xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision efbaad1c4a526e91b034e56386e98a9268cd87b2)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeGPU.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ConvertUTF.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MD5.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/X86TargetParser.h"
68 
69 using namespace clang;
70 using namespace CodeGen;
71 
72 static llvm::cl::opt<bool> LimitedCoverage(
73     "limited-coverage-experimental", llvm::cl::Hidden,
74     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149   if (LangOpts.HLSL)
150     createHLSLRuntime();
151 
152   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
153   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
154       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
155     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
156                                getCXXABI().getMangleContext()));
157 
158   // If debug info or coverage generation is enabled, create the CGDebugInfo
159   // object.
160   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
161       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
162     DebugInfo.reset(new CGDebugInfo(*this));
163 
164   Block.GlobalUniqueCount = 0;
165 
166   if (C.getLangOpts().ObjC)
167     ObjCData.reset(new ObjCEntrypoints());
168 
169   if (CodeGenOpts.hasProfileClangUse()) {
170     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
171         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
172     if (auto E = ReaderOrErr.takeError()) {
173       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
174                                               "Could not read profile %0: %1");
175       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
176         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
177                                   << EI.message();
178       });
179     } else
180       PGOReader = std::move(ReaderOrErr.get());
181   }
182 
183   // If coverage mapping generation is enabled, create the
184   // CoverageMappingModuleGen object.
185   if (CodeGenOpts.CoverageMapping)
186     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
187 
188   // Generate the module name hash here if needed.
189   if (CodeGenOpts.UniqueInternalLinkageNames &&
190       !getModule().getSourceFileName().empty()) {
191     std::string Path = getModule().getSourceFileName();
192     // Check if a path substitution is needed from the MacroPrefixMap.
193     for (const auto &Entry : LangOpts.MacroPrefixMap)
194       if (Path.rfind(Entry.first, 0) != std::string::npos) {
195         Path = Entry.second + Path.substr(Entry.first.size());
196         break;
197       }
198     llvm::MD5 Md5;
199     Md5.update(Path);
200     llvm::MD5::MD5Result R;
201     Md5.final(R);
202     SmallString<32> Str;
203     llvm::MD5::stringifyResult(R, Str);
204     // Convert MD5hash to Decimal. Demangler suffixes can either contain
205     // numbers or characters but not both.
206     llvm::APInt IntHash(128, Str.str(), 16);
207     // Prepend "__uniq" before the hash for tools like profilers to understand
208     // that this symbol is of internal linkage type.  The "__uniq" is the
209     // pre-determined prefix that is used to tell tools that this symbol was
210     // created with -funique-internal-linakge-symbols and the tools can strip or
211     // keep the prefix as needed.
212     ModuleNameHash = (Twine(".__uniq.") +
213         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
214   }
215 }
216 
217 CodeGenModule::~CodeGenModule() {}
218 
219 void CodeGenModule::createObjCRuntime() {
220   // This is just isGNUFamily(), but we want to force implementors of
221   // new ABIs to decide how best to do this.
222   switch (LangOpts.ObjCRuntime.getKind()) {
223   case ObjCRuntime::GNUstep:
224   case ObjCRuntime::GCC:
225   case ObjCRuntime::ObjFW:
226     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
227     return;
228 
229   case ObjCRuntime::FragileMacOSX:
230   case ObjCRuntime::MacOSX:
231   case ObjCRuntime::iOS:
232   case ObjCRuntime::WatchOS:
233     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
234     return;
235   }
236   llvm_unreachable("bad runtime kind");
237 }
238 
239 void CodeGenModule::createOpenCLRuntime() {
240   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
241 }
242 
243 void CodeGenModule::createOpenMPRuntime() {
244   // Select a specialized code generation class based on the target, if any.
245   // If it does not exist use the default implementation.
246   switch (getTriple().getArch()) {
247   case llvm::Triple::nvptx:
248   case llvm::Triple::nvptx64:
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::createHLSLRuntime() {
268   HLSLRuntime.reset(new CGHLSLRuntime(*this));
269 }
270 
271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
272   Replacements[Name] = C;
273 }
274 
275 void CodeGenModule::applyReplacements() {
276   for (auto &I : Replacements) {
277     StringRef MangledName = I.first();
278     llvm::Constant *Replacement = I.second;
279     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
280     if (!Entry)
281       continue;
282     auto *OldF = cast<llvm::Function>(Entry);
283     auto *NewF = dyn_cast<llvm::Function>(Replacement);
284     if (!NewF) {
285       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
286         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
287       } else {
288         auto *CE = cast<llvm::ConstantExpr>(Replacement);
289         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
290                CE->getOpcode() == llvm::Instruction::GetElementPtr);
291         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
292       }
293     }
294 
295     // Replace old with new, but keep the old order.
296     OldF->replaceAllUsesWith(Replacement);
297     if (NewF) {
298       NewF->removeFromParent();
299       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
300                                                        NewF);
301     }
302     OldF->eraseFromParent();
303   }
304 }
305 
306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
307   GlobalValReplacements.push_back(std::make_pair(GV, C));
308 }
309 
310 void CodeGenModule::applyGlobalValReplacements() {
311   for (auto &I : GlobalValReplacements) {
312     llvm::GlobalValue *GV = I.first;
313     llvm::Constant *C = I.second;
314 
315     GV->replaceAllUsesWith(C);
316     GV->eraseFromParent();
317   }
318 }
319 
320 // This is only used in aliases that we created and we know they have a
321 // linear structure.
322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
323   const llvm::Constant *C;
324   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
325     C = GA->getAliasee();
326   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
327     C = GI->getResolver();
328   else
329     return GV;
330 
331   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
332   if (!AliaseeGV)
333     return nullptr;
334 
335   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
336   if (FinalGV == GV)
337     return nullptr;
338 
339   return FinalGV;
340 }
341 
342 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
343                                SourceLocation Location, bool IsIFunc,
344                                const llvm::GlobalValue *Alias,
345                                const llvm::GlobalValue *&GV) {
346   GV = getAliasedGlobal(Alias);
347   if (!GV) {
348     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
349     return false;
350   }
351 
352   if (GV->isDeclaration()) {
353     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
354     return false;
355   }
356 
357   if (IsIFunc) {
358     // Check resolver function type.
359     const auto *F = dyn_cast<llvm::Function>(GV);
360     if (!F) {
361       Diags.Report(Location, diag::err_alias_to_undefined)
362           << IsIFunc << IsIFunc;
363       return false;
364     }
365 
366     llvm::FunctionType *FTy = F->getFunctionType();
367     if (!FTy->getReturnType()->isPointerTy()) {
368       Diags.Report(Location, diag::err_ifunc_resolver_return);
369       return false;
370     }
371   }
372 
373   return true;
374 }
375 
376 void CodeGenModule::checkAliases() {
377   // Check if the constructed aliases are well formed. It is really unfortunate
378   // that we have to do this in CodeGen, but we only construct mangled names
379   // and aliases during codegen.
380   bool Error = false;
381   DiagnosticsEngine &Diags = getDiags();
382   for (const GlobalDecl &GD : Aliases) {
383     const auto *D = cast<ValueDecl>(GD.getDecl());
384     SourceLocation Location;
385     bool IsIFunc = D->hasAttr<IFuncAttr>();
386     if (const Attr *A = D->getDefiningAttr())
387       Location = A->getLocation();
388     else
389       llvm_unreachable("Not an alias or ifunc?");
390 
391     StringRef MangledName = getMangledName(GD);
392     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
393     const llvm::GlobalValue *GV = nullptr;
394     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
395       Error = true;
396       continue;
397     }
398 
399     llvm::Constant *Aliasee =
400         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
401                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
402 
403     llvm::GlobalValue *AliaseeGV;
404     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
405       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
406     else
407       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
408 
409     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
410       StringRef AliasSection = SA->getName();
411       if (AliasSection != AliaseeGV->getSection())
412         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
413             << AliasSection << IsIFunc << IsIFunc;
414     }
415 
416     // We have to handle alias to weak aliases in here. LLVM itself disallows
417     // this since the object semantics would not match the IL one. For
418     // compatibility with gcc we implement it by just pointing the alias
419     // to its aliasee's aliasee. We also warn, since the user is probably
420     // expecting the link to be weak.
421     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
422       if (GA->isInterposable()) {
423         Diags.Report(Location, diag::warn_alias_to_weak_alias)
424             << GV->getName() << GA->getName() << IsIFunc;
425         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
426             GA->getAliasee(), Alias->getType());
427 
428         if (IsIFunc)
429           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
430         else
431           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
432       }
433     }
434   }
435   if (!Error)
436     return;
437 
438   for (const GlobalDecl &GD : Aliases) {
439     StringRef MangledName = getMangledName(GD);
440     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
441     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
442     Alias->eraseFromParent();
443   }
444 }
445 
446 void CodeGenModule::clear() {
447   DeferredDeclsToEmit.clear();
448   if (OpenMPRuntime)
449     OpenMPRuntime->clear();
450 }
451 
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
453                                        StringRef MainFile) {
454   if (!hasDiagnostics())
455     return;
456   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
457     if (MainFile.empty())
458       MainFile = "<stdin>";
459     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
460   } else {
461     if (Mismatched > 0)
462       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
463 
464     if (Missing > 0)
465       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
466   }
467 }
468 
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
470                                              llvm::Module &M) {
471   if (!LO.VisibilityFromDLLStorageClass)
472     return;
473 
474   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
476   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
479       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
480   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
481       CodeGenModule::GetLLVMVisibility(
482           LO.getExternDeclNoDLLStorageClassVisibility());
483 
484   for (llvm::GlobalValue &GV : M.global_values()) {
485     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
486       continue;
487 
488     // Reset DSO locality before setting the visibility. This removes
489     // any effects that visibility options and annotations may have
490     // had on the DSO locality. Setting the visibility will implicitly set
491     // appropriate globals to DSO Local; however, this will be pessimistic
492     // w.r.t. to the normal compiler IRGen.
493     GV.setDSOLocal(false);
494 
495     if (GV.isDeclarationForLinker()) {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLImportStorageClass
498                            ? ExternDeclDLLImportVisibility
499                            : ExternDeclNoDLLStorageClassVisibility);
500     } else {
501       GV.setVisibility(GV.getDLLStorageClass() ==
502                                llvm::GlobalValue::DLLExportStorageClass
503                            ? DLLExportVisibility
504                            : NoDLLStorageClassVisibility);
505     }
506 
507     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
508   }
509 }
510 
511 void CodeGenModule::Release() {
512   EmitDeferred();
513   EmitVTablesOpportunistically();
514   applyGlobalValReplacements();
515   applyReplacements();
516   emitMultiVersionFunctions();
517   EmitCXXGlobalInitFunc();
518   EmitCXXGlobalCleanUpFunc();
519   registerGlobalDtorsWithAtExit();
520   EmitCXXThreadLocalInitFunc();
521   if (ObjCRuntime)
522     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
523       AddGlobalCtor(ObjCInitFunction);
524   if (Context.getLangOpts().CUDA && CUDARuntime) {
525     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
526       AddGlobalCtor(CudaCtorFunction);
527   }
528   if (OpenMPRuntime) {
529     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
530             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
531       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
532     }
533     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
534     OpenMPRuntime->clear();
535   }
536   if (PGOReader) {
537     getModule().setProfileSummary(
538         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
539         llvm::ProfileSummary::PSK_Instr);
540     if (PGOStats.hasDiagnostics())
541       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
542   }
543   EmitCtorList(GlobalCtors, "llvm.global_ctors");
544   EmitCtorList(GlobalDtors, "llvm.global_dtors");
545   EmitGlobalAnnotations();
546   EmitStaticExternCAliases();
547   checkAliases();
548   EmitDeferredUnusedCoverageMappings();
549   CodeGenPGO(*this).setValueProfilingFlag(getModule());
550   if (CoverageMapping)
551     CoverageMapping->emit();
552   if (CodeGenOpts.SanitizeCfiCrossDso) {
553     CodeGenFunction(*this).EmitCfiCheckFail();
554     CodeGenFunction(*this).EmitCfiCheckStub();
555   }
556   emitAtAvailableLinkGuard();
557   if (Context.getTargetInfo().getTriple().isWasm())
558     EmitMainVoidAlias();
559 
560   if (getTriple().isAMDGPU()) {
561     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
562     // preserve ASAN functions in bitcode libraries.
563     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
564       auto *FT = llvm::FunctionType::get(VoidTy, {});
565       auto *F = llvm::Function::Create(
566           FT, llvm::GlobalValue::ExternalLinkage,
567           "__amdgpu_device_library_preserve_asan_functions", &getModule());
568       auto *Var = new llvm::GlobalVariable(
569           getModule(), FT->getPointerTo(),
570           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
571           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
572           llvm::GlobalVariable::NotThreadLocal);
573       addCompilerUsedGlobal(Var);
574     }
575     // Emit amdgpu_code_object_version module flag, which is code object version
576     // times 100.
577     // ToDo: Enable module flag for all code object version when ROCm device
578     // library is ready.
579     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
580       getModule().addModuleFlag(llvm::Module::Error,
581                                 "amdgpu_code_object_version",
582                                 getTarget().getTargetOpts().CodeObjectVersion);
583     }
584   }
585 
586   // Emit a global array containing all external kernels or device variables
587   // used by host functions and mark it as used for CUDA/HIP. This is necessary
588   // to get kernels or device variables in archives linked in even if these
589   // kernels or device variables are only used in host functions.
590   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
591     SmallVector<llvm::Constant *, 8> UsedArray;
592     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
593       GlobalDecl GD;
594       if (auto *FD = dyn_cast<FunctionDecl>(D))
595         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
596       else
597         GD = GlobalDecl(D);
598       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
599           GetAddrOfGlobal(GD), Int8PtrTy));
600     }
601 
602     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
603 
604     auto *GV = new llvm::GlobalVariable(
605         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
606         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
607     addCompilerUsedGlobal(GV);
608   }
609 
610   emitLLVMUsed();
611   if (SanStats)
612     SanStats->finish();
613 
614   if (CodeGenOpts.Autolink &&
615       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
616     EmitModuleLinkOptions();
617   }
618 
619   // On ELF we pass the dependent library specifiers directly to the linker
620   // without manipulating them. This is in contrast to other platforms where
621   // they are mapped to a specific linker option by the compiler. This
622   // difference is a result of the greater variety of ELF linkers and the fact
623   // that ELF linkers tend to handle libraries in a more complicated fashion
624   // than on other platforms. This forces us to defer handling the dependent
625   // libs to the linker.
626   //
627   // CUDA/HIP device and host libraries are different. Currently there is no
628   // way to differentiate dependent libraries for host or device. Existing
629   // usage of #pragma comment(lib, *) is intended for host libraries on
630   // Windows. Therefore emit llvm.dependent-libraries only for host.
631   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
632     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
633     for (auto *MD : ELFDependentLibraries)
634       NMD->addOperand(MD);
635   }
636 
637   // Record mregparm value now so it is visible through rest of codegen.
638   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
639     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
640                               CodeGenOpts.NumRegisterParameters);
641 
642   if (CodeGenOpts.DwarfVersion) {
643     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
644                               CodeGenOpts.DwarfVersion);
645   }
646 
647   if (CodeGenOpts.Dwarf64)
648     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
649 
650   if (Context.getLangOpts().SemanticInterposition)
651     // Require various optimization to respect semantic interposition.
652     getModule().setSemanticInterposition(true);
653 
654   if (CodeGenOpts.EmitCodeView) {
655     // Indicate that we want CodeView in the metadata.
656     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
657   }
658   if (CodeGenOpts.CodeViewGHash) {
659     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
660   }
661   if (CodeGenOpts.ControlFlowGuard) {
662     // Function ID tables and checks for Control Flow Guard (cfguard=2).
663     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
664   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
665     // Function ID tables for Control Flow Guard (cfguard=1).
666     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
667   }
668   if (CodeGenOpts.EHContGuard) {
669     // Function ID tables for EH Continuation Guard.
670     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
671   }
672   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
673     // We don't support LTO with 2 with different StrictVTablePointers
674     // FIXME: we could support it by stripping all the information introduced
675     // by StrictVTablePointers.
676 
677     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
678 
679     llvm::Metadata *Ops[2] = {
680               llvm::MDString::get(VMContext, "StrictVTablePointers"),
681               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
682                   llvm::Type::getInt32Ty(VMContext), 1))};
683 
684     getModule().addModuleFlag(llvm::Module::Require,
685                               "StrictVTablePointersRequirement",
686                               llvm::MDNode::get(VMContext, Ops));
687   }
688   if (getModuleDebugInfo())
689     // We support a single version in the linked module. The LLVM
690     // parser will drop debug info with a different version number
691     // (and warn about it, too).
692     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
693                               llvm::DEBUG_METADATA_VERSION);
694 
695   // We need to record the widths of enums and wchar_t, so that we can generate
696   // the correct build attributes in the ARM backend. wchar_size is also used by
697   // TargetLibraryInfo.
698   uint64_t WCharWidth =
699       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
700   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
701 
702   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
703   if (   Arch == llvm::Triple::arm
704       || Arch == llvm::Triple::armeb
705       || Arch == llvm::Triple::thumb
706       || Arch == llvm::Triple::thumbeb) {
707     // The minimum width of an enum in bytes
708     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
709     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
710   }
711 
712   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
713     StringRef ABIStr = Target.getABI();
714     llvm::LLVMContext &Ctx = TheModule.getContext();
715     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
716                               llvm::MDString::get(Ctx, ABIStr));
717   }
718 
719   if (CodeGenOpts.SanitizeCfiCrossDso) {
720     // Indicate that we want cross-DSO control flow integrity checks.
721     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
722   }
723 
724   if (CodeGenOpts.WholeProgramVTables) {
725     // Indicate whether VFE was enabled for this module, so that the
726     // vcall_visibility metadata added under whole program vtables is handled
727     // appropriately in the optimizer.
728     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
729                               CodeGenOpts.VirtualFunctionElimination);
730   }
731 
732   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
733     getModule().addModuleFlag(llvm::Module::Override,
734                               "CFI Canonical Jump Tables",
735                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
736   }
737 
738   if (CodeGenOpts.CFProtectionReturn &&
739       Target.checkCFProtectionReturnSupported(getDiags())) {
740     // Indicate that we want to instrument return control flow protection.
741     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
742                               1);
743   }
744 
745   if (CodeGenOpts.CFProtectionBranch &&
746       Target.checkCFProtectionBranchSupported(getDiags())) {
747     // Indicate that we want to instrument branch control flow protection.
748     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
749                               1);
750   }
751 
752   if (CodeGenOpts.IBTSeal)
753     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
754 
755   // Add module metadata for return address signing (ignoring
756   // non-leaf/all) and stack tagging. These are actually turned on by function
757   // attributes, but we use module metadata to emit build attributes. This is
758   // needed for LTO, where the function attributes are inside bitcode
759   // serialised into a global variable by the time build attributes are
760   // emitted, so we can't access them. LTO objects could be compiled with
761   // different flags therefore module flags are set to "Min" behavior to achieve
762   // the same end result of the normal build where e.g BTI is off if any object
763   // doesn't support it.
764   if (Context.getTargetInfo().hasFeature("ptrauth") &&
765       LangOpts.getSignReturnAddressScope() !=
766           LangOptions::SignReturnAddressScopeKind::None)
767     getModule().addModuleFlag(llvm::Module::Override,
768                               "sign-return-address-buildattr", 1);
769   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
770     getModule().addModuleFlag(llvm::Module::Override,
771                               "tag-stack-memory-buildattr", 1);
772 
773   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
774       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
775       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
776       Arch == llvm::Triple::aarch64_be) {
777     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
778                               LangOpts.BranchTargetEnforcement);
779 
780     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
781                               LangOpts.hasSignReturnAddress());
782 
783     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
784                               LangOpts.isSignReturnAddressScopeAll());
785 
786     getModule().addModuleFlag(llvm::Module::Min,
787                               "sign-return-address-with-bkey",
788                               !LangOpts.isSignReturnAddressWithAKey());
789   }
790 
791   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
792     llvm::LLVMContext &Ctx = TheModule.getContext();
793     getModule().addModuleFlag(
794         llvm::Module::Error, "MemProfProfileFilename",
795         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
796   }
797 
798   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
799     // Indicate whether __nvvm_reflect should be configured to flush denormal
800     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
801     // property.)
802     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
803                               CodeGenOpts.FP32DenormalMode.Output !=
804                                   llvm::DenormalMode::IEEE);
805   }
806 
807   if (LangOpts.EHAsynch)
808     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
809 
810   // Indicate whether this Module was compiled with -fopenmp
811   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
812     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
813   if (getLangOpts().OpenMPIsDevice)
814     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
815                               LangOpts.OpenMP);
816 
817   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
818   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
819     EmitOpenCLMetadata();
820     // Emit SPIR version.
821     if (getTriple().isSPIR()) {
822       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
823       // opencl.spir.version named metadata.
824       // C++ for OpenCL has a distinct mapping for version compatibility with
825       // OpenCL.
826       auto Version = LangOpts.getOpenCLCompatibleVersion();
827       llvm::Metadata *SPIRVerElts[] = {
828           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
829               Int32Ty, Version / 100)),
830           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
831               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
832       llvm::NamedMDNode *SPIRVerMD =
833           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
834       llvm::LLVMContext &Ctx = TheModule.getContext();
835       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
836     }
837   }
838 
839   // HLSL related end of code gen work items.
840   if (LangOpts.HLSL)
841     getHLSLRuntime().finishCodeGen();
842 
843   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
844     assert(PLevel < 3 && "Invalid PIC Level");
845     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
846     if (Context.getLangOpts().PIE)
847       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
848   }
849 
850   if (getCodeGenOpts().CodeModel.size() > 0) {
851     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
852                   .Case("tiny", llvm::CodeModel::Tiny)
853                   .Case("small", llvm::CodeModel::Small)
854                   .Case("kernel", llvm::CodeModel::Kernel)
855                   .Case("medium", llvm::CodeModel::Medium)
856                   .Case("large", llvm::CodeModel::Large)
857                   .Default(~0u);
858     if (CM != ~0u) {
859       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
860       getModule().setCodeModel(codeModel);
861     }
862   }
863 
864   if (CodeGenOpts.NoPLT)
865     getModule().setRtLibUseGOT();
866   if (CodeGenOpts.UnwindTables)
867     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
868 
869   switch (CodeGenOpts.getFramePointer()) {
870   case CodeGenOptions::FramePointerKind::None:
871     // 0 ("none") is the default.
872     break;
873   case CodeGenOptions::FramePointerKind::NonLeaf:
874     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
875     break;
876   case CodeGenOptions::FramePointerKind::All:
877     getModule().setFramePointer(llvm::FramePointerKind::All);
878     break;
879   }
880 
881   SimplifyPersonality();
882 
883   if (getCodeGenOpts().EmitDeclMetadata)
884     EmitDeclMetadata();
885 
886   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
887     EmitCoverageFile();
888 
889   if (CGDebugInfo *DI = getModuleDebugInfo())
890     DI->finalize();
891 
892   if (getCodeGenOpts().EmitVersionIdentMetadata)
893     EmitVersionIdentMetadata();
894 
895   if (!getCodeGenOpts().RecordCommandLine.empty())
896     EmitCommandLineMetadata();
897 
898   if (!getCodeGenOpts().StackProtectorGuard.empty())
899     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
900   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
901     getModule().setStackProtectorGuardReg(
902         getCodeGenOpts().StackProtectorGuardReg);
903   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
904     getModule().setStackProtectorGuardSymbol(
905         getCodeGenOpts().StackProtectorGuardSymbol);
906   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
907     getModule().setStackProtectorGuardOffset(
908         getCodeGenOpts().StackProtectorGuardOffset);
909   if (getCodeGenOpts().StackAlignment)
910     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
911   if (getCodeGenOpts().SkipRaxSetup)
912     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
913 
914   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
915 
916   EmitBackendOptionsMetadata(getCodeGenOpts());
917 
918   // If there is device offloading code embed it in the host now.
919   EmbedObject(&getModule(), CodeGenOpts, getDiags());
920 
921   // Set visibility from DLL storage class
922   // We do this at the end of LLVM IR generation; after any operation
923   // that might affect the DLL storage class or the visibility, and
924   // before anything that might act on these.
925   setVisibilityFromDLLStorageClass(LangOpts, getModule());
926 }
927 
928 void CodeGenModule::EmitOpenCLMetadata() {
929   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
930   // opencl.ocl.version named metadata node.
931   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
932   auto Version = LangOpts.getOpenCLCompatibleVersion();
933   llvm::Metadata *OCLVerElts[] = {
934       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
935           Int32Ty, Version / 100)),
936       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
937           Int32Ty, (Version % 100) / 10))};
938   llvm::NamedMDNode *OCLVerMD =
939       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
940   llvm::LLVMContext &Ctx = TheModule.getContext();
941   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
942 }
943 
944 void CodeGenModule::EmitBackendOptionsMetadata(
945     const CodeGenOptions CodeGenOpts) {
946   switch (getTriple().getArch()) {
947   default:
948     break;
949   case llvm::Triple::riscv32:
950   case llvm::Triple::riscv64:
951     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
952                               CodeGenOpts.SmallDataLimit);
953     break;
954   }
955 }
956 
957 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
958   // Make sure that this type is translated.
959   Types.UpdateCompletedType(TD);
960 }
961 
962 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
963   // Make sure that this type is translated.
964   Types.RefreshTypeCacheForClass(RD);
965 }
966 
967 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
968   if (!TBAA)
969     return nullptr;
970   return TBAA->getTypeInfo(QTy);
971 }
972 
973 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
974   if (!TBAA)
975     return TBAAAccessInfo();
976   if (getLangOpts().CUDAIsDevice) {
977     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
978     // access info.
