1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CoverageMappingGen.h" 25 #include "CodeGenTBAA.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 113 if (LangOpts.ObjC1) 114 createObjCRuntime(); 115 if (LangOpts.OpenCL) 116 createOpenCLRuntime(); 117 if (LangOpts.OpenMP) 118 createOpenMPRuntime(); 119 if (LangOpts.CUDA) 120 createCUDARuntime(); 121 122 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 123 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 124 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 125 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 126 getCXXABI().getMangleContext()); 127 128 // If debug info or coverage generation is enabled, create the CGDebugInfo 129 // object. 130 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 131 CodeGenOpts.EmitGcovArcs || 132 CodeGenOpts.EmitGcovNotes) 133 DebugInfo = new CGDebugInfo(*this); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjCAutoRefCount) 138 ARCData = new ARCEntrypoints(); 139 RRData = new RREntrypoints(); 140 141 if (!CodeGenOpts.InstrProfileInput.empty()) { 142 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.InstrProfileInput, PGOReader)) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile: %0"); 146 getDiags().Report(DiagID) << EC.message(); 147 } 148 } 149 150 // If coverage mapping generation is enabled, create the 151 // CoverageMappingModuleGen object. 152 if (CodeGenOpts.CoverageMapping) 153 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 154 } 155 156 CodeGenModule::~CodeGenModule() { 157 delete ObjCRuntime; 158 delete OpenCLRuntime; 159 delete OpenMPRuntime; 160 delete CUDARuntime; 161 delete TheTargetCodeGenInfo; 162 delete TBAA; 163 delete DebugInfo; 164 delete ARCData; 165 delete RRData; 166 } 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime = CreateGNUObjCRuntime(*this); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 ObjCRuntime = CreateMacObjCRuntime(*this); 182 return; 183 } 184 llvm_unreachable("bad runtime kind"); 185 } 186 187 void CodeGenModule::createOpenCLRuntime() { 188 OpenCLRuntime = new CGOpenCLRuntime(*this); 189 } 190 191 void CodeGenModule::createOpenMPRuntime() { 192 OpenMPRuntime = new CGOpenMPRuntime(*this); 193 } 194 195 void CodeGenModule::createCUDARuntime() { 196 CUDARuntime = CreateNVCUDARuntime(*this); 197 } 198 199 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 200 Replacements[Name] = C; 201 } 202 203 void CodeGenModule::applyReplacements() { 204 for (ReplacementsTy::iterator I = Replacements.begin(), 205 E = Replacements.end(); 206 I != E; ++I) { 207 StringRef MangledName = I->first(); 208 llvm::Constant *Replacement = I->second; 209 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 210 if (!Entry) 211 continue; 212 auto *OldF = cast<llvm::Function>(Entry); 213 auto *NewF = dyn_cast<llvm::Function>(Replacement); 214 if (!NewF) { 215 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 216 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 217 } else { 218 auto *CE = cast<llvm::ConstantExpr>(Replacement); 219 assert(CE->getOpcode() == llvm::Instruction::BitCast || 220 CE->getOpcode() == llvm::Instruction::GetElementPtr); 221 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 222 } 223 } 224 225 // Replace old with new, but keep the old order. 226 OldF->replaceAllUsesWith(Replacement); 227 if (NewF) { 228 NewF->removeFromParent(); 229 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 230 } 231 OldF->eraseFromParent(); 232 } 233 } 234 235 // This is only used in aliases that we created and we know they have a 236 // linear structure. 237 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 238 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 239 const llvm::Constant *C = &GA; 240 for (;;) { 241 C = C->stripPointerCasts(); 242 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 243 return GO; 244 // stripPointerCasts will not walk over weak aliases. 245 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 246 if (!GA2) 247 return nullptr; 248 if (!Visited.insert(GA2).second) 249 return nullptr; 250 C = GA2->getAliasee(); 251 } 252 } 253 254 void CodeGenModule::checkAliases() { 255 // Check if the constructed aliases are well formed. It is really unfortunate 256 // that we have to do this in CodeGen, but we only construct mangled names 257 // and aliases during codegen. 258 bool Error = false; 259 DiagnosticsEngine &Diags = getDiags(); 260 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 261 E = Aliases.end(); I != E; ++I) { 262 const GlobalDecl &GD = *I; 263 const auto *D = cast<ValueDecl>(GD.getDecl()); 264 const AliasAttr *AA = D->getAttr<AliasAttr>(); 265 StringRef MangledName = getMangledName(GD); 266 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 267 auto *Alias = cast<llvm::GlobalAlias>(Entry); 268 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 269 if (!GV) { 270 Error = true; 271 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 272 } else if (GV->isDeclaration()) { 273 Error = true; 274 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 275 } 276 277 llvm::Constant *Aliasee = Alias->getAliasee(); 278 llvm::GlobalValue *AliaseeGV; 279 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 280 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 281 else 282 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 283 284 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 285 StringRef AliasSection = SA->getName(); 286 if (AliasSection != AliaseeGV->getSection()) 287 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 288 << AliasSection; 289 } 290 291 // We have to handle alias to weak aliases in here. LLVM itself disallows 292 // this since the object semantics would not match the IL one. For 293 // compatibility with gcc we implement it by just pointing the alias 294 // to its aliasee's aliasee. We also warn, since the user is probably 295 // expecting the link to be weak. 296 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 297 if (GA->mayBeOverridden()) { 298 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 299 << GV->getName() << GA->getName(); 300 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 301 GA->getAliasee(), Alias->getType()); 302 Alias->setAliasee(Aliasee); 303 } 304 } 305 } 306 if (!Error) 307 return; 308 309 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 310 E = Aliases.end(); I != E; ++I) { 311 const GlobalDecl &GD = *I; 312 StringRef MangledName = getMangledName(GD); 313 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 314 auto *Alias = cast<llvm::GlobalAlias>(Entry); 315 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 316 Alias->eraseFromParent(); 317 } 318 } 319 320 void CodeGenModule::clear() { 321 DeferredDeclsToEmit.clear(); 322 } 323 324 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 325 StringRef MainFile) { 326 if (!hasDiagnostics()) 327 return; 328 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 329 if (MainFile.empty()) 330 MainFile = "<stdin>"; 331 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 332 } else 333 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 334 << Mismatched; 335 } 336 337 void CodeGenModule::Release() { 338 EmitDeferred(); 339 applyReplacements(); 340 checkAliases(); 341 EmitCXXGlobalInitFunc(); 342 EmitCXXGlobalDtorFunc(); 343 EmitCXXThreadLocalInitFunc(); 344 if (ObjCRuntime) 345 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 346 AddGlobalCtor(ObjCInitFunction); 347 if (getCodeGenOpts().ProfileInstrGenerate) 348 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 349 AddGlobalCtor(PGOInit, 0); 350 if (PGOReader && PGOStats.hasDiagnostics()) 351 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 352 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 353 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 354 EmitGlobalAnnotations(); 355 EmitStaticExternCAliases(); 356 EmitDeferredUnusedCoverageMappings(); 357 if (CoverageMapping) 358 CoverageMapping->emit(); 359 emitLLVMUsed(); 360 361 if (CodeGenOpts.Autolink && 362 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 363 EmitModuleLinkOptions(); 364 } 365 if (CodeGenOpts.DwarfVersion) 366 // We actually want the latest version when there are conflicts. 367 // We can change from Warning to Latest if such mode is supported. 368 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 369 CodeGenOpts.DwarfVersion); 370 if (DebugInfo) 371 // We support a single version in the linked module. The LLVM 372 // parser will drop debug info with a different version number 373 // (and warn about it, too). 374 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 375 llvm::DEBUG_METADATA_VERSION); 376 377 // We need to record the widths of enums and wchar_t, so that we can generate 378 // the correct build attributes in the ARM backend. 379 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 380 if ( Arch == llvm::Triple::arm 381 || Arch == llvm::Triple::armeb 382 || Arch == llvm::Triple::thumb 383 || Arch == llvm::Triple::thumbeb) { 384 // Width of wchar_t in bytes 385 uint64_t WCharWidth = 386 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 387 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 388 389 // The minimum width of an enum in bytes 390 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 391 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 392 } 393 394 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 395 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 396 switch (PLevel) { 397 case 0: break; 398 case 1: PL = llvm::PICLevel::Small; break; 399 case 2: PL = llvm::PICLevel::Large; break; 400 default: llvm_unreachable("Invalid PIC Level"); 401 } 402 403 getModule().setPICLevel(PL); 404 } 405 406 SimplifyPersonality(); 407 408 if (getCodeGenOpts().EmitDeclMetadata) 409 EmitDeclMetadata(); 410 411 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 412 EmitCoverageFile(); 413 414 if (DebugInfo) 415 DebugInfo->finalize(); 416 417 EmitVersionIdentMetadata(); 418 419 EmitTargetMetadata(); 420 } 421 422 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 423 // Make sure that this type is translated. 424 Types.UpdateCompletedType(TD); 425 } 426 427 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 428 if (!TBAA) 429 return nullptr; 430 return TBAA->getTBAAInfo(QTy); 431 } 432 433 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 434 if (!TBAA) 435 return nullptr; 436 return TBAA->getTBAAInfoForVTablePtr(); 437 } 438 439 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 440 if (!TBAA) 441 return nullptr; 442 return TBAA->getTBAAStructInfo(QTy); 443 } 444 445 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 446 if (!TBAA) 447 return nullptr; 448 return TBAA->getTBAAStructTypeInfo(QTy); 449 } 450 451 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 452 llvm::MDNode *AccessN, 453 uint64_t O) { 454 if (!TBAA) 455 return nullptr; 456 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 457 } 458 459 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 460 /// and struct-path aware TBAA, the tag has the same format: 461 /// base type, access type and offset. 462 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 463 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 464 llvm::MDNode *TBAAInfo, 465 bool ConvertTypeToTag) { 466 if (ConvertTypeToTag && TBAA) 467 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 468 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 469 else 470 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 471 } 472 473 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 474 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 475 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 476 } 477 478 /// ErrorUnsupported - Print out an error that codegen doesn't support the 479 /// specified stmt yet. 480 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 481 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 482 "cannot compile this %0 yet"); 483 std::string Msg = Type; 484 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 485 << Msg << S->getSourceRange(); 486 } 487 488 /// ErrorUnsupported - Print out an error that codegen doesn't support the 489 /// specified decl yet. 490 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 491 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 492 "cannot compile this %0 yet"); 493 std::string Msg = Type; 494 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 495 } 496 497 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 498 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 499 } 500 501 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 502 const NamedDecl *D) const { 503 // Internal definitions always have default visibility. 