xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ef2e590e7b6fb5b0478e5e087006895a07d185c8)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/BinaryFormat/ELF.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/RISCVISAInfo.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include "llvm/Transforms/Utils/BuildLibCalls.h"
75 #include <optional>
76 
77 using namespace clang;
78 using namespace CodeGen;
79 
80 static llvm::cl::opt<bool> LimitedCoverage(
81     "limited-coverage-experimental", llvm::cl::Hidden,
82     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
83 
84 static const char AnnotationSection[] = "llvm.metadata";
85 
86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
87   switch (CGM.getContext().getCXXABIKind()) {
88   case TargetCXXABI::AppleARM64:
89   case TargetCXXABI::Fuchsia:
90   case TargetCXXABI::GenericAArch64:
91   case TargetCXXABI::GenericARM:
92   case TargetCXXABI::iOS:
93   case TargetCXXABI::WatchOS:
94   case TargetCXXABI::GenericMIPS:
95   case TargetCXXABI::GenericItanium:
96   case TargetCXXABI::WebAssembly:
97   case TargetCXXABI::XL:
98     return CreateItaniumCXXABI(CGM);
99   case TargetCXXABI::Microsoft:
100     return CreateMicrosoftCXXABI(CGM);
101   }
102 
103   llvm_unreachable("invalid C++ ABI kind");
104 }
105 
106 static std::unique_ptr<TargetCodeGenInfo>
107 createTargetCodeGenInfo(CodeGenModule &CGM) {
108   const TargetInfo &Target = CGM.getTarget();
109   const llvm::Triple &Triple = Target.getTriple();
110   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
111 
112   switch (Triple.getArch()) {
113   default:
114     return createDefaultTargetCodeGenInfo(CGM);
115 
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145     else if (Target.getABI() == "aapcs-soft")
146       Kind = AArch64ABIKind::AAPCSSoft;
147     else if (Target.getABI() == "pauthtest")
148       Kind = AArch64ABIKind::PAuthTest;
149 
150     return createAArch64TargetCodeGenInfo(CGM, Kind);
151   }
152 
153   case llvm::Triple::wasm32:
154   case llvm::Triple::wasm64: {
155     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
156     if (Target.getABI() == "experimental-mv")
157       Kind = WebAssemblyABIKind::ExperimentalMV;
158     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
159   }
160 
161   case llvm::Triple::arm:
162   case llvm::Triple::armeb:
163   case llvm::Triple::thumb:
164   case llvm::Triple::thumbeb: {
165     if (Triple.getOS() == llvm::Triple::Win32)
166       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
167 
168     ARMABIKind Kind = ARMABIKind::AAPCS;
169     StringRef ABIStr = Target.getABI();
170     if (ABIStr == "apcs-gnu")
171       Kind = ARMABIKind::APCS;
172     else if (ABIStr == "aapcs16")
173       Kind = ARMABIKind::AAPCS16_VFP;
174     else if (CodeGenOpts.FloatABI == "hard" ||
175              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
176       Kind = ARMABIKind::AAPCS_VFP;
177 
178     return createARMTargetCodeGenInfo(CGM, Kind);
179   }
180 
181   case llvm::Triple::ppc: {
182     if (Triple.isOSAIX())
183       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
184 
185     bool IsSoftFloat =
186         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
188   }
189   case llvm::Triple::ppcle: {
190     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppc64:
194     if (Triple.isOSAIX())
195       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
196 
197     if (Triple.isOSBinFormatELF()) {
198       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199       if (Target.getABI() == "elfv2")
200         Kind = PPC64_SVR4_ABIKind::ELFv2;
201       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
202 
203       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
204     }
205     return createPPC64TargetCodeGenInfo(CGM);
206   case llvm::Triple::ppc64le: {
207     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209     if (Target.getABI() == "elfv1")
210       Kind = PPC64_SVR4_ABIKind::ELFv1;
211     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
212 
213     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
214   }
215 
216   case llvm::Triple::nvptx:
217   case llvm::Triple::nvptx64:
218     return createNVPTXTargetCodeGenInfo(CGM);
219 
220   case llvm::Triple::msp430:
221     return createMSP430TargetCodeGenInfo(CGM);
222 
223   case llvm::Triple::riscv32:
224   case llvm::Triple::riscv64: {
225     StringRef ABIStr = Target.getABI();
226     unsigned XLen = Target.getPointerWidth(LangAS::Default);
227     unsigned ABIFLen = 0;
228     if (ABIStr.ends_with("f"))
229       ABIFLen = 32;
230     else if (ABIStr.ends_with("d"))
231       ABIFLen = 64;
232     bool EABI = ABIStr.ends_with("e");
233     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
234   }
235 
236   case llvm::Triple::systemz: {
237     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
238     bool HasVector = !SoftFloat && Target.getABI() == "vector";
239     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
240   }
241 
242   case llvm::Triple::tce:
243   case llvm::Triple::tcele:
244     return createTCETargetCodeGenInfo(CGM);
245 
246   case llvm::Triple::x86: {
247     bool IsDarwinVectorABI = Triple.isOSDarwin();
248     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
249 
250     if (Triple.getOS() == llvm::Triple::Win32) {
251       return createWinX86_32TargetCodeGenInfo(
252           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
253           CodeGenOpts.NumRegisterParameters);
254     }
255     return createX86_32TargetCodeGenInfo(
256         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
258   }
259 
260   case llvm::Triple::x86_64: {
261     StringRef ABI = Target.getABI();
262     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
263                                : ABI == "avx"  ? X86AVXABILevel::AVX
264                                                : X86AVXABILevel::None);
265 
266     switch (Triple.getOS()) {
267     case llvm::Triple::Win32:
268       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     default:
270       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
271     }
272   }
273   case llvm::Triple::hexagon:
274     return createHexagonTargetCodeGenInfo(CGM);
275   case llvm::Triple::lanai:
276     return createLanaiTargetCodeGenInfo(CGM);
277   case llvm::Triple::r600:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::amdgcn:
280     return createAMDGPUTargetCodeGenInfo(CGM);
281   case llvm::Triple::sparc:
282     return createSparcV8TargetCodeGenInfo(CGM);
283   case llvm::Triple::sparcv9:
284     return createSparcV9TargetCodeGenInfo(CGM);
285   case llvm::Triple::xcore:
286     return createXCoreTargetCodeGenInfo(CGM);
287   case llvm::Triple::arc:
288     return createARCTargetCodeGenInfo(CGM);
289   case llvm::Triple::spir:
290   case llvm::Triple::spir64:
291     return createCommonSPIRTargetCodeGenInfo(CGM);
292   case llvm::Triple::spirv32:
293   case llvm::Triple::spirv64:
294   case llvm::Triple::spirv:
295     return createSPIRVTargetCodeGenInfo(CGM);
296   case llvm::Triple::dxil:
297     return createDirectXTargetCodeGenInfo(CGM);
298   case llvm::Triple::ve:
299     return createVETargetCodeGenInfo(CGM);
300   case llvm::Triple::csky: {
301     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
302     bool hasFP64 =
303         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
304     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
305                                             : hasFP64   ? 64
306                                                         : 32);
307   }
308   case llvm::Triple::bpfeb:
309   case llvm::Triple::bpfel:
310     return createBPFTargetCodeGenInfo(CGM);
311   case llvm::Triple::loongarch32:
312   case llvm::Triple::loongarch64: {
313     StringRef ABIStr = Target.getABI();
314     unsigned ABIFRLen = 0;
315     if (ABIStr.ends_with("f"))
316       ABIFRLen = 32;
317     else if (ABIStr.ends_with("d"))
318       ABIFRLen = 64;
319     return createLoongArchTargetCodeGenInfo(
320         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
321   }
322   }
323 }
324 
325 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
326   if (!TheTargetCodeGenInfo)
327     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
328   return *TheTargetCodeGenInfo;
329 }
330 
331 CodeGenModule::CodeGenModule(ASTContext &C,
332                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
333                              const HeaderSearchOptions &HSO,
334                              const PreprocessorOptions &PPO,
335                              const CodeGenOptions &CGO, llvm::Module &M,
336                              DiagnosticsEngine &diags,
337                              CoverageSourceInfo *CoverageInfo)
338     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
339       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
340       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
341       VMContext(M.getContext()), VTables(*this), StackHandler(diags),
342       SanitizerMD(new SanitizerMetadata(*this)) {
343 
344   // Initialize the type cache.
345   Types.reset(new CodeGenTypes(*this));
346   llvm::LLVMContext &LLVMContext = M.getContext();
347   VoidTy = llvm::Type::getVoidTy(LLVMContext);
348   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
349   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
350   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
351   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
352   HalfTy = llvm::Type::getHalfTy(LLVMContext);
353   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
354   FloatTy = llvm::Type::getFloatTy(LLVMContext);
355   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
356   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
357   PointerAlignInBytes =
358       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
359           .getQuantity();
360   SizeSizeInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362   IntAlignInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
364   CharTy =
365     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
366   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
367   IntPtrTy = llvm::IntegerType::get(LLVMContext,
368     C.getTargetInfo().getMaxPointerWidth());
369   Int8PtrTy = llvm::PointerType::get(LLVMContext,
370                                      C.getTargetAddressSpace(LangAS::Default));
371   const llvm::DataLayout &DL = M.getDataLayout();
372   AllocaInt8PtrTy =
373       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
374   GlobalsInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
376   ConstGlobalsPtrTy = llvm::PointerType::get(
377       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
378   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
379 
380   // Build C++20 Module initializers.
381   // TODO: Add Microsoft here once we know the mangling required for the
382   // initializers.
383   CXX20ModuleInits =
384       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
385                                        ItaniumMangleContext::MK_Itanium;
386 
387   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
388 
389   if (LangOpts.ObjC)
390     createObjCRuntime();
391   if (LangOpts.OpenCL)
392     createOpenCLRuntime();
393   if (LangOpts.OpenMP)
394     createOpenMPRuntime();
395   if (LangOpts.CUDA)
396     createCUDARuntime();
397   if (LangOpts.HLSL)
398     createHLSLRuntime();
399 
400   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
401   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
402       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
403     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
404                                getLangOpts()));
405 
406   // If debug info or coverage generation is enabled, create the CGDebugInfo
407   // object.
408   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
409       CodeGenOpts.CoverageNotesFile.size() ||
410       CodeGenOpts.CoverageDataFile.size())
411     DebugInfo.reset(new CGDebugInfo(*this));
412 
413   Block.GlobalUniqueCount = 0;
414 
415   if (C.getLangOpts().ObjC)
416     ObjCData.reset(new ObjCEntrypoints());
417 
418   if (CodeGenOpts.hasProfileClangUse()) {
419     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
420         CodeGenOpts.ProfileInstrumentUsePath, *FS,
421         CodeGenOpts.ProfileRemappingFile);
422     // We're checking for profile read errors in CompilerInvocation, so if
423     // there was an error it should've already been caught. If it hasn't been
424     // somehow, trip an assertion.
425     assert(ReaderOrErr);
426     PGOReader = std::move(ReaderOrErr.get());
427   }
428 
429   // If coverage mapping generation is enabled, create the
430   // CoverageMappingModuleGen object.
431   if (CodeGenOpts.CoverageMapping)
432     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
433 
434   // Generate the module name hash here if needed.
435   if (CodeGenOpts.UniqueInternalLinkageNames &&
436       !getModule().getSourceFileName().empty()) {
437     std::string Path = getModule().getSourceFileName();
438     // Check if a path substitution is needed from the MacroPrefixMap.
439     for (const auto &Entry : LangOpts.MacroPrefixMap)
440       if (Path.rfind(Entry.first, 0) != std::string::npos) {
441         Path = Entry.second + Path.substr(Entry.first.size());
442         break;
443       }
444     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
445   }
446 
447   // Record mregparm value now so it is visible through all of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 }
452 
453 CodeGenModule::~CodeGenModule() {}
454 
455 void CodeGenModule::createObjCRuntime() {
456   // This is just isGNUFamily(), but we want to force implementors of
457   // new ABIs to decide how best to do this.
458   switch (LangOpts.ObjCRuntime.getKind()) {
459   case ObjCRuntime::GNUstep:
460   case ObjCRuntime::GCC:
461   case ObjCRuntime::ObjFW:
462     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
463     return;
464 
465   case ObjCRuntime::FragileMacOSX:
466   case ObjCRuntime::MacOSX:
467   case ObjCRuntime::iOS:
468   case ObjCRuntime::WatchOS:
469     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
470     return;
471   }
472   llvm_unreachable("bad runtime kind");
473 }
474 
475 void CodeGenModule::createOpenCLRuntime() {
476   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
477 }
478 
479 void CodeGenModule::createOpenMPRuntime() {
480   // Select a specialized code generation class based on the target, if any.
481   // If it does not exist use the default implementation.
482   switch (getTriple().getArch()) {
483   case llvm::Triple::nvptx:
484   case llvm::Triple::nvptx64:
485   case llvm::Triple::amdgcn:
486     assert(getLangOpts().OpenMPIsTargetDevice &&
487            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
488     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
489     break;
490   default:
491     if (LangOpts.OpenMPSimd)
492       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
493     else
494       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
495     break;
496   }
497 }
498 
499 void CodeGenModule::createCUDARuntime() {
500   CUDARuntime.reset(CreateNVCUDARuntime(*this));
501 }
502 
503 void CodeGenModule::createHLSLRuntime() {
504   HLSLRuntime.reset(new CGHLSLRuntime(*this));
505 }
506 
507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
508   Replacements[Name] = C;
509 }
510 
511 void CodeGenModule::applyReplacements() {
512   for (auto &I : Replacements) {
513     StringRef MangledName = I.first;
514     llvm::Constant *Replacement = I.second;
515     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
516     if (!Entry)
517       continue;
518     auto *OldF = cast<llvm::Function>(Entry);
519     auto *NewF = dyn_cast<llvm::Function>(Replacement);
520     if (!NewF) {
521       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
522         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
523       } else {
524         auto *CE = cast<llvm::ConstantExpr>(Replacement);
525         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
526                CE->getOpcode() == llvm::Instruction::GetElementPtr);
527         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
528       }
529     }
530 
531     // Replace old with new, but keep the old order.
532     OldF->replaceAllUsesWith(Replacement);
533     if (NewF) {
534       NewF->removeFromParent();
535       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
536                                                        NewF);
537     }
538     OldF->eraseFromParent();
539   }
540 }
541 
542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
543   GlobalValReplacements.push_back(std::make_pair(GV, C));
544 }
545 
546 void CodeGenModule::applyGlobalValReplacements() {
547   for (auto &I : GlobalValReplacements) {
548     llvm::GlobalValue *GV = I.first;
549     llvm::Constant *C = I.second;
550 
551     GV->replaceAllUsesWith(C);
552     GV->eraseFromParent();
553   }
554 }
555 
556 // This is only used in aliases that we created and we know they have a
557 // linear structure.
558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
559   const llvm::Constant *C;
560   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
561     C = GA->getAliasee();
562   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
563     C = GI->getResolver();
564   else
565     return GV;
566 
567   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
568   if (!AliaseeGV)
569     return nullptr;
570 
571   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
572   if (FinalGV == GV)
573     return nullptr;
574 
575   return FinalGV;
576 }
577 
578 static bool checkAliasedGlobal(
579     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
580     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
581     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
582     SourceRange AliasRange) {
583   GV = getAliasedGlobal(Alias);
584   if (!GV) {
585     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
586     return false;
587   }
588 
589   if (GV->hasCommonLinkage()) {
590     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
591     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
592       Diags.Report(Location, diag::err_alias_to_common);
593       return false;
594     }
595   }
596 
597   if (GV->isDeclaration()) {
598     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
599     Diags.Report(Location, diag::note_alias_requires_mangled_name)
600         << IsIFunc << IsIFunc;
601     // Provide a note if the given function is not found and exists as a
602     // mangled name.
603     for (const auto &[Decl, Name] : MangledDeclNames) {
604       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
605         IdentifierInfo *II = ND->getIdentifier();
606         if (II && II->getName() == GV->getName()) {
607           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
608               << Name
609               << FixItHint::CreateReplacement(
610                      AliasRange,
611                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
612                          .str());
613         }
614       }
615     }
616     return false;
617   }
618 
619   if (IsIFunc) {
620     // Check resolver function type.
621     const auto *F = dyn_cast<llvm::Function>(GV);
622     if (!F) {
623       Diags.Report(Location, diag::err_alias_to_undefined)
624           << IsIFunc << IsIFunc;
625       return false;
626     }
627 
628     llvm::FunctionType *FTy = F->getFunctionType();
629     if (!FTy->getReturnType()->isPointerTy()) {
630       Diags.Report(Location, diag::err_ifunc_resolver_return);
631       return false;
632     }
633   }
634 
635   return true;
636 }
637 
638 // Emit a warning if toc-data attribute is requested for global variables that
639 // have aliases and remove the toc-data attribute.
640 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
641                                  const CodeGenOptions &CodeGenOpts,
642                                  DiagnosticsEngine &Diags,
643                                  SourceLocation Location) {
644   if (GVar->hasAttribute("toc-data")) {
645     auto GVId = GVar->getName();
646     // Is this a global variable specified by the user as local?
647     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
648       Diags.Report(Location, diag::warn_toc_unsupported_type)
649           << GVId << "the variable has an alias";
650     }
651     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
652     llvm::AttributeSet NewAttributes =
653         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
654     GVar->setAttributes(NewAttributes);
655   }
656 }
657 
658 void CodeGenModule::checkAliases() {
659   // Check if the constructed aliases are well formed. It is really unfortunate
660   // that we have to do this in CodeGen, but we only construct mangled names
661   // and aliases during codegen.
662   bool Error = false;
663   DiagnosticsEngine &Diags = getDiags();
664   for (const GlobalDecl &GD : Aliases) {
665     const auto *D = cast<ValueDecl>(GD.getDecl());
666     SourceLocation Location;
667     SourceRange Range;
668     bool IsIFunc = D->hasAttr<IFuncAttr>();
669     if (const Attr *A = D->getDefiningAttr()) {
670       Location = A->getLocation();
671       Range = A->getRange();
672     } else
673       llvm_unreachable("Not an alias or ifunc?");
674 
675     StringRef MangledName = getMangledName(GD);
676     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
677     const llvm::GlobalValue *GV = nullptr;
678     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
679                             MangledDeclNames, Range)) {
680       Error = true;
681       continue;
682     }
683 
684     if (getContext().getTargetInfo().getTriple().isOSAIX())
685       if (const llvm::GlobalVariable *GVar =
686               dyn_cast<const llvm::GlobalVariable>(GV))
687         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
688                              getCodeGenOpts(), Diags, Location);
689 
690     llvm::Constant *Aliasee =
691         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
692                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
693 
694     llvm::GlobalValue *AliaseeGV;
695     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
696       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
697     else
698       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
699 
700     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
701       StringRef AliasSection = SA->getName();
702       if (AliasSection != AliaseeGV->getSection())
703         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
704             << AliasSection << IsIFunc << IsIFunc;
705     }
706 
707     // We have to handle alias to weak aliases in here. LLVM itself disallows
708     // this since the object semantics would not match the IL one. For
709     // compatibility with gcc we implement it by just pointing the alias
710     // to its aliasee's aliasee. We also warn, since the user is probably
711     // expecting the link to be weak.
712     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
713       if (GA->isInterposable()) {
714         Diags.Report(Location, diag::warn_alias_to_weak_alias)
715             << GV->getName() << GA->getName() << IsIFunc;
716         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
717             GA->getAliasee(), Alias->getType());
718 
719         if (IsIFunc)
720           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
721         else
722           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
723       }
724     }
725     // ifunc resolvers are usually implemented to run before sanitizer
726     // initialization. Disable instrumentation to prevent the ordering issue.
727     if (IsIFunc)
728       cast<llvm::Function>(Aliasee)->addFnAttr(
729           llvm::Attribute::DisableSanitizerInstrumentation);
730   }
731   if (!Error)
732     return;
733 
734   for (const GlobalDecl &GD : Aliases) {
735     StringRef MangledName = getMangledName(GD);
736     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
737     Alias->replaceAllUsesWith(llvm::PoisonValue::get(Alias->getType()));
738     Alias->eraseFromParent();
739   }
740 }
741 
742 void CodeGenModule::clear() {
743   DeferredDeclsToEmit.clear();
744   EmittedDeferredDecls.clear();
745   DeferredAnnotations.clear();
746   if (OpenMPRuntime)
747     OpenMPRuntime->clear();
748 }
749 
750 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
751                                        StringRef MainFile) {
752   if (!hasDiagnostics())
753     return;
754   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
755     if (MainFile.empty())
756       MainFile = "<stdin>";
757     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
758   } else {
759     if (Mismatched > 0)
760       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
761 
762     if (Missing > 0)
763       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
764   }
765 }
766 
767 static std::optional<llvm::GlobalValue::VisibilityTypes>
768 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
769   // Map to LLVM visibility.
770   switch (K) {
771   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
772     return std::nullopt;
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
774     return llvm::GlobalValue::DefaultVisibility;
775   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
776     return llvm::GlobalValue::HiddenVisibility;
777   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
778     return llvm::GlobalValue::ProtectedVisibility;
779   }
780   llvm_unreachable("unknown option value!");
781 }
782 
783 static void
784 setLLVMVisibility(llvm::GlobalValue &GV,
785                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
786   if (!V)
787     return;
788 
789   // Reset DSO locality before setting the visibility. This removes
790   // any effects that visibility options and annotations may have
791   // had on the DSO locality. Setting the visibility will implicitly set
792   // appropriate globals to DSO Local; however, this will be pessimistic
793   // w.r.t. to the normal compiler IRGen.
794   GV.setDSOLocal(false);
795   GV.setVisibility(*V);
796 }
797 
798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
799                                              llvm::Module &M) {
800   if (!LO.VisibilityFromDLLStorageClass)
801     return;
802 
803   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
804       getLLVMVisibility(LO.getDLLExportVisibility());
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes>
807       NoDLLStorageClassVisibility =
808           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
809 
810   std::optional<llvm::GlobalValue::VisibilityTypes>
811       ExternDeclDLLImportVisibility =
812           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
813 
814   std::optional<llvm::GlobalValue::VisibilityTypes>
815       ExternDeclNoDLLStorageClassVisibility =
816           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
817 
818   for (llvm::GlobalValue &GV : M.global_values()) {
819     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
820       continue;
821 
822     if (GV.isDeclarationForLinker())
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLImportStorageClass
825                                 ? ExternDeclDLLImportVisibility
826                                 : ExternDeclNoDLLStorageClassVisibility);
827     else
828       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
829                                     llvm::GlobalValue::DLLExportStorageClass
830                                 ? DLLExportVisibility
831                                 : NoDLLStorageClassVisibility);
832 
833     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
834   }
835 }
836 
837 static bool isStackProtectorOn(const LangOptions &LangOpts,
838                                const llvm::Triple &Triple,
839                                clang::LangOptions::StackProtectorMode Mode) {
840   if (Triple.isAMDGPU() || Triple.isNVPTX())
841     return false;
842   return LangOpts.getStackProtector() == Mode;
843 }
844 
845 void CodeGenModule::Release() {
846   Module *Primary = getContext().getCurrentNamedModule();
847   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
848     EmitModuleInitializers(Primary);
849   EmitDeferred();
850   DeferredDecls.insert(EmittedDeferredDecls.begin(),
851                        EmittedDeferredDecls.end());
852   EmittedDeferredDecls.clear();
853   EmitVTablesOpportunistically();
854   applyGlobalValReplacements();
855   applyReplacements();
856   emitMultiVersionFunctions();
857 
858   if (Context.getLangOpts().IncrementalExtensions &&
859       GlobalTopLevelStmtBlockInFlight.first) {
860     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
861     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
862     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
863   }
864 
865   // Module implementations are initialized the same way as a regular TU that
866   // imports one or more modules.
867   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
868     EmitCXXModuleInitFunc(Primary);
869   else
870     EmitCXXGlobalInitFunc();
871   EmitCXXGlobalCleanUpFunc();
872   registerGlobalDtorsWithAtExit();
873   EmitCXXThreadLocalInitFunc();
874   if (ObjCRuntime)
875     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
876       AddGlobalCtor(ObjCInitFunction);
877   if (Context.getLangOpts().CUDA && CUDARuntime) {
878     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
879       AddGlobalCtor(CudaCtorFunction);
880   }
881   if (OpenMPRuntime) {
882     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
883     OpenMPRuntime->clear();
884   }
885   if (PGOReader) {
886     getModule().setProfileSummary(
887         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
888         llvm::ProfileSummary::PSK_Instr);
889     if (PGOStats.hasDiagnostics())
890       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
891   }
892   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
893     return L.LexOrder < R.LexOrder;
894   });
895   EmitCtorList(GlobalCtors, "llvm.global_ctors");
896   EmitCtorList(GlobalDtors, "llvm.global_dtors");
897   EmitGlobalAnnotations();
898   EmitStaticExternCAliases();
899   checkAliases();
900   EmitDeferredUnusedCoverageMappings();
901   CodeGenPGO(*this).setValueProfilingFlag(getModule());
902   CodeGenPGO(*this).setProfileVersion(getModule());
903   if (CoverageMapping)
904     CoverageMapping->emit();
905   if (CodeGenOpts.SanitizeCfiCrossDso) {
906     CodeGenFunction(*this).EmitCfiCheckFail();
907     CodeGenFunction(*this).EmitCfiCheckStub();
908   }
909   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
910     finalizeKCFITypes();
911   emitAtAvailableLinkGuard();
912   if (Context.getTargetInfo().getTriple().isWasm())
913     EmitMainVoidAlias();
914 
915   if (getTriple().isAMDGPU() ||
916       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
917     // Emit amdhsa_code_object_version module flag, which is code object version
918     // times 100.
919     if (getTarget().getTargetOpts().CodeObjectVersion !=
920         llvm::CodeObjectVersionKind::COV_None) {
921       getModule().addModuleFlag(llvm::Module::Error,
922                                 "amdhsa_code_object_version",
923                                 getTarget().getTargetOpts().CodeObjectVersion);
924     }
925 
926     // Currently, "-mprintf-kind" option is only supported for HIP
927     if (LangOpts.HIP) {
928       auto *MDStr = llvm::MDString::get(
929           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
930                              TargetOptions::AMDGPUPrintfKind::Hostcall)
931                                 ? "hostcall"
932                                 : "buffered");
933       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
934                                 MDStr);
935     }
936   }
937 
938   // Emit a global array containing all external kernels or device variables
939   // used by host functions and mark it as used for CUDA/HIP. This is necessary
940   // to get kernels or device variables in archives linked in even if these
941   // kernels or device variables are only used in host functions.
942   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
943     SmallVector<llvm::Constant *, 8> UsedArray;
944     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
945       GlobalDecl GD;
946       if (auto *FD = dyn_cast<FunctionDecl>(D))
947         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
948       else
949         GD = GlobalDecl(D);
950       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
951           GetAddrOfGlobal(GD), Int8PtrTy));
952     }
953 
954     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
955 
956     auto *GV = new llvm::GlobalVariable(
957         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
958         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
959     addCompilerUsedGlobal(GV);
960   }
961   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
962     // Emit a unique ID so that host and device binaries from the same
963     // compilation unit can be associated.
964     auto *GV = new llvm::GlobalVariable(
965         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
966         llvm::Constant::getNullValue(Int8Ty),
967         "__hip_cuid_" + getContext().getCUIDHash());
968     addCompilerUsedGlobal(GV);
969   }
970   emitLLVMUsed();
971   if (SanStats)
972     SanStats->finish();
973 
974   if (CodeGenOpts.Autolink &&
975       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
976     EmitModuleLinkOptions();
977   }
978 
979   // On ELF we pass the dependent library specifiers directly to the linker
980   // without manipulating them. This is in contrast to other platforms where
981   // they are mapped to a specific linker option by the compiler. This
982   // difference is a result of the greater variety of ELF linkers and the fact
983   // that ELF linkers tend to handle libraries in a more complicated fashion
984   // than on other platforms. This forces us to defer handling the dependent
985   // libs to the linker.
986   //
987   // CUDA/HIP device and host libraries are different. Currently there is no
988   // way to differentiate dependent libraries for host or device. Existing
989   // usage of #pragma comment(lib, *) is intended for host libraries on
990   // Windows. Therefore emit llvm.dependent-libraries only for host.
991   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
992     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
993     for (auto *MD : ELFDependentLibraries)
994       NMD->addOperand(MD);
995   }
996 
997   if (CodeGenOpts.DwarfVersion) {
998     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
999                               CodeGenOpts.DwarfVersion);
1000   }
1001 
1002   if (CodeGenOpts.Dwarf64)
1003     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1004 
1005   if (Context.getLangOpts().SemanticInterposition)
1006     // Require various optimization to respect semantic interposition.
1007     getModule().setSemanticInterposition(true);
1008 
1009   if (CodeGenOpts.EmitCodeView) {
1010     // Indicate that we want CodeView in the metadata.
1011     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1012   }
1013   if (CodeGenOpts.CodeViewGHash) {
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1015   }
1016   if (CodeGenOpts.ControlFlowGuard) {
1017     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1018     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1019   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1020     // Function ID tables for Control Flow Guard (cfguard=1).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1022   }
1023   if (CodeGenOpts.EHContGuard) {
1024     // Function ID tables for EH Continuation Guard.
1025     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1026   }
1027   if (Context.getLangOpts().Kernel) {
1028     // Note if we are compiling with /kernel.
1029     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1030   }
1031   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1032     // We don't support LTO with 2 with different StrictVTablePointers
1033     // FIXME: we could support it by stripping all the information introduced
1034     // by StrictVTablePointers.
1035 
1036     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1037 
1038     llvm::Metadata *Ops[2] = {
1039               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1040               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1041                   llvm::Type::getInt32Ty(VMContext), 1))};
1042 
1043     getModule().addModuleFlag(llvm::Module::Require,
1044                               "StrictVTablePointersRequirement",
1045                               llvm::MDNode::get(VMContext, Ops));
1046   }
1047   if (getModuleDebugInfo())
1048     // We support a single version in the linked module. The LLVM
1049     // parser will drop debug info with a different version number
1050     // (and warn about it, too).
1051     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1052                               llvm::DEBUG_METADATA_VERSION);
1053 
1054   // We need to record the widths of enums and wchar_t, so that we can generate
1055   // the correct build attributes in the ARM backend. wchar_size is also used by
1056   // TargetLibraryInfo.
1057   uint64_t WCharWidth =
1058       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1059   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1060 
1061   if (getTriple().isOSzOS()) {
1062     getModule().addModuleFlag(llvm::Module::Warning,
1063                               "zos_product_major_version",
1064                               uint32_t(CLANG_VERSION_MAJOR));
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_minor_version",
1067                               uint32_t(CLANG_VERSION_MINOR));
1068     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1069                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1070     std::string ProductId = getClangVendor() + "clang";
1071     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1072                               llvm::MDString::get(VMContext, ProductId));
1073 
1074     // Record the language because we need it for the PPA2.