979     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
980       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
981           nullptr)
982         return TBAAAccessInfo();
983     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
984       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
985           nullptr)
986         return TBAAAccessInfo();
987     }
988   }
989   return TBAA->getAccessInfo(AccessType);
990 }
991 
992 TBAAAccessInfo
993 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
994   if (!TBAA)
995     return TBAAAccessInfo();
996   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
997 }
998 
999 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1000   if (!TBAA)
1001     return nullptr;
1002   return TBAA->getTBAAStructInfo(QTy);
1003 }
1004 
1005 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1006   if (!TBAA)
1007     return nullptr;
1008   return TBAA->getBaseTypeInfo(QTy);
1009 }
1010 
1011 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1012   if (!TBAA)
1013     return nullptr;
1014   return TBAA->getAccessTagInfo(Info);
1015 }
1016 
1017 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1018                                                    TBAAAccessInfo TargetInfo) {
1019   if (!TBAA)
1020     return TBAAAccessInfo();
1021   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1022 }
1023 
1024 TBAAAccessInfo
1025 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1026                                                    TBAAAccessInfo InfoB) {
1027   if (!TBAA)
1028     return TBAAAccessInfo();
1029   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1030 }
1031 
1032 TBAAAccessInfo
1033 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1034                                               TBAAAccessInfo SrcInfo) {
1035   if (!TBAA)
1036     return TBAAAccessInfo();
1037   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1038 }
1039 
1040 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1041                                                 TBAAAccessInfo TBAAInfo) {
1042   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1043     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1044 }
1045 
1046 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1047     llvm::Instruction *I, const CXXRecordDecl *RD) {
1048   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1049                  llvm::MDNode::get(getLLVMContext(), {}));
1050 }
1051 
1052 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1053   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1054   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1055 }
1056 
1057 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1058 /// specified stmt yet.
1059 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1060   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1061                                                "cannot compile this %0 yet");
1062   std::string Msg = Type;
1063   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1064       << Msg << S->getSourceRange();
1065 }
1066 
1067 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1068 /// specified decl yet.
1069 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1070   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1071                                                "cannot compile this %0 yet");
1072   std::string Msg = Type;
1073   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1074 }
1075 
1076 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1077   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1078 }
1079 
1080 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1081                                         const NamedDecl *D) const {
1082   if (GV->hasDLLImportStorageClass())
1083     return;
1084   // Internal definitions always have default visibility.
1085   if (GV->hasLocalLinkage()) {
1086     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1087     return;
1088   }
1089   if (!D)
1090     return;
1091   // Set visibility for definitions, and for declarations if requested globally
1092   // or set explicitly.
1093   LinkageInfo LV = D->getLinkageAndVisibility();
1094   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1095       !GV->isDeclarationForLinker())
1096     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1097 }
1098 
1099 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1100                                  llvm::GlobalValue *GV) {
1101   if (GV->hasLocalLinkage())
1102     return true;
1103 
1104   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1105     return true;
1106 
1107   // DLLImport explicitly marks the GV as external.
1108   if (GV->hasDLLImportStorageClass())
1109     return false;
1110 
1111   const llvm::Triple &TT = CGM.getTriple();
1112   if (TT.isWindowsGNUEnvironment()) {
1113     // In MinGW, variables without DLLImport can still be automatically
1114     // imported from a DLL by the linker; don't mark variables that
1115     // potentially could come from another DLL as DSO local.
1116 
1117     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1118     // (and this actually happens in the public interface of libstdc++), so
1119     // such variables can't be marked as DSO local. (Native TLS variables
1120     // can't be dllimported at all, though.)
1121     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1122         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1123       return false;
1124   }
1125 
1126   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1127   // remain unresolved in the link, they can be resolved to zero, which is
1128   // outside the current DSO.
1129   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1130     return false;
1131 
1132   // Every other GV is local on COFF.
1133   // Make an exception for windows OS in the triple: Some firmware builds use
1134   // *-win32-macho triples. This (accidentally?) produced windows relocations
1135   // without GOT tables in older clang versions; Keep this behaviour.
1136   // FIXME: even thread local variables?
1137   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1138     return true;
1139 
1140   // Only handle COFF and ELF for now.
1141   if (!TT.isOSBinFormatELF())
1142     return false;
1143 
1144   // If this is not an executable, don't assume anything is local.
1145   const auto &CGOpts = CGM.getCodeGenOpts();
1146   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1147   const auto &LOpts = CGM.getLangOpts();
1148   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1149     // On ELF, if -fno-semantic-interposition is specified and the target
1150     // supports local aliases, there will be neither CC1
1151     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1152     // dso_local on the function if using a local alias is preferable (can avoid
1153     // PLT indirection).
1154     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1155       return false;
1156     return !(CGM.getLangOpts().SemanticInterposition ||
1157              CGM.getLangOpts().HalfNoSemanticInterposition);
1158   }
1159 
1160   // A definition cannot be preempted from an executable.
1161   if (!GV->isDeclarationForLinker())
1162     return true;
1163 
1164   // Most PIC code sequences that assume that a symbol is local cannot produce a
1165   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1166   // depended, it seems worth it to handle it here.
1167   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1168     return false;
1169 
1170   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1171   if (TT.isPPC64())
1172     return false;
1173 
1174   if (CGOpts.DirectAccessExternalData) {
1175     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1176     // for non-thread-local variables. If the symbol is not defined in the
1177     // executable, a copy relocation will be needed at link time. dso_local is
1178     // excluded for thread-local variables because they generally don't support
1179     // copy relocations.
1180     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1181       if (!Var->isThreadLocal())
1182         return true;
1183 
1184     // -fno-pic sets dso_local on a function declaration to allow direct
1185     // accesses when taking its address (similar to a data symbol). If the
1186     // function is not defined in the executable, a canonical PLT entry will be
1187     // needed at link time. -fno-direct-access-external-data can avoid the
1188     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1189     // it could just cause trouble without providing perceptible benefits.
1190     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1191       return true;
1192   }
1193 
1194   // If we can use copy relocations we can assume it is local.
1195 
1196   // Otherwise don't assume it is local.
1197   return false;
1198 }
1199 
1200 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1201   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1202 }
1203 
1204 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1205                                           GlobalDecl GD) const {
1206   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1207   // C++ destructors have a few C++ ABI specific special cases.
1208   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1209     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1210     return;
1211   }
1212   setDLLImportDLLExport(GV, D);
1213 }
1214 
1215 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1216                                           const NamedDecl *D) const {
1217   if (D && D->isExternallyVisible()) {
1218     if (D->hasAttr<DLLImportAttr>())
1219       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1220     else if ((D->hasAttr<DLLExportAttr>() ||
1221               shouldMapVisibilityToDLLExport(D)) &&
1222              !GV->isDeclarationForLinker())
1223       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1224   }
1225 }
1226 
1227 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1228                                     GlobalDecl GD) const {
1229   setDLLImportDLLExport(GV, GD);
1230   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1231 }
1232 
1233 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1234                                     const NamedDecl *D) const {
1235   setDLLImportDLLExport(GV, D);
1236   setGVPropertiesAux(GV, D);
1237 }
1238 
1239 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1240                                        const NamedDecl *D) const {
1241   setGlobalVisibility(GV, D);
1242   setDSOLocal(GV);
1243   GV->setPartition(CodeGenOpts.SymbolPartition);
1244 }
1245 
1246 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1247   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1248       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1249       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1250       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1251       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1252 }
1253 
1254 llvm::GlobalVariable::ThreadLocalMode
1255 CodeGenModule::GetDefaultLLVMTLSModel() const {
1256   switch (CodeGenOpts.getDefaultTLSModel()) {
1257   case CodeGenOptions::GeneralDynamicTLSModel:
1258     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1259   case CodeGenOptions::LocalDynamicTLSModel:
1260     return llvm::GlobalVariable::LocalDynamicTLSModel;
1261   case CodeGenOptions::InitialExecTLSModel:
1262     return llvm::GlobalVariable::InitialExecTLSModel;
1263   case CodeGenOptions::LocalExecTLSModel:
1264     return llvm::GlobalVariable::LocalExecTLSModel;
1265   }
1266   llvm_unreachable("Invalid TLS model!");
1267 }
1268 
1269 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1270   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1271 
1272   llvm::GlobalValue::ThreadLocalMode TLM;
1273   TLM = GetDefaultLLVMTLSModel();
1274 
1275   // Override the TLS model if it is explicitly specified.
1276   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1277     TLM = GetLLVMTLSModel(Attr->getModel());
1278   }
1279 
1280   GV->setThreadLocalMode(TLM);
1281 }
1282 
1283 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1284                                           StringRef Name) {
1285   const TargetInfo &Target = CGM.getTarget();
1286   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1287 }
1288 
1289 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1290                                                  const CPUSpecificAttr *Attr,
1291                                                  unsigned CPUIndex,
1292                                                  raw_ostream &Out) {
1293   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1294   // supported.
1295   if (Attr)
1296     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1297   else if (CGM.getTarget().supportsIFunc())
1298     Out << ".resolver";
1299 }
1300 
1301 static void AppendTargetMangling(const CodeGenModule &CGM,
1302                                  const TargetAttr *Attr, raw_ostream &Out) {
1303   if (Attr->isDefaultVersion())
1304     return;
1305 
1306   Out << '.';
1307   const TargetInfo &Target = CGM.getTarget();
1308   ParsedTargetAttr Info =
1309       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1310         // Multiversioning doesn't allow "no-${feature}", so we can
1311         // only have "+" prefixes here.
1312         assert(LHS.startswith("+") && RHS.startswith("+") &&
1313                "Features should always have a prefix.");
1314         return Target.multiVersionSortPriority(LHS.substr(1)) >
1315                Target.multiVersionSortPriority(RHS.substr(1));
1316       });
1317 
1318   bool IsFirst = true;
1319 
1320   if (!Info.Architecture.empty()) {
1321     IsFirst = false;
1322     Out << "arch_" << Info.Architecture;
1323   }
1324 
1325   for (StringRef Feat : Info.Features) {
1326     if (!IsFirst)
1327       Out << '_';
1328     IsFirst = false;
1329     Out << Feat.substr(1);
1330   }
1331 }
1332 
1333 // Returns true if GD is a function decl with internal linkage and
1334 // needs a unique suffix after the mangled name.
1335 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1336                                         CodeGenModule &CGM) {
1337   const Decl *D = GD.getDecl();
1338   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1339          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1340 }
1341 
1342 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1343                                        const TargetClonesAttr *Attr,
1344                                        unsigned VersionIndex,
1345                                        raw_ostream &Out) {
1346   Out << '.';
1347   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1348   if (FeatureStr.startswith("arch="))
1349     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1350   else
1351     Out << FeatureStr;
1352 
1353   Out << '.' << Attr->getMangledIndex(VersionIndex);
1354 }
1355 
1356 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1357                                       const NamedDecl *ND,
1358                                       bool OmitMultiVersionMangling = false) {
1359   SmallString<256> Buffer;
1360   llvm::raw_svector_ostream Out(Buffer);
1361   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1362   if (!CGM.getModuleNameHash().empty())
1363     MC.needsUniqueInternalLinkageNames();
1364   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1365   if (ShouldMangle)
1366     MC.mangleName(GD.getWithDecl(ND), Out);
1367   else {
1368     IdentifierInfo *II = ND->getIdentifier();
1369     assert(II && "Attempt to mangle unnamed decl.");
1370     const auto *FD = dyn_cast<FunctionDecl>(ND);
1371 
1372     if (FD &&
1373         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1374       Out << "__regcall3__" << II->getName();
1375     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1376                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1377       Out << "__device_stub__" << II->getName();
1378     } else {
1379       Out << II->getName();
1380     }
1381   }
1382 
1383   // Check if the module name hash should be appended for internal linkage
1384   // symbols.   This should come before multi-version target suffixes are
1385   // appended. This is to keep the name and module hash suffix of the
1386   // internal linkage function together.  The unique suffix should only be
1387   // added when name mangling is done to make sure that the final name can
1388   // be properly demangled.  For example, for C functions without prototypes,
1389   // name mangling is not done and the unique suffix should not be appeneded
1390   // then.
1391   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1392     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1393            "Hash computed when not explicitly requested");
1394     Out << CGM.getModuleNameHash();
1395   }
1396 
1397   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1398     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1399       switch (FD->getMultiVersionKind()) {
1400       case MultiVersionKind::CPUDispatch:
1401       case MultiVersionKind::CPUSpecific:
1402         AppendCPUSpecificCPUDispatchMangling(CGM,
1403                                              FD->getAttr<CPUSpecificAttr>(),
1404                                              GD.getMultiVersionIndex(), Out);
1405         break;
1406       case MultiVersionKind::Target:
1407         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1408         break;
1409       case MultiVersionKind::TargetClones:
1410         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1411                                    GD.getMultiVersionIndex(), Out);
1412         break;
1413       case MultiVersionKind::None:
1414         llvm_unreachable("None multiversion type isn't valid here");
1415       }
1416     }
1417 
1418   // Make unique name for device side static file-scope variable for HIP.
1419   if (CGM.getContext().shouldExternalize(ND) &&
1420       CGM.getLangOpts().GPURelocatableDeviceCode &&
1421       CGM.getLangOpts().CUDAIsDevice)
1422     CGM.printPostfixForExternalizedDecl(Out, ND);
1423 
1424   return std::string(Out.str());
1425 }
1426 
1427 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1428                                             const FunctionDecl *FD,
1429                                             StringRef &CurName) {
1430   if (!FD->isMultiVersion())
1431     return;
1432 
1433   // Get the name of what this would be without the 'target' attribute.  This
1434   // allows us to lookup the version that was emitted when this wasn't a
1435   // multiversion function.
1436   std::string NonTargetName =
1437       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1438   GlobalDecl OtherGD;
1439   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1440     assert(OtherGD.getCanonicalDecl()
1441                .getDecl()
1442                ->getAsFunction()
1443                ->isMultiVersion() &&
1444            "Other GD should now be a multiversioned function");
1445     // OtherFD is the version of this function that was mangled BEFORE
1446     // becoming a MultiVersion function.  It potentially needs to be updated.
1447     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1448                                       .getDecl()
1449                                       ->getAsFunction()
1450                                       ->getMostRecentDecl();
1451     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1452     // This is so that if the initial version was already the 'default'
1453     // version, we don't try to update it.
1454     if (OtherName != NonTargetName) {
1455       // Remove instead of erase, since others may have stored the StringRef
1456       // to this.
1457       const auto ExistingRecord = Manglings.find(NonTargetName);
1458       if (ExistingRecord != std::end(Manglings))
1459         Manglings.remove(&(*ExistingRecord));
1460       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1461       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1462           Result.first->first();
1463       // If this is the current decl is being created, make sure we update the name.
1464       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1465         CurName = OtherNameRef;
1466       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1467         Entry->setName(OtherName);
1468     }
1469   }
1470 }
1471 
1472 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1473   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1474 
1475   // Some ABIs don't have constructor variants.  Make sure that base and
1476   // complete constructors get mangled the same.
1477   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1478     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1479       CXXCtorType OrigCtorType = GD.getCtorType();
1480       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1481       if (OrigCtorType == Ctor_Base)
1482         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1483     }
1484   }
1485 
1486   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1487   // static device variable depends on whether the variable is referenced by
1488   // a host or device host function. Therefore the mangled name cannot be
1489   // cached.
1490   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1491     auto FoundName = MangledDeclNames.find(CanonicalGD);
1492     if (FoundName != MangledDeclNames.end())
1493       return FoundName->second;
1494   }
1495 
1496   // Keep the first result in the case of a mangling collision.
1497   const auto *ND = cast<NamedDecl>(GD.getDecl());
1498   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1499 
1500   // Ensure either we have different ABIs between host and device compilations,
1501   // says host compilation following MSVC ABI but device compilation follows
1502   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1503   // mangling should be the same after name stubbing. The later checking is
1504   // very important as the device kernel name being mangled in host-compilation
1505   // is used to resolve the device binaries to be executed. Inconsistent naming
1506   // result in undefined behavior. Even though we cannot check that naming
1507   // directly between host- and device-compilations, the host- and
1508   // device-mangling in host compilation could help catching certain ones.
1509   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1510          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1511          (getContext().getAuxTargetInfo() &&
1512           (getContext().getAuxTargetInfo()->getCXXABI() !=
1513            getContext().getTargetInfo().getCXXABI())) ||
1514          getCUDARuntime().getDeviceSideName(ND) ==
1515              getMangledNameImpl(
1516                  *this,
1517                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1518                  ND));
1519 
1520   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1521   return MangledDeclNames[CanonicalGD] = Result.first->first();
1522 }
1523 
1524 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1525                                              const BlockDecl *BD) {
1526   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1527   const Decl *D = GD.getDecl();
1528 
1529   SmallString<256> Buffer;
1530   llvm::raw_svector_ostream Out(Buffer);
1531   if (!D)
1532     MangleCtx.mangleGlobalBlock(BD,
1533       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1534   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1535     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1536   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1537     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1538   else
1539     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1540 
1541   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1542   return Result.first->first();
1543 }
1544 
1545 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1546   auto it = MangledDeclNames.begin();
1547   while (it != MangledDeclNames.end()) {
1548     if (it->second == Name)
1549       return it->first;
1550     it++;
1551   }
1552   return GlobalDecl();
1553 }
1554 
1555 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1556   return getModule().getNamedValue(Name);
1557 }
1558 
1559 /// AddGlobalCtor - Add a function to the list that will be called before
1560 /// main() runs.
1561 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1562                                   llvm::Constant *AssociatedData) {
1563   // FIXME: Type coercion of void()* types.
1564   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1565 }
1566 
1567 /// AddGlobalDtor - Add a function to the list that will be called
1568 /// when the module is unloaded.
1569 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1570                                   bool IsDtorAttrFunc) {
1571   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1572       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1573     DtorsUsingAtExit[Priority].push_back(Dtor);
1574     return;
1575   }
1576 
1577   // FIXME: Type coercion of void()* types.
1578   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1579 }
1580 
1581 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1582   if (Fns.empty()) return;
1583 
1584   // Ctor function type is void()*.
1585   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1586   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1587       TheModule.getDataLayout().getProgramAddressSpace());
1588 
1589   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1590   llvm::StructType *CtorStructTy = llvm::StructType::get(
1591       Int32Ty, CtorPFTy, VoidPtrTy);
1592 
1593   // Construct the constructor and destructor arrays.
1594   ConstantInitBuilder builder(*this);
1595   auto ctors = builder.beginArray(CtorStructTy);
1596   for (const auto &I : Fns) {
1597     auto ctor = ctors.beginStruct(CtorStructTy);
1598     ctor.addInt(Int32Ty, I.Priority);
1599     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1600     if (I.AssociatedData)
1601       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1602     else
1603       ctor.addNullPointer(VoidPtrTy);
1604     ctor.finishAndAddTo(ctors);
1605   }
1606 
1607   auto list =
1608     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1609                                 /*constant*/ false,
1610                                 llvm::GlobalValue::AppendingLinkage);
1611 
1612   // The LTO linker doesn't seem to like it when we set an alignment
1613   // on appending variables.  Take it off as a workaround.
1614   list->setAlignment(llvm::None);
1615 
1616   Fns.clear();
1617 }
1618 
1619 llvm::GlobalValue::LinkageTypes
1620 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1621   const auto *D = cast<FunctionDecl>(GD.getDecl());
1622 
1623   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1624 
1625   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1626     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1627 
1628   if (isa<CXXConstructorDecl>(D) &&
1629       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1630       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1631     // Our approach to inheriting constructors is fundamentally different from
1632     // that used by the MS ABI, so keep our inheriting constructor thunks
1633     // internal rather than trying to pick an unambiguous mangling for them.
1634     return llvm::GlobalValue::InternalLinkage;
1635   }
1636 
1637   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1638 }
1639 
1640 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1641   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1642   if (!MDS) return nullptr;
1643 
1644   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1645 }
1646 
1647 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1648                                               const CGFunctionInfo &Info,
1649                                               llvm::Function *F, bool IsThunk) {
1650   unsigned CallingConv;
1651   llvm::AttributeList PAL;
1652   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1653                          /*AttrOnCallSite=*/false, IsThunk);
1654   F->setAttributes(PAL);
1655   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1656 }
1657 
1658 static void removeImageAccessQualifier(std::string& TyName) {
1659   std::string ReadOnlyQual("__read_only");
1660   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1661   if (ReadOnlyPos != std::string::npos)
1662     // "+ 1" for the space after access qualifier.
1663     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1664   else {
1665     std::string WriteOnlyQual("__write_only");
1666     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1667     if (WriteOnlyPos != std::string::npos)
1668       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1669     else {
1670       std::string ReadWriteQual("__read_write");
1671       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1672       if (ReadWritePos != std::string::npos)
1673         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1674     }
1675   }
1676 }
1677 
1678 // Returns the address space id that should be produced to the
1679 // kernel_arg_addr_space metadata. This is always fixed to the ids
1680 // as specified in the SPIR 2.0 specification in order to differentiate
1681 // for example in clGetKernelArgInfo() implementation between the address
1682 // spaces with targets without unique mapping to the OpenCL address spaces
1683 // (basically all single AS CPUs).
1684 static unsigned ArgInfoAddressSpace(LangAS AS) {
1685   switch (AS) {
1686   case LangAS::opencl_global:
1687     return 1;
1688   case LangAS::opencl_constant:
1689     return 2;
1690   case LangAS::opencl_local:
1691     return 3;
1692   case LangAS::opencl_generic:
1693     return 4; // Not in SPIR 2.0 specs.
1694   case LangAS::opencl_global_device:
1695     return 5;
1696   case LangAS::opencl_global_host:
1697     return 6;
1698   default:
1699     return 0; // Assume private.
1700   }
1701 }
1702 
1703 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1704                                          const FunctionDecl *FD,
1705                                          CodeGenFunction *CGF) {
1706   assert(((FD && CGF) || (!FD && !CGF)) &&
1707          "Incorrect use - FD and CGF should either be both null or not!");
1708   // Create MDNodes that represent the kernel arg metadata.
1709   // Each MDNode is a list in the form of "key", N number of values which is
1710   // the same number of values as their are kernel arguments.
1711 
1712   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1713 
1714   // MDNode for the kernel argument address space qualifiers.
1715   SmallVector<llvm::Metadata *, 8> addressQuals;
1716 
1717   // MDNode for the kernel argument access qualifiers (images only).
1718   SmallVector<llvm::Metadata *, 8> accessQuals;
1719 
1720   // MDNode for the kernel argument type names.
1721   SmallVector<llvm::Metadata *, 8> argTypeNames;
1722 
1723   // MDNode for the kernel argument base type names.
1724   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1725 
1726   // MDNode for the kernel argument type qualifiers.
1727   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1728 
1729   // MDNode for the kernel argument names.
1730   SmallVector<llvm::Metadata *, 8> argNames;
1731 
1732   if (FD && CGF)
1733     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1734       const ParmVarDecl *parm = FD->getParamDecl(i);
1735       // Get argument name.
1736       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1737 
1738       if (!getLangOpts().OpenCL)
1739         continue;
1740       QualType ty = parm->getType();
1741       std::string typeQuals;
1742 
1743       // Get image and pipe access qualifier:
1744       if (ty->isImageType() || ty->isPipeType()) {
1745         const Decl *PDecl = parm;
1746         if (auto *TD = dyn_cast<TypedefType>(ty))
1747           PDecl = TD->getDecl();
1748         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1749         if (A && A->isWriteOnly())
1750           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1751         else if (A && A->isReadWrite())
1752           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1753         else
1754           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1755       } else
1756         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1757 
1758       auto getTypeSpelling = [&](QualType Ty) {
1759         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1760 
1761         if (Ty.isCanonical()) {
1762           StringRef typeNameRef = typeName;
1763           // Turn "unsigned type" to "utype"
1764           if (typeNameRef.consume_front("unsigned "))
1765             return std::string("u") + typeNameRef.str();
1766           if (typeNameRef.consume_front("signed "))
1767             return typeNameRef.str();
1768         }
1769 
1770         return typeName;
1771       };
1772 
1773       if (ty->isPointerType()) {
1774         QualType pointeeTy = ty->getPointeeType();
1775 
1776         // Get address qualifier.
1777         addressQuals.push_back(
1778             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1779                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1780 
1781         // Get argument type name.
1782         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1783         std::string baseTypeName =
1784             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1785         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1786         argBaseTypeNames.push_back(
1787             llvm::MDString::get(VMContext, baseTypeName));
1788 
1789         // Get argument type qualifiers:
1790         if (ty.isRestrictQualified())
1791           typeQuals = "restrict";
1792         if (pointeeTy.isConstQualified() ||
1793             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1794           typeQuals += typeQuals.empty() ? "const" : " const";
1795         if (pointeeTy.isVolatileQualified())
1796           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1797       } else {
1798         uint32_t AddrSpc = 0;
1799         bool isPipe = ty->isPipeType();
1800         if (ty->isImageType() || isPipe)
1801           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1802 
1803         addressQuals.push_back(
1804             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1805 
1806         // Get argument type name.
1807         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1808         std::string typeName = getTypeSpelling(ty);
1809         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1810 
1811         // Remove access qualifiers on images
1812         // (as they are inseparable from type in clang implementation,
1813         // but OpenCL spec provides a special query to get access qualifier
1814         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1815         if (ty->isImageType()) {
1816           removeImageAccessQualifier(typeName);
1817           removeImageAccessQualifier(baseTypeName);
1818         }
1819 
1820         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1821         argBaseTypeNames.push_back(
1822             llvm::MDString::get(VMContext, baseTypeName));
1823 
1824         if (isPipe)
1825           typeQuals = "pipe";
1826       }
1827       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1828     }
1829 
1830   if (getLangOpts().OpenCL) {
1831     Fn->setMetadata("kernel_arg_addr_space",
1832                     llvm::MDNode::get(VMContext, addressQuals));
1833     Fn->setMetadata("kernel_arg_access_qual",
1834                     llvm::MDNode::get(VMContext, accessQuals));
1835     Fn->setMetadata("kernel_arg_type",
1836                     llvm::MDNode::get(VMContext, argTypeNames));
1837     Fn->setMetadata("kernel_arg_base_type",
1838                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1839     Fn->setMetadata("kernel_arg_type_qual",
1840                     llvm::MDNode::get(VMContext, argTypeQuals));
1841   }
1842   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1843       getCodeGenOpts().HIPSaveKernelArgName)
1844     Fn->setMetadata("kernel_arg_name",
1845                     llvm::MDNode::get(VMContext, argNames));
1846 }
1847 
1848 /// Determines whether the language options require us to model
1849 /// unwind exceptions.  We treat -fexceptions as mandating this
1850 /// except under the fragile ObjC ABI with only ObjC exceptions
1851 /// enabled.  This means, for example, that C with -fexceptions
1852 /// enables this.
