicalDecl().getDecl() !=
4427            OtherGD.getCanonicalDecl().getDecl()) &&
4428           DiagnosedConflictingDefinitions.insert(GD).second) {
4429         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4430             << MangledName;
4431         getDiags().Report(OtherGD.getDecl()->getLocation(),
4432                           diag::note_previous_definition);
4433       }
4434     }
4435 
4436     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4437         (Entry->getValueType() == Ty)) {
4438       return Entry;
4439     }
4440 
4441     // Make sure the result is of the correct type.
4442     // (If function is requested for a definition, we always need to create a new
4443     // function, not just return a bitcast.)
4444     if (!IsForDefinition)
4445       return Entry;
4446   }
4447 
4448   // This function doesn't have a complete type (for example, the return
4449   // type is an incomplete struct). Use a fake type instead, and make
4450   // sure not to try to set attributes.
4451   bool IsIncompleteFunction = false;
4452 
4453   llvm::FunctionType *FTy;
4454   if (isa<llvm::FunctionType>(Ty)) {
4455     FTy = cast<llvm::FunctionType>(Ty);
4456   } else {
4457     FTy = llvm::FunctionType::get(VoidTy, false);
4458     IsIncompleteFunction = true;
4459   }
4460 
4461   llvm::Function *F =
4462       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4463                              Entry ? StringRef() : MangledName, &getModule());
4464 
4465   // If we already created a function with the same mangled name (but different
4466   // type) before, take its name and add it to the list of functions to be
4467   // replaced with F at the end of CodeGen.
4468   //
4469   // This happens if there is a prototype for a function (e.g. "int f()") and
4470   // then a definition of a different type (e.g. "int f(int x)").
4471   if (Entry) {
4472     F->takeName(Entry);
4473 
4474     // This might be an implementation of a function without a prototype, in
4475     // which case, try to do special replacement of calls which match the new
4476     // prototype.  The really key thing here is that we also potentially drop
4477     // arguments from the call site so as to make a direct call, which makes the
4478     // inliner happier and suppresses a number of optimizer warnings (!) about
4479     // dropping arguments.
4480     if (!Entry->use_empty()) {
4481       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4482       Entry->removeDeadConstantUsers();
4483     }
4484 
4485     addGlobalValReplacement(Entry, F);
4486   }
4487 
4488   assert(F->getName() == MangledName && "name was uniqued!");
4489   if (D)
4490     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4491   if (ExtraAttrs.hasFnAttrs()) {
4492     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4493     F->addFnAttrs(B);
4494   }
4495 
4496   if (!DontDefer) {
4497     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4498     // each other bottoming out with the base dtor.  Therefore we emit non-base
4499     // dtors on usage, even if there is no dtor definition in the TU.
4500     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4501         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4502                                            GD.getDtorType()))
4503       addDeferredDeclToEmit(GD);
4504 
4505     // This is the first use or definition of a mangled name.  If there is a
4506     // deferred decl with this name, remember that we need to emit it at the end
4507     // of the file.
4508     auto DDI = DeferredDecls.find(MangledName);
4509     if (DDI != DeferredDecls.end()) {
4510       // Move the potentially referenced deferred decl to the
4511       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4512       // don't need it anymore).
4513       addDeferredDeclToEmit(DDI->second);
4514       DeferredDecls.erase(DDI);
4515 
4516       // Otherwise, there are cases we have to worry about where we're
4517       // using a declaration for which we must emit a definition but where
4518       // we might not find a top-level definition:
4519       //   - member functions defined inline in their classes
4520       //   - friend functions defined inline in some class
4521       //   - special member functions with implicit definitions
4522       // If we ever change our AST traversal to walk into class methods,
4523       // this will be unnecessary.
4524       //
4525       // We also don't emit a definition for a function if it's going to be an
4526       // entry in a vtable, unless it's already marked as used.
4527     } else if (getLangOpts().CPlusPlus && D) {
4528       // Look for a declaration that's lexically in a record.
4529       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4530            FD = FD->getPreviousDecl()) {
4531         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4532           if (FD->doesThisDeclarationHaveABody()) {
4533             addDeferredDeclToEmit(GD.getWithDecl(FD));
4534             break;
4535           }
4536         }
4537       }
4538     }
4539   }
4540 
4541   // Make sure the result is of the requested type.
4542   if (!IsIncompleteFunction) {
4543     assert(F->getFunctionType() == Ty);
4544     return F;
4545   }
4546 
4547   return F;
4548 }
4549 
4550 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4551 /// non-null, then this function will use the specified type if it has to
4552 /// create it (this occurs when we see a definition of the function).
4553 llvm::Constant *
4554 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4555                                  bool DontDefer,
4556                                  ForDefinition_t IsForDefinition) {
4557   // If there was no specific requested type, just convert it now.
4558   if (!Ty) {
4559     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4560     Ty = getTypes().ConvertType(FD->getType());
4561   }
4562 
4563   // Devirtualized destructor calls may come through here instead of via
4564   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4565   // of the complete destructor when necessary.
4566   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4567     if (getTarget().getCXXABI().isMicrosoft() &&
4568         GD.getDtorType() == Dtor_Complete &&
4569         DD->getParent()->getNumVBases() == 0)
4570       GD = GlobalDecl(DD, Dtor_Base);
4571   }
4572 
4573   StringRef MangledName = getMangledName(GD);
4574   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4575                                     /*IsThunk=*/false, llvm::AttributeList(),
4576                                     IsForDefinition);
4577   // Returns kernel handle for HIP kernel stub function.
4578   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4579       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4580     auto *Handle = getCUDARuntime().getKernelHandle(
4581         cast<llvm::Function>(F->stripPointerCasts()), GD);
4582     if (IsForDefinition)
4583       return F;
4584     return Handle;
4585   }
4586   return F;
4587 }
4588 
4589 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4590   llvm::GlobalValue *F =
4591       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4592 
4593   return llvm::NoCFIValue::get(F);
4594 }
4595 
4596 static const FunctionDecl *
4597 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4598   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4599   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4600 
4601   IdentifierInfo &CII = C.Idents.get(Name);
4602   for (const auto *Result : DC->lookup(&CII))
4603     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4604       return FD;
4605 
4606   if (!C.getLangOpts().CPlusPlus)
4607     return nullptr;
4608 
4609   // Demangle the premangled name from getTerminateFn()
4610   IdentifierInfo &CXXII =
4611       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4612           ? C.Idents.get("terminate")
4613           : C.Idents.get(Name);
4614 
4615   for (const auto &N : {"__cxxabiv1", "std"}) {
4616     IdentifierInfo &NS = C.Idents.get(N);
4617     for (const auto *Result : DC->lookup(&NS)) {
4618       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4619       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4620         for (const auto *Result : LSD->lookup(&NS))
4621           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4622             break;
4623 
4624       if (ND)
4625         for (const auto *Result : ND->lookup(&CXXII))
4626           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4627             return FD;
4628     }
4629   }
4630 
4631   return nullptr;
4632 }
4633 
4634 /// CreateRuntimeFunction - Create a new runtime function with the specified
4635 /// type and name.
4636 llvm::FunctionCallee
4637 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4638                                      llvm::AttributeList ExtraAttrs, bool Local,
4639                                      bool AssumeConvergent) {
4640   if (AssumeConvergent) {
4641     ExtraAttrs =
4642         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4643   }
4644 
4645   llvm::Constant *C =
4646       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4647                               /*DontDefer=*/false, /*IsThunk=*/false,
4648                               ExtraAttrs);
4649 
4650   if (auto *F = dyn_cast<llvm::Function>(C)) {
4651     if (F->empty()) {
4652       F->setCallingConv(getRuntimeCC());
4653 
4654       // In Windows Itanium environments, try to mark runtime functions
4655       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4656       // will link their standard library statically or dynamically. Marking
4657       // functions imported when they are not imported can cause linker errors
4658       // and warnings.
4659       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4660           !getCodeGenOpts().LTOVisibilityPublicStd) {
4661         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4662         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4663           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4664           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4665         }
4666       }
4667       setDSOLocal(F);
4668     }
4669   }
4670 
4671   return {FTy, C};
4672 }
4673 
4674 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4675 /// create and return an llvm GlobalVariable with the specified type and address
4676 /// space. If there is something in the module with the specified name, return
4677 /// it potentially bitcasted to the right type.
4678 ///
4679 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4680 /// to set the attributes on the global when it is first created.
4681 ///
4682 /// If IsForDefinition is true, it is guaranteed that an actual global with
4683 /// type Ty will be returned, not conversion of a variable with the same
4684 /// mangled name but some other type.
4685 llvm::Constant *
4686 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4687                                      LangAS AddrSpace, const VarDecl *D,
4688                                      ForDefinition_t IsForDefinition) {
4689   // Lookup the entry, lazily creating it if necessary.
4690   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4691   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4692   if (Entry) {
4693     if (WeakRefReferences.erase(Entry)) {
4694       if (D && !D->hasAttr<WeakAttr>())
4695         Entry->setLinkage(llvm::Function::ExternalLinkage);
4696     }
4697 
4698     // Handle dropped DLL attributes.
4699     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4700         !shouldMapVisibilityToDLLExport(D))
4701       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4702 
4703     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4704       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4705 
4706     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4707       return Entry;
4708 
4709     // If there are two attempts to define the same mangled name, issue an
4710     // error.
4711     if (IsForDefinition && !Entry->isDeclaration()) {
4712       GlobalDecl OtherGD;
4713       const VarDecl *OtherD;
4714 
4715       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4716       // to make sure that we issue an error only once.
4717       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4718           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4719           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4720           OtherD->hasInit() &&
4721           DiagnosedConflictingDefinitions.insert(D).second) {
4722         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4723             << MangledName;
4724         getDiags().Report(OtherGD.getDecl()->getLocation(),
4725                           diag::note_previous_definition);
4726       }
4727     }
4728 
4729     // Make sure the result is of the correct type.
4730     if (Entry->getType()->getAddressSpace() != TargetAS)
4731       return llvm::ConstantExpr::getAddrSpaceCast(
4732           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4733 
4734     // (If global is requested for a definition, we always need to create a new
4735     // global, not just return a bitcast.)
4736     if (!IsForDefinition)
4737       return Entry;
4738   }
4739 
4740   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4741 
4742   auto *GV = new llvm::GlobalVariable(
4743       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4744       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4745       getContext().getTargetAddressSpace(DAddrSpace));
4746 
4747   // If we already created a global with the same mangled name (but different
4748   // type) before, take its name and remove it from its parent.
4749   if (Entry) {
4750     GV->takeName(Entry);
4751 
4752     if (!Entry->use_empty()) {
4753       Entry->replaceAllUsesWith(GV);
4754     }
4755 
4756     Entry->eraseFromParent();
4757   }
4758 
4759   // This is the first use or definition of a mangled name.  If there is a
4760   // deferred decl with this name, remember that we need to emit it at the end
4761   // of the file.
4762   auto DDI = DeferredDecls.find(MangledName);
4763   if (DDI != DeferredDecls.end()) {
4764     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4765     // list, and remove it from DeferredDecls (since we don't need it anymore).
4766     addDeferredDeclToEmit(DDI->second);
4767     DeferredDecls.erase(DDI);
4768   }
4769 
4770   // Handle things which are present even on external declarations.
4771   if (D) {
4772     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4773       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4774 
4775     // FIXME: This code is overly simple and should be merged with other global
4776     // handling.
4777     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4778 
4779     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4780 
4781     setLinkageForGV(GV, D);
4782 
4783     if (D->getTLSKind()) {
4784       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4785         CXXThreadLocals.push_back(D);
4786       setTLSMode(GV, *D);
4787     }
4788 
4789     setGVProperties(GV, D);
4790 
4791     // If required by the ABI, treat declarations of static data members with
4792     // inline initializers as definitions.
4793     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4794       EmitGlobalVarDefinition(D);
4795     }
4796 
4797     // Emit section information for extern variables.
4798     if (D->hasExternalStorage()) {
4799       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4800         GV->setSection(SA->getName());
4801     }
4802 
4803     // Handle XCore specific ABI requirements.
4804     if (getTriple().getArch() == llvm::Triple::xcore &&
4805         D->getLanguageLinkage() == CLanguageLinkage &&
4806         D->getType().isConstant(Context) &&
4807         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4808       GV->setSection(".cp.rodata");
4809 
4810     // Check if we a have a const declaration with an initializer, we may be
4811     // able to emit it as available_externally to expose it's value to the
4812     // optimizer.