1075     StringRef lang_str = languageToString(
1076         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1077     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1078                               llvm::MDString::get(VMContext, lang_str));
1079 
1080     time_t TT = PreprocessorOpts.SourceDateEpoch
1081                     ? *PreprocessorOpts.SourceDateEpoch
1082                     : std::time(nullptr);
1083     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1084                               static_cast<uint64_t>(TT));
1085 
1086     // Multiple modes will be supported here.
1087     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1088                               llvm::MDString::get(VMContext, "ascii"));
1089   }
1090 
1091   llvm::Triple T = Context.getTargetInfo().getTriple();
1092   if (T.isARM() || T.isThumb()) {
1093     // The minimum width of an enum in bytes
1094     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1095     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1096   }
1097 
1098   if (T.isRISCV()) {
1099     StringRef ABIStr = Target.getABI();
1100     llvm::LLVMContext &Ctx = TheModule.getContext();
1101     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1102                               llvm::MDString::get(Ctx, ABIStr));
1103 
1104     // Add the canonical ISA string as metadata so the backend can set the ELF
1105     // attributes correctly. We use AppendUnique so LTO will keep all of the
1106     // unique ISA strings that were linked together.
1107     const std::vector<std::string> &Features =
1108         getTarget().getTargetOpts().Features;
1109     auto ParseResult =
1110         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1111     if (!errorToBool(ParseResult.takeError()))
1112       getModule().addModuleFlag(
1113           llvm::Module::AppendUnique, "riscv-isa",
1114           llvm::MDNode::get(
1115               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1116   }
1117 
1118   if (CodeGenOpts.SanitizeCfiCrossDso) {
1119     // Indicate that we want cross-DSO control flow integrity checks.
1120     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1121   }
1122 
1123   if (CodeGenOpts.WholeProgramVTables) {
1124     // Indicate whether VFE was enabled for this module, so that the
1125     // vcall_visibility metadata added under whole program vtables is handled
1126     // appropriately in the optimizer.
1127     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1128                               CodeGenOpts.VirtualFunctionElimination);
1129   }
1130 
1131   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1132     getModule().addModuleFlag(llvm::Module::Override,
1133                               "CFI Canonical Jump Tables",
1134                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1135   }
1136 
1137   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1138     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1139                               1);
1140   }
1141 
1142   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1143     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1144     // KCFI assumes patchable-function-prefix is the same for all indirectly
1145     // called functions. Store the expected offset for code generation.
1146     if (CodeGenOpts.PatchableFunctionEntryOffset)
1147       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1148                                 CodeGenOpts.PatchableFunctionEntryOffset);
1149   }
1150 
1151   if (CodeGenOpts.CFProtectionReturn &&
1152       Target.checkCFProtectionReturnSupported(getDiags())) {
1153     // Indicate that we want to instrument return control flow protection.
1154     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1155                               1);
1156   }
1157 
1158   if (CodeGenOpts.CFProtectionBranch &&
1159       Target.checkCFProtectionBranchSupported(getDiags())) {
1160     // Indicate that we want to instrument branch control flow protection.
1161     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1162                               1);
1163 
1164     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1165     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1166       if (Scheme == CFBranchLabelSchemeKind::Default)
1167         Scheme = Target.getDefaultCFBranchLabelScheme();
1168       getModule().addModuleFlag(
1169           llvm::Module::Error, "cf-branch-label-scheme",
1170           llvm::MDString::get(getLLVMContext(),
1171                               getCFBranchLabelSchemeFlagVal(Scheme)));
1172     }
1173   }
1174 
1175   if (CodeGenOpts.FunctionReturnThunks)
1176     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1177 
1178   if (CodeGenOpts.IndirectBranchCSPrefix)
1179     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1180 
1181   // Add module metadata for return address signing (ignoring
1182   // non-leaf/all) and stack tagging. These are actually turned on by function
1183   // attributes, but we use module metadata to emit build attributes. This is
1184   // needed for LTO, where the function attributes are inside bitcode
1185   // serialised into a global variable by the time build attributes are
1186   // emitted, so we can't access them. LTO objects could be compiled with
1187   // different flags therefore module flags are set to "Min" behavior to achieve
1188   // the same end result of the normal build where e.g BTI is off if any object
1189   // doesn't support it.
1190   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1191       LangOpts.getSignReturnAddressScope() !=
1192           LangOptions::SignReturnAddressScopeKind::None)
1193     getModule().addModuleFlag(llvm::Module::Override,
1194                               "sign-return-address-buildattr", 1);
1195   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1196     getModule().addModuleFlag(llvm::Module::Override,
1197                               "tag-stack-memory-buildattr", 1);
1198 
1199   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1200     if (LangOpts.BranchTargetEnforcement)
1201       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1202                                 1);
1203     if (LangOpts.BranchProtectionPAuthLR)
1204       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1205                                 1);
1206     if (LangOpts.GuardedControlStack)
1207       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1208     if (LangOpts.hasSignReturnAddress())
1209       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1210     if (LangOpts.isSignReturnAddressScopeAll())
1211       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1212                                 1);
1213     if (!LangOpts.isSignReturnAddressWithAKey())
1214       getModule().addModuleFlag(llvm::Module::Min,
1215                                 "sign-return-address-with-bkey", 1);
1216 
1217     if (LangOpts.PointerAuthELFGOT)
1218       getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1);
1219 
1220     if (getTriple().isOSLinux()) {
1221       assert(getTriple().isOSBinFormatELF());
1222       using namespace llvm::ELF;
1223       uint64_t PAuthABIVersion =
1224           (LangOpts.PointerAuthIntrinsics
1225            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1226           (LangOpts.PointerAuthCalls
1227            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1228           (LangOpts.PointerAuthReturns
1229            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1230           (LangOpts.PointerAuthAuthTraps
1231            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1232           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1233            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1234           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1235            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1236           (LangOpts.PointerAuthInitFini
1237            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1238           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1239            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1240           (LangOpts.PointerAuthELFGOT
1241            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1242           (LangOpts.PointerAuthIndirectGotos
1243            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1244           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1245            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1246           (LangOpts.PointerAuthFunctionTypeDiscrimination
1247            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1248       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1249                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1250                     "Update when new enum items are defined");
1251       if (PAuthABIVersion != 0) {
1252         getModule().addModuleFlag(llvm::Module::Error,
1253                                   "aarch64-elf-pauthabi-platform",
1254                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1255         getModule().addModuleFlag(llvm::Module::Error,
1256                                   "aarch64-elf-pauthabi-version",
1257                                   PAuthABIVersion);
1258       }
1259     }
1260   }
1261 
1262   if (CodeGenOpts.StackClashProtector)
1263     getModule().addModuleFlag(
1264         llvm::Module::Override, "probe-stack",
1265         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1266 
1267   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1268     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1269                               CodeGenOpts.StackProbeSize);
1270 
1271   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1272     llvm::LLVMContext &Ctx = TheModule.getContext();
1273     getModule().addModuleFlag(
1274         llvm::Module::Error, "MemProfProfileFilename",
1275         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1276   }
1277 
1278   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1279     // Indicate whether __nvvm_reflect should be configured to flush denormal
1280     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1281     // property.)
1282     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1283                               CodeGenOpts.FP32DenormalMode.Output !=
1284                                   llvm::DenormalMode::IEEE);
1285   }
1286 
1287   if (LangOpts.EHAsynch)
1288     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1289 
1290   // Indicate whether this Module was compiled with -fopenmp
1291   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1292     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1293   if (getLangOpts().OpenMPIsTargetDevice)
1294     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1295                               LangOpts.OpenMP);
1296 
1297   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1298   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1299     EmitOpenCLMetadata();
1300     // Emit SPIR version.
1301     if (getTriple().isSPIR()) {
1302       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1303       // opencl.spir.version named metadata.
1304       // C++ for OpenCL has a distinct mapping for version compatibility with
1305       // OpenCL.
1306       auto Version = LangOpts.getOpenCLCompatibleVersion();
1307       llvm::Metadata *SPIRVerElts[] = {
1308           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1309               Int32Ty, Version / 100)),
1310           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1311               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1312       llvm::NamedMDNode *SPIRVerMD =
1313           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1314       llvm::LLVMContext &Ctx = TheModule.getContext();
1315       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1316     }
1317   }
1318 
1319   // HLSL related end of code gen work items.
1320   if (LangOpts.HLSL)
1321     getHLSLRuntime().finishCodeGen();
1322 
1323   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1324     assert(PLevel < 3 && "Invalid PIC Level");
1325     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1326     if (Context.getLangOpts().PIE)
1327       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1328   }
1329 
1330   if (getCodeGenOpts().CodeModel.size() > 0) {
1331     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1332                   .Case("tiny", llvm::CodeModel::Tiny)
1333                   .Case("small", llvm::CodeModel::Small)
1334                   .Case("kernel", llvm::CodeModel::Kernel)
1335                   .Case("medium", llvm::CodeModel::Medium)
1336                   .Case("large", llvm::CodeModel::Large)
1337                   .Default(~0u);
1338     if (CM != ~0u) {
1339       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1340       getModule().setCodeModel(codeModel);
1341 
1342       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1343           Context.getTargetInfo().getTriple().getArch() ==
1344               llvm::Triple::x86_64) {
1345         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1346       }
1347     }
1348   }
1349 
1350   if (CodeGenOpts.NoPLT)
1351     getModule().setRtLibUseGOT();
1352   if (getTriple().isOSBinFormatELF() &&
1353       CodeGenOpts.DirectAccessExternalData !=
1354           getModule().getDirectAccessExternalData()) {
1355     getModule().setDirectAccessExternalData(
1356         CodeGenOpts.DirectAccessExternalData);
1357   }
1358   if (CodeGenOpts.UnwindTables)
1359     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1360 
1361   switch (CodeGenOpts.getFramePointer()) {
1362   case CodeGenOptions::FramePointerKind::None:
1363     // 0 ("none") is the default.
1364     break;
1365   case CodeGenOptions::FramePointerKind::Reserved:
1366     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1367     break;
1368   case CodeGenOptions::FramePointerKind::NonLeaf:
1369     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1370     break;
1371   case CodeGenOptions::FramePointerKind::All:
1372     getModule().setFramePointer(llvm::FramePointerKind::All);
1373     break;
1374   }
1375 
1376   SimplifyPersonality();
1377 
1378   if (getCodeGenOpts().EmitDeclMetadata)
1379     EmitDeclMetadata();
1380 
1381   if (getCodeGenOpts().CoverageNotesFile.size() ||
1382       getCodeGenOpts().CoverageDataFile.size())
1383     EmitCoverageFile();
1384 
1385   if (CGDebugInfo *DI = getModuleDebugInfo())
1386     DI->finalize();
1387 
1388   if (getCodeGenOpts().EmitVersionIdentMetadata)
1389     EmitVersionIdentMetadata();
1390 
1391   if (!getCodeGenOpts().RecordCommandLine.empty())
1392     EmitCommandLineMetadata();
1393 
1394   if (!getCodeGenOpts().StackProtectorGuard.empty())
1395     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1396   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1397     getModule().setStackProtectorGuardReg(
1398         getCodeGenOpts().StackProtectorGuardReg);
1399   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1400     getModule().setStackProtectorGuardSymbol(
1401         getCodeGenOpts().StackProtectorGuardSymbol);
1402   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1403     getModule().setStackProtectorGuardOffset(
1404         getCodeGenOpts().StackProtectorGuardOffset);
1405   if (getCodeGenOpts().StackAlignment)
1406     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1407   if (getCodeGenOpts().SkipRaxSetup)
1408     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1409   if (getLangOpts().RegCall4)
1410     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1411 
1412   if (getContext().getTargetInfo().getMaxTLSAlign())
1413     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1414                               getContext().getTargetInfo().getMaxTLSAlign());
1415 
1416   getTargetCodeGenInfo().emitTargetGlobals(*this);
1417 
1418   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1419 
1420   EmitBackendOptionsMetadata(getCodeGenOpts());
1421 
1422   // If there is device offloading code embed it in the host now.
1423   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1424 
1425   // Set visibility from DLL storage class
1426   // We do this at the end of LLVM IR generation; after any operation
1427   // that might affect the DLL storage class or the visibility, and
1428   // before anything that might act on these.
1429   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1430 
1431   // Check the tail call symbols are truly undefined.
1432   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1433     for (auto &I : MustTailCallUndefinedGlobals) {
1434       if (!I.first->isDefined())
1435         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1436       else {
1437         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1438         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1439         if (!Entry || Entry->isWeakForLinker() ||
1440             Entry->isDeclarationForLinker())
1441           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1442       }
1443     }
1444   }
1445 }
1446 
1447 void CodeGenModule::EmitOpenCLMetadata() {
1448   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1449   // opencl.ocl.version named metadata node.
1450   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1451   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1452 
1453   auto EmitVersion = [this](StringRef MDName, int Version) {
1454     llvm::Metadata *OCLVerElts[] = {
1455         llvm::ConstantAsMetadata::get(
1456             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1457         llvm::ConstantAsMetadata::get(
1458             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1459     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1460     llvm::LLVMContext &Ctx = TheModule.getContext();
1461     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1462   };
1463 
1464   EmitVersion("opencl.ocl.version", CLVersion);
1465   if (LangOpts.OpenCLCPlusPlus) {
1466     // In addition to the OpenCL compatible version, emit the C++ version.
1467     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1468   }
1469 }
1470 
1471 void CodeGenModule::EmitBackendOptionsMetadata(
1472     const CodeGenOptions &CodeGenOpts) {
1473   if (getTriple().isRISCV()) {
1474     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1475                               CodeGenOpts.SmallDataLimit);
1476   }
1477 }
1478 
1479 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1480   // Make sure that this type is translated.
1481   getTypes().UpdateCompletedType(TD);
1482 }
1483 
1484 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1485   // Make sure that this type is translated.
1486   getTypes().RefreshTypeCacheForClass(RD);
1487 }
1488 
1489 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1490   if (!TBAA)
1491     return nullptr;
1492   return TBAA->getTypeInfo(QTy);
1493 }
1494 
1495 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1496   if (!TBAA)
1497     return TBAAAccessInfo();
1498   if (getLangOpts().CUDAIsDevice) {
1499     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1500     // access info.
1501     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1502       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1503           nullptr)
1504         return TBAAAccessInfo();
1505     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1506       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1507           nullptr)
1508         return TBAAAccessInfo();
1509     }
1510   }
1511   return TBAA->getAccessInfo(AccessType);
1512 }
1513 
1514 TBAAAccessInfo
1515 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1516   if (!TBAA)
1517     return TBAAAccessInfo();
1518   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1519 }
1520 
1521 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1522   if (!TBAA)
1523     return nullptr;
1524   return TBAA->getTBAAStructInfo(QTy);
1525 }
1526 
1527 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1528   if (!TBAA)
1529     return nullptr;
1530   return TBAA->getBaseTypeInfo(QTy);
1531 }
1532 
1533 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1534   if (!TBAA)
1535     return nullptr;
1536   return TBAA->getAccessTagInfo(Info);
1537 }
1538 
1539 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1540                                                    TBAAAccessInfo TargetInfo) {
1541   if (!TBAA)
1542     return TBAAAccessInfo();
1543   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1544 }
1545 
1546 TBAAAccessInfo
1547 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1548                                                    TBAAAccessInfo InfoB) {
1549   if (!TBAA)
1550     return TBAAAccessInfo();
1551   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1552 }
1553 
1554 TBAAAccessInfo
1555 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1556                                               TBAAAccessInfo SrcInfo) {
1557   if (!TBAA)
1558     return TBAAAccessInfo();
1559   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1560 }
1561 
1562 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1563                                                 TBAAAccessInfo TBAAInfo) {
1564   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1565     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1566 }
1567 
1568 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1569     llvm::Instruction *I, const CXXRecordDecl *RD) {
1570   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1571                  llvm::MDNode::get(getLLVMContext(), {}));
1572 }
1573 
1574 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1575   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1576   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1577 }
1578 
1579 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1580 /// specified stmt yet.
1581 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1582   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1583                                                "cannot compile this %0 yet");
1584   std::string Msg = Type;
1585   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1586       << Msg << S->getSourceRange();
1587 }
1588 
1589 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1590 /// specified decl yet.
1591 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1592   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1593                                                "cannot compile this %0 yet");
1594   std::string Msg = Type;
1595   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1596 }
1597 
1598 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1599                                                 llvm::function_ref<void()> Fn) {
1600   StackHandler.runWithSufficientStackSpace(Loc, Fn);
1601 }
1602 
1603 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1604   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1605 }
1606 
1607 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1608                                         const NamedDecl *D) const {
1609   // Internal definitions always have default visibility.
1610   if (GV->hasLocalLinkage()) {
1611     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1612     return;
1613   }
1614   if (!D)
1615     return;
1616 
1617   // Set visibility for definitions, and for declarations if requested globally
1618   // or set explicitly.
1619   LinkageInfo LV = D->getLinkageAndVisibility();
1620 
1621   // OpenMP declare target variables must be visible to the host so they can
1622   // be registered. We require protected visibility unless the variable has
1623   // the DT_nohost modifier and does not need to be registered.
1624   if (Context.getLangOpts().OpenMP &&
1625       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1626       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1627       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1628           OMPDeclareTargetDeclAttr::DT_NoHost &&
1629       LV.getVisibility() == HiddenVisibility) {
1630     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1631     return;
1632   }
1633 
1634   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1635     // Reject incompatible dlllstorage and visibility annotations.
1636     if (!LV.isVisibilityExplicit())
1637       return;
1638     if (GV->hasDLLExportStorageClass()) {
1639       if (LV.getVisibility() == HiddenVisibility)
1640         getDiags().Report(D->getLocation(),
1641                           diag::err_hidden_visibility_dllexport);
1642     } else if (LV.getVisibility() != DefaultVisibility) {
1643       getDiags().Report(D->getLocation(),
1644                         diag::err_non_default_visibility_dllimport);
1645     }
1646     return;
1647   }
1648 
1649   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1650       !GV->isDeclarationForLinker())
1651     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1652 }
1653 
1654 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1655                                  llvm::GlobalValue *GV) {
1656   if (GV->hasLocalLinkage())
1657     return true;
1658 
1659   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1660     return true;
1661 
1662   // DLLImport explicitly marks the GV as external.
1663   if (GV->hasDLLImportStorageClass())
1664     return false;
1665 
1666   const llvm::Triple &TT = CGM.getTriple();
1667   const auto &CGOpts = CGM.getCodeGenOpts();
1668   if (TT.isWindowsGNUEnvironment()) {
1669     // In MinGW, variables without DLLImport can still be automatically
1670     // imported from a DLL by the linker; don't mark variables that
1671     // potentially could come from another DLL as DSO local.
1672 
1673     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1674     // (and this actually happens in the public interface of libstdc++), so
1675     // such variables can't be marked as DSO local. (Native TLS variables
1676     // can't be dllimported at all, though.)
1677     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1678         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1679         CGOpts.AutoImport)
1680       return false;
1681   }
1682 
1683   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1684   // remain unresolved in the link, they can be resolved to zero, which is
1685   // outside the current DSO.
1686   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1687     return false;
1688 
1689   // Every other GV is local on COFF.
1690   // Make an exception for windows OS in the triple: Some firmware builds use
1691   // *-win32-macho triples. This (accidentally?) produced windows relocations
1692   // without GOT tables in older clang versions; Keep this behaviour.
1693   // FIXME: even thread local variables?
1694   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1695     return true;
1696 
1697   // Only handle COFF and ELF for now.
1698   if (!TT.isOSBinFormatELF())
1699     return false;
1700 
1701   // If this is not an executable, don't assume anything is local.
1702   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1703   const auto &LOpts = CGM.getLangOpts();
1704   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1705     // On ELF, if -fno-semantic-interposition is specified and the target
1706     // supports local aliases, there will be neither CC1
1707     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1708     // dso_local on the function if using a local alias is preferable (can avoid
1709     // PLT indirection).
1710     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1711       return false;
1712     return !(CGM.getLangOpts().SemanticInterposition ||
1713              CGM.getLangOpts().HalfNoSemanticInterposition);
1714   }
1715 
1716   // A definition cannot be preempted from an executable.
1717   if (!GV->isDeclarationForLinker())
1718     return true;
1719 
1720   // Most PIC code sequences that assume that a symbol is local cannot produce a
1721   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1722   // depended, it seems worth it to handle it here.
1723   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1724     return false;
1725 
1726   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1727   if (TT.isPPC64())
1728     return false;
1729 
1730   if (CGOpts.DirectAccessExternalData) {
1731     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1732     // for non-thread-local variables. If the symbol is not defined in the
1733     // executable, a copy relocation will be needed at link time. dso_local is
1734     // excluded for thread-local variables because they generally don't support
1735     // copy relocations.
1736     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1737       if (!Var->isThreadLocal())
1738         return true;
1739 
1740     // -fno-pic sets dso_local on a function declaration to allow direct
1741     // accesses when taking its address (similar to a data symbol). If the
1742     // function is not defined in the executable, a canonical PLT entry will be
1743     // needed at link time. -fno-direct-access-external-data can avoid the
1744     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1745     // it could just cause trouble without providing perceptible benefits.
1746     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1747       return true;
1748   }
1749 
1750   // If we can use copy relocations we can assume it is local.
1751 
1752   // Otherwise don't assume it is local.
1753   return false;
1754 }
1755 
1756 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1757   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1758 }
1759 
1760 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1761                                           GlobalDecl GD) const {
1762   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1763   // C++ destructors have a few C++ ABI specific special cases.
1764   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1765     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1766     return;
1767   }
1768   setDLLImportDLLExport(GV, D);
1769 }
1770 
1771 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1772                                           const NamedDecl *D) const {
1773   if (D && D->isExternallyVisible()) {
1774     if (D->hasAttr<DLLImportAttr>())
1775       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1776     else if ((D->hasAttr<DLLExportAttr>() ||
1777               shouldMapVisibilityToDLLExport(D)) &&
1778              !GV->isDeclarationForLinker())
1779       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1780   }
1781 }
1782 
1783 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1784                                     GlobalDecl GD) const {
1785   setDLLImportDLLExport(GV, GD);
1786   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1787 }
1788 
1789 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1790                                     const NamedDecl *D) const {
1791   setDLLImportDLLExport(GV, D);
1792   setGVPropertiesAux(GV, D);
1793 }
1794 
1795 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1796                                        const NamedDecl *D) const {
1797   setGlobalVisibility(GV, D);
1798   setDSOLocal(GV);
1799   GV->setPartition(CodeGenOpts.SymbolPartition);
1800 }
1801 
1802 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1803   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1804       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1805       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1806       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1807       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1808 }
1809 
1810 llvm::GlobalVariable::ThreadLocalMode
1811 CodeGenModule::GetDefaultLLVMTLSModel() const {
1812   switch (CodeGenOpts.getDefaultTLSModel()) {
1813   case CodeGenOptions::GeneralDynamicTLSModel:
1814     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1815   case CodeGenOptions::LocalDynamicTLSModel:
1816     return llvm::GlobalVariable::LocalDynamicTLSModel;
1817   case CodeGenOptions::InitialExecTLSModel:
1818     return llvm::GlobalVariable::InitialExecTLSModel;
1819   case CodeGenOptions::LocalExecTLSModel:
1820     return llvm::GlobalVariable::LocalExecTLSModel;
1821   }
1822   llvm_unreachable("Invalid TLS model!");
1823 }
1824 
1825 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1826   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1827 
1828   llvm::GlobalValue::ThreadLocalMode TLM;
1829   TLM = GetDefaultLLVMTLSModel();
1830 
1831   // Override the TLS model if it is explicitly specified.
1832   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1833     TLM = GetLLVMTLSModel(Attr->getModel());
1834   }
1835 
1836   GV->setThreadLocalMode(TLM);
1837 }
1838 
1839 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1840                                           StringRef Name) {
1841   const TargetInfo &Target = CGM.getTarget();
1842   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1843 }
1844 
1845 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1846                                                  const CPUSpecificAttr *Attr,
1847                                                  unsigned CPUIndex,
1848                                                  raw_ostream &Out) {
1849   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1850   // supported.
1851   if (Attr)
1852     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1853   else if (CGM.getTarget().supportsIFunc())
1854     Out << ".resolver";
1855 }
1856 
1857 // Returns true if GD is a function decl with internal linkage and
1858 // needs a unique suffix after the mangled name.
1859 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1860                                         CodeGenModule &CGM) {
1861   const Decl *D = GD.getDecl();
1862   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1863          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1864 }
1865 
1866 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1867                                       const NamedDecl *ND,
1868                                       bool OmitMultiVersionMangling = false) {
1869   SmallString<256> Buffer;
1870   llvm::raw_svector_ostream Out(Buffer);
1871   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1872   if (!CGM.getModuleNameHash().empty())
1873     MC.needsUniqueInternalLinkageNames();
1874   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1875   if (ShouldMangle)
1876     MC.mangleName(GD.getWithDecl(ND), Out);
1877   else {
1878     IdentifierInfo *II = ND->getIdentifier();
1879     assert(II && "Attempt to mangle unnamed decl.");
1880     const auto *FD = dyn_cast<FunctionDecl>(ND);
1881 
1882     if (FD &&
1883         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1884       if (CGM.getLangOpts().RegCall4)
1885         Out << "__regcall4__" << II->getName();
1886       else
1887         Out << "__regcall3__" << II->getName();
1888     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1889                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1890       Out << "__device_stub__" << II->getName();
1891     } else {
1892       Out << II->getName();
1893     }
1894   }
1895 
1896   // Check if the module name hash should be appended for internal linkage
1897   // symbols.   This should come before multi-version target suffixes are
1898   // appended. This is to keep the name and module hash suffix of the
1899   // internal linkage function together.  The unique suffix should only be
1900   // added when name mangling is done to make sure that the final name can
1901   // be properly demangled.  For example, for C functions without prototypes,
1902   // name mangling is not done and the unique suffix should not be appeneded
1903   // then.
1904   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1905     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1906            "Hash computed when not explicitly requested");
1907     Out << CGM.getModuleNameHash();
1908   }
1909 
1910   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1911     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1912       switch (FD->getMultiVersionKind()) {
1913       case MultiVersionKind::CPUDispatch:
1914       case MultiVersionKind::CPUSpecific:
1915         AppendCPUSpecificCPUDispatchMangling(CGM,
1916                                              FD->getAttr<CPUSpecificAttr>(),
1917                                              GD.getMultiVersionIndex(), Out);
1918         break;
1919       case MultiVersionKind::Target: {
1920         auto *Attr = FD->getAttr<TargetAttr>();
1921         assert(Attr && "Expected TargetAttr to be present "
1922                        "for attribute mangling");
1923         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1924         Info.appendAttributeMangling(Attr, Out);
1925         break;
1926       }
1927       case MultiVersionKind::TargetVersion: {
1928         auto *Attr = FD->getAttr<TargetVersionAttr>();
1929         assert(Attr && "Expected TargetVersionAttr to be present "
1930                        "for attribute mangling");
1931         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1932         Info.appendAttributeMangling(Attr, Out);
1933         break;
1934       }
1935       case MultiVersionKind::TargetClones: {
1936         auto *Attr = FD->getAttr<TargetClonesAttr>();
1937         assert(Attr && "Expected TargetClonesAttr to be present "
1938                        "for attribute mangling");
1939         unsigned Index = GD.getMultiVersionIndex();
1940         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1941         Info.appendAttributeMangling(Attr, Index, Out);
1942         break;
1943       }
1944       case MultiVersionKind::None:
1945         llvm_unreachable("None multiversion type isn't valid here");
1946       }
1947     }
1948 
1949   // Make unique name for device side static file-scope variable for HIP.
1950   if (CGM.getContext().shouldExternalize(ND) &&
1951       CGM.getLangOpts().GPURelocatableDeviceCode &&
1952       CGM.getLangOpts().CUDAIsDevice)
1953     CGM.printPostfixForExternalizedDecl(Out, ND);
1954 
1955   return std::string(Out.str());
1956 }
1957 
1958 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1959                                             const FunctionDecl *FD,
1960                                             StringRef &CurName) {
1961   if (!FD->isMultiVersion())
1962     return;
1963 
1964   // Get the name of what this would be without the 'target' attribute.  This
1965   // allows us to lookup the version that was emitted when this wasn't a
1966   // multiversion function.
1967   std::string NonTargetName =
1968       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1969   GlobalDecl OtherGD;
1970   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1971     assert(OtherGD.getCanonicalDecl()
1972                .getDecl()
1973                ->getAsFunction()
1974                ->isMultiVersion() &&
1975            "Other GD should now be a multiversioned function");
1976     // OtherFD is the version of this function that was mangled BEFORE
1977     // becoming a MultiVersion function.  It potentially needs to be updated.
1978     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1979                                       .getDecl()
1980                                       ->getAsFunction()
1981                                       ->getMostRecentDecl();
1982     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1983     // This is so that if the initial version was already the 'default'
1984     // version, we don't try to update it.
1985     if (OtherName != NonTargetName) {
1986       // Remove instead of erase, since others may have stored the StringRef
1987       // to this.
1988       const auto ExistingRecord = Manglings.find(NonTargetName);
1989       if (ExistingRecord != std::end(Manglings))
1990         Manglings.remove(&(*ExistingRecord));
1991       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1992       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1993           Result.first->first();
1994       // If this is the current decl is being created, make sure we update the name.
1995       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1996         CurName = OtherNameRef;
1997       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1998         Entry->setName(OtherName);
1999     }
2000   }
2001 }
2002 
2003 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2004   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2005 
2006   // Some ABIs don't have constructor variants.  Make sure that base and
2007   // complete constructors get mangled the same.
2008   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2009     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2010       CXXCtorType OrigCtorType = GD.getCtorType();
2011       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2012       if (OrigCtorType == Ctor_Base)
2013         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2014     }
2015   }
2016 
2017   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2018   // static device variable depends on whether the variable is referenced by
2019   // a host or device host function. Therefore the mangled name cannot be
2020   // cached.
2021   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2022     auto FoundName = MangledDeclNames.find(CanonicalGD);
2023     if (FoundName != MangledDeclNames.end())
2024       return FoundName->second;
2025   }
2026 
2027   // Keep the first result in the case of a mangling collision.
2028   const auto *ND = cast<NamedDecl>(GD.getDecl());
2029   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2030 
2031   // Ensure either we have different ABIs between host and device compilations,
2032   // says host compilation following MSVC ABI but device compilation follows
2033   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2034   // mangling should be the same after name stubbing. The later checking is
2035   // very important as the device kernel name being mangled in host-compilation
2036   // is used to resolve the device binaries to be executed. Inconsistent naming
2037   // result in undefined behavior. Even though we cannot check that naming
2038   // directly between host- and device-compilations, the host- and
2039   // device-mangling in host compilation could help catching certain ones.