504 if (GV->hasLocalLinkage()) { 505 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 506 return; 507 } 508 509 // Set visibility for definitions. 510 LinkageInfo LV = D->getLinkageAndVisibility(); 511 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 512 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 513 } 514 515 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 516 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 517 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 518 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 519 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 520 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 521 } 522 523 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 524 CodeGenOptions::TLSModel M) { 525 switch (M) { 526 case CodeGenOptions::GeneralDynamicTLSModel: 527 return llvm::GlobalVariable::GeneralDynamicTLSModel; 528 case CodeGenOptions::LocalDynamicTLSModel: 529 return llvm::GlobalVariable::LocalDynamicTLSModel; 530 case CodeGenOptions::InitialExecTLSModel: 531 return llvm::GlobalVariable::InitialExecTLSModel; 532 case CodeGenOptions::LocalExecTLSModel: 533 return llvm::GlobalVariable::LocalExecTLSModel; 534 } 535 llvm_unreachable("Invalid TLS model!"); 536 } 537 538 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 539 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 540 541 llvm::GlobalValue::ThreadLocalMode TLM; 542 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 543 544 // Override the TLS model if it is explicitly specified. 545 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 546 TLM = GetLLVMTLSModel(Attr->getModel()); 547 } 548 549 GV->setThreadLocalMode(TLM); 550 } 551 552 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 553 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 554 if (!FoundStr.empty()) 555 return FoundStr; 556 557 const auto *ND = cast<NamedDecl>(GD.getDecl()); 558 SmallString<256> Buffer; 559 StringRef Str; 560 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 561 llvm::raw_svector_ostream Out(Buffer); 562 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 563 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 564 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 565 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 566 else 567 getCXXABI().getMangleContext().mangleName(ND, Out); 568 Str = Out.str(); 569 } else { 570 IdentifierInfo *II = ND->getIdentifier(); 571 assert(II && "Attempt to mangle unnamed decl."); 572 Str = II->getName(); 573 } 574 575 // Keep the first result in the case of a mangling collision. 576 auto Result = Manglings.insert(std::make_pair(Str, GD)); 577 return FoundStr = Result.first->first(); 578 } 579 580 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 581 const BlockDecl *BD) { 582 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 583 const Decl *D = GD.getDecl(); 584 585 SmallString<256> Buffer; 586 llvm::raw_svector_ostream Out(Buffer); 587 if (!D) 588 MangleCtx.mangleGlobalBlock(BD, 589 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 590 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 591 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 592 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 593 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 594 else 595 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 596 597 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 598 return Result.first->first(); 599 } 600 601 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 602 return getModule().getNamedValue(Name); 603 } 604 605 /// AddGlobalCtor - Add a function to the list that will be called before 606 /// main() runs. 607 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 608 llvm::Constant *AssociatedData) { 609 // FIXME: Type coercion of void()* types. 610 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 611 } 612 613 /// AddGlobalDtor - Add a function to the list that will be called 614 /// when the module is unloaded. 615 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 616 // FIXME: Type coercion of void()* types. 617 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 618 } 619 620 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 621 // Ctor function type is void()*. 622 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 623 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 624 625 // Get the type of a ctor entry, { i32, void ()*, i8* }. 626 llvm::StructType *CtorStructTy = llvm::StructType::get( 627 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 628 629 // Construct the constructor and destructor arrays. 630 SmallVector<llvm::Constant*, 8> Ctors; 631 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 632 llvm::Constant *S[] = { 633 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 634 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 635 (I->AssociatedData 636 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 637 : llvm::Constant::getNullValue(VoidPtrTy)) 638 }; 639 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 640 } 641 642 if (!Ctors.empty()) { 643 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 644 new llvm::GlobalVariable(TheModule, AT, false, 645 llvm::GlobalValue::AppendingLinkage, 646 llvm::ConstantArray::get(AT, Ctors), 647 GlobalName); 648 } 649 } 650 651 llvm::GlobalValue::LinkageTypes 652 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 653 const auto *D = cast<FunctionDecl>(GD.getDecl()); 654 655 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 656 657 if (isa<CXXDestructorDecl>(D) && 658 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 659 GD.getDtorType())) { 660 // Destructor variants in the Microsoft C++ ABI are always internal or 661 // linkonce_odr thunks emitted on an as-needed basis. 662 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 663 : llvm::GlobalValue::LinkOnceODRLinkage; 664 } 665 666 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 667 } 668 669 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 670 llvm::Function *F) { 671 setNonAliasAttributes(D, F); 672 } 673 674 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 675 const CGFunctionInfo &Info, 676 llvm::Function *F) { 677 unsigned CallingConv; 678 AttributeListType AttributeList; 679 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 680 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 681 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 682 } 683 684 /// Determines whether the language options require us to model 685 /// unwind exceptions. We treat -fexceptions as mandating this 686 /// except under the fragile ObjC ABI with only ObjC exceptions 687 /// enabled. This means, for example, that C with -fexceptions 688 /// enables this. 689 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 690 // If exceptions are completely disabled, obviously this is false. 691 if (!LangOpts.Exceptions) return false; 692 693 // If C++ exceptions are enabled, this is true. 694 if (LangOpts.CXXExceptions) return true; 695 696 // If ObjC exceptions are enabled, this depends on the ABI. 697 if (LangOpts.ObjCExceptions) { 698 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 699 } 700 701 return true; 702 } 703 704 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 705 llvm::Function *F) { 706 llvm::AttrBuilder B; 707 708 if (CodeGenOpts.UnwindTables) 709 B.addAttribute(llvm::Attribute::UWTable); 710 711 if (!hasUnwindExceptions(LangOpts)) 712 B.addAttribute(llvm::Attribute::NoUnwind); 713 714 if (D->hasAttr<NakedAttr>()) { 715 // Naked implies noinline: we should not be inlining such functions. 716 B.addAttribute(llvm::Attribute::Naked); 717 B.addAttribute(llvm::Attribute::NoInline); 718 } else if (D->hasAttr<NoDuplicateAttr>()) { 719 B.addAttribute(llvm::Attribute::NoDuplicate); 720 } else if (D->hasAttr<NoInlineAttr>()) { 721 B.addAttribute(llvm::Attribute::NoInline); 722 } else if (D->hasAttr<AlwaysInlineAttr>() && 723 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 724 llvm::Attribute::NoInline)) { 725 // (noinline wins over always_inline, and we can't specify both in IR) 726 B.addAttribute(llvm::Attribute::AlwaysInline); 727 } 728 729 if (D->hasAttr<ColdAttr>()) { 730 B.addAttribute(llvm::Attribute::OptimizeForSize); 731 B.addAttribute(llvm::Attribute::Cold); 732 } 733 734 if (D->hasAttr<MinSizeAttr>()) 735 B.addAttribute(llvm::Attribute::MinSize); 736 737 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 738 B.addAttribute(llvm::Attribute::StackProtect); 739 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 740 B.addAttribute(llvm::Attribute::StackProtectStrong); 741 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 742 B.addAttribute(llvm::Attribute::StackProtectReq); 743 744 // Add sanitizer attributes if function is not blacklisted. 745 if (!isInSanitizerBlacklist(F, D->getLocation())) { 746 // When AddressSanitizer is enabled, set SanitizeAddress attribute 747 // unless __attribute__((no_sanitize_address)) is used. 748 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 749 !D->hasAttr<NoSanitizeAddressAttr>()) 750 B.addAttribute(llvm::Attribute::SanitizeAddress); 751 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 752 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 753 !D->hasAttr<NoSanitizeThreadAttr>()) 754 B.addAttribute(llvm::Attribute::SanitizeThread); 755 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 756 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 757 !D->hasAttr<NoSanitizeMemoryAttr>()) 758 B.addAttribute(llvm::Attribute::SanitizeMemory); 759 } 760 761 F->addAttributes(llvm::AttributeSet::FunctionIndex, 762 llvm::AttributeSet::get( 763 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 764 765 if (D->hasAttr<OptimizeNoneAttr>()) { 766 // OptimizeNone implies noinline; we should not be inlining such functions. 767 F->addFnAttr(llvm::Attribute::OptimizeNone); 768 F->addFnAttr(llvm::Attribute::NoInline); 769 770 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 771 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 772 F->removeFnAttr(llvm::Attribute::MinSize); 773 F->removeFnAttr(llvm::Attribute::AlwaysInline); 774 775 // Attribute 'inlinehint' has no effect on 'optnone' functions. 776 // Explicitly remove it from the set of function attributes. 777 F->removeFnAttr(llvm::Attribute::InlineHint); 778 } 779 780 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 781 F->setUnnamedAddr(true); 782 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 783 if (MD->isVirtual()) 784 F->setUnnamedAddr(true); 785 786 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 787 if (alignment) 788 F->setAlignment(alignment); 789 790 // C++ ABI requires 2-byte alignment for member functions. 791 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 792 F->setAlignment(2); 793 } 794 795 void CodeGenModule::SetCommonAttributes(const Decl *D, 796 llvm::GlobalValue *GV) { 797 if (const auto *ND = dyn_cast<NamedDecl>(D)) 798 setGlobalVisibility(GV, ND); 799 else 800 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 801 802 if (D->hasAttr<UsedAttr>()) 803 addUsedGlobal(GV); 804 } 805 806 void CodeGenModule::setAliasAttributes(const Decl *D, 807 llvm::GlobalValue *GV) { 808 SetCommonAttributes(D, GV); 809 810 // Process the dllexport attribute based on whether the original definition 811 // (not necessarily the aliasee) was exported. 812 if (D->hasAttr<DLLExportAttr>()) 813 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 814 } 815 816 void CodeGenModule::setNonAliasAttributes(const Decl *D, 817 llvm::GlobalObject *GO) { 818 SetCommonAttributes(D, GO); 819 820 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 821 GO->setSection(SA->getName()); 822 823 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 824 } 825 826 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 827 llvm::Function *F, 828 const CGFunctionInfo &FI) { 829 SetLLVMFunctionAttributes(D, FI, F); 830 SetLLVMFunctionAttributesForDefinition(D, F); 831 832 F->setLinkage(llvm::Function::InternalLinkage); 833 834 setNonAliasAttributes(D, F); 835 } 836 837 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 838 const NamedDecl *ND) { 839 // Set linkage and visibility in case we never see a definition. 