4813     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4814         D->getType().isConstQualified() && !GV->hasInitializer() &&
4815         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4816       const auto *Record =
4817           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4818       bool HasMutableFields = Record && Record->hasMutableFields();
4819       if (!HasMutableFields) {
4820         const VarDecl *InitDecl;
4821         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4822         if (InitExpr) {
4823           ConstantEmitter emitter(*this);
4824           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4825           if (Init) {
4826             auto *InitType = Init->getType();
4827             if (GV->getValueType() != InitType) {
4828               // The type of the initializer does not match the definition.
4829               // This happens when an initializer has a different type from
4830               // the type of the global (because of padding at the end of a
4831               // structure for instance).
4832               GV->setName(StringRef());
4833               // Make a new global with the correct type, this is now guaranteed
4834               // to work.
4835               auto *NewGV = cast<llvm::GlobalVariable>(
4836                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4837                       ->stripPointerCasts());
4838 
4839               // Erase the old global, since it is no longer used.
4840               GV->eraseFromParent();
4841               GV = NewGV;
4842             } else {
4843               GV->setInitializer(Init);
4844               GV->setConstant(true);
4845               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4846             }
4847             emitter.finalize(GV);
4848           }
4849         }
4850       }
4851     }
4852   }
4853 
4854   if (D &&
4855       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4856     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4857     // External HIP managed variables needed to be recorded for transformation
4858     // in both device and host compilations.
4859     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4860         D->hasExternalStorage())
4861       getCUDARuntime().handleVarRegistration(D, *GV);
4862   }
4863 
4864   if (D)
4865     SanitizerMD->reportGlobal(GV, *D);
4866 
4867   LangAS ExpectedAS =
4868       D ? D->getType().getAddressSpace()
4869         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4870   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4871   if (DAddrSpace != ExpectedAS) {
4872     return getTargetCodeGenInfo().performAddrSpaceCast(
4873         *this, GV, DAddrSpace, ExpectedAS,
4874         llvm::PointerType::get(getLLVMContext(), TargetAS));
4875   }
4876 
4877   return GV;
4878 }
4879 
4880 llvm::Constant *
4881 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4882   const Decl *D = GD.getDecl();
4883 
4884   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4885     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4886                                 /*DontDefer=*/false, IsForDefinition);
4887 
4888   if (isa<CXXMethodDecl>(D)) {
4889     auto FInfo =
4890         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4891     auto Ty = getTypes().GetFunctionType(*FInfo);
4892     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4893                              IsForDefinition);
4894   }
4895 
4896   if (isa<FunctionDecl>(D)) {
4897     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4898     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4899     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4900                              IsForDefinition);
4901   }
4902 
4903   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4904 }
4905 
4906 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4907     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4908     llvm::Align Alignment) {
4909   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4910   llvm::GlobalVariable *OldGV = nullptr;
4911 
4912   if (GV) {
4913     // Check if the variable has the right type.
4914     if (GV->getValueType() == Ty)
4915       return GV;
4916 
4917     // Because C++ name mangling, the only way we can end up with an already
4918     // existing global with the same name is if it has been declared extern "C".
4919     assert(GV->isDeclaration() && "Declaration has wrong type!");
4920     OldGV = GV;
4921   }
4922 
4923   // Create a new variable.
4924   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4925                                 Linkage, nullptr, Name);
4926 
4927   if (OldGV) {
4928     // Replace occurrences of the old variable if needed.
4929     GV->takeName(OldGV);
4930 
4931     if (!OldGV->use_empty()) {
4932       OldGV->replaceAllUsesWith(GV);
4933     }
4934 
4935     OldGV->eraseFromParent();
4936   }
4937 
4938   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4939       !GV->hasAvailableExternallyLinkage())
4940     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4941 
4942   GV->setAlignment(Alignment);
4943 
4944   return GV;
4945 }
4946 
4947 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4948 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4949 /// then it will be created with the specified type instead of whatever the
4950 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4951 /// that an actual global with type Ty will be returned, not conversion of a
4952 /// variable with the same mangled name but some other type.
4953 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4954                                                   llvm::Type *Ty,
4955                                            ForDefinition_t IsForDefinition) {
4956   assert(D->hasGlobalStorage() && "Not a global variable");
4957   QualType ASTTy = D->getType();
4958   if (!Ty)
4959     Ty = getTypes().ConvertTypeForMem(ASTTy);
4960 
4961   StringRef MangledName = getMangledName(D);
4962   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4963                                IsForDefinition);
4964 }
4965 
4966 /// CreateRuntimeVariable - Create a new runtime global variable with the
4967 /// specified type and name.
4968 llvm::Constant *
4969 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4970                                      StringRef Name) {
4971   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4972                                                        : LangAS::Default;
4973   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4974   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4975   return Ret;
4976 }
4977 
4978 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4979   assert(!D->getInit() && "Cannot emit definite definitions here!");
4980 
4981   StringRef MangledName = getMangledName(D);
4982   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4983 
4984   // We already have a definition, not declaration, with the same mangled name.
4985   // Emitting of declaration is not required (and actually overwrites emitted
4986   // definition).
4987   if (GV && !GV->isDeclaration())
4988     return;
4989 
4990   // If we have not seen a reference to this variable yet, place it into the
4991   // deferred declarations table to be emitted if needed later.
4992   if (!MustBeEmitted(D) && !GV) {
4993       DeferredDecls[MangledName] = D;
4994       return;
4995   }
4996 
4997   // The tentative definition is the only definition.
4998   EmitGlobalVarDefinition(D);
4999 }
5000 
5001 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5002   EmitExternalVarDeclaration(D);
5003 }
5004 
5005 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5006   return Context.toCharUnitsFromBits(
5007       getDataLayout().getTypeStoreSizeInBits(Ty));
5008 }
5009 
5010 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5011   if (LangOpts.OpenCL) {
5012     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5013     assert(AS == LangAS::opencl_global ||
5014            AS == LangAS::opencl_global_device ||
5015            AS == LangAS::opencl_global_host ||
5016            AS == LangAS::opencl_constant ||
5017            AS == LangAS::opencl_local ||
5018            AS >= LangAS::FirstTargetAddressSpace);
5019     return AS;
5020   }
5021 
5022   if (LangOpts.SYCLIsDevice &&
5023       (!D || D->getType().getAddressSpace() == LangAS::Default))
5024     return LangAS::sycl_global;
5025 
5026   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5027     if (D) {
5028       if (D->hasAttr<CUDAConstantAttr>())
5029         return LangAS::cuda_constant;
5030       if (D->hasAttr<CUDASharedAttr>())
5031         return LangAS::cuda_shared;
5032       if (D->hasAttr<CUDADeviceAttr>())
5033         return LangAS::cuda_device;
5034       if (D->getType().isConstQualified())
5035         return LangAS::cuda_constant;
5036     }
5037     return LangAS::cuda_device;
5038   }
5039 
5040   if (LangOpts.OpenMP) {
5041     LangAS AS;
5042     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5043       return AS;
5044   }
5045   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5046 }
5047 
5048 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5049   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5050   if (LangOpts.OpenCL)
5051     return LangAS::opencl_constant;
5052   if (LangOpts.SYCLIsDevice)
5053     return LangAS::sycl_global;
5054   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5055     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5056     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5057     // with OpVariable instructions with Generic storage class which is not
5058     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5059     // UniformConstant storage class is not viable as pointers to it may not be
5060     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5061     return LangAS::cuda_device;
5062   if (auto AS = getTarget().getConstantAddressSpace())
5063     return *AS;
5064   return LangAS::Default;
5065 }
5066 
5067 // In address space agnostic languages, string literals are in default address
5068 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5069 // emitted in constant address space in LLVM IR. To be consistent with other
5070 // parts of AST, string literal global variables in constant address space
5071 // need to be casted to default address space before being put into address
5072 // map and referenced by other part of CodeGen.
5073 // In OpenCL, string literals are in constant address space in AST, therefore
5074 // they should not be casted to default address space.
5075 static llvm::Constant *
5076 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5077                                        llvm::GlobalVariable *GV) {
5078   llvm::Constant *Cast = GV;
5079   if (!CGM.getLangOpts().OpenCL) {
5080     auto AS = CGM.GetGlobalConstantAddressSpace();
5081     if (AS != LangAS::Default)
5082       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5083           CGM, GV, AS, LangAS::Default,
5084           llvm::PointerType::get(
5085               CGM.getLLVMContext(),
5086               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5087   }
5088   return Cast;
5089 }
5090 
5091 template<typename SomeDecl>
5092 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5093                                                llvm::GlobalValue *GV) {
5094   if (!getLangOpts().CPlusPlus)
5095     return;
5096 
5097   // Must have 'used' attribute, or else inline assembly can't rely on
5098   // the name existing.
5099   if (!D->template hasAttr<UsedAttr>())
5100     return;
5101 
5102   // Must have internal linkage and an ordinary name.
5103   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5104     return;
5105 
5106   // Must be in an extern "C" context. Entities declared directly within
5107   // a record are not extern "C" even if the record is in such a context.
5108   const SomeDecl *First = D->getFirstDecl();
5109   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5110     return;
5111 
5112   // OK, this is an internal linkage entity inside an extern "C" linkage
5113   // specification. Make a note of that so we can give it the "expected"
5114   // mangled name if nothing else is using that name.
5115   std::pair<StaticExternCMap::iterator, bool> R =
5116       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5117 
5118   // If we have multiple internal linkage entities with the same name
5119   // in extern "C" regions, none of them gets that name.
5120   if (!R.second)
5121     R.first->second = nullptr;
5122 }
5123 
5124 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5125   if (!CGM.supportsCOMDAT())
5126     return false;
5127 
5128   if (D.hasAttr<SelectAnyAttr>())
5129     return true;
5130 
5131   GVALinkage Linkage;
5132   if (auto *VD = dyn_cast<VarDecl>(&D))
5133     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5134   else
5135     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5136 
5137   switch (Linkage) {
5138   case GVA_Internal:
5139   case GVA_AvailableExternally:
5140   case GVA_StrongExternal:
5141     return false;
5142   case GVA_DiscardableODR:
5143   case GVA_StrongODR:
5144     return true;
5145   }
5146   llvm_unreachable("No such linkage");
5147 }
5148 
5149 bool CodeGenModule::supportsCOMDAT() const {
5150   return getTriple().supportsCOMDAT();
5151 }
5152 
5153 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5154                                           llvm::GlobalObject &GO) {
5155   if (!shouldBeInCOMDAT(*this, D))
5156     return;
5157   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5158 }
5159 
5160 /// Pass IsTentative as true if you want to create a tentative definition.
5161 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5162                                             bool IsTentative) {
5163   // OpenCL global variables of sampler type are translated to function calls,
5164   // therefore no need to be translated.
5165   QualType ASTTy = D->getType();
5166   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5167     return;
5168 
5169   // If this is OpenMP device, check if it is legal to emit this global
5170   // normally.
5171   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5172       OpenMPRuntime->emitTargetGlobalVariable(D))
5173     return;
5174 
5175   llvm::TrackingVH<llvm::Constant> Init;
5176   bool NeedsGlobalCtor = false;
5177   // Whether the definition of the variable is available externally.
5178   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5179   // since this is the job for its original source.
5180   bool IsDefinitionAvailableExternally =
5181       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5182   bool NeedsGlobalDtor =
5183       !IsDefinitionAvailableExternally &&
5184       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5185 
5186   const VarDecl *InitDecl;
5187   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5188 
5189   std::optional<ConstantEmitter> emitter;
5190 
5191   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5192   // as part of their declaration."  Sema has already checked for
5193   // error cases, so we just need to set Init to UndefValue.
5194   bool IsCUDASharedVar =
5195       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5196   // Shadows of initialized device-side global variables are also left
5197   // undefined.
5198   // Managed Variables should be initialized on both host side and device side.
5199   bool IsCUDAShadowVar =
5200       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5201       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5202        D->hasAttr<CUDASharedAttr>());
5203   bool IsCUDADeviceShadowVar =
5204       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5205       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5206        D->getType()->isCUDADeviceBuiltinTextureType());
5207   if (getLangOpts().CUDA &&
5208       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5209     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5210   else if (D->hasAttr<LoaderUninitializedAttr>())
5211     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5212   else if (!InitExpr) {
5213     // This is a tentative definition; tentative definitions are
5214     // implicitly initialized with { 0 }.