1853 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1854   // If exceptions are completely disabled, obviously this is false.
1855   if (!LangOpts.Exceptions) return false;
1856 
1857   // If C++ exceptions are enabled, this is true.
1858   if (LangOpts.CXXExceptions) return true;
1859 
1860   // If ObjC exceptions are enabled, this depends on the ABI.
1861   if (LangOpts.ObjCExceptions) {
1862     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1863   }
1864 
1865   return true;
1866 }
1867 
1868 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1869                                                       const CXXMethodDecl *MD) {
1870   // Check that the type metadata can ever actually be used by a call.
1871   if (!CGM.getCodeGenOpts().LTOUnit ||
1872       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1873     return false;
1874 
1875   // Only functions whose address can be taken with a member function pointer
1876   // need this sort of type metadata.
1877   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1878          !isa<CXXDestructorDecl>(MD);
1879 }
1880 
1881 std::vector<const CXXRecordDecl *>
1882 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1883   llvm::SetVector<const CXXRecordDecl *> MostBases;
1884 
1885   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1886   CollectMostBases = [&](const CXXRecordDecl *RD) {
1887     if (RD->getNumBases() == 0)
1888       MostBases.insert(RD);
1889     for (const CXXBaseSpecifier &B : RD->bases())
1890       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1891   };
1892   CollectMostBases(RD);
1893   return MostBases.takeVector();
1894 }
1895 
1896 llvm::GlobalVariable *
1897 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1898   auto It = RTTIProxyMap.find(Addr);
1899   if (It != RTTIProxyMap.end())
1900     return It->second;
1901 
1902   auto *FTRTTIProxy = new llvm::GlobalVariable(
1903       TheModule, Addr->getType(),
1904       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1905       "__llvm_rtti_proxy");
1906   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1907 
1908   RTTIProxyMap[Addr] = FTRTTIProxy;
1909   return FTRTTIProxy;
1910 }
1911 
1912 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1913                                                            llvm::Function *F) {
1914   llvm::AttrBuilder B(F->getContext());
1915 
1916   if (CodeGenOpts.UnwindTables)
1917     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1918 
1919   if (CodeGenOpts.StackClashProtector)
1920     B.addAttribute("probe-stack", "inline-asm");
1921 
1922   if (!hasUnwindExceptions(LangOpts))
1923     B.addAttribute(llvm::Attribute::NoUnwind);
1924 
1925   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1926     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1927       B.addAttribute(llvm::Attribute::StackProtect);
1928     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1929       B.addAttribute(llvm::Attribute::StackProtectStrong);
1930     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1931       B.addAttribute(llvm::Attribute::StackProtectReq);
1932   }
1933 
1934   if (!D) {
1935     // If we don't have a declaration to control inlining, the function isn't
1936     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1937     // disabled, mark the function as noinline.
1938     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1939         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1940       B.addAttribute(llvm::Attribute::NoInline);
1941 
1942     F->addFnAttrs(B);
1943     return;
1944   }
1945 
1946   // Track whether we need to add the optnone LLVM attribute,
1947   // starting with the default for this optimization level.
1948   bool ShouldAddOptNone =
1949       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1950   // We can't add optnone in the following cases, it won't pass the verifier.
1951   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1952   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1953 
1954   // Add optnone, but do so only if the function isn't always_inline.
1955   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1956       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1957     B.addAttribute(llvm::Attribute::OptimizeNone);
1958 
1959     // OptimizeNone implies noinline; we should not be inlining such functions.
1960     B.addAttribute(llvm::Attribute::NoInline);
1961 
1962     // We still need to handle naked functions even though optnone subsumes
1963     // much of their semantics.
1964     if (D->hasAttr<NakedAttr>())
1965       B.addAttribute(llvm::Attribute::Naked);
1966 
1967     // OptimizeNone wins over OptimizeForSize and MinSize.
1968     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1969     F->removeFnAttr(llvm::Attribute::MinSize);
1970   } else if (D->hasAttr<NakedAttr>()) {
1971     // Naked implies noinline: we should not be inlining such functions.
1972     B.addAttribute(llvm::Attribute::Naked);
1973     B.addAttribute(llvm::Attribute::NoInline);
1974   } else if (D->hasAttr<NoDuplicateAttr>()) {
1975     B.addAttribute(llvm::Attribute::NoDuplicate);
1976   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1977     // Add noinline if the function isn't always_inline.
1978     B.addAttribute(llvm::Attribute::NoInline);
1979   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1980              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1981     // (noinline wins over always_inline, and we can't specify both in IR)
1982     B.addAttribute(llvm::Attribute::AlwaysInline);
1983   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1984     // If we're not inlining, then force everything that isn't always_inline to
1985     // carry an explicit noinline attribute.
1986     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1987       B.addAttribute(llvm::Attribute::NoInline);
1988   } else {
1989     // Otherwise, propagate the inline hint attribute and potentially use its
1990     // absence to mark things as noinline.
1991     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1992       // Search function and template pattern redeclarations for inline.
1993       auto CheckForInline = [](const FunctionDecl *FD) {
1994         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1995           return Redecl->isInlineSpecified();
1996         };
1997         if (any_of(FD->redecls(), CheckRedeclForInline))
1998           return true;
1999         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2000         if (!Pattern)
2001           return false;
2002         return any_of(Pattern->redecls(), CheckRedeclForInline);
2003       };
2004       if (CheckForInline(FD)) {
2005         B.addAttribute(llvm::Attribute::InlineHint);
2006       } else if (CodeGenOpts.getInlining() ==
2007                      CodeGenOptions::OnlyHintInlining &&
2008                  !FD->isInlined() &&
2009                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2010         B.addAttribute(llvm::Attribute::NoInline);
2011       }
2012     }
2013   }
2014 
2015   // Add other optimization related attributes if we are optimizing this
2016   // function.
2017   if (!D->hasAttr<OptimizeNoneAttr>()) {
2018     if (D->hasAttr<ColdAttr>()) {
2019       if (!ShouldAddOptNone)
2020         B.addAttribute(llvm::Attribute::OptimizeForSize);
2021       B.addAttribute(llvm::Attribute::Cold);
2022     }
2023     if (D->hasAttr<HotAttr>())
2024       B.addAttribute(llvm::Attribute::Hot);
2025     if (D->hasAttr<MinSizeAttr>())
2026       B.addAttribute(llvm::Attribute::MinSize);
2027   }
2028 
2029   F->addFnAttrs(B);
2030 
2031   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2032   if (alignment)
2033     F->setAlignment(llvm::Align(alignment));
2034 
2035   if (!D->hasAttr<AlignedAttr>())
2036     if (LangOpts.FunctionAlignment)
2037       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2038 
2039   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2040   // reserve a bit for differentiating between virtual and non-virtual member
2041   // functions. If the current target's C++ ABI requires this and this is a
2042   // member function, set its alignment accordingly.
2043   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2044     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2045       F->setAlignment(llvm::Align(2));
2046   }
2047 
2048   // In the cross-dso CFI mode with canonical jump tables, we want !type
2049   // attributes on definitions only.
2050   if (CodeGenOpts.SanitizeCfiCrossDso &&
2051       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2052     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2053       // Skip available_externally functions. They won't be codegen'ed in the
2054       // current module anyway.
2055       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2056         CreateFunctionTypeMetadataForIcall(FD, F);
2057     }
2058   }
2059 
2060   // Emit type metadata on member functions for member function pointer checks.
2061   // These are only ever necessary on definitions; we're guaranteed that the
2062   // definition will be present in the LTO unit as a result of LTO visibility.
2063   auto *MD = dyn_cast<CXXMethodDecl>(D);
2064   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2065     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2066       llvm::Metadata *Id =
2067           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2068               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2069       F->addTypeMetadata(0, Id);
2070     }
2071   }
2072 }
2073 
2074 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2075                                                   llvm::Function *F) {
2076   if (D->hasAttr<StrictFPAttr>()) {
2077     llvm::AttrBuilder FuncAttrs(F->getContext());
2078     FuncAttrs.addAttribute("strictfp");
2079     F->addFnAttrs(FuncAttrs);
2080   }
2081 }
2082 
2083 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2084   const Decl *D = GD.getDecl();
2085   if (isa_and_nonnull<NamedDecl>(D))
2086     setGVProperties(GV, GD);
2087   else
2088     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2089 
2090   if (D && D->hasAttr<UsedAttr>())
2091     addUsedOrCompilerUsedGlobal(GV);
2092 
2093   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2094     const auto *VD = cast<VarDecl>(D);
2095     if (VD->getType().isConstQualified() &&
2096         VD->getStorageDuration() == SD_Static)
2097       addUsedOrCompilerUsedGlobal(GV);
2098   }
2099 }
2100 
2101 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2102                                                 llvm::AttrBuilder &Attrs) {
2103   // Add target-cpu and target-features attributes to functions. If
2104   // we have a decl for the function and it has a target attribute then
2105   // parse that and add it to the feature set.
2106   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2107   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2108   std::vector<std::string> Features;
2109   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2110   FD = FD ? FD->getMostRecentDecl() : FD;
2111   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2112   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2113   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2114   bool AddedAttr = false;
2115   if (TD || SD || TC) {
2116     llvm::StringMap<bool> FeatureMap;
2117     getContext().getFunctionFeatureMap(FeatureMap, GD);
2118 
2119     // Produce the canonical string for this set of features.
2120     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2121       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2122 
2123     // Now add the target-cpu and target-features to the function.
2124     // While we populated the feature map above, we still need to
2125     // get and parse the target attribute so we can get the cpu for
2126     // the function.
2127     if (TD) {
2128       ParsedTargetAttr ParsedAttr = TD->parse();
2129       if (!ParsedAttr.Architecture.empty() &&
2130           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2131         TargetCPU = ParsedAttr.Architecture;
2132         TuneCPU = ""; // Clear the tune CPU.
2133       }
2134       if (!ParsedAttr.Tune.empty() &&
2135           getTarget().isValidCPUName(ParsedAttr.Tune))
2136         TuneCPU = ParsedAttr.Tune;
2137     }
2138 
2139     if (SD) {
2140       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2141       // favor this processor.
2142       TuneCPU = getTarget().getCPUSpecificTuneName(
2143           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2144     }
2145   } else {
2146     // Otherwise just add the existing target cpu and target features to the
2147     // function.
2148     Features = getTarget().getTargetOpts().Features;
2149   }
2150 
2151   if (!TargetCPU.empty()) {
2152     Attrs.addAttribute("target-cpu", TargetCPU);
2153     AddedAttr = true;
2154   }
2155   if (!TuneCPU.empty()) {
2156     Attrs.addAttribute("tune-cpu", TuneCPU);
2157     AddedAttr = true;
2158   }
2159   if (!Features.empty()) {
2160     llvm::sort(Features);
2161     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2162     AddedAttr = true;
2163   }
2164 
2165   return AddedAttr;
2166 }
2167 
2168 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2169                                           llvm::GlobalObject *GO) {
2170   const Decl *D = GD.getDecl();
2171   SetCommonAttributes(GD, GO);
2172 
2173   if (D) {
2174     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2175       if (D->hasAttr<RetainAttr>())
2176         addUsedGlobal(GV);
2177       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2178         GV->addAttribute("bss-section", SA->getName());
2179       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2180         GV->addAttribute("data-section", SA->getName());
2181       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2182         GV->addAttribute("rodata-section", SA->getName());
2183       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2184         GV->addAttribute("relro-section", SA->getName());
2185     }
2186 
2187     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2188       if (D->hasAttr<RetainAttr>())
2189         addUsedGlobal(F);
2190       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2191         if (!D->getAttr<SectionAttr>())
2192           F->addFnAttr("implicit-section-name", SA->getName());
2193 
2194       llvm::AttrBuilder Attrs(F->getContext());
2195       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2196         // We know that GetCPUAndFeaturesAttributes will always have the
2197         // newest set, since it has the newest possible FunctionDecl, so the
2198         // new ones should replace the old.
2199         llvm::AttributeMask RemoveAttrs;
2200         RemoveAttrs.addAttribute("target-cpu");
2201         RemoveAttrs.addAttribute("target-features");
2202         RemoveAttrs.addAttribute("tune-cpu");
2203         F->removeFnAttrs(RemoveAttrs);
2204         F->addFnAttrs(Attrs);
2205       }
2206     }
2207 
2208     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2209       GO->setSection(CSA->getName());
2210     else if (const auto *SA = D->getAttr<SectionAttr>())
2211       GO->setSection(SA->getName());
2212   }
2213 
2214   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2215 }
2216 
2217 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2218                                                   llvm::Function *F,
2219                                                   const CGFunctionInfo &FI) {
2220   const Decl *D = GD.getDecl();
2221   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2222   SetLLVMFunctionAttributesForDefinition(D, F);
2223 
2224   F->setLinkage(llvm::Function::InternalLinkage);
2225 
2226   setNonAliasAttributes(GD, F);
2227 }
2228 
2229 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2230   // Set linkage and visibility in case we never see a definition.
2231   LinkageInfo LV = ND->getLinkageAndVisibility();
2232   // Don't set internal linkage on declarations.
2233   // "extern_weak" is overloaded in LLVM; we probably should have
2234   // separate linkage types for this.
2235   if (isExternallyVisible(LV.getLinkage()) &&
2236       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2237     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2238 }
2239 
2240 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2241                                                        llvm::Function *F) {
2242   // Only if we are checking indirect calls.
2243   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2244     return;
2245 
2246   // Non-static class methods are handled via vtable or member function pointer
2247   // checks elsewhere.
2248   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2249     return;
2250 
2251   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2252   F->addTypeMetadata(0, MD);
2253   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2254 
2255   // Emit a hash-based bit set entry for cross-DSO calls.
2256   if (CodeGenOpts.SanitizeCfiCrossDso)
2257     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2258       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2259 }
2260 
2261 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2262                                           bool IsIncompleteFunction,
2263                                           bool IsThunk) {
2264 
2265   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2266     // If this is an intrinsic function, set the function's attributes
2267     // to the intrinsic's attributes.
2268     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2269     return;
2270   }
2271 
2272   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2273 
2274   if (!IsIncompleteFunction)
2275     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2276                               IsThunk);
2277 
2278   // Add the Returned attribute for "this", except for iOS 5 and earlier
2279   // where substantial code, including the libstdc++ dylib, was compiled with
2280   // GCC and does not actually return "this".
2281   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2282       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2283     assert(!F->arg_empty() &&
2284            F->arg_begin()->getType()
2285              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2286            "unexpected this return");
2287     F->addParamAttr(0, llvm::Attribute::Returned);
2288   }
2289 
2290   // Only a few attributes are set on declarations; these may later be
2291   // overridden by a definition.
2292 
2293   setLinkageForGV(F, FD);
2294   setGVProperties(F, FD);
2295 
2296   // Setup target-specific attributes.
2297   if (!IsIncompleteFunction && F->isDeclaration())
2298     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2299 
2300   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2301     F->setSection(CSA->getName());
2302   else if (const auto *SA = FD->getAttr<SectionAttr>())
2303      F->setSection(SA->getName());
2304 
2305   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2306     if (EA->isError())
2307       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2308     else if (EA->isWarning())
2309       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2310   }
2311 
2312   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2313   if (FD->isInlineBuiltinDeclaration()) {
2314     const FunctionDecl *FDBody;
2315     bool HasBody = FD->hasBody(FDBody);
2316     (void)HasBody;
2317     assert(HasBody && "Inline builtin declarations should always have an "
2318                       "available body!");
2319     if (shouldEmitFunction(FDBody))
2320       F->addFnAttr(llvm::Attribute::NoBuiltin);
2321   }
2322 
2323   if (FD->isReplaceableGlobalAllocationFunction()) {
2324     // A replaceable global allocation function does not act like a builtin by
2325     // default, only if it is invoked by a new-expression or delete-expression.
2326     F->addFnAttr(llvm::Attribute::NoBuiltin);
2327   }
2328 
2329   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2330     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2331   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2332     if (MD->isVirtual())
2333       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2334 
2335   // Don't emit entries for function declarations in the cross-DSO mode. This
2336   // is handled with better precision by the receiving DSO. But if jump tables
2337   // are non-canonical then we need type metadata in order to produce the local
2338   // jump table.
2339   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2340       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2341     CreateFunctionTypeMetadataForIcall(FD, F);
2342 
2343   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2344     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2345 
2346   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2347     // Annotate the callback behavior as metadata:
2348     //  - The callback callee (as argument number).
2349     //  - The callback payloads (as argument numbers).
2350     llvm::LLVMContext &Ctx = F->getContext();
2351     llvm::MDBuilder MDB(Ctx);
2352 
2353     // The payload indices are all but the first one in the encoding. The first
2354     // identifies the callback callee.
2355     int CalleeIdx = *CB->encoding_begin();
2356     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2357     F->addMetadata(llvm::LLVMContext::MD_callback,
2358                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2359                                                CalleeIdx, PayloadIndices,
2360                                                /* VarArgsArePassed */ false)}));
2361   }
2362 }
2363 
2364 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2365   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2366          "Only globals with definition can force usage.");
2367   LLVMUsed.emplace_back(GV);
2368 }
2369 
2370 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2371   assert(!GV->isDeclaration() &&
2372          "Only globals with definition can force usage.");
2373   LLVMCompilerUsed.emplace_back(GV);
2374 }
2375 
2376 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2377   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2378          "Only globals with definition can force usage.");
2379   if (getTriple().isOSBinFormatELF())
2380     LLVMCompilerUsed.emplace_back(GV);
2381   else
2382     LLVMUsed.emplace_back(GV);
2383 }
2384 
2385 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2386                      std::vector<llvm::WeakTrackingVH> &List) {
2387   // Don't create llvm.used if there is no need.
2388   if (List.empty())
2389     return;
2390 
2391   // Convert List to what ConstantArray needs.
2392   SmallVector<llvm::Constant*, 8> UsedArray;
2393   UsedArray.resize(List.size());
2394   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2395     UsedArray[i] =
2396         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2397             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2398   }
2399 
2400   if (UsedArray.empty())
2401     return;
2402   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2403 
2404   auto *GV = new llvm::GlobalVariable(
2405       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2406       llvm::ConstantArray::get(ATy, UsedArray), Name);
2407 
2408   GV->setSection("llvm.metadata");
2409 }
2410 
2411 void CodeGenModule::emitLLVMUsed() {
2412   emitUsed(*this, "llvm.used", LLVMUsed);
2413   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2414 }
2415 
2416 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2417   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2418   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2419 }
2420 
2421 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2422   llvm::SmallString<32> Opt;
2423   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2424   if (Opt.empty())
2425     return;
2426   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2427   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2428 }
2429 
2430 void CodeGenModule::AddDependentLib(StringRef Lib) {
2431   auto &C = getLLVMContext();
2432   if (getTarget().getTriple().isOSBinFormatELF()) {
2433       ELFDependentLibraries.push_back(
2434         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2435     return;
2436   }
2437 
2438   llvm::SmallString<24> Opt;
2439   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2440   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2441   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2442 }
2443 
2444 /// Add link options implied by the given module, including modules
2445 /// it depends on, using a postorder walk.
2446 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2447                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2448                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2449   // Import this module's parent.
2450   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2451     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2452   }
2453 
2454   // Import this module's dependencies.
2455   for (Module *Import : llvm::reverse(Mod->Imports)) {
2456     if (Visited.insert(Import).second)
2457       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2458   }
2459 
2460   // Add linker options to link against the libraries/frameworks
2461   // described by this module.
2462   llvm::LLVMContext &Context = CGM.getLLVMContext();
2463   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2464 
2465   // For modules that use export_as for linking, use that module
2466   // name instead.
2467   if (Mod->UseExportAsModuleLinkName)
2468     return;
2469 
2470   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2471     // Link against a framework.  Frameworks are currently Darwin only, so we
2472     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2473     if (LL.IsFramework) {
2474       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2475                                  llvm::MDString::get(Context, LL.Library)};
2476 
2477       Metadata.push_back(llvm::MDNode::get(Context, Args));
2478       continue;
2479     }
2480 
2481     // Link against a library.
2482     if (IsELF) {
2483       llvm::Metadata *Args[2] = {
2484           llvm::MDString::get(Context, "lib"),
2485           llvm::MDString::get(Context, LL.Library),
2486       };
2487       Metadata.push_back(llvm::MDNode::get(Context, Args));
2488     } else {
2489       llvm::SmallString<24> Opt;
2490       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2491       auto *OptString = llvm::MDString::get(Context, Opt);
2492       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2493     }
2494   }
2495 }
2496 
2497 void CodeGenModule::EmitModuleLinkOptions() {
2498   // Collect the set of all of the modules we want to visit to emit link
2499   // options, which is essentially the imported modules and all of their
2500   // non-explicit child modules.
2501   llvm::SetVector<clang::Module *> LinkModules;
2502   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2503   SmallVector<clang::Module *, 16> Stack;
2504 
2505   // Seed the stack with imported modules.
2506   for (Module *M : ImportedModules) {
2507     // Do not add any link flags when an implementation TU of a module imports
2508     // a header of that same module.
2509     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2510         !getLangOpts().isCompilingModule())
2511       continue;
2512     if (Visited.insert(M).second)
2513       Stack.push_back(M);
2514   }
2515 
2516   // Find all of the modules to import, making a little effort to prune
2517   // non-leaf modules.
2518   while (!Stack.empty()) {
2519     clang::Module *Mod = Stack.pop_back_val();
2520 
2521     bool AnyChildren = false;
2522 
2523     // Visit the submodules of this module.
2524     for (const auto &SM : Mod->submodules()) {
2525       // Skip explicit children; they need to be explicitly imported to be
2526       // linked against.
2527       if (SM->IsExplicit)
2528         continue;
2529 
2530       if (Visited.insert(SM).second) {
2531         Stack.push_back(SM);
2532         AnyChildren = true;
2533       }
2534     }
2535 
2536     // We didn't find any children, so add this module to the list of
2537     // modules to link against.
2538     if (!AnyChildren) {
2539       LinkModules.insert(Mod);
2540     }
2541   }
2542 
2543   // Add link options for all of the imported modules in reverse topological
2544   // order.  We don't do anything to try to order import link flags with respect
2545   // to linker options inserted by things like #pragma comment().
2546   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2547   Visited.clear();
2548   for (Module *M : LinkModules)
2549     if (Visited.insert(M).second)
2550       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2551   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2552   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2553 
2554   // Add the linker options metadata flag.
2555   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2556   for (auto *MD : LinkerOptionsMetadata)
2557     NMD->addOperand(MD);
2558 }
2559 
2560 void CodeGenModule::EmitDeferred() {
2561   // Emit deferred declare target declarations.
2562   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2563     getOpenMPRuntime().emitDeferredTargetDecls();
2564 
2565   // Emit code for any potentially referenced deferred decls.  Since a
2566   // previously unused static decl may become used during the generation of code
2567   // for a static function, iterate until no changes are made.
2568 
2569   if (!DeferredVTables.empty()) {
2570     EmitDeferredVTables();
2571 
2572     // Emitting a vtable doesn't directly cause more vtables to
2573     // become deferred, although it can cause functions to be
2574     // emitted that then need those vtables.
2575     assert(DeferredVTables.empty());
2576   }
2577 
2578   // Emit CUDA/HIP static device variables referenced by host code only.
2579   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2580   // needed for further handling.
2581   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2582     llvm::append_range(DeferredDeclsToEmit,
2583                        getContext().CUDADeviceVarODRUsedByHost);
2584 
2585   // Stop if we're out of both deferred vtables and deferred declarations.
2586   if (DeferredDeclsToEmit.empty())
2587     return;
2588 
2589   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2590   // work, it will not interfere with this.
2591   std::vector<GlobalDecl> CurDeclsToEmit;
2592   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2593 
2594   for (GlobalDecl &D : CurDeclsToEmit) {
2595     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2596     // to get GlobalValue with exactly the type we need, not something that
2597     // might had been created for another decl with the same mangled name but
2598     // different type.
2599     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2600         GetAddrOfGlobal(D, ForDefinition));
2601 
2602     // In case of different address spaces, we may still get a cast, even with
2603     // IsForDefinition equal to true. Query mangled names table to get
2604     // GlobalValue.
2605     if (!GV)
2606       GV = GetGlobalValue(getMangledName(D));
2607 
2608     // Make sure GetGlobalValue returned non-null.
2609     assert(GV);
2610 
2611     // Check to see if we've already emitted this.  This is necessary
2612     // for a couple of reasons: first, decls can end up in the
2613     // deferred-decls queue multiple times, and second, decls can end
2614     // up with definitions in unusual ways (e.g. by an extern inline
2615     // function acquiring a strong function redefinition).  Just
2616     // ignore these cases.
2617     if (!GV->isDeclaration())
2618       continue;
2619 
2620     // If this is OpenMP, check if it is legal to emit this global normally.
2621     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2622       continue;
2623 
2624     // Otherwise, emit the definition and move on to the next one.
2625     EmitGlobalDefinition(D, GV);
2626 
2627     // If we found out that we need to emit more decls, do that recursively.
2628     // This has the advantage that the decls are emitted in a DFS and related
2629     // ones are close together, which is convenient for testing.
2630     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2631       EmitDeferred();
2632       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2633     }
2634   }
2635 }
2636 
2637 void CodeGenModule::EmitVTablesOpportunistically() {
2638   // Try to emit external vtables as available_externally if they have emitted
2639   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2640   // is not allowed to create new references to things that need to be emitted
2641   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2642 
2643   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2644          && "Only emit opportunistic vtables with optimizations");
2645 
2646   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2647     assert(getVTables().isVTableExternal(RD) &&
2648            "This queue should only contain external vtables");
2649     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2650       VTables.GenerateClassData(RD);
2651   }
2652   OpportunisticVTables.clear();
2653 }
2654 
2655 void CodeGenModule::EmitGlobalAnnotations() {
2656   if (Annotations.empty())
2657     return;
2658 
2659   // Create a new global variable for the ConstantStruct in the Module.
2660   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2661     Annotations[0]->getType(), Annotations.size()), Annotations);
2662   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2663                                       llvm::GlobalValue::AppendingLinkage,
2664                                       Array, "llvm.global.annotations");
2665   gv->setSection(AnnotationSection);
2666 }
2667 
2668 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2669   llvm::Constant *&AStr = AnnotationStrings[Str];
2670   if (AStr)
2671     return AStr;
2672 
2673   // Not found yet, create a new global.