2040   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2041          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2042          (getContext().getAuxTargetInfo() &&
2043           (getContext().getAuxTargetInfo()->getCXXABI() !=
2044            getContext().getTargetInfo().getCXXABI())) ||
2045          getCUDARuntime().getDeviceSideName(ND) ==
2046              getMangledNameImpl(
2047                  *this,
2048                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2049                  ND));
2050 
2051   // This invariant should hold true in the future.
2052   // Prior work:
2053   // https://discourse.llvm.org/t/rfc-clang-diagnostic-for-demangling-failures/82835/8
2054   // https://github.com/llvm/llvm-project/issues/111345
2055   // assert((MangledName.startswith("_Z") || MangledName.startswith("?")) &&
2056   //        !GD->hasAttr<AsmLabelAttr>() &&
2057   //        llvm::demangle(MangledName) != MangledName &&
2058   //        "LLVM demangler must demangle clang-generated names");
2059 
2060   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2061   return MangledDeclNames[CanonicalGD] = Result.first->first();
2062 }
2063 
2064 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2065                                              const BlockDecl *BD) {
2066   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2067   const Decl *D = GD.getDecl();
2068 
2069   SmallString<256> Buffer;
2070   llvm::raw_svector_ostream Out(Buffer);
2071   if (!D)
2072     MangleCtx.mangleGlobalBlock(BD,
2073       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2074   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2075     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2076   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2077     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2078   else
2079     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2080 
2081   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2082   return Result.first->first();
2083 }
2084 
2085 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2086   auto it = MangledDeclNames.begin();
2087   while (it != MangledDeclNames.end()) {
2088     if (it->second == Name)
2089       return it->first;
2090     it++;
2091   }
2092   return GlobalDecl();
2093 }
2094 
2095 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2096   return getModule().getNamedValue(Name);
2097 }
2098 
2099 /// AddGlobalCtor - Add a function to the list that will be called before
2100 /// main() runs.
2101 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2102                                   unsigned LexOrder,
2103                                   llvm::Constant *AssociatedData) {
2104   // FIXME: Type coercion of void()* types.
2105   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2106 }
2107 
2108 /// AddGlobalDtor - Add a function to the list that will be called
2109 /// when the module is unloaded.
2110 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2111                                   bool IsDtorAttrFunc) {
2112   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2113       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2114     DtorsUsingAtExit[Priority].push_back(Dtor);
2115     return;
2116   }
2117 
2118   // FIXME: Type coercion of void()* types.
2119   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2120 }
2121 
2122 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2123   if (Fns.empty()) return;
2124 
2125   const PointerAuthSchema &InitFiniAuthSchema =
2126       getCodeGenOpts().PointerAuth.InitFiniPointers;
2127 
2128   // Ctor function type is ptr.
2129   llvm::PointerType *PtrTy = llvm::PointerType::get(
2130       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2131 
2132   // Get the type of a ctor entry, { i32, ptr, ptr }.
2133   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2134 
2135   // Construct the constructor and destructor arrays.
2136   ConstantInitBuilder Builder(*this);
2137   auto Ctors = Builder.beginArray(CtorStructTy);
2138   for (const auto &I : Fns) {
2139     auto Ctor = Ctors.beginStruct(CtorStructTy);
2140     Ctor.addInt(Int32Ty, I.Priority);
2141     if (InitFiniAuthSchema) {
2142       llvm::Constant *StorageAddress =
2143           (InitFiniAuthSchema.isAddressDiscriminated()
2144                ? llvm::ConstantExpr::getIntToPtr(
2145                      llvm::ConstantInt::get(
2146                          IntPtrTy,
2147                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2148                      PtrTy)
2149                : nullptr);
2150       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2151           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2152           llvm::ConstantInt::get(
2153               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2154       Ctor.add(SignedCtorPtr);
2155     } else {
2156       Ctor.add(I.Initializer);
2157     }
2158     if (I.AssociatedData)
2159       Ctor.add(I.AssociatedData);
2160     else
2161       Ctor.addNullPointer(PtrTy);
2162     Ctor.finishAndAddTo(Ctors);
2163   }
2164 
2165   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2166                                           /*constant*/ false,
2167                                           llvm::GlobalValue::AppendingLinkage);
2168 
2169   // The LTO linker doesn't seem to like it when we set an alignment
2170   // on appending variables.  Take it off as a workaround.
2171   List->setAlignment(std::nullopt);
2172 
2173   Fns.clear();
2174 }
2175 
2176 llvm::GlobalValue::LinkageTypes
2177 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2178   const auto *D = cast<FunctionDecl>(GD.getDecl());
2179 
2180   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2181 
2182   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2183     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2184 
2185   return getLLVMLinkageForDeclarator(D, Linkage);
2186 }
2187 
2188 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2189   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2190   if (!MDS) return nullptr;
2191 
2192   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2193 }
2194 
2195 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2196   if (auto *FnType = T->getAs<FunctionProtoType>())
2197     T = getContext().getFunctionType(
2198         FnType->getReturnType(), FnType->getParamTypes(),
2199         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2200 
2201   std::string OutName;
2202   llvm::raw_string_ostream Out(OutName);
2203   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2204       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2205 
2206   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2207     Out << ".normalized";
2208 
2209   return llvm::ConstantInt::get(Int32Ty,
2210                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2211 }
2212 
2213 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2214                                               const CGFunctionInfo &Info,
2215                                               llvm::Function *F, bool IsThunk) {
2216   unsigned CallingConv;
2217   llvm::AttributeList PAL;
2218   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2219                          /*AttrOnCallSite=*/false, IsThunk);
2220   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2221       getTarget().getTriple().isWindowsArm64EC()) {
2222     SourceLocation Loc;
2223     if (const Decl *D = GD.getDecl())
2224       Loc = D->getLocation();
2225 
2226     Error(Loc, "__vectorcall calling convention is not currently supported");
2227   }
2228   F->setAttributes(PAL);
2229   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2230 }
2231 
2232 static void removeImageAccessQualifier(std::string& TyName) {
2233   std::string ReadOnlyQual("__read_only");
2234   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2235   if (ReadOnlyPos != std::string::npos)
2236     // "+ 1" for the space after access qualifier.
2237     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2238   else {
2239     std::string WriteOnlyQual("__write_only");
2240     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2241     if (WriteOnlyPos != std::string::npos)
2242       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2243     else {
2244       std::string ReadWriteQual("__read_write");
2245       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2246       if (ReadWritePos != std::string::npos)
2247         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2248     }
2249   }
2250 }
2251 
2252 // Returns the address space id that should be produced to the
2253 // kernel_arg_addr_space metadata. This is always fixed to the ids
2254 // as specified in the SPIR 2.0 specification in order to differentiate
2255 // for example in clGetKernelArgInfo() implementation between the address
2256 // spaces with targets without unique mapping to the OpenCL address spaces
2257 // (basically all single AS CPUs).
2258 static unsigned ArgInfoAddressSpace(LangAS AS) {
2259   switch (AS) {
2260   case LangAS::opencl_global:
2261     return 1;
2262   case LangAS::opencl_constant:
2263     return 2;
2264   case LangAS::opencl_local:
2265     return 3;
2266   case LangAS::opencl_generic:
2267     return 4; // Not in SPIR 2.0 specs.
2268   case LangAS::opencl_global_device:
2269     return 5;
2270   case LangAS::opencl_global_host:
2271     return 6;
2272   default:
2273     return 0; // Assume private.
2274   }
2275 }
2276 
2277 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2278                                          const FunctionDecl *FD,
2279                                          CodeGenFunction *CGF) {
2280   assert(((FD && CGF) || (!FD && !CGF)) &&
2281          "Incorrect use - FD and CGF should either be both null or not!");
2282   // Create MDNodes that represent the kernel arg metadata.
2283   // Each MDNode is a list in the form of "key", N number of values which is
2284   // the same number of values as their are kernel arguments.
2285 
2286   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2287 
2288   // MDNode for the kernel argument address space qualifiers.
2289   SmallVector<llvm::Metadata *, 8> addressQuals;
2290 
2291   // MDNode for the kernel argument access qualifiers (images only).
2292   SmallVector<llvm::Metadata *, 8> accessQuals;
2293 
2294   // MDNode for the kernel argument type names.
2295   SmallVector<llvm::Metadata *, 8> argTypeNames;
2296 
2297   // MDNode for the kernel argument base type names.
2298   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2299 
2300   // MDNode for the kernel argument type qualifiers.
2301   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2302 
2303   // MDNode for the kernel argument names.
2304   SmallVector<llvm::Metadata *, 8> argNames;
2305 
2306   if (FD && CGF)
2307     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2308       const ParmVarDecl *parm = FD->getParamDecl(i);
2309       // Get argument name.
2310       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2311 
2312       if (!getLangOpts().OpenCL)
2313         continue;
2314       QualType ty = parm->getType();
2315       std::string typeQuals;
2316 
2317       // Get image and pipe access qualifier:
2318       if (ty->isImageType() || ty->isPipeType()) {
2319         const Decl *PDecl = parm;
2320         if (const auto *TD = ty->getAs<TypedefType>())
2321           PDecl = TD->getDecl();
2322         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2323         if (A && A->isWriteOnly())
2324           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2325         else if (A && A->isReadWrite())
2326           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2327         else
2328           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2329       } else
2330         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2331 
2332       auto getTypeSpelling = [&](QualType Ty) {
2333         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2334 
2335         if (Ty.isCanonical()) {
2336           StringRef typeNameRef = typeName;
2337           // Turn "unsigned type" to "utype"
2338           if (typeNameRef.consume_front("unsigned "))
2339             return std::string("u") + typeNameRef.str();
2340           if (typeNameRef.consume_front("signed "))
2341             return typeNameRef.str();
2342         }
2343 
2344         return typeName;
2345       };
2346 
2347       if (ty->isPointerType()) {
2348         QualType pointeeTy = ty->getPointeeType();
2349 
2350         // Get address qualifier.
2351         addressQuals.push_back(
2352             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2353                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2354 
2355         // Get argument type name.
2356         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2357         std::string baseTypeName =
2358             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2359         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2360         argBaseTypeNames.push_back(
2361             llvm::MDString::get(VMContext, baseTypeName));
2362 
2363         // Get argument type qualifiers:
2364         if (ty.isRestrictQualified())
2365           typeQuals = "restrict";
2366         if (pointeeTy.isConstQualified() ||
2367             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2368           typeQuals += typeQuals.empty() ? "const" : " const";
2369         if (pointeeTy.isVolatileQualified())
2370           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2371       } else {
2372         uint32_t AddrSpc = 0;
2373         bool isPipe = ty->isPipeType();
2374         if (ty->isImageType() || isPipe)
2375           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2376 
2377         addressQuals.push_back(
2378             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2379 
2380         // Get argument type name.
2381         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2382         std::string typeName = getTypeSpelling(ty);
2383         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2384 
2385         // Remove access qualifiers on images
2386         // (as they are inseparable from type in clang implementation,
2387         // but OpenCL spec provides a special query to get access qualifier
2388         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2389         if (ty->isImageType()) {
2390           removeImageAccessQualifier(typeName);
2391           removeImageAccessQualifier(baseTypeName);
2392         }
2393 
2394         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2395         argBaseTypeNames.push_back(
2396             llvm::MDString::get(VMContext, baseTypeName));
2397 
2398         if (isPipe)
2399           typeQuals = "pipe";
2400       }
2401       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2402     }
2403 
2404   if (getLangOpts().OpenCL) {
2405     Fn->setMetadata("kernel_arg_addr_space",
2406                     llvm::MDNode::get(VMContext, addressQuals));
2407     Fn->setMetadata("kernel_arg_access_qual",
2408                     llvm::MDNode::get(VMContext, accessQuals));
2409     Fn->setMetadata("kernel_arg_type",
2410                     llvm::MDNode::get(VMContext, argTypeNames));
2411     Fn->setMetadata("kernel_arg_base_type",
2412                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2413     Fn->setMetadata("kernel_arg_type_qual",
2414                     llvm::MDNode::get(VMContext, argTypeQuals));
2415   }
2416   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2417       getCodeGenOpts().HIPSaveKernelArgName)
2418     Fn->setMetadata("kernel_arg_name",
2419                     llvm::MDNode::get(VMContext, argNames));
2420 }
2421 
2422 /// Determines whether the language options require us to model
2423 /// unwind exceptions.  We treat -fexceptions as mandating this
2424 /// except under the fragile ObjC ABI with only ObjC exceptions
2425 /// enabled.  This means, for example, that C with -fexceptions
2426 /// enables this.
2427 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2428   // If exceptions are completely disabled, obviously this is false.
2429   if (!LangOpts.Exceptions) return false;
2430 
2431   // If C++ exceptions are enabled, this is true.
2432   if (LangOpts.CXXExceptions) return true;
2433 
2434   // If ObjC exceptions are enabled, this depends on the ABI.
2435   if (LangOpts.ObjCExceptions) {
2436     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2437   }
2438 
2439   return true;
2440 }
2441 
2442 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2443                                                       const CXXMethodDecl *MD) {
2444   // Check that the type metadata can ever actually be used by a call.
2445   if (!CGM.getCodeGenOpts().LTOUnit ||
2446       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2447     return false;
2448 
2449   // Only functions whose address can be taken with a member function pointer
2450   // need this sort of type metadata.
2451   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2452          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2453 }
2454 
2455 SmallVector<const CXXRecordDecl *, 0>
2456 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2457   llvm::SetVector<const CXXRecordDecl *> MostBases;
2458 
2459   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2460   CollectMostBases = [&](const CXXRecordDecl *RD) {
2461     if (RD->getNumBases() == 0)
2462       MostBases.insert(RD);
2463     for (const CXXBaseSpecifier &B : RD->bases())
2464       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2465   };
2466   CollectMostBases(RD);
2467   return MostBases.takeVector();
2468 }
2469 
2470 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2471                                                            llvm::Function *F) {
2472   llvm::AttrBuilder B(F->getContext());
2473 
2474   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2475     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2476 
2477   if (CodeGenOpts.StackClashProtector)
2478     B.addAttribute("probe-stack", "inline-asm");
2479 
2480   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2481     B.addAttribute("stack-probe-size",
2482                    std::to_string(CodeGenOpts.StackProbeSize));
2483 
2484   if (!hasUnwindExceptions(LangOpts))
2485     B.addAttribute(llvm::Attribute::NoUnwind);
2486 
2487   if (D && D->hasAttr<NoStackProtectorAttr>())
2488     ; // Do nothing.
2489   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2490            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2491     B.addAttribute(llvm::Attribute::StackProtectStrong);
2492   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2493     B.addAttribute(llvm::Attribute::StackProtect);
2494   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2495     B.addAttribute(llvm::Attribute::StackProtectStrong);
2496   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2497     B.addAttribute(llvm::Attribute::StackProtectReq);
2498 
2499   if (!D) {
2500     // Non-entry HLSL functions must always be inlined.
2501     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2502       B.addAttribute(llvm::Attribute::AlwaysInline);
2503     // If we don't have a declaration to control inlining, the function isn't
2504     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2505     // disabled, mark the function as noinline.
2506     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2507              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2508       B.addAttribute(llvm::Attribute::NoInline);
2509 
2510     F->addFnAttrs(B);
2511     return;
2512   }
2513 
2514   // Handle SME attributes that apply to function definitions,
2515   // rather than to function prototypes.
2516   if (D->hasAttr<ArmLocallyStreamingAttr>())
2517     B.addAttribute("aarch64_pstate_sm_body");
2518 
2519   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2520     if (Attr->isNewZA())
2521       B.addAttribute("aarch64_new_za");
2522     if (Attr->isNewZT0())
2523       B.addAttribute("aarch64_new_zt0");
2524   }
2525 
2526   // Track whether we need to add the optnone LLVM attribute,
2527   // starting with the default for this optimization level.
2528   bool ShouldAddOptNone =
2529       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2530   // We can't add optnone in the following cases, it won't pass the verifier.
2531   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2532   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2533 
2534   // Non-entry HLSL functions must always be inlined.
2535   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2536       !D->hasAttr<NoInlineAttr>()) {
2537     B.addAttribute(llvm::Attribute::AlwaysInline);
2538   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2539              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2540     // Add optnone, but do so only if the function isn't always_inline.
2541     B.addAttribute(llvm::Attribute::OptimizeNone);
2542 
2543     // OptimizeNone implies noinline; we should not be inlining such functions.
2544     B.addAttribute(llvm::Attribute::NoInline);
2545 
2546     // We still need to handle naked functions even though optnone subsumes
2547     // much of their semantics.
2548     if (D->hasAttr<NakedAttr>())
2549       B.addAttribute(llvm::Attribute::Naked);
2550 
2551     // OptimizeNone wins over OptimizeForSize and MinSize.
2552     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2553     F->removeFnAttr(llvm::Attribute::MinSize);
2554   } else if (D->hasAttr<NakedAttr>()) {
2555     // Naked implies noinline: we should not be inlining such functions.
2556     B.addAttribute(llvm::Attribute::Naked);
2557     B.addAttribute(llvm::Attribute::NoInline);
2558   } else if (D->hasAttr<NoDuplicateAttr>()) {
2559     B.addAttribute(llvm::Attribute::NoDuplicate);
2560   } else if (D->hasAttr<NoInlineAttr>() &&
2561              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2562     // Add noinline if the function isn't always_inline.
2563     B.addAttribute(llvm::Attribute::NoInline);
2564   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2565              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2566     // (noinline wins over always_inline, and we can't specify both in IR)
2567     B.addAttribute(llvm::Attribute::AlwaysInline);
2568   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2569     // If we're not inlining, then force everything that isn't always_inline to
2570     // carry an explicit noinline attribute.
2571     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2572       B.addAttribute(llvm::Attribute::NoInline);
2573   } else {
2574     // Otherwise, propagate the inline hint attribute and potentially use its
2575     // absence to mark things as noinline.
2576     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2577       // Search function and template pattern redeclarations for inline.
2578       auto CheckForInline = [](const FunctionDecl *FD) {
2579         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2580           return Redecl->isInlineSpecified();
2581         };
2582         if (any_of(FD->redecls(), CheckRedeclForInline))
2583           return true;
2584         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2585         if (!Pattern)
2586           return false;
2587         return any_of(Pattern->redecls(), CheckRedeclForInline);
2588       };
2589       if (CheckForInline(FD)) {
2590         B.addAttribute(llvm::Attribute::InlineHint);
2591       } else if (CodeGenOpts.getInlining() ==
2592                      CodeGenOptions::OnlyHintInlining &&
2593                  !FD->isInlined() &&
2594                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2595         B.addAttribute(llvm::Attribute::NoInline);
2596       }
2597     }
2598   }
2599 
2600   // Add other optimization related attributes if we are optimizing this
2601   // function.
2602   if (!D->hasAttr<OptimizeNoneAttr>()) {
2603     if (D->hasAttr<ColdAttr>()) {
2604       if (!ShouldAddOptNone)
2605         B.addAttribute(llvm::Attribute::OptimizeForSize);
2606       B.addAttribute(llvm::Attribute::Cold);
2607     }
2608     if (D->hasAttr<HotAttr>())
2609       B.addAttribute(llvm::Attribute::Hot);
2610     if (D->hasAttr<MinSizeAttr>())
2611       B.addAttribute(llvm::Attribute::MinSize);
2612   }
2613 
2614   F->addFnAttrs(B);
2615 
2616   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2617   if (alignment)
2618     F->setAlignment(llvm::Align(alignment));
2619 
2620   if (!D->hasAttr<AlignedAttr>())
2621     if (LangOpts.FunctionAlignment)
2622       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2623 
2624   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2625   // reserve a bit for differentiating between virtual and non-virtual member
2626   // functions. If the current target's C++ ABI requires this and this is a
2627   // member function, set its alignment accordingly.
2628   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2629     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2630       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2631   }
2632 
2633   // In the cross-dso CFI mode with canonical jump tables, we want !type
2634   // attributes on definitions only.
2635   if (CodeGenOpts.SanitizeCfiCrossDso &&
2636       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2637     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2638       // Skip available_externally functions. They won't be codegen'ed in the
2639       // current module anyway.
2640       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2641         CreateFunctionTypeMetadataForIcall(FD, F);
2642     }
2643   }
2644 
2645   // Emit type metadata on member functions for member function pointer checks.
2646   // These are only ever necessary on definitions; we're guaranteed that the
2647   // definition will be present in the LTO unit as a result of LTO visibility.
2648   auto *MD = dyn_cast<CXXMethodDecl>(D);
2649   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2650     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2651       llvm::Metadata *Id =
2652           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2653               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2654       F->addTypeMetadata(0, Id);
2655     }
2656   }
2657 }
2658 
2659 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2660   const Decl *D = GD.getDecl();
2661   if (isa_and_nonnull<NamedDecl>(D))
2662     setGVProperties(GV, GD);
2663   else
2664     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2665 
2666   if (D && D->hasAttr<UsedAttr>())
2667     addUsedOrCompilerUsedGlobal(GV);
2668 
2669   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2670       VD &&
2671       ((CodeGenOpts.KeepPersistentStorageVariables &&
2672         (VD->getStorageDuration() == SD_Static ||
2673          VD->getStorageDuration() == SD_Thread)) ||
2674        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2675         VD->getType().isConstQualified())))
2676     addUsedOrCompilerUsedGlobal(GV);
2677 }
2678 
2679 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2680                                                 llvm::AttrBuilder &Attrs,
2681                                                 bool SetTargetFeatures) {
2682   // Add target-cpu and target-features attributes to functions. If
2683   // we have a decl for the function and it has a target attribute then
2684   // parse that and add it to the feature set.
2685   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2686   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2687   std::vector<std::string> Features;
2688   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2689   FD = FD ? FD->getMostRecentDecl() : FD;
2690   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2691   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2692   assert((!TD || !TV) && "both target_version and target specified");
2693   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2694   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2695   bool AddedAttr = false;
2696   if (TD || TV || SD || TC) {
2697     llvm::StringMap<bool> FeatureMap;
2698     getContext().getFunctionFeatureMap(FeatureMap, GD);
2699 
2700     // Produce the canonical string for this set of features.
2701     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2702       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2703 
2704     // Now add the target-cpu and target-features to the function.
2705     // While we populated the feature map above, we still need to
2706     // get and parse the target attribute so we can get the cpu for
2707     // the function.
2708     if (TD) {
2709       ParsedTargetAttr ParsedAttr =
2710           Target.parseTargetAttr(TD->getFeaturesStr());
2711       if (!ParsedAttr.CPU.empty() &&
2712           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2713         TargetCPU = ParsedAttr.CPU;
2714         TuneCPU = ""; // Clear the tune CPU.
2715       }
2716       if (!ParsedAttr.Tune.empty() &&
2717           getTarget().isValidCPUName(ParsedAttr.Tune))
2718         TuneCPU = ParsedAttr.Tune;
2719     }
2720 
2721     if (SD) {
2722       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2723       // favor this processor.
2724       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2725     }
2726   } else {
2727     // Otherwise just add the existing target cpu and target features to the
2728     // function.
2729     Features = getTarget().getTargetOpts().Features;
2730   }
2731 
2732   if (!TargetCPU.empty()) {
2733     Attrs.addAttribute("target-cpu", TargetCPU);
2734     AddedAttr = true;
2735   }
2736   if (!TuneCPU.empty()) {
2737     Attrs.addAttribute("tune-cpu", TuneCPU);
2738     AddedAttr = true;
2739   }
2740   if (!Features.empty() && SetTargetFeatures) {
2741     llvm::erase_if(Features, [&](const std::string& F) {
2742        return getTarget().isReadOnlyFeature(F.substr(1));
2743     });
2744     llvm::sort(Features);
2745     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2746     AddedAttr = true;
2747   }
2748 
2749   return AddedAttr;
2750 }
2751 
2752 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2753                                           llvm::GlobalObject *GO) {
2754   const Decl *D = GD.getDecl();
2755   SetCommonAttributes(GD, GO);
2756 
2757   if (D) {
2758     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2759       if (D->hasAttr<RetainAttr>())
2760         addUsedGlobal(GV);
2761       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2762         GV->addAttribute("bss-section", SA->getName());
2763       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2764         GV->addAttribute("data-section", SA->getName());
2765       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2766         GV->addAttribute("rodata-section", SA->getName());
2767       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2768         GV->addAttribute("relro-section", SA->getName());
2769     }
2770 
2771     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2772       if (D->hasAttr<RetainAttr>())
2773         addUsedGlobal(F);
2774       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2775         if (!D->getAttr<SectionAttr>())
2776           F->setSection(SA->getName());
2777 
2778       llvm::AttrBuilder Attrs(F->getContext());
2779       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2780         // We know that GetCPUAndFeaturesAttributes will always have the
2781         // newest set, since it has the newest possible FunctionDecl, so the
2782         // new ones should replace the old.
2783         llvm::AttributeMask RemoveAttrs;
2784         RemoveAttrs.addAttribute("target-cpu");
2785         RemoveAttrs.addAttribute("target-features");
2786         RemoveAttrs.addAttribute("tune-cpu");
2787         F->removeFnAttrs(RemoveAttrs);
2788         F->addFnAttrs(Attrs);
2789       }
2790     }
2791 
2792     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2793       GO->setSection(CSA->getName());
2794     else if (const auto *SA = D->getAttr<SectionAttr>())
2795       GO->setSection(SA->getName());
2796   }
2797 
2798   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2799 }
2800 
2801 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2802                                                   llvm::Function *F,
2803                                                   const CGFunctionInfo &FI) {
2804   const Decl *D = GD.getDecl();
2805   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2806   SetLLVMFunctionAttributesForDefinition(D, F);
2807 
2808   F->setLinkage(llvm::Function::InternalLinkage);
2809 
2810   setNonAliasAttributes(GD, F);
2811 }
2812 
2813 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2814   // Set linkage and visibility in case we never see a definition.
2815   LinkageInfo LV = ND->getLinkageAndVisibility();
2816   // Don't set internal linkage on declarations.
2817   // "extern_weak" is overloaded in LLVM; we probably should have
2818   // separate linkage types for this.
2819   if (isExternallyVisible(LV.getLinkage()) &&
2820       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2821     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2822 }
2823 
2824 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2825                                                        llvm::Function *F) {
2826   // Only if we are checking indirect calls.
2827   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2828     return;
2829 
2830   // Non-static class methods are handled via vtable or member function pointer
2831   // checks elsewhere.
2832   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2833     return;
2834 
2835   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2836   F->addTypeMetadata(0, MD);
2837   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2838 
2839   // Emit a hash-based bit set entry for cross-DSO calls.
2840   if (CodeGenOpts.SanitizeCfiCrossDso)
2841     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2842       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2843 }
2844 
2845 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2846   llvm::LLVMContext &Ctx = F->getContext();
2847   llvm::MDBuilder MDB(Ctx);
2848   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2849                  llvm::MDNode::get(
2850                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2851 }
2852 
2853 static bool allowKCFIIdentifier(StringRef Name) {
2854   // KCFI type identifier constants are only necessary for external assembly
2855   // functions, which means it's safe to skip unusual names. Subset of
2856   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2857   return llvm::all_of(Name, [](const char &C) {
2858     return llvm::isAlnum(C) || C == '_' || C == '.';
2859   });
2860 }
2861 
2862 void CodeGenModule::finalizeKCFITypes() {
2863   llvm::Module &M = getModule();
2864   for (auto &F : M.functions()) {
2865     // Remove KCFI type metadata from non-address-taken local functions.
2866     bool AddressTaken = F.hasAddressTaken();
2867     if (!AddressTaken && F.hasLocalLinkage())
2868       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2869 
2870     // Generate a constant with the expected KCFI type identifier for all
2871     // address-taken function declarations to support annotating indirectly
2872     // called assembly functions.
2873     if (!AddressTaken || !F.isDeclaration())
2874       continue;
2875 
2876     const llvm::ConstantInt *Type;
2877     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2878       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2879     else
2880       continue;
2881 
2882     StringRef Name = F.getName();
2883     if (!allowKCFIIdentifier(Name))
2884       continue;
2885 
2886     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2887                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2888                           .str();
2889     M.appendModuleInlineAsm(Asm);
2890   }
2891 }
2892 
2893 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2894                                           bool IsIncompleteFunction,
2895                                           bool IsThunk) {
2896 
2897   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2898     // If this is an intrinsic function, set the function's attributes
2899     // to the intrinsic's attributes.
2900     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2901     return;
2902   }
2903 
2904   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2905 
2906   if (!IsIncompleteFunction)
2907     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2908                               IsThunk);
2909 
2910   // Add the Returned attribute for "this", except for iOS 5 and earlier
2911   // where substantial code, including the libstdc++ dylib, was compiled with
2912   // GCC and does not actually return "this".
2913   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2914       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2915     assert(!F->arg_empty() &&
2916            F->arg_begin()->getType()
2917              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2918            "unexpected this return");
2919     F->addParamAttr(0, llvm::Attribute::Returned);
2920   }
2921 
2922   // Only a few attributes are set on declarations; these may later be
2923   // overridden by a definition.
2924 
2925   setLinkageForGV(F, FD);
2926   setGVProperties(F, FD);
2927 
2928   // Setup target-specific attributes.
2929   if (!IsIncompleteFunction && F->isDeclaration())
2930     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2931 
2932   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2933     F->setSection(CSA->getName());
2934   else if (const auto *SA = FD->getAttr<SectionAttr>())
2935      F->setSection(SA->getName());
2936 
2937   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2938     if (EA->isError())
2939       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2940     else if (EA->isWarning())
2941       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2942   }
2943 
2944   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2945   if (FD->isInlineBuiltinDeclaration()) {
2946     const FunctionDecl *FDBody;
2947     bool HasBody = FD->hasBody(FDBody);
2948     (void)HasBody;
2949     assert(HasBody && "Inline builtin declarations should always have an "
2950                       "available body!");
2951     if (shouldEmitFunction(FDBody))
2952       F->addFnAttr(llvm::Attribute::NoBuiltin);
2953   }
2954 
2955   if (FD->isReplaceableGlobalAllocationFunction()) {
2956     // A replaceable global allocation function does not act like a builtin by
2957     // default, only if it is invoked by a new-expression or delete-expression.
2958     F->addFnAttr(llvm::Attribute::NoBuiltin);
2959   }
2960 
2961   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2962     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2963   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2964     if (MD->isVirtual())
2965       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2966 
2967   // Don't emit entries for function declarations in the cross-DSO mode. This
2968   // is handled with better precision by the receiving DSO. But if jump tables
2969   // are non-canonical then we need type metadata in order to produce the local
2970   // jump table.
2971   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2972       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2973     CreateFunctionTypeMetadataForIcall(FD, F);
2974 
2975   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2976     setKCFIType(FD, F);
2977 
2978   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2979     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2980 
2981   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2982     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2983 
2984   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2985     // Annotate the callback behavior as metadata:
2986     //  - The callback callee (as argument number).