5215     //
5216     // Note that tentative definitions are only emitted at the end of
5217     // a translation unit, so they should never have incomplete
5218     // type. In addition, EmitTentativeDefinition makes sure that we
5219     // never attempt to emit a tentative definition if a real one
5220     // exists. A use may still exists, however, so we still may need
5221     // to do a RAUW.
5222     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5223     Init = EmitNullConstant(D->getType());
5224   } else {
5225     initializedGlobalDecl = GlobalDecl(D);
5226     emitter.emplace(*this);
5227     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5228     if (!Initializer) {
5229       QualType T = InitExpr->getType();
5230       if (D->getType()->isReferenceType())
5231         T = D->getType();
5232 
5233       if (getLangOpts().CPlusPlus) {
5234         if (InitDecl->hasFlexibleArrayInit(getContext()))
5235           ErrorUnsupported(D, "flexible array initializer");
5236         Init = EmitNullConstant(T);
5237 
5238         if (!IsDefinitionAvailableExternally)
5239           NeedsGlobalCtor = true;
5240       } else {
5241         ErrorUnsupported(D, "static initializer");
5242         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5243       }
5244     } else {
5245       Init = Initializer;
5246       // We don't need an initializer, so remove the entry for the delayed
5247       // initializer position (just in case this entry was delayed) if we
5248       // also don't need to register a destructor.
5249       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5250         DelayedCXXInitPosition.erase(D);
5251 
5252 #ifndef NDEBUG
5253       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5254                           InitDecl->getFlexibleArrayInitChars(getContext());
5255       CharUnits CstSize = CharUnits::fromQuantity(
5256           getDataLayout().getTypeAllocSize(Init->getType()));
5257       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5258 #endif
5259     }
5260   }
5261 
5262   llvm::Type* InitType = Init->getType();
5263   llvm::Constant *Entry =
5264       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5265 
5266   // Strip off pointer casts if we got them.
5267   Entry = Entry->stripPointerCasts();
5268 
5269   // Entry is now either a Function or GlobalVariable.
5270   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5271 
5272   // We have a definition after a declaration with the wrong type.
5273   // We must make a new GlobalVariable* and update everything that used OldGV
5274   // (a declaration or tentative definition) with the new GlobalVariable*
5275   // (which will be a definition).
5276   //
5277   // This happens if there is a prototype for a global (e.g.
5278   // "extern int x[];") and then a definition of a different type (e.g.
5279   // "int x[10];"). This also happens when an initializer has a different type
5280   // from the type of the global (this happens with unions).
5281   if (!GV || GV->getValueType() != InitType ||
5282       GV->getType()->getAddressSpace() !=
5283           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5284 
5285     // Move the old entry aside so that we'll create a new one.
5286     Entry->setName(StringRef());
5287 
5288     // Make a new global with the correct type, this is now guaranteed to work.
5289     GV = cast<llvm::GlobalVariable>(
5290         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5291             ->stripPointerCasts());
5292 
5293     // Replace all uses of the old global with the new global
5294     llvm::Constant *NewPtrForOldDecl =
5295         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5296                                                              Entry->getType());
5297     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5298 
5299     // Erase the old global, since it is no longer used.
5300     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5301   }
5302 
5303   MaybeHandleStaticInExternC(D, GV);
5304 
5305   if (D->hasAttr<AnnotateAttr>())
5306     AddGlobalAnnotations(D, GV);
5307 
5308   // Set the llvm linkage type as appropriate.
5309   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5310 
5311   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5312   // the device. [...]"
5313   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5314   // __device__, declares a variable that: [...]
5315   // Is accessible from all the threads within the grid and from the host
5316   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5317   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5318   if (LangOpts.CUDA) {
5319     if (LangOpts.CUDAIsDevice) {
5320       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5321           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5322            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5323            D->getType()->isCUDADeviceBuiltinTextureType()))
5324         GV->setExternallyInitialized(true);
5325     } else {
5326       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5327     }
5328     getCUDARuntime().handleVarRegistration(D, *GV);
5329   }
5330 
5331   GV->setInitializer(Init);
5332   if (emitter)
5333     emitter->finalize(GV);
5334 
5335   // If it is safe to mark the global 'constant', do so now.
5336   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5337                   D->getType().isConstantStorage(getContext(), true, true));
5338 
5339   // If it is in a read-only section, mark it 'constant'.
5340   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5341     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5342     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5343       GV->setConstant(true);
5344   }
5345 
5346   CharUnits AlignVal = getContext().getDeclAlign(D);
5347   // Check for alignment specifed in an 'omp allocate' directive.
5348   if (std::optional<CharUnits> AlignValFromAllocate =
5349           getOMPAllocateAlignment(D))
5350     AlignVal = *AlignValFromAllocate;
5351   GV->setAlignment(AlignVal.getAsAlign());
5352 
5353   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5354   // function is only defined alongside the variable, not also alongside
5355   // callers. Normally, all accesses to a thread_local go through the
5356   // thread-wrapper in order to ensure initialization has occurred, underlying
5357   // variable will never be used other than the thread-wrapper, so it can be
5358   // converted to internal linkage.
5359   //
5360   // However, if the variable has the 'constinit' attribute, it _can_ be
5361   // referenced directly, without calling the thread-wrapper, so the linkage
5362   // must not be changed.
5363   //
5364   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5365   // weak or linkonce, the de-duplication semantics are important to preserve,
5366   // so we don't change the linkage.
5367   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5368       Linkage == llvm::GlobalValue::ExternalLinkage &&
5369       Context.getTargetInfo().getTriple().isOSDarwin() &&
5370       !D->hasAttr<ConstInitAttr>())
5371     Linkage = llvm::GlobalValue::InternalLinkage;
5372 
5373   GV->setLinkage(Linkage);
5374   if (D->hasAttr<DLLImportAttr>())
5375     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5376   else if (D->hasAttr<DLLExportAttr>())
5377     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5378   else
5379     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5380 
5381   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5382     // common vars aren't constant even if declared const.
5383     GV->setConstant(false);
5384     // Tentative definition of global variables may be initialized with
5385     // non-zero null pointers. In this case they should have weak linkage
5386     // since common linkage must have zero initializer and must not have
5387     // explicit section therefore cannot have non-zero initial value.
5388     if (!GV->getInitializer()->isNullValue())
5389       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5390   }
5391 
5392   setNonAliasAttributes(D, GV);
5393 
5394   if (D->getTLSKind() && !GV->isThreadLocal()) {
5395     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5396       CXXThreadLocals.push_back(D);
5397     setTLSMode(GV, *D);
5398   }
5399 
5400   maybeSetTrivialComdat(*D, *GV);
5401 
5402   // Emit the initializer function if necessary.
5403   if (NeedsGlobalCtor || NeedsGlobalDtor)
5404     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5405 
5406   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5407 
5408   // Emit global variable debug information.
5409   if (CGDebugInfo *DI = getModuleDebugInfo())
5410     if (getCodeGenOpts().hasReducedDebugInfo())
5411       DI->EmitGlobalVariable(GV, D);
5412 }
5413 
5414 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5415   if (CGDebugInfo *DI = getModuleDebugInfo())
5416     if (getCodeGenOpts().hasReducedDebugInfo()) {
5417       QualType ASTTy = D->getType();
5418       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5419       llvm::Constant *GV =
5420           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5421       DI->EmitExternalVariable(
5422           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5423     }
5424 }
5425 
5426 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5427                                       CodeGenModule &CGM, const VarDecl *D,
5428                                       bool NoCommon) {
5429   // Don't give variables common linkage if -fno-common was specified unless it
5430   // was overridden by a NoCommon attribute.
5431   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5432     return true;
5433 
5434   // C11 6.9.2/2:
5435   //   A declaration of an identifier for an object that has file scope without
5436   //   an initializer, and without a storage-class specifier or with the
5437   //   storage-class specifier static, constitutes a tentative definition.
5438   if (D->getInit() || D->hasExternalStorage())
5439     return true;
5440 
5441   // A variable cannot be both common and exist in a section.
5442   if (D->hasAttr<SectionAttr>())
5443     return true;
5444 
5445   // A variable cannot be both common and exist in a section.
5446   // We don't try to determine which is the right section in the front-end.
5447   // If no specialized section name is applicable, it will resort to default.
5448   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5449       D->hasAttr<PragmaClangDataSectionAttr>() ||
5450       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5451       D->hasAttr<PragmaClangRodataSectionAttr>())
5452     return true;
5453 
5454   // Thread local vars aren't considered common linkage.
5455   if (D->getTLSKind())
5456     return true;
5457 
5458   // Tentative definitions marked with WeakImportAttr are true definitions.
5459   if (D->hasAttr<WeakImportAttr>())
5460     return true;
5461 
5462   // A variable cannot be both common and exist in a comdat.
5463   if (shouldBeInCOMDAT(CGM, *D))
5464     return true;
5465 
5466   // Declarations with a required alignment do not have common linkage in MSVC
5467   // mode.
5468   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5469     if (D->hasAttr<AlignedAttr>())
5470       return true;
5471     QualType VarType = D->getType();
5472     if (Context.isAlignmentRequired(VarType))
5473       return true;
5474 
5475     if (const auto *RT = VarType->getAs<RecordType>()) {
5476       const RecordDecl *RD = RT->getDecl();
5477       for (const FieldDecl *FD : RD->fields()) {
5478         if (FD->isBitField())
5479           continue;
5480         if (FD->hasAttr<AlignedAttr>())
5481           return true;
5482         if (Context.isAlignmentRequired(FD->getType()))
5483           return true;
5484       }
5485     }
5486   }
5487 
5488   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5489   // common symbols, so symbols with greater alignment requirements cannot be
5490   // common.
5491   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5492   // alignments for common symbols via the aligncomm directive, so this
5493   // restriction only applies to MSVC environments.
5494   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5495       Context.getTypeAlignIfKnown(D->getType()) >
5496           Context.toBits(CharUnits::fromQuantity(32)))
5497     return true;
5498 
5499   return false;
5500 }
5501 
5502 llvm::GlobalValue::LinkageTypes
5503 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5504                                            GVALinkage Linkage) {
5505   if (Linkage == GVA_Internal)
5506     return llvm::Function::InternalLinkage;
5507 
5508   if (D->hasAttr<WeakAttr>())
5509     return llvm::GlobalVariable::WeakAnyLinkage;
5510 
5511   if (const auto *FD = D->getAsFunction())
5512     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5513       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5514 
5515   // We are guaranteed to have a strong definition somewhere else,
5516   // so we can use available_externally linkage.
5517   if (Linkage == GVA_AvailableExternally)
5518     return llvm::GlobalValue::AvailableExternallyLinkage;
5519 
5520   // Note that Apple's kernel linker doesn't support symbol
5521   // coalescing, so we need to avoid linkonce and weak linkages there.
5522   // Normally, this means we just map to internal, but for explicit
5523   // instantiations we'll map to external.
5524 
5525   // In C++, the compiler has to emit a definition in every translation unit
5526   // that references the function.  We should use linkonce_odr because
5527   // a) if all references in this translation unit are optimized away, we
5528   // don't need to codegen it.  b) if the function persists, it needs to be
5529   // merged with other definitions. c) C++ has the ODR, so we know the
5530   // definition is dependable.
5531   if (Linkage == GVA_DiscardableODR)
5532     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5533                                             : llvm::Function::InternalLinkage;
5534 
5535   // An explicit instantiation of a template has weak linkage, since
5536   // explicit instantiations can occur in multiple translation units
5537   // and must all be equivalent. However, we are not allowed to
5538   // throw away these explicit instantiations.
5539   //
5540   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5541   // so say that CUDA templates are either external (for kernels) or internal.
5542   // This lets llvm perform aggressive inter-procedural optimizations. For
5543   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5544   // therefore we need to follow the normal linkage paradigm.
5545   if (Linkage == GVA_StrongODR) {
5546     if (getLangOpts().AppleKext)
5547       return llvm::Function::ExternalLinkage;
5548     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5549         !getLangOpts().GPURelocatableDeviceCode)
5550       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5551                                           : llvm::Function::InternalLinkage;
5552     return llvm::Function::WeakODRLinkage;
5553   }
5554 
5555   // C++ doesn't have tentative definitions and thus cannot have common
5556   // linkage.