2674   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2675   auto *gv =
2676       new llvm::GlobalVariable(getModule(), s->getType(), true,
2677                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2678   gv->setSection(AnnotationSection);
2679   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2680   AStr = gv;
2681   return gv;
2682 }
2683 
2684 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2685   SourceManager &SM = getContext().getSourceManager();
2686   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2687   if (PLoc.isValid())
2688     return EmitAnnotationString(PLoc.getFilename());
2689   return EmitAnnotationString(SM.getBufferName(Loc));
2690 }
2691 
2692 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2693   SourceManager &SM = getContext().getSourceManager();
2694   PresumedLoc PLoc = SM.getPresumedLoc(L);
2695   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2696     SM.getExpansionLineNumber(L);
2697   return llvm::ConstantInt::get(Int32Ty, LineNo);
2698 }
2699 
2700 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2701   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2702   if (Exprs.empty())
2703     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2704 
2705   llvm::FoldingSetNodeID ID;
2706   for (Expr *E : Exprs) {
2707     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2708   }
2709   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2710   if (Lookup)
2711     return Lookup;
2712 
2713   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2714   LLVMArgs.reserve(Exprs.size());
2715   ConstantEmitter ConstEmiter(*this);
2716   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2717     const auto *CE = cast<clang::ConstantExpr>(E);
2718     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2719                                     CE->getType());
2720   });
2721   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2722   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2723                                       llvm::GlobalValue::PrivateLinkage, Struct,
2724                                       ".args");
2725   GV->setSection(AnnotationSection);
2726   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2727   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2728 
2729   Lookup = Bitcasted;
2730   return Bitcasted;
2731 }
2732 
2733 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2734                                                 const AnnotateAttr *AA,
2735                                                 SourceLocation L) {
2736   // Get the globals for file name, annotation, and the line number.
2737   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2738                  *UnitGV = EmitAnnotationUnit(L),
2739                  *LineNoCst = EmitAnnotationLineNo(L),
2740                  *Args = EmitAnnotationArgs(AA);
2741 
2742   llvm::Constant *GVInGlobalsAS = GV;
2743   if (GV->getAddressSpace() !=
2744       getDataLayout().getDefaultGlobalsAddressSpace()) {
2745     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2746         GV, GV->getValueType()->getPointerTo(
2747                 getDataLayout().getDefaultGlobalsAddressSpace()));
2748   }
2749 
2750   // Create the ConstantStruct for the global annotation.
2751   llvm::Constant *Fields[] = {
2752       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2753       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2754       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2755       LineNoCst,
2756       Args,
2757   };
2758   return llvm::ConstantStruct::getAnon(Fields);
2759 }
2760 
2761 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2762                                          llvm::GlobalValue *GV) {
2763   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2764   // Get the struct elements for these annotations.
2765   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2766     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2767 }
2768 
2769 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2770                                        SourceLocation Loc) const {
2771   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2772   // NoSanitize by function name.
2773   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2774     return true;
2775   // NoSanitize by location.
2776   if (Loc.isValid())
2777     return NoSanitizeL.containsLocation(Kind, Loc);
2778   // If location is unknown, this may be a compiler-generated function. Assume
2779   // it's located in the main file.
2780   auto &SM = Context.getSourceManager();
2781   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2782     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2783   }
2784   return false;
2785 }
2786 
2787 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2788                                        llvm::GlobalVariable *GV,
2789                                        SourceLocation Loc, QualType Ty,
2790                                        StringRef Category) const {
2791   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2792   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2793     return true;
2794   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2795     return true;
2796   // Check global type.
2797   if (!Ty.isNull()) {
2798     // Drill down the array types: if global variable of a fixed type is
2799     // not sanitized, we also don't instrument arrays of them.
2800     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2801       Ty = AT->getElementType();
2802     Ty = Ty.getCanonicalType().getUnqualifiedType();
2803     // Only record types (classes, structs etc.) are ignored.
2804     if (Ty->isRecordType()) {
2805       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2806       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2807         return true;
2808     }
2809   }
2810   return false;
2811 }
2812 
2813 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2814                                    StringRef Category) const {
2815   const auto &XRayFilter = getContext().getXRayFilter();
2816   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2817   auto Attr = ImbueAttr::NONE;
2818   if (Loc.isValid())
2819     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2820   if (Attr == ImbueAttr::NONE)
2821     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2822   switch (Attr) {
2823   case ImbueAttr::NONE:
2824     return false;
2825   case ImbueAttr::ALWAYS:
2826     Fn->addFnAttr("function-instrument", "xray-always");
2827     break;
2828   case ImbueAttr::ALWAYS_ARG1:
2829     Fn->addFnAttr("function-instrument", "xray-always");
2830     Fn->addFnAttr("xray-log-args", "1");
2831     break;
2832   case ImbueAttr::NEVER:
2833     Fn->addFnAttr("function-instrument", "xray-never");
2834     break;
2835   }
2836   return true;
2837 }
2838 
2839 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2840                                            SourceLocation Loc) const {
2841   const auto &ProfileList = getContext().getProfileList();
2842   // If the profile list is empty, then instrument everything.
2843   if (ProfileList.isEmpty())
2844     return false;
2845   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2846   // First, check the function name.
2847   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2848   if (V)
2849     return *V;
2850   // Next, check the source location.
2851   if (Loc.isValid()) {
2852     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2853     if (V)
2854       return *V;
2855   }
2856   // If location is unknown, this may be a compiler-generated function. Assume
2857   // it's located in the main file.
2858   auto &SM = Context.getSourceManager();
2859   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2860     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2861     if (V)
2862       return *V;
2863   }
2864   return ProfileList.getDefault();
2865 }
2866 
2867 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2868   // Never defer when EmitAllDecls is specified.
2869   if (LangOpts.EmitAllDecls)
2870     return true;
2871 
2872   if (CodeGenOpts.KeepStaticConsts) {
2873     const auto *VD = dyn_cast<VarDecl>(Global);
2874     if (VD && VD->getType().isConstQualified() &&
2875         VD->getStorageDuration() == SD_Static)
2876       return true;
2877   }
2878 
2879   return getContext().DeclMustBeEmitted(Global);
2880 }
2881 
2882 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2883   // In OpenMP 5.0 variables and function may be marked as
2884   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2885   // that they must be emitted on the host/device. To be sure we need to have
2886   // seen a declare target with an explicit mentioning of the function, we know
2887   // we have if the level of the declare target attribute is -1. Note that we
2888   // check somewhere else if we should emit this at all.
2889   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2890     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2891         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2892     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2893       return false;
2894   }
2895 
2896   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2897     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2898       // Implicit template instantiations may change linkage if they are later
2899       // explicitly instantiated, so they should not be emitted eagerly.
2900       return false;
2901   }
2902   if (const auto *VD = dyn_cast<VarDecl>(Global))
2903     if (Context.getInlineVariableDefinitionKind(VD) ==
2904         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2905       // A definition of an inline constexpr static data member may change
2906       // linkage later if it's redeclared outside the class.
2907       return false;
2908   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2909   // codegen for global variables, because they may be marked as threadprivate.
2910   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2911       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2912       !isTypeConstant(Global->getType(), false) &&
2913       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2914     return false;
2915 
2916   return true;
2917 }
2918 
2919 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2920   StringRef Name = getMangledName(GD);
2921 
2922   // The UUID descriptor should be pointer aligned.
2923   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2924 
2925   // Look for an existing global.
2926   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2927     return ConstantAddress(GV, GV->getValueType(), Alignment);
2928 
2929   ConstantEmitter Emitter(*this);
2930   llvm::Constant *Init;
2931 
2932   APValue &V = GD->getAsAPValue();
2933   if (!V.isAbsent()) {
2934     // If possible, emit the APValue version of the initializer. In particular,
2935     // this gets the type of the constant right.
2936     Init = Emitter.emitForInitializer(
2937         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2938   } else {
2939     // As a fallback, directly construct the constant.
2940     // FIXME: This may get padding wrong under esoteric struct layout rules.
2941     // MSVC appears to create a complete type 'struct __s_GUID' that it
2942     // presumably uses to represent these constants.
2943     MSGuidDecl::Parts Parts = GD->getParts();
2944     llvm::Constant *Fields[4] = {
2945         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2946         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2947         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2948         llvm::ConstantDataArray::getRaw(
2949             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2950             Int8Ty)};
2951     Init = llvm::ConstantStruct::getAnon(Fields);
2952   }
2953 
2954   auto *GV = new llvm::GlobalVariable(
2955       getModule(), Init->getType(),
2956       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2957   if (supportsCOMDAT())
2958     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2959   setDSOLocal(GV);
2960 
2961   if (!V.isAbsent()) {
2962     Emitter.finalize(GV);
2963     return ConstantAddress(GV, GV->getValueType(), Alignment);
2964   }
2965 
2966   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2967   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2968       GV, Ty->getPointerTo(GV->getAddressSpace()));
2969   return ConstantAddress(Addr, Ty, Alignment);
2970 }
2971 
2972 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2973     const UnnamedGlobalConstantDecl *GCD) {
2974   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2975 
2976   llvm::GlobalVariable **Entry = nullptr;
2977   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2978   if (*Entry)
2979     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2980 
2981   ConstantEmitter Emitter(*this);
2982   llvm::Constant *Init;
2983 
2984   const APValue &V = GCD->getValue();
2985 
2986   assert(!V.isAbsent());
2987   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2988                                     GCD->getType());
2989 
2990   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2991                                       /*isConstant=*/true,
2992                                       llvm::GlobalValue::PrivateLinkage, Init,
2993                                       ".constant");
2994   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2995   GV->setAlignment(Alignment.getAsAlign());
2996 
2997   Emitter.finalize(GV);
2998 
2999   *Entry = GV;
3000   return ConstantAddress(GV, GV->getValueType(), Alignment);
3001 }
3002 
3003 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3004     const TemplateParamObjectDecl *TPO) {
3005   StringRef Name = getMangledName(TPO);
3006   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3007 
3008   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3009     return ConstantAddress(GV, GV->getValueType(), Alignment);
3010 
3011   ConstantEmitter Emitter(*this);
3012   llvm::Constant *Init = Emitter.emitForInitializer(
3013         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3014 
3015   if (!Init) {
3016     ErrorUnsupported(TPO, "template parameter object");
3017     return ConstantAddress::invalid();
3018   }
3019 
3020   auto *GV = new llvm::GlobalVariable(
3021       getModule(), Init->getType(),
3022       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3023   if (supportsCOMDAT())
3024     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3025   Emitter.finalize(GV);
3026 
3027   return ConstantAddress(GV, GV->getValueType(), Alignment);
3028 }
3029 
3030 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3031   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3032   assert(AA && "No alias?");
3033 
3034   CharUnits Alignment = getContext().getDeclAlign(VD);
3035   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3036 
3037   // See if there is already something with the target's name in the module.
3038   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3039   if (Entry) {
3040     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3041     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3042     return ConstantAddress(Ptr, DeclTy, Alignment);
3043   }
3044 
3045   llvm::Constant *Aliasee;
3046   if (isa<llvm::FunctionType>(DeclTy))
3047     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3048                                       GlobalDecl(cast<FunctionDecl>(VD)),
3049                                       /*ForVTable=*/false);
3050   else
3051     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3052                                     nullptr);
3053 
3054   auto *F = cast<llvm::GlobalValue>(Aliasee);
3055   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3056   WeakRefReferences.insert(F);
3057 
3058   return ConstantAddress(Aliasee, DeclTy, Alignment);
3059 }
3060 
3061 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3062   const auto *Global = cast<ValueDecl>(GD.getDecl());
3063 
3064   // Weak references don't produce any output by themselves.
3065   if (Global->hasAttr<WeakRefAttr>())
3066     return;
3067 
3068   // If this is an alias definition (which otherwise looks like a declaration)
3069   // emit it now.
3070   if (Global->hasAttr<AliasAttr>())
3071     return EmitAliasDefinition(GD);
3072 
3073   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3074   if (Global->hasAttr<IFuncAttr>())
3075     return emitIFuncDefinition(GD);
3076 
3077   // If this is a cpu_dispatch multiversion function, emit the resolver.
3078   if (Global->hasAttr<CPUDispatchAttr>())
3079     return emitCPUDispatchDefinition(GD);
3080 
3081   // If this is CUDA, be selective about which declarations we emit.
3082   if (LangOpts.CUDA) {
3083     if (LangOpts.CUDAIsDevice) {
3084       if (!Global->hasAttr<CUDADeviceAttr>() &&
3085           !Global->hasAttr<CUDAGlobalAttr>() &&
3086           !Global->hasAttr<CUDAConstantAttr>() &&
3087           !Global->hasAttr<CUDASharedAttr>() &&
3088           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3089           !Global->getType()->isCUDADeviceBuiltinTextureType())
3090         return;
3091     } else {
3092       // We need to emit host-side 'shadows' for all global
3093       // device-side variables because the CUDA runtime needs their
3094       // size and host-side address in order to provide access to
3095       // their device-side incarnations.
3096 
3097       // So device-only functions are the only things we skip.
3098       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3099           Global->hasAttr<CUDADeviceAttr>())
3100         return;
3101 
3102       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3103              "Expected Variable or Function");
3104     }
3105   }
3106 
3107   if (LangOpts.OpenMP) {
3108     // If this is OpenMP, check if it is legal to emit this global normally.
3109     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3110       return;
3111     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3112       if (MustBeEmitted(Global))
3113         EmitOMPDeclareReduction(DRD);
3114       return;
3115     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3116       if (MustBeEmitted(Global))
3117         EmitOMPDeclareMapper(DMD);
3118       return;
3119     }
3120   }
3121 
3122   // Ignore declarations, they will be emitted on their first use.
3123   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3124     // Forward declarations are emitted lazily on first use.
3125     if (!FD->doesThisDeclarationHaveABody()) {
3126       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3127         return;
3128 
3129       StringRef MangledName = getMangledName(GD);
3130 
3131       // Compute the function info and LLVM type.
3132       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3133       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3134 
3135       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3136                               /*DontDefer=*/false);
3137       return;
3138     }
3139   } else {
3140     const auto *VD = cast<VarDecl>(Global);
3141     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3142     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3143         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3144       if (LangOpts.OpenMP) {
3145         // Emit declaration of the must-be-emitted declare target variable.
3146         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3147                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3148           bool UnifiedMemoryEnabled =
3149               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3150           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3151               !UnifiedMemoryEnabled) {
3152             (void)GetAddrOfGlobalVar(VD);
3153           } else {
3154             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3155                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3156                      UnifiedMemoryEnabled)) &&
3157                    "Link clause or to clause with unified memory expected.");
3158             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3159           }
3160 
3161           return;
3162         }
3163       }
3164       // If this declaration may have caused an inline variable definition to
3165       // change linkage, make sure that it's emitted.
3166       if (Context.getInlineVariableDefinitionKind(VD) ==
3167           ASTContext::InlineVariableDefinitionKind::Strong)
3168         GetAddrOfGlobalVar(VD);
3169       return;
3170     }
3171   }
3172 
3173   // Defer code generation to first use when possible, e.g. if this is an inline
3174   // function. If the global must always be emitted, do it eagerly if possible
3175   // to benefit from cache locality.
3176   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3177     // Emit the definition if it can't be deferred.
3178     EmitGlobalDefinition(GD);
3179     return;
3180   }
3181 
3182   // If we're deferring emission of a C++ variable with an
3183   // initializer, remember the order in which it appeared in the file.
3184   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3185       cast<VarDecl>(Global)->hasInit()) {
3186     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3187     CXXGlobalInits.push_back(nullptr);
3188   }
3189 
3190   StringRef MangledName = getMangledName(GD);
3191   if (GetGlobalValue(MangledName) != nullptr) {
3192     // The value has already been used and should therefore be emitted.
3193     addDeferredDeclToEmit(GD);
3194   } else if (MustBeEmitted(Global)) {
3195     // The value must be emitted, but cannot be emitted eagerly.
3196     assert(!MayBeEmittedEagerly(Global));
3197     addDeferredDeclToEmit(GD);
3198   } else {
3199     // Otherwise, remember that we saw a deferred decl with this name.  The
3200     // first use of the mangled name will cause it to move into
3201     // DeferredDeclsToEmit.
3202     DeferredDecls[MangledName] = GD;
3203   }
3204 }
3205 
3206 // Check if T is a class type with a destructor that's not dllimport.
3207 static bool HasNonDllImportDtor(QualType T) {
3208   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3209     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3210       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3211         return true;
3212 
3213   return false;
3214 }
3215 
3216 namespace {
3217   struct FunctionIsDirectlyRecursive
3218       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3219     const StringRef Name;
3220     const Builtin::Context &BI;
3221     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3222         : Name(N), BI(C) {}
3223 
3224     bool VisitCallExpr(const CallExpr *E) {
3225       const FunctionDecl *FD = E->getDirectCallee();
3226       if (!FD)
3227         return false;
3228       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3229       if (Attr && Name == Attr->getLabel())
3230         return true;
3231       unsigned BuiltinID = FD->getBuiltinID();
3232       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3233         return false;
3234       StringRef BuiltinName = BI.getName(BuiltinID);
3235       if (BuiltinName.startswith("__builtin_") &&
3236           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3237         return true;
3238       }
3239       return false;
3240     }
3241 
3242     bool VisitStmt(const Stmt *S) {
3243       for (const Stmt *Child : S->children())
3244         if (Child && this->Visit(Child))
3245           return true;
3246       return false;
3247     }
3248   };
3249 
3250   // Make sure we're not referencing non-imported vars or functions.
3251   struct DLLImportFunctionVisitor
3252       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3253     bool SafeToInline = true;
3254 
3255     bool shouldVisitImplicitCode() const { return true; }
3256 
3257     bool VisitVarDecl(VarDecl *VD) {
3258       if (VD->getTLSKind()) {
3259         // A thread-local variable cannot be imported.
3260         SafeToInline = false;
3261         return SafeToInline;
3262       }
3263 
3264       // A variable definition might imply a destructor call.
3265       if (VD->isThisDeclarationADefinition())
3266         SafeToInline = !HasNonDllImportDtor(VD->getType());
3267 
3268       return SafeToInline;
3269     }
3270 
3271     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3272       if (const auto *D = E->getTemporary()->getDestructor())
3273         SafeToInline = D->hasAttr<DLLImportAttr>();
3274       return SafeToInline;
3275     }
3276 
3277     bool VisitDeclRefExpr(DeclRefExpr *E) {
3278       ValueDecl *VD = E->getDecl();
3279       if (isa<FunctionDecl>(VD))
3280         SafeToInline = VD->hasAttr<DLLImportAttr>();
3281       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3282         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3283       return SafeToInline;
3284     }
3285 
3286     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3287       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3288       return SafeToInline;
3289     }
3290 
3291     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3292       CXXMethodDecl *M = E->getMethodDecl();
3293       if (!M) {
3294         // Call through a pointer to member function. This is safe to inline.
3295         SafeToInline = true;
3296       } else {
3297         SafeToInline = M->hasAttr<DLLImportAttr>();
3298       }
3299       return SafeToInline;
3300     }
3301 
3302     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3303       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3304       return SafeToInline;
3305     }
3306 
3307     bool VisitCXXNewExpr(CXXNewExpr *E) {
3308       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3309       return SafeToInline;
3310     }
3311   };
3312 }
3313 
3314 // isTriviallyRecursive - Check if this function calls another
3315 // decl that, because of the asm attribute or the other decl being a builtin,
3316 // ends up pointing to itself.
3317 bool
3318 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3319   StringRef Name;
3320   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3321     // asm labels are a special kind of mangling we have to support.
3322     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3323     if (!Attr)
3324       return false;
3325     Name = Attr->getLabel();
3326   } else {
3327     Name = FD->getName();
3328   }
3329 
3330   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3331   const Stmt *Body = FD->getBody();
3332   return Body ? Walker.Visit(Body) : false;
3333 }
3334 
3335 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3336   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3337     return true;
3338   const auto *F = cast<FunctionDecl>(GD.getDecl());
3339   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3340     return false;
3341 
3342   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3343     // Check whether it would be safe to inline this dllimport function.
3344     DLLImportFunctionVisitor Visitor;
3345     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3346     if (!Visitor.SafeToInline)
3347       return false;
3348 
3349     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3350       // Implicit destructor invocations aren't captured in the AST, so the
3351       // check above can't see them. Check for them manually here.
3352       for (const Decl *Member : Dtor->getParent()->decls())
3353         if (isa<FieldDecl>(Member))
3354           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3355             return false;
3356       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3357         if (HasNonDllImportDtor(B.getType()))
3358           return false;
3359     }
3360   }
3361 
3362   // Inline builtins declaration must be emitted. They often are fortified
3363   // functions.
3364   if (F->isInlineBuiltinDeclaration())
3365     return true;
3366 
3367   // PR9614. Avoid cases where the source code is lying to us. An available
3368   // externally function should have an equivalent function somewhere else,
3369   // but a function that calls itself through asm label/`__builtin_` trickery is
3370   // clearly not equivalent to the real implementation.
3371   // This happens in glibc's btowc and in some configure checks.
3372   return !isTriviallyRecursive(F);
3373 }
3374 
3375 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3376   return CodeGenOpts.OptimizationLevel > 0;
3377 }
3378 
3379 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3380                                                        llvm::GlobalValue *GV) {
3381   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3382 
3383   if (FD->isCPUSpecificMultiVersion()) {
3384     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3385     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3386       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3387   } else if (FD->isTargetClonesMultiVersion()) {
3388     auto *Clone = FD->getAttr<TargetClonesAttr>();
3389     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3390       if (Clone->isFirstOfVersion(I))
3391         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3392     // Ensure that the resolver function is also emitted.
3393     GetOrCreateMultiVersionResolver(GD);
3394   } else
3395     EmitGlobalFunctionDefinition(GD, GV);
3396 }
3397 
3398 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3399   const auto *D = cast<ValueDecl>(GD.getDecl());
3400 
3401   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3402                                  Context.getSourceManager(),
3403                                  "Generating code for declaration");
3404 
3405   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3406     // At -O0, don't generate IR for functions with available_externally
3407     // linkage.
3408     if (!shouldEmitFunction(GD))
3409       return;
3410 
3411     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3412       std::string Name;
3413       llvm::raw_string_ostream OS(Name);
3414       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3415                                /*Qualified=*/true);
3416       return Name;
3417     });
3418 
3419     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3420       // Make sure to emit the definition(s) before we emit the thunks.
3421       // This is necessary for the generation of certain thunks.
3422       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3423         ABI->emitCXXStructor(GD);
3424       else if (FD->isMultiVersion())
3425         EmitMultiVersionFunctionDefinition(GD, GV);
3426       else
3427         EmitGlobalFunctionDefinition(GD, GV);
3428 
3429       if (Method->isVirtual())
3430         getVTables().EmitThunks(GD);
3431 
3432       return;
3433     }
3434 
3435     if (FD->isMultiVersion())
3436       return EmitMultiVersionFunctionDefinition(GD, GV);
3437     return EmitGlobalFunctionDefinition(GD, GV);
3438   }
3439 
3440   if (const auto *VD = dyn_cast<VarDecl>(D))
3441     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3442 
3443   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3444 }
3445 
3446 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3447                                                       llvm::Function *NewFn);
3448 
3449 static unsigned
3450 TargetMVPriority(const TargetInfo &TI,
3451                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3452   unsigned Priority = 0;
3453   for (StringRef Feat : RO.Conditions.Features)
3454     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3455 
3456   if (!RO.Conditions.Architecture.empty())
3457     Priority = std::max(
3458         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3459   return Priority;
3460 }
3461 
3462 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3463 // TU can forward declare the function without causing problems.  Particularly
3464 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3465 // work with internal linkage functions, so that the same function name can be
3466 // used with internal linkage in multiple TUs.
3467 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3468                                                        GlobalDecl GD) {
3469   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3470   if (FD->getFormalLinkage() == InternalLinkage)
3471     return llvm::GlobalValue::InternalLinkage;
3472   return llvm::GlobalValue::WeakODRLinkage;
3473 }
3474 
3475 void CodeGenModule::emitMultiVersionFunctions() {
3476   std::vector<GlobalDecl> MVFuncsToEmit;
3477   MultiVersionFuncs.swap(MVFuncsToEmit);
3478   for (GlobalDecl GD : MVFuncsToEmit) {
3479     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3480     assert(FD && "Expected a FunctionDecl");
3481 
3482     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3483     if (FD->isTargetMultiVersion()) {
3484       getContext().forEachMultiversionedFunctionVersion(
3485           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3486             GlobalDecl CurGD{
3487                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3488             StringRef MangledName = getMangledName(CurGD);
3489             llvm::Constant *Func = GetGlobalValue(MangledName);
3490             if (!Func) {
3491               if (CurFD->isDefined()) {
3492                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3493                 Func = GetGlobalValue(MangledName);
3494               } else {
3495                 const CGFunctionInfo &FI =
3496                     getTypes().arrangeGlobalDeclaration(GD);
3497                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3498                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3499                                          /*DontDefer=*/false, ForDefinition);
3500               }
3501               assert(Func && "This should have just been created");
3502             }
3503 
3504             const auto *TA = CurFD->getAttr<TargetAttr>();
3505             llvm::SmallVector<StringRef, 8> Feats;
3506             TA->getAddedFeatures(Feats);
3507 
3508             Options.emplace_back(cast<llvm::Function>(Func),
3509                                  TA->getArchitecture(), Feats);
3510           });
3511     } else if (FD->isTargetClonesMultiVersion()) {
3512       const auto *TC = FD->getAttr<TargetClonesAttr>();
3513       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3514            ++VersionIndex) {
3515         if (!TC->isFirstOfVersion(VersionIndex))
3516           continue;
3517         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3518                          VersionIndex};
3519         StringRef Version = TC->getFeatureStr(VersionIndex);
3520         StringRef MangledName = getMangledName(CurGD);
3521         llvm::Constant *Func = GetGlobalValue(MangledName);
3522         if (!Func) {
3523           if (FD->isDefined()) {
3524             EmitGlobalFunctionDefinition(CurGD, nullptr);
3525             Func = GetGlobalValue(MangledName);
3526           } else {
3527             const CGFunctionInfo &FI =
3528                 getTypes().arrangeGlobalDeclaration(CurGD);
3529             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3530             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3531                                      /*DontDefer=*/false, ForDefinition);
3532           }
3533           assert(Func && "This should have just been created");
3534         }
3535 
3536         StringRef Architecture;
3537         llvm::SmallVector<StringRef, 1> Feature;
3538 
3539         if (Version.startswith("arch="))
3540           Architecture = Version.drop_front(sizeof("arch=") - 1);
3541         else if (Version != "default")
3542           Feature.push_back(Version);
3543 
3544         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3545       }
3546     } else {
3547       assert(0 && "Expected a target or target_clones multiversion function");
3548       continue;
3549     }
3550 
3551     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3552     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3553       ResolverConstant = IFunc->getResolver();
3554     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3555 
3556     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3557 
3558     if (supportsCOMDAT())
3559       ResolverFunc->setComdat(
3560           getModule().getOrInsertComdat(ResolverFunc->getName()));
3561 
3562     const TargetInfo &TI = getTarget();
3563     llvm::stable_sort(
3564         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3565                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3566           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3567         });
3568     CodeGenFunction CGF(*this);
3569     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3570   }
3571 
3572   // Ensure that any additions to the deferred decls list caused by emitting a
3573   // variant are emitted.  This can happen when the variant itself is inline and
3574   // calls a function without linkage.