840 LinkageInfo LV = ND->getLinkageAndVisibility(); 841 if (LV.getLinkage() != ExternalLinkage) { 842 // Don't set internal linkage on declarations. 843 } else { 844 if (ND->hasAttr<DLLImportAttr>()) { 845 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 846 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 847 } else if (ND->hasAttr<DLLExportAttr>()) { 848 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 849 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 850 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 851 // "extern_weak" is overloaded in LLVM; we probably should have 852 // separate linkage types for this. 853 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 854 } 855 856 // Set visibility on a declaration only if it's explicit. 857 if (LV.isVisibilityExplicit()) 858 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 859 } 860 } 861 862 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 863 bool IsIncompleteFunction, 864 bool IsThunk) { 865 if (unsigned IID = F->getIntrinsicID()) { 866 // If this is an intrinsic function, set the function's attributes 867 // to the intrinsic's attributes. 868 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 869 (llvm::Intrinsic::ID)IID)); 870 return; 871 } 872 873 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 874 875 if (!IsIncompleteFunction) 876 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 877 878 // Add the Returned attribute for "this", except for iOS 5 and earlier 879 // where substantial code, including the libstdc++ dylib, was compiled with 880 // GCC and does not actually return "this". 881 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 882 !(getTarget().getTriple().isiOS() && 883 getTarget().getTriple().isOSVersionLT(6))) { 884 assert(!F->arg_empty() && 885 F->arg_begin()->getType() 886 ->canLosslesslyBitCastTo(F->getReturnType()) && 887 "unexpected this return"); 888 F->addAttribute(1, llvm::Attribute::Returned); 889 } 890 891 // Only a few attributes are set on declarations; these may later be 892 // overridden by a definition. 893 894 setLinkageAndVisibilityForGV(F, FD); 895 896 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 897 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 898 // Don't dllexport/import destructor thunks. 899 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 900 } 901 } 902 903 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 904 F->setSection(SA->getName()); 905 906 // A replaceable global allocation function does not act like a builtin by 907 // default, only if it is invoked by a new-expression or delete-expression. 908 if (FD->isReplaceableGlobalAllocationFunction()) 909 F->addAttribute(llvm::AttributeSet::FunctionIndex, 910 llvm::Attribute::NoBuiltin); 911 } 912 913 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 914 assert(!GV->isDeclaration() && 915 "Only globals with definition can force usage."); 916 LLVMUsed.push_back(GV); 917 } 918 919 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 920 assert(!GV->isDeclaration() && 921 "Only globals with definition can force usage."); 922 LLVMCompilerUsed.push_back(GV); 923 } 924 925 static void emitUsed(CodeGenModule &CGM, StringRef Name, 926 std::vector<llvm::WeakVH> &List) { 927 // Don't create llvm.used if there is no need. 928 if (List.empty()) 929 return; 930 931 // Convert List to what ConstantArray needs. 932 SmallVector<llvm::Constant*, 8> UsedArray; 933 UsedArray.resize(List.size()); 934 for (unsigned i = 0, e = List.size(); i != e; ++i) { 935 UsedArray[i] = 936 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 937 CGM.Int8PtrTy); 938 } 939 940 if (UsedArray.empty()) 941 return; 942 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 943 944 auto *GV = new llvm::GlobalVariable( 945 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 946 llvm::ConstantArray::get(ATy, UsedArray), Name); 947 948 GV->setSection("llvm.metadata"); 949 } 950 951 void CodeGenModule::emitLLVMUsed() { 952 emitUsed(*this, "llvm.used", LLVMUsed); 953 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 954 } 955 956 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 957 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 958 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 959 } 960 961 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 962 llvm::SmallString<32> Opt; 963 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 964 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 965 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 966 } 967 968 void CodeGenModule::AddDependentLib(StringRef Lib) { 969 llvm::SmallString<24> Opt; 970 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 971 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 972 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 973 } 974 975 /// \brief Add link options implied by the given module, including modules 976 /// it depends on, using a postorder walk. 977 static void addLinkOptionsPostorder(CodeGenModule &CGM, 978 Module *Mod, 979 SmallVectorImpl<llvm::Value *> &Metadata, 980 llvm::SmallPtrSet<Module *, 16> &Visited) { 981 // Import this module's parent. 982 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 983 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 984 } 985 986 // Import this module's dependencies. 987 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 988 if (Visited.insert(Mod->Imports[I - 1]).second) 989 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 990 } 991 992 // Add linker options to link against the libraries/frameworks 993 // described by this module. 994 llvm::LLVMContext &Context = CGM.getLLVMContext(); 995 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 996 // Link against a framework. Frameworks are currently Darwin only, so we 997 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 998 if (Mod->LinkLibraries[I-1].IsFramework) { 999 llvm::Value *Args[2] = { 1000 llvm::MDString::get(Context, "-framework"), 1001 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 1002 }; 1003 1004 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1005 continue; 1006 } 1007 1008 // Link against a library. 1009 llvm::SmallString<24> Opt; 1010 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1011 Mod->LinkLibraries[I-1].Library, Opt); 1012 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 1013 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1014 } 1015 } 1016 1017 void CodeGenModule::EmitModuleLinkOptions() { 1018 // Collect the set of all of the modules we want to visit to emit link 1019 // options, which is essentially the imported modules and all of their 1020 // non-explicit child modules. 1021 llvm::SetVector<clang::Module *> LinkModules; 1022 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1023 SmallVector<clang::Module *, 16> Stack; 1024 1025 // Seed the stack with imported modules. 1026 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1027 MEnd = ImportedModules.end(); 1028 M != MEnd; ++M) { 1029 if (Visited.insert(*M).second) 1030 Stack.push_back(*M); 1031 } 1032 1033 // Find all of the modules to import, making a little effort to prune 1034 // non-leaf modules. 1035 while (!Stack.empty()) { 1036 clang::Module *Mod = Stack.pop_back_val(); 1037 1038 bool AnyChildren = false; 1039 1040 // Visit the submodules of this module. 1041 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1042 SubEnd = Mod->submodule_end(); 1043 Sub != SubEnd; ++Sub) { 1044 // Skip explicit children; they need to be explicitly imported to be 1045 // linked against. 1046 if ((*Sub)->IsExplicit) 1047 continue; 1048 1049 if (Visited.insert(*Sub).second) { 1050 Stack.push_back(*Sub); 1051 AnyChildren = true; 1052 } 1053 } 1054 1055 // We didn't find any children, so add this module to the list of 1056 // modules to link against. 1057 if (!AnyChildren) { 1058 LinkModules.insert(Mod); 1059 } 1060 } 1061 1062 // Add link options for all of the imported modules in reverse topological 1063 // order. We don't do anything to try to order import link flags with respect 1064 // to linker options inserted by things like #pragma comment(). 1065 SmallVector<llvm::Value *, 16> MetadataArgs; 1066 Visited.clear(); 1067 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1068 MEnd = LinkModules.end(); 1069 M != MEnd; ++M) { 1070 if (Visited.insert(*M).second) 1071 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1072 } 1073 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1074 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1075 1076 // Add the linker options metadata flag. 1077 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1078 llvm::MDNode::get(getLLVMContext(), 1079 LinkerOptionsMetadata)); 1080 } 1081 1082 void CodeGenModule::EmitDeferred() { 1083 // Emit code for any potentially referenced deferred decls. Since a 1084 // previously unused static decl may become used during the generation of code 1085 // for a static function, iterate until no changes are made. 1086 1087 while (true) { 1088 if (!DeferredVTables.empty()) { 1089 EmitDeferredVTables(); 1090 1091 // Emitting a v-table doesn't directly cause more v-tables to 1092 // become deferred, although it can cause functions to be 1093 // emitted that then need those v-tables. 1094 assert(DeferredVTables.empty()); 1095 } 1096 1097 // Stop if we're out of both deferred v-tables and deferred declarations. 1098 if (DeferredDeclsToEmit.empty()) break; 1099 1100 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1101 GlobalDecl D = G.GD; 1102 llvm::GlobalValue *GV = G.GV; 1103 DeferredDeclsToEmit.pop_back(); 1104 1105 assert(GV == GetGlobalValue(getMangledName(D))); 1106 // Check to see if we've already emitted this. This is necessary 1107 // for a couple of reasons: first, decls can end up in the 1108 // deferred-decls queue multiple times, and second, decls can end 1109 // up with definitions in unusual ways (e.g. by an extern inline 1110 // function acquiring a strong function redefinition). Just 1111 // ignore these cases. 1112 if(!GV->isDeclaration()) 1113 continue; 1114 1115 // Otherwise, emit the definition and move on to the next one. 1116 EmitGlobalDefinition(D, GV); 1117 } 1118 } 1119 1120 void CodeGenModule::EmitGlobalAnnotations() { 1121 if (Annotations.empty()) 1122 return; 1123 1124 // Create a new global variable for the ConstantStruct in the Module. 1125 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1126 Annotations[0]->getType(), Annotations.size()), Annotations); 1127 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1128 llvm::GlobalValue::AppendingLinkage, 1129 Array, "llvm.global.annotations"); 1130 gv->setSection(AnnotationSection); 1131 } 1132 1133 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1134 llvm::Constant *&AStr = AnnotationStrings[Str]; 1135 if (AStr) 1136 return AStr; 1137 1138 // Not found yet, create a new global. 1139 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1140 auto *gv = 1141 new llvm::GlobalVariable(getModule(), s->getType(), true, 1142 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1143 gv->setSection(AnnotationSection); 1144 gv->setUnnamedAddr(true); 1145 AStr = gv; 1146 return gv; 1147 } 1148 1149 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1150 SourceManager &SM = getContext().getSourceManager(); 1151 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1152 if (PLoc.isValid()) 1153 return EmitAnnotationString(PLoc.getFilename()); 1154 return EmitAnnotationString(SM.getBufferName(Loc)); 1155 } 1156 1157 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1158 SourceManager &SM = getContext().getSourceManager(); 1159 PresumedLoc PLoc = SM.getPresumedLoc(L); 1160 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1161 SM.getExpansionLineNumber(L); 1162 return llvm::ConstantInt::get(Int32Ty, LineNo); 1163 } 1164 1165 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1166 const AnnotateAttr *AA, 1167 SourceLocation L) { 1168 // Get the globals for file name, annotation, and the line number. 1169 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1170 *UnitGV = EmitAnnotationUnit(L), 1171 *LineNoCst = EmitAnnotationLineNo(L); 1172 1173 // Create the ConstantStruct for the global annotation. 1174 llvm::Constant *Fields[4] = { 1175 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1176 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1177 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1178 LineNoCst 1179 }; 1180 return llvm::ConstantStruct::getAnon(Fields); 1181 } 1182 1183 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1184 llvm::GlobalValue *GV) { 1185 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1186 // Get the struct elements for these annotations. 