5557   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5558       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5559                                  CodeGenOpts.NoCommon))
5560     return llvm::GlobalVariable::CommonLinkage;
5561 
5562   // selectany symbols are externally visible, so use weak instead of
5563   // linkonce.  MSVC optimizes away references to const selectany globals, so
5564   // all definitions should be the same and ODR linkage should be used.
5565   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5566   if (D->hasAttr<SelectAnyAttr>())
5567     return llvm::GlobalVariable::WeakODRLinkage;
5568 
5569   // Otherwise, we have strong external linkage.
5570   assert(Linkage == GVA_StrongExternal);
5571   return llvm::GlobalVariable::ExternalLinkage;
5572 }
5573 
5574 llvm::GlobalValue::LinkageTypes
5575 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5576   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5577   return getLLVMLinkageForDeclarator(VD, Linkage);
5578 }
5579 
5580 /// Replace the uses of a function that was declared with a non-proto type.
5581 /// We want to silently drop extra arguments from call sites
5582 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5583                                           llvm::Function *newFn) {
5584   // Fast path.
5585   if (old->use_empty()) return;
5586 
5587   llvm::Type *newRetTy = newFn->getReturnType();
5588   SmallVector<llvm::Value*, 4> newArgs;
5589 
5590   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5591          ui != ue; ) {
5592     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5593     llvm::User *user = use->getUser();
5594 
5595     // Recognize and replace uses of bitcasts.  Most calls to
5596     // unprototyped functions will use bitcasts.
5597     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5598       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5599         replaceUsesOfNonProtoConstant(bitcast, newFn);
5600       continue;
5601     }
5602 
5603     // Recognize calls to the function.
5604     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5605     if (!callSite) continue;
5606     if (!callSite->isCallee(&*use))
5607       continue;
5608 
5609     // If the return types don't match exactly, then we can't
5610     // transform this call unless it's dead.
5611     if (callSite->getType() != newRetTy && !callSite->use_empty())
5612       continue;
5613 
5614     // Get the call site's attribute list.
5615     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5616     llvm::AttributeList oldAttrs = callSite->getAttributes();
5617 
5618     // If the function was passed too few arguments, don't transform.
5619     unsigned newNumArgs = newFn->arg_size();
5620     if (callSite->arg_size() < newNumArgs)
5621       continue;
5622 
5623     // If extra arguments were passed, we silently drop them.
5624     // If any of the types mismatch, we don't transform.
5625     unsigned argNo = 0;
5626     bool dontTransform = false;
5627     for (llvm::Argument &A : newFn->args()) {
5628       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5629         dontTransform = true;
5630         break;
5631       }
5632 
5633       // Add any parameter attributes.
5634       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5635       argNo++;
5636     }
5637     if (dontTransform)
5638       continue;
5639 
5640     // Okay, we can transform this.  Create the new call instruction and copy
5641     // over the required information.
5642     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5643 
5644     // Copy over any operand bundles.
5645     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5646     callSite->getOperandBundlesAsDefs(newBundles);
5647 
5648     llvm::CallBase *newCall;
5649     if (isa<llvm::CallInst>(callSite)) {
5650       newCall =
5651           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5652     } else {
5653       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5654       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5655                                          oldInvoke->getUnwindDest(), newArgs,
5656                                          newBundles, "", callSite);
5657     }
5658     newArgs.clear(); // for the next iteration
5659 
5660     if (!newCall->getType()->isVoidTy())
5661       newCall->takeName(callSite);
5662     newCall->setAttributes(
5663         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5664                                  oldAttrs.getRetAttrs(), newArgAttrs));
5665     newCall->setCallingConv(callSite->getCallingConv());
5666 
5667     // Finally, remove the old call, replacing any uses with the new one.
5668     if (!callSite->use_empty())
5669       callSite->replaceAllUsesWith(newCall);
5670 
5671     // Copy debug location attached to CI.
5672     if (callSite->getDebugLoc())
5673       newCall->setDebugLoc(callSite->getDebugLoc());
5674 
5675     callSite->eraseFromParent();
5676   }
5677 }
5678 
5679 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5680 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5681 /// existing call uses of the old function in the module, this adjusts them to
5682 /// call the new function directly.
5683 ///
5684 /// This is not just a cleanup: the always_inline pass requires direct calls to
5685 /// functions to be able to inline them.  If there is a bitcast in the way, it
5686 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5687 /// run at -O0.
5688 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5689                                                       llvm::Function *NewFn) {
5690   // If we're redefining a global as a function, don't transform it.
5691   if (!isa<llvm::Function>(Old)) return;
5692 
5693   replaceUsesOfNonProtoConstant(Old, NewFn);
5694 }
5695 
5696 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5697   auto DK = VD->isThisDeclarationADefinition();
5698   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5699     return;
5700 
5701   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5702   // If we have a definition, this might be a deferred decl. If the
5703   // instantiation is explicit, make sure we emit it at the end.
5704   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5705     GetAddrOfGlobalVar(VD);
5706 
5707   EmitTopLevelDecl(VD);
5708 }
5709 
5710 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5711                                                  llvm::GlobalValue *GV) {
5712   const auto *D = cast<FunctionDecl>(GD.getDecl());
5713 
5714   // Compute the function info and LLVM type.
5715   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5716   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5717 
5718   // Get or create the prototype for the function.
5719   if (!GV || (GV->getValueType() != Ty))
5720     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5721                                                    /*DontDefer=*/true,
5722                                                    ForDefinition));
5723 
5724   // Already emitted.
5725   if (!GV->isDeclaration())
5726     return;
5727 
5728   // We need to set linkage and visibility on the function before
5729   // generating code for it because various parts of IR generation
5730   // want to propagate this information down (e.g. to local static
5731   // declarations).
5732   auto *Fn = cast<llvm::Function>(GV);
5733   setFunctionLinkage(GD, Fn);
5734 
5735   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5736   setGVProperties(Fn, GD);
5737 
5738   MaybeHandleStaticInExternC(D, Fn);
5739 
5740   maybeSetTrivialComdat(*D, *Fn);
5741 
5742   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5743 
5744   setNonAliasAttributes(GD, Fn);
5745   SetLLVMFunctionAttributesForDefinition(D, Fn);
5746 
5747   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5748     AddGlobalCtor(Fn, CA->getPriority());
5749   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5750     AddGlobalDtor(Fn, DA->getPriority(), true);
5751   if (D->hasAttr<AnnotateAttr>())
5752     AddGlobalAnnotations(D, Fn);
5753   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5754     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5755 }
5756 
5757 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5758   const auto *D = cast<ValueDecl>(GD.getDecl());
5759   const AliasAttr *AA = D->getAttr<AliasAttr>();
5760   assert(AA && "Not an alias?");
5761 
5762   StringRef MangledName = getMangledName(GD);
5763 
5764   if (AA->getAliasee() == MangledName) {
5765     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5766     return;
5767   }
5768 
5769   // If there is a definition in the module, then it wins over the alias.
5770   // This is dubious, but allow it to be safe.  Just ignore the alias.
5771   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5772   if (Entry && !Entry->isDeclaration())
5773     return;
5774 
5775   Aliases.push_back(GD);
5776 
5777   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5778 
5779   // Create a reference to the named value.  This ensures that it is emitted
5780   // if a deferred decl.
5781   llvm::Constant *Aliasee;
5782   llvm::GlobalValue::LinkageTypes LT;
5783   if (isa<llvm::FunctionType>(DeclTy)) {
5784     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5785                                       /*ForVTable=*/false);
5786     LT = getFunctionLinkage(GD);
5787   } else {
5788     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5789                                     /*D=*/nullptr);
5790     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5791       LT = getLLVMLinkageVarDefinition(VD);
5792     else
5793       LT = getFunctionLinkage(GD);
5794   }
5795 
5796   // Create the new alias itself, but don't set a name yet.
5797   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5798   auto *GA =
5799       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5800 
5801   if (Entry) {
5802     if (GA->getAliasee() == Entry) {
5803       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5804       return;
5805     }
5806 
5807     assert(Entry->isDeclaration());
5808 
5809     // If there is a declaration in the module, then we had an extern followed
5810     // by the alias, as in:
5811     //   extern int test6();
5812     //   ...
5813     //   int test6() __attribute__((alias("test7")));
5814     //
5815     // Remove it and replace uses of it with the alias.
5816     GA->takeName(Entry);
5817 
5818     Entry->replaceAllUsesWith(GA);
5819     Entry->eraseFromParent();
5820   } else {
5821     GA->setName(MangledName);
5822   }
5823 
5824   // Set attributes which are particular to an alias; this is a
5825   // specialization of the attributes which may be set on a global
5826   // variable/function.
5827   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5828       D->isWeakImported()) {
5829     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5830   }
5831 
5832   if (const auto *VD = dyn_cast<VarDecl>(D))
5833     if (VD->getTLSKind())
5834       setTLSMode(GA, *VD);
5835 
5836   SetCommonAttributes(GD, GA);
5837 
5838   // Emit global alias debug information.
5839   if (isa<VarDecl>(D))
5840     if (CGDebugInfo *DI = getModuleDebugInfo())
5841       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5842 }
5843 
5844 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5845   const auto *D = cast<ValueDecl>(GD.getDecl());
5846   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5847   assert(IFA && "Not an ifunc?");
5848 
5849   StringRef MangledName = getMangledName(GD);
5850 
5851   if (IFA->getResolver() == MangledName) {
5852     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5853     return;
5854   }
5855 
5856   // Report an error if some definition overrides ifunc.
5857   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5858   if (Entry && !Entry->isDeclaration()) {
5859     GlobalDecl OtherGD;
5860     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5861         DiagnosedConflictingDefinitions.insert(GD).second) {
5862       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5863           << MangledName;
5864       Diags.Report(OtherGD.getDecl()->getLocation(),
5865                    diag::note_previous_definition);
5866     }
5867     return;
5868   }
5869 
5870   Aliases.push_back(GD);
5871 
5872   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5873   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5874   llvm::Constant *Resolver =
5875       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5876                               /*ForVTable=*/false);
5877   llvm::GlobalIFunc *GIF =
5878       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5879                                 "", Resolver, &getModule());
5880   if (Entry) {
5881     if (GIF->getResolver() == Entry) {
5882       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5883       return;
5884     }
5885     assert(Entry->isDeclaration());
5886 
5887     // If there is a declaration in the module, then we had an extern followed
5888     // by the ifunc, as in:
5889     //   extern int test();
5890     //   ...
5891     //   int test() __attribute__((ifunc("resolver")));
5892     //
5893     // Remove it and replace uses of it with the ifunc.
5894     GIF->takeName(Entry);
5895 
5896     Entry->replaceAllUsesWith(GIF);
5897     Entry->eraseFromParent();
5898   } else
5899     GIF->setName(MangledName);
5900   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
5901     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
5902   }
5903   SetCommonAttributes(GD, GIF);
5904 }
5905 
5906 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5907                                             ArrayRef<llvm::Type*> Tys) {
5908   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5909                                          Tys);
5910 }
5911 
5912 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5913 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5914                          const StringLiteral *Literal, bool TargetIsLSB,
5915                          bool &IsUTF16, unsigned &StringLength) {
5916   StringRef String = Literal->getString();
5917   unsigned NumBytes = String.size();
5918 
5919   // Check for simple case.
5920   if (!Literal->containsNonAsciiOrNull()) {
5921     StringLength = NumBytes;
5922     return *Map.insert(std::make_pair(String, nullptr)).first;
5923   }
5924 
5925   // Otherwise, convert the UTF8 literals into a string of shorts.
5926   IsUTF16 = true;
5927 
5928   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5929   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5930   llvm::UTF16 *ToPtr = &ToBuf[0];
5931 
5932   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5933                                  ToPtr + NumBytes, llvm::strictConversion);
5934 
5935   // ConvertUTF8toUTF16 returns the length in ToPtr.
5936   StringLength = ToPtr - &ToBuf[0];
5937 
5938   // Add an explicit null.