3575   if (!MVFuncsToEmit.empty())
3576     EmitDeferred();
3577 
3578   // Ensure that any additions to the multiversion funcs list from either the
3579   // deferred decls or the multiversion functions themselves are emitted.
3580   if (!MultiVersionFuncs.empty())
3581     emitMultiVersionFunctions();
3582 }
3583 
3584 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3585   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3586   assert(FD && "Not a FunctionDecl?");
3587   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3588   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3589   assert(DD && "Not a cpu_dispatch Function?");
3590 
3591   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3592   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3593 
3594   StringRef ResolverName = getMangledName(GD);
3595   UpdateMultiVersionNames(GD, FD, ResolverName);
3596 
3597   llvm::Type *ResolverType;
3598   GlobalDecl ResolverGD;
3599   if (getTarget().supportsIFunc()) {
3600     ResolverType = llvm::FunctionType::get(
3601         llvm::PointerType::get(DeclTy,
3602                                Context.getTargetAddressSpace(FD->getType())),
3603         false);
3604   }
3605   else {
3606     ResolverType = DeclTy;
3607     ResolverGD = GD;
3608   }
3609 
3610   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3611       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3612   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3613   if (supportsCOMDAT())
3614     ResolverFunc->setComdat(
3615         getModule().getOrInsertComdat(ResolverFunc->getName()));
3616 
3617   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3618   const TargetInfo &Target = getTarget();
3619   unsigned Index = 0;
3620   for (const IdentifierInfo *II : DD->cpus()) {
3621     // Get the name of the target function so we can look it up/create it.
3622     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3623                               getCPUSpecificMangling(*this, II->getName());
3624 
3625     llvm::Constant *Func = GetGlobalValue(MangledName);
3626 
3627     if (!Func) {
3628       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3629       if (ExistingDecl.getDecl() &&
3630           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3631         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3632         Func = GetGlobalValue(MangledName);
3633       } else {
3634         if (!ExistingDecl.getDecl())
3635           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3636 
3637       Func = GetOrCreateLLVMFunction(
3638           MangledName, DeclTy, ExistingDecl,
3639           /*ForVTable=*/false, /*DontDefer=*/true,
3640           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3641       }
3642     }
3643 
3644     llvm::SmallVector<StringRef, 32> Features;
3645     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3646     llvm::transform(Features, Features.begin(),
3647                     [](StringRef Str) { return Str.substr(1); });
3648     llvm::erase_if(Features, [&Target](StringRef Feat) {
3649       return !Target.validateCpuSupports(Feat);
3650     });
3651     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3652     ++Index;
3653   }
3654 
3655   llvm::stable_sort(
3656       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3657                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3658         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3659                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3660       });
3661 
3662   // If the list contains multiple 'default' versions, such as when it contains
3663   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3664   // always run on at least a 'pentium'). We do this by deleting the 'least
3665   // advanced' (read, lowest mangling letter).
3666   while (Options.size() > 1 &&
3667          llvm::X86::getCpuSupportsMask(
3668              (Options.end() - 2)->Conditions.Features) == 0) {
3669     StringRef LHSName = (Options.end() - 2)->Function->getName();
3670     StringRef RHSName = (Options.end() - 1)->Function->getName();
3671     if (LHSName.compare(RHSName) < 0)
3672       Options.erase(Options.end() - 2);
3673     else
3674       Options.erase(Options.end() - 1);
3675   }
3676 
3677   CodeGenFunction CGF(*this);
3678   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3679 
3680   if (getTarget().supportsIFunc()) {
3681     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3682     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3683 
3684     // Fix up function declarations that were created for cpu_specific before
3685     // cpu_dispatch was known
3686     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3687       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3688       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3689                                            &getModule());
3690       GI->takeName(IFunc);
3691       IFunc->replaceAllUsesWith(GI);
3692       IFunc->eraseFromParent();
3693       IFunc = GI;
3694     }
3695 
3696     std::string AliasName = getMangledNameImpl(
3697         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3698     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3699     if (!AliasFunc) {
3700       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3701                                            &getModule());
3702       SetCommonAttributes(GD, GA);
3703     }
3704   }
3705 }
3706 
3707 /// If a dispatcher for the specified mangled name is not in the module, create
3708 /// and return an llvm Function with the specified type.
3709 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3710   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3711   assert(FD && "Not a FunctionDecl?");
3712 
3713   std::string MangledName =
3714       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3715 
3716   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3717   // a separate resolver).
3718   std::string ResolverName = MangledName;
3719   if (getTarget().supportsIFunc())
3720     ResolverName += ".ifunc";
3721   else if (FD->isTargetMultiVersion())
3722     ResolverName += ".resolver";
3723 
3724   // If the resolver has already been created, just return it.
3725   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3726     return ResolverGV;
3727 
3728   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3729   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3730 
3731   // The resolver needs to be created. For target and target_clones, defer
3732   // creation until the end of the TU.
3733   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3734     MultiVersionFuncs.push_back(GD);
3735 
3736   // For cpu_specific, don't create an ifunc yet because we don't know if the
3737   // cpu_dispatch will be emitted in this translation unit.
3738   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3739     llvm::Type *ResolverType = llvm::FunctionType::get(
3740         llvm::PointerType::get(
3741             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3742         false);
3743     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3744         MangledName + ".resolver", ResolverType, GlobalDecl{},
3745         /*ForVTable=*/false);
3746     llvm::GlobalIFunc *GIF =
3747         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3748                                   "", Resolver, &getModule());
3749     GIF->setName(ResolverName);
3750     SetCommonAttributes(FD, GIF);
3751 
3752     return GIF;
3753   }
3754 
3755   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3756       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3757   assert(isa<llvm::GlobalValue>(Resolver) &&
3758          "Resolver should be created for the first time");
3759   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3760   return Resolver;
3761 }
3762 
3763 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3764 /// module, create and return an llvm Function with the specified type. If there
3765 /// is something in the module with the specified name, return it potentially
3766 /// bitcasted to the right type.
3767 ///
3768 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3769 /// to set the attributes on the function when it is first created.
3770 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3771     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3772     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3773     ForDefinition_t IsForDefinition) {
3774   const Decl *D = GD.getDecl();
3775 
3776   // Any attempts to use a MultiVersion function should result in retrieving
3777   // the iFunc instead. Name Mangling will handle the rest of the changes.
3778   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3779     // For the device mark the function as one that should be emitted.
3780     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3781         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3782         !DontDefer && !IsForDefinition) {
3783       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3784         GlobalDecl GDDef;
3785         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3786           GDDef = GlobalDecl(CD, GD.getCtorType());
3787         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3788           GDDef = GlobalDecl(DD, GD.getDtorType());
3789         else
3790           GDDef = GlobalDecl(FDDef);
3791         EmitGlobal(GDDef);
3792       }
3793     }
3794 
3795     if (FD->isMultiVersion()) {
3796       UpdateMultiVersionNames(GD, FD, MangledName);
3797       if (!IsForDefinition)
3798         return GetOrCreateMultiVersionResolver(GD);
3799     }
3800   }
3801 
3802   // Lookup the entry, lazily creating it if necessary.
3803   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3804   if (Entry) {
3805     if (WeakRefReferences.erase(Entry)) {
3806       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3807       if (FD && !FD->hasAttr<WeakAttr>())
3808         Entry->setLinkage(llvm::Function::ExternalLinkage);
3809     }
3810 
3811     // Handle dropped DLL attributes.
3812     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3813         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3814       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3815       setDSOLocal(Entry);
3816     }
3817 
3818     // If there are two attempts to define the same mangled name, issue an
3819     // error.
3820     if (IsForDefinition && !Entry->isDeclaration()) {
3821       GlobalDecl OtherGD;
3822       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3823       // to make sure that we issue an error only once.
3824       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3825           (GD.getCanonicalDecl().getDecl() !=
3826            OtherGD.getCanonicalDecl().getDecl()) &&
3827           DiagnosedConflictingDefinitions.insert(GD).second) {
3828         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3829             << MangledName;
3830         getDiags().Report(OtherGD.getDecl()->getLocation(),
3831                           diag::note_previous_definition);
3832       }
3833     }
3834 
3835     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3836         (Entry->getValueType() == Ty)) {
3837       return Entry;
3838     }
3839 
3840     // Make sure the result is of the correct type.
3841     // (If function is requested for a definition, we always need to create a new
3842     // function, not just return a bitcast.)
3843     if (!IsForDefinition)
3844       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3845   }
3846 
3847   // This function doesn't have a complete type (for example, the return
3848   // type is an incomplete struct). Use a fake type instead, and make
3849   // sure not to try to set attributes.
3850   bool IsIncompleteFunction = false;
3851 
3852   llvm::FunctionType *FTy;
3853   if (isa<llvm::FunctionType>(Ty)) {
3854     FTy = cast<llvm::FunctionType>(Ty);
3855   } else {
3856     FTy = llvm::FunctionType::get(VoidTy, false);
3857     IsIncompleteFunction = true;
3858   }
3859 
3860   llvm::Function *F =
3861       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3862                              Entry ? StringRef() : MangledName, &getModule());
3863 
3864   // If we already created a function with the same mangled name (but different
3865   // type) before, take its name and add it to the list of functions to be
3866   // replaced with F at the end of CodeGen.
3867   //
3868   // This happens if there is a prototype for a function (e.g. "int f()") and
3869   // then a definition of a different type (e.g. "int f(int x)").
3870   if (Entry) {
3871     F->takeName(Entry);
3872 
3873     // This might be an implementation of a function without a prototype, in
3874     // which case, try to do special replacement of calls which match the new
3875     // prototype.  The really key thing here is that we also potentially drop
3876     // arguments from the call site so as to make a direct call, which makes the
3877     // inliner happier and suppresses a number of optimizer warnings (!) about
3878     // dropping arguments.
3879     if (!Entry->use_empty()) {
3880       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3881       Entry->removeDeadConstantUsers();
3882     }
3883 
3884     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3885         F, Entry->getValueType()->getPointerTo());
3886     addGlobalValReplacement(Entry, BC);
3887   }
3888 
3889   assert(F->getName() == MangledName && "name was uniqued!");
3890   if (D)
3891     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3892   if (ExtraAttrs.hasFnAttrs()) {
3893     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3894     F->addFnAttrs(B);
3895   }
3896 
3897   if (!DontDefer) {
3898     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3899     // each other bottoming out with the base dtor.  Therefore we emit non-base
3900     // dtors on usage, even if there is no dtor definition in the TU.
3901     if (D && isa<CXXDestructorDecl>(D) &&
3902         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3903                                            GD.getDtorType()))
3904       addDeferredDeclToEmit(GD);
3905 
3906     // This is the first use or definition of a mangled name.  If there is a
3907     // deferred decl with this name, remember that we need to emit it at the end
3908     // of the file.
3909     auto DDI = DeferredDecls.find(MangledName);
3910     if (DDI != DeferredDecls.end()) {
3911       // Move the potentially referenced deferred decl to the
3912       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3913       // don't need it anymore).
3914       addDeferredDeclToEmit(DDI->second);
3915       DeferredDecls.erase(DDI);
3916 
3917       // Otherwise, there are cases we have to worry about where we're
3918       // using a declaration for which we must emit a definition but where
3919       // we might not find a top-level definition:
3920       //   - member functions defined inline in their classes
3921       //   - friend functions defined inline in some class
3922       //   - special member functions with implicit definitions
3923       // If we ever change our AST traversal to walk into class methods,
3924       // this will be unnecessary.
3925       //
3926       // We also don't emit a definition for a function if it's going to be an
3927       // entry in a vtable, unless it's already marked as used.
3928     } else if (getLangOpts().CPlusPlus && D) {
3929       // Look for a declaration that's lexically in a record.
3930       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3931            FD = FD->getPreviousDecl()) {
3932         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3933           if (FD->doesThisDeclarationHaveABody()) {
3934             addDeferredDeclToEmit(GD.getWithDecl(FD));
3935             break;
3936           }
3937         }
3938       }
3939     }
3940   }
3941 
3942   // Make sure the result is of the requested type.
3943   if (!IsIncompleteFunction) {
3944     assert(F->getFunctionType() == Ty);
3945     return F;
3946   }
3947 
3948   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3949   return llvm::ConstantExpr::getBitCast(F, PTy);
3950 }
3951 
3952 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3953 /// non-null, then this function will use the specified type if it has to
3954 /// create it (this occurs when we see a definition of the function).
3955 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3956                                                  llvm::Type *Ty,
3957                                                  bool ForVTable,
3958                                                  bool DontDefer,
3959                                               ForDefinition_t IsForDefinition) {
3960   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3961          "consteval function should never be emitted");
3962   // If there was no specific requested type, just convert it now.
3963   if (!Ty) {
3964     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3965     Ty = getTypes().ConvertType(FD->getType());
3966   }
3967 
3968   // Devirtualized destructor calls may come through here instead of via
3969   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3970   // of the complete destructor when necessary.
3971   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3972     if (getTarget().getCXXABI().isMicrosoft() &&
3973         GD.getDtorType() == Dtor_Complete &&
3974         DD->getParent()->getNumVBases() == 0)
3975       GD = GlobalDecl(DD, Dtor_Base);
3976   }
3977 
3978   StringRef MangledName = getMangledName(GD);
3979   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3980                                     /*IsThunk=*/false, llvm::AttributeList(),
3981                                     IsForDefinition);
3982   // Returns kernel handle for HIP kernel stub function.
3983   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3984       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3985     auto *Handle = getCUDARuntime().getKernelHandle(
3986         cast<llvm::Function>(F->stripPointerCasts()), GD);
3987     if (IsForDefinition)
3988       return F;
3989     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3990   }
3991   return F;
3992 }
3993 
3994 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3995   llvm::GlobalValue *F =
3996       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3997 
3998   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3999                                         llvm::Type::getInt8PtrTy(VMContext));
4000 }
4001 
4002 static const FunctionDecl *
4003 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4004   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4005   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4006 
4007   IdentifierInfo &CII = C.Idents.get(Name);
4008   for (const auto *Result : DC->lookup(&CII))
4009     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4010       return FD;
4011 
4012   if (!C.getLangOpts().CPlusPlus)
4013     return nullptr;
4014 
4015   // Demangle the premangled name from getTerminateFn()
4016   IdentifierInfo &CXXII =
4017       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4018           ? C.Idents.get("terminate")
4019           : C.Idents.get(Name);
4020 
4021   for (const auto &N : {"__cxxabiv1", "std"}) {
4022     IdentifierInfo &NS = C.Idents.get(N);
4023     for (const auto *Result : DC->lookup(&NS)) {
4024       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4025       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4026         for (const auto *Result : LSD->lookup(&NS))
4027           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4028             break;
4029 
4030       if (ND)
4031         for (const auto *Result : ND->lookup(&CXXII))
4032           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4033             return FD;
4034     }
4035   }
4036 
4037   return nullptr;
4038 }
4039 
4040 /// CreateRuntimeFunction - Create a new runtime function with the specified
4041 /// type and name.
4042 llvm::FunctionCallee
4043 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4044                                      llvm::AttributeList ExtraAttrs, bool Local,
4045                                      bool AssumeConvergent) {
4046   if (AssumeConvergent) {
4047     ExtraAttrs =
4048         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4049   }
4050 
4051   llvm::Constant *C =
4052       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4053                               /*DontDefer=*/false, /*IsThunk=*/false,
4054                               ExtraAttrs);
4055 
4056   if (auto *F = dyn_cast<llvm::Function>(C)) {
4057     if (F->empty()) {
4058       F->setCallingConv(getRuntimeCC());
4059 
4060       // In Windows Itanium environments, try to mark runtime functions
4061       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4062       // will link their standard library statically or dynamically. Marking
4063       // functions imported when they are not imported can cause linker errors
4064       // and warnings.
4065       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4066           !getCodeGenOpts().LTOVisibilityPublicStd) {
4067         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4068         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4069           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4070           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4071         }
4072       }
4073       setDSOLocal(F);
4074     }
4075   }
4076 
4077   return {FTy, C};
4078 }
4079 
4080 /// isTypeConstant - Determine whether an object of this type can be emitted
4081 /// as a constant.
4082 ///
4083 /// If ExcludeCtor is true, the duration when the object's constructor runs
4084 /// will not be considered. The caller will need to verify that the object is
4085 /// not written to during its construction.
4086 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4087   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4088     return false;
4089 
4090   if (Context.getLangOpts().CPlusPlus) {
4091     if (const CXXRecordDecl *Record
4092           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4093       return ExcludeCtor && !Record->hasMutableFields() &&
4094              Record->hasTrivialDestructor();
4095   }
4096 
4097   return true;
4098 }
4099 
4100 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4101 /// create and return an llvm GlobalVariable with the specified type and address
4102 /// space. If there is something in the module with the specified name, return
4103 /// it potentially bitcasted to the right type.
4104 ///
4105 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4106 /// to set the attributes on the global when it is first created.
4107 ///
4108 /// If IsForDefinition is true, it is guaranteed that an actual global with
4109 /// type Ty will be returned, not conversion of a variable with the same
4110 /// mangled name but some other type.
4111 llvm::Constant *
4112 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4113                                      LangAS AddrSpace, const VarDecl *D,
4114                                      ForDefinition_t IsForDefinition) {
4115   // Lookup the entry, lazily creating it if necessary.
4116   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4117   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4118   if (Entry) {
4119     if (WeakRefReferences.erase(Entry)) {
4120       if (D && !D->hasAttr<WeakAttr>())
4121         Entry->setLinkage(llvm::Function::ExternalLinkage);
4122     }
4123 
4124     // Handle dropped DLL attributes.
4125     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4126         !shouldMapVisibilityToDLLExport(D))
4127       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4128 
4129     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4130       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4131 
4132     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4133       return Entry;
4134 
4135     // If there are two attempts to define the same mangled name, issue an
4136     // error.
4137     if (IsForDefinition && !Entry->isDeclaration()) {
4138       GlobalDecl OtherGD;
4139       const VarDecl *OtherD;
4140 
4141       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4142       // to make sure that we issue an error only once.
4143       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4144           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4145           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4146           OtherD->hasInit() &&
4147           DiagnosedConflictingDefinitions.insert(D).second) {
4148         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4149             << MangledName;
4150         getDiags().Report(OtherGD.getDecl()->getLocation(),
4151                           diag::note_previous_definition);
4152       }
4153     }
4154 
4155     // Make sure the result is of the correct type.
4156     if (Entry->getType()->getAddressSpace() != TargetAS) {
4157       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4158                                                   Ty->getPointerTo(TargetAS));
4159     }
4160 
4161     // (If global is requested for a definition, we always need to create a new
4162     // global, not just return a bitcast.)
4163     if (!IsForDefinition)
4164       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4165   }
4166 
4167   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4168 
4169   auto *GV = new llvm::GlobalVariable(
4170       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4171       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4172       getContext().getTargetAddressSpace(DAddrSpace));
4173 
4174   // If we already created a global with the same mangled name (but different
4175   // type) before, take its name and remove it from its parent.
4176   if (Entry) {
4177     GV->takeName(Entry);
4178 
4179     if (!Entry->use_empty()) {
4180       llvm::Constant *NewPtrForOldDecl =
4181           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4182       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4183     }
4184 
4185     Entry->eraseFromParent();
4186   }
4187 
4188   // This is the first use or definition of a mangled name.  If there is a
4189   // deferred decl with this name, remember that we need to emit it at the end
4190   // of the file.
4191   auto DDI = DeferredDecls.find(MangledName);
4192   if (DDI != DeferredDecls.end()) {
4193     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4194     // list, and remove it from DeferredDecls (since we don't need it anymore).
4195     addDeferredDeclToEmit(DDI->second);
4196     DeferredDecls.erase(DDI);
4197   }
4198 
4199   // Handle things which are present even on external declarations.
4200   if (D) {
4201     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4202       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4203 
4204     // FIXME: This code is overly simple and should be merged with other global
4205     // handling.
4206     GV->setConstant(isTypeConstant(D->getType(), false));
4207 
4208     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4209 
4210     setLinkageForGV(GV, D);
4211 
4212     if (D->getTLSKind()) {
4213       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4214         CXXThreadLocals.push_back(D);
4215       setTLSMode(GV, *D);
4216     }
4217 
4218     setGVProperties(GV, D);
4219 
4220     // If required by the ABI, treat declarations of static data members with
4221     // inline initializers as definitions.
4222     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4223       EmitGlobalVarDefinition(D);
4224     }
4225 
4226     // Emit section information for extern variables.
4227     if (D->hasExternalStorage()) {
4228       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4229         GV->setSection(SA->getName());
4230     }
4231 
4232     // Handle XCore specific ABI requirements.
4233     if (getTriple().getArch() == llvm::Triple::xcore &&
4234         D->getLanguageLinkage() == CLanguageLinkage &&
4235         D->getType().isConstant(Context) &&
4236         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4237       GV->setSection(".cp.rodata");
4238 
4239     // Check if we a have a const declaration with an initializer, we may be
4240     // able to emit it as available_externally to expose it's value to the
4241     // optimizer.
4242     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4243         D->getType().isConstQualified() && !GV->hasInitializer() &&
4244         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4245       const auto *Record =
4246           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4247       bool HasMutableFields = Record && Record->hasMutableFields();
4248       if (!HasMutableFields) {
4249         const VarDecl *InitDecl;
4250         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4251         if (InitExpr) {
4252           ConstantEmitter emitter(*this);
4253           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4254           if (Init) {
4255             auto *InitType = Init->getType();
4256             if (GV->getValueType() != InitType) {
4257               // The type of the initializer does not match the definition.
4258               // This happens when an initializer has a different type from
4259               // the type of the global (because of padding at the end of a
4260               // structure for instance).
4261               GV->setName(StringRef());
4262               // Make a new global with the correct type, this is now guaranteed
4263               // to work.
4264               auto *NewGV = cast<llvm::GlobalVariable>(
4265                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4266                       ->stripPointerCasts());
4267 
4268               // Erase the old global, since it is no longer used.
4269               GV->eraseFromParent();
4270               GV = NewGV;
4271             } else {
4272               GV->setInitializer(Init);
4273               GV->setConstant(true);
4274               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4275             }
4276             emitter.finalize(GV);
4277           }
4278         }
4279       }
4280     }
4281   }
4282 
4283   if (GV->isDeclaration()) {
4284     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4285     // External HIP managed variables needed to be recorded for transformation
4286     // in both device and host compilations.
4287     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4288         D->hasExternalStorage())
4289       getCUDARuntime().handleVarRegistration(D, *GV);
4290   }
4291 
4292   LangAS ExpectedAS =
4293       D ? D->getType().getAddressSpace()
4294         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4295   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4296   if (DAddrSpace != ExpectedAS) {
4297     return getTargetCodeGenInfo().performAddrSpaceCast(
4298         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4299   }
4300 
4301   return GV;
4302 }
4303 
4304 llvm::Constant *
4305 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4306   const Decl *D = GD.getDecl();
4307 
4308   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4309     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4310                                 /*DontDefer=*/false, IsForDefinition);
4311 
4312   if (isa<CXXMethodDecl>(D)) {
4313     auto FInfo =
4314         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4315     auto Ty = getTypes().GetFunctionType(*FInfo);
4316     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4317                              IsForDefinition);
4318   }
4319 
4320   if (isa<FunctionDecl>(D)) {
4321     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4322     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4323     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4324                              IsForDefinition);
4325   }
4326 
4327   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4328 }
4329 
4330 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4331     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4332     unsigned Alignment) {
4333   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4334   llvm::GlobalVariable *OldGV = nullptr;
4335 
4336   if (GV) {
4337     // Check if the variable has the right type.
4338     if (GV->getValueType() == Ty)
4339       return GV;
4340 
4341     // Because C++ name mangling, the only way we can end up with an already
4342     // existing global with the same name is if it has been declared extern "C".
4343     assert(GV->isDeclaration() && "Declaration has wrong type!");
4344     OldGV = GV;
4345   }
4346 
4347   // Create a new variable.
4348   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4349                                 Linkage, nullptr, Name);
4350 
4351   if (OldGV) {
4352     // Replace occurrences of the old variable if needed.
4353     GV->takeName(OldGV);
4354 
4355     if (!OldGV->use_empty()) {
4356       llvm::Constant *NewPtrForOldDecl =
4357       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4358       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4359     }
4360 
4361     OldGV->eraseFromParent();
4362   }
4363 
4364   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4365       !GV->hasAvailableExternallyLinkage())
4366     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4367 
4368   GV->setAlignment(llvm::MaybeAlign(Alignment));
4369 
4370   return GV;
4371 }
4372 
4373 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4374 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4375 /// then it will be created with the specified type instead of whatever the
4376 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4377 /// that an actual global with type Ty will be returned, not conversion of a
4378 /// variable with the same mangled name but some other type.