2987     //  - The callback payloads (as argument numbers).
2988     llvm::LLVMContext &Ctx = F->getContext();
2989     llvm::MDBuilder MDB(Ctx);
2990 
2991     // The payload indices are all but the first one in the encoding. The first
2992     // identifies the callback callee.
2993     int CalleeIdx = *CB->encoding_begin();
2994     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2995     F->addMetadata(llvm::LLVMContext::MD_callback,
2996                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2997                                                CalleeIdx, PayloadIndices,
2998                                                /* VarArgsArePassed */ false)}));
2999   }
3000 }
3001 
3002 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
3003   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3004          "Only globals with definition can force usage.");
3005   LLVMUsed.emplace_back(GV);
3006 }
3007 
3008 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
3009   assert(!GV->isDeclaration() &&
3010          "Only globals with definition can force usage.");
3011   LLVMCompilerUsed.emplace_back(GV);
3012 }
3013 
3014 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3015   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3016          "Only globals with definition can force usage.");
3017   if (getTriple().isOSBinFormatELF())
3018     LLVMCompilerUsed.emplace_back(GV);
3019   else
3020     LLVMUsed.emplace_back(GV);
3021 }
3022 
3023 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3024                      std::vector<llvm::WeakTrackingVH> &List) {
3025   // Don't create llvm.used if there is no need.
3026   if (List.empty())
3027     return;
3028 
3029   // Convert List to what ConstantArray needs.
3030   SmallVector<llvm::Constant*, 8> UsedArray;
3031   UsedArray.resize(List.size());
3032   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3033     UsedArray[i] =
3034         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3035             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3036   }
3037 
3038   if (UsedArray.empty())
3039     return;
3040   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3041 
3042   auto *GV = new llvm::GlobalVariable(
3043       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3044       llvm::ConstantArray::get(ATy, UsedArray), Name);
3045 
3046   GV->setSection("llvm.metadata");
3047 }
3048 
3049 void CodeGenModule::emitLLVMUsed() {
3050   emitUsed(*this, "llvm.used", LLVMUsed);
3051   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3052 }
3053 
3054 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3055   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3056   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3057 }
3058 
3059 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3060   llvm::SmallString<32> Opt;
3061   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3062   if (Opt.empty())
3063     return;
3064   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3065   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3066 }
3067 
3068 void CodeGenModule::AddDependentLib(StringRef Lib) {
3069   auto &C = getLLVMContext();
3070   if (getTarget().getTriple().isOSBinFormatELF()) {
3071       ELFDependentLibraries.push_back(
3072         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3073     return;
3074   }
3075 
3076   llvm::SmallString<24> Opt;
3077   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3078   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3079   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3080 }
3081 
3082 /// Add link options implied by the given module, including modules
3083 /// it depends on, using a postorder walk.
3084 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3085                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3086                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3087   // Import this module's parent.
3088   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3089     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3090   }
3091 
3092   // Import this module's dependencies.
3093   for (Module *Import : llvm::reverse(Mod->Imports)) {
3094     if (Visited.insert(Import).second)
3095       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3096   }
3097 
3098   // Add linker options to link against the libraries/frameworks
3099   // described by this module.
3100   llvm::LLVMContext &Context = CGM.getLLVMContext();
3101   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3102 
3103   // For modules that use export_as for linking, use that module
3104   // name instead.
3105   if (Mod->UseExportAsModuleLinkName)
3106     return;
3107 
3108   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3109     // Link against a framework.  Frameworks are currently Darwin only, so we
3110     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3111     if (LL.IsFramework) {
3112       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3113                                  llvm::MDString::get(Context, LL.Library)};
3114 
3115       Metadata.push_back(llvm::MDNode::get(Context, Args));
3116       continue;
3117     }
3118 
3119     // Link against a library.
3120     if (IsELF) {
3121       llvm::Metadata *Args[2] = {
3122           llvm::MDString::get(Context, "lib"),
3123           llvm::MDString::get(Context, LL.Library),
3124       };
3125       Metadata.push_back(llvm::MDNode::get(Context, Args));
3126     } else {
3127       llvm::SmallString<24> Opt;
3128       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3129       auto *OptString = llvm::MDString::get(Context, Opt);
3130       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3131     }
3132   }
3133 }
3134 
3135 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3136   assert(Primary->isNamedModuleUnit() &&
3137          "We should only emit module initializers for named modules.");
3138 
3139   // Emit the initializers in the order that sub-modules appear in the
3140   // source, first Global Module Fragments, if present.
3141   if (auto GMF = Primary->getGlobalModuleFragment()) {
3142     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3143       if (isa<ImportDecl>(D))
3144         continue;
3145       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3146       EmitTopLevelDecl(D);
3147     }
3148   }
3149   // Second any associated with the module, itself.
3150   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3151     // Skip import decls, the inits for those are called explicitly.
3152     if (isa<ImportDecl>(D))
3153       continue;
3154     EmitTopLevelDecl(D);
3155   }
3156   // Third any associated with the Privat eMOdule Fragment, if present.
3157   if (auto PMF = Primary->getPrivateModuleFragment()) {
3158     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3159       // Skip import decls, the inits for those are called explicitly.
3160       if (isa<ImportDecl>(D))
3161         continue;
3162       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3163       EmitTopLevelDecl(D);
3164     }
3165   }
3166 }
3167 
3168 void CodeGenModule::EmitModuleLinkOptions() {
3169   // Collect the set of all of the modules we want to visit to emit link
3170   // options, which is essentially the imported modules and all of their
3171   // non-explicit child modules.
3172   llvm::SetVector<clang::Module *> LinkModules;
3173   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3174   SmallVector<clang::Module *, 16> Stack;
3175 
3176   // Seed the stack with imported modules.
3177   for (Module *M : ImportedModules) {
3178     // Do not add any link flags when an implementation TU of a module imports
3179     // a header of that same module.
3180     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3181         !getLangOpts().isCompilingModule())
3182       continue;
3183     if (Visited.insert(M).second)
3184       Stack.push_back(M);
3185   }
3186 
3187   // Find all of the modules to import, making a little effort to prune
3188   // non-leaf modules.
3189   while (!Stack.empty()) {
3190     clang::Module *Mod = Stack.pop_back_val();
3191 
3192     bool AnyChildren = false;
3193 
3194     // Visit the submodules of this module.
3195     for (const auto &SM : Mod->submodules()) {
3196       // Skip explicit children; they need to be explicitly imported to be
3197       // linked against.
3198       if (SM->IsExplicit)
3199         continue;
3200 
3201       if (Visited.insert(SM).second) {
3202         Stack.push_back(SM);
3203         AnyChildren = true;
3204       }
3205     }
3206 
3207     // We didn't find any children, so add this module to the list of
3208     // modules to link against.
3209     if (!AnyChildren) {
3210       LinkModules.insert(Mod);
3211     }
3212   }
3213 
3214   // Add link options for all of the imported modules in reverse topological
3215   // order.  We don't do anything to try to order import link flags with respect
3216   // to linker options inserted by things like #pragma comment().
3217   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3218   Visited.clear();
3219   for (Module *M : LinkModules)
3220     if (Visited.insert(M).second)
3221       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3222   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3223   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3224 
3225   // Add the linker options metadata flag.
3226   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3227   for (auto *MD : LinkerOptionsMetadata)
3228     NMD->addOperand(MD);
3229 }
3230 
3231 void CodeGenModule::EmitDeferred() {
3232   // Emit deferred declare target declarations.
3233   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3234     getOpenMPRuntime().emitDeferredTargetDecls();
3235 
3236   // Emit code for any potentially referenced deferred decls.  Since a
3237   // previously unused static decl may become used during the generation of code
3238   // for a static function, iterate until no changes are made.
3239 
3240   if (!DeferredVTables.empty()) {
3241     EmitDeferredVTables();
3242 
3243     // Emitting a vtable doesn't directly cause more vtables to
3244     // become deferred, although it can cause functions to be
3245     // emitted that then need those vtables.
3246     assert(DeferredVTables.empty());
3247   }
3248 
3249   // Emit CUDA/HIP static device variables referenced by host code only.
3250   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3251   // needed for further handling.
3252   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3253     llvm::append_range(DeferredDeclsToEmit,
3254                        getContext().CUDADeviceVarODRUsedByHost);
3255 
3256   // Stop if we're out of both deferred vtables and deferred declarations.
3257   if (DeferredDeclsToEmit.empty())
3258     return;
3259 
3260   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3261   // work, it will not interfere with this.
3262   std::vector<GlobalDecl> CurDeclsToEmit;
3263   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3264 
3265   for (GlobalDecl &D : CurDeclsToEmit) {
3266     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3267     // to get GlobalValue with exactly the type we need, not something that
3268     // might had been created for another decl with the same mangled name but
3269     // different type.
3270     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3271         GetAddrOfGlobal(D, ForDefinition));
3272 
3273     // In case of different address spaces, we may still get a cast, even with
3274     // IsForDefinition equal to true. Query mangled names table to get
3275     // GlobalValue.
3276     if (!GV)
3277       GV = GetGlobalValue(getMangledName(D));
3278 
3279     // Make sure GetGlobalValue returned non-null.
3280     assert(GV);
3281 
3282     // Check to see if we've already emitted this.  This is necessary
3283     // for a couple of reasons: first, decls can end up in the
3284     // deferred-decls queue multiple times, and second, decls can end
3285     // up with definitions in unusual ways (e.g. by an extern inline
3286     // function acquiring a strong function redefinition).  Just
3287     // ignore these cases.
3288     if (!GV->isDeclaration())
3289       continue;
3290 
3291     // If this is OpenMP, check if it is legal to emit this global normally.
3292     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3293       continue;
3294 
3295     // Otherwise, emit the definition and move on to the next one.
3296     EmitGlobalDefinition(D, GV);
3297 
3298     // If we found out that we need to emit more decls, do that recursively.
3299     // This has the advantage that the decls are emitted in a DFS and related
3300     // ones are close together, which is convenient for testing.
3301     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3302       EmitDeferred();
3303       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3304     }
3305   }
3306 }
3307 
3308 void CodeGenModule::EmitVTablesOpportunistically() {
3309   // Try to emit external vtables as available_externally if they have emitted
3310   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3311   // is not allowed to create new references to things that need to be emitted
3312   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3313 
3314   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3315          && "Only emit opportunistic vtables with optimizations");
3316 
3317   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3318     assert(getVTables().isVTableExternal(RD) &&
3319            "This queue should only contain external vtables");
3320     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3321       VTables.GenerateClassData(RD);
3322   }
3323   OpportunisticVTables.clear();
3324 }
3325 
3326 void CodeGenModule::EmitGlobalAnnotations() {
3327   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3328     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3329     if (GV)
3330       AddGlobalAnnotations(VD, GV);
3331   }
3332   DeferredAnnotations.clear();
3333 
3334   if (Annotations.empty())
3335     return;
3336 
3337   // Create a new global variable for the ConstantStruct in the Module.
3338   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3339     Annotations[0]->getType(), Annotations.size()), Annotations);
3340   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3341                                       llvm::GlobalValue::AppendingLinkage,
3342                                       Array, "llvm.global.annotations");
3343   gv->setSection(AnnotationSection);
3344 }
3345 
3346 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3347   llvm::Constant *&AStr = AnnotationStrings[Str];
3348   if (AStr)
3349     return AStr;
3350 
3351   // Not found yet, create a new global.
3352   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3353   auto *gv = new llvm::GlobalVariable(
3354       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3355       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3356       ConstGlobalsPtrTy->getAddressSpace());
3357   gv->setSection(AnnotationSection);
3358   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3359   AStr = gv;
3360   return gv;
3361 }
3362 
3363 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3364   SourceManager &SM = getContext().getSourceManager();
3365   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3366   if (PLoc.isValid())
3367     return EmitAnnotationString(PLoc.getFilename());
3368   return EmitAnnotationString(SM.getBufferName(Loc));
3369 }
3370 
3371 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3372   SourceManager &SM = getContext().getSourceManager();
3373   PresumedLoc PLoc = SM.getPresumedLoc(L);
3374   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3375     SM.getExpansionLineNumber(L);
3376   return llvm::ConstantInt::get(Int32Ty, LineNo);
3377 }
3378 
3379 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3380   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3381   if (Exprs.empty())
3382     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3383 
3384   llvm::FoldingSetNodeID ID;
3385   for (Expr *E : Exprs) {
3386     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3387   }
3388   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3389   if (Lookup)
3390     return Lookup;
3391 
3392   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3393   LLVMArgs.reserve(Exprs.size());
3394   ConstantEmitter ConstEmiter(*this);
3395   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3396     const auto *CE = cast<clang::ConstantExpr>(E);
3397     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3398                                     CE->getType());
3399   });
3400   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3401   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3402                                       llvm::GlobalValue::PrivateLinkage, Struct,
3403                                       ".args");
3404   GV->setSection(AnnotationSection);
3405   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3406 
3407   Lookup = GV;
3408   return GV;
3409 }
3410 
3411 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3412                                                 const AnnotateAttr *AA,
3413                                                 SourceLocation L) {
3414   // Get the globals for file name, annotation, and the line number.
3415   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3416                  *UnitGV = EmitAnnotationUnit(L),
3417                  *LineNoCst = EmitAnnotationLineNo(L),
3418                  *Args = EmitAnnotationArgs(AA);
3419 
3420   llvm::Constant *GVInGlobalsAS = GV;
3421   if (GV->getAddressSpace() !=
3422       getDataLayout().getDefaultGlobalsAddressSpace()) {
3423     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3424         GV,
3425         llvm::PointerType::get(
3426             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3427   }
3428 
3429   // Create the ConstantStruct for the global annotation.
3430   llvm::Constant *Fields[] = {
3431       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3432   };
3433   return llvm::ConstantStruct::getAnon(Fields);
3434 }
3435 
3436 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3437                                          llvm::GlobalValue *GV) {
3438   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3439   // Get the struct elements for these annotations.
3440   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3441     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3442 }
3443 
3444 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3445                                        SourceLocation Loc) const {
3446   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3447   // NoSanitize by function name.
3448   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3449     return true;
3450   // NoSanitize by location. Check "mainfile" prefix.
3451   auto &SM = Context.getSourceManager();
3452   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3453   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3454     return true;
3455 
3456   // Check "src" prefix.
3457   if (Loc.isValid())
3458     return NoSanitizeL.containsLocation(Kind, Loc);
3459   // If location is unknown, this may be a compiler-generated function. Assume
3460   // it's located in the main file.
3461   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3462 }
3463 
3464 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3465                                        llvm::GlobalVariable *GV,
3466                                        SourceLocation Loc, QualType Ty,
3467                                        StringRef Category) const {
3468   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3469   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3470     return true;
3471   auto &SM = Context.getSourceManager();
3472   if (NoSanitizeL.containsMainFile(
3473           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3474           Category))
3475     return true;
3476   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3477     return true;
3478 
3479   // Check global type.
3480   if (!Ty.isNull()) {
3481     // Drill down the array types: if global variable of a fixed type is
3482     // not sanitized, we also don't instrument arrays of them.
3483     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3484       Ty = AT->getElementType();
3485     Ty = Ty.getCanonicalType().getUnqualifiedType();
3486     // Only record types (classes, structs etc.) are ignored.
3487     if (Ty->isRecordType()) {
3488       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3489       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3490         return true;
3491     }
3492   }
3493   return false;
3494 }
3495 
3496 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3497                                    StringRef Category) const {
3498   const auto &XRayFilter = getContext().getXRayFilter();
3499   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3500   auto Attr = ImbueAttr::NONE;
3501   if (Loc.isValid())
3502     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3503   if (Attr == ImbueAttr::NONE)
3504     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3505   switch (Attr) {
3506   case ImbueAttr::NONE:
3507     return false;
3508   case ImbueAttr::ALWAYS:
3509     Fn->addFnAttr("function-instrument", "xray-always");
3510     break;
3511   case ImbueAttr::ALWAYS_ARG1:
3512     Fn->addFnAttr("function-instrument", "xray-always");
3513     Fn->addFnAttr("xray-log-args", "1");
3514     break;
3515   case ImbueAttr::NEVER:
3516     Fn->addFnAttr("function-instrument", "xray-never");
3517     break;
3518   }
3519   return true;
3520 }
3521 
3522 ProfileList::ExclusionType
3523 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3524                                               SourceLocation Loc) const {
3525   const auto &ProfileList = getContext().getProfileList();
3526   // If the profile list is empty, then instrument everything.
3527   if (ProfileList.isEmpty())
3528     return ProfileList::Allow;
3529   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3530   // First, check the function name.
3531   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3532     return *V;
3533   // Next, check the source location.
3534   if (Loc.isValid())
3535     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3536       return *V;
3537   // If location is unknown, this may be a compiler-generated function. Assume
3538   // it's located in the main file.
3539   auto &SM = Context.getSourceManager();
3540   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3541     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3542       return *V;
3543   return ProfileList.getDefault(Kind);
3544 }
3545 
3546 ProfileList::ExclusionType
3547 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3548                                                  SourceLocation Loc) const {
3549   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3550   if (V != ProfileList::Allow)
3551     return V;
3552 
3553   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3554   if (NumGroups > 1) {
3555     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3556     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3557       return ProfileList::Skip;
3558   }
3559   return ProfileList::Allow;
3560 }
3561 
3562 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3563   // Never defer when EmitAllDecls is specified.
3564   if (LangOpts.EmitAllDecls)
3565     return true;
3566 
3567   const auto *VD = dyn_cast<VarDecl>(Global);
3568   if (VD &&
3569       ((CodeGenOpts.KeepPersistentStorageVariables &&
3570         (VD->getStorageDuration() == SD_Static ||
3571          VD->getStorageDuration() == SD_Thread)) ||
3572        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3573         VD->getType().isConstQualified())))
3574     return true;
3575 
3576   return getContext().DeclMustBeEmitted(Global);
3577 }
3578 
3579 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3580   // In OpenMP 5.0 variables and function may be marked as
3581   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3582   // that they must be emitted on the host/device. To be sure we need to have
3583   // seen a declare target with an explicit mentioning of the function, we know
3584   // we have if the level of the declare target attribute is -1. Note that we
3585   // check somewhere else if we should emit this at all.
3586   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3587     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3588         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3589     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3590       return false;
3591   }
3592 
3593   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3594     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3595       // Implicit template instantiations may change linkage if they are later
3596       // explicitly instantiated, so they should not be emitted eagerly.
3597       return false;
3598     // Defer until all versions have been semantically checked.
3599     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3600       return false;
3601   }
3602   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3603     if (Context.getInlineVariableDefinitionKind(VD) ==
3604         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3605       // A definition of an inline constexpr static data member may change
3606       // linkage later if it's redeclared outside the class.
3607       return false;
3608     if (CXX20ModuleInits && VD->getOwningModule() &&
3609         !VD->getOwningModule()->isModuleMapModule()) {
3610       // For CXX20, module-owned initializers need to be deferred, since it is
3611       // not known at this point if they will be run for the current module or
3612       // as part of the initializer for an imported one.
3613       return false;
3614     }
3615   }
3616   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3617   // codegen for global variables, because they may be marked as threadprivate.
3618   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3619       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3620       !Global->getType().isConstantStorage(getContext(), false, false) &&
3621       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3622     return false;
3623 
3624   return true;
3625 }
3626 
3627 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3628   StringRef Name = getMangledName(GD);
3629 
3630   // The UUID descriptor should be pointer aligned.
3631   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3632 
3633   // Look for an existing global.
3634   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3635     return ConstantAddress(GV, GV->getValueType(), Alignment);
3636 
3637   ConstantEmitter Emitter(*this);
3638   llvm::Constant *Init;
3639 
3640   APValue &V = GD->getAsAPValue();
3641   if (!V.isAbsent()) {
3642     // If possible, emit the APValue version of the initializer. In particular,
3643     // this gets the type of the constant right.
3644     Init = Emitter.emitForInitializer(
3645         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3646   } else {
3647     // As a fallback, directly construct the constant.
3648     // FIXME: This may get padding wrong under esoteric struct layout rules.
3649     // MSVC appears to create a complete type 'struct __s_GUID' that it
3650     // presumably uses to represent these constants.
3651     MSGuidDecl::Parts Parts = GD->getParts();
3652     llvm::Constant *Fields[4] = {
3653         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3654         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3655         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3656         llvm::ConstantDataArray::getRaw(
3657             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3658             Int8Ty)};
3659     Init = llvm::ConstantStruct::getAnon(Fields);
3660   }
3661 
3662   auto *GV = new llvm::GlobalVariable(
3663       getModule(), Init->getType(),
3664       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3665   if (supportsCOMDAT())
3666     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3667   setDSOLocal(GV);
3668 
3669   if (!V.isAbsent()) {
3670     Emitter.finalize(GV);
3671     return ConstantAddress(GV, GV->getValueType(), Alignment);
3672   }
3673 
3674   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3675   return ConstantAddress(GV, Ty, Alignment);
3676 }
3677 
3678 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3679     const UnnamedGlobalConstantDecl *GCD) {
3680   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3681 
3682   llvm::GlobalVariable **Entry = nullptr;
3683   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3684   if (*Entry)
3685     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3686 
3687   ConstantEmitter Emitter(*this);
3688   llvm::Constant *Init;
3689 
3690   const APValue &V = GCD->getValue();
3691 
3692   assert(!V.isAbsent());
3693   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3694                                     GCD->getType());
3695 
3696   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3697                                       /*isConstant=*/true,
3698                                       llvm::GlobalValue::PrivateLinkage, Init,
3699                                       ".constant");
3700   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3701   GV->setAlignment(Alignment.getAsAlign());
3702 
3703   Emitter.finalize(GV);
3704 
3705   *Entry = GV;
3706   return ConstantAddress(GV, GV->getValueType(), Alignment);
3707 }
3708 
3709 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3710     const TemplateParamObjectDecl *TPO) {
3711   StringRef Name = getMangledName(TPO);
3712   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3713 
3714   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3715     return ConstantAddress(GV, GV->getValueType(), Alignment);
3716 
3717   ConstantEmitter Emitter(*this);
3718   llvm::Constant *Init = Emitter.emitForInitializer(
3719         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3720 
3721   if (!Init) {
3722     ErrorUnsupported(TPO, "template parameter object");
3723     return ConstantAddress::invalid();
3724   }
3725 
3726   llvm::GlobalValue::LinkageTypes Linkage =
3727       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3728           ? llvm::GlobalValue::LinkOnceODRLinkage
3729           : llvm::GlobalValue::InternalLinkage;
3730   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3731                                       /*isConstant=*/true, Linkage, Init, Name);
3732   setGVProperties(GV, TPO);
3733   if (supportsCOMDAT())
3734     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3735   Emitter.finalize(GV);
3736 
3737     return ConstantAddress(GV, GV->getValueType(), Alignment);
3738 }
3739 
3740 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3741   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3742   assert(AA && "No alias?");
3743 
3744   CharUnits Alignment = getContext().getDeclAlign(VD);
3745   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3746 
3747   // See if there is already something with the target's name in the module.
3748   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3749   if (Entry)
3750     return ConstantAddress(Entry, DeclTy, Alignment);
3751 
3752   llvm::Constant *Aliasee;
3753   if (isa<llvm::FunctionType>(DeclTy))
3754     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3755                                       GlobalDecl(cast<FunctionDecl>(VD)),
3756                                       /*ForVTable=*/false);
3757   else
3758     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3759                                     nullptr);
3760 
3761   auto *F = cast<llvm::GlobalValue>(Aliasee);
3762   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3763   WeakRefReferences.insert(F);
3764 
3765   return ConstantAddress(Aliasee, DeclTy, Alignment);
3766 }
3767 
3768 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3769   if (!D)
3770     return false;
3771   if (auto *A = D->getAttr<AttrT>())
3772     return A->isImplicit();
3773   return D->isImplicit();
3774 }
3775 
3776 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3777   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3778   // We need to emit host-side 'shadows' for all global
3779   // device-side variables because the CUDA runtime needs their
3780   // size and host-side address in order to provide access to
3781   // their device-side incarnations.
3782   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3783          Global->hasAttr<CUDAConstantAttr>() ||
3784          Global->hasAttr<CUDASharedAttr>() ||
3785          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3786          Global->getType()->isCUDADeviceBuiltinTextureType();
3787 }
3788 
3789 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3790   const auto *Global = cast<ValueDecl>(GD.getDecl());
3791 
3792   // Weak references don't produce any output by themselves.
3793   if (Global->hasAttr<WeakRefAttr>())
3794     return;
3795 
3796   // If this is an alias definition (which otherwise looks like a declaration)
3797   // emit it now.
3798   if (Global->hasAttr<AliasAttr>())
3799     return EmitAliasDefinition(GD);
3800 
3801   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3802   if (Global->hasAttr<IFuncAttr>())
3803     return emitIFuncDefinition(GD);
3804 
3805   // If this is a cpu_dispatch multiversion function, emit the resolver.
3806   if (Global->hasAttr<CPUDispatchAttr>())
3807     return emitCPUDispatchDefinition(GD);
3808 
3809   // If this is CUDA, be selective about which declarations we emit.
3810   // Non-constexpr non-lambda implicit host device functions are not emitted
3811   // unless they are used on device side.
3812   if (LangOpts.CUDA) {
3813     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3814            "Expected Variable or Function");
3815     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3816       if (!shouldEmitCUDAGlobalVar(VD))
3817         return;
3818     } else if (LangOpts.CUDAIsDevice) {
3819       const auto *FD = dyn_cast<FunctionDecl>(Global);
3820       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3821            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3822             hasImplicitAttr<CUDAHostAttr>(FD) &&
3823             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3824             !isLambdaCallOperator(FD) &&
3825             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3826           !Global->hasAttr<CUDAGlobalAttr>() &&
3827           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3828             !Global->hasAttr<CUDAHostAttr>()))
3829         return;
3830       // Device-only functions are the only things we skip.
3831     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3832                Global->hasAttr<CUDADeviceAttr>())
3833       return;
3834   }
3835 
3836   if (LangOpts.OpenMP) {
3837     // If this is OpenMP, check if it is legal to emit this global normally.
3838     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3839       return;
3840     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3841       if (MustBeEmitted(Global))
3842         EmitOMPDeclareReduction(DRD);
3843       return;
3844     }
3845     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3846       if (MustBeEmitted(Global))
3847         EmitOMPDeclareMapper(DMD);
3848       return;
3849     }
3850   }
3851 
3852   // Ignore declarations, they will be emitted on their first use.
3853   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3854     // Update deferred annotations with the latest declaration if the function
3855     // function was already used or defined.
3856     if (FD->hasAttr<AnnotateAttr>()) {
3857       StringRef MangledName = getMangledName(GD);
3858       if (GetGlobalValue(MangledName))
3859         DeferredAnnotations[MangledName] = FD;
3860     }
3861 
3862     // Forward declarations are emitted lazily on first use.
3863     if (!FD->doesThisDeclarationHaveABody()) {
3864       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3865           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3866         return;
3867 
3868       StringRef MangledName = getMangledName(GD);
3869 
3870       // Compute the function info and LLVM type.
3871       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3872       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3873 
3874       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3875                               /*DontDefer=*/false);
3876       return;
3877     }
3878   } else {
3879     const auto *VD = cast<VarDecl>(Global);
3880     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3881     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3882         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3883       if (LangOpts.OpenMP) {
3884         // Emit declaration of the must-be-emitted declare target variable.
3885         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3886                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3887 
3888           // If this variable has external storage and doesn't require special
3889           // link handling we defer to its canonical definition.
3890           if (VD->hasExternalStorage() &&
3891               Res != OMPDeclareTargetDeclAttr::MT_Link)
3892             return;
3893 
3894           bool UnifiedMemoryEnabled =
3895               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3896           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3897                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3898               !UnifiedMemoryEnabled) {
3899             (void)GetAddrOfGlobalVar(VD);
3900           } else {
3901             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3902                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3903                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3904                      UnifiedMemoryEnabled)) &&
3905                    "Link clause or to clause with unified memory expected.");
3906             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3907           }
3908 
3909           return;
3910         }
3911       }
3912       // If this declaration may have caused an inline variable definition to
3913       // change linkage, make sure that it's emitted.
3914       if (Context.getInlineVariableDefinitionKind(VD) ==
3915           ASTContext::InlineVariableDefinitionKind::Strong)
3916         GetAddrOfGlobalVar(VD);
3917       return;
3918     }
3919   }
3920 
3921   // Defer code generation to first use when possible, e.g. if this is an inline
3922   // function. If the global must always be emitted, do it eagerly if possible
3923   // to benefit from cache locality.
3924   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3925     // Emit the definition if it can't be deferred.
3926     EmitGlobalDefinition(GD);
3927     addEmittedDeferredDecl(GD);
3928     return;
3929   }
3930 
3931   // If we're deferring emission of a C++ variable with an
3932   // initializer, remember the order in which it appeared in the file.
3933   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3934       cast<VarDecl>(Global)->hasInit()) {
3935     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3936     CXXGlobalInits.push_back(nullptr);
3937   }
3938 
3939   StringRef MangledName = getMangledName(GD);
3940   if (GetGlobalValue(MangledName) != nullptr) {
3941     // The value has already been used and should therefore be emitted.
3942     addDeferredDeclToEmit(GD);
3943   } else if (MustBeEmitted(Global)) {
3944     // The value must be emitted, but cannot be emitted eagerly.
3945     assert(!MayBeEmittedEagerly(Global));
3946     addDeferredDeclToEmit(GD);
3947   } else {
3948     // Otherwise, remember that we saw a deferred decl with this name.  The
3949     // first use of the mangled name will cause it to move into
3950     // DeferredDeclsToEmit.
3951     DeferredDecls[MangledName] = GD;
3952   }
3953 }
3954 
3955 // Check if T is a class type with a destructor that's not dllimport.
3956 static bool HasNonDllImportDtor(QualType T) {
3957   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3958     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3959       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3960         return true;
3961 
3962   return false;
3963 }
3964 
3965 namespace {
3966   struct FunctionIsDirectlyRecursive
3967       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3968     const StringRef Name;
3969     const Builtin::Context &BI;
3970     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3971         : Name(N), BI(C) {}
3972 
3973     bool VisitCallExpr(const CallExpr *E) {
3974       const FunctionDecl *FD = E->getDirectCallee();
3975       if (!FD)
3976         return false;
3977       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3978       if (Attr && Name == Attr->getLabel())
3979         return true;
3980       unsigned BuiltinID = FD->getBuiltinID();
3981       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3982         return false;
3983       StringRef BuiltinName = BI.getName(BuiltinID);
3984       if (BuiltinName.starts_with("__builtin_") &&
3985           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3986         return true;
3987       }
3988       return false;
3989     }
3990 
3991     bool VisitStmt(const Stmt *S) {
3992       for (const Stmt *Child : S->children())
3993         if (Child && this->Visit(Child))
3994           return true;
3995       return false;
3996     }
3997   };
3998 
3999   // Make sure we're not referencing non-imported vars or functions.