5939   *ToPtr = 0;
5940   return *Map.insert(std::make_pair(
5941                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5942                                    (StringLength + 1) * 2),
5943                          nullptr)).first;
5944 }
5945 
5946 ConstantAddress
5947 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5948   unsigned StringLength = 0;
5949   bool isUTF16 = false;
5950   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5951       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5952                                getDataLayout().isLittleEndian(), isUTF16,
5953                                StringLength);
5954 
5955   if (auto *C = Entry.second)
5956     return ConstantAddress(
5957         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5958 
5959   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5960   llvm::Constant *Zeros[] = { Zero, Zero };
5961 
5962   const ASTContext &Context = getContext();
5963   const llvm::Triple &Triple = getTriple();
5964 
5965   const auto CFRuntime = getLangOpts().CFRuntime;
5966   const bool IsSwiftABI =
5967       static_cast<unsigned>(CFRuntime) >=
5968       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5969   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5970 
5971   // If we don't already have it, get __CFConstantStringClassReference.
5972   if (!CFConstantStringClassRef) {
5973     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5974     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5975     Ty = llvm::ArrayType::get(Ty, 0);
5976 
5977     switch (CFRuntime) {
5978     default: break;
5979     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5980     case LangOptions::CoreFoundationABI::Swift5_0:
5981       CFConstantStringClassName =
5982           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5983                               : "$s10Foundation19_NSCFConstantStringCN";
5984       Ty = IntPtrTy;
5985       break;
5986     case LangOptions::CoreFoundationABI::Swift4_2:
5987       CFConstantStringClassName =
5988           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5989                               : "$S10Foundation19_NSCFConstantStringCN";
5990       Ty = IntPtrTy;
5991       break;
5992     case LangOptions::CoreFoundationABI::Swift4_1:
5993       CFConstantStringClassName =
5994           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5995                               : "__T010Foundation19_NSCFConstantStringCN";
5996       Ty = IntPtrTy;
5997       break;
5998     }
5999 
6000     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6001 
6002     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6003       llvm::GlobalValue *GV = nullptr;
6004 
6005       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6006         IdentifierInfo &II = Context.Idents.get(GV->getName());
6007         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6008         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6009 
6010         const VarDecl *VD = nullptr;
6011         for (const auto *Result : DC->lookup(&II))
6012           if ((VD = dyn_cast<VarDecl>(Result)))
6013             break;
6014 
6015         if (Triple.isOSBinFormatELF()) {
6016           if (!VD)
6017             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6018         } else {
6019           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6020           if (!VD || !VD->hasAttr<DLLExportAttr>())
6021             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6022           else
6023             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6024         }
6025 
6026         setDSOLocal(GV);
6027       }
6028     }
6029 
6030     // Decay array -> ptr
6031     CFConstantStringClassRef =
6032         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
6033                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
6034   }
6035 
6036   QualType CFTy = Context.getCFConstantStringType();
6037 
6038   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6039 
6040   ConstantInitBuilder Builder(*this);
6041   auto Fields = Builder.beginStruct(STy);
6042 
6043   // Class pointer.
6044   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6045 
6046   // Flags.
6047   if (IsSwiftABI) {
6048     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6049     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6050   } else {
6051     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6052   }
6053 
6054   // String pointer.
6055   llvm::Constant *C = nullptr;
6056   if (isUTF16) {
6057     auto Arr = llvm::ArrayRef(
6058         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6059         Entry.first().size() / 2);
6060     C = llvm::ConstantDataArray::get(VMContext, Arr);
6061   } else {
6062     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6063   }
6064 
6065   // Note: -fwritable-strings doesn't make the backing store strings of
6066   // CFStrings writable.
6067   auto *GV =
6068       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6069                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6070   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6071   // Don't enforce the target's minimum global alignment, since the only use
6072   // of the string is via this class initializer.
6073   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6074                             : Context.getTypeAlignInChars(Context.CharTy);
6075   GV->setAlignment(Align.getAsAlign());
6076 
6077   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6078   // Without it LLVM can merge the string with a non unnamed_addr one during
6079   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6080   if (Triple.isOSBinFormatMachO())
6081     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6082                            : "__TEXT,__cstring,cstring_literals");
6083   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6084   // the static linker to adjust permissions to read-only later on.
6085   else if (Triple.isOSBinFormatELF())
6086     GV->setSection(".rodata");
6087 
6088   // String.
6089   llvm::Constant *Str =
6090       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6091 
6092   Fields.add(Str);
6093 
6094   // String length.
6095   llvm::IntegerType *LengthTy =
6096       llvm::IntegerType::get(getModule().getContext(),
6097                              Context.getTargetInfo().getLongWidth());
6098   if (IsSwiftABI) {
6099     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6100         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6101       LengthTy = Int32Ty;
6102     else
6103       LengthTy = IntPtrTy;
6104   }
6105   Fields.addInt(LengthTy, StringLength);
6106 
6107   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6108   // properly aligned on 32-bit platforms.
6109   CharUnits Alignment =
6110       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6111 
6112   // The struct.
6113   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6114                                     /*isConstant=*/false,
6115                                     llvm::GlobalVariable::PrivateLinkage);
6116   GV->addAttribute("objc_arc_inert");
6117   switch (Triple.getObjectFormat()) {
6118   case llvm::Triple::UnknownObjectFormat:
6119     llvm_unreachable("unknown file format");
6120   case llvm::Triple::DXContainer:
6121   case llvm::Triple::GOFF:
6122   case llvm::Triple::SPIRV:
6123   case llvm::Triple::XCOFF:
6124     llvm_unreachable("unimplemented");
6125   case llvm::Triple::COFF:
6126   case llvm::Triple::ELF:
6127   case llvm::Triple::Wasm:
6128     GV->setSection("cfstring");
6129     break;
6130   case llvm::Triple::MachO:
6131     GV->setSection("__DATA,__cfstring");
6132     break;
6133   }
6134   Entry.second = GV;
6135 
6136   return ConstantAddress(GV, GV->getValueType(), Alignment);
6137 }
6138 
6139 bool CodeGenModule::getExpressionLocationsEnabled() const {
6140   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6141 }
6142 
6143 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6144   if (ObjCFastEnumerationStateType.isNull()) {
6145     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6146     D->startDefinition();
6147 
6148     QualType FieldTypes[] = {
6149         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6150         Context.getPointerType(Context.UnsignedLongTy),
6151         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6152                                      nullptr, ArraySizeModifier::Normal, 0)};
6153 
6154     for (size_t i = 0; i < 4; ++i) {
6155       FieldDecl *Field = FieldDecl::Create(Context,
6156                                            D,
6157                                            SourceLocation(),
6158                                            SourceLocation(), nullptr,
6159                                            FieldTypes[i], /*TInfo=*/nullptr,
6160                                            /*BitWidth=*/nullptr,
6161                                            /*Mutable=*/false,
6162                                            ICIS_NoInit);
6163       Field->setAccess(AS_public);
6164       D->addDecl(Field);
6165     }
6166 
6167     D->completeDefinition();
6168     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6169   }
6170 
6171   return ObjCFastEnumerationStateType;
6172 }
6173 
6174 llvm::Constant *
6175 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6176   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6177 
6178   // Don't emit it as the address of the string, emit the string data itself
6179   // as an inline array.
6180   if (E->getCharByteWidth() == 1) {
6181     SmallString<64> Str(E->getString());
6182 
6183     // Resize the string to the right size, which is indicated by its type.
6184     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6185     assert(CAT && "String literal not of constant array type!");
6186     Str.resize(CAT->getSize().getZExtValue());
6187     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6188   }
6189 
6190   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6191   llvm::Type *ElemTy = AType->getElementType();
6192   unsigned NumElements = AType->getNumElements();
6193 
6194   // Wide strings have either 2-byte or 4-byte elements.
6195   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6196     SmallVector<uint16_t, 32> Elements;
6197     Elements.reserve(NumElements);
6198 
6199     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6200       Elements.push_back(E->getCodeUnit(i));
6201     Elements.resize(NumElements);
6202     return llvm::ConstantDataArray::get(VMContext, Elements);
6203   }
6204 
6205   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6206   SmallVector<uint32_t, 32> Elements;
6207   Elements.reserve(NumElements);
6208 
6209   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6210     Elements.push_back(E->getCodeUnit(i));
6211   Elements.resize(NumElements);
6212   return llvm::ConstantDataArray::get(VMContext, Elements);
6213 }
6214 
6215 static llvm::GlobalVariable *
6216 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6217                       CodeGenModule &CGM, StringRef GlobalName,
6218                       CharUnits Alignment) {
6219   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6220       CGM.GetGlobalConstantAddressSpace());
6221 
6222   llvm::Module &M = CGM.getModule();
6223   // Create a global variable for this string
6224   auto *GV = new llvm::GlobalVariable(
6225       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6226       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6227   GV->setAlignment(Alignment.getAsAlign());
6228   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6229   if (GV->isWeakForLinker()) {
6230     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6231     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6232   }
6233   CGM.setDSOLocal(GV);
6234 
6235   return GV;
6236 }
6237 
6238 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6239 /// constant array for the given string literal.
6240 ConstantAddress
6241 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6242                                                   StringRef Name) {
6243   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6244 
6245   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6246   llvm::GlobalVariable **Entry = nullptr;
6247   if (!LangOpts.WritableStrings) {
6248     Entry = &ConstantStringMap[C];
6249     if (auto GV = *Entry) {
6250       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6251         GV->setAlignment(Alignment.getAsAlign());
6252       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6253                              GV->getValueType(), Alignment);
6254     }
6255   }
6256 
6257   SmallString<256> MangledNameBuffer;
6258   StringRef GlobalVariableName;
6259   llvm::GlobalValue::LinkageTypes LT;
6260 
6261   // Mangle the string literal if that's how the ABI merges duplicate strings.
6262   // Don't do it if they are writable, since we don't want writes in one TU to
6263   // affect strings in another.
6264   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6265       !LangOpts.WritableStrings) {
6266     llvm::raw_svector_ostream Out(MangledNameBuffer);
6267     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6268     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6269     GlobalVariableName = MangledNameBuffer;
6270   } else {
6271     LT = llvm::GlobalValue::PrivateLinkage;
6272     GlobalVariableName = Name;
6273   }
6274 
6275   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6276 
6277   CGDebugInfo *DI = getModuleDebugInfo();
6278   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6279     DI->AddStringLiteralDebugInfo(GV, S);
6280 
6281   if (Entry)
6282     *Entry = GV;
6283 
6284   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6285 
6286   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6287                          GV->getValueType(), Alignment);
6288 }
6289 
6290 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6291 /// array for the given ObjCEncodeExpr node.
6292 ConstantAddress
6293 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6294   std::string Str;
6295   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6296 
6297   return GetAddrOfConstantCString(Str);
6298 }
6299 
6300 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6301 /// the literal and a terminating '\0' character.
6302 /// The result has pointer to array type.
6303 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6304     const std::string &Str, const char *GlobalName) {
6305   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6306   CharUnits Alignment =
6307     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6308 
6309   llvm::Constant *C =
6310       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6311 
6312   // Don't share any string literals if strings aren't constant.
6313   llvm::GlobalVariable **Entry = nullptr;
6314   if (!LangOpts.WritableStrings) {
6315     Entry = &ConstantStringMap[C];
6316     if (auto GV = *Entry) {
6317       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6318         GV->setAlignment(Alignment.getAsAlign());
6319       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6320                              GV->getValueType(), Alignment);
6321     }
6322   }
6323 
6324   // Get the default prefix if a name wasn't specified.
6325   if (!GlobalName)
6326     GlobalName = ".str";
6327   // Create a global variable for this.
6328   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6329                                   GlobalName, Alignment);
6330   if (Entry)
6331     *Entry = GV;
6332 
6333   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6334                          GV->getValueType(), Alignment);
6335 }
6336 
6337 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6338     const MaterializeTemporaryExpr *E, const Expr *Init) {
6339   assert((E->getStorageDuration() == SD_Static ||
6340           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6341   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6342 
6343   // If we're not materializing a subobject of the temporary, keep the
6344   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6345   QualType MaterializedType = Init->getType();
6346   if (Init == E->getSubExpr())
6347     MaterializedType = E->getType();
6348 
6349   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6350 
6351   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6352   if (!InsertResult.second) {
6353     // We've seen this before: either we already created it or we're in the
6354     // process of doing so.
6355     if (!InsertResult.first->second) {
6356       // We recursively re-entered this function, probably during emission of
6357       // the initializer. Create a placeholder. We'll clean this up in the
6358       // outer call, at the end of this function.