4379 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4380                                                   llvm::Type *Ty,
4381                                            ForDefinition_t IsForDefinition) {
4382   assert(D->hasGlobalStorage() && "Not a global variable");
4383   QualType ASTTy = D->getType();
4384   if (!Ty)
4385     Ty = getTypes().ConvertTypeForMem(ASTTy);
4386 
4387   StringRef MangledName = getMangledName(D);
4388   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4389                                IsForDefinition);
4390 }
4391 
4392 /// CreateRuntimeVariable - Create a new runtime global variable with the
4393 /// specified type and name.
4394 llvm::Constant *
4395 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4396                                      StringRef Name) {
4397   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4398                                                        : LangAS::Default;
4399   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4400   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4401   return Ret;
4402 }
4403 
4404 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4405   assert(!D->getInit() && "Cannot emit definite definitions here!");
4406 
4407   StringRef MangledName = getMangledName(D);
4408   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4409 
4410   // We already have a definition, not declaration, with the same mangled name.
4411   // Emitting of declaration is not required (and actually overwrites emitted
4412   // definition).
4413   if (GV && !GV->isDeclaration())
4414     return;
4415 
4416   // If we have not seen a reference to this variable yet, place it into the
4417   // deferred declarations table to be emitted if needed later.
4418   if (!MustBeEmitted(D) && !GV) {
4419       DeferredDecls[MangledName] = D;
4420       return;
4421   }
4422 
4423   // The tentative definition is the only definition.
4424   EmitGlobalVarDefinition(D);
4425 }
4426 
4427 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4428   EmitExternalVarDeclaration(D);
4429 }
4430 
4431 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4432   return Context.toCharUnitsFromBits(
4433       getDataLayout().getTypeStoreSizeInBits(Ty));
4434 }
4435 
4436 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4437   if (LangOpts.OpenCL) {
4438     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4439     assert(AS == LangAS::opencl_global ||
4440            AS == LangAS::opencl_global_device ||
4441            AS == LangAS::opencl_global_host ||
4442            AS == LangAS::opencl_constant ||
4443            AS == LangAS::opencl_local ||
4444            AS >= LangAS::FirstTargetAddressSpace);
4445     return AS;
4446   }
4447 
4448   if (LangOpts.SYCLIsDevice &&
4449       (!D || D->getType().getAddressSpace() == LangAS::Default))
4450     return LangAS::sycl_global;
4451 
4452   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4453     if (D && D->hasAttr<CUDAConstantAttr>())
4454       return LangAS::cuda_constant;
4455     else if (D && D->hasAttr<CUDASharedAttr>())
4456       return LangAS::cuda_shared;
4457     else if (D && D->hasAttr<CUDADeviceAttr>())
4458       return LangAS::cuda_device;
4459     else if (D && D->getType().isConstQualified())
4460       return LangAS::cuda_constant;
4461     else
4462       return LangAS::cuda_device;
4463   }
4464 
4465   if (LangOpts.OpenMP) {
4466     LangAS AS;
4467     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4468       return AS;
4469   }
4470   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4471 }
4472 
4473 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4474   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4475   if (LangOpts.OpenCL)
4476     return LangAS::opencl_constant;
4477   if (LangOpts.SYCLIsDevice)
4478     return LangAS::sycl_global;
4479   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4480     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4481     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4482     // with OpVariable instructions with Generic storage class which is not
4483     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4484     // UniformConstant storage class is not viable as pointers to it may not be
4485     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4486     return LangAS::cuda_device;
4487   if (auto AS = getTarget().getConstantAddressSpace())
4488     return *AS;
4489   return LangAS::Default;
4490 }
4491 
4492 // In address space agnostic languages, string literals are in default address
4493 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4494 // emitted in constant address space in LLVM IR. To be consistent with other
4495 // parts of AST, string literal global variables in constant address space
4496 // need to be casted to default address space before being put into address
4497 // map and referenced by other part of CodeGen.
4498 // In OpenCL, string literals are in constant address space in AST, therefore
4499 // they should not be casted to default address space.
4500 static llvm::Constant *
4501 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4502                                        llvm::GlobalVariable *GV) {
4503   llvm::Constant *Cast = GV;
4504   if (!CGM.getLangOpts().OpenCL) {
4505     auto AS = CGM.GetGlobalConstantAddressSpace();
4506     if (AS != LangAS::Default)
4507       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4508           CGM, GV, AS, LangAS::Default,
4509           GV->getValueType()->getPointerTo(
4510               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4511   }
4512   return Cast;
4513 }
4514 
4515 template<typename SomeDecl>
4516 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4517                                                llvm::GlobalValue *GV) {
4518   if (!getLangOpts().CPlusPlus)
4519     return;
4520 
4521   // Must have 'used' attribute, or else inline assembly can't rely on
4522   // the name existing.
4523   if (!D->template hasAttr<UsedAttr>())
4524     return;
4525 
4526   // Must have internal linkage and an ordinary name.
4527   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4528     return;
4529 
4530   // Must be in an extern "C" context. Entities declared directly within
4531   // a record are not extern "C" even if the record is in such a context.
4532   const SomeDecl *First = D->getFirstDecl();
4533   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4534     return;
4535 
4536   // OK, this is an internal linkage entity inside an extern "C" linkage
4537   // specification. Make a note of that so we can give it the "expected"
4538   // mangled name if nothing else is using that name.
4539   std::pair<StaticExternCMap::iterator, bool> R =
4540       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4541 
4542   // If we have multiple internal linkage entities with the same name
4543   // in extern "C" regions, none of them gets that name.
4544   if (!R.second)
4545     R.first->second = nullptr;
4546 }
4547 
4548 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4549   if (!CGM.supportsCOMDAT())
4550     return false;
4551 
4552   if (D.hasAttr<SelectAnyAttr>())
4553     return true;
4554 
4555   GVALinkage Linkage;
4556   if (auto *VD = dyn_cast<VarDecl>(&D))
4557     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4558   else
4559     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4560 
4561   switch (Linkage) {
4562   case GVA_Internal:
4563   case GVA_AvailableExternally:
4564   case GVA_StrongExternal:
4565     return false;
4566   case GVA_DiscardableODR:
4567   case GVA_StrongODR:
4568     return true;
4569   }
4570   llvm_unreachable("No such linkage");
4571 }
4572 
4573 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4574                                           llvm::GlobalObject &GO) {
4575   if (!shouldBeInCOMDAT(*this, D))
4576     return;
4577   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4578 }
4579 
4580 /// Pass IsTentative as true if you want to create a tentative definition.
4581 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4582                                             bool IsTentative) {
4583   // OpenCL global variables of sampler type are translated to function calls,
4584   // therefore no need to be translated.
4585   QualType ASTTy = D->getType();
4586   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4587     return;
4588 
4589   // If this is OpenMP device, check if it is legal to emit this global
4590   // normally.
4591   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4592       OpenMPRuntime->emitTargetGlobalVariable(D))
4593     return;
4594 
4595   llvm::TrackingVH<llvm::Constant> Init;
4596   bool NeedsGlobalCtor = false;
4597   bool NeedsGlobalDtor =
4598       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4599 
4600   const VarDecl *InitDecl;
4601   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4602 
4603   Optional<ConstantEmitter> emitter;
4604 
4605   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4606   // as part of their declaration."  Sema has already checked for
4607   // error cases, so we just need to set Init to UndefValue.
4608   bool IsCUDASharedVar =
4609       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4610   // Shadows of initialized device-side global variables are also left
4611   // undefined.
4612   // Managed Variables should be initialized on both host side and device side.
4613   bool IsCUDAShadowVar =
4614       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4615       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4616        D->hasAttr<CUDASharedAttr>());
4617   bool IsCUDADeviceShadowVar =
4618       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4619       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4620        D->getType()->isCUDADeviceBuiltinTextureType());
4621   if (getLangOpts().CUDA &&
4622       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4623     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4624   else if (D->hasAttr<LoaderUninitializedAttr>())
4625     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4626   else if (!InitExpr) {
4627     // This is a tentative definition; tentative definitions are
4628     // implicitly initialized with { 0 }.
4629     //
4630     // Note that tentative definitions are only emitted at the end of
4631     // a translation unit, so they should never have incomplete
4632     // type. In addition, EmitTentativeDefinition makes sure that we
4633     // never attempt to emit a tentative definition if a real one
4634     // exists. A use may still exists, however, so we still may need
4635     // to do a RAUW.
4636     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4637     Init = EmitNullConstant(D->getType());
4638   } else {
4639     initializedGlobalDecl = GlobalDecl(D);
4640     emitter.emplace(*this);
4641     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4642     if (!Initializer) {
4643       QualType T = InitExpr->getType();
4644       if (D->getType()->isReferenceType())
4645         T = D->getType();
4646 
4647       if (getLangOpts().CPlusPlus) {
4648         if (InitDecl->hasFlexibleArrayInit(getContext()))
4649           ErrorUnsupported(D, "flexible array initializer");
4650         Init = EmitNullConstant(T);
4651         NeedsGlobalCtor = true;
4652       } else {
4653         ErrorUnsupported(D, "static initializer");
4654         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4655       }
4656     } else {
4657       Init = Initializer;
4658       // We don't need an initializer, so remove the entry for the delayed
4659       // initializer position (just in case this entry was delayed) if we
4660       // also don't need to register a destructor.
4661       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4662         DelayedCXXInitPosition.erase(D);
4663 
4664 #ifndef NDEBUG
4665       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4666                           InitDecl->getFlexibleArrayInitChars(getContext());
4667       CharUnits CstSize = CharUnits::fromQuantity(
4668           getDataLayout().getTypeAllocSize(Init->getType()));
4669       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4670 #endif
4671     }
4672   }
4673 
4674   llvm::Type* InitType = Init->getType();
4675   llvm::Constant *Entry =
4676       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4677 
4678   // Strip off pointer casts if we got them.
4679   Entry = Entry->stripPointerCasts();
4680 
4681   // Entry is now either a Function or GlobalVariable.
4682   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4683 
4684   // We have a definition after a declaration with the wrong type.
4685   // We must make a new GlobalVariable* and update everything that used OldGV
4686   // (a declaration or tentative definition) with the new GlobalVariable*
4687   // (which will be a definition).
4688   //
4689   // This happens if there is a prototype for a global (e.g.
4690   // "extern int x[];") and then a definition of a different type (e.g.
4691   // "int x[10];"). This also happens when an initializer has a different type
4692   // from the type of the global (this happens with unions).
4693   if (!GV || GV->getValueType() != InitType ||
4694       GV->getType()->getAddressSpace() !=
4695           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4696 
4697     // Move the old entry aside so that we'll create a new one.
4698     Entry->setName(StringRef());
4699 
4700     // Make a new global with the correct type, this is now guaranteed to work.
4701     GV = cast<llvm::GlobalVariable>(
4702         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4703             ->stripPointerCasts());
4704 
4705     // Replace all uses of the old global with the new global
4706     llvm::Constant *NewPtrForOldDecl =
4707         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4708                                                              Entry->getType());
4709     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4710 
4711     // Erase the old global, since it is no longer used.
4712     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4713   }
4714 
4715   MaybeHandleStaticInExternC(D, GV);
4716 
4717   if (D->hasAttr<AnnotateAttr>())
4718     AddGlobalAnnotations(D, GV);
4719 
4720   // Set the llvm linkage type as appropriate.
4721   llvm::GlobalValue::LinkageTypes Linkage =
4722       getLLVMLinkageVarDefinition(D, GV->isConstant());
4723 
4724   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4725   // the device. [...]"
4726   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4727   // __device__, declares a variable that: [...]
4728   // Is accessible from all the threads within the grid and from the host
4729   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4730   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4731   if (GV && LangOpts.CUDA) {
4732     if (LangOpts.CUDAIsDevice) {
4733       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4734           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4735            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4736            D->getType()->isCUDADeviceBuiltinTextureType()))
4737         GV->setExternallyInitialized(true);
4738     } else {
4739       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4740     }
4741     getCUDARuntime().handleVarRegistration(D, *GV);
4742   }
4743 
4744   GV->setInitializer(Init);
4745   if (emitter)
4746     emitter->finalize(GV);
4747 
4748   // If it is safe to mark the global 'constant', do so now.
4749   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4750                   isTypeConstant(D->getType(), true));
4751 
4752   // If it is in a read-only section, mark it 'constant'.
4753   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4754     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4755     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4756       GV->setConstant(true);
4757   }
4758 
4759   CharUnits AlignVal = getContext().getDeclAlign(D);
4760   // Check for alignment specifed in an 'omp allocate' directive.
4761   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4762           getOMPAllocateAlignment(D))
4763     AlignVal = *AlignValFromAllocate;
4764   GV->setAlignment(AlignVal.getAsAlign());
4765 
4766   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4767   // function is only defined alongside the variable, not also alongside
4768   // callers. Normally, all accesses to a thread_local go through the
4769   // thread-wrapper in order to ensure initialization has occurred, underlying
4770   // variable will never be used other than the thread-wrapper, so it can be
4771   // converted to internal linkage.
4772   //
4773   // However, if the variable has the 'constinit' attribute, it _can_ be
4774   // referenced directly, without calling the thread-wrapper, so the linkage
4775   // must not be changed.
4776   //
4777   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4778   // weak or linkonce, the de-duplication semantics are important to preserve,
4779   // so we don't change the linkage.
4780   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4781       Linkage == llvm::GlobalValue::ExternalLinkage &&
4782       Context.getTargetInfo().getTriple().isOSDarwin() &&
4783       !D->hasAttr<ConstInitAttr>())
4784     Linkage = llvm::GlobalValue::InternalLinkage;
4785 
4786   GV->setLinkage(Linkage);
4787   if (D->hasAttr<DLLImportAttr>())
4788     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4789   else if (D->hasAttr<DLLExportAttr>())
4790     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4791   else
4792     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4793 
4794   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4795     // common vars aren't constant even if declared const.
4796     GV->setConstant(false);
4797     // Tentative definition of global variables may be initialized with
4798     // non-zero null pointers. In this case they should have weak linkage
4799     // since common linkage must have zero initializer and must not have
4800     // explicit section therefore cannot have non-zero initial value.
4801     if (!GV->getInitializer()->isNullValue())
4802       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4803   }
4804 
4805   setNonAliasAttributes(D, GV);
4806 
4807   if (D->getTLSKind() && !GV->isThreadLocal()) {
4808     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4809       CXXThreadLocals.push_back(D);
4810     setTLSMode(GV, *D);
4811   }
4812 
4813   maybeSetTrivialComdat(*D, *GV);
4814 
4815   // Emit the initializer function if necessary.
4816   if (NeedsGlobalCtor || NeedsGlobalDtor)
4817     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4818 
4819   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4820 
4821   // Emit global variable debug information.
4822   if (CGDebugInfo *DI = getModuleDebugInfo())
4823     if (getCodeGenOpts().hasReducedDebugInfo())
4824       DI->EmitGlobalVariable(GV, D);
4825 }
4826 
4827 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4828   if (CGDebugInfo *DI = getModuleDebugInfo())
4829     if (getCodeGenOpts().hasReducedDebugInfo()) {
4830       QualType ASTTy = D->getType();
4831       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4832       llvm::Constant *GV =
4833           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4834       DI->EmitExternalVariable(
4835           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4836     }
4837 }
4838 
4839 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4840                                       CodeGenModule &CGM, const VarDecl *D,
4841                                       bool NoCommon) {
4842   // Don't give variables common linkage if -fno-common was specified unless it
4843   // was overridden by a NoCommon attribute.
4844   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4845     return true;
4846 
4847   // C11 6.9.2/2:
4848   //   A declaration of an identifier for an object that has file scope without
4849   //   an initializer, and without a storage-class specifier or with the
4850   //   storage-class specifier static, constitutes a tentative definition.
4851   if (D->getInit() || D->hasExternalStorage())
4852     return true;
4853 
4854   // A variable cannot be both common and exist in a section.
4855   if (D->hasAttr<SectionAttr>())
4856     return true;
4857 
4858   // A variable cannot be both common and exist in a section.
4859   // We don't try to determine which is the right section in the front-end.
4860   // If no specialized section name is applicable, it will resort to default.
4861   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4862       D->hasAttr<PragmaClangDataSectionAttr>() ||
4863       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4864       D->hasAttr<PragmaClangRodataSectionAttr>())
4865     return true;
4866 
4867   // Thread local vars aren't considered common linkage.
4868   if (D->getTLSKind())
4869     return true;
4870 
4871   // Tentative definitions marked with WeakImportAttr are true definitions.
4872   if (D->hasAttr<WeakImportAttr>())
4873     return true;
4874 
4875   // A variable cannot be both common and exist in a comdat.
4876   if (shouldBeInCOMDAT(CGM, *D))
4877     return true;
4878 
4879   // Declarations with a required alignment do not have common linkage in MSVC
4880   // mode.
4881   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4882     if (D->hasAttr<AlignedAttr>())
4883       return true;
4884     QualType VarType = D->getType();
4885     if (Context.isAlignmentRequired(VarType))
4886       return true;
4887 
4888     if (const auto *RT = VarType->getAs<RecordType>()) {
4889       const RecordDecl *RD = RT->getDecl();
4890       for (const FieldDecl *FD : RD->fields()) {
4891         if (FD->isBitField())
4892           continue;
4893         if (FD->hasAttr<AlignedAttr>())
4894           return true;
4895         if (Context.isAlignmentRequired(FD->getType()))
4896           return true;
4897       }
4898     }
4899   }
4900 
4901   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4902   // common symbols, so symbols with greater alignment requirements cannot be
4903   // common.
4904   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4905   // alignments for common symbols via the aligncomm directive, so this
4906   // restriction only applies to MSVC environments.
4907   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4908       Context.getTypeAlignIfKnown(D->getType()) >
4909           Context.toBits(CharUnits::fromQuantity(32)))
4910     return true;
4911 
4912   return false;
4913 }
4914 
4915 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4916     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4917   if (Linkage == GVA_Internal)
4918     return llvm::Function::InternalLinkage;
4919 
4920   if (D->hasAttr<WeakAttr>())
4921     return llvm::GlobalVariable::WeakAnyLinkage;
4922 
4923   if (const auto *FD = D->getAsFunction())
4924     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4925       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4926 
4927   // We are guaranteed to have a strong definition somewhere else,
4928   // so we can use available_externally linkage.
4929   if (Linkage == GVA_AvailableExternally)
4930     return llvm::GlobalValue::AvailableExternallyLinkage;
4931 
4932   // Note that Apple's kernel linker doesn't support symbol
4933   // coalescing, so we need to avoid linkonce and weak linkages there.
4934   // Normally, this means we just map to internal, but for explicit
4935   // instantiations we'll map to external.
4936 
4937   // In C++, the compiler has to emit a definition in every translation unit
4938   // that references the function.  We should use linkonce_odr because
4939   // a) if all references in this translation unit are optimized away, we
4940   // don't need to codegen it.  b) if the function persists, it needs to be
4941   // merged with other definitions. c) C++ has the ODR, so we know the
4942   // definition is dependable.
4943   if (Linkage == GVA_DiscardableODR)
4944     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4945                                             : llvm::Function::InternalLinkage;
4946 
4947   // An explicit instantiation of a template has weak linkage, since
4948   // explicit instantiations can occur in multiple translation units
4949   // and must all be equivalent. However, we are not allowed to
4950   // throw away these explicit instantiations.
4951   //
4952   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4953   // so say that CUDA templates are either external (for kernels) or internal.
4954   // This lets llvm perform aggressive inter-procedural optimizations. For
4955   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4956   // therefore we need to follow the normal linkage paradigm.
4957   if (Linkage == GVA_StrongODR) {
4958     if (getLangOpts().AppleKext)
4959       return llvm::Function::ExternalLinkage;
4960     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4961         !getLangOpts().GPURelocatableDeviceCode)
4962       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4963                                           : llvm::Function::InternalLinkage;
4964     return llvm::Function::WeakODRLinkage;
4965   }
4966 
4967   // C++ doesn't have tentative definitions and thus cannot have common
4968   // linkage.
4969   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4970       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4971                                  CodeGenOpts.NoCommon))
4972     return llvm::GlobalVariable::CommonLinkage;
4973 
4974   // selectany symbols are externally visible, so use weak instead of
4975   // linkonce.  MSVC optimizes away references to const selectany globals, so
4976   // all definitions should be the same and ODR linkage should be used.
4977   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4978   if (D->hasAttr<SelectAnyAttr>())
4979     return llvm::GlobalVariable::WeakODRLinkage;
4980 
4981   // Otherwise, we have strong external linkage.
4982   assert(Linkage == GVA_StrongExternal);
4983   return llvm::GlobalVariable::ExternalLinkage;
4984 }
4985 
4986 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4987     const VarDecl *VD, bool IsConstant) {
4988   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4989   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4990 }
4991 
4992 /// Replace the uses of a function that was declared with a non-proto type.
4993 /// We want to silently drop extra arguments from call sites
4994 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4995                                           llvm::Function *newFn) {
4996   // Fast path.
4997   if (old->use_empty()) return;
4998 
4999   llvm::Type *newRetTy = newFn->getReturnType();
5000   SmallVector<llvm::Value*, 4> newArgs;
5001 
5002   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5003          ui != ue; ) {
5004     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5005     llvm::User *user = use->getUser();
5006 
5007     // Recognize and replace uses of bitcasts.  Most calls to
5008     // unprototyped functions will use bitcasts.
5009     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5010       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5011         replaceUsesOfNonProtoConstant(bitcast, newFn);
5012       continue;
5013     }
5014 
5015     // Recognize calls to the function.
5016     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5017     if (!callSite) continue;
5018     if (!callSite->isCallee(&*use))
5019       continue;
5020 
5021     // If the return types don't match exactly, then we can't
5022     // transform this call unless it's dead.
5023     if (callSite->getType() != newRetTy && !callSite->use_empty())
5024       continue;
5025 
5026     // Get the call site's attribute list.
5027     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5028     llvm::AttributeList oldAttrs = callSite->getAttributes();
5029 
5030     // If the function was passed too few arguments, don't transform.
5031     unsigned newNumArgs = newFn->arg_size();
5032     if (callSite->arg_size() < newNumArgs)
5033       continue;
5034 
5035     // If extra arguments were passed, we silently drop them.
5036     // If any of the types mismatch, we don't transform.
5037     unsigned argNo = 0;
5038     bool dontTransform = false;
5039     for (llvm::Argument &A : newFn->args()) {
5040       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5041         dontTransform = true;
5042         break;
5043       }
5044 
5045       // Add any parameter attributes.
5046       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5047       argNo++;
5048     }
5049     if (dontTransform)
5050       continue;
5051 
5052     // Okay, we can transform this.  Create the new call instruction and copy
5053     // over the required information.
5054     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5055 
5056     // Copy over any operand bundles.
5057     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5058     callSite->getOperandBundlesAsDefs(newBundles);
5059 
5060     llvm::CallBase *newCall;
5061     if (isa<llvm::CallInst>(callSite)) {
5062       newCall =
5063           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5064     } else {
5065       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5066       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5067                                          oldInvoke->getUnwindDest(), newArgs,
5068                                          newBundles, "", callSite);
5069     }
5070     newArgs.clear(); // for the next iteration
5071 
5072     if (!newCall->getType()->isVoidTy())
5073       newCall->takeName(callSite);
5074     newCall->setAttributes(
5075         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5076                                  oldAttrs.getRetAttrs(), newArgAttrs));
5077     newCall->setCallingConv(callSite->getCallingConv());
5078 
5079     // Finally, remove the old call, replacing any uses with the new one.
5080     if (!callSite->use_empty())
5081       callSite->replaceAllUsesWith(newCall);
5082 
5083     // Copy debug location attached to CI.
5084     if (callSite->getDebugLoc())
5085       newCall->setDebugLoc(callSite->getDebugLoc());
5086 
5087     callSite->eraseFromParent();
5088   }
5089 }
5090 
5091 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5092 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5093 /// existing call uses of the old function in the module, this adjusts them to
5094 /// call the new function directly.
5095 ///
5096 /// This is not just a cleanup: the always_inline pass requires direct calls to
5097 /// functions to be able to inline them.  If there is a bitcast in the way, it
5098 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5099 /// run at -O0.
5100 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5101                                                       llvm::Function *NewFn) {
5102   // If we're redefining a global as a function, don't transform it.
5103   if (!isa<llvm::Function>(Old)) return;
5104 
5105   replaceUsesOfNonProtoConstant(Old, NewFn);
5106 }
5107 
5108 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5109   auto DK = VD->isThisDeclarationADefinition();
5110   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5111     return;
5112 
5113   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5114   // If we have a definition, this might be a deferred decl. If the
5115   // instantiation is explicit, make sure we emit it at the end.
5116   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5117     GetAddrOfGlobalVar(VD);
5118 
5119   EmitTopLevelDecl(VD);
5120 }
5121 
5122 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5123                                                  llvm::GlobalValue *GV) {
5124   const auto *D = cast<FunctionDecl>(GD.getDecl());
5125 
5126   // Compute the function info and LLVM type.
5127   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5128   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5129 
5130   // Get or create the prototype for the function.
5131   if (!GV || (GV->getValueType() != Ty))
5132     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5133                                                    /*DontDefer=*/true,
5134                                                    ForDefinition));
5135 
5136   // Already emitted.
5137   if (!GV->isDeclaration())
5138     return;
5139 
5140   // We need to set linkage and visibility on the function before
5141   // generating code for it because various parts of IR generation
5142   // want to propagate this information down (e.g. to local static
5143   // declarations).
5144   auto *Fn = cast<llvm::Function>(GV);
5145   setFunctionLinkage(GD, Fn);
5146 
5147   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5148   setGVProperties(Fn, GD);
5149 
5150   MaybeHandleStaticInExternC(D, Fn);
5151 
5152   maybeSetTrivialComdat(*D, *Fn);
5153 
5154   // Set CodeGen attributes that represent floating point environment.