1187 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1188 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1189 } 1190 1191 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1192 SourceLocation Loc) const { 1193 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1194 // Blacklist by function name. 1195 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1196 return true; 1197 // Blacklist by location. 1198 if (!Loc.isInvalid()) 1199 return SanitizerBL.isBlacklistedLocation(Loc); 1200 // If location is unknown, this may be a compiler-generated function. Assume 1201 // it's located in the main file. 1202 auto &SM = Context.getSourceManager(); 1203 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1204 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1205 } 1206 return false; 1207 } 1208 1209 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1210 SourceLocation Loc, QualType Ty, 1211 StringRef Category) const { 1212 // For now globals can be blacklisted only in ASan. 1213 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1214 return false; 1215 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1216 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1217 return true; 1218 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1219 return true; 1220 // Check global type. 1221 if (!Ty.isNull()) { 1222 // Drill down the array types: if global variable of a fixed type is 1223 // blacklisted, we also don't instrument arrays of them. 1224 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1225 Ty = AT->getElementType(); 1226 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1227 // We allow to blacklist only record types (classes, structs etc.) 1228 if (Ty->isRecordType()) { 1229 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1230 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1231 return true; 1232 } 1233 } 1234 return false; 1235 } 1236 1237 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1238 // Never defer when EmitAllDecls is specified. 1239 if (LangOpts.EmitAllDecls) 1240 return false; 1241 1242 return !getContext().DeclMustBeEmitted(Global); 1243 } 1244 1245 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1246 const CXXUuidofExpr* E) { 1247 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1248 // well-formed. 1249 StringRef Uuid = E->getUuidAsStringRef(Context); 1250 std::string Name = "_GUID_" + Uuid.lower(); 1251 std::replace(Name.begin(), Name.end(), '-', '_'); 1252 1253 // Look for an existing global. 1254 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1255 return GV; 1256 1257 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1258 assert(Init && "failed to initialize as constant"); 1259 1260 auto *GV = new llvm::GlobalVariable( 1261 getModule(), Init->getType(), 1262 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1263 return GV; 1264 } 1265 1266 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1267 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1268 assert(AA && "No alias?"); 1269 1270 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1271 1272 // See if there is already something with the target's name in the module. 1273 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1274 if (Entry) { 1275 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1276 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1277 } 1278 1279 llvm::Constant *Aliasee; 1280 if (isa<llvm::FunctionType>(DeclTy)) 1281 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1282 GlobalDecl(cast<FunctionDecl>(VD)), 1283 /*ForVTable=*/false); 1284 else 1285 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1286 llvm::PointerType::getUnqual(DeclTy), 1287 nullptr); 1288 1289 auto *F = cast<llvm::GlobalValue>(Aliasee); 1290 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1291 WeakRefReferences.insert(F); 1292 1293 return Aliasee; 1294 } 1295 1296 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1297 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1298 1299 // Weak references don't produce any output by themselves. 1300 if (Global->hasAttr<WeakRefAttr>()) 1301 return; 1302 1303 // If this is an alias definition (which otherwise looks like a declaration) 1304 // emit it now. 1305 if (Global->hasAttr<AliasAttr>()) 1306 return EmitAliasDefinition(GD); 1307 1308 // If this is CUDA, be selective about which declarations we emit. 1309 if (LangOpts.CUDA) { 1310 if (CodeGenOpts.CUDAIsDevice) { 1311 if (!Global->hasAttr<CUDADeviceAttr>() && 1312 !Global->hasAttr<CUDAGlobalAttr>() && 1313 !Global->hasAttr<CUDAConstantAttr>() && 1314 !Global->hasAttr<CUDASharedAttr>()) 1315 return; 1316 } else { 1317 if (!Global->hasAttr<CUDAHostAttr>() && ( 1318 Global->hasAttr<CUDADeviceAttr>() || 1319 Global->hasAttr<CUDAConstantAttr>() || 1320 Global->hasAttr<CUDASharedAttr>())) 1321 return; 1322 } 1323 } 1324 1325 // Ignore declarations, they will be emitted on their first use. 1326 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1327 // Forward declarations are emitted lazily on first use. 1328 if (!FD->doesThisDeclarationHaveABody()) { 1329 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1330 return; 1331 1332 StringRef MangledName = getMangledName(GD); 1333 1334 // Compute the function info and LLVM type. 1335 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1336 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1337 1338 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1339 /*DontDefer=*/false); 1340 return; 1341 } 1342 } else { 1343 const auto *VD = cast<VarDecl>(Global); 1344 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1345 1346 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1347 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1348 return; 1349 } 1350 1351 // Defer code generation when possible if this is a static definition, inline 1352 // function etc. These we only want to emit if they are used. 1353 if (!MayDeferGeneration(Global)) { 1354 // Emit the definition if it can't be deferred. 1355 EmitGlobalDefinition(GD); 1356 return; 1357 } 1358 1359 // If we're deferring emission of a C++ variable with an 1360 // initializer, remember the order in which it appeared in the file. 1361 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1362 cast<VarDecl>(Global)->hasInit()) { 1363 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1364 CXXGlobalInits.push_back(nullptr); 1365 } 1366 1367 // If the value has already been used, add it directly to the 1368 // DeferredDeclsToEmit list. 1369 StringRef MangledName = getMangledName(GD); 1370 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1371 addDeferredDeclToEmit(GV, GD); 1372 else { 1373 // Otherwise, remember that we saw a deferred decl with this name. The 1374 // first use of the mangled name will cause it to move into 1375 // DeferredDeclsToEmit. 1376 DeferredDecls[MangledName] = GD; 1377 } 1378 } 1379 1380 namespace { 1381 struct FunctionIsDirectlyRecursive : 1382 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1383 const StringRef Name; 1384 const Builtin::Context &BI; 1385 bool Result; 1386 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1387 Name(N), BI(C), Result(false) { 1388 } 1389 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1390 1391 bool TraverseCallExpr(CallExpr *E) { 1392 const FunctionDecl *FD = E->getDirectCallee(); 1393 if (!FD) 1394 return true; 1395 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1396 if (Attr && Name == Attr->getLabel()) { 1397 Result = true; 1398 return false; 1399 } 1400 unsigned BuiltinID = FD->getBuiltinID(); 1401 if (!BuiltinID) 1402 return true; 1403 StringRef BuiltinName = BI.GetName(BuiltinID); 1404 if (BuiltinName.startswith("__builtin_") && 1405 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1406 Result = true; 1407 return false; 1408 } 1409 return true; 1410 } 1411 }; 1412 } 1413 1414 // isTriviallyRecursive - Check if this function calls another 1415 // decl that, because of the asm attribute or the other decl being a builtin, 1416 // ends up pointing to itself. 1417 bool 1418 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1419 StringRef Name; 1420 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1421 // asm labels are a special kind of mangling we have to support. 1422 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1423 if (!Attr) 1424 return false; 1425 Name = Attr->getLabel(); 1426 } else { 1427 Name = FD->getName(); 1428 } 1429 1430 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1431 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1432 return Walker.Result; 1433 } 1434 1435 bool 1436 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1437 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1438 return true; 1439 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1440 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1441 return false; 1442 // PR9614. Avoid cases where the source code is lying to us. An available 1443 // externally function should have an equivalent function somewhere else, 1444 // but a function that calls itself is clearly not equivalent to the real 1445 // implementation. 1446 // This happens in glibc's btowc and in some configure checks. 1447 return !isTriviallyRecursive(F); 1448 } 1449 1450 /// If the type for the method's class was generated by 1451 /// CGDebugInfo::createContextChain(), the cache contains only a 1452 /// limited DIType without any declarations. Since EmitFunctionStart() 1453 /// needs to find the canonical declaration for each method, we need 1454 /// to construct the complete type prior to emitting the method. 1455 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1456 if (!D->isInstance()) 1457 return; 1458 1459 if (CGDebugInfo *DI = getModuleDebugInfo()) 1460 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1461 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1462 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1463 } 1464 } 1465 1466 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1467 const auto *D = cast<ValueDecl>(GD.getDecl()); 1468 1469 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1470 Context.getSourceManager(), 1471 "Generating code for declaration"); 1472 1473 if (isa<FunctionDecl>(D)) { 1474 // At -O0, don't generate IR for functions with available_externally 1475 // linkage. 1476 if (!shouldEmitFunction(GD)) 1477 return; 1478 1479 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1480 CompleteDIClassType(Method); 1481 // Make sure to emit the definition(s) before we emit the thunks. 1482 // This is necessary for the generation of certain thunks. 1483 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1484 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1485 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1486 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1487 else 1488 EmitGlobalFunctionDefinition(GD, GV); 1489 1490 if (Method->isVirtual()) 1491 getVTables().EmitThunks(GD); 1492 1493 return; 1494 } 1495 1496 return EmitGlobalFunctionDefinition(GD, GV); 1497 } 1498 1499 if (const auto *VD = dyn_cast<VarDecl>(D)) 1500 return EmitGlobalVarDefinition(VD); 1501 1502 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1503 } 1504 1505 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1506 /// module, create and return an llvm Function with the specified type. If there 1507 /// is something in the module with the specified name, return it potentially 1508 /// bitcasted to the right type. 1509 /// 1510 /// If D is non-null, it specifies a decl that correspond to this. This is used 1511 /// to set the attributes on the function when it is first created. 1512 llvm::Constant * 1513 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1514 llvm::Type *Ty, 1515 GlobalDecl GD, bool ForVTable, 1516 bool DontDefer, bool IsThunk, 1517 llvm::AttributeSet ExtraAttrs) { 1518 const Decl *D = GD.getDecl(); 1519 1520 // Lookup the entry, lazily creating it if necessary. 1521 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1522 if (Entry) { 1523 if (WeakRefReferences.erase(Entry)) { 1524 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1525 if (FD && !FD->hasAttr<WeakAttr>()) 1526 Entry->setLinkage(llvm::Function::ExternalLinkage); 1527 } 1528 1529 // Handle dropped DLL attributes. 