6359       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6360       InsertResult.first->second = new llvm::GlobalVariable(
6361           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6362           nullptr);
6363     }
6364     return ConstantAddress(InsertResult.first->second,
6365                            llvm::cast<llvm::GlobalVariable>(
6366                                InsertResult.first->second->stripPointerCasts())
6367                                ->getValueType(),
6368                            Align);
6369   }
6370 
6371   // FIXME: If an externally-visible declaration extends multiple temporaries,
6372   // we need to give each temporary the same name in every translation unit (and
6373   // we also need to make the temporaries externally-visible).
6374   SmallString<256> Name;
6375   llvm::raw_svector_ostream Out(Name);
6376   getCXXABI().getMangleContext().mangleReferenceTemporary(
6377       VD, E->getManglingNumber(), Out);
6378 
6379   APValue *Value = nullptr;
6380   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6381     // If the initializer of the extending declaration is a constant
6382     // initializer, we should have a cached constant initializer for this
6383     // temporary. Note that this might have a different value from the value
6384     // computed by evaluating the initializer if the surrounding constant
6385     // expression modifies the temporary.
6386     Value = E->getOrCreateValue(false);
6387   }
6388 
6389   // Try evaluating it now, it might have a constant initializer.
6390   Expr::EvalResult EvalResult;
6391   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6392       !EvalResult.hasSideEffects())
6393     Value = &EvalResult.Val;
6394 
6395   LangAS AddrSpace =
6396       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6397 
6398   std::optional<ConstantEmitter> emitter;
6399   llvm::Constant *InitialValue = nullptr;
6400   bool Constant = false;
6401   llvm::Type *Type;
6402   if (Value) {
6403     // The temporary has a constant initializer, use it.
6404     emitter.emplace(*this);
6405     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6406                                                MaterializedType);
6407     Constant =
6408         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6409                                            /*ExcludeDtor*/ false);
6410     Type = InitialValue->getType();
6411   } else {
6412     // No initializer, the initialization will be provided when we
6413     // initialize the declaration which performed lifetime extension.
6414     Type = getTypes().ConvertTypeForMem(MaterializedType);
6415   }
6416 
6417   // Create a global variable for this lifetime-extended temporary.
6418   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6419   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6420     const VarDecl *InitVD;
6421     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6422         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6423       // Temporaries defined inside a class get linkonce_odr linkage because the
6424       // class can be defined in multiple translation units.
6425       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6426     } else {
6427       // There is no need for this temporary to have external linkage if the
6428       // VarDecl has external linkage.
6429       Linkage = llvm::GlobalVariable::InternalLinkage;
6430     }
6431   }
6432   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6433   auto *GV = new llvm::GlobalVariable(
6434       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6435       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6436   if (emitter) emitter->finalize(GV);
6437   // Don't assign dllimport or dllexport to local linkage globals.
6438   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6439     setGVProperties(GV, VD);
6440     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6441       // The reference temporary should never be dllexport.
6442       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6443   }
6444   GV->setAlignment(Align.getAsAlign());
6445   if (supportsCOMDAT() && GV->isWeakForLinker())
6446     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6447   if (VD->getTLSKind())
6448     setTLSMode(GV, *VD);
6449   llvm::Constant *CV = GV;
6450   if (AddrSpace != LangAS::Default)
6451     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6452         *this, GV, AddrSpace, LangAS::Default,
6453         llvm::PointerType::get(
6454             getLLVMContext(),
6455             getContext().getTargetAddressSpace(LangAS::Default)));
6456 
6457   // Update the map with the new temporary. If we created a placeholder above,
6458   // replace it with the new global now.
6459   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6460   if (Entry) {
6461     Entry->replaceAllUsesWith(CV);
6462     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6463   }
6464   Entry = CV;
6465 
6466   return ConstantAddress(CV, Type, Align);
6467 }
6468 
6469 /// EmitObjCPropertyImplementations - Emit information for synthesized
6470 /// properties for an implementation.
6471 void CodeGenModule::EmitObjCPropertyImplementations(const
6472                                                     ObjCImplementationDecl *D) {
6473   for (const auto *PID : D->property_impls()) {
6474     // Dynamic is just for type-checking.
6475     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6476       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6477 
6478       // Determine which methods need to be implemented, some may have
6479       // been overridden. Note that ::isPropertyAccessor is not the method
6480       // we want, that just indicates if the decl came from a
6481       // property. What we want to know is if the method is defined in
6482       // this implementation.
6483       auto *Getter = PID->getGetterMethodDecl();
6484       if (!Getter || Getter->isSynthesizedAccessorStub())
6485         CodeGenFunction(*this).GenerateObjCGetter(
6486             const_cast<ObjCImplementationDecl *>(D), PID);
6487       auto *Setter = PID->getSetterMethodDecl();
6488       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6489         CodeGenFunction(*this).GenerateObjCSetter(
6490                                  const_cast<ObjCImplementationDecl *>(D), PID);
6491     }
6492   }
6493 }
6494 
6495 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6496   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6497   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6498        ivar; ivar = ivar->getNextIvar())
6499     if (ivar->getType().isDestructedType())
6500       return true;
6501 
6502   return false;
6503 }
6504 
6505 static bool AllTrivialInitializers(CodeGenModule &CGM,
6506                                    ObjCImplementationDecl *D) {
6507   CodeGenFunction CGF(CGM);
6508   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6509        E = D->init_end(); B != E; ++B) {
6510     CXXCtorInitializer *CtorInitExp = *B;
6511     Expr *Init = CtorInitExp->getInit();
6512     if (!CGF.isTrivialInitializer(Init))
6513       return false;
6514   }
6515   return true;
6516 }
6517 
6518 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6519 /// for an implementation.
6520 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6521   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6522   if (needsDestructMethod(D)) {
6523     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6524     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6525     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6526         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6527         getContext().VoidTy, nullptr, D,
6528         /*isInstance=*/true, /*isVariadic=*/false,
6529         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6530         /*isImplicitlyDeclared=*/true,
6531         /*isDefined=*/false, ObjCImplementationControl::Required);
6532     D->addInstanceMethod(DTORMethod);
6533     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6534     D->setHasDestructors(true);
6535   }
6536 
6537   // If the implementation doesn't have any ivar initializers, we don't need
6538   // a .cxx_construct.
6539   if (D->getNumIvarInitializers() == 0 ||
6540       AllTrivialInitializers(*this, D))
6541     return;
6542 
6543   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6544   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6545   // The constructor returns 'self'.
6546   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6547       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6548       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6549       /*isVariadic=*/false,
6550       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6551       /*isImplicitlyDeclared=*/true,
6552       /*isDefined=*/false, ObjCImplementationControl::Required);
6553   D->addInstanceMethod(CTORMethod);
6554   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6555   D->setHasNonZeroConstructors(true);
6556 }
6557 
6558 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6559 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6560   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6561       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6562     ErrorUnsupported(LSD, "linkage spec");
6563     return;
6564   }
6565 
6566   EmitDeclContext(LSD);
6567 }
6568 
6569 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6570   // Device code should not be at top level.
6571   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6572     return;
6573 
6574   std::unique_ptr<CodeGenFunction> &CurCGF =
6575       GlobalTopLevelStmtBlockInFlight.first;
6576 
6577   // We emitted a top-level stmt but after it there is initialization.
6578   // Stop squashing the top-level stmts into a single function.
6579   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6580     CurCGF->FinishFunction(D->getEndLoc());
6581     CurCGF = nullptr;
6582   }
6583 
6584   if (!CurCGF) {
6585     // void __stmts__N(void)
6586     // FIXME: Ask the ABI name mangler to pick a name.
6587     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6588     FunctionArgList Args;
6589     QualType RetTy = getContext().VoidTy;
6590     const CGFunctionInfo &FnInfo =
6591         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6592     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6593     llvm::Function *Fn = llvm::Function::Create(
6594         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6595 
6596     CurCGF.reset(new CodeGenFunction(*this));
6597     GlobalTopLevelStmtBlockInFlight.second = D;
6598     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6599                           D->getBeginLoc(), D->getBeginLoc());
6600     CXXGlobalInits.push_back(Fn);
6601   }
6602 
6603   CurCGF->EmitStmt(D->getStmt());
6604 }
6605 
6606 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6607   for (auto *I : DC->decls()) {
6608     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6609     // are themselves considered "top-level", so EmitTopLevelDecl on an
6610     // ObjCImplDecl does not recursively visit them. We need to do that in
6611     // case they're nested inside another construct (LinkageSpecDecl /
6612     // ExportDecl) that does stop them from being considered "top-level".
6613     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6614       for (auto *M : OID->methods())
6615         EmitTopLevelDecl(M);
6616     }
6617 
6618     EmitTopLevelDecl(I);
6619   }
6620 }
6621 
6622 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6623 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6624   // Ignore dependent declarations.
6625   if (D->isTemplated())
6626     return;
6627 
6628   // Consteval function shouldn't be emitted.
6629   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6630     return;
6631 
6632   switch (D->getKind()) {
6633   case Decl::CXXConversion:
6634   case Decl::CXXMethod:
6635   case Decl::Function:
6636     EmitGlobal(cast<FunctionDecl>(D));
6637     // Always provide some coverage mapping
6638     // even for the functions that aren't emitted.
6639     AddDeferredUnusedCoverageMapping(D);
6640     break;
6641 
6642   case Decl::CXXDeductionGuide:
6643     // Function-like, but does not result in code emission.
6644     break;
6645 
6646   case Decl::Var:
6647   case Decl::Decomposition:
6648   case Decl::VarTemplateSpecialization:
6649     EmitGlobal(cast<VarDecl>(D));
6650     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6651       for (auto *B : DD->bindings())
6652         if (auto *HD = B->getHoldingVar())
6653           EmitGlobal(HD);
6654     break;
6655 
6656   // Indirect fields from global anonymous structs and unions can be
6657   // ignored; only the actual variable requires IR gen support.
6658   case Decl::IndirectField:
6659     break;
6660 
6661   // C++ Decls
6662   case Decl::Namespace:
6663     EmitDeclContext(cast<NamespaceDecl>(D));
6664     break;
6665   case Decl::ClassTemplateSpecialization: {
6666     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6667     if (CGDebugInfo *DI = getModuleDebugInfo())
6668       if (Spec->getSpecializationKind() ==
6669               TSK_ExplicitInstantiationDefinition &&
6670           Spec->hasDefinition())
6671         DI->completeTemplateDefinition(*Spec);
6672   } [[fallthrough]];
6673   case Decl::CXXRecord: {
6674     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6675     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6676       if (CRD->hasDefinition())
6677         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6678       if (auto *ES = D->getASTContext().getExternalSource())
6679         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6680           DI->completeUnusedClass(*CRD);
6681     }
6682     // Emit any static data members, they may be definitions.
6683     for (auto *I : CRD->decls())
6684       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6685         EmitTopLevelDecl(I);
6686     break;
6687   }
6688     // No code generation needed.
6689   case Decl::UsingShadow:
6690   case Decl::ClassTemplate:
6691   case Decl::VarTemplate:
6692   case Decl::Concept:
6693   case Decl::VarTemplatePartialSpecialization:
6694   case Decl::FunctionTemplate:
6695   case Decl::TypeAliasTemplate:
6696   case Decl::Block:
6697   case Decl::Empty:
6698   case Decl::Binding:
6699     break;
6700   case Decl::Using:          // using X; [C++]
6701     if (CGDebugInfo *DI = getModuleDebugInfo())
6702         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6703     break;
6704   case Decl::UsingEnum: // using enum X; [C++]
6705     if (CGDebugInfo *DI = getModuleDebugInfo())
6706       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6707     break;
6708   case Decl::NamespaceAlias:
6709     if (CGDebugInfo *DI = getModuleDebugInfo())
6710         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6711     break;
6712   case Decl::UsingDirective: // using namespace X; [C++]
6713     if (CGDebugInfo *DI = getModuleDebugInfo())
6714       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6715     break;
6716   case Decl::CXXConstructor:
6717     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6718     break;
6719   case Decl::CXXDestructor:
6720     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6721     break;
6722 
6723   case Decl::StaticAssert:
6724     // Nothing to do.
6725     break;
6726 
6727   // Objective-C Decls
6728 
6729   // Forward declarations, no (immediate) code generation.