5155   setLLVMFunctionFEnvAttributes(D, Fn);
5156 
5157   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5158 
5159   setNonAliasAttributes(GD, Fn);
5160   SetLLVMFunctionAttributesForDefinition(D, Fn);
5161 
5162   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5163     AddGlobalCtor(Fn, CA->getPriority());
5164   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5165     AddGlobalDtor(Fn, DA->getPriority(), true);
5166   if (D->hasAttr<AnnotateAttr>())
5167     AddGlobalAnnotations(D, Fn);
5168 }
5169 
5170 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5171   const auto *D = cast<ValueDecl>(GD.getDecl());
5172   const AliasAttr *AA = D->getAttr<AliasAttr>();
5173   assert(AA && "Not an alias?");
5174 
5175   StringRef MangledName = getMangledName(GD);
5176 
5177   if (AA->getAliasee() == MangledName) {
5178     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5179     return;
5180   }
5181 
5182   // If there is a definition in the module, then it wins over the alias.
5183   // This is dubious, but allow it to be safe.  Just ignore the alias.
5184   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5185   if (Entry && !Entry->isDeclaration())
5186     return;
5187 
5188   Aliases.push_back(GD);
5189 
5190   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5191 
5192   // Create a reference to the named value.  This ensures that it is emitted
5193   // if a deferred decl.
5194   llvm::Constant *Aliasee;
5195   llvm::GlobalValue::LinkageTypes LT;
5196   if (isa<llvm::FunctionType>(DeclTy)) {
5197     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5198                                       /*ForVTable=*/false);
5199     LT = getFunctionLinkage(GD);
5200   } else {
5201     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5202                                     /*D=*/nullptr);
5203     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5204       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5205     else
5206       LT = getFunctionLinkage(GD);
5207   }
5208 
5209   // Create the new alias itself, but don't set a name yet.
5210   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5211   auto *GA =
5212       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5213 
5214   if (Entry) {
5215     if (GA->getAliasee() == Entry) {
5216       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5217       return;
5218     }
5219 
5220     assert(Entry->isDeclaration());
5221 
5222     // If there is a declaration in the module, then we had an extern followed
5223     // by the alias, as in:
5224     //   extern int test6();
5225     //   ...
5226     //   int test6() __attribute__((alias("test7")));
5227     //
5228     // Remove it and replace uses of it with the alias.
5229     GA->takeName(Entry);
5230 
5231     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5232                                                           Entry->getType()));
5233     Entry->eraseFromParent();
5234   } else {
5235     GA->setName(MangledName);
5236   }
5237 
5238   // Set attributes which are particular to an alias; this is a
5239   // specialization of the attributes which may be set on a global
5240   // variable/function.
5241   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5242       D->isWeakImported()) {
5243     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5244   }
5245 
5246   if (const auto *VD = dyn_cast<VarDecl>(D))
5247     if (VD->getTLSKind())
5248       setTLSMode(GA, *VD);
5249 
5250   SetCommonAttributes(GD, GA);
5251 
5252   // Emit global alias debug information.
5253   if (isa<VarDecl>(D))
5254     if (CGDebugInfo *DI = getModuleDebugInfo())
5255       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5256 }
5257 
5258 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5259   const auto *D = cast<ValueDecl>(GD.getDecl());
5260   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5261   assert(IFA && "Not an ifunc?");
5262 
5263   StringRef MangledName = getMangledName(GD);
5264 
5265   if (IFA->getResolver() == MangledName) {
5266     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5267     return;
5268   }
5269 
5270   // Report an error if some definition overrides ifunc.
5271   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5272   if (Entry && !Entry->isDeclaration()) {
5273     GlobalDecl OtherGD;
5274     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5275         DiagnosedConflictingDefinitions.insert(GD).second) {
5276       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5277           << MangledName;
5278       Diags.Report(OtherGD.getDecl()->getLocation(),
5279                    diag::note_previous_definition);
5280     }
5281     return;
5282   }
5283 
5284   Aliases.push_back(GD);
5285 
5286   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5287   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5288   llvm::Constant *Resolver =
5289       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5290                               /*ForVTable=*/false);
5291   llvm::GlobalIFunc *GIF =
5292       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5293                                 "", Resolver, &getModule());
5294   if (Entry) {
5295     if (GIF->getResolver() == Entry) {
5296       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5297       return;
5298     }
5299     assert(Entry->isDeclaration());
5300 
5301     // If there is a declaration in the module, then we had an extern followed
5302     // by the ifunc, as in:
5303     //   extern int test();
5304     //   ...
5305     //   int test() __attribute__((ifunc("resolver")));
5306     //
5307     // Remove it and replace uses of it with the ifunc.
5308     GIF->takeName(Entry);
5309 
5310     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5311                                                           Entry->getType()));
5312     Entry->eraseFromParent();
5313   } else
5314     GIF->setName(MangledName);
5315 
5316   SetCommonAttributes(GD, GIF);
5317 }
5318 
5319 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5320                                             ArrayRef<llvm::Type*> Tys) {
5321   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5322                                          Tys);
5323 }
5324 
5325 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5326 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5327                          const StringLiteral *Literal, bool TargetIsLSB,
5328                          bool &IsUTF16, unsigned &StringLength) {
5329   StringRef String = Literal->getString();
5330   unsigned NumBytes = String.size();
5331 
5332   // Check for simple case.
5333   if (!Literal->containsNonAsciiOrNull()) {
5334     StringLength = NumBytes;
5335     return *Map.insert(std::make_pair(String, nullptr)).first;
5336   }
5337 
5338   // Otherwise, convert the UTF8 literals into a string of shorts.
5339   IsUTF16 = true;
5340 
5341   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5342   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5343   llvm::UTF16 *ToPtr = &ToBuf[0];
5344 
5345   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5346                                  ToPtr + NumBytes, llvm::strictConversion);
5347 
5348   // ConvertUTF8toUTF16 returns the length in ToPtr.
5349   StringLength = ToPtr - &ToBuf[0];
5350 
5351   // Add an explicit null.
5352   *ToPtr = 0;
5353   return *Map.insert(std::make_pair(
5354                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5355                                    (StringLength + 1) * 2),
5356                          nullptr)).first;
5357 }
5358 
5359 ConstantAddress
5360 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5361   unsigned StringLength = 0;
5362   bool isUTF16 = false;
5363   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5364       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5365                                getDataLayout().isLittleEndian(), isUTF16,
5366                                StringLength);
5367 
5368   if (auto *C = Entry.second)
5369     return ConstantAddress(
5370         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5371 
5372   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5373   llvm::Constant *Zeros[] = { Zero, Zero };
5374 
5375   const ASTContext &Context = getContext();
5376   const llvm::Triple &Triple = getTriple();
5377 
5378   const auto CFRuntime = getLangOpts().CFRuntime;
5379   const bool IsSwiftABI =
5380       static_cast<unsigned>(CFRuntime) >=
5381       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5382   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5383 
5384   // If we don't already have it, get __CFConstantStringClassReference.
5385   if (!CFConstantStringClassRef) {
5386     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5387     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5388     Ty = llvm::ArrayType::get(Ty, 0);
5389 
5390     switch (CFRuntime) {
5391     default: break;
5392     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5393     case LangOptions::CoreFoundationABI::Swift5_0:
5394       CFConstantStringClassName =
5395           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5396                               : "$s10Foundation19_NSCFConstantStringCN";
5397       Ty = IntPtrTy;
5398       break;
5399     case LangOptions::CoreFoundationABI::Swift4_2:
5400       CFConstantStringClassName =
5401           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5402                               : "$S10Foundation19_NSCFConstantStringCN";
5403       Ty = IntPtrTy;
5404       break;
5405     case LangOptions::CoreFoundationABI::Swift4_1:
5406       CFConstantStringClassName =
5407           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5408                               : "__T010Foundation19_NSCFConstantStringCN";
5409       Ty = IntPtrTy;
5410       break;
5411     }
5412 
5413     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5414 
5415     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5416       llvm::GlobalValue *GV = nullptr;
5417 
5418       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5419         IdentifierInfo &II = Context.Idents.get(GV->getName());
5420         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5421         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5422 
5423         const VarDecl *VD = nullptr;
5424         for (const auto *Result : DC->lookup(&II))
5425           if ((VD = dyn_cast<VarDecl>(Result)))
5426             break;
5427 
5428         if (Triple.isOSBinFormatELF()) {
5429           if (!VD)
5430             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5431         } else {
5432           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5433           if (!VD || !VD->hasAttr<DLLExportAttr>())
5434             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5435           else
5436             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5437         }
5438 
5439         setDSOLocal(GV);
5440       }
5441     }
5442 
5443     // Decay array -> ptr
5444     CFConstantStringClassRef =
5445         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5446                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5447   }
5448 
5449   QualType CFTy = Context.getCFConstantStringType();
5450 
5451   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5452 
5453   ConstantInitBuilder Builder(*this);
5454   auto Fields = Builder.beginStruct(STy);
5455 
5456   // Class pointer.
5457   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5458 
5459   // Flags.
5460   if (IsSwiftABI) {
5461     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5462     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5463   } else {
5464     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5465   }
5466 
5467   // String pointer.
5468   llvm::Constant *C = nullptr;
5469   if (isUTF16) {
5470     auto Arr = llvm::makeArrayRef(
5471         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5472         Entry.first().size() / 2);
5473     C = llvm::ConstantDataArray::get(VMContext, Arr);
5474   } else {
5475     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5476   }
5477 
5478   // Note: -fwritable-strings doesn't make the backing store strings of
5479   // CFStrings writable. (See <rdar://problem/10657500>)
5480   auto *GV =
5481       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5482                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5483   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5484   // Don't enforce the target's minimum global alignment, since the only use
5485   // of the string is via this class initializer.
5486   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5487                             : Context.getTypeAlignInChars(Context.CharTy);
5488   GV->setAlignment(Align.getAsAlign());
5489 
5490   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5491   // Without it LLVM can merge the string with a non unnamed_addr one during
5492   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5493   if (Triple.isOSBinFormatMachO())
5494     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5495                            : "__TEXT,__cstring,cstring_literals");
5496   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5497   // the static linker to adjust permissions to read-only later on.
5498   else if (Triple.isOSBinFormatELF())
5499     GV->setSection(".rodata");
5500 
5501   // String.
5502   llvm::Constant *Str =
5503       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5504 
5505   if (isUTF16)
5506     // Cast the UTF16 string to the correct type.
5507     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5508   Fields.add(Str);
5509 
5510   // String length.
5511   llvm::IntegerType *LengthTy =
5512       llvm::IntegerType::get(getModule().getContext(),
5513                              Context.getTargetInfo().getLongWidth());
5514   if (IsSwiftABI) {
5515     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5516         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5517       LengthTy = Int32Ty;
5518     else
5519       LengthTy = IntPtrTy;
5520   }
5521   Fields.addInt(LengthTy, StringLength);
5522 
5523   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5524   // properly aligned on 32-bit platforms.
5525   CharUnits Alignment =
5526       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5527 
5528   // The struct.
5529   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5530                                     /*isConstant=*/false,
5531                                     llvm::GlobalVariable::PrivateLinkage);
5532   GV->addAttribute("objc_arc_inert");
5533   switch (Triple.getObjectFormat()) {
5534   case llvm::Triple::UnknownObjectFormat:
5535     llvm_unreachable("unknown file format");
5536   case llvm::Triple::DXContainer:
5537   case llvm::Triple::GOFF:
5538   case llvm::Triple::SPIRV:
5539   case llvm::Triple::XCOFF:
5540     llvm_unreachable("unimplemented");
5541   case llvm::Triple::COFF:
5542   case llvm::Triple::ELF:
5543   case llvm::Triple::Wasm:
5544     GV->setSection("cfstring");
5545     break;
5546   case llvm::Triple::MachO:
5547     GV->setSection("__DATA,__cfstring");
5548     break;
5549   }
5550   Entry.second = GV;
5551 
5552   return ConstantAddress(GV, GV->getValueType(), Alignment);
5553 }
5554 
5555 bool CodeGenModule::getExpressionLocationsEnabled() const {
5556   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5557 }
5558 
5559 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5560   if (ObjCFastEnumerationStateType.isNull()) {
5561     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5562     D->startDefinition();
5563 
5564     QualType FieldTypes[] = {
5565       Context.UnsignedLongTy,
5566       Context.getPointerType(Context.getObjCIdType()),
5567       Context.getPointerType(Context.UnsignedLongTy),
5568       Context.getConstantArrayType(Context.UnsignedLongTy,
5569                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5570     };
5571 
5572     for (size_t i = 0; i < 4; ++i) {
5573       FieldDecl *Field = FieldDecl::Create(Context,
5574                                            D,
5575                                            SourceLocation(),
5576                                            SourceLocation(), nullptr,
5577                                            FieldTypes[i], /*TInfo=*/nullptr,
5578                                            /*BitWidth=*/nullptr,
5579                                            /*Mutable=*/false,
5580                                            ICIS_NoInit);
5581       Field->setAccess(AS_public);
5582       D->addDecl(Field);
5583     }
5584 
5585     D->completeDefinition();
5586     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5587   }
5588 
5589   return ObjCFastEnumerationStateType;
5590 }
5591 
5592 llvm::Constant *
5593 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5594   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5595 
5596   // Don't emit it as the address of the string, emit the string data itself
5597   // as an inline array.
5598   if (E->getCharByteWidth() == 1) {
5599     SmallString<64> Str(E->getString());
5600 
5601     // Resize the string to the right size, which is indicated by its type.
5602     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5603     Str.resize(CAT->getSize().getZExtValue());
5604     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5605   }
5606 
5607   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5608   llvm::Type *ElemTy = AType->getElementType();
5609   unsigned NumElements = AType->getNumElements();
5610 
5611   // Wide strings have either 2-byte or 4-byte elements.
5612   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5613     SmallVector<uint16_t, 32> Elements;
5614     Elements.reserve(NumElements);
5615 
5616     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5617       Elements.push_back(E->getCodeUnit(i));
5618     Elements.resize(NumElements);
5619     return llvm::ConstantDataArray::get(VMContext, Elements);
5620   }
5621 
5622   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5623   SmallVector<uint32_t, 32> Elements;
5624   Elements.reserve(NumElements);
5625 
5626   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5627     Elements.push_back(E->getCodeUnit(i));
5628   Elements.resize(NumElements);
5629   return llvm::ConstantDataArray::get(VMContext, Elements);
5630 }
5631 
5632 static llvm::GlobalVariable *
5633 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5634                       CodeGenModule &CGM, StringRef GlobalName,
5635                       CharUnits Alignment) {
5636   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5637       CGM.GetGlobalConstantAddressSpace());
5638 
5639   llvm::Module &M = CGM.getModule();
5640   // Create a global variable for this string
5641   auto *GV = new llvm::GlobalVariable(
5642       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5643       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5644   GV->setAlignment(Alignment.getAsAlign());
5645   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5646   if (GV->isWeakForLinker()) {
5647     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5648     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5649   }
5650   CGM.setDSOLocal(GV);
5651 
5652   return GV;
5653 }
5654 
5655 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5656 /// constant array for the given string literal.
5657 ConstantAddress
5658 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5659                                                   StringRef Name) {
5660   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5661 
5662   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5663   llvm::GlobalVariable **Entry = nullptr;
5664   if (!LangOpts.WritableStrings) {
5665     Entry = &ConstantStringMap[C];
5666     if (auto GV = *Entry) {
5667       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5668         GV->setAlignment(Alignment.getAsAlign());
5669       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5670                              GV->getValueType(), Alignment);
5671     }
5672   }
5673 
5674   SmallString<256> MangledNameBuffer;
5675   StringRef GlobalVariableName;
5676   llvm::GlobalValue::LinkageTypes LT;
5677 
5678   // Mangle the string literal if that's how the ABI merges duplicate strings.
5679   // Don't do it if they are writable, since we don't want writes in one TU to
5680   // affect strings in another.
5681   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5682       !LangOpts.WritableStrings) {
5683     llvm::raw_svector_ostream Out(MangledNameBuffer);
5684     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5685     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5686     GlobalVariableName = MangledNameBuffer;
5687   } else {
5688     LT = llvm::GlobalValue::PrivateLinkage;
5689     GlobalVariableName = Name;
5690   }
5691 
5692   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5693 
5694   CGDebugInfo *DI = getModuleDebugInfo();
5695   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5696     DI->AddStringLiteralDebugInfo(GV, S);
5697 
5698   if (Entry)
5699     *Entry = GV;
5700 
5701   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5702 
5703   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5704                          GV->getValueType(), Alignment);
5705 }
5706 
5707 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5708 /// array for the given ObjCEncodeExpr node.
5709 ConstantAddress
5710 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5711   std::string Str;
5712   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5713 
5714   return GetAddrOfConstantCString(Str);
5715 }
5716 
5717 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5718 /// the literal and a terminating '\0' character.
5719 /// The result has pointer to array type.
5720 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5721     const std::string &Str, const char *GlobalName) {
5722   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5723   CharUnits Alignment =
5724     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5725 
5726   llvm::Constant *C =
5727       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5728 
5729   // Don't share any string literals if strings aren't constant.
5730   llvm::GlobalVariable **Entry = nullptr;
5731   if (!LangOpts.WritableStrings) {
5732     Entry = &ConstantStringMap[C];
5733     if (auto GV = *Entry) {
5734       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5735         GV->setAlignment(Alignment.getAsAlign());
5736       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5737                              GV->getValueType(), Alignment);
5738     }
5739   }
5740 
5741   // Get the default prefix if a name wasn't specified.
5742   if (!GlobalName)
5743     GlobalName = ".str";
5744   // Create a global variable for this.
5745   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5746                                   GlobalName, Alignment);
5747   if (Entry)
5748     *Entry = GV;
5749 
5750   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5751                          GV->getValueType(), Alignment);
5752 }
5753 
5754 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5755     const MaterializeTemporaryExpr *E, const Expr *Init) {
5756   assert((E->getStorageDuration() == SD_Static ||
5757           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5758   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5759 
5760   // If we're not materializing a subobject of the temporary, keep the
5761   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5762   QualType MaterializedType = Init->getType();
5763   if (Init == E->getSubExpr())
5764     MaterializedType = E->getType();
5765 
5766   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5767 
5768   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5769   if (!InsertResult.second) {
5770     // We've seen this before: either we already created it or we're in the
5771     // process of doing so.
5772     if (!InsertResult.first->second) {
5773       // We recursively re-entered this function, probably during emission of
5774       // the initializer. Create a placeholder. We'll clean this up in the
5775       // outer call, at the end of this function.
5776       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5777       InsertResult.first->second = new llvm::GlobalVariable(
5778           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5779           nullptr);
5780     }
5781     return ConstantAddress(InsertResult.first->second,
5782                            llvm::cast<llvm::GlobalVariable>(
5783                                InsertResult.first->second->stripPointerCasts())
5784                                ->getValueType(),
5785                            Align);
5786   }
5787 
5788   // FIXME: If an externally-visible declaration extends multiple temporaries,
5789   // we need to give each temporary the same name in every translation unit (and
5790   // we also need to make the temporaries externally-visible).
5791   SmallString<256> Name;
5792   llvm::raw_svector_ostream Out(Name);
5793   getCXXABI().getMangleContext().mangleReferenceTemporary(
5794       VD, E->getManglingNumber(), Out);
5795 
5796   APValue *Value = nullptr;
5797   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5798     // If the initializer of the extending declaration is a constant
5799     // initializer, we should have a cached constant initializer for this
5800     // temporary. Note that this might have a different value from the value
5801     // computed by evaluating the initializer if the surrounding constant
5802     // expression modifies the temporary.
5803     Value = E->getOrCreateValue(false);
5804   }
5805 
5806   // Try evaluating it now, it might have a constant initializer.
5807   Expr::EvalResult EvalResult;
5808   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5809       !EvalResult.hasSideEffects())
5810     Value = &EvalResult.Val;
5811 
5812   LangAS AddrSpace =
5813       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5814 
5815   Optional<ConstantEmitter> emitter;
5816   llvm::Constant *InitialValue = nullptr;
5817   bool Constant = false;
5818   llvm::Type *Type;
5819   if (Value) {
5820     // The temporary has a constant initializer, use it.
5821     emitter.emplace(*this);
5822     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5823                                                MaterializedType);
5824     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5825     Type = InitialValue->getType();
5826   } else {
5827     // No initializer, the initialization will be provided when we
5828     // initialize the declaration which performed lifetime extension.
5829     Type = getTypes().ConvertTypeForMem(MaterializedType);
5830   }
5831 
5832   // Create a global variable for this lifetime-extended temporary.
5833   llvm::GlobalValue::LinkageTypes Linkage =
5834       getLLVMLinkageVarDefinition(VD, Constant);
5835   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5836     const VarDecl *InitVD;
5837     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5838         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5839       // Temporaries defined inside a class get linkonce_odr linkage because the
5840       // class can be defined in multiple translation units.
5841       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5842     } else {
5843       // There is no need for this temporary to have external linkage if the
5844       // VarDecl has external linkage.
5845       Linkage = llvm::GlobalVariable::InternalLinkage;
5846     }
5847   }
5848   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5849   auto *GV = new llvm::GlobalVariable(
5850       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5851       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5852   if (emitter) emitter->finalize(GV);
5853   setGVProperties(GV, VD);
5854   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5855     // The reference temporary should never be dllexport.
5856     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5857   GV->setAlignment(Align.getAsAlign());
5858   if (supportsCOMDAT() && GV->isWeakForLinker())
5859     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5860   if (VD->getTLSKind())
5861     setTLSMode(GV, *VD);
5862   llvm::Constant *CV = GV;
5863   if (AddrSpace != LangAS::Default)
5864     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5865         *this, GV, AddrSpace, LangAS::Default,
5866         Type->getPointerTo(
5867             getContext().getTargetAddressSpace(LangAS::Default)));
5868 
5869   // Update the map with the new temporary. If we created a placeholder above,
5870   // replace it with the new global now.
5871   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5872   if (Entry) {
5873     Entry->replaceAllUsesWith(
5874         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5875     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5876   }
5877   Entry = CV;
5878 
5879   return ConstantAddress(CV, Type, Align);
5880 }
5881 
5882 /// EmitObjCPropertyImplementations - Emit information for synthesized
5883 /// properties for an implementation.
5884 void CodeGenModule::EmitObjCPropertyImplementations(const
5885                                                     ObjCImplementationDecl *D) {
5886   for (const auto *PID : D->property_impls()) {
5887     // Dynamic is just for type-checking.
5888     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5889       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5890 
5891       // Determine which methods need to be implemented, some may have
5892       // been overridden. Note that ::isPropertyAccessor is not the method
5893       // we want, that just indicates if the decl came from a
5894       // property. What we want to know is if the method is defined in
5895       // this implementation.
5896       auto *Getter = PID->getGetterMethodDecl();
5897       if (!Getter || Getter->isSynthesizedAccessorStub())
5898         CodeGenFunction(*this).GenerateObjCGetter(
5899             const_cast<ObjCImplementationDecl *>(D), PID);
5900       auto *Setter = PID->getSetterMethodDecl();
5901       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5902         CodeGenFunction(*this).GenerateObjCSetter(
5903                                  const_cast<ObjCImplementationDecl *>(D), PID);
5904     }
5905   }
5906 }
5907 
5908 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5909   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5910   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5911        ivar; ivar = ivar->getNextIvar())
5912     if (ivar->getType().isDestructedType())
5913       return true;
5914 
5915   return false;
5916 }
5917 
5918 static bool AllTrivialInitializers(CodeGenModule &CGM,
5919                                    ObjCImplementationDecl *D) {
5920   CodeGenFunction CGF(CGM);
5921   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5922        E = D->init_end(); B != E; ++B) {
5923     CXXCtorInitializer *CtorInitExp = *B;
5924     Expr *Init = CtorInitExp->getInit();
5925     if (!CGF.isTrivialInitializer(Init))
5926       return false;
5927   }
5928   return true;
5929 }
5930 
5931 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5932 /// for an implementation.
5933 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5934   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5935   if (needsDestructMethod(D)) {
5936     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5937     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5938     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5939         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5940         getContext().VoidTy, nullptr, D,
5941         /*isInstance=*/true, /*isVariadic=*/false,
5942         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5943         /*isImplicitlyDeclared=*/true,
5944         /*isDefined=*/false, ObjCMethodDecl::Required);
5945     D->addInstanceMethod(DTORMethod);
5946     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5947     D->setHasDestructors(true);
5948   }
5949 
5950   // If the implementation doesn't have any ivar initializers, we don't need
5951   // a .cxx_construct.
5952   if (D->getNumIvarInitializers() == 0 ||
5953       AllTrivialInitializers(*this, D))
5954     return;
5955 
5956   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5957   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5958   // The constructor returns 'self'.
5959   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5960       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5961       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5962       /*isVariadic=*/false,
5963       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5964       /*isImplicitlyDeclared=*/true,
5965       /*isDefined=*/false, ObjCMethodDecl::Required);
5966   D->addInstanceMethod(CTORMethod);
5967   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5968   D->setHasNonZeroConstructors(true);
5969 }
5970 
5971 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5972 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5973   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5974       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5975     ErrorUnsupported(LSD, "linkage spec");
5976     return;
5977   }
5978 
5979   EmitDeclContext(LSD);
5980 }
5981 
5982 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5983   for (auto *I : DC->decls()) {
5984     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5985     // are themselves considered "top-level", so EmitTopLevelDecl on an
5986     // ObjCImplDecl does not recursively visit them. We need to do that in
5987     // case they're nested inside another construct (LinkageSpecDecl /
5988     // ExportDecl) that does stop them from being considered "top-level".
5989     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5990       for (auto *M : OID->methods())
5991         EmitTopLevelDecl(M);
5992     }
5993 
5994     EmitTopLevelDecl(I);
5995   }
5996 }
5997 
5998 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5999 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6000   // Ignore dependent declarations.
6001   if (D->isTemplated())
6002     return;
6003 
6004   // Consteval function shouldn't be emitted.
6005   if (auto *FD = dyn_cast<FunctionDecl>(D))
6006     if (FD->isConsteval())
6007       return;
6008 
6009   switch (D->getKind()) {
6010   case Decl::CXXConversion:
6011   case Decl::CXXMethod:
6012   case Decl::Function:
6013     EmitGlobal(cast<FunctionDecl>(D));
6014     // Always provide some coverage mapping
6015     // even for the functions that aren't emitted.
6016     AddDeferredUnusedCoverageMapping(D);
6017     break;
6018 
6019   case Decl::CXXDeductionGuide:
6020     // Function-like, but does not result in code emission.