1530 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1531 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1532 1533 if (Entry->getType()->getElementType() == Ty) 1534 return Entry; 1535 1536 // Make sure the result is of the correct type. 1537 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1538 } 1539 1540 // This function doesn't have a complete type (for example, the return 1541 // type is an incomplete struct). Use a fake type instead, and make 1542 // sure not to try to set attributes. 1543 bool IsIncompleteFunction = false; 1544 1545 llvm::FunctionType *FTy; 1546 if (isa<llvm::FunctionType>(Ty)) { 1547 FTy = cast<llvm::FunctionType>(Ty); 1548 } else { 1549 FTy = llvm::FunctionType::get(VoidTy, false); 1550 IsIncompleteFunction = true; 1551 } 1552 1553 llvm::Function *F = llvm::Function::Create(FTy, 1554 llvm::Function::ExternalLinkage, 1555 MangledName, &getModule()); 1556 assert(F->getName() == MangledName && "name was uniqued!"); 1557 if (D) 1558 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1559 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1560 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1561 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1562 llvm::AttributeSet::get(VMContext, 1563 llvm::AttributeSet::FunctionIndex, 1564 B)); 1565 } 1566 1567 if (!DontDefer) { 1568 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1569 // each other bottoming out with the base dtor. Therefore we emit non-base 1570 // dtors on usage, even if there is no dtor definition in the TU. 1571 if (D && isa<CXXDestructorDecl>(D) && 1572 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1573 GD.getDtorType())) 1574 addDeferredDeclToEmit(F, GD); 1575 1576 // This is the first use or definition of a mangled name. If there is a 1577 // deferred decl with this name, remember that we need to emit it at the end 1578 // of the file. 1579 auto DDI = DeferredDecls.find(MangledName); 1580 if (DDI != DeferredDecls.end()) { 1581 // Move the potentially referenced deferred decl to the 1582 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1583 // don't need it anymore). 1584 addDeferredDeclToEmit(F, DDI->second); 1585 DeferredDecls.erase(DDI); 1586 1587 // Otherwise, if this is a sized deallocation function, emit a weak 1588 // definition 1589 // for it at the end of the translation unit. 1590 } else if (D && cast<FunctionDecl>(D) 1591 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1592 addDeferredDeclToEmit(F, GD); 1593 1594 // Otherwise, there are cases we have to worry about where we're 1595 // using a declaration for which we must emit a definition but where 1596 // we might not find a top-level definition: 1597 // - member functions defined inline in their classes 1598 // - friend functions defined inline in some class 1599 // - special member functions with implicit definitions 1600 // If we ever change our AST traversal to walk into class methods, 1601 // this will be unnecessary. 1602 // 1603 // We also don't emit a definition for a function if it's going to be an 1604 // entry in a vtable, unless it's already marked as used. 1605 } else if (getLangOpts().CPlusPlus && D) { 1606 // Look for a declaration that's lexically in a record. 1607 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1608 FD = FD->getPreviousDecl()) { 1609 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1610 if (FD->doesThisDeclarationHaveABody()) { 1611 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1612 break; 1613 } 1614 } 1615 } 1616 } 1617 } 1618 1619 // Make sure the result is of the requested type. 1620 if (!IsIncompleteFunction) { 1621 assert(F->getType()->getElementType() == Ty); 1622 return F; 1623 } 1624 1625 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1626 return llvm::ConstantExpr::getBitCast(F, PTy); 1627 } 1628 1629 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1630 /// non-null, then this function will use the specified type if it has to 1631 /// create it (this occurs when we see a definition of the function). 1632 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1633 llvm::Type *Ty, 1634 bool ForVTable, 1635 bool DontDefer) { 1636 // If there was no specific requested type, just convert it now. 1637 if (!Ty) 1638 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1639 1640 StringRef MangledName = getMangledName(GD); 1641 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1642 } 1643 1644 /// CreateRuntimeFunction - Create a new runtime function with the specified 1645 /// type and name. 1646 llvm::Constant * 1647 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1648 StringRef Name, 1649 llvm::AttributeSet ExtraAttrs) { 1650 llvm::Constant *C = 1651 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1652 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1653 if (auto *F = dyn_cast<llvm::Function>(C)) 1654 if (F->empty()) 1655 F->setCallingConv(getRuntimeCC()); 1656 return C; 1657 } 1658 1659 /// isTypeConstant - Determine whether an object of this type can be emitted 1660 /// as a constant. 1661 /// 1662 /// If ExcludeCtor is true, the duration when the object's constructor runs 1663 /// will not be considered. The caller will need to verify that the object is 1664 /// not written to during its construction. 1665 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1666 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1667 return false; 1668 1669 if (Context.getLangOpts().CPlusPlus) { 1670 if (const CXXRecordDecl *Record 1671 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1672 return ExcludeCtor && !Record->hasMutableFields() && 1673 Record->hasTrivialDestructor(); 1674 } 1675 1676 return true; 1677 } 1678 1679 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1680 /// create and return an llvm GlobalVariable with the specified type. If there 1681 /// is something in the module with the specified name, return it potentially 1682 /// bitcasted to the right type. 1683 /// 1684 /// If D is non-null, it specifies a decl that correspond to this. This is used 1685 /// to set the attributes on the global when it is first created. 1686 llvm::Constant * 1687 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1688 llvm::PointerType *Ty, 1689 const VarDecl *D) { 1690 // Lookup the entry, lazily creating it if necessary. 1691 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1692 if (Entry) { 1693 if (WeakRefReferences.erase(Entry)) { 1694 if (D && !D->hasAttr<WeakAttr>()) 1695 Entry->setLinkage(llvm::Function::ExternalLinkage); 1696 } 1697 1698 // Handle dropped DLL attributes. 1699 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1700 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1701 1702 if (Entry->getType() == Ty) 1703 return Entry; 1704 1705 // Make sure the result is of the correct type. 1706 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1707 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1708 1709 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1710 } 1711 1712 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1713 auto *GV = new llvm::GlobalVariable( 1714 getModule(), Ty->getElementType(), false, 1715 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1716 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1717 1718 // This is the first use or definition of a mangled name. If there is a 1719 // deferred decl with this name, remember that we need to emit it at the end 1720 // of the file. 1721 auto DDI = DeferredDecls.find(MangledName); 1722 if (DDI != DeferredDecls.end()) { 1723 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1724 // list, and remove it from DeferredDecls (since we don't need it anymore). 1725 addDeferredDeclToEmit(GV, DDI->second); 1726 DeferredDecls.erase(DDI); 1727 } 1728 1729 // Handle things which are present even on external declarations. 1730 if (D) { 1731 // FIXME: This code is overly simple and should be merged with other global 1732 // handling. 1733 GV->setConstant(isTypeConstant(D->getType(), false)); 1734 1735 setLinkageAndVisibilityForGV(GV, D); 1736 1737 if (D->getTLSKind()) { 1738 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1739 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1740 setTLSMode(GV, *D); 1741 } 1742 1743 // If required by the ABI, treat declarations of static data members with 1744 // inline initializers as definitions. 1745 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1746 EmitGlobalVarDefinition(D); 1747 } 1748 1749 // Handle XCore specific ABI requirements. 1750 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1751 D->getLanguageLinkage() == CLanguageLinkage && 1752 D->getType().isConstant(Context) && 1753 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1754 GV->setSection(".cp.rodata"); 1755 } 1756 1757 if (AddrSpace != Ty->getAddressSpace()) 1758 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1759 1760 return GV; 1761 } 1762 1763 1764 llvm::GlobalVariable * 1765 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1766 llvm::Type *Ty, 1767 llvm::GlobalValue::LinkageTypes Linkage) { 1768 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1769 llvm::GlobalVariable *OldGV = nullptr; 1770 1771 if (GV) { 1772 // Check if the variable has the right type. 1773 if (GV->getType()->getElementType() == Ty) 1774 return GV; 1775 1776 // Because C++ name mangling, the only way we can end up with an already 1777 // existing global with the same name is if it has been declared extern "C". 1778 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1779 OldGV = GV; 1780 } 1781 1782 // Create a new variable. 1783 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1784 Linkage, nullptr, Name); 1785 1786 if (OldGV) { 1787 // Replace occurrences of the old variable if needed. 1788 GV->takeName(OldGV); 1789 1790 if (!OldGV->use_empty()) { 1791 llvm::Constant *NewPtrForOldDecl = 1792 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1793 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1794 } 1795 1796 OldGV->eraseFromParent(); 1797 } 1798 1799 return GV; 1800 } 1801 1802 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1803 /// given global variable. If Ty is non-null and if the global doesn't exist, 1804 /// then it will be created with the specified type instead of whatever the 1805 /// normal requested type would be. 1806 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1807 llvm::Type *Ty) { 1808 assert(D->hasGlobalStorage() && "Not a global variable"); 1809 QualType ASTTy = D->getType(); 1810 if (!Ty) 1811 Ty = getTypes().ConvertTypeForMem(ASTTy); 1812 1813 llvm::PointerType *PTy = 1814 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1815 1816 StringRef MangledName = getMangledName(D); 1817 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1818 } 1819 1820 /// CreateRuntimeVariable - Create a new runtime global variable with the 1821 /// specified type and name. 1822 llvm::Constant * 1823 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1824 StringRef Name) { 1825 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1826 } 1827 1828 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1829 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1830 1831 if (MayDeferGeneration(D)) { 1832 // If we have not seen a reference to this variable yet, place it 1833 // into the deferred declarations table to be emitted if needed 1834 // later. 1835 StringRef MangledName = getMangledName(D); 1836 if (!GetGlobalValue(MangledName)) { 1837 DeferredDecls[MangledName] = D; 1838 return; 1839 } 1840 } 1841 1842 // The tentative definition is the only definition. 1843 EmitGlobalVarDefinition(D); 1844 } 1845 1846 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1847 return Context.toCharUnitsFromBits( 1848 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1849 } 1850 1851 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1852 unsigned AddrSpace) { 1853 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1854 if (D->hasAttr<CUDAConstantAttr>()) 1855 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1856 else if (D->hasAttr<CUDASharedAttr>()) 1857 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1858 else 1859 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1860 } 1861 1862 return AddrSpace; 1863 } 1864 1865 template<typename SomeDecl> 1866 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1867 llvm::GlobalValue *GV) { 1868 if (!getLangOpts().CPlusPlus) 1869 return; 1870 1871 // Must have 'used' attribute, or else inline assembly can't rely on 1872 // the name existing. 