6730   case Decl::ObjCInterface:
6731   case Decl::ObjCCategory:
6732     break;
6733 
6734   case Decl::ObjCProtocol: {
6735     auto *Proto = cast<ObjCProtocolDecl>(D);
6736     if (Proto->isThisDeclarationADefinition())
6737       ObjCRuntime->GenerateProtocol(Proto);
6738     break;
6739   }
6740 
6741   case Decl::ObjCCategoryImpl:
6742     // Categories have properties but don't support synthesize so we
6743     // can ignore them here.
6744     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6745     break;
6746 
6747   case Decl::ObjCImplementation: {
6748     auto *OMD = cast<ObjCImplementationDecl>(D);
6749     EmitObjCPropertyImplementations(OMD);
6750     EmitObjCIvarInitializations(OMD);
6751     ObjCRuntime->GenerateClass(OMD);
6752     // Emit global variable debug information.
6753     if (CGDebugInfo *DI = getModuleDebugInfo())
6754       if (getCodeGenOpts().hasReducedDebugInfo())
6755         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6756             OMD->getClassInterface()), OMD->getLocation());
6757     break;
6758   }
6759   case Decl::ObjCMethod: {
6760     auto *OMD = cast<ObjCMethodDecl>(D);
6761     // If this is not a prototype, emit the body.
6762     if (OMD->getBody())
6763       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6764     break;
6765   }
6766   case Decl::ObjCCompatibleAlias:
6767     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6768     break;
6769 
6770   case Decl::PragmaComment: {
6771     const auto *PCD = cast<PragmaCommentDecl>(D);
6772     switch (PCD->getCommentKind()) {
6773     case PCK_Unknown:
6774       llvm_unreachable("unexpected pragma comment kind");
6775     case PCK_Linker:
6776       AppendLinkerOptions(PCD->getArg());
6777       break;
6778     case PCK_Lib:
6779         AddDependentLib(PCD->getArg());
6780       break;
6781     case PCK_Compiler:
6782     case PCK_ExeStr:
6783     case PCK_User:
6784       break; // We ignore all of these.
6785     }
6786     break;
6787   }
6788 
6789   case Decl::PragmaDetectMismatch: {
6790     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6791     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6792     break;
6793   }
6794 
6795   case Decl::LinkageSpec:
6796     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6797     break;
6798 
6799   case Decl::FileScopeAsm: {
6800     // File-scope asm is ignored during device-side CUDA compilation.
6801     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6802       break;
6803     // File-scope asm is ignored during device-side OpenMP compilation.
6804     if (LangOpts.OpenMPIsTargetDevice)
6805       break;
6806     // File-scope asm is ignored during device-side SYCL compilation.
6807     if (LangOpts.SYCLIsDevice)
6808       break;
6809     auto *AD = cast<FileScopeAsmDecl>(D);
6810     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6811     break;
6812   }
6813 
6814   case Decl::TopLevelStmt:
6815     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6816     break;
6817 
6818   case Decl::Import: {
6819     auto *Import = cast<ImportDecl>(D);
6820 
6821     // If we've already imported this module, we're done.
6822     if (!ImportedModules.insert(Import->getImportedModule()))
6823       break;
6824 
6825     // Emit debug information for direct imports.
6826     if (!Import->getImportedOwningModule()) {
6827       if (CGDebugInfo *DI = getModuleDebugInfo())
6828         DI->EmitImportDecl(*Import);
6829     }
6830 
6831     // For C++ standard modules we are done - we will call the module
6832     // initializer for imported modules, and that will likewise call those for
6833     // any imports it has.
6834     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6835         !Import->getImportedOwningModule()->isModuleMapModule())
6836       break;
6837 
6838     // For clang C++ module map modules the initializers for sub-modules are
6839     // emitted here.
6840 
6841     // Find all of the submodules and emit the module initializers.
6842     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6843     SmallVector<clang::Module *, 16> Stack;
6844     Visited.insert(Import->getImportedModule());
6845     Stack.push_back(Import->getImportedModule());
6846 
6847     while (!Stack.empty()) {
6848       clang::Module *Mod = Stack.pop_back_val();
6849       if (!EmittedModuleInitializers.insert(Mod).second)
6850         continue;
6851 
6852       for (auto *D : Context.getModuleInitializers(Mod))
6853         EmitTopLevelDecl(D);
6854 
6855       // Visit the submodules of this module.
6856       for (auto *Submodule : Mod->submodules()) {
6857         // Skip explicit children; they need to be explicitly imported to emit
6858         // the initializers.
6859         if (Submodule->IsExplicit)
6860           continue;
6861 
6862         if (Visited.insert(Submodule).second)
6863           Stack.push_back(Submodule);
6864       }
6865     }
6866     break;
6867   }
6868 
6869   case Decl::Export:
6870     EmitDeclContext(cast<ExportDecl>(D));
6871     break;
6872 
6873   case Decl::OMPThreadPrivate:
6874     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6875     break;
6876 
6877   case Decl::OMPAllocate:
6878     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6879     break;
6880 
6881   case Decl::OMPDeclareReduction:
6882     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6883     break;
6884 
6885   case Decl::OMPDeclareMapper:
6886     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6887     break;
6888 
6889   case Decl::OMPRequires:
6890     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6891     break;
6892 
6893   case Decl::Typedef:
6894   case Decl::TypeAlias: // using foo = bar; [C++11]
6895     if (CGDebugInfo *DI = getModuleDebugInfo())
6896       DI->EmitAndRetainType(
6897           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6898     break;
6899 
6900   case Decl::Record:
6901     if (CGDebugInfo *DI = getModuleDebugInfo())
6902       if (cast<RecordDecl>(D)->getDefinition())
6903         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6904     break;
6905 
6906   case Decl::Enum:
6907     if (CGDebugInfo *DI = getModuleDebugInfo())
6908       if (cast<EnumDecl>(D)->getDefinition())
6909         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6910     break;
6911 
6912   case Decl::HLSLBuffer:
6913     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6914     break;
6915 
6916   default:
6917     // Make sure we handled everything we should, every other kind is a
6918     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6919     // function. Need to recode Decl::Kind to do that easily.
6920     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6921     break;
6922   }
6923 }
6924 
6925 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6926   // Do we need to generate coverage mapping?
6927   if (!CodeGenOpts.CoverageMapping)
6928     return;
6929   switch (D->getKind()) {
6930   case Decl::CXXConversion:
6931   case Decl::CXXMethod:
6932   case Decl::Function:
6933   case Decl::ObjCMethod:
6934   case Decl::CXXConstructor:
6935   case Decl::CXXDestructor: {
6936     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6937       break;
6938     SourceManager &SM = getContext().getSourceManager();
6939     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6940       break;
6941     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
6942     break;
6943   }
6944   default:
6945     break;
6946   };
6947 }
6948 
6949 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6950   // Do we need to generate coverage mapping?
6951   if (!CodeGenOpts.CoverageMapping)
6952     return;
6953   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6954     if (Fn->isTemplateInstantiation())
6955       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6956   }
6957   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
6958 }
6959 
6960 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6961   // We call takeVector() here to avoid use-after-free.
6962   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6963   // we deserialize function bodies to emit coverage info for them, and that
6964   // deserializes more declarations. How should we handle that case?
6965   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6966     if (!Entry.second)
6967       continue;
6968     const Decl *D = Entry.first;
6969     switch (D->getKind()) {
6970     case Decl::CXXConversion:
6971     case Decl::CXXMethod:
6972     case Decl::Function:
6973     case Decl::ObjCMethod: {
6974       CodeGenPGO PGO(*this);
6975       GlobalDecl GD(cast<FunctionDecl>(D));
6976       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6977                                   getFunctionLinkage(GD));
6978       break;
6979     }
6980     case Decl::CXXConstructor: {
6981       CodeGenPGO PGO(*this);
6982       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6983       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6984                                   getFunctionLinkage(GD));
6985       break;
6986     }
6987     case Decl::CXXDestructor: {
6988       CodeGenPGO PGO(*this);
6989       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6990       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6991                                   getFunctionLinkage(GD));
6992       break;
6993     }
6994     default:
6995       break;
6996     };
6997   }
6998 }
6999 
7000 void CodeGenModule::EmitMainVoidAlias() {
7001   // In order to transition away from "__original_main" gracefully, emit an
7002   // alias for "main" in the no-argument case so that libc can detect when
7003   // new-style no-argument main is in used.
7004   if (llvm::Function *F = getModule().getFunction("main")) {
7005     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7006         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7007       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7008       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7009     }
7010   }
7011 }
7012 
7013 /// Turns the given pointer into a constant.
7014 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7015                                           const void *Ptr) {
7016   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7017   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7018   return llvm::ConstantInt::get(i64, PtrInt);
7019 }
7020 
7021 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7022                                    llvm::NamedMDNode *&GlobalMetadata,
7023                                    GlobalDecl D,
7024                                    llvm::GlobalValue *Addr) {
7025   if (!GlobalMetadata)
7026     GlobalMetadata =
7027       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7028 
7029   // TODO: should we report variant information for ctors/dtors?
7030   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7031                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7032                                CGM.getLLVMContext(), D.getDecl()))};
7033   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7034 }
7035 
7036 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7037                                                  llvm::GlobalValue *CppFunc) {
7038   // Store the list of ifuncs we need to replace uses in.
7039   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7040   // List of ConstantExprs that we should be able to delete when we're done
7041   // here.
7042   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7043 
7044   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7045   if (Elem == CppFunc)
7046     return false;
7047 
7048   // First make sure that all users of this are ifuncs (or ifuncs via a
7049   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7050   // later.
7051   for (llvm::User *User : Elem->users()) {
7052     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7053     // ifunc directly. In any other case, just give up, as we don't know what we
7054     // could break by changing those.
7055     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7056       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7057         return false;
7058 
7059       for (llvm::User *CEUser : ConstExpr->users()) {
7060         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7061           IFuncs.push_back(IFunc);
7062         } else {
7063           return false;
7064         }
7065       }
7066       CEs.push_back(ConstExpr);
7067     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7068       IFuncs.push_back(IFunc);
7069     } else {
7070       // This user is one we don't know how to handle, so fail redirection. This
7071       // will result in an ifunc retaining a resolver name that will ultimately
7072       // fail to be resolved to a defined function.
7073       return false;
7074     }
7075   }
7076 
7077   // Now we know this is a valid case where we can do this alias replacement, we
7078   // need to remove all of the references to Elem (and the bitcasts!) so we can
7079   // delete it.
7080   for (llvm::GlobalIFunc *IFunc : IFuncs)
7081     IFunc->setResolver(nullptr);
7082   for (llvm::ConstantExpr *ConstExpr : CEs)
7083     ConstExpr->destroyConstant();
7084 
7085   // We should now be out of uses for the 'old' version of this function, so we
7086   // can erase it as well.
7087   Elem->eraseFromParent();
7088 
7089   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7090     // The type of the resolver is always just a function-type that returns the
7091     // type of the IFunc, so create that here. If the type of the actual
7092     // resolver doesn't match, it just gets bitcast to the right thing.
7093     auto *ResolverTy =
7094         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7095     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7096         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7097     IFunc->setResolver(Resolver);
7098   }
7099   return true;
7100 }
7101 
7102 /// For each function which is declared within an extern "C" region and marked
7103 /// as 'used', but has internal linkage, create an alias from the unmangled
7104 /// name to the mangled name if possible. People expect to be able to refer
7105 /// to such functions with an unmangled name from inline assembly within the
7106 /// same translation unit.
7107 void CodeGenModule::EmitStaticExternCAliases() {
7108   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7109     return;
7110   for (auto &I : StaticExternCValues) {
7111     IdentifierInfo *Name = I.first;
7112     llvm::GlobalValue *Val = I.second;
7113 
7114     // If Val is null, that implies there were multiple declarations that each
7115     // had a claim to the unmangled name. In this case, generation of the alias
7116     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7117     if (!Val)
7118       break;
7119 
7120     llvm::GlobalValue *ExistingElem =
7121         getModule().getNamedValue(Name->getName());
7122 
7123     // If there is either not something already by this name, or we were able to
7124     // replace all uses from IFuncs, create the alias.