4000   struct DLLImportFunctionVisitor
4001       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
4002     bool SafeToInline = true;
4003 
4004     bool shouldVisitImplicitCode() const { return true; }
4005 
4006     bool VisitVarDecl(VarDecl *VD) {
4007       if (VD->getTLSKind()) {
4008         // A thread-local variable cannot be imported.
4009         SafeToInline = false;
4010         return SafeToInline;
4011       }
4012 
4013       // A variable definition might imply a destructor call.
4014       if (VD->isThisDeclarationADefinition())
4015         SafeToInline = !HasNonDllImportDtor(VD->getType());
4016 
4017       return SafeToInline;
4018     }
4019 
4020     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4021       if (const auto *D = E->getTemporary()->getDestructor())
4022         SafeToInline = D->hasAttr<DLLImportAttr>();
4023       return SafeToInline;
4024     }
4025 
4026     bool VisitDeclRefExpr(DeclRefExpr *E) {
4027       ValueDecl *VD = E->getDecl();
4028       if (isa<FunctionDecl>(VD))
4029         SafeToInline = VD->hasAttr<DLLImportAttr>();
4030       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4031         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4032       return SafeToInline;
4033     }
4034 
4035     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4036       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4037       return SafeToInline;
4038     }
4039 
4040     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4041       CXXMethodDecl *M = E->getMethodDecl();
4042       if (!M) {
4043         // Call through a pointer to member function. This is safe to inline.
4044         SafeToInline = true;
4045       } else {
4046         SafeToInline = M->hasAttr<DLLImportAttr>();
4047       }
4048       return SafeToInline;
4049     }
4050 
4051     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4052       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4053       return SafeToInline;
4054     }
4055 
4056     bool VisitCXXNewExpr(CXXNewExpr *E) {
4057       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4058       return SafeToInline;
4059     }
4060   };
4061 }
4062 
4063 // isTriviallyRecursive - Check if this function calls another
4064 // decl that, because of the asm attribute or the other decl being a builtin,
4065 // ends up pointing to itself.
4066 bool
4067 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4068   StringRef Name;
4069   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4070     // asm labels are a special kind of mangling we have to support.
4071     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4072     if (!Attr)
4073       return false;
4074     Name = Attr->getLabel();
4075   } else {
4076     Name = FD->getName();
4077   }
4078 
4079   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4080   const Stmt *Body = FD->getBody();
4081   return Body ? Walker.Visit(Body) : false;
4082 }
4083 
4084 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4085   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4086     return true;
4087 
4088   const auto *F = cast<FunctionDecl>(GD.getDecl());
4089   // Inline builtins declaration must be emitted. They often are fortified
4090   // functions.
4091   if (F->isInlineBuiltinDeclaration())
4092     return true;
4093 
4094   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4095     return false;
4096 
4097   // We don't import function bodies from other named module units since that
4098   // behavior may break ABI compatibility of the current unit.
4099   if (const Module *M = F->getOwningModule();
4100       M && M->getTopLevelModule()->isNamedModule() &&
4101       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4102     // There are practices to mark template member function as always-inline
4103     // and mark the template as extern explicit instantiation but not give
4104     // the definition for member function. So we have to emit the function
4105     // from explicitly instantiation with always-inline.
4106     //
4107     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4108     //
4109     // TODO: Maybe it is better to give it a warning if we call a non-inline
4110     // function from other module units which is marked as always-inline.
4111     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4112       return false;
4113     }
4114   }
4115 
4116   if (F->hasAttr<NoInlineAttr>())
4117     return false;
4118 
4119   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4120     // Check whether it would be safe to inline this dllimport function.
4121     DLLImportFunctionVisitor Visitor;
4122     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4123     if (!Visitor.SafeToInline)
4124       return false;
4125 
4126     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4127       // Implicit destructor invocations aren't captured in the AST, so the
4128       // check above can't see them. Check for them manually here.
4129       for (const Decl *Member : Dtor->getParent()->decls())
4130         if (isa<FieldDecl>(Member))
4131           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4132             return false;
4133       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4134         if (HasNonDllImportDtor(B.getType()))
4135           return false;
4136     }
4137   }
4138 
4139   // PR9614. Avoid cases where the source code is lying to us. An available
4140   // externally function should have an equivalent function somewhere else,
4141   // but a function that calls itself through asm label/`__builtin_` trickery is
4142   // clearly not equivalent to the real implementation.
4143   // This happens in glibc's btowc and in some configure checks.
4144   return !isTriviallyRecursive(F);
4145 }
4146 
4147 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4148   return CodeGenOpts.OptimizationLevel > 0;
4149 }
4150 
4151 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4152                                                        llvm::GlobalValue *GV) {
4153   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4154 
4155   if (FD->isCPUSpecificMultiVersion()) {
4156     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4157     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4158       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4159   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4160     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4161       // AArch64 favors the default target version over the clone if any.
4162       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4163           TC->isFirstOfVersion(I))
4164         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4165     // Ensure that the resolver function is also emitted.
4166     GetOrCreateMultiVersionResolver(GD);
4167   } else
4168     EmitGlobalFunctionDefinition(GD, GV);
4169 
4170   // Defer the resolver emission until we can reason whether the TU
4171   // contains a default target version implementation.
4172   if (FD->isTargetVersionMultiVersion())
4173     AddDeferredMultiVersionResolverToEmit(GD);
4174 }
4175 
4176 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4177   const auto *D = cast<ValueDecl>(GD.getDecl());
4178 
4179   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4180                                  Context.getSourceManager(),
4181                                  "Generating code for declaration");
4182 
4183   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4184     // At -O0, don't generate IR for functions with available_externally
4185     // linkage.
4186     if (!shouldEmitFunction(GD))
4187       return;
4188 
4189     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4190       std::string Name;
4191       llvm::raw_string_ostream OS(Name);
4192       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4193                                /*Qualified=*/true);
4194       return Name;
4195     });
4196 
4197     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4198       // Make sure to emit the definition(s) before we emit the thunks.
4199       // This is necessary for the generation of certain thunks.
4200       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4201         ABI->emitCXXStructor(GD);
4202       else if (FD->isMultiVersion())
4203         EmitMultiVersionFunctionDefinition(GD, GV);
4204       else
4205         EmitGlobalFunctionDefinition(GD, GV);
4206 
4207       if (Method->isVirtual())
4208         getVTables().EmitThunks(GD);
4209 
4210       return;
4211     }
4212 
4213     if (FD->isMultiVersion())
4214       return EmitMultiVersionFunctionDefinition(GD, GV);
4215     return EmitGlobalFunctionDefinition(GD, GV);
4216   }
4217 
4218   if (const auto *VD = dyn_cast<VarDecl>(D))
4219     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4220 
4221   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4222 }
4223 
4224 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4225                                                       llvm::Function *NewFn);
4226 
4227 static unsigned getFMVPriority(const TargetInfo &TI,
4228                                const CodeGenFunction::FMVResolverOption &RO) {
4229   llvm::SmallVector<StringRef, 8> Features{RO.Features};
4230   if (RO.Architecture)
4231     Features.push_back(*RO.Architecture);
4232   return TI.getFMVPriority(Features);
4233 }
4234 
4235 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4236 // TU can forward declare the function without causing problems.  Particularly
4237 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4238 // work with internal linkage functions, so that the same function name can be
4239 // used with internal linkage in multiple TUs.
4240 static llvm::GlobalValue::LinkageTypes
4241 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4242   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4243   if (FD->getFormalLinkage() == Linkage::Internal)
4244     return llvm::GlobalValue::InternalLinkage;
4245   return llvm::GlobalValue::WeakODRLinkage;
4246 }
4247 
4248 void CodeGenModule::emitMultiVersionFunctions() {
4249   std::vector<GlobalDecl> MVFuncsToEmit;
4250   MultiVersionFuncs.swap(MVFuncsToEmit);
4251   for (GlobalDecl GD : MVFuncsToEmit) {
4252     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4253     assert(FD && "Expected a FunctionDecl");
4254 
4255     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4256       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4257       StringRef MangledName = getMangledName(CurGD);
4258       llvm::Constant *Func = GetGlobalValue(MangledName);
4259       if (!Func) {
4260         if (Decl->isDefined()) {
4261           EmitGlobalFunctionDefinition(CurGD, nullptr);
4262           Func = GetGlobalValue(MangledName);
4263         } else {
4264           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4265           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4266           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4267                                    /*DontDefer=*/false, ForDefinition);
4268         }
4269         assert(Func && "This should have just been created");
4270       }
4271       return cast<llvm::Function>(Func);
4272     };
4273 
4274     // For AArch64, a resolver is only emitted if a function marked with
4275     // target_version("default")) or target_clones() is present and defined
4276     // in this TU. For other architectures it is always emitted.
4277     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4278     SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4279 
4280     getContext().forEachMultiversionedFunctionVersion(
4281         FD, [&](const FunctionDecl *CurFD) {
4282           llvm::SmallVector<StringRef, 8> Feats;
4283           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4284 
4285           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4286             assert(getTarget().getTriple().isX86() && "Unsupported target");
4287             TA->getX86AddedFeatures(Feats);
4288             llvm::Function *Func = createFunction(CurFD);
4289             Options.emplace_back(Func, Feats, TA->getX86Architecture());
4290           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4291             if (TVA->isDefaultVersion() && IsDefined)
4292               ShouldEmitResolver = true;
4293             llvm::Function *Func = createFunction(CurFD);
4294             char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4295             TVA->getFeatures(Feats, Delim);
4296             Options.emplace_back(Func, Feats);
4297           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4298             if (IsDefined)
4299               ShouldEmitResolver = true;
4300             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4301               if (!TC->isFirstOfVersion(I))
4302                 continue;
4303 
4304               llvm::Function *Func = createFunction(CurFD, I);
4305               Feats.clear();
4306               if (getTarget().getTriple().isX86()) {
4307                 TC->getX86Feature(Feats, I);
4308                 Options.emplace_back(Func, Feats, TC->getX86Architecture(I));
4309               } else {
4310                 char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4311                 TC->getFeatures(Feats, I, Delim);
4312                 Options.emplace_back(Func, Feats);
4313               }
4314             }
4315           } else
4316             llvm_unreachable("unexpected MultiVersionKind");
4317         });
4318 
4319     if (!ShouldEmitResolver)
4320       continue;
4321 
4322     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4323     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4324       ResolverConstant = IFunc->getResolver();
4325       if (FD->isTargetClonesMultiVersion() &&
4326           !getTarget().getTriple().isAArch64()) {
4327         std::string MangledName = getMangledNameImpl(
4328             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4329         if (!GetGlobalValue(MangledName + ".ifunc")) {
4330           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4331           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4332           // In prior versions of Clang, the mangling for ifuncs incorrectly
4333           // included an .ifunc suffix. This alias is generated for backward
4334           // compatibility. It is deprecated, and may be removed in the future.
4335           auto *Alias = llvm::GlobalAlias::create(
4336               DeclTy, 0, getMultiversionLinkage(*this, GD),
4337               MangledName + ".ifunc", IFunc, &getModule());
4338           SetCommonAttributes(FD, Alias);
4339         }
4340       }
4341     }
4342     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4343 
4344     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4345 
4346     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4347       ResolverFunc->setComdat(
4348           getModule().getOrInsertComdat(ResolverFunc->getName()));
4349 
4350     const TargetInfo &TI = getTarget();
4351     llvm::stable_sort(
4352         Options, [&TI](const CodeGenFunction::FMVResolverOption &LHS,
4353                        const CodeGenFunction::FMVResolverOption &RHS) {
4354           return getFMVPriority(TI, LHS) > getFMVPriority(TI, RHS);
4355         });
4356     CodeGenFunction CGF(*this);
4357     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4358   }
4359 
4360   // Ensure that any additions to the deferred decls list caused by emitting a
4361   // variant are emitted.  This can happen when the variant itself is inline and
4362   // calls a function without linkage.
4363   if (!MVFuncsToEmit.empty())
4364     EmitDeferred();
4365 
4366   // Ensure that any additions to the multiversion funcs list from either the
4367   // deferred decls or the multiversion functions themselves are emitted.
4368   if (!MultiVersionFuncs.empty())
4369     emitMultiVersionFunctions();
4370 }
4371 
4372 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4373                                    llvm::Constant *New) {
4374   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4375   New->takeName(Old);
4376   Old->replaceAllUsesWith(New);
4377   Old->eraseFromParent();
4378 }
4379 
4380 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4381   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4382   assert(FD && "Not a FunctionDecl?");
4383   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4384   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4385   assert(DD && "Not a cpu_dispatch Function?");
4386 
4387   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4388   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4389 
4390   StringRef ResolverName = getMangledName(GD);
4391   UpdateMultiVersionNames(GD, FD, ResolverName);
4392 
4393   llvm::Type *ResolverType;
4394   GlobalDecl ResolverGD;
4395   if (getTarget().supportsIFunc()) {
4396     ResolverType = llvm::FunctionType::get(
4397         llvm::PointerType::get(DeclTy,
4398                                getTypes().getTargetAddressSpace(FD->getType())),
4399         false);
4400   }
4401   else {
4402     ResolverType = DeclTy;
4403     ResolverGD = GD;
4404   }
4405 
4406   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4407       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4408   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4409   if (supportsCOMDAT())
4410     ResolverFunc->setComdat(
4411         getModule().getOrInsertComdat(ResolverFunc->getName()));
4412 
4413   SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4414   const TargetInfo &Target = getTarget();
4415   unsigned Index = 0;
4416   for (const IdentifierInfo *II : DD->cpus()) {
4417     // Get the name of the target function so we can look it up/create it.
4418     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4419                               getCPUSpecificMangling(*this, II->getName());
4420 
4421     llvm::Constant *Func = GetGlobalValue(MangledName);
4422 
4423     if (!Func) {
4424       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4425       if (ExistingDecl.getDecl() &&
4426           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4427         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4428         Func = GetGlobalValue(MangledName);
4429       } else {
4430         if (!ExistingDecl.getDecl())
4431           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4432 
4433       Func = GetOrCreateLLVMFunction(
4434           MangledName, DeclTy, ExistingDecl,
4435           /*ForVTable=*/false, /*DontDefer=*/true,
4436           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4437       }
4438     }
4439 
4440     llvm::SmallVector<StringRef, 32> Features;
4441     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4442     llvm::transform(Features, Features.begin(),
4443                     [](StringRef Str) { return Str.substr(1); });
4444     llvm::erase_if(Features, [&Target](StringRef Feat) {
4445       return !Target.validateCpuSupports(Feat);
4446     });
4447     Options.emplace_back(cast<llvm::Function>(Func), Features);
4448     ++Index;
4449   }
4450 
4451   llvm::stable_sort(Options, [](const CodeGenFunction::FMVResolverOption &LHS,
4452                                 const CodeGenFunction::FMVResolverOption &RHS) {
4453     return llvm::X86::getCpuSupportsMask(LHS.Features) >
4454            llvm::X86::getCpuSupportsMask(RHS.Features);
4455   });
4456 
4457   // If the list contains multiple 'default' versions, such as when it contains
4458   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4459   // always run on at least a 'pentium'). We do this by deleting the 'least
4460   // advanced' (read, lowest mangling letter).
4461   while (Options.size() > 1 && llvm::all_of(llvm::X86::getCpuSupportsMask(
4462                                                 (Options.end() - 2)->Features),
4463                                             [](auto X) { return X == 0; })) {
4464     StringRef LHSName = (Options.end() - 2)->Function->getName();
4465     StringRef RHSName = (Options.end() - 1)->Function->getName();
4466     if (LHSName.compare(RHSName) < 0)
4467       Options.erase(Options.end() - 2);
4468     else
4469       Options.erase(Options.end() - 1);
4470   }
4471 
4472   CodeGenFunction CGF(*this);
4473   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4474 
4475   if (getTarget().supportsIFunc()) {
4476     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4477     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4478     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4479 
4480     // Fix up function declarations that were created for cpu_specific before
4481     // cpu_dispatch was known
4482     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4483       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4484                                            ResolverFunc, &getModule());
4485       replaceDeclarationWith(IFunc, GI);
4486       IFunc = GI;
4487     }
4488 
4489     std::string AliasName = getMangledNameImpl(
4490         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4491     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4492     if (!AliasFunc) {
4493       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4494                                            IFunc, &getModule());
4495       SetCommonAttributes(GD, GA);
4496     }
4497   }
4498 }
4499 
4500 /// Adds a declaration to the list of multi version functions if not present.
4501 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4502   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4503   assert(FD && "Not a FunctionDecl?");
4504 
4505   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4506     std::string MangledName =
4507         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4508     if (!DeferredResolversToEmit.insert(MangledName).second)
4509       return;
4510   }
4511   MultiVersionFuncs.push_back(GD);
4512 }
4513 
4514 /// If a dispatcher for the specified mangled name is not in the module, create
4515 /// and return it. The dispatcher is either an llvm Function with the specified
4516 /// type, or a global ifunc.
4517 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4518   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4519   assert(FD && "Not a FunctionDecl?");
4520 
4521   std::string MangledName =
4522       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4523 
4524   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4525   // a separate resolver).
4526   std::string ResolverName = MangledName;
4527   if (getTarget().supportsIFunc()) {
4528     switch (FD->getMultiVersionKind()) {
4529     case MultiVersionKind::None:
4530       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4531     case MultiVersionKind::Target:
4532     case MultiVersionKind::CPUSpecific:
4533     case MultiVersionKind::CPUDispatch:
4534       ResolverName += ".ifunc";
4535       break;
4536     case MultiVersionKind::TargetClones:
4537     case MultiVersionKind::TargetVersion:
4538       break;
4539     }
4540   } else if (FD->isTargetMultiVersion()) {
4541     ResolverName += ".resolver";
4542   }
4543 
4544   bool ShouldReturnIFunc =
4545       getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion();
4546 
4547   // If the resolver has already been created, just return it. This lookup may
4548   // yield a function declaration instead of a resolver on AArch64. That is
4549   // because we didn't know whether a resolver will be generated when we first
4550   // encountered a use of the symbol named after this resolver. Therefore,
4551   // targets which support ifuncs should not return here unless we actually
4552   // found an ifunc.
4553   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4554   if (ResolverGV && (isa<llvm::GlobalIFunc>(ResolverGV) || !ShouldReturnIFunc))
4555     return ResolverGV;
4556 
4557   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4558   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4559 
4560   // The resolver needs to be created. For target and target_clones, defer
4561   // creation until the end of the TU.
4562   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4563     AddDeferredMultiVersionResolverToEmit(GD);
4564 
4565   // For cpu_specific, don't create an ifunc yet because we don't know if the
4566   // cpu_dispatch will be emitted in this translation unit.
4567   if (ShouldReturnIFunc) {
4568     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4569     llvm::Type *ResolverType =
4570         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4571     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4572         MangledName + ".resolver", ResolverType, GlobalDecl{},
4573         /*ForVTable=*/false);
4574     llvm::GlobalIFunc *GIF =
4575         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4576                                   "", Resolver, &getModule());
4577     GIF->setName(ResolverName);
4578     SetCommonAttributes(FD, GIF);
4579     if (ResolverGV)
4580       replaceDeclarationWith(ResolverGV, GIF);
4581     return GIF;
4582   }
4583 
4584   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4585       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4586   assert(isa<llvm::GlobalValue>(Resolver) && !ResolverGV &&
4587          "Resolver should be created for the first time");
4588   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4589   return Resolver;
4590 }
4591 
4592 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4593                                            const llvm::GlobalValue *GV) const {
4594   auto SC = GV->getDLLStorageClass();
4595   if (SC == llvm::GlobalValue::DefaultStorageClass)
4596     return false;
4597   const Decl *MRD = D->getMostRecentDecl();
4598   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4599             !MRD->hasAttr<DLLImportAttr>()) ||
4600            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4601             !MRD->hasAttr<DLLExportAttr>())) &&
4602           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4603 }
4604 
4605 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4606 /// module, create and return an llvm Function with the specified type. If there
4607 /// is something in the module with the specified name, return it potentially
4608 /// bitcasted to the right type.
4609 ///
4610 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4611 /// to set the attributes on the function when it is first created.
4612 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4613     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4614     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4615     ForDefinition_t IsForDefinition) {
4616   const Decl *D = GD.getDecl();
4617 
4618   std::string NameWithoutMultiVersionMangling;
4619   // Any attempts to use a MultiVersion function should result in retrieving
4620   // the iFunc instead. Name Mangling will handle the rest of the changes.
4621   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4622     // For the device mark the function as one that should be emitted.
4623     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4624         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4625         !DontDefer && !IsForDefinition) {
4626       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4627         GlobalDecl GDDef;
4628         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4629           GDDef = GlobalDecl(CD, GD.getCtorType());
4630         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4631           GDDef = GlobalDecl(DD, GD.getDtorType());
4632         else
4633           GDDef = GlobalDecl(FDDef);
4634         EmitGlobal(GDDef);
4635       }
4636     }
4637 
4638     if (FD->isMultiVersion()) {
4639       UpdateMultiVersionNames(GD, FD, MangledName);
4640       if (!IsForDefinition) {
4641         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4642         // function is used. Instead we defer the emission until we see a
4643         // default definition. In the meantime we just reference the symbol
4644         // without FMV mangling (it may or may not be replaced later).
4645         if (getTarget().getTriple().isAArch64()) {
4646           AddDeferredMultiVersionResolverToEmit(GD);
4647           NameWithoutMultiVersionMangling = getMangledNameImpl(
4648               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4649         } else
4650           return GetOrCreateMultiVersionResolver(GD);
4651       }
4652     }
4653   }
4654 
4655   if (!NameWithoutMultiVersionMangling.empty())
4656     MangledName = NameWithoutMultiVersionMangling;
4657 
4658   // Lookup the entry, lazily creating it if necessary.
4659   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4660   if (Entry) {
4661     if (WeakRefReferences.erase(Entry)) {
4662       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4663       if (FD && !FD->hasAttr<WeakAttr>())
4664         Entry->setLinkage(llvm::Function::ExternalLinkage);
4665     }
4666 
4667     // Handle dropped DLL attributes.
4668     if (D && shouldDropDLLAttribute(D, Entry)) {
4669       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4670       setDSOLocal(Entry);
4671     }
4672 
4673     // If there are two attempts to define the same mangled name, issue an
4674     // error.
4675     if (IsForDefinition && !Entry->isDeclaration()) {
4676       GlobalDecl OtherGD;
4677       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4678       // to make sure that we issue an error only once.
4679       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4680           (GD.getCanonicalDecl().getDecl() !=
4681            OtherGD.getCanonicalDecl().getDecl()) &&
4682           DiagnosedConflictingDefinitions.insert(GD).second) {
4683         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4684             << MangledName;
4685         getDiags().Report(OtherGD.getDecl()->getLocation(),
4686                           diag::note_previous_definition);
4687       }
4688     }
4689 
4690     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4691         (Entry->getValueType() == Ty)) {
4692       return Entry;
4693     }
4694 
4695     // Make sure the result is of the correct type.
4696     // (If function is requested for a definition, we always need to create a new
4697     // function, not just return a bitcast.)
4698     if (!IsForDefinition)
4699       return Entry;
4700   }
4701 
4702   // This function doesn't have a complete type (for example, the return
4703   // type is an incomplete struct). Use a fake type instead, and make
4704   // sure not to try to set attributes.
4705   bool IsIncompleteFunction = false;
4706 
4707   llvm::FunctionType *FTy;
4708   if (isa<llvm::FunctionType>(Ty)) {
4709     FTy = cast<llvm::FunctionType>(Ty);
4710   } else {
4711     FTy = llvm::FunctionType::get(VoidTy, false);
4712     IsIncompleteFunction = true;
4713   }
4714 
4715   llvm::Function *F =
4716       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4717                              Entry ? StringRef() : MangledName, &getModule());
4718 
4719   // Store the declaration associated with this function so it is potentially
4720   // updated by further declarations or definitions and emitted at the end.
4721   if (D && D->hasAttr<AnnotateAttr>())
4722     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4723 
4724   // If we already created a function with the same mangled name (but different
4725   // type) before, take its name and add it to the list of functions to be
4726   // replaced with F at the end of CodeGen.
4727   //
4728   // This happens if there is a prototype for a function (e.g. "int f()") and
4729   // then a definition of a different type (e.g. "int f(int x)").
4730   if (Entry) {
4731     F->takeName(Entry);
4732 
4733     // This might be an implementation of a function without a prototype, in
4734     // which case, try to do special replacement of calls which match the new
4735     // prototype.  The really key thing here is that we also potentially drop
4736     // arguments from the call site so as to make a direct call, which makes the
4737     // inliner happier and suppresses a number of optimizer warnings (!) about
4738     // dropping arguments.
4739     if (!Entry->use_empty()) {
4740       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4741       Entry->removeDeadConstantUsers();
4742     }
4743 
4744     addGlobalValReplacement(Entry, F);
4745   }
4746 
4747   assert(F->getName() == MangledName && "name was uniqued!");
4748   if (D)
4749     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4750   if (ExtraAttrs.hasFnAttrs()) {
4751     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4752     F->addFnAttrs(B);
4753   }
4754 
4755   if (!DontDefer) {
4756     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4757     // each other bottoming out with the base dtor.  Therefore we emit non-base
4758     // dtors on usage, even if there is no dtor definition in the TU.
4759     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4760         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4761                                            GD.getDtorType()))
4762       addDeferredDeclToEmit(GD);
4763 
4764     // This is the first use or definition of a mangled name.  If there is a
4765     // deferred decl with this name, remember that we need to emit it at the end
4766     // of the file.
4767     auto DDI = DeferredDecls.find(MangledName);
4768     if (DDI != DeferredDecls.end()) {
4769       // Move the potentially referenced deferred decl to the
4770       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4771       // don't need it anymore).
4772       addDeferredDeclToEmit(DDI->second);
4773       DeferredDecls.erase(DDI);
4774 
4775       // Otherwise, there are cases we have to worry about where we're
4776       // using a declaration for which we must emit a definition but where
4777       // we might not find a top-level definition:
4778       //   - member functions defined inline in their classes
4779       //   - friend functions defined inline in some class
4780       //   - special member functions with implicit definitions
4781       // If we ever change our AST traversal to walk into class methods,
4782       // this will be unnecessary.
4783       //
4784       // We also don't emit a definition for a function if it's going to be an
4785       // entry in a vtable, unless it's already marked as used.
4786     } else if (getLangOpts().CPlusPlus && D) {
4787       // Look for a declaration that's lexically in a record.
4788       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4789            FD = FD->getPreviousDecl()) {
4790         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4791           if (FD->doesThisDeclarationHaveABody()) {
4792             addDeferredDeclToEmit(GD.getWithDecl(FD));
4793             break;
4794           }
4795         }
4796       }
4797     }
4798   }
4799 
4800   // Make sure the result is of the requested type.
4801   if (!IsIncompleteFunction) {
4802     assert(F->getFunctionType() == Ty);
4803     return F;
4804   }
4805 
4806   return F;
4807 }
4808 
4809 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4810 /// non-null, then this function will use the specified type if it has to
4811 /// create it (this occurs when we see a definition of the function).
4812 llvm::Constant *
4813 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4814                                  bool DontDefer,
4815                                  ForDefinition_t IsForDefinition) {
4816   // If there was no specific requested type, just convert it now.
4817   if (!Ty) {
4818     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4819     Ty = getTypes().ConvertType(FD->getType());
4820   }
4821 
4822   // Devirtualized destructor calls may come through here instead of via
4823   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4824   // of the complete destructor when necessary.
4825   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4826     if (getTarget().getCXXABI().isMicrosoft() &&
4827         GD.getDtorType() == Dtor_Complete &&
4828         DD->getParent()->getNumVBases() == 0)
4829       GD = GlobalDecl(DD, Dtor_Base);
4830   }
4831 
4832   StringRef MangledName = getMangledName(GD);
4833   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4834                                     /*IsThunk=*/false, llvm::AttributeList(),
4835                                     IsForDefinition);
4836   // Returns kernel handle for HIP kernel stub function.
4837   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4838       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4839     auto *Handle = getCUDARuntime().getKernelHandle(
4840         cast<llvm::Function>(F->stripPointerCasts()), GD);
4841     if (IsForDefinition)
4842       return F;
4843     return Handle;
4844   }
4845   return F;
4846 }
4847 
4848 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4849   llvm::GlobalValue *F =
4850       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4851 
4852   return llvm::NoCFIValue::get(F);
4853 }
4854 
4855 static const FunctionDecl *
4856 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4857   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4858   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4859 
4860   IdentifierInfo &CII = C.Idents.get(Name);
4861   for (const auto *Result : DC->lookup(&CII))
4862     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4863       return FD;
4864 
4865   if (!C.getLangOpts().CPlusPlus)
4866     return nullptr;
4867 
4868   // Demangle the premangled name from getTerminateFn()
4869   IdentifierInfo &CXXII =
4870       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4871           ? C.Idents.get("terminate")
4872           : C.Idents.get(Name);
4873 
4874   for (const auto &N : {"__cxxabiv1", "std"}) {
4875     IdentifierInfo &NS = C.Idents.get(N);
4876     for (const auto *Result : DC->lookup(&NS)) {
4877       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4878       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4879         for (const auto *Result : LSD->lookup(&NS))
4880           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4881             break;
4882 
4883       if (ND)
4884         for (const auto *Result : ND->lookup(&CXXII))
4885           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4886             return FD;
4887     }
4888   }
4889 
4890   return nullptr;
4891 }
4892 
4893 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local,
4894                                        llvm::Function *F, StringRef Name) {
4895   // In Windows Itanium environments, try to mark runtime functions
4896   // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4897   // will link their standard library statically or dynamically. Marking
4898   // functions imported when they are not imported can cause linker errors
4899   // and warnings.
4900   if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() &&
4901       !CGM.getCodeGenOpts().LTOVisibilityPublicStd) {
4902     const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name);
4903     if (!FD || FD->hasAttr<DLLImportAttr>()) {
4904       F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4905       F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4906     }
4907   }
4908 }
4909 
4910 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(
4911     QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name,
4912     llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) {
4913   if (AssumeConvergent) {
4914     ExtraAttrs =
4915         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4916   }
4917 
4918   QualType FTy = Context.getFunctionType(ReturnTy, ArgTys,
4919                                          FunctionProtoType::ExtProtoInfo());
4920   const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType(
4921       Context.getCanonicalType(FTy).castAs<FunctionProtoType>());
4922   auto *ConvTy = getTypes().GetFunctionType(Info);
4923   llvm::Constant *C = GetOrCreateLLVMFunction(
4924       Name, ConvTy, GlobalDecl(), /*ForVTable=*/false,
4925       /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
4926 
4927   if (auto *F = dyn_cast<llvm::Function>(C)) {
4928     if (F->empty()) {
4929       SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false);
4930       // FIXME: Set calling-conv properly in ExtProtoInfo
4931       F->setCallingConv(getRuntimeCC());
4932       setWindowsItaniumDLLImport(*this, Local, F, Name);
4933       setDSOLocal(F);
4934     }
4935   }
4936   return {ConvTy, C};
4937 }
4938 
4939 /// CreateRuntimeFunction - Create a new runtime function with the specified
4940 /// type and name.