1873 if (!D->template hasAttr<UsedAttr>()) 1874 return; 1875 1876 // Must have internal linkage and an ordinary name. 1877 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1878 return; 1879 1880 // Must be in an extern "C" context. Entities declared directly within 1881 // a record are not extern "C" even if the record is in such a context. 1882 const SomeDecl *First = D->getFirstDecl(); 1883 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1884 return; 1885 1886 // OK, this is an internal linkage entity inside an extern "C" linkage 1887 // specification. Make a note of that so we can give it the "expected" 1888 // mangled name if nothing else is using that name. 1889 std::pair<StaticExternCMap::iterator, bool> R = 1890 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1891 1892 // If we have multiple internal linkage entities with the same name 1893 // in extern "C" regions, none of them gets that name. 1894 if (!R.second) 1895 R.first->second = nullptr; 1896 } 1897 1898 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1899 llvm::Constant *Init = nullptr; 1900 QualType ASTTy = D->getType(); 1901 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1902 bool NeedsGlobalCtor = false; 1903 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1904 1905 const VarDecl *InitDecl; 1906 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1907 1908 if (!InitExpr) { 1909 // This is a tentative definition; tentative definitions are 1910 // implicitly initialized with { 0 }. 1911 // 1912 // Note that tentative definitions are only emitted at the end of 1913 // a translation unit, so they should never have incomplete 1914 // type. In addition, EmitTentativeDefinition makes sure that we 1915 // never attempt to emit a tentative definition if a real one 1916 // exists. A use may still exists, however, so we still may need 1917 // to do a RAUW. 1918 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1919 Init = EmitNullConstant(D->getType()); 1920 } else { 1921 initializedGlobalDecl = GlobalDecl(D); 1922 Init = EmitConstantInit(*InitDecl); 1923 1924 if (!Init) { 1925 QualType T = InitExpr->getType(); 1926 if (D->getType()->isReferenceType()) 1927 T = D->getType(); 1928 1929 if (getLangOpts().CPlusPlus) { 1930 Init = EmitNullConstant(T); 1931 NeedsGlobalCtor = true; 1932 } else { 1933 ErrorUnsupported(D, "static initializer"); 1934 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1935 } 1936 } else { 1937 // We don't need an initializer, so remove the entry for the delayed 1938 // initializer position (just in case this entry was delayed) if we 1939 // also don't need to register a destructor. 1940 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1941 DelayedCXXInitPosition.erase(D); 1942 } 1943 } 1944 1945 llvm::Type* InitType = Init->getType(); 1946 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1947 1948 // Strip off a bitcast if we got one back. 1949 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1950 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1951 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1952 // All zero index gep. 1953 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1954 Entry = CE->getOperand(0); 1955 } 1956 1957 // Entry is now either a Function or GlobalVariable. 1958 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1959 1960 // We have a definition after a declaration with the wrong type. 1961 // We must make a new GlobalVariable* and update everything that used OldGV 1962 // (a declaration or tentative definition) with the new GlobalVariable* 1963 // (which will be a definition). 1964 // 1965 // This happens if there is a prototype for a global (e.g. 1966 // "extern int x[];") and then a definition of a different type (e.g. 1967 // "int x[10];"). This also happens when an initializer has a different type 1968 // from the type of the global (this happens with unions). 1969 if (!GV || 1970 GV->getType()->getElementType() != InitType || 1971 GV->getType()->getAddressSpace() != 1972 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1973 1974 // Move the old entry aside so that we'll create a new one. 1975 Entry->setName(StringRef()); 1976 1977 // Make a new global with the correct type, this is now guaranteed to work. 1978 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1979 1980 // Replace all uses of the old global with the new global 1981 llvm::Constant *NewPtrForOldDecl = 1982 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1983 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1984 1985 // Erase the old global, since it is no longer used. 1986 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1987 } 1988 1989 MaybeHandleStaticInExternC(D, GV); 1990 1991 if (D->hasAttr<AnnotateAttr>()) 1992 AddGlobalAnnotations(D, GV); 1993 1994 GV->setInitializer(Init); 1995 1996 // If it is safe to mark the global 'constant', do so now. 1997 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1998 isTypeConstant(D->getType(), true)); 1999 2000 // If it is in a read-only section, mark it 'constant'. 2001 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2002 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2003 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2004 GV->setConstant(true); 2005 } 2006 2007 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2008 2009 // Set the llvm linkage type as appropriate. 2010 llvm::GlobalValue::LinkageTypes Linkage = 2011 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2012 2013 // On Darwin, the backing variable for a C++11 thread_local variable always 2014 // has internal linkage; all accesses should just be calls to the 2015 // Itanium-specified entry point, which has the normal linkage of the 2016 // variable. 2017 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2018 Context.getTargetInfo().getTriple().isMacOSX()) 2019 Linkage = llvm::GlobalValue::InternalLinkage; 2020 2021 GV->setLinkage(Linkage); 2022 if (D->hasAttr<DLLImportAttr>()) 2023 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2024 else if (D->hasAttr<DLLExportAttr>()) 2025 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2026 else 2027 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2028 2029 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2030 // common vars aren't constant even if declared const. 2031 GV->setConstant(false); 2032 2033 setNonAliasAttributes(D, GV); 2034 2035 if (D->getTLSKind() && !GV->isThreadLocal()) { 2036 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2037 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2038 setTLSMode(GV, *D); 2039 } 2040 2041 // Emit the initializer function if necessary. 2042 if (NeedsGlobalCtor || NeedsGlobalDtor) 2043 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2044 2045 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2046 2047 // Emit global variable debug information. 2048 if (CGDebugInfo *DI = getModuleDebugInfo()) 2049 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2050 DI->EmitGlobalVariable(GV, D); 2051 } 2052 2053 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2054 const VarDecl *D, bool NoCommon) { 2055 // Don't give variables common linkage if -fno-common was specified unless it 2056 // was overridden by a NoCommon attribute. 2057 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2058 return true; 2059 2060 // C11 6.9.2/2: 2061 // A declaration of an identifier for an object that has file scope without 2062 // an initializer, and without a storage-class specifier or with the 2063 // storage-class specifier static, constitutes a tentative definition. 2064 if (D->getInit() || D->hasExternalStorage()) 2065 return true; 2066 2067 // A variable cannot be both common and exist in a section. 2068 if (D->hasAttr<SectionAttr>()) 2069 return true; 2070 2071 // Thread local vars aren't considered common linkage. 2072 if (D->getTLSKind()) 2073 return true; 2074 2075 // Tentative definitions marked with WeakImportAttr are true definitions. 2076 if (D->hasAttr<WeakImportAttr>()) 2077 return true; 2078 2079 // Declarations with a required alignment do not have common linakge in MSVC 2080 // mode. 2081 if (Context.getLangOpts().MSVCCompat && 2082 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2083 return true; 2084 2085 return false; 2086 } 2087 2088 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2089 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2090 if (Linkage == GVA_Internal) 2091 return llvm::Function::InternalLinkage; 2092 2093 if (D->hasAttr<WeakAttr>()) { 2094 if (IsConstantVariable) 2095 return llvm::GlobalVariable::WeakODRLinkage; 2096 else 2097 return llvm::GlobalVariable::WeakAnyLinkage; 2098 } 2099 2100 // We are guaranteed to have a strong definition somewhere else, 2101 // so we can use available_externally linkage. 2102 if (Linkage == GVA_AvailableExternally) 2103 return llvm::Function::AvailableExternallyLinkage; 2104 2105 // Note that Apple's kernel linker doesn't support symbol 2106 // coalescing, so we need to avoid linkonce and weak linkages there. 2107 // Normally, this means we just map to internal, but for explicit 2108 // instantiations we'll map to external. 2109 2110 // In C++, the compiler has to emit a definition in every translation unit 2111 // that references the function. We should use linkonce_odr because 2112 // a) if all references in this translation unit are optimized away, we 2113 // don't need to codegen it. b) if the function persists, it needs to be 2114 // merged with other definitions. c) C++ has the ODR, so we know the 2115 // definition is dependable. 2116 if (Linkage == GVA_DiscardableODR) 2117 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2118 : llvm::Function::InternalLinkage; 2119 2120 // An explicit instantiation of a template has weak linkage, since 2121 // explicit instantiations can occur in multiple translation units 2122 // and must all be equivalent. However, we are not allowed to 2123 // throw away these explicit instantiations. 2124 if (Linkage == GVA_StrongODR) 2125 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2126 : llvm::Function::ExternalLinkage; 2127 2128 // C++ doesn't have tentative definitions and thus cannot have common 2129 // linkage. 2130 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2131 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2132 CodeGenOpts.NoCommon)) 2133 return llvm::GlobalVariable::CommonLinkage; 2134 2135 // selectany symbols are externally visible, so use weak instead of 2136 // linkonce. MSVC optimizes away references to const selectany globals, so 2137 // all definitions should be the same and ODR linkage should be used. 2138 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2139 if (D->hasAttr<SelectAnyAttr>()) 2140 return llvm::GlobalVariable::WeakODRLinkage; 2141 2142 // Otherwise, we have strong external linkage. 2143 assert(Linkage == GVA_StrongExternal); 2144 return llvm::GlobalVariable::ExternalLinkage; 2145 } 2146 2147 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2148 const VarDecl *VD, bool IsConstant) { 2149 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2150 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2151 } 2152 2153 /// Replace the uses of a function that was declared with a non-proto type. 2154 /// We want to silently drop extra arguments from call sites 2155 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2156 llvm::Function *newFn) { 2157 // Fast path. 2158 if (old->use_empty()) return; 2159 2160 llvm::Type *newRetTy = newFn->getReturnType(); 2161 SmallVector<llvm::Value*, 4> newArgs; 2162 2163 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2164 ui != ue; ) { 2165 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2166 llvm::User *user = use->getUser(); 2167 2168 // Recognize and replace uses of bitcasts. Most calls to 2169 // unprototyped functions will use bitcasts. 2170 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2171 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2172 replaceUsesOfNonProtoConstant(bitcast, newFn); 2173 continue; 2174 } 2175 2176 // Recognize calls to the function. 2177 llvm::CallSite callSite(user); 2178 if (!callSite) continue; 2179 if (!callSite.isCallee(&*use)) continue; 2180 2181 // If the return types don't match exactly, then we can't 2182 // transform this call unless it's dead. 2183 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2184 continue; 2185 2186 // Get the call site's attribute list. 2187 SmallVector<llvm::AttributeSet, 8> newAttrs; 2188 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2189 2190 // Collect any return attributes from the call. 2191 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2192 newAttrs.push_back( 2193 llvm::AttributeSet::get(newFn->getContext(), 2194 oldAttrs.getRetAttributes())); 2195 2196 // If the function was passed too few arguments, don't transform. 