6021     break;
6022 
6023   case Decl::Var:
6024   case Decl::Decomposition:
6025   case Decl::VarTemplateSpecialization:
6026     EmitGlobal(cast<VarDecl>(D));
6027     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6028       for (auto *B : DD->bindings())
6029         if (auto *HD = B->getHoldingVar())
6030           EmitGlobal(HD);
6031     break;
6032 
6033   // Indirect fields from global anonymous structs and unions can be
6034   // ignored; only the actual variable requires IR gen support.
6035   case Decl::IndirectField:
6036     break;
6037 
6038   // C++ Decls
6039   case Decl::Namespace:
6040     EmitDeclContext(cast<NamespaceDecl>(D));
6041     break;
6042   case Decl::ClassTemplateSpecialization: {
6043     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6044     if (CGDebugInfo *DI = getModuleDebugInfo())
6045       if (Spec->getSpecializationKind() ==
6046               TSK_ExplicitInstantiationDefinition &&
6047           Spec->hasDefinition())
6048         DI->completeTemplateDefinition(*Spec);
6049   } LLVM_FALLTHROUGH;
6050   case Decl::CXXRecord: {
6051     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6052     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6053       if (CRD->hasDefinition())
6054         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6055       if (auto *ES = D->getASTContext().getExternalSource())
6056         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6057           DI->completeUnusedClass(*CRD);
6058     }
6059     // Emit any static data members, they may be definitions.
6060     for (auto *I : CRD->decls())
6061       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6062         EmitTopLevelDecl(I);
6063     break;
6064   }
6065     // No code generation needed.
6066   case Decl::UsingShadow:
6067   case Decl::ClassTemplate:
6068   case Decl::VarTemplate:
6069   case Decl::Concept:
6070   case Decl::VarTemplatePartialSpecialization:
6071   case Decl::FunctionTemplate:
6072   case Decl::TypeAliasTemplate:
6073   case Decl::Block:
6074   case Decl::Empty:
6075   case Decl::Binding:
6076     break;
6077   case Decl::Using:          // using X; [C++]
6078     if (CGDebugInfo *DI = getModuleDebugInfo())
6079         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6080     break;
6081   case Decl::UsingEnum: // using enum X; [C++]
6082     if (CGDebugInfo *DI = getModuleDebugInfo())
6083       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6084     break;
6085   case Decl::NamespaceAlias:
6086     if (CGDebugInfo *DI = getModuleDebugInfo())
6087         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6088     break;
6089   case Decl::UsingDirective: // using namespace X; [C++]
6090     if (CGDebugInfo *DI = getModuleDebugInfo())
6091       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6092     break;
6093   case Decl::CXXConstructor:
6094     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6095     break;
6096   case Decl::CXXDestructor:
6097     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6098     break;
6099 
6100   case Decl::StaticAssert:
6101     // Nothing to do.
6102     break;
6103 
6104   // Objective-C Decls
6105 
6106   // Forward declarations, no (immediate) code generation.
6107   case Decl::ObjCInterface:
6108   case Decl::ObjCCategory:
6109     break;
6110 
6111   case Decl::ObjCProtocol: {
6112     auto *Proto = cast<ObjCProtocolDecl>(D);
6113     if (Proto->isThisDeclarationADefinition())
6114       ObjCRuntime->GenerateProtocol(Proto);
6115     break;
6116   }
6117 
6118   case Decl::ObjCCategoryImpl:
6119     // Categories have properties but don't support synthesize so we
6120     // can ignore them here.
6121     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6122     break;
6123 
6124   case Decl::ObjCImplementation: {
6125     auto *OMD = cast<ObjCImplementationDecl>(D);
6126     EmitObjCPropertyImplementations(OMD);
6127     EmitObjCIvarInitializations(OMD);
6128     ObjCRuntime->GenerateClass(OMD);
6129     // Emit global variable debug information.
6130     if (CGDebugInfo *DI = getModuleDebugInfo())
6131       if (getCodeGenOpts().hasReducedDebugInfo())
6132         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6133             OMD->getClassInterface()), OMD->getLocation());
6134     break;
6135   }
6136   case Decl::ObjCMethod: {
6137     auto *OMD = cast<ObjCMethodDecl>(D);
6138     // If this is not a prototype, emit the body.
6139     if (OMD->getBody())
6140       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6141     break;
6142   }
6143   case Decl::ObjCCompatibleAlias:
6144     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6145     break;
6146 
6147   case Decl::PragmaComment: {
6148     const auto *PCD = cast<PragmaCommentDecl>(D);
6149     switch (PCD->getCommentKind()) {
6150     case PCK_Unknown:
6151       llvm_unreachable("unexpected pragma comment kind");
6152     case PCK_Linker:
6153       AppendLinkerOptions(PCD->getArg());
6154       break;
6155     case PCK_Lib:
6156         AddDependentLib(PCD->getArg());
6157       break;
6158     case PCK_Compiler:
6159     case PCK_ExeStr:
6160     case PCK_User:
6161       break; // We ignore all of these.
6162     }
6163     break;
6164   }
6165 
6166   case Decl::PragmaDetectMismatch: {
6167     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6168     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6169     break;
6170   }
6171 
6172   case Decl::LinkageSpec:
6173     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6174     break;
6175 
6176   case Decl::FileScopeAsm: {
6177     // File-scope asm is ignored during device-side CUDA compilation.
6178     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6179       break;
6180     // File-scope asm is ignored during device-side OpenMP compilation.
6181     if (LangOpts.OpenMPIsDevice)
6182       break;
6183     // File-scope asm is ignored during device-side SYCL compilation.
6184     if (LangOpts.SYCLIsDevice)
6185       break;
6186     auto *AD = cast<FileScopeAsmDecl>(D);
6187     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6188     break;
6189   }
6190 
6191   case Decl::Import: {
6192     auto *Import = cast<ImportDecl>(D);
6193 
6194     // If we've already imported this module, we're done.
6195     if (!ImportedModules.insert(Import->getImportedModule()))
6196       break;
6197 
6198     // Emit debug information for direct imports.
6199     if (!Import->getImportedOwningModule()) {
6200       if (CGDebugInfo *DI = getModuleDebugInfo())
6201         DI->EmitImportDecl(*Import);
6202     }
6203 
6204     // Find all of the submodules and emit the module initializers.
6205     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6206     SmallVector<clang::Module *, 16> Stack;
6207     Visited.insert(Import->getImportedModule());
6208     Stack.push_back(Import->getImportedModule());
6209 
6210     while (!Stack.empty()) {
6211       clang::Module *Mod = Stack.pop_back_val();
6212       if (!EmittedModuleInitializers.insert(Mod).second)
6213         continue;
6214 
6215       for (auto *D : Context.getModuleInitializers(Mod))
6216         EmitTopLevelDecl(D);
6217 
6218       // Visit the submodules of this module.
6219       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6220                                              SubEnd = Mod->submodule_end();
6221            Sub != SubEnd; ++Sub) {
6222         // Skip explicit children; they need to be explicitly imported to emit
6223         // the initializers.
6224         if ((*Sub)->IsExplicit)
6225           continue;
6226 
6227         if (Visited.insert(*Sub).second)
6228           Stack.push_back(*Sub);
6229       }
6230     }
6231     break;
6232   }
6233 
6234   case Decl::Export:
6235     EmitDeclContext(cast<ExportDecl>(D));
6236     break;
6237 
6238   case Decl::OMPThreadPrivate:
6239     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6240     break;
6241 
6242   case Decl::OMPAllocate:
6243     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6244     break;
6245 
6246   case Decl::OMPDeclareReduction:
6247     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6248     break;
6249 
6250   case Decl::OMPDeclareMapper:
6251     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6252     break;
6253 
6254   case Decl::OMPRequires:
6255     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6256     break;
6257 
6258   case Decl::Typedef:
6259   case Decl::TypeAlias: // using foo = bar; [C++11]
6260     if (CGDebugInfo *DI = getModuleDebugInfo())
6261       DI->EmitAndRetainType(
6262           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6263     break;
6264 
6265   case Decl::Record:
6266     if (CGDebugInfo *DI = getModuleDebugInfo())
6267       if (cast<RecordDecl>(D)->getDefinition())
6268         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6269     break;
6270 
6271   case Decl::Enum:
6272     if (CGDebugInfo *DI = getModuleDebugInfo())
6273       if (cast<EnumDecl>(D)->getDefinition())
6274         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6275     break;
6276 
6277   default:
6278     // Make sure we handled everything we should, every other kind is a
6279     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6280     // function. Need to recode Decl::Kind to do that easily.
6281     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6282     break;
6283   }
6284 }
6285 
6286 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6287   // Do we need to generate coverage mapping?
6288   if (!CodeGenOpts.CoverageMapping)
6289     return;
6290   switch (D->getKind()) {
6291   case Decl::CXXConversion:
6292   case Decl::CXXMethod:
6293   case Decl::Function:
6294   case Decl::ObjCMethod:
6295   case Decl::CXXConstructor:
6296   case Decl::CXXDestructor: {
6297     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6298       break;
6299     SourceManager &SM = getContext().getSourceManager();
6300     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6301       break;
6302     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6303     if (I == DeferredEmptyCoverageMappingDecls.end())
6304       DeferredEmptyCoverageMappingDecls[D] = true;
6305     break;
6306   }
6307   default:
6308     break;
6309   };
6310 }
6311 
6312 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6313   // Do we need to generate coverage mapping?
6314   if (!CodeGenOpts.CoverageMapping)
6315     return;
6316   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6317     if (Fn->isTemplateInstantiation())
6318       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6319   }
6320   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6321   if (I == DeferredEmptyCoverageMappingDecls.end())
6322     DeferredEmptyCoverageMappingDecls[D] = false;
6323   else
6324     I->second = false;
6325 }
6326 
6327 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6328   // We call takeVector() here to avoid use-after-free.
6329   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6330   // we deserialize function bodies to emit coverage info for them, and that
6331   // deserializes more declarations. How should we handle that case?
6332   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6333     if (!Entry.second)
6334       continue;
6335     const Decl *D = Entry.first;
6336     switch (D->getKind()) {
6337     case Decl::CXXConversion:
6338     case Decl::CXXMethod:
6339     case Decl::Function:
6340     case Decl::ObjCMethod: {
6341       CodeGenPGO PGO(*this);
6342       GlobalDecl GD(cast<FunctionDecl>(D));
6343       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6344                                   getFunctionLinkage(GD));
6345       break;
6346     }
6347     case Decl::CXXConstructor: {
6348       CodeGenPGO PGO(*this);
6349       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6350       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6351                                   getFunctionLinkage(GD));
6352       break;
6353     }
6354     case Decl::CXXDestructor: {
6355       CodeGenPGO PGO(*this);
6356       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6357       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6358                                   getFunctionLinkage(GD));
6359       break;
6360     }
6361     default:
6362       break;
6363     };
6364   }
6365 }
6366 
6367 void CodeGenModule::EmitMainVoidAlias() {
6368   // In order to transition away from "__original_main" gracefully, emit an
6369   // alias for "main" in the no-argument case so that libc can detect when
6370   // new-style no-argument main is in used.
6371   if (llvm::Function *F = getModule().getFunction("main")) {
6372     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6373         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6374       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6375       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6376     }
6377   }
6378 }
6379 
6380 /// Turns the given pointer into a constant.
6381 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6382                                           const void *Ptr) {
6383   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6384   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6385   return llvm::ConstantInt::get(i64, PtrInt);
6386 }
6387 
6388 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6389                                    llvm::NamedMDNode *&GlobalMetadata,
6390                                    GlobalDecl D,
6391                                    llvm::GlobalValue *Addr) {
6392   if (!GlobalMetadata)
6393     GlobalMetadata =
6394       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6395 
6396   // TODO: should we report variant information for ctors/dtors?
6397   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6398                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6399                                CGM.getLLVMContext(), D.getDecl()))};
6400   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6401 }
6402 
6403 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6404                                                  llvm::GlobalValue *CppFunc) {
6405   // Store the list of ifuncs we need to replace uses in.
6406   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6407   // List of ConstantExprs that we should be able to delete when we're done
6408   // here.
6409   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6410 
6411   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6412   if (Elem == CppFunc)
6413     return false;
6414 
6415   // First make sure that all users of this are ifuncs (or ifuncs via a
6416   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6417   // later.
6418   for (llvm::User *User : Elem->users()) {
6419     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6420     // ifunc directly. In any other case, just give up, as we don't know what we
6421     // could break by changing those.
6422     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6423       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6424         return false;
6425 
6426       for (llvm::User *CEUser : ConstExpr->users()) {
6427         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6428           IFuncs.push_back(IFunc);
6429         } else {
6430           return false;
6431         }
6432       }
6433       CEs.push_back(ConstExpr);
6434     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6435       IFuncs.push_back(IFunc);
6436     } else {
6437       // This user is one we don't know how to handle, so fail redirection. This
6438       // will result in an ifunc retaining a resolver name that will ultimately
6439       // fail to be resolved to a defined function.
6440       return false;
6441     }
6442   }
6443 
6444   // Now we know this is a valid case where we can do this alias replacement, we
6445   // need to remove all of the references to Elem (and the bitcasts!) so we can
6446   // delete it.
6447   for (llvm::GlobalIFunc *IFunc : IFuncs)
6448     IFunc->setResolver(nullptr);
6449   for (llvm::ConstantExpr *ConstExpr : CEs)
6450     ConstExpr->destroyConstant();
6451 
6452   // We should now be out of uses for the 'old' version of this function, so we
6453   // can erase it as well.
6454   Elem->eraseFromParent();
6455 
6456   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6457     // The type of the resolver is always just a function-type that returns the
6458     // type of the IFunc, so create that here. If the type of the actual
6459     // resolver doesn't match, it just gets bitcast to the right thing.
6460     auto *ResolverTy =
6461         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6462     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6463         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6464     IFunc->setResolver(Resolver);
6465   }
6466   return true;
6467 }
6468 
6469 /// For each function which is declared within an extern "C" region and marked
6470 /// as 'used', but has internal linkage, create an alias from the unmangled
6471 /// name to the mangled name if possible. People expect to be able to refer
6472 /// to such functions with an unmangled name from inline assembly within the
6473 /// same translation unit.
6474 void CodeGenModule::EmitStaticExternCAliases() {
6475   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6476     return;
6477   for (auto &I : StaticExternCValues) {
6478     IdentifierInfo *Name = I.first;
6479     llvm::GlobalValue *Val = I.second;
6480 
6481     // If Val is null, that implies there were multiple declarations that each
6482     // had a claim to the unmangled name. In this case, generation of the alias
6483     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6484     if (!Val)
6485       break;
6486 
6487     llvm::GlobalValue *ExistingElem =
6488         getModule().getNamedValue(Name->getName());
6489 
6490     // If there is either not something already by this name, or we were able to
6491     // replace all uses from IFuncs, create the alias.
6492     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6493       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6494   }
6495 }
6496 
6497 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6498                                              GlobalDecl &Result) const {
6499   auto Res = Manglings.find(MangledName);
6500   if (Res == Manglings.end())
6501     return false;
6502   Result = Res->getValue();
6503   return true;
6504 }
6505 
6506 /// Emits metadata nodes associating all the global values in the
6507 /// current module with the Decls they came from.  This is useful for
6508 /// projects using IR gen as a subroutine.
6509 ///
6510 /// Since there's currently no way to associate an MDNode directly
6511 /// with an llvm::GlobalValue, we create a global named metadata
6512 /// with the name 'clang.global.decl.ptrs'.
6513 void CodeGenModule::EmitDeclMetadata() {
6514   llvm::NamedMDNode *GlobalMetadata = nullptr;
6515 
6516   for (auto &I : MangledDeclNames) {
6517     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6518     // Some mangled names don't necessarily have an associated GlobalValue
6519     // in this module, e.g. if we mangled it for DebugInfo.
6520     if (Addr)
6521       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6522   }
6523 }
6524 
6525 /// Emits metadata nodes for all the local variables in the current
6526 /// function.
6527 void CodeGenFunction::EmitDeclMetadata() {
6528   if (LocalDeclMap.empty()) return;
6529 
6530   llvm::LLVMContext &Context = getLLVMContext();
6531 
6532   // Find the unique metadata ID for this name.
6533   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6534 
6535   llvm::NamedMDNode *GlobalMetadata = nullptr;
6536 
6537   for (auto &I : LocalDeclMap) {
6538     const Decl *D = I.first;
6539     llvm::Value *Addr = I.second.getPointer();
6540     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6541       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6542       Alloca->setMetadata(
6543           DeclPtrKind, llvm::MDNode::get(
6544                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6545     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6546       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6547       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6548     }
6549   }
6550 }
6551 
6552 void CodeGenModule::EmitVersionIdentMetadata() {
6553   llvm::NamedMDNode *IdentMetadata =
6554     TheModule.getOrInsertNamedMetadata("llvm.ident");
6555   std::string Version = getClangFullVersion();
6556   llvm::LLVMContext &Ctx = TheModule.getContext();
6557 
6558   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6559   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6560 }
6561 
6562 void CodeGenModule::EmitCommandLineMetadata() {
6563   llvm::NamedMDNode *CommandLineMetadata =
6564     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6565   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6566   llvm::LLVMContext &Ctx = TheModule.getContext();
6567 
6568   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6569   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6570 }
6571 
6572 void CodeGenModule::EmitCoverageFile() {
6573   if (getCodeGenOpts().CoverageDataFile.empty() &&
6574       getCodeGenOpts().CoverageNotesFile.empty())
6575     return;
6576 
6577   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6578   if (!CUNode)
6579     return;
6580 
6581   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6582   llvm::LLVMContext &Ctx = TheModule.getContext();
6583   auto *CoverageDataFile =
6584       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6585   auto *CoverageNotesFile =
6586       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6587   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6588     llvm::MDNode *CU = CUNode->getOperand(i);
6589     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6590     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6591   }
6592 }
6593 
6594 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6595                                                        bool ForEH) {
6596   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6597   // FIXME: should we even be calling this method if RTTI is disabled
6598   // and it's not for EH?
6599   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6600       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6601        getTriple().isNVPTX()))
6602     return llvm::Constant::getNullValue(Int8PtrTy);
6603 
6604   if (ForEH && Ty->isObjCObjectPointerType() &&
6605       LangOpts.ObjCRuntime.isGNUFamily())
6606     return ObjCRuntime->GetEHType(Ty);
6607 
6608   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6609 }
6610 
6611 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6612   // Do not emit threadprivates in simd-only mode.
6613   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6614     return;
6615   for (auto RefExpr : D->varlists()) {
6616     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6617     bool PerformInit =
6618         VD->getAnyInitializer() &&
6619         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6620                                                         /*ForRef=*/false);
6621 
6622     Address Addr(GetAddrOfGlobalVar(VD),
6623                  getTypes().ConvertTypeForMem(VD->getType()),
6624                  getContext().getDeclAlign(VD));
6625     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6626             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6627       CXXGlobalInits.push_back(InitFunction);
6628   }
6629 }
6630 
6631 llvm::Metadata *
6632 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6633                                             StringRef Suffix) {
6634   if (auto *FnType = T->getAs<FunctionProtoType>())
6635     T = getContext().getFunctionType(
6636         FnType->getReturnType(), FnType->getParamTypes(),
6637         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6638 
6639   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6640   if (InternalId)
6641     return InternalId;
6642 
6643   if (isExternallyVisible(T->getLinkage())) {
6644     std::string OutName;
6645     llvm::raw_string_ostream Out(OutName);
6646     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6647     Out << Suffix;
6648 
6649     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6650   } else {
6651     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6652                                            llvm::ArrayRef<llvm::Metadata *>());
6653   }
6654 
6655   return InternalId;
6656 }
6657 
6658 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6659   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6660 }
6661 
6662 llvm::Metadata *
6663 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6664   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6665 }
6666 
6667 // Generalize pointer types to a void pointer with the qualifiers of the
6668 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6669 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6670 // 'void *'.
6671 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6672   if (!Ty->isPointerType())
6673     return Ty;
6674 
6675   return Ctx.getPointerType(
6676       QualType(Ctx.VoidTy).withCVRQualifiers(
6677           Ty->getPointeeType().getCVRQualifiers()));
6678 }
6679 
6680 // Apply type generalization to a FunctionType's return and argument types
6681 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6682   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6683     SmallVector<QualType, 8> GeneralizedParams;
6684     for (auto &Param : FnType->param_types())
6685       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6686 
6687     return Ctx.getFunctionType(
6688         GeneralizeType(Ctx, FnType->getReturnType()),
6689         GeneralizedParams, FnType->getExtProtoInfo());
6690   }
6691 
6692   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6693     return Ctx.getFunctionNoProtoType(
6694         GeneralizeType(Ctx, FnType->getReturnType()));
6695 
6696   llvm_unreachable("Encountered unknown FunctionType");
6697 }
6698 
6699 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6700   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6701                                       GeneralizedMetadataIdMap, ".generalized");
6702 }
6703 
6704 /// Returns whether this module needs the "all-vtables" type identifier.
6705 bool CodeGenModule::NeedAllVtablesTypeId() const {
6706   // Returns true if at least one of vtable-based CFI checkers is enabled and
6707   // is not in the trapping mode.
6708   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6709            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6710           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6711            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6712           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6713            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6714           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6715            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6716 }
6717 
6718 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6719                                           CharUnits Offset,
6720                                           const CXXRecordDecl *RD) {
6721   llvm::Metadata *MD =
6722       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6723   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6724 
6725   if (CodeGenOpts.SanitizeCfiCrossDso)
6726     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6727       VTable->addTypeMetadata(Offset.getQuantity(),
6728                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6729 
6730   if (NeedAllVtablesTypeId()) {
6731     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6732     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6733   }
6734 }
6735 
6736 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6737   if (!SanStats)
6738     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6739 
6740   return *SanStats;
6741 }
6742 
6743 llvm::Value *
6744 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6745                                                   CodeGenFunction &CGF) {
6746   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6747   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6748   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6749   auto *Call = CGF.EmitRuntimeCall(
6750       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6751   return Call;
6752 }
6753 
6754 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6755     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6756   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6757                                  /* forPointeeType= */ true);
6758 }
6759 
6760 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6761                                                  LValueBaseInfo *BaseInfo,
6762                                                  TBAAAccessInfo *TBAAInfo,
6763                                                  bool forPointeeType) {
6764   if (TBAAInfo)
6765     *TBAAInfo = getTBAAAccessInfo(T);
6766 
6767   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6768   // that doesn't return the information we need to compute BaseInfo.
6769 
6770   // Honor alignment typedef attributes even on incomplete types.
6771   // We also honor them straight for C++ class types, even as pointees;
6772   // there's an expressivity gap here.
6773   if (auto TT = T->getAs<TypedefType>()) {
6774     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6775       if (BaseInfo)
6776         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6777       return getContext().toCharUnitsFromBits(Align);
6778     }
6779   }
6780 
6781   bool AlignForArray = T->isArrayType();
6782 
6783   // Analyze the base element type, so we don't get confused by incomplete
6784   // array types.
6785   T = getContext().getBaseElementType(T);
6786 
6787   if (T->isIncompleteType()) {
6788     // We could try to replicate the logic from
6789     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6790     // type is incomplete, so it's impossible to test. We could try to reuse
6791     // getTypeAlignIfKnown, but that doesn't return the information we need
6792     // to set BaseInfo.  So just ignore the possibility that the alignment is
6793     // greater than one.
6794     if (BaseInfo)
6795       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6796     return CharUnits::One();
6797   }
6798 
6799   if (BaseInfo)
6800     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6801 
6802   CharUnits Alignment;
6803   const CXXRecordDecl *RD;
6804   if (T.getQualifiers().hasUnaligned()) {
6805     Alignment = CharUnits::One();
6806   } else if (forPointeeType && !AlignForArray &&
6807              (RD = T->getAsCXXRecordDecl())) {
6808     // For C++ class pointees, we don't know whether we're pointing at a
6809     // base or a complete object, so we generally need to use the
6810     // non-virtual alignment.
6811     Alignment = getClassPointerAlignment(RD);
6812   } else {
6813     Alignment = getContext().getTypeAlignInChars(T);
6814   }
6815 
6816   // Cap to the global maximum type alignment unless the alignment
6817   // was somehow explicit on the type.
6818   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6819     if (Alignment.getQuantity() > MaxAlign &&
6820         !getContext().isAlignmentRequired(T))
6821       Alignment = CharUnits::fromQuantity(MaxAlign);
6822   }
6823   return Alignment;
6824 }
6825 
6826 bool CodeGenModule::stopAutoInit() {
6827   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6828   if (StopAfter) {
6829     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6830     // used
6831     if (NumAutoVarInit >= StopAfter) {
6832       return true;
6833     }
6834     if (!NumAutoVarInit) {
6835       unsigned DiagID = getDiags().getCustomDiagID(
6836           DiagnosticsEngine::Warning,
6837           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6838           "number of times ftrivial-auto-var-init=%1 gets applied.");
6839       getDiags().Report(DiagID)
6840           << StopAfter
6841           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6842                       LangOptions::TrivialAutoVarInitKind::Zero
6843                   ? "zero"
6844                   : "pattern");
6845     }
6846     ++NumAutoVarInit;
6847   }
6848   return false;
6849 }
6850 
6851 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6852                                                     const Decl *D) const {
6853   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6854   // postfix beginning with '.' since the symbol name can be demangled.
6855   if (LangOpts.HIP)
6856     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6857   else
6858     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6859 
6860   // If the CUID is not specified we try to generate a unique postfix.
6861   if (getLangOpts().CUID.empty()) {
6862     SourceManager &SM = getContext().getSourceManager();
6863     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6864     assert(PLoc.isValid() && "Source location is expected to be valid.");
6865 
6866     // Get the hash of the user defined macros.
6867     llvm::MD5 Hash;
6868     llvm::MD5::MD5Result Result;
6869     for (const auto &Arg : PreprocessorOpts.Macros)
6870       Hash.update(Arg.first);
6871     Hash.final(Result);
6872 
6873     // Get the UniqueID for the file containing the decl.
6874     llvm::sys::fs::UniqueID ID;
6875     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6876       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6877       assert(PLoc.isValid() && "Source location is expected to be valid.");
6878       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6879         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6880             << PLoc.getFilename() << EC.message();
6881     }
6882     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6883        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6884   } else {
6885     OS << getContext().getCUIDHash();
6886   }
6887 }
6888