4941 llvm::FunctionCallee
4942 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4943                                      llvm::AttributeList ExtraAttrs, bool Local,
4944                                      bool AssumeConvergent) {
4945   if (AssumeConvergent) {
4946     ExtraAttrs =
4947         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4948   }
4949 
4950   llvm::Constant *C =
4951       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4952                               /*DontDefer=*/false, /*IsThunk=*/false,
4953                               ExtraAttrs);
4954 
4955   if (auto *F = dyn_cast<llvm::Function>(C)) {
4956     if (F->empty()) {
4957       F->setCallingConv(getRuntimeCC());
4958       setWindowsItaniumDLLImport(*this, Local, F, Name);
4959       setDSOLocal(F);
4960       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4961       // of trying to approximate the attributes using the LLVM function
4962       // signature.  The other overload of CreateRuntimeFunction does this; it
4963       // should be used for new code.
4964       markRegisterParameterAttributes(F);
4965     }
4966   }
4967 
4968   return {FTy, C};
4969 }
4970 
4971 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4972 /// create and return an llvm GlobalVariable with the specified type and address
4973 /// space. If there is something in the module with the specified name, return
4974 /// it potentially bitcasted to the right type.
4975 ///
4976 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4977 /// to set the attributes on the global when it is first created.
4978 ///
4979 /// If IsForDefinition is true, it is guaranteed that an actual global with
4980 /// type Ty will be returned, not conversion of a variable with the same
4981 /// mangled name but some other type.
4982 llvm::Constant *
4983 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4984                                      LangAS AddrSpace, const VarDecl *D,
4985                                      ForDefinition_t IsForDefinition) {
4986   // Lookup the entry, lazily creating it if necessary.
4987   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4988   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4989   if (Entry) {
4990     if (WeakRefReferences.erase(Entry)) {
4991       if (D && !D->hasAttr<WeakAttr>())
4992         Entry->setLinkage(llvm::Function::ExternalLinkage);
4993     }
4994 
4995     // Handle dropped DLL attributes.
4996     if (D && shouldDropDLLAttribute(D, Entry))
4997       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4998 
4999     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
5000       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
5001 
5002     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
5003       return Entry;
5004 
5005     // If there are two attempts to define the same mangled name, issue an
5006     // error.
5007     if (IsForDefinition && !Entry->isDeclaration()) {
5008       GlobalDecl OtherGD;
5009       const VarDecl *OtherD;
5010 
5011       // Check that D is not yet in DiagnosedConflictingDefinitions is required
5012       // to make sure that we issue an error only once.
5013       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5014           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5015           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5016           OtherD->hasInit() &&
5017           DiagnosedConflictingDefinitions.insert(D).second) {
5018         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5019             << MangledName;
5020         getDiags().Report(OtherGD.getDecl()->getLocation(),
5021                           diag::note_previous_definition);
5022       }
5023     }
5024 
5025     // Make sure the result is of the correct type.
5026     if (Entry->getType()->getAddressSpace() != TargetAS)
5027       return llvm::ConstantExpr::getAddrSpaceCast(
5028           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5029 
5030     // (If global is requested for a definition, we always need to create a new
5031     // global, not just return a bitcast.)
5032     if (!IsForDefinition)
5033       return Entry;
5034   }
5035 
5036   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5037 
5038   auto *GV = new llvm::GlobalVariable(
5039       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5040       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5041       getContext().getTargetAddressSpace(DAddrSpace));
5042 
5043   // If we already created a global with the same mangled name (but different
5044   // type) before, take its name and remove it from its parent.
5045   if (Entry) {
5046     GV->takeName(Entry);
5047 
5048     if (!Entry->use_empty()) {
5049       Entry->replaceAllUsesWith(GV);
5050     }
5051 
5052     Entry->eraseFromParent();
5053   }
5054 
5055   // This is the first use or definition of a mangled name.  If there is a
5056   // deferred decl with this name, remember that we need to emit it at the end
5057   // of the file.
5058   auto DDI = DeferredDecls.find(MangledName);
5059   if (DDI != DeferredDecls.end()) {
5060     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5061     // list, and remove it from DeferredDecls (since we don't need it anymore).
5062     addDeferredDeclToEmit(DDI->second);
5063     DeferredDecls.erase(DDI);
5064   }
5065 
5066   // Handle things which are present even on external declarations.
5067   if (D) {
5068     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5069       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5070 
5071     // FIXME: This code is overly simple and should be merged with other global
5072     // handling.
5073     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5074 
5075     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5076 
5077     setLinkageForGV(GV, D);
5078 
5079     if (D->getTLSKind()) {
5080       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5081         CXXThreadLocals.push_back(D);
5082       setTLSMode(GV, *D);
5083     }
5084 
5085     setGVProperties(GV, D);
5086 
5087     // If required by the ABI, treat declarations of static data members with
5088     // inline initializers as definitions.
5089     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5090       EmitGlobalVarDefinition(D);
5091     }
5092 
5093     // Emit section information for extern variables.
5094     if (D->hasExternalStorage()) {
5095       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5096         GV->setSection(SA->getName());
5097     }
5098 
5099     // Handle XCore specific ABI requirements.
5100     if (getTriple().getArch() == llvm::Triple::xcore &&
5101         D->getLanguageLinkage() == CLanguageLinkage &&
5102         D->getType().isConstant(Context) &&
5103         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5104       GV->setSection(".cp.rodata");
5105 
5106     // Handle code model attribute
5107     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5108       GV->setCodeModel(CMA->getModel());
5109 
5110     // Check if we a have a const declaration with an initializer, we may be
5111     // able to emit it as available_externally to expose it's value to the
5112     // optimizer.
5113     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5114         D->getType().isConstQualified() && !GV->hasInitializer() &&
5115         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5116       const auto *Record =
5117           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5118       bool HasMutableFields = Record && Record->hasMutableFields();
5119       if (!HasMutableFields) {
5120         const VarDecl *InitDecl;
5121         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5122         if (InitExpr) {
5123           ConstantEmitter emitter(*this);
5124           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5125           if (Init) {
5126             auto *InitType = Init->getType();
5127             if (GV->getValueType() != InitType) {
5128               // The type of the initializer does not match the definition.
5129               // This happens when an initializer has a different type from
5130               // the type of the global (because of padding at the end of a
5131               // structure for instance).
5132               GV->setName(StringRef());
5133               // Make a new global with the correct type, this is now guaranteed
5134               // to work.
5135               auto *NewGV = cast<llvm::GlobalVariable>(
5136                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5137                       ->stripPointerCasts());
5138 
5139               // Erase the old global, since it is no longer used.
5140               GV->eraseFromParent();
5141               GV = NewGV;
5142             } else {
5143               GV->setInitializer(Init);
5144               GV->setConstant(true);
5145               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5146             }
5147             emitter.finalize(GV);
5148           }
5149         }
5150       }
5151     }
5152   }
5153 
5154   if (D &&
5155       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5156     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5157     // External HIP managed variables needed to be recorded for transformation
5158     // in both device and host compilations.
5159     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5160         D->hasExternalStorage())
5161       getCUDARuntime().handleVarRegistration(D, *GV);
5162   }
5163 
5164   if (D)
5165     SanitizerMD->reportGlobal(GV, *D);
5166 
5167   LangAS ExpectedAS =
5168       D ? D->getType().getAddressSpace()
5169         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5170   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5171   if (DAddrSpace != ExpectedAS) {
5172     return getTargetCodeGenInfo().performAddrSpaceCast(
5173         *this, GV, DAddrSpace, ExpectedAS,
5174         llvm::PointerType::get(getLLVMContext(), TargetAS));
5175   }
5176 
5177   return GV;
5178 }
5179 
5180 llvm::Constant *
5181 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5182   const Decl *D = GD.getDecl();
5183 
5184   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5185     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5186                                 /*DontDefer=*/false, IsForDefinition);
5187 
5188   if (isa<CXXMethodDecl>(D)) {
5189     auto FInfo =
5190         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5191     auto Ty = getTypes().GetFunctionType(*FInfo);
5192     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5193                              IsForDefinition);
5194   }
5195 
5196   if (isa<FunctionDecl>(D)) {
5197     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5198     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5199     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5200                              IsForDefinition);
5201   }
5202 
5203   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5204 }
5205 
5206 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5207     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5208     llvm::Align Alignment) {
5209   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5210   llvm::GlobalVariable *OldGV = nullptr;
5211 
5212   if (GV) {
5213     // Check if the variable has the right type.
5214     if (GV->getValueType() == Ty)
5215       return GV;
5216 
5217     // Because C++ name mangling, the only way we can end up with an already
5218     // existing global with the same name is if it has been declared extern "C".
5219     assert(GV->isDeclaration() && "Declaration has wrong type!");
5220     OldGV = GV;
5221   }
5222 
5223   // Create a new variable.
5224   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5225                                 Linkage, nullptr, Name);
5226 
5227   if (OldGV) {
5228     // Replace occurrences of the old variable if needed.
5229     GV->takeName(OldGV);
5230 
5231     if (!OldGV->use_empty()) {
5232       OldGV->replaceAllUsesWith(GV);
5233     }
5234 
5235     OldGV->eraseFromParent();
5236   }
5237 
5238   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5239       !GV->hasAvailableExternallyLinkage())
5240     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5241 
5242   GV->setAlignment(Alignment);
5243 
5244   return GV;
5245 }
5246 
5247 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5248 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5249 /// then it will be created with the specified type instead of whatever the
5250 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5251 /// that an actual global with type Ty will be returned, not conversion of a
5252 /// variable with the same mangled name but some other type.
5253 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5254                                                   llvm::Type *Ty,
5255                                            ForDefinition_t IsForDefinition) {
5256   assert(D->hasGlobalStorage() && "Not a global variable");
5257   QualType ASTTy = D->getType();
5258   if (!Ty)
5259     Ty = getTypes().ConvertTypeForMem(ASTTy);
5260 
5261   StringRef MangledName = getMangledName(D);
5262   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5263                                IsForDefinition);
5264 }
5265 
5266 /// CreateRuntimeVariable - Create a new runtime global variable with the
5267 /// specified type and name.
5268 llvm::Constant *
5269 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5270                                      StringRef Name) {
5271   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5272                                                        : LangAS::Default;
5273   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5274   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5275   return Ret;
5276 }
5277 
5278 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5279   assert(!D->getInit() && "Cannot emit definite definitions here!");
5280 
5281   StringRef MangledName = getMangledName(D);
5282   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5283 
5284   // We already have a definition, not declaration, with the same mangled name.
5285   // Emitting of declaration is not required (and actually overwrites emitted
5286   // definition).
5287   if (GV && !GV->isDeclaration())
5288     return;
5289 
5290   // If we have not seen a reference to this variable yet, place it into the
5291   // deferred declarations table to be emitted if needed later.
5292   if (!MustBeEmitted(D) && !GV) {
5293       DeferredDecls[MangledName] = D;
5294       return;
5295   }
5296 
5297   // The tentative definition is the only definition.
5298   EmitGlobalVarDefinition(D);
5299 }
5300 
5301 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5302   if (auto const *V = dyn_cast<const VarDecl>(D))
5303     EmitExternalVarDeclaration(V);
5304   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5305     EmitExternalFunctionDeclaration(FD);
5306 }
5307 
5308 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5309   return Context.toCharUnitsFromBits(
5310       getDataLayout().getTypeStoreSizeInBits(Ty));
5311 }
5312 
5313 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5314   if (LangOpts.OpenCL) {
5315     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5316     assert(AS == LangAS::opencl_global ||
5317            AS == LangAS::opencl_global_device ||
5318            AS == LangAS::opencl_global_host ||
5319            AS == LangAS::opencl_constant ||
5320            AS == LangAS::opencl_local ||
5321            AS >= LangAS::FirstTargetAddressSpace);
5322     return AS;
5323   }
5324 
5325   if (LangOpts.SYCLIsDevice &&
5326       (!D || D->getType().getAddressSpace() == LangAS::Default))
5327     return LangAS::sycl_global;
5328 
5329   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5330     if (D) {
5331       if (D->hasAttr<CUDAConstantAttr>())
5332         return LangAS::cuda_constant;
5333       if (D->hasAttr<CUDASharedAttr>())
5334         return LangAS::cuda_shared;
5335       if (D->hasAttr<CUDADeviceAttr>())
5336         return LangAS::cuda_device;
5337       if (D->getType().isConstQualified())
5338         return LangAS::cuda_constant;
5339     }
5340     return LangAS::cuda_device;
5341   }
5342 
5343   if (LangOpts.OpenMP) {
5344     LangAS AS;
5345     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5346       return AS;
5347   }
5348   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5349 }
5350 
5351 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5352   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5353   if (LangOpts.OpenCL)
5354     return LangAS::opencl_constant;
5355   if (LangOpts.SYCLIsDevice)
5356     return LangAS::sycl_global;
5357   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5358     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5359     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5360     // with OpVariable instructions with Generic storage class which is not
5361     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5362     // UniformConstant storage class is not viable as pointers to it may not be
5363     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5364     return LangAS::cuda_device;
5365   if (auto AS = getTarget().getConstantAddressSpace())
5366     return *AS;
5367   return LangAS::Default;
5368 }
5369 
5370 // In address space agnostic languages, string literals are in default address
5371 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5372 // emitted in constant address space in LLVM IR. To be consistent with other
5373 // parts of AST, string literal global variables in constant address space
5374 // need to be casted to default address space before being put into address
5375 // map and referenced by other part of CodeGen.
5376 // In OpenCL, string literals are in constant address space in AST, therefore
5377 // they should not be casted to default address space.
5378 static llvm::Constant *
5379 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5380                                        llvm::GlobalVariable *GV) {
5381   llvm::Constant *Cast = GV;
5382   if (!CGM.getLangOpts().OpenCL) {
5383     auto AS = CGM.GetGlobalConstantAddressSpace();
5384     if (AS != LangAS::Default)
5385       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5386           CGM, GV, AS, LangAS::Default,
5387           llvm::PointerType::get(
5388               CGM.getLLVMContext(),
5389               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5390   }
5391   return Cast;
5392 }
5393 
5394 template<typename SomeDecl>
5395 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5396                                                llvm::GlobalValue *GV) {
5397   if (!getLangOpts().CPlusPlus)
5398     return;
5399 
5400   // Must have 'used' attribute, or else inline assembly can't rely on
5401   // the name existing.
5402   if (!D->template hasAttr<UsedAttr>())
5403     return;
5404 
5405   // Must have internal linkage and an ordinary name.
5406   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5407     return;
5408 
5409   // Must be in an extern "C" context. Entities declared directly within
5410   // a record are not extern "C" even if the record is in such a context.
5411   const SomeDecl *First = D->getFirstDecl();
5412   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5413     return;
5414 
5415   // OK, this is an internal linkage entity inside an extern "C" linkage
5416   // specification. Make a note of that so we can give it the "expected"
5417   // mangled name if nothing else is using that name.
5418   std::pair<StaticExternCMap::iterator, bool> R =
5419       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5420 
5421   // If we have multiple internal linkage entities with the same name
5422   // in extern "C" regions, none of them gets that name.
5423   if (!R.second)
5424     R.first->second = nullptr;
5425 }
5426 
5427 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5428   if (!CGM.supportsCOMDAT())
5429     return false;
5430 
5431   if (D.hasAttr<SelectAnyAttr>())
5432     return true;
5433 
5434   GVALinkage Linkage;
5435   if (auto *VD = dyn_cast<VarDecl>(&D))
5436     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5437   else
5438     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5439 
5440   switch (Linkage) {
5441   case GVA_Internal:
5442   case GVA_AvailableExternally:
5443   case GVA_StrongExternal:
5444     return false;
5445   case GVA_DiscardableODR:
5446   case GVA_StrongODR:
5447     return true;
5448   }
5449   llvm_unreachable("No such linkage");
5450 }
5451 
5452 bool CodeGenModule::supportsCOMDAT() const {
5453   return getTriple().supportsCOMDAT();
5454 }
5455 
5456 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5457                                           llvm::GlobalObject &GO) {
5458   if (!shouldBeInCOMDAT(*this, D))
5459     return;
5460   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5461 }
5462 
5463 const ABIInfo &CodeGenModule::getABIInfo() {
5464   return getTargetCodeGenInfo().getABIInfo();
5465 }
5466 
5467 /// Pass IsTentative as true if you want to create a tentative definition.
5468 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5469                                             bool IsTentative) {
5470   // OpenCL global variables of sampler type are translated to function calls,
5471   // therefore no need to be translated.
5472   QualType ASTTy = D->getType();
5473   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5474     return;
5475 
5476   // If this is OpenMP device, check if it is legal to emit this global
5477   // normally.
5478   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5479       OpenMPRuntime->emitTargetGlobalVariable(D))
5480     return;
5481 
5482   llvm::TrackingVH<llvm::Constant> Init;
5483   bool NeedsGlobalCtor = false;
5484   // Whether the definition of the variable is available externally.
5485   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5486   // since this is the job for its original source.
5487   bool IsDefinitionAvailableExternally =
5488       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5489   bool NeedsGlobalDtor =
5490       !IsDefinitionAvailableExternally &&
5491       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5492 
5493   // It is helpless to emit the definition for an available_externally variable
5494   // which can't be marked as const.
5495   // We don't need to check if it needs global ctor or dtor. See the above
5496   // comment for ideas.
5497   if (IsDefinitionAvailableExternally &&
5498       (!D->hasConstantInitialization() ||
5499        // TODO: Update this when we have interface to check constexpr
5500        // destructor.
5501        D->needsDestruction(getContext()) ||
5502        !D->getType().isConstantStorage(getContext(), true, true)))
5503     return;
5504 
5505   const VarDecl *InitDecl;
5506   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5507 
5508   std::optional<ConstantEmitter> emitter;
5509 
5510   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5511   // as part of their declaration."  Sema has already checked for
5512   // error cases, so we just need to set Init to UndefValue.
5513   bool IsCUDASharedVar =
5514       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5515   // Shadows of initialized device-side global variables are also left
5516   // undefined.
5517   // Managed Variables should be initialized on both host side and device side.
5518   bool IsCUDAShadowVar =
5519       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5520       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5521        D->hasAttr<CUDASharedAttr>());
5522   bool IsCUDADeviceShadowVar =
5523       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5524       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5525        D->getType()->isCUDADeviceBuiltinTextureType());
5526   if (getLangOpts().CUDA &&
5527       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5528     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5529   else if (D->hasAttr<LoaderUninitializedAttr>())
5530     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5531   else if (!InitExpr) {
5532     // This is a tentative definition; tentative definitions are
5533     // implicitly initialized with { 0 }.
5534     //
5535     // Note that tentative definitions are only emitted at the end of
5536     // a translation unit, so they should never have incomplete
5537     // type. In addition, EmitTentativeDefinition makes sure that we
5538     // never attempt to emit a tentative definition if a real one
5539     // exists. A use may still exists, however, so we still may need
5540     // to do a RAUW.
5541     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5542     Init = EmitNullConstant(D->getType());
5543   } else {
5544     initializedGlobalDecl = GlobalDecl(D);
5545     emitter.emplace(*this);
5546     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5547     if (!Initializer) {
5548       QualType T = InitExpr->getType();
5549       if (D->getType()->isReferenceType())
5550         T = D->getType();
5551 
5552       if (getLangOpts().CPlusPlus) {
5553         Init = EmitNullConstant(T);
5554         if (!IsDefinitionAvailableExternally)
5555           NeedsGlobalCtor = true;
5556         if (InitDecl->hasFlexibleArrayInit(getContext())) {
5557           ErrorUnsupported(D, "flexible array initializer");
5558           // We cannot create ctor for flexible array initializer
5559           NeedsGlobalCtor = false;
5560         }
5561       } else {
5562         ErrorUnsupported(D, "static initializer");
5563         Init = llvm::PoisonValue::get(getTypes().ConvertType(T));
5564       }
5565     } else {
5566       Init = Initializer;
5567       // We don't need an initializer, so remove the entry for the delayed
5568       // initializer position (just in case this entry was delayed) if we
5569       // also don't need to register a destructor.
5570       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5571         DelayedCXXInitPosition.erase(D);
5572 
5573 #ifndef NDEBUG
5574       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5575                           InitDecl->getFlexibleArrayInitChars(getContext());
5576       CharUnits CstSize = CharUnits::fromQuantity(
5577           getDataLayout().getTypeAllocSize(Init->getType()));
5578       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5579 #endif
5580     }
5581   }
5582 
5583   llvm::Type* InitType = Init->getType();
5584   llvm::Constant *Entry =
5585       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5586 
5587   // Strip off pointer casts if we got them.
5588   Entry = Entry->stripPointerCasts();
5589 
5590   // Entry is now either a Function or GlobalVariable.
5591   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5592 
5593   // We have a definition after a declaration with the wrong type.
5594   // We must make a new GlobalVariable* and update everything that used OldGV
5595   // (a declaration or tentative definition) with the new GlobalVariable*
5596   // (which will be a definition).
5597   //
5598   // This happens if there is a prototype for a global (e.g.
5599   // "extern int x[];") and then a definition of a different type (e.g.
5600   // "int x[10];"). This also happens when an initializer has a different type
5601   // from the type of the global (this happens with unions).
5602   if (!GV || GV->getValueType() != InitType ||
5603       GV->getType()->getAddressSpace() !=
5604           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5605 
5606     // Move the old entry aside so that we'll create a new one.
5607     Entry->setName(StringRef());
5608 
5609     // Make a new global with the correct type, this is now guaranteed to work.
5610     GV = cast<llvm::GlobalVariable>(
5611         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5612             ->stripPointerCasts());
5613 
5614     // Replace all uses of the old global with the new global
5615     llvm::Constant *NewPtrForOldDecl =
5616         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5617                                                              Entry->getType());
5618     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5619 
5620     // Erase the old global, since it is no longer used.
5621     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5622   }
5623 
5624   MaybeHandleStaticInExternC(D, GV);
5625 
5626   if (D->hasAttr<AnnotateAttr>())
5627     AddGlobalAnnotations(D, GV);
5628 
5629   // Set the llvm linkage type as appropriate.
5630   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5631 
5632   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5633   // the device. [...]"
5634   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5635   // __device__, declares a variable that: [...]
5636   // Is accessible from all the threads within the grid and from the host
5637   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5638   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5639   if (LangOpts.CUDA) {
5640     if (LangOpts.CUDAIsDevice) {
5641       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5642           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5643            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5644            D->getType()->isCUDADeviceBuiltinTextureType()))
5645         GV->setExternallyInitialized(true);
5646     } else {
5647       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5648     }
5649     getCUDARuntime().handleVarRegistration(D, *GV);
5650   }
5651 
5652   if (LangOpts.HLSL)
5653     getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5654 
5655   GV->setInitializer(Init);
5656   if (emitter)
5657     emitter->finalize(GV);
5658 
5659   // If it is safe to mark the global 'constant', do so now.
5660   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5661                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5662                    D->getType().isConstantStorage(getContext(), true, true)));
5663 
5664   // If it is in a read-only section, mark it 'constant'.
5665   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5666     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5667     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5668       GV->setConstant(true);
5669   }
5670 
5671   CharUnits AlignVal = getContext().getDeclAlign(D);
5672   // Check for alignment specifed in an 'omp allocate' directive.
5673   if (std::optional<CharUnits> AlignValFromAllocate =
5674           getOMPAllocateAlignment(D))
5675     AlignVal = *AlignValFromAllocate;
5676   GV->setAlignment(AlignVal.getAsAlign());
5677 
5678   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5679   // function is only defined alongside the variable, not also alongside
5680   // callers. Normally, all accesses to a thread_local go through the
5681   // thread-wrapper in order to ensure initialization has occurred, underlying
5682   // variable will never be used other than the thread-wrapper, so it can be
5683   // converted to internal linkage.
5684   //
5685   // However, if the variable has the 'constinit' attribute, it _can_ be
5686   // referenced directly, without calling the thread-wrapper, so the linkage
5687   // must not be changed.
5688   //
5689   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5690   // weak or linkonce, the de-duplication semantics are important to preserve,
5691   // so we don't change the linkage.
5692   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5693       Linkage == llvm::GlobalValue::ExternalLinkage &&
5694       Context.getTargetInfo().getTriple().isOSDarwin() &&
5695       !D->hasAttr<ConstInitAttr>())
5696     Linkage = llvm::GlobalValue::InternalLinkage;
5697 
5698   GV->setLinkage(Linkage);
5699   if (D->hasAttr<DLLImportAttr>())
5700     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5701   else if (D->hasAttr<DLLExportAttr>())
5702     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5703   else
5704     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5705 
5706   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5707     // common vars aren't constant even if declared const.
5708     GV->setConstant(false);
5709     // Tentative definition of global variables may be initialized with
5710     // non-zero null pointers. In this case they should have weak linkage
5711     // since common linkage must have zero initializer and must not have
5712     // explicit section therefore cannot have non-zero initial value.
5713     if (!GV->getInitializer()->isNullValue())
5714       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5715   }
5716 
5717   setNonAliasAttributes(D, GV);
5718 
5719   if (D->getTLSKind() && !GV->isThreadLocal()) {
5720     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5721       CXXThreadLocals.push_back(D);
5722     setTLSMode(GV, *D);
5723   }
5724 
5725   maybeSetTrivialComdat(*D, *GV);
5726 
5727   // Emit the initializer function if necessary.
5728   if (NeedsGlobalCtor || NeedsGlobalDtor)
5729     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5730 
5731   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5732 
5733   // Emit global variable debug information.
5734   if (CGDebugInfo *DI = getModuleDebugInfo())
5735     if (getCodeGenOpts().hasReducedDebugInfo())
5736       DI->EmitGlobalVariable(GV, D);
5737 }
5738 
5739 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5740   if (CGDebugInfo *DI = getModuleDebugInfo())
5741     if (getCodeGenOpts().hasReducedDebugInfo()) {
5742       QualType ASTTy = D->getType();
5743       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5744       llvm::Constant *GV =
5745           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5746       DI->EmitExternalVariable(
5747           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5748     }
5749 }
5750 
5751 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5752   if (CGDebugInfo *DI = getModuleDebugInfo())
5753     if (getCodeGenOpts().hasReducedDebugInfo()) {
5754       auto *Ty = getTypes().ConvertType(FD->getType());
5755       StringRef MangledName = getMangledName(FD);
5756       auto *Fn = cast<llvm::Function>(
5757           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5758       if (!Fn->getSubprogram())
5759         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5760     }
5761 }
5762 
5763 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5764                                       CodeGenModule &CGM, const VarDecl *D,
5765                                       bool NoCommon) {
5766   // Don't give variables common linkage if -fno-common was specified unless it
5767   // was overridden by a NoCommon attribute.
5768   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5769     return true;
5770 
5771   // C11 6.9.2/2:
5772   //   A declaration of an identifier for an object that has file scope without
5773   //   an initializer, and without a storage-class specifier or with the
5774   //   storage-class specifier static, constitutes a tentative definition.
5775   if (D->getInit() || D->hasExternalStorage())
5776     return true;
5777 
5778   // A variable cannot be both common and exist in a section.
5779   if (D->hasAttr<SectionAttr>())
5780     return true;
5781 
5782   // A variable cannot be both common and exist in a section.
5783   // We don't try to determine which is the right section in the front-end.
5784   // If no specialized section name is applicable, it will resort to default.
5785   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5786       D->hasAttr<PragmaClangDataSectionAttr>() ||
5787       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5788       D->hasAttr<PragmaClangRodataSectionAttr>())
5789     return true;
5790 
5791   // Thread local vars aren't considered common linkage.
5792   if (D->getTLSKind())
5793     return true;
5794 
5795   // Tentative definitions marked with WeakImportAttr are true definitions.
5796   if (D->hasAttr<WeakImportAttr>())
5797     return true;
5798 
5799   // A variable cannot be both common and exist in a comdat.
5800   if (shouldBeInCOMDAT(CGM, *D))
5801     return true;
5802 
5803   // Declarations with a required alignment do not have common linkage in MSVC
5804   // mode.
5805   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5806     if (D->hasAttr<AlignedAttr>())
5807       return true;
5808     QualType VarType = D->getType();
5809     if (Context.isAlignmentRequired(VarType))
5810       return true;
5811 
5812     if (const auto *RT = VarType->getAs<RecordType>()) {
5813       const RecordDecl *RD = RT->getDecl();
5814       for (const FieldDecl *FD : RD->fields()) {
5815         if (FD->isBitField())
5816           continue;
5817         if (FD->hasAttr<AlignedAttr>())
5818           return true;
5819         if (Context.isAlignmentRequired(FD->getType()))
5820           return true;
5821       }
5822     }
5823   }
5824 
5825   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5826   // common symbols, so symbols with greater alignment requirements cannot be
5827   // common.
5828   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5829   // alignments for common symbols via the aligncomm directive, so this
5830   // restriction only applies to MSVC environments.
5831   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5832       Context.getTypeAlignIfKnown(D->getType()) >
5833           Context.toBits(CharUnits::fromQuantity(32)))
5834     return true;
5835 
5836   return false;
5837 }
5838 
5839 llvm::GlobalValue::LinkageTypes
5840 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5841                                            GVALinkage Linkage) {
5842   if (Linkage == GVA_Internal)
5843     return llvm::Function::InternalLinkage;
5844 
5845   if (D->hasAttr<WeakAttr>())
5846     return llvm::GlobalVariable::WeakAnyLinkage;
5847 
5848   if (const auto *FD = D->getAsFunction())
5849     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5850       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5851 
5852   // We are guaranteed to have a strong definition somewhere else,
5853   // so we can use available_externally linkage.
5854   if (Linkage == GVA_AvailableExternally)
5855     return llvm::GlobalValue::AvailableExternallyLinkage;
5856 
5857   // Note that Apple's kernel linker doesn't support symbol
5858   // coalescing, so we need to avoid linkonce and weak linkages there.
5859   // Normally, this means we just map to internal, but for explicit
5860   // instantiations we'll map to external.
5861 
5862   // In C++, the compiler has to emit a definition in every translation unit
5863   // that references the function.  We should use linkonce_odr because
5864   // a) if all references in this translation unit are optimized away, we
5865   // don't need to codegen it.  b) if the function persists, it needs to be
5866   // merged with other definitions. c) C++ has the ODR, so we know the
5867   // definition is dependable.
5868   if (Linkage == GVA_DiscardableODR)
5869     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5870                                             : llvm::Function::InternalLinkage;
5871 
5872   // An explicit instantiation of a template has weak linkage, since
5873   // explicit instantiations can occur in multiple translation units
5874   // and must all be equivalent. However, we are not allowed to
5875   // throw away these explicit instantiations.