2197 unsigned newNumArgs = newFn->arg_size(); 2198 if (callSite.arg_size() < newNumArgs) continue; 2199 2200 // If extra arguments were passed, we silently drop them. 2201 // If any of the types mismatch, we don't transform. 2202 unsigned argNo = 0; 2203 bool dontTransform = false; 2204 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2205 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2206 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2207 dontTransform = true; 2208 break; 2209 } 2210 2211 // Add any parameter attributes. 2212 if (oldAttrs.hasAttributes(argNo + 1)) 2213 newAttrs. 2214 push_back(llvm:: 2215 AttributeSet::get(newFn->getContext(), 2216 oldAttrs.getParamAttributes(argNo + 1))); 2217 } 2218 if (dontTransform) 2219 continue; 2220 2221 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2222 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2223 oldAttrs.getFnAttributes())); 2224 2225 // Okay, we can transform this. Create the new call instruction and copy 2226 // over the required information. 2227 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2228 2229 llvm::CallSite newCall; 2230 if (callSite.isCall()) { 2231 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2232 callSite.getInstruction()); 2233 } else { 2234 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2235 newCall = llvm::InvokeInst::Create(newFn, 2236 oldInvoke->getNormalDest(), 2237 oldInvoke->getUnwindDest(), 2238 newArgs, "", 2239 callSite.getInstruction()); 2240 } 2241 newArgs.clear(); // for the next iteration 2242 2243 if (!newCall->getType()->isVoidTy()) 2244 newCall->takeName(callSite.getInstruction()); 2245 newCall.setAttributes( 2246 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2247 newCall.setCallingConv(callSite.getCallingConv()); 2248 2249 // Finally, remove the old call, replacing any uses with the new one. 2250 if (!callSite->use_empty()) 2251 callSite->replaceAllUsesWith(newCall.getInstruction()); 2252 2253 // Copy debug location attached to CI. 2254 if (!callSite->getDebugLoc().isUnknown()) 2255 newCall->setDebugLoc(callSite->getDebugLoc()); 2256 callSite->eraseFromParent(); 2257 } 2258 } 2259 2260 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2261 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2262 /// existing call uses of the old function in the module, this adjusts them to 2263 /// call the new function directly. 2264 /// 2265 /// This is not just a cleanup: the always_inline pass requires direct calls to 2266 /// functions to be able to inline them. If there is a bitcast in the way, it 2267 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2268 /// run at -O0. 2269 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2270 llvm::Function *NewFn) { 2271 // If we're redefining a global as a function, don't transform it. 2272 if (!isa<llvm::Function>(Old)) return; 2273 2274 replaceUsesOfNonProtoConstant(Old, NewFn); 2275 } 2276 2277 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2278 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2279 // If we have a definition, this might be a deferred decl. If the 2280 // instantiation is explicit, make sure we emit it at the end. 2281 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2282 GetAddrOfGlobalVar(VD); 2283 2284 EmitTopLevelDecl(VD); 2285 } 2286 2287 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2288 llvm::GlobalValue *GV) { 2289 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2290 2291 // Compute the function info and LLVM type. 2292 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2293 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2294 2295 // Get or create the prototype for the function. 2296 if (!GV) { 2297 llvm::Constant *C = 2298 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2299 2300 // Strip off a bitcast if we got one back. 2301 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2302 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2303 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2304 } else { 2305 GV = cast<llvm::GlobalValue>(C); 2306 } 2307 } 2308 2309 if (!GV->isDeclaration()) { 2310 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2311 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2312 if (auto *Prev = OldGD.getDecl()) 2313 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2314 return; 2315 } 2316 2317 if (GV->getType()->getElementType() != Ty) { 2318 // If the types mismatch then we have to rewrite the definition. 2319 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2320 2321 // F is the Function* for the one with the wrong type, we must make a new 2322 // Function* and update everything that used F (a declaration) with the new 2323 // Function* (which will be a definition). 2324 // 2325 // This happens if there is a prototype for a function 2326 // (e.g. "int f()") and then a definition of a different type 2327 // (e.g. "int f(int x)"). Move the old function aside so that it 2328 // doesn't interfere with GetAddrOfFunction. 2329 GV->setName(StringRef()); 2330 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2331 2332 // This might be an implementation of a function without a 2333 // prototype, in which case, try to do special replacement of 2334 // calls which match the new prototype. The really key thing here 2335 // is that we also potentially drop arguments from the call site 2336 // so as to make a direct call, which makes the inliner happier 2337 // and suppresses a number of optimizer warnings (!) about 2338 // dropping arguments. 2339 if (!GV->use_empty()) { 2340 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2341 GV->removeDeadConstantUsers(); 2342 } 2343 2344 // Replace uses of F with the Function we will endow with a body. 2345 if (!GV->use_empty()) { 2346 llvm::Constant *NewPtrForOldDecl = 2347 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2348 GV->replaceAllUsesWith(NewPtrForOldDecl); 2349 } 2350 2351 // Ok, delete the old function now, which is dead. 2352 GV->eraseFromParent(); 2353 2354 GV = NewFn; 2355 } 2356 2357 // We need to set linkage and visibility on the function before 2358 // generating code for it because various parts of IR generation 2359 // want to propagate this information down (e.g. to local static 2360 // declarations). 2361 auto *Fn = cast<llvm::Function>(GV); 2362 setFunctionLinkage(GD, Fn); 2363 if (D->hasAttr<DLLImportAttr>()) 2364 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2365 else if (D->hasAttr<DLLExportAttr>()) 2366 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2367 else 2368 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2369 2370 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2371 setGlobalVisibility(Fn, D); 2372 2373 MaybeHandleStaticInExternC(D, Fn); 2374 2375 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2376 2377 setFunctionDefinitionAttributes(D, Fn); 2378 SetLLVMFunctionAttributesForDefinition(D, Fn); 2379 2380 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2381 AddGlobalCtor(Fn, CA->getPriority()); 2382 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2383 AddGlobalDtor(Fn, DA->getPriority()); 2384 if (D->hasAttr<AnnotateAttr>()) 2385 AddGlobalAnnotations(D, Fn); 2386 } 2387 2388 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2389 const auto *D = cast<ValueDecl>(GD.getDecl()); 2390 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2391 assert(AA && "Not an alias?"); 2392 2393 StringRef MangledName = getMangledName(GD); 2394 2395 // If there is a definition in the module, then it wins over the alias. 2396 // This is dubious, but allow it to be safe. Just ignore the alias. 2397 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2398 if (Entry && !Entry->isDeclaration()) 2399 return; 2400 2401 Aliases.push_back(GD); 2402 2403 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2404 2405 // Create a reference to the named value. This ensures that it is emitted 2406 // if a deferred decl. 2407 llvm::Constant *Aliasee; 2408 if (isa<llvm::FunctionType>(DeclTy)) 2409 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2410 /*ForVTable=*/false); 2411 else 2412 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2413 llvm::PointerType::getUnqual(DeclTy), 2414 /*D=*/nullptr); 2415 2416 // Create the new alias itself, but don't set a name yet. 2417 auto *GA = llvm::GlobalAlias::create( 2418 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2419 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2420 2421 if (Entry) { 2422 if (GA->getAliasee() == Entry) { 2423 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2424 return; 2425 } 2426 2427 assert(Entry->isDeclaration()); 2428 2429 // If there is a declaration in the module, then we had an extern followed 2430 // by the alias, as in: 2431 // extern int test6(); 2432 // ... 2433 // int test6() __attribute__((alias("test7"))); 2434 // 2435 // Remove it and replace uses of it with the alias. 2436 GA->takeName(Entry); 2437 2438 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2439 Entry->getType())); 2440 Entry->eraseFromParent(); 2441 } else { 2442 GA->setName(MangledName); 2443 } 2444 2445 // Set attributes which are particular to an alias; this is a 2446 // specialization of the attributes which may be set on a global 2447 // variable/function. 2448 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2449 D->isWeakImported()) { 2450 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2451 } 2452 2453 if (const auto *VD = dyn_cast<VarDecl>(D)) 2454 if (VD->getTLSKind()) 2455 setTLSMode(GA, *VD); 2456 2457 setAliasAttributes(D, GA); 2458 } 2459 2460 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2461 ArrayRef<llvm::Type*> Tys) { 2462 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2463 Tys); 2464 } 2465 2466 static llvm::StringMapEntry<llvm::Constant*> & 2467 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2468 const StringLiteral *Literal, 2469 bool TargetIsLSB, 2470 bool &IsUTF16, 2471 unsigned &StringLength) { 2472 StringRef String = Literal->getString(); 2473 unsigned NumBytes = String.size(); 2474 2475 // Check for simple case. 2476 if (!Literal->containsNonAsciiOrNull()) { 2477 StringLength = NumBytes; 2478 return *Map.insert(std::make_pair(String, nullptr)).first; 2479 } 2480 2481 // Otherwise, convert the UTF8 literals into a string of shorts. 2482 IsUTF16 = true; 2483 2484 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2485 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2486 UTF16 *ToPtr = &ToBuf[0]; 2487 2488 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2489 &ToPtr, ToPtr + NumBytes, 2490 strictConversion); 2491 2492 // ConvertUTF8toUTF16 returns the length in ToPtr. 2493 StringLength = ToPtr - &ToBuf[0]; 2494 2495 // Add an explicit null. 2496 *ToPtr = 0; 2497 return *Map.insert(std::make_pair( 2498 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2499 (StringLength + 1) * 2), 2500 nullptr)).first; 2501 } 2502 2503 static llvm::StringMapEntry<llvm::Constant*> & 2504 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2505 const StringLiteral *Literal, 2506 unsigned &StringLength) { 2507 StringRef String = Literal->getString(); 2508 StringLength = String.size(); 2509 return *Map.insert(std::make_pair(String, nullptr)).first; 2510 } 2511 2512 llvm::Constant * 2513 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2514 unsigned StringLength = 0; 2515 bool isUTF16 = false; 2516 llvm::StringMapEntry<llvm::Constant*> &Entry = 2517 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2518 getDataLayout().isLittleEndian(), 2519 isUTF16, StringLength); 2520 2521 if (auto *C = Entry.second) 2522 return C; 2523 2524 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2525 llvm::Constant *Zeros[] = { Zero, Zero }; 2526 llvm::Value *V; 2527 2528 // If we don't already have it, get __CFConstantStringClassReference. 2529 if (!CFConstantStringClassRef) { 2530 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2531 Ty = llvm::ArrayType::get(Ty, 0); 2532 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2533 "__CFConstantStringClassReference"); 2534 // Decay array -> ptr 2535 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2536 CFConstantStringClassRef = V; 2537 } 2538 else 2539 V = CFConstantStringClassRef; 2540 2541 QualType CFTy = getContext().getCFConstantStringType(); 2542 2543 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2544 2545 llvm::Constant *Fields[4]; 2546 2547 // Class pointer. 