7125     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7126       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7127   }
7128 }
7129 
7130 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7131                                              GlobalDecl &Result) const {
7132   auto Res = Manglings.find(MangledName);
7133   if (Res == Manglings.end())
7134     return false;
7135   Result = Res->getValue();
7136   return true;
7137 }
7138 
7139 /// Emits metadata nodes associating all the global values in the
7140 /// current module with the Decls they came from.  This is useful for
7141 /// projects using IR gen as a subroutine.
7142 ///
7143 /// Since there's currently no way to associate an MDNode directly
7144 /// with an llvm::GlobalValue, we create a global named metadata
7145 /// with the name 'clang.global.decl.ptrs'.
7146 void CodeGenModule::EmitDeclMetadata() {
7147   llvm::NamedMDNode *GlobalMetadata = nullptr;
7148 
7149   for (auto &I : MangledDeclNames) {
7150     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7151     // Some mangled names don't necessarily have an associated GlobalValue
7152     // in this module, e.g. if we mangled it for DebugInfo.
7153     if (Addr)
7154       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7155   }
7156 }
7157 
7158 /// Emits metadata nodes for all the local variables in the current
7159 /// function.
7160 void CodeGenFunction::EmitDeclMetadata() {
7161   if (LocalDeclMap.empty()) return;
7162 
7163   llvm::LLVMContext &Context = getLLVMContext();
7164 
7165   // Find the unique metadata ID for this name.
7166   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7167 
7168   llvm::NamedMDNode *GlobalMetadata = nullptr;
7169 
7170   for (auto &I : LocalDeclMap) {
7171     const Decl *D = I.first;
7172     llvm::Value *Addr = I.second.getPointer();
7173     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7174       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7175       Alloca->setMetadata(
7176           DeclPtrKind, llvm::MDNode::get(
7177                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7178     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7179       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7180       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7181     }
7182   }
7183 }
7184 
7185 void CodeGenModule::EmitVersionIdentMetadata() {
7186   llvm::NamedMDNode *IdentMetadata =
7187     TheModule.getOrInsertNamedMetadata("llvm.ident");
7188   std::string Version = getClangFullVersion();
7189   llvm::LLVMContext &Ctx = TheModule.getContext();
7190 
7191   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7192   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7193 }
7194 
7195 void CodeGenModule::EmitCommandLineMetadata() {
7196   llvm::NamedMDNode *CommandLineMetadata =
7197     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7198   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7199   llvm::LLVMContext &Ctx = TheModule.getContext();
7200 
7201   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7202   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7203 }
7204 
7205 void CodeGenModule::EmitCoverageFile() {
7206   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7207   if (!CUNode)
7208     return;
7209 
7210   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7211   llvm::LLVMContext &Ctx = TheModule.getContext();
7212   auto *CoverageDataFile =
7213       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7214   auto *CoverageNotesFile =
7215       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7216   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7217     llvm::MDNode *CU = CUNode->getOperand(i);
7218     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7219     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7220   }
7221 }
7222 
7223 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7224                                                        bool ForEH) {
7225   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7226   // FIXME: should we even be calling this method if RTTI is disabled
7227   // and it's not for EH?
7228   if (!shouldEmitRTTI(ForEH))
7229     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7230 
7231   if (ForEH && Ty->isObjCObjectPointerType() &&
7232       LangOpts.ObjCRuntime.isGNUFamily())
7233     return ObjCRuntime->GetEHType(Ty);
7234 
7235   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7236 }
7237 
7238 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7239   // Do not emit threadprivates in simd-only mode.
7240   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7241     return;
7242   for (auto RefExpr : D->varlists()) {
7243     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7244     bool PerformInit =
7245         VD->getAnyInitializer() &&
7246         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7247                                                         /*ForRef=*/false);
7248 
7249     Address Addr(GetAddrOfGlobalVar(VD),
7250                  getTypes().ConvertTypeForMem(VD->getType()),
7251                  getContext().getDeclAlign(VD));
7252     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7253             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7254       CXXGlobalInits.push_back(InitFunction);
7255   }
7256 }
7257 
7258 llvm::Metadata *
7259 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7260                                             StringRef Suffix) {
7261   if (auto *FnType = T->getAs<FunctionProtoType>())
7262     T = getContext().getFunctionType(
7263         FnType->getReturnType(), FnType->getParamTypes(),
7264         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7265 
7266   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7267   if (InternalId)
7268     return InternalId;
7269 
7270   if (isExternallyVisible(T->getLinkage())) {
7271     std::string OutName;
7272     llvm::raw_string_ostream Out(OutName);
7273     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7274         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7275 
7276     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7277       Out << ".normalized";
7278 
7279     Out << Suffix;
7280 
7281     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7282   } else {
7283     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7284                                            llvm::ArrayRef<llvm::Metadata *>());
7285   }
7286 
7287   return InternalId;
7288 }
7289 
7290 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7291   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7292 }
7293 
7294 llvm::Metadata *
7295 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7296   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7297 }
7298 
7299 // Generalize pointer types to a void pointer with the qualifiers of the
7300 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7301 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7302 // 'void *'.
7303 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7304   if (!Ty->isPointerType())
7305     return Ty;
7306 
7307   return Ctx.getPointerType(
7308       QualType(Ctx.VoidTy).withCVRQualifiers(
7309           Ty->getPointeeType().getCVRQualifiers()));
7310 }
7311 
7312 // Apply type generalization to a FunctionType's return and argument types
7313 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7314   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7315     SmallVector<QualType, 8> GeneralizedParams;
7316     for (auto &Param : FnType->param_types())
7317       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7318 
7319     return Ctx.getFunctionType(
7320         GeneralizeType(Ctx, FnType->getReturnType()),
7321         GeneralizedParams, FnType->getExtProtoInfo());
7322   }
7323 
7324   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7325     return Ctx.getFunctionNoProtoType(
7326         GeneralizeType(Ctx, FnType->getReturnType()));
7327 
7328   llvm_unreachable("Encountered unknown FunctionType");
7329 }
7330 
7331 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7332   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7333                                       GeneralizedMetadataIdMap, ".generalized");
7334 }
7335 
7336 /// Returns whether this module needs the "all-vtables" type identifier.
7337 bool CodeGenModule::NeedAllVtablesTypeId() const {
7338   // Returns true if at least one of vtable-based CFI checkers is enabled and
7339   // is not in the trapping mode.
7340   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7341            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7342           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7343            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7344           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7345            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7346           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7347            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7348 }
7349 
7350 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7351                                           CharUnits Offset,
7352                                           const CXXRecordDecl *RD) {
7353   llvm::Metadata *MD =
7354       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7355   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7356 
7357   if (CodeGenOpts.SanitizeCfiCrossDso)
7358     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7359       VTable->addTypeMetadata(Offset.getQuantity(),
7360                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7361 
7362   if (NeedAllVtablesTypeId()) {
7363     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7364     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7365   }
7366 }
7367 
7368 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7369   if (!SanStats)
7370     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7371 
7372   return *SanStats;
7373 }
7374 
7375 llvm::Value *
7376 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7377                                                   CodeGenFunction &CGF) {
7378   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7379   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7380   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7381   auto *Call = CGF.EmitRuntimeCall(
7382       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7383   return Call;
7384 }
7385 
7386 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7387     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7388   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7389                                  /* forPointeeType= */ true);
7390 }
7391 
7392 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7393                                                  LValueBaseInfo *BaseInfo,
7394                                                  TBAAAccessInfo *TBAAInfo,
7395                                                  bool forPointeeType) {
7396   if (TBAAInfo)
7397     *TBAAInfo = getTBAAAccessInfo(T);
7398 
7399   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7400   // that doesn't return the information we need to compute BaseInfo.
7401 
7402   // Honor alignment typedef attributes even on incomplete types.
7403   // We also honor them straight for C++ class types, even as pointees;
7404   // there's an expressivity gap here.
7405   if (auto TT = T->getAs<TypedefType>()) {
7406     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7407       if (BaseInfo)
7408         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7409       return getContext().toCharUnitsFromBits(Align);
7410     }
7411   }
7412 
7413   bool AlignForArray = T->isArrayType();
7414 
7415   // Analyze the base element type, so we don't get confused by incomplete
7416   // array types.
7417   T = getContext().getBaseElementType(T);
7418 
7419   if (T->isIncompleteType()) {
7420     // We could try to replicate the logic from
7421     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7422     // type is incomplete, so it's impossible to test. We could try to reuse
7423     // getTypeAlignIfKnown, but that doesn't return the information we need
7424     // to set BaseInfo.  So just ignore the possibility that the alignment is
7425     // greater than one.
7426     if (BaseInfo)
7427       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7428     return CharUnits::One();
7429   }
7430 
7431   if (BaseInfo)
7432     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7433 
7434   CharUnits Alignment;
7435   const CXXRecordDecl *RD;
7436   if (T.getQualifiers().hasUnaligned()) {
7437     Alignment = CharUnits::One();
7438   } else if (forPointeeType && !AlignForArray &&
7439              (RD = T->getAsCXXRecordDecl())) {
7440     // For C++ class pointees, we don't know whether we're pointing at a
7441     // base or a complete object, so we generally need to use the
7442     // non-virtual alignment.
7443     Alignment = getClassPointerAlignment(RD);
7444   } else {
7445     Alignment = getContext().getTypeAlignInChars(T);
7446   }
7447 
7448   // Cap to the global maximum type alignment unless the alignment
7449   // was somehow explicit on the type.
7450   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7451     if (Alignment.getQuantity() > MaxAlign &&
7452         !getContext().isAlignmentRequired(T))
7453       Alignment = CharUnits::fromQuantity(MaxAlign);
7454   }
7455   return Alignment;
7456 }
7457 
7458 bool CodeGenModule::stopAutoInit() {
7459   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7460   if (StopAfter) {
7461     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7462     // used
7463     if (NumAutoVarInit >= StopAfter) {
7464       return true;
7465     }
7466     if (!NumAutoVarInit) {
7467       unsigned DiagID = getDiags().getCustomDiagID(
7468           DiagnosticsEngine::Warning,
7469           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7470           "number of times ftrivial-auto-var-init=%1 gets applied.");
7471       getDiags().Report(DiagID)
7472           << StopAfter
7473           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7474                       LangOptions::TrivialAutoVarInitKind::Zero
7475                   ? "zero"
7476                   : "pattern");
7477     }
7478     ++NumAutoVarInit;
7479   }
7480   return false;
7481 }
7482 
7483 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7484                                                     const Decl *D) const {
7485   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7486   // postfix beginning with '.' since the symbol name can be demangled.
7487   if (LangOpts.HIP)
7488     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7489   else
7490     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7491 
7492   // If the CUID is not specified we try to generate a unique postfix.
7493   if (getLangOpts().CUID.empty()) {
7494     SourceManager &SM = getContext().getSourceManager();
7495     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7496     assert(PLoc.isValid() && "Source location is expected to be valid.");
7497 
7498     // Get the hash of the user defined macros.
7499     llvm::MD5 Hash;
7500     llvm::MD5::MD5Result Result;
7501     for (const auto &Arg : PreprocessorOpts.Macros)
7502       Hash.update(Arg.first);
7503     Hash.final(Result);
7504 
7505     // Get the UniqueID for the file containing the decl.
7506     llvm::sys::fs::UniqueID ID;
7507     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7508       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7509       assert(PLoc.isValid() && "Source location is expected to be valid.");
7510       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7511         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7512             << PLoc.getFilename() << EC.message();
7513     }
7514     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7515        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7516   } else {
7517     OS << getContext().getCUIDHash();
7518   }
7519 }
7520 
7521 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7522   assert(DeferredDeclsToEmit.empty() &&
7523          "Should have emitted all decls deferred to emit.");
7524   assert(NewBuilder->DeferredDecls.empty() &&
7525          "Newly created module should not have deferred decls");
7526   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7527   assert(EmittedDeferredDecls.empty() &&
7528          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7529 
7530   assert(NewBuilder->DeferredVTables.empty() &&
7531          "Newly created module should not have deferred vtables");
7532   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7533 
7534   assert(NewBuilder->MangledDeclNames.empty() &&
7535          "Newly created module should not have mangled decl names");
7536   assert(NewBuilder->Manglings.empty() &&
7537          "Newly created module should not have manglings");
7538   NewBuilder->Manglings = std::move(Manglings);
7539 
7540   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7541 
7542   NewBuilder->TBAA = std::move(TBAA);
7543 
7544   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7545 }
7546