5876   //
5877   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5878   // so say that CUDA templates are either external (for kernels) or internal.
5879   // This lets llvm perform aggressive inter-procedural optimizations. For
5880   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5881   // therefore we need to follow the normal linkage paradigm.
5882   if (Linkage == GVA_StrongODR) {
5883     if (getLangOpts().AppleKext)
5884       return llvm::Function::ExternalLinkage;
5885     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5886         !getLangOpts().GPURelocatableDeviceCode)
5887       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5888                                           : llvm::Function::InternalLinkage;
5889     return llvm::Function::WeakODRLinkage;
5890   }
5891 
5892   // C++ doesn't have tentative definitions and thus cannot have common
5893   // linkage.
5894   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5895       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5896                                  CodeGenOpts.NoCommon))
5897     return llvm::GlobalVariable::CommonLinkage;
5898 
5899   // selectany symbols are externally visible, so use weak instead of
5900   // linkonce.  MSVC optimizes away references to const selectany globals, so
5901   // all definitions should be the same and ODR linkage should be used.
5902   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5903   if (D->hasAttr<SelectAnyAttr>())
5904     return llvm::GlobalVariable::WeakODRLinkage;
5905 
5906   // Otherwise, we have strong external linkage.
5907   assert(Linkage == GVA_StrongExternal);
5908   return llvm::GlobalVariable::ExternalLinkage;
5909 }
5910 
5911 llvm::GlobalValue::LinkageTypes
5912 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5913   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5914   return getLLVMLinkageForDeclarator(VD, Linkage);
5915 }
5916 
5917 /// Replace the uses of a function that was declared with a non-proto type.
5918 /// We want to silently drop extra arguments from call sites
5919 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5920                                           llvm::Function *newFn) {
5921   // Fast path.
5922   if (old->use_empty())
5923     return;
5924 
5925   llvm::Type *newRetTy = newFn->getReturnType();
5926   SmallVector<llvm::Value *, 4> newArgs;
5927 
5928   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5929 
5930   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5931        ui != ue; ui++) {
5932     llvm::User *user = ui->getUser();
5933 
5934     // Recognize and replace uses of bitcasts.  Most calls to
5935     // unprototyped functions will use bitcasts.
5936     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5937       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5938         replaceUsesOfNonProtoConstant(bitcast, newFn);
5939       continue;
5940     }
5941 
5942     // Recognize calls to the function.
5943     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5944     if (!callSite)
5945       continue;
5946     if (!callSite->isCallee(&*ui))
5947       continue;
5948 
5949     // If the return types don't match exactly, then we can't
5950     // transform this call unless it's dead.
5951     if (callSite->getType() != newRetTy && !callSite->use_empty())
5952       continue;
5953 
5954     // Get the call site's attribute list.
5955     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5956     llvm::AttributeList oldAttrs = callSite->getAttributes();
5957 
5958     // If the function was passed too few arguments, don't transform.
5959     unsigned newNumArgs = newFn->arg_size();
5960     if (callSite->arg_size() < newNumArgs)
5961       continue;
5962 
5963     // If extra arguments were passed, we silently drop them.
5964     // If any of the types mismatch, we don't transform.
5965     unsigned argNo = 0;
5966     bool dontTransform = false;
5967     for (llvm::Argument &A : newFn->args()) {
5968       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5969         dontTransform = true;
5970         break;
5971       }
5972 
5973       // Add any parameter attributes.
5974       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5975       argNo++;
5976     }
5977     if (dontTransform)
5978       continue;
5979 
5980     // Okay, we can transform this.  Create the new call instruction and copy
5981     // over the required information.
5982     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5983 
5984     // Copy over any operand bundles.
5985     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5986     callSite->getOperandBundlesAsDefs(newBundles);
5987 
5988     llvm::CallBase *newCall;
5989     if (isa<llvm::CallInst>(callSite)) {
5990       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
5991                                        callSite->getIterator());
5992     } else {
5993       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5994       newCall = llvm::InvokeInst::Create(
5995           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
5996           newArgs, newBundles, "", callSite->getIterator());
5997     }
5998     newArgs.clear(); // for the next iteration
5999 
6000     if (!newCall->getType()->isVoidTy())
6001       newCall->takeName(callSite);
6002     newCall->setAttributes(
6003         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
6004                                  oldAttrs.getRetAttrs(), newArgAttrs));
6005     newCall->setCallingConv(callSite->getCallingConv());
6006 
6007     // Finally, remove the old call, replacing any uses with the new one.
6008     if (!callSite->use_empty())
6009       callSite->replaceAllUsesWith(newCall);
6010 
6011     // Copy debug location attached to CI.
6012     if (callSite->getDebugLoc())
6013       newCall->setDebugLoc(callSite->getDebugLoc());
6014 
6015     callSitesToBeRemovedFromParent.push_back(callSite);
6016   }
6017 
6018   for (auto *callSite : callSitesToBeRemovedFromParent) {
6019     callSite->eraseFromParent();
6020   }
6021 }
6022 
6023 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6024 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6025 /// existing call uses of the old function in the module, this adjusts them to
6026 /// call the new function directly.
6027 ///
6028 /// This is not just a cleanup: the always_inline pass requires direct calls to
6029 /// functions to be able to inline them.  If there is a bitcast in the way, it
6030 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6031 /// run at -O0.
6032 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6033                                                       llvm::Function *NewFn) {
6034   // If we're redefining a global as a function, don't transform it.
6035   if (!isa<llvm::Function>(Old)) return;
6036 
6037   replaceUsesOfNonProtoConstant(Old, NewFn);
6038 }
6039 
6040 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6041   auto DK = VD->isThisDeclarationADefinition();
6042   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6043       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6044     return;
6045 
6046   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6047   // If we have a definition, this might be a deferred decl. If the
6048   // instantiation is explicit, make sure we emit it at the end.
6049   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6050     GetAddrOfGlobalVar(VD);
6051 
6052   EmitTopLevelDecl(VD);
6053 }
6054 
6055 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6056                                                  llvm::GlobalValue *GV) {
6057   const auto *D = cast<FunctionDecl>(GD.getDecl());
6058 
6059   // Compute the function info and LLVM type.
6060   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6061   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6062 
6063   // Get or create the prototype for the function.
6064   if (!GV || (GV->getValueType() != Ty))
6065     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6066                                                    /*DontDefer=*/true,
6067                                                    ForDefinition));
6068 
6069   // Already emitted.
6070   if (!GV->isDeclaration())
6071     return;
6072 
6073   // We need to set linkage and visibility on the function before
6074   // generating code for it because various parts of IR generation
6075   // want to propagate this information down (e.g. to local static
6076   // declarations).
6077   auto *Fn = cast<llvm::Function>(GV);
6078   setFunctionLinkage(GD, Fn);
6079 
6080   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6081   setGVProperties(Fn, GD);
6082 
6083   MaybeHandleStaticInExternC(D, Fn);
6084 
6085   maybeSetTrivialComdat(*D, *Fn);
6086 
6087   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6088 
6089   setNonAliasAttributes(GD, Fn);
6090   SetLLVMFunctionAttributesForDefinition(D, Fn);
6091 
6092   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6093     AddGlobalCtor(Fn, CA->getPriority());
6094   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6095     AddGlobalDtor(Fn, DA->getPriority(), true);
6096   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6097     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6098 }
6099 
6100 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6101   const auto *D = cast<ValueDecl>(GD.getDecl());
6102   const AliasAttr *AA = D->getAttr<AliasAttr>();
6103   assert(AA && "Not an alias?");
6104 
6105   StringRef MangledName = getMangledName(GD);
6106 
6107   if (AA->getAliasee() == MangledName) {
6108     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6109     return;
6110   }
6111 
6112   // If there is a definition in the module, then it wins over the alias.
6113   // This is dubious, but allow it to be safe.  Just ignore the alias.
6114   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6115   if (Entry && !Entry->isDeclaration())
6116     return;
6117 
6118   Aliases.push_back(GD);
6119 
6120   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6121 
6122   // Create a reference to the named value.  This ensures that it is emitted
6123   // if a deferred decl.
6124   llvm::Constant *Aliasee;
6125   llvm::GlobalValue::LinkageTypes LT;
6126   if (isa<llvm::FunctionType>(DeclTy)) {
6127     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6128                                       /*ForVTable=*/false);
6129     LT = getFunctionLinkage(GD);
6130   } else {
6131     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6132                                     /*D=*/nullptr);
6133     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6134       LT = getLLVMLinkageVarDefinition(VD);
6135     else
6136       LT = getFunctionLinkage(GD);
6137   }
6138 
6139   // Create the new alias itself, but don't set a name yet.
6140   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6141   auto *GA =
6142       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6143 
6144   if (Entry) {
6145     if (GA->getAliasee() == Entry) {
6146       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6147       return;
6148     }
6149 
6150     assert(Entry->isDeclaration());
6151 
6152     // If there is a declaration in the module, then we had an extern followed
6153     // by the alias, as in:
6154     //   extern int test6();
6155     //   ...
6156     //   int test6() __attribute__((alias("test7")));
6157     //
6158     // Remove it and replace uses of it with the alias.
6159     GA->takeName(Entry);
6160 
6161     Entry->replaceAllUsesWith(GA);
6162     Entry->eraseFromParent();
6163   } else {
6164     GA->setName(MangledName);
6165   }
6166 
6167   // Set attributes which are particular to an alias; this is a
6168   // specialization of the attributes which may be set on a global
6169   // variable/function.
6170   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6171       D->isWeakImported()) {
6172     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6173   }
6174 
6175   if (const auto *VD = dyn_cast<VarDecl>(D))
6176     if (VD->getTLSKind())
6177       setTLSMode(GA, *VD);
6178 
6179   SetCommonAttributes(GD, GA);
6180 
6181   // Emit global alias debug information.
6182   if (isa<VarDecl>(D))
6183     if (CGDebugInfo *DI = getModuleDebugInfo())
6184       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6185 }
6186 
6187 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6188   const auto *D = cast<ValueDecl>(GD.getDecl());
6189   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6190   assert(IFA && "Not an ifunc?");
6191 
6192   StringRef MangledName = getMangledName(GD);
6193 
6194   if (IFA->getResolver() == MangledName) {
6195     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6196     return;
6197   }
6198 
6199   // Report an error if some definition overrides ifunc.
6200   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6201   if (Entry && !Entry->isDeclaration()) {
6202     GlobalDecl OtherGD;
6203     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6204         DiagnosedConflictingDefinitions.insert(GD).second) {
6205       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6206           << MangledName;
6207       Diags.Report(OtherGD.getDecl()->getLocation(),
6208                    diag::note_previous_definition);
6209     }
6210     return;
6211   }
6212 
6213   Aliases.push_back(GD);
6214 
6215   // The resolver might not be visited yet. Specify a dummy non-function type to
6216   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6217   // was emitted) or the whole function will be replaced (if the resolver has
6218   // not been emitted).
6219   llvm::Constant *Resolver =
6220       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6221                               /*ForVTable=*/false);
6222   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6223   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6224   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6225       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6226   if (Entry) {
6227     if (GIF->getResolver() == Entry) {
6228       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6229       return;
6230     }
6231     assert(Entry->isDeclaration());
6232 
6233     // If there is a declaration in the module, then we had an extern followed
6234     // by the ifunc, as in:
6235     //   extern int test();
6236     //   ...
6237     //   int test() __attribute__((ifunc("resolver")));
6238     //
6239     // Remove it and replace uses of it with the ifunc.
6240     GIF->takeName(Entry);
6241 
6242     Entry->replaceAllUsesWith(GIF);
6243     Entry->eraseFromParent();
6244   } else
6245     GIF->setName(MangledName);
6246   SetCommonAttributes(GD, GIF);
6247 }
6248 
6249 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6250                                             ArrayRef<llvm::Type*> Tys) {
6251   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6252                                                  (llvm::Intrinsic::ID)IID, Tys);
6253 }
6254 
6255 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6256 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6257                          const StringLiteral *Literal, bool TargetIsLSB,
6258                          bool &IsUTF16, unsigned &StringLength) {
6259   StringRef String = Literal->getString();
6260   unsigned NumBytes = String.size();
6261 
6262   // Check for simple case.
6263   if (!Literal->containsNonAsciiOrNull()) {
6264     StringLength = NumBytes;
6265     return *Map.insert(std::make_pair(String, nullptr)).first;
6266   }
6267 
6268   // Otherwise, convert the UTF8 literals into a string of shorts.
6269   IsUTF16 = true;
6270 
6271   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6272   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6273   llvm::UTF16 *ToPtr = &ToBuf[0];
6274 
6275   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6276                                  ToPtr + NumBytes, llvm::strictConversion);
6277 
6278   // ConvertUTF8toUTF16 returns the length in ToPtr.
6279   StringLength = ToPtr - &ToBuf[0];
6280 
6281   // Add an explicit null.
6282   *ToPtr = 0;
6283   return *Map.insert(std::make_pair(
6284                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6285                                    (StringLength + 1) * 2),
6286                          nullptr)).first;
6287 }
6288 
6289 ConstantAddress
6290 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6291   unsigned StringLength = 0;
6292   bool isUTF16 = false;
6293   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6294       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6295                                getDataLayout().isLittleEndian(), isUTF16,
6296                                StringLength);
6297 
6298   if (auto *C = Entry.second)
6299     return ConstantAddress(
6300         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6301 
6302   const ASTContext &Context = getContext();
6303   const llvm::Triple &Triple = getTriple();
6304 
6305   const auto CFRuntime = getLangOpts().CFRuntime;
6306   const bool IsSwiftABI =
6307       static_cast<unsigned>(CFRuntime) >=
6308       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6309   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6310 
6311   // If we don't already have it, get __CFConstantStringClassReference.
6312   if (!CFConstantStringClassRef) {
6313     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6314     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6315     Ty = llvm::ArrayType::get(Ty, 0);
6316 
6317     switch (CFRuntime) {
6318     default: break;
6319     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6320     case LangOptions::CoreFoundationABI::Swift5_0:
6321       CFConstantStringClassName =
6322           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6323                               : "$s10Foundation19_NSCFConstantStringCN";
6324       Ty = IntPtrTy;
6325       break;
6326     case LangOptions::CoreFoundationABI::Swift4_2:
6327       CFConstantStringClassName =
6328           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6329                               : "$S10Foundation19_NSCFConstantStringCN";
6330       Ty = IntPtrTy;
6331       break;
6332     case LangOptions::CoreFoundationABI::Swift4_1:
6333       CFConstantStringClassName =
6334           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6335                               : "__T010Foundation19_NSCFConstantStringCN";
6336       Ty = IntPtrTy;
6337       break;
6338     }
6339 
6340     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6341 
6342     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6343       llvm::GlobalValue *GV = nullptr;
6344 
6345       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6346         IdentifierInfo &II = Context.Idents.get(GV->getName());
6347         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6348         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6349 
6350         const VarDecl *VD = nullptr;
6351         for (const auto *Result : DC->lookup(&II))
6352           if ((VD = dyn_cast<VarDecl>(Result)))
6353             break;
6354 
6355         if (Triple.isOSBinFormatELF()) {
6356           if (!VD)
6357             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6358         } else {
6359           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6360           if (!VD || !VD->hasAttr<DLLExportAttr>())
6361             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6362           else
6363             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6364         }
6365 
6366         setDSOLocal(GV);
6367       }
6368     }
6369 
6370     // Decay array -> ptr
6371     CFConstantStringClassRef =
6372         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6373   }
6374 
6375   QualType CFTy = Context.getCFConstantStringType();
6376 
6377   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6378 
6379   ConstantInitBuilder Builder(*this);
6380   auto Fields = Builder.beginStruct(STy);
6381 
6382   // Class pointer.
6383   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6384 
6385   // Flags.
6386   if (IsSwiftABI) {
6387     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6388     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6389   } else {
6390     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6391   }
6392 
6393   // String pointer.
6394   llvm::Constant *C = nullptr;
6395   if (isUTF16) {
6396     auto Arr = llvm::ArrayRef(
6397         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6398         Entry.first().size() / 2);
6399     C = llvm::ConstantDataArray::get(VMContext, Arr);
6400   } else {
6401     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6402   }
6403 
6404   // Note: -fwritable-strings doesn't make the backing store strings of
6405   // CFStrings writable.
6406   auto *GV =
6407       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6408                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6409   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6410   // Don't enforce the target's minimum global alignment, since the only use
6411   // of the string is via this class initializer.
6412   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6413                             : Context.getTypeAlignInChars(Context.CharTy);
6414   GV->setAlignment(Align.getAsAlign());
6415 
6416   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6417   // Without it LLVM can merge the string with a non unnamed_addr one during
6418   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6419   if (Triple.isOSBinFormatMachO())
6420     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6421                            : "__TEXT,__cstring,cstring_literals");
6422   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6423   // the static linker to adjust permissions to read-only later on.
6424   else if (Triple.isOSBinFormatELF())
6425     GV->setSection(".rodata");
6426 
6427   // String.
6428   Fields.add(GV);
6429 
6430   // String length.
6431   llvm::IntegerType *LengthTy =
6432       llvm::IntegerType::get(getModule().getContext(),
6433                              Context.getTargetInfo().getLongWidth());
6434   if (IsSwiftABI) {
6435     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6436         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6437       LengthTy = Int32Ty;
6438     else
6439       LengthTy = IntPtrTy;
6440   }
6441   Fields.addInt(LengthTy, StringLength);
6442 
6443   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6444   // properly aligned on 32-bit platforms.
6445   CharUnits Alignment =
6446       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6447 
6448   // The struct.
6449   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6450                                     /*isConstant=*/false,
6451                                     llvm::GlobalVariable::PrivateLinkage);
6452   GV->addAttribute("objc_arc_inert");
6453   switch (Triple.getObjectFormat()) {
6454   case llvm::Triple::UnknownObjectFormat:
6455     llvm_unreachable("unknown file format");
6456   case llvm::Triple::DXContainer:
6457   case llvm::Triple::GOFF:
6458   case llvm::Triple::SPIRV:
6459   case llvm::Triple::XCOFF:
6460     llvm_unreachable("unimplemented");
6461   case llvm::Triple::COFF:
6462   case llvm::Triple::ELF:
6463   case llvm::Triple::Wasm:
6464     GV->setSection("cfstring");
6465     break;
6466   case llvm::Triple::MachO:
6467     GV->setSection("__DATA,__cfstring");
6468     break;
6469   }
6470   Entry.second = GV;
6471 
6472   return ConstantAddress(GV, GV->getValueType(), Alignment);
6473 }
6474 
6475 bool CodeGenModule::getExpressionLocationsEnabled() const {
6476   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6477 }
6478 
6479 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6480   if (ObjCFastEnumerationStateType.isNull()) {
6481     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6482     D->startDefinition();
6483 
6484     QualType FieldTypes[] = {
6485         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6486         Context.getPointerType(Context.UnsignedLongTy),
6487         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6488                                      nullptr, ArraySizeModifier::Normal, 0)};
6489 
6490     for (size_t i = 0; i < 4; ++i) {
6491       FieldDecl *Field = FieldDecl::Create(Context,
6492                                            D,
6493                                            SourceLocation(),
6494                                            SourceLocation(), nullptr,
6495                                            FieldTypes[i], /*TInfo=*/nullptr,
6496                                            /*BitWidth=*/nullptr,
6497                                            /*Mutable=*/false,
6498                                            ICIS_NoInit);
6499       Field->setAccess(AS_public);
6500       D->addDecl(Field);
6501     }
6502 
6503     D->completeDefinition();
6504     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6505   }
6506 
6507   return ObjCFastEnumerationStateType;
6508 }
6509 
6510 llvm::Constant *
6511 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6512   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6513 
6514   // Don't emit it as the address of the string, emit the string data itself
6515   // as an inline array.
6516   if (E->getCharByteWidth() == 1) {
6517     SmallString<64> Str(E->getString());
6518 
6519     // Resize the string to the right size, which is indicated by its type.
6520     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6521     assert(CAT && "String literal not of constant array type!");
6522     Str.resize(CAT->getZExtSize());
6523     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6524   }
6525 
6526   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6527   llvm::Type *ElemTy = AType->getElementType();
6528   unsigned NumElements = AType->getNumElements();
6529 
6530   // Wide strings have either 2-byte or 4-byte elements.
6531   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6532     SmallVector<uint16_t, 32> Elements;
6533     Elements.reserve(NumElements);
6534 
6535     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6536       Elements.push_back(E->getCodeUnit(i));
6537     Elements.resize(NumElements);
6538     return llvm::ConstantDataArray::get(VMContext, Elements);
6539   }
6540 
6541   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6542   SmallVector<uint32_t, 32> Elements;
6543   Elements.reserve(NumElements);
6544 
6545   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6546     Elements.push_back(E->getCodeUnit(i));
6547   Elements.resize(NumElements);
6548   return llvm::ConstantDataArray::get(VMContext, Elements);
6549 }
6550 
6551 static llvm::GlobalVariable *
6552 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6553                       CodeGenModule &CGM, StringRef GlobalName,
6554                       CharUnits Alignment) {
6555   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6556       CGM.GetGlobalConstantAddressSpace());
6557 
6558   llvm::Module &M = CGM.getModule();
6559   // Create a global variable for this string
6560   auto *GV = new llvm::GlobalVariable(
6561       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6562       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6563   GV->setAlignment(Alignment.getAsAlign());
6564   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6565   if (GV->isWeakForLinker()) {
6566     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6567     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6568   }
6569   CGM.setDSOLocal(GV);
6570 
6571   return GV;
6572 }
6573 
6574 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6575 /// constant array for the given string literal.
6576 ConstantAddress
6577 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6578                                                   StringRef Name) {
6579   CharUnits Alignment =
6580       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6581 
6582   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6583   llvm::GlobalVariable **Entry = nullptr;
6584   if (!LangOpts.WritableStrings) {
6585     Entry = &ConstantStringMap[C];
6586     if (auto GV = *Entry) {
6587       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6588         GV->setAlignment(Alignment.getAsAlign());
6589       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6590                              GV->getValueType(), Alignment);
6591     }
6592   }
6593 
6594   SmallString<256> MangledNameBuffer;
6595   StringRef GlobalVariableName;
6596   llvm::GlobalValue::LinkageTypes LT;
6597 
6598   // Mangle the string literal if that's how the ABI merges duplicate strings.
6599   // Don't do it if they are writable, since we don't want writes in one TU to
6600   // affect strings in another.
6601   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6602       !LangOpts.WritableStrings) {
6603     llvm::raw_svector_ostream Out(MangledNameBuffer);
6604     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6605     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6606     GlobalVariableName = MangledNameBuffer;
6607   } else {
6608     LT = llvm::GlobalValue::PrivateLinkage;
6609     GlobalVariableName = Name;
6610   }
6611 
6612   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6613 
6614   CGDebugInfo *DI = getModuleDebugInfo();
6615   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6616     DI->AddStringLiteralDebugInfo(GV, S);
6617 
6618   if (Entry)
6619     *Entry = GV;
6620 
6621   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6622 
6623   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6624                          GV->getValueType(), Alignment);
6625 }
6626 
6627 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6628 /// array for the given ObjCEncodeExpr node.
6629 ConstantAddress
6630 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6631   std::string Str;
6632   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6633 
6634   return GetAddrOfConstantCString(Str);
6635 }
6636 
6637 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6638 /// the literal and a terminating '\0' character.
6639 /// The result has pointer to array type.
6640 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6641     const std::string &Str, const char *GlobalName) {
6642   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6643   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6644       getContext().CharTy, /*VD=*/nullptr);
6645 
6646   llvm::Constant *C =
6647       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6648 
6649   // Don't share any string literals if strings aren't constant.
6650   llvm::GlobalVariable **Entry = nullptr;
6651   if (!LangOpts.WritableStrings) {
6652     Entry = &ConstantStringMap[C];
6653     if (auto GV = *Entry) {
6654       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6655         GV->setAlignment(Alignment.getAsAlign());
6656       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6657                              GV->getValueType(), Alignment);
6658     }
6659   }
6660 
6661   // Get the default prefix if a name wasn't specified.
6662   if (!GlobalName)
6663     GlobalName = ".str";
6664   // Create a global variable for this.
6665   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6666                                   GlobalName, Alignment);
6667   if (Entry)
6668     *Entry = GV;
6669 
6670   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6671                          GV->getValueType(), Alignment);
6672 }
6673 
6674 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6675     const MaterializeTemporaryExpr *E, const Expr *Init) {
6676   assert((E->getStorageDuration() == SD_Static ||
6677           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6678   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6679 
6680   // If we're not materializing a subobject of the temporary, keep the
6681   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6682   QualType MaterializedType = Init->getType();
6683   if (Init == E->getSubExpr())
6684     MaterializedType = E->getType();
6685 
6686   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6687 
6688   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6689   if (!InsertResult.second) {
6690     // We've seen this before: either we already created it or we're in the
6691     // process of doing so.
6692     if (!InsertResult.first->second) {
6693       // We recursively re-entered this function, probably during emission of
6694       // the initializer. Create a placeholder. We'll clean this up in the
6695       // outer call, at the end of this function.
6696       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6697       InsertResult.first->second = new llvm::GlobalVariable(
6698           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6699           nullptr);
6700     }
6701     return ConstantAddress(InsertResult.first->second,
6702                            llvm::cast<llvm::GlobalVariable>(
6703                                InsertResult.first->second->stripPointerCasts())
6704                                ->getValueType(),
6705                            Align);
6706   }
6707 
6708   // FIXME: If an externally-visible declaration extends multiple temporaries,
6709   // we need to give each temporary the same name in every translation unit (and
6710   // we also need to make the temporaries externally-visible).
6711   SmallString<256> Name;
6712   llvm::raw_svector_ostream Out(Name);
6713   getCXXABI().getMangleContext().mangleReferenceTemporary(
6714       VD, E->getManglingNumber(), Out);
6715 
6716   APValue *Value = nullptr;
6717   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6718     // If the initializer of the extending declaration is a constant
6719     // initializer, we should have a cached constant initializer for this
6720     // temporary. Note that this might have a different value from the value
6721     // computed by evaluating the initializer if the surrounding constant
6722     // expression modifies the temporary.
6723     Value = E->getOrCreateValue(false);
6724   }
6725 
6726   // Try evaluating it now, it might have a constant initializer.
6727   Expr::EvalResult EvalResult;
6728   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6729       !EvalResult.hasSideEffects())
6730     Value = &EvalResult.Val;
6731 
6732   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6733 
6734   std::optional<ConstantEmitter> emitter;
6735   llvm::Constant *InitialValue = nullptr;
6736   bool Constant = false;
6737   llvm::Type *Type;
6738   if (Value) {
6739     // The temporary has a constant initializer, use it.
6740     emitter.emplace(*this);
6741     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6742                                                MaterializedType);
6743     Constant =
6744         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6745                                            /*ExcludeDtor*/ false);
6746     Type = InitialValue->getType();
6747   } else {
6748     // No initializer, the initialization will be provided when we
6749     // initialize the declaration which performed lifetime extension.
6750     Type = getTypes().ConvertTypeForMem(MaterializedType);
6751   }
6752 
6753   // Create a global variable for this lifetime-extended temporary.
6754   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6755   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6756     const VarDecl *InitVD;
6757     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6758         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6759       // Temporaries defined inside a class get linkonce_odr linkage because the
6760       // class can be defined in multiple translation units.
6761       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6762     } else {
6763       // There is no need for this temporary to have external linkage if the
6764       // VarDecl has external linkage.
6765       Linkage = llvm::GlobalVariable::InternalLinkage;
6766     }
6767   }
6768   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6769   auto *GV = new llvm::GlobalVariable(
6770       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6771       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6772   if (emitter) emitter->finalize(GV);
6773   // Don't assign dllimport or dllexport to local linkage globals.
6774   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6775     setGVProperties(GV, VD);
6776     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6777       // The reference temporary should never be dllexport.
6778       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6779   }
6780   GV->setAlignment(Align.getAsAlign());
6781   if (supportsCOMDAT() && GV->isWeakForLinker())
6782     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6783   if (VD->getTLSKind())
6784     setTLSMode(GV, *VD);
6785   llvm::Constant *CV = GV;
6786   if (AddrSpace != LangAS::Default)
6787     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6788         *this, GV, AddrSpace, LangAS::Default,
6789         llvm::PointerType::get(
6790             getLLVMContext(),
6791             getContext().getTargetAddressSpace(LangAS::Default)));
6792 
6793   // Update the map with the new temporary. If we created a placeholder above,
6794   // replace it with the new global now.
6795   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6796   if (Entry) {
6797     Entry->replaceAllUsesWith(CV);
6798     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6799   }
6800   Entry = CV;
6801 
6802   return ConstantAddress(CV, Type, Align);
6803 }
6804 
6805 /// EmitObjCPropertyImplementations - Emit information for synthesized
6806 /// properties for an implementation.
6807 void CodeGenModule::EmitObjCPropertyImplementations(const
6808                                                     ObjCImplementationDecl *D) {
6809   for (const auto *PID : D->property_impls()) {
6810     // Dynamic is just for type-checking.
6811     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6812       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6813 
6814       // Determine which methods need to be implemented, some may have
6815       // been overridden. Note that ::isPropertyAccessor is not the method
6816       // we want, that just indicates if the decl came from a
6817       // property. What we want to know is if the method is defined in
6818       // this implementation.
6819       auto *Getter = PID->getGetterMethodDecl();
6820       if (!Getter || Getter->isSynthesizedAccessorStub())
6821         CodeGenFunction(*this).GenerateObjCGetter(
6822             const_cast<ObjCImplementationDecl *>(D), PID);
6823       auto *Setter = PID->getSetterMethodDecl();
6824       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6825         CodeGenFunction(*this).GenerateObjCSetter(
6826                                  const_cast<ObjCImplementationDecl *>(D), PID);
6827     }
6828   }
6829 }
6830 
6831 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6832   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6833   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6834        ivar; ivar = ivar->getNextIvar())
6835     if (ivar->getType().isDestructedType())
6836       return true;
6837 
6838   return false;
6839 }
6840 
6841 static bool AllTrivialInitializers(CodeGenModule &CGM,
6842                                    ObjCImplementationDecl *D) {
6843   CodeGenFunction CGF(CGM);
6844   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6845        E = D->init_end(); B != E; ++B) {
6846     CXXCtorInitializer *CtorInitExp = *B;
6847     Expr *Init = CtorInitExp->getInit();
6848     if (!CGF.isTrivialInitializer(Init))
6849       return false;
6850   }
6851   return true;
6852 }
6853 
6854 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6855 /// for an implementation.
6856 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6857   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6858   if (needsDestructMethod(D)) {
6859     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6860     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6861     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6862         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6863         getContext().VoidTy, nullptr, D,
6864         /*isInstance=*/true, /*isVariadic=*/false,
6865         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6866         /*isImplicitlyDeclared=*/true,
6867         /*isDefined=*/false, ObjCImplementationControl::Required);
6868     D->addInstanceMethod(DTORMethod);
6869     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6870     D->setHasDestructors(true);
6871   }
6872 
6873   // If the implementation doesn't have any ivar initializers, we don't need
6874   // a .cxx_construct.
6875   if (D->getNumIvarInitializers() == 0 ||
6876       AllTrivialInitializers(*this, D))
6877     return;
6878 
6879   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6880   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6881   // The constructor returns 'self'.
6882   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6883       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6884       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6885       /*isVariadic=*/false,
6886       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6887       /*isImplicitlyDeclared=*/true,
6888       /*isDefined=*/false, ObjCImplementationControl::Required);
6889   D->addInstanceMethod(CTORMethod);
6890   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6891   D->setHasNonZeroConstructors(true);
6892 }
6893 
6894 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6895 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6896   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6897       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6898     ErrorUnsupported(LSD, "linkage spec");
6899     return;
6900   }
6901 
6902   EmitDeclContext(LSD);
6903 }
6904 
6905 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6906   // Device code should not be at top level.
6907   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6908     return;
6909 
6910   std::unique_ptr<CodeGenFunction> &CurCGF =
6911       GlobalTopLevelStmtBlockInFlight.first;
6912 
6913   // We emitted a top-level stmt but after it there is initialization.
6914   // Stop squashing the top-level stmts into a single function.
6915   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6916     CurCGF->FinishFunction(D->getEndLoc());
6917     CurCGF = nullptr;
6918   }
6919 
6920   if (!CurCGF) {
6921     // void __stmts__N(void)
6922     // FIXME: Ask the ABI name mangler to pick a name.
6923     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6924     FunctionArgList Args;
6925     QualType RetTy = getContext().VoidTy;
6926     const CGFunctionInfo &FnInfo =
6927         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6928     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6929     llvm::Function *Fn = llvm::Function::Create(
6930         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6931 
6932     CurCGF.reset(new CodeGenFunction(*this));
6933     GlobalTopLevelStmtBlockInFlight.second = D;
6934     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6935                           D->getBeginLoc(), D->getBeginLoc());
6936     CXXGlobalInits.push_back(Fn);
6937   }
6938 
6939   CurCGF->EmitStmt(D->getStmt());
6940 }
6941 
6942 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6943   for (auto *I : DC->decls()) {
6944     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6945     // are themselves considered "top-level", so EmitTopLevelDecl on an
6946     // ObjCImplDecl does not recursively visit them. We need to do that in
6947     // case they're nested inside another construct (LinkageSpecDecl /
6948     // ExportDecl) that does stop them from being considered "top-level".
6949     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6950       for (auto *M : OID->methods())
6951         EmitTopLevelDecl(M);
6952     }
6953 
6954     EmitTopLevelDecl(I);
6955   }
6956 }
6957 
6958 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6959 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6960   // Ignore dependent declarations.
6961   if (D->isTemplated())
6962     return;
6963 
6964   // Consteval function shouldn't be emitted.
6965   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6966     return;
6967 
6968   switch (D->getKind()) {
6969   case Decl::CXXConversion:
6970   case Decl::CXXMethod:
6971   case Decl::Function:
6972     EmitGlobal(cast<FunctionDecl>(D));
6973     // Always provide some coverage mapping
6974     // even for the functions that aren't emitted.
6975     AddDeferredUnusedCoverageMapping(D);
6976     break;
6977 
6978   case Decl::CXXDeductionGuide:
6979     // Function-like, but does not result in code emission.
6980     break;
6981 
6982   case Decl::Var:
6983   case Decl::Decomposition:
6984   case Decl::VarTemplateSpecialization:
6985     EmitGlobal(cast<VarDecl>(D));
6986     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6987       for (auto *B : DD->bindings())
6988         if (auto *HD = B->getHoldingVar())
6989           EmitGlobal(HD);
6990     break;
6991 
6992   // Indirect fields from global anonymous structs and unions can be
6993   // ignored; only the actual variable requires IR gen support.
6994   case Decl::IndirectField:
6995     break;
6996 
6997   // C++ Decls
6998   case Decl::Namespace:
6999     EmitDeclContext(cast<NamespaceDecl>(D));
7000     break;
7001   case Decl::ClassTemplateSpecialization: {
7002     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
7003     if (CGDebugInfo *DI = getModuleDebugInfo())
7004       if (Spec->getSpecializationKind() ==
7005               TSK_ExplicitInstantiationDefinition &&
7006           Spec->hasDefinition())
7007         DI->completeTemplateDefinition(*Spec);
7008   } [[fallthrough]];
7009   case Decl::CXXRecord: {
7010     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
7011     if (CGDebugInfo *DI = getModuleDebugInfo()) {
7012       if (CRD->hasDefinition())
7013         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7014       if (auto *ES = D->getASTContext().getExternalSource())
7015         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
7016           DI->completeUnusedClass(*CRD);
7017     }
7018     // Emit any static data members, they may be definitions.
7019     for (auto *I : CRD->decls())
7020       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7021         EmitTopLevelDecl(I);
7022     break;
7023   }
7024     // No code generation needed.
7025   case Decl::UsingShadow:
7026   case Decl::ClassTemplate:
7027   case Decl::VarTemplate:
7028   case Decl::Concept:
7029   case Decl::VarTemplatePartialSpecialization:
7030   case Decl::FunctionTemplate:
7031   case Decl::TypeAliasTemplate:
7032   case Decl::Block:
7033   case Decl::Empty:
7034   case Decl::Binding:
7035     break;
7036   case Decl::Using:          // using X; [C++]
7037     if (CGDebugInfo *DI = getModuleDebugInfo())
7038         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7039     break;
7040   case Decl::UsingEnum: // using enum X; [C++]
7041     if (CGDebugInfo *DI = getModuleDebugInfo())
7042       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7043     break;
7044   case Decl::NamespaceAlias:
7045     if (CGDebugInfo *DI = getModuleDebugInfo())
7046         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7047     break;
7048   case Decl::UsingDirective: // using namespace X; [C++]
7049     if (CGDebugInfo *DI = getModuleDebugInfo())
7050       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7051     break;
7052   case Decl::CXXConstructor:
7053     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7054     break;
7055   case Decl::CXXDestructor:
7056     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7057     break;
7058 
7059   case Decl::StaticAssert:
7060     // Nothing to do.
7061     break;
7062 
7063   // Objective-C Decls
7064 
7065   // Forward declarations, no (immediate) code generation.
7066   case Decl::ObjCInterface:
7067   case Decl::ObjCCategory:
7068     break;
7069 
7070   case Decl::ObjCProtocol: {
7071     auto *Proto = cast<ObjCProtocolDecl>(D);
7072     if (Proto->isThisDeclarationADefinition())
7073       ObjCRuntime->GenerateProtocol(Proto);
7074     break;
7075   }
7076 
7077   case Decl::ObjCCategoryImpl:
7078     // Categories have properties but don't support synthesize so we
7079     // can ignore them here.
7080     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7081     break;
7082 
7083   case Decl::ObjCImplementation: {
7084     auto *OMD = cast<ObjCImplementationDecl>(D);
7085     EmitObjCPropertyImplementations(OMD);
7086     EmitObjCIvarInitializations(OMD);
7087     ObjCRuntime->GenerateClass(OMD);
7088     // Emit global variable debug information.
7089     if (CGDebugInfo *DI = getModuleDebugInfo())
7090       if (getCodeGenOpts().hasReducedDebugInfo())
7091         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7092             OMD->getClassInterface()), OMD->getLocation());
7093     break;
7094   }
7095   case Decl::ObjCMethod: {
7096     auto *OMD = cast<ObjCMethodDecl>(D);
7097     // If this is not a prototype, emit the body.
7098     if (OMD->getBody())
7099       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7100     break;
7101   }
7102   case Decl::ObjCCompatibleAlias:
7103     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7104     break;
7105 
7106   case Decl::PragmaComment: {
7107     const auto *PCD = cast<PragmaCommentDecl>(D);
7108     switch (PCD->getCommentKind()) {
7109     case PCK_Unknown:
7110       llvm_unreachable("unexpected pragma comment kind");
7111     case PCK_Linker:
7112       AppendLinkerOptions(PCD->getArg());
7113       break;
7114     case PCK_Lib:
7115         AddDependentLib(PCD->getArg());
7116       break;
7117     case PCK_Compiler:
7118     case PCK_ExeStr:
7119     case PCK_User:
7120       break; // We ignore all of these.
7121     }
7122     break;
7123   }
7124 
7125   case Decl::PragmaDetectMismatch: {
7126     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7127     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7128     break;
7129   }
7130 
7131   case Decl::LinkageSpec:
7132     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7133     break;
7134 
7135   case Decl::FileScopeAsm: {
7136     // File-scope asm is ignored during device-side CUDA compilation.
7137     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7138       break;
7139     // File-scope asm is ignored during device-side OpenMP compilation.
7140     if (LangOpts.OpenMPIsTargetDevice)
7141       break;
7142     // File-scope asm is ignored during device-side SYCL compilation.
7143     if (LangOpts.SYCLIsDevice)
7144       break;
7145     auto *AD = cast<FileScopeAsmDecl>(D);
7146     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7147     break;
7148   }
7149 
7150   case Decl::TopLevelStmt:
7151     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7152     break;
7153 
7154   case Decl::Import: {
7155     auto *Import = cast<ImportDecl>(D);
7156 
7157     // If we've already imported this module, we're done.
7158     if (!ImportedModules.insert(Import->getImportedModule()))
7159       break;
7160 
7161     // Emit debug information for direct imports.
7162     if (!Import->getImportedOwningModule()) {
7163       if (CGDebugInfo *DI = getModuleDebugInfo())
7164         DI->EmitImportDecl(*Import);
7165     }
7166 
7167     // For C++ standard modules we are done - we will call the module
7168     // initializer for imported modules, and that will likewise call those for
7169     // any imports it has.
7170     if (CXX20ModuleInits && Import->getImportedModule() &&
7171         Import->getImportedModule()->isNamedModule())
7172       break;
7173 
7174     // For clang C++ module map modules the initializers for sub-modules are
7175     // emitted here.
7176 
7177     // Find all of the submodules and emit the module initializers.
7178     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7179     SmallVector<clang::Module *, 16> Stack;
7180     Visited.insert(Import->getImportedModule());
7181     Stack.push_back(Import->getImportedModule());
7182 
7183     while (!Stack.empty()) {
7184       clang::Module *Mod = Stack.pop_back_val();
7185       if (!EmittedModuleInitializers.insert(Mod).second)
7186         continue;
7187 
7188       for (auto *D : Context.getModuleInitializers(Mod))
7189         EmitTopLevelDecl(D);
7190 
7191       // Visit the submodules of this module.
7192       for (auto *Submodule : Mod->submodules()) {
7193         // Skip explicit children; they need to be explicitly imported to emit
7194         // the initializers.
7195         if (Submodule->IsExplicit)
7196           continue;
7197 
7198         if (Visited.insert(Submodule).second)
7199           Stack.push_back(Submodule);
7200       }
7201     }
7202     break;
7203   }
7204 
7205   case Decl::Export:
7206     EmitDeclContext(cast<ExportDecl>(D));
7207     break;
7208 
7209   case Decl::OMPThreadPrivate:
7210     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7211     break;
7212 
7213   case Decl::OMPAllocate:
7214     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7215     break;
7216 
7217   case Decl::OMPDeclareReduction:
7218     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7219     break;
7220 
7221   case Decl::OMPDeclareMapper:
7222     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7223     break;
7224 
7225   case Decl::OMPRequires:
7226     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7227     break;
7228 
7229   case Decl::Typedef:
7230   case Decl::TypeAlias: // using foo = bar; [C++11]
7231     if (CGDebugInfo *DI = getModuleDebugInfo())
7232       DI->EmitAndRetainType(
7233           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7234     break;
7235 
7236   case Decl::Record:
7237     if (CGDebugInfo *DI = getModuleDebugInfo())
7238       if (cast<RecordDecl>(D)->getDefinition())
7239         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7240     break;
7241 
7242   case Decl::Enum:
7243     if (CGDebugInfo *DI = getModuleDebugInfo())
7244       if (cast<EnumDecl>(D)->getDefinition())
7245         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7246     break;
7247 
7248   case Decl::HLSLBuffer:
7249     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7250     break;
7251 
7252   default:
7253     // Make sure we handled everything we should, every other kind is a
7254     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7255     // function. Need to recode Decl::Kind to do that easily.
7256     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7257     break;
7258   }
7259 }
7260 
7261 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7262   // Do we need to generate coverage mapping?
7263   if (!CodeGenOpts.CoverageMapping)
7264     return;
7265   switch (D->getKind()) {
7266   case Decl::CXXConversion:
7267   case Decl::CXXMethod:
7268   case Decl::Function:
7269   case Decl::ObjCMethod:
7270   case Decl::CXXConstructor:
7271   case Decl::CXXDestructor: {
7272     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7273       break;
7274     SourceManager &SM = getContext().getSourceManager();
7275     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7276       break;
7277     if (!llvm::coverage::SystemHeadersCoverage &&
7278         SM.isInSystemHeader(D->getBeginLoc()))
7279       break;
7280     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7281     break;
7282   }
7283   default:
7284     break;
7285   };
7286 }
7287 
7288 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7289   // Do we need to generate coverage mapping?
7290   if (!CodeGenOpts.CoverageMapping)
7291     return;
7292   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7293     if (Fn->isTemplateInstantiation())
7294       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7295   }
7296   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7297 }
7298 
7299 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7300   // We call takeVector() here to avoid use-after-free.
7301   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7302   // we deserialize function bodies to emit coverage info for them, and that
7303   // deserializes more declarations. How should we handle that case?
7304   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7305     if (!Entry.second)
7306       continue;
7307     const Decl *D = Entry.first;
7308     switch (D->getKind()) {
7309     case Decl::CXXConversion:
7310     case Decl::CXXMethod:
7311     case Decl::Function:
7312     case Decl::ObjCMethod: {
7313       CodeGenPGO PGO(*this);
7314       GlobalDecl GD(cast<FunctionDecl>(D));
7315       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7316                                   getFunctionLinkage(GD));
7317       break;
7318     }
7319     case Decl::CXXConstructor: {
7320       CodeGenPGO PGO(*this);
7321       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7322       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7323                                   getFunctionLinkage(GD));
7324       break;
7325     }
7326     case Decl::CXXDestructor: {
7327       CodeGenPGO PGO(*this);
7328       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7329       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7330                                   getFunctionLinkage(GD));
7331       break;
7332     }
7333     default:
7334       break;
7335     };
7336   }
7337 }
7338 
7339 void CodeGenModule::EmitMainVoidAlias() {
7340   // In order to transition away from "__original_main" gracefully, emit an
7341   // alias for "main" in the no-argument case so that libc can detect when
7342   // new-style no-argument main is in used.
7343   if (llvm::Function *F = getModule().getFunction("main")) {
7344     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7345         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7346       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7347       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7348     }
7349   }
7350 }
7351 
7352 /// Turns the given pointer into a constant.
7353 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7354                                           const void *Ptr) {
7355   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7356   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7357   return llvm::ConstantInt::get(i64, PtrInt);
7358 }
7359 
7360 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7361                                    llvm::NamedMDNode *&GlobalMetadata,
7362                                    GlobalDecl D,
7363                                    llvm::GlobalValue *Addr) {
7364   if (!GlobalMetadata)
7365     GlobalMetadata =
7366       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7367 
7368   // TODO: should we report variant information for ctors/dtors?
7369   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7370                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7371                                CGM.getLLVMContext(), D.getDecl()))};
7372   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7373 }
7374 
7375 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7376                                                  llvm::GlobalValue *CppFunc) {
7377   // Store the list of ifuncs we need to replace uses in.
7378   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7379   // List of ConstantExprs that we should be able to delete when we're done
7380   // here.
7381   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7382 
7383   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7384   if (Elem == CppFunc)
7385     return false;
7386 
7387   // First make sure that all users of this are ifuncs (or ifuncs via a
7388   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7389   // later.
7390   for (llvm::User *User : Elem->users()) {
7391     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7392     // ifunc directly. In any other case, just give up, as we don't know what we
7393     // could break by changing those.
7394     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7395       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7396         return false;
7397 
7398       for (llvm::User *CEUser : ConstExpr->users()) {
7399         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7400           IFuncs.push_back(IFunc);
7401         } else {
7402           return false;
7403         }
7404       }
7405       CEs.push_back(ConstExpr);
7406     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7407       IFuncs.push_back(IFunc);
7408     } else {
7409       // This user is one we don't know how to handle, so fail redirection. This
7410       // will result in an ifunc retaining a resolver name that will ultimately
7411       // fail to be resolved to a defined function.
7412       return false;
7413     }
7414   }
7415 
7416   // Now we know this is a valid case where we can do this alias replacement, we
7417   // need to remove all of the references to Elem (and the bitcasts!) so we can
7418   // delete it.
7419   for (llvm::GlobalIFunc *IFunc : IFuncs)
7420     IFunc->setResolver(nullptr);
7421   for (llvm::ConstantExpr *ConstExpr : CEs)
7422     ConstExpr->destroyConstant();
7423 
7424   // We should now be out of uses for the 'old' version of this function, so we
7425   // can erase it as well.
7426   Elem->eraseFromParent();
7427 
7428   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7429     // The type of the resolver is always just a function-type that returns the
7430     // type of the IFunc, so create that here. If the type of the actual
7431     // resolver doesn't match, it just gets bitcast to the right thing.
7432     auto *ResolverTy =
7433         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7434     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7435         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7436     IFunc->setResolver(Resolver);
7437   }
7438   return true;
7439 }
7440 
7441 /// For each function which is declared within an extern "C" region and marked
7442 /// as 'used', but has internal linkage, create an alias from the unmangled
7443 /// name to the mangled name if possible. People expect to be able to refer
7444 /// to such functions with an unmangled name from inline assembly within the
7445 /// same translation unit.
7446 void CodeGenModule::EmitStaticExternCAliases() {
7447   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7448     return;
7449   for (auto &I : StaticExternCValues) {
7450     const IdentifierInfo *Name = I.first;
7451     llvm::GlobalValue *Val = I.second;
7452 
7453     // If Val is null, that implies there were multiple declarations that each
7454     // had a claim to the unmangled name. In this case, generation of the alias
7455     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7456     if (!Val)
7457       break;
7458 
7459     llvm::GlobalValue *ExistingElem =
7460         getModule().getNamedValue(Name->getName());
7461 
7462     // If there is either not something already by this name, or we were able to
7463     // replace all uses from IFuncs, create the alias.
7464     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7465       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7466   }
7467 }
7468 
7469 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7470                                              GlobalDecl &Result) const {
7471   auto Res = Manglings.find(MangledName);
7472   if (Res == Manglings.end())
7473     return false;
7474   Result = Res->getValue();
7475   return true;
7476 }
7477 
7478 /// Emits metadata nodes associating all the global values in the
7479 /// current module with the Decls they came from.  This is useful for
7480 /// projects using IR gen as a subroutine.
7481 ///
7482 /// Since there's currently no way to associate an MDNode directly
7483 /// with an llvm::GlobalValue, we create a global named metadata
7484 /// with the name 'clang.global.decl.ptrs'.
7485 void CodeGenModule::EmitDeclMetadata() {
7486   llvm::NamedMDNode *GlobalMetadata = nullptr;
7487 
7488   for (auto &I : MangledDeclNames) {
7489     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7490     // Some mangled names don't necessarily have an associated GlobalValue
7491     // in this module, e.g. if we mangled it for DebugInfo.
7492     if (Addr)
7493       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7494   }
7495 }
7496 
7497 /// Emits metadata nodes for all the local variables in the current
7498 /// function.
7499 void CodeGenFunction::EmitDeclMetadata() {
7500   if (LocalDeclMap.empty()) return;
7501 
7502   llvm::LLVMContext &Context = getLLVMContext();
7503 
7504   // Find the unique metadata ID for this name.
7505   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7506 
7507   llvm::NamedMDNode *GlobalMetadata = nullptr;
7508 
7509   for (auto &I : LocalDeclMap) {
7510     const Decl *D = I.first;
7511     llvm::Value *Addr = I.second.emitRawPointer(*this);
7512     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7513       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7514       Alloca->setMetadata(
7515           DeclPtrKind, llvm::MDNode::get(
7516                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7517     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7518       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7519       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7520     }
7521   }
7522 }
7523 
7524 void CodeGenModule::EmitVersionIdentMetadata() {
7525   llvm::NamedMDNode *IdentMetadata =
7526     TheModule.getOrInsertNamedMetadata("llvm.ident");
7527   std::string Version = getClangFullVersion();
7528   llvm::LLVMContext &Ctx = TheModule.getContext();
7529 
7530   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7531   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7532 }
7533 
7534 void CodeGenModule::EmitCommandLineMetadata() {
7535   llvm::NamedMDNode *CommandLineMetadata =
7536     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7537   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7538   llvm::LLVMContext &Ctx = TheModule.getContext();
7539 
7540   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7541   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7542 }
7543 
7544 void CodeGenModule::EmitCoverageFile() {
7545   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7546   if (!CUNode)
7547     return;
7548 
7549   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7550   llvm::LLVMContext &Ctx = TheModule.getContext();
7551   auto *CoverageDataFile =
7552       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7553   auto *CoverageNotesFile =
7554       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7555   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7556     llvm::MDNode *CU = CUNode->getOperand(i);
7557     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7558     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7559   }
7560 }
7561 
7562 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7563                                                        bool ForEH) {
7564   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7565   // FIXME: should we even be calling this method if RTTI is disabled
7566   // and it's not for EH?
7567   if (!shouldEmitRTTI(ForEH))
7568     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7569 
7570   if (ForEH && Ty->isObjCObjectPointerType() &&
7571       LangOpts.ObjCRuntime.isGNUFamily())
7572     return ObjCRuntime->GetEHType(Ty);
7573 
7574   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7575 }
7576 
7577 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7578   // Do not emit threadprivates in simd-only mode.
7579   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7580     return;
7581   for (auto RefExpr : D->varlist()) {
7582     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7583     bool PerformInit =
7584         VD->getAnyInitializer() &&
7585         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7586                                                         /*ForRef=*/false);
7587 
7588     Address Addr(GetAddrOfGlobalVar(VD),
7589                  getTypes().ConvertTypeForMem(VD->getType()),
7590                  getContext().getDeclAlign(VD));
7591     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7592             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7593       CXXGlobalInits.push_back(InitFunction);
7594   }
7595 }
7596 
7597 llvm::Metadata *
7598 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7599                                             StringRef Suffix) {
7600   if (auto *FnType = T->getAs<FunctionProtoType>())
7601     T = getContext().getFunctionType(
7602         FnType->getReturnType(), FnType->getParamTypes(),
7603         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7604 
7605   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7606   if (InternalId)
7607     return InternalId;
7608 
7609   if (isExternallyVisible(T->getLinkage())) {
7610     std::string OutName;
7611     llvm::raw_string_ostream Out(OutName);
7612     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7613         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7614 
7615     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7616       Out << ".normalized";
7617 
7618     Out << Suffix;
7619 
7620     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7621   } else {
7622     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7623                                            llvm::ArrayRef<llvm::Metadata *>());
7624   }
7625 
7626   return InternalId;
7627 }
7628 
7629 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7630   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7631 }
7632 
7633 llvm::Metadata *
7634 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7635   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7636 }
7637 
7638 // Generalize pointer types to a void pointer with the qualifiers of the
7639 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7640 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7641 // 'void *'.
7642 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7643   if (!Ty->isPointerType())
7644     return Ty;
7645 
7646   return Ctx.getPointerType(
7647       QualType(Ctx.VoidTy).withCVRQualifiers(
7648           Ty->getPointeeType().getCVRQualifiers()));
7649 }
7650 
7651 // Apply type generalization to a FunctionType's return and argument types
7652 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7653   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7654     SmallVector<QualType, 8> GeneralizedParams;
7655     for (auto &Param : FnType->param_types())
7656       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7657 
7658     return Ctx.getFunctionType(
7659         GeneralizeType(Ctx, FnType->getReturnType()),
7660         GeneralizedParams, FnType->getExtProtoInfo());
7661   }
7662 
7663   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7664     return Ctx.getFunctionNoProtoType(
7665         GeneralizeType(Ctx, FnType->getReturnType()));
7666 
7667   llvm_unreachable("Encountered unknown FunctionType");
7668 }
7669 
7670 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7671   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7672                                       GeneralizedMetadataIdMap, ".generalized");
7673 }
7674 
7675 /// Returns whether this module needs the "all-vtables" type identifier.
7676 bool CodeGenModule::NeedAllVtablesTypeId() const {
7677   // Returns true if at least one of vtable-based CFI checkers is enabled and
7678   // is not in the trapping mode.
7679   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7680            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7681           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7682            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7683           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7684            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7685           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7686            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7687 }
7688 
7689 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7690                                           CharUnits Offset,
7691                                           const CXXRecordDecl *RD) {
7692   llvm::Metadata *MD =
7693       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7694   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7695 
7696   if (CodeGenOpts.SanitizeCfiCrossDso)
7697     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7698       VTable->addTypeMetadata(Offset.getQuantity(),
7699                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7700 
7701   if (NeedAllVtablesTypeId()) {
7702     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7703     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7704   }
7705 }
7706 
7707 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7708   if (!SanStats)
7709     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7710 
7711   return *SanStats;
7712 }
7713 
7714 llvm::Value *
7715 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7716                                                   CodeGenFunction &CGF) {
7717   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7718   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7719   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7720   auto *Call = CGF.EmitRuntimeCall(
7721       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7722   return Call;
7723 }
7724 
7725 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7726     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7727   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7728                                  /* forPointeeType= */ true);
7729 }
7730 
7731 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7732                                                  LValueBaseInfo *BaseInfo,
7733                                                  TBAAAccessInfo *TBAAInfo,
7734                                                  bool forPointeeType) {
7735   if (TBAAInfo)
7736     *TBAAInfo = getTBAAAccessInfo(T);
7737 
7738   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7739   // that doesn't return the information we need to compute BaseInfo.
7740 
7741   // Honor alignment typedef attributes even on incomplete types.
7742   // We also honor them straight for C++ class types, even as pointees;
7743   // there's an expressivity gap here.
7744   if (auto TT = T->getAs<TypedefType>()) {
7745     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7746       if (BaseInfo)
7747         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7748       return getContext().toCharUnitsFromBits(Align);
7749     }
7750   }
7751 
7752   bool AlignForArray = T->isArrayType();
7753 
7754   // Analyze the base element type, so we don't get confused by incomplete
7755   // array types.
7756   T = getContext().getBaseElementType(T);
7757 
7758   if (T->isIncompleteType()) {
7759     // We could try to replicate the logic from
7760     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7761     // type is incomplete, so it's impossible to test. We could try to reuse
7762     // getTypeAlignIfKnown, but that doesn't return the information we need
7763     // to set BaseInfo.  So just ignore the possibility that the alignment is
7764     // greater than one.
7765     if (BaseInfo)
7766       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7767     return CharUnits::One();
7768   }
7769 
7770   if (BaseInfo)
7771     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7772 
7773   CharUnits Alignment;
7774   const CXXRecordDecl *RD;
7775   if (T.getQualifiers().hasUnaligned()) {
7776     Alignment = CharUnits::One();
7777   } else if (forPointeeType && !AlignForArray &&
7778              (RD = T->getAsCXXRecordDecl())) {
7779     // For C++ class pointees, we don't know whether we're pointing at a
7780     // base or a complete object, so we generally need to use the
7781     // non-virtual alignment.
7782     Alignment = getClassPointerAlignment(RD);
7783   } else {
7784     Alignment = getContext().getTypeAlignInChars(T);
7785   }
7786 
7787   // Cap to the global maximum type alignment unless the alignment
7788   // was somehow explicit on the type.
7789   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7790     if (Alignment.getQuantity() > MaxAlign &&
7791         !getContext().isAlignmentRequired(T))
7792       Alignment = CharUnits::fromQuantity(MaxAlign);
7793   }
7794   return Alignment;
7795 }
7796 
7797 bool CodeGenModule::stopAutoInit() {
7798   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7799   if (StopAfter) {
7800     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7801     // used
7802     if (NumAutoVarInit >= StopAfter) {
7803       return true;
7804     }
7805     if (!NumAutoVarInit) {
7806       unsigned DiagID = getDiags().getCustomDiagID(
7807           DiagnosticsEngine::Warning,
7808           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7809           "number of times ftrivial-auto-var-init=%1 gets applied.");
7810       getDiags().Report(DiagID)
7811           << StopAfter
7812           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7813                       LangOptions::TrivialAutoVarInitKind::Zero
7814                   ? "zero"
7815                   : "pattern");
7816     }
7817     ++NumAutoVarInit;
7818   }
7819   return false;
7820 }
7821 
7822 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7823                                                     const Decl *D) const {
7824   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7825   // postfix beginning with '.' since the symbol name can be demangled.
7826   if (LangOpts.HIP)
7827     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7828   else
7829     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7830 
7831   // If the CUID is not specified we try to generate a unique postfix.
7832   if (getLangOpts().CUID.empty()) {
7833     SourceManager &SM = getContext().getSourceManager();
7834     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7835     assert(PLoc.isValid() && "Source location is expected to be valid.");
7836 
7837     // Get the hash of the user defined macros.
7838     llvm::MD5 Hash;
7839     llvm::MD5::MD5Result Result;
7840     for (const auto &Arg : PreprocessorOpts.Macros)
7841       Hash.update(Arg.first);
7842     Hash.final(Result);
7843 
7844     // Get the UniqueID for the file containing the decl.
7845     llvm::sys::fs::UniqueID ID;
7846     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7847       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7848       assert(PLoc.isValid() && "Source location is expected to be valid.");
7849       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7850         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7851             << PLoc.getFilename() << EC.message();
7852     }
7853     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7854        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7855   } else {
7856     OS << getContext().getCUIDHash();
7857   }
7858 }
7859 
7860 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7861   assert(DeferredDeclsToEmit.empty() &&
7862          "Should have emitted all decls deferred to emit.");
7863   assert(NewBuilder->DeferredDecls.empty() &&
7864          "Newly created module should not have deferred decls");
7865   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7866   assert(EmittedDeferredDecls.empty() &&
7867          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7868 
7869   assert(NewBuilder->DeferredVTables.empty() &&
7870          "Newly created module should not have deferred vtables");
7871   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7872 
7873   assert(NewBuilder->MangledDeclNames.empty() &&
7874          "Newly created module should not have mangled decl names");
7875   assert(NewBuilder->Manglings.empty() &&
7876          "Newly created module should not have manglings");
7877   NewBuilder->Manglings = std::move(Manglings);
7878 
7879   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7880 
7881   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7882 }
7883