2548 Fields[0] = cast<llvm::ConstantExpr>(V); 2549 2550 // Flags. 2551 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2552 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2553 llvm::ConstantInt::get(Ty, 0x07C8); 2554 2555 // String pointer. 2556 llvm::Constant *C = nullptr; 2557 if (isUTF16) { 2558 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2559 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2560 Entry.first().size() / 2); 2561 C = llvm::ConstantDataArray::get(VMContext, Arr); 2562 } else { 2563 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2564 } 2565 2566 // Note: -fwritable-strings doesn't make the backing store strings of 2567 // CFStrings writable. (See <rdar://problem/10657500>) 2568 auto *GV = 2569 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2570 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2571 GV->setUnnamedAddr(true); 2572 // Don't enforce the target's minimum global alignment, since the only use 2573 // of the string is via this class initializer. 2574 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2575 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2576 // that changes the section it ends in, which surprises ld64. 2577 if (isUTF16) { 2578 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2579 GV->setAlignment(Align.getQuantity()); 2580 GV->setSection("__TEXT,__ustring"); 2581 } else { 2582 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2583 GV->setAlignment(Align.getQuantity()); 2584 GV->setSection("__TEXT,__cstring,cstring_literals"); 2585 } 2586 2587 // String. 2588 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2589 2590 if (isUTF16) 2591 // Cast the UTF16 string to the correct type. 2592 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2593 2594 // String length. 2595 Ty = getTypes().ConvertType(getContext().LongTy); 2596 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2597 2598 // The struct. 2599 C = llvm::ConstantStruct::get(STy, Fields); 2600 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2601 llvm::GlobalVariable::PrivateLinkage, C, 2602 "_unnamed_cfstring_"); 2603 GV->setSection("__DATA,__cfstring"); 2604 Entry.second = GV; 2605 2606 return GV; 2607 } 2608 2609 llvm::Constant * 2610 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2611 unsigned StringLength = 0; 2612 llvm::StringMapEntry<llvm::Constant*> &Entry = 2613 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2614 2615 if (auto *C = Entry.second) 2616 return C; 2617 2618 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2619 llvm::Constant *Zeros[] = { Zero, Zero }; 2620 llvm::Value *V; 2621 // If we don't already have it, get _NSConstantStringClassReference. 2622 if (!ConstantStringClassRef) { 2623 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2624 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2625 llvm::Constant *GV; 2626 if (LangOpts.ObjCRuntime.isNonFragile()) { 2627 std::string str = 2628 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2629 : "OBJC_CLASS_$_" + StringClass; 2630 GV = getObjCRuntime().GetClassGlobal(str); 2631 // Make sure the result is of the correct type. 2632 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2633 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2634 ConstantStringClassRef = V; 2635 } else { 2636 std::string str = 2637 StringClass.empty() ? "_NSConstantStringClassReference" 2638 : "_" + StringClass + "ClassReference"; 2639 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2640 GV = CreateRuntimeVariable(PTy, str); 2641 // Decay array -> ptr 2642 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2643 ConstantStringClassRef = V; 2644 } 2645 } 2646 else 2647 V = ConstantStringClassRef; 2648 2649 if (!NSConstantStringType) { 2650 // Construct the type for a constant NSString. 2651 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2652 D->startDefinition(); 2653 2654 QualType FieldTypes[3]; 2655 2656 // const int *isa; 2657 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2658 // const char *str; 2659 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2660 // unsigned int length; 2661 FieldTypes[2] = Context.UnsignedIntTy; 2662 2663 // Create fields 2664 for (unsigned i = 0; i < 3; ++i) { 2665 FieldDecl *Field = FieldDecl::Create(Context, D, 2666 SourceLocation(), 2667 SourceLocation(), nullptr, 2668 FieldTypes[i], /*TInfo=*/nullptr, 2669 /*BitWidth=*/nullptr, 2670 /*Mutable=*/false, 2671 ICIS_NoInit); 2672 Field->setAccess(AS_public); 2673 D->addDecl(Field); 2674 } 2675 2676 D->completeDefinition(); 2677 QualType NSTy = Context.getTagDeclType(D); 2678 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2679 } 2680 2681 llvm::Constant *Fields[3]; 2682 2683 // Class pointer. 2684 Fields[0] = cast<llvm::ConstantExpr>(V); 2685 2686 // String pointer. 2687 llvm::Constant *C = 2688 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2689 2690 llvm::GlobalValue::LinkageTypes Linkage; 2691 bool isConstant; 2692 Linkage = llvm::GlobalValue::PrivateLinkage; 2693 isConstant = !LangOpts.WritableStrings; 2694 2695 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2696 Linkage, C, ".str"); 2697 GV->setUnnamedAddr(true); 2698 // Don't enforce the target's minimum global alignment, since the only use 2699 // of the string is via this class initializer. 2700 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2701 GV->setAlignment(Align.getQuantity()); 2702 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2703 2704 // String length. 2705 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2706 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2707 2708 // The struct. 2709 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2710 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2711 llvm::GlobalVariable::PrivateLinkage, C, 2712 "_unnamed_nsstring_"); 2713 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2714 const char *NSStringNonFragileABISection = 2715 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2716 // FIXME. Fix section. 2717 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2718 ? NSStringNonFragileABISection 2719 : NSStringSection); 2720 Entry.second = GV; 2721 2722 return GV; 2723 } 2724 2725 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2726 if (ObjCFastEnumerationStateType.isNull()) { 2727 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2728 D->startDefinition(); 2729 2730 QualType FieldTypes[] = { 2731 Context.UnsignedLongTy, 2732 Context.getPointerType(Context.getObjCIdType()), 2733 Context.getPointerType(Context.UnsignedLongTy), 2734 Context.getConstantArrayType(Context.UnsignedLongTy, 2735 llvm::APInt(32, 5), ArrayType::Normal, 0) 2736 }; 2737 2738 for (size_t i = 0; i < 4; ++i) { 2739 FieldDecl *Field = FieldDecl::Create(Context, 2740 D, 2741 SourceLocation(), 2742 SourceLocation(), nullptr, 2743 FieldTypes[i], /*TInfo=*/nullptr, 2744 /*BitWidth=*/nullptr, 2745 /*Mutable=*/false, 2746 ICIS_NoInit); 2747 Field->setAccess(AS_public); 2748 D->addDecl(Field); 2749 } 2750 2751 D->completeDefinition(); 2752 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2753 } 2754 2755 return ObjCFastEnumerationStateType; 2756 } 2757 2758 llvm::Constant * 2759 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2760 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2761 2762 // Don't emit it as the address of the string, emit the string data itself 2763 // as an inline array. 2764 if (E->getCharByteWidth() == 1) { 2765 SmallString<64> Str(E->getString()); 2766 2767 // Resize the string to the right size, which is indicated by its type. 2768 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2769 Str.resize(CAT->getSize().getZExtValue()); 2770 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2771 } 2772 2773 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2774 llvm::Type *ElemTy = AType->getElementType(); 2775 unsigned NumElements = AType->getNumElements(); 2776 2777 // Wide strings have either 2-byte or 4-byte elements. 2778 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2779 SmallVector<uint16_t, 32> Elements; 2780 Elements.reserve(NumElements); 2781 2782 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2783 Elements.push_back(E->getCodeUnit(i)); 2784 Elements.resize(NumElements); 2785 return llvm::ConstantDataArray::get(VMContext, Elements); 2786 } 2787 2788 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2789 SmallVector<uint32_t, 32> Elements; 2790 Elements.reserve(NumElements); 2791 2792 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2793 Elements.push_back(E->getCodeUnit(i)); 2794 Elements.resize(NumElements); 2795 return llvm::ConstantDataArray::get(VMContext, Elements); 2796 } 2797 2798 static llvm::GlobalVariable * 2799 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2800 CodeGenModule &CGM, StringRef GlobalName, 2801 unsigned Alignment) { 2802 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2803 unsigned AddrSpace = 0; 2804 if (CGM.getLangOpts().OpenCL) 2805 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2806 2807 // Create a global variable for this string 2808 auto *GV = new llvm::GlobalVariable( 2809 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2810 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2811 GV->setAlignment(Alignment); 2812 GV->setUnnamedAddr(true); 2813 return GV; 2814 } 2815 2816 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2817 /// constant array for the given string literal. 2818 llvm::GlobalVariable * 2819 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2820 StringRef Name) { 2821 auto Alignment = 2822 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2823 2824 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2825 llvm::GlobalVariable **Entry = nullptr; 2826 if (!LangOpts.WritableStrings) { 2827 Entry = &ConstantStringMap[C]; 2828 if (auto GV = *Entry) { 2829 if (Alignment > GV->getAlignment()) 2830 GV->setAlignment(Alignment); 2831 return GV; 2832 } 2833 } 2834 2835 SmallString<256> MangledNameBuffer; 2836 StringRef GlobalVariableName; 2837 llvm::GlobalValue::LinkageTypes LT; 2838 2839 // Mangle the string literal if the ABI allows for it. However, we cannot 2840 // do this if we are compiling with ASan or -fwritable-strings because they 2841 // rely on strings having normal linkage. 2842 if (!LangOpts.WritableStrings && 2843 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2844 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2845 llvm::raw_svector_ostream Out(MangledNameBuffer); 2846 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2847 Out.flush(); 2848 2849 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2850 GlobalVariableName = MangledNameBuffer; 2851 } else { 2852 LT = llvm::GlobalValue::PrivateLinkage; 2853 GlobalVariableName = Name; 2854 } 2855 2856 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2857 if (Entry) 2858 *Entry = GV; 2859 2860 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2861 QualType()); 2862 return GV; 2863 } 2864 2865 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2866 /// array for the given ObjCEncodeExpr node. 2867 llvm::GlobalVariable * 2868 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2869 std::string Str; 2870 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2871 2872 return GetAddrOfConstantCString(Str); 2873 } 2874 2875 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2876 /// the literal and a terminating '\0' character. 2877 /// The result has pointer to array type. 2878 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2879 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2880 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2881 if (Alignment == 0) { 2882 Alignment = getContext() 2883 .getAlignOfGlobalVarInChars(getContext().CharTy) 2884 .getQuantity(); 2885 } 2886 2887 llvm::Constant *C = 2888 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2889 2890 // Don't share any string literals if strings aren't constant. 2891 llvm::GlobalVariable **Entry = nullptr; 2892 if (!LangOpts.WritableStrings) { 2893 Entry = &ConstantStringMap[C]; 2894 if (auto GV = *Entry) { 2895 if (Alignment > GV->getAlignment()) 2896 GV->setAlignment(Alignment); 2897 return GV; 2898 } 2899 } 2900 2901 // Get the default prefix if a name wasn't specified. 2902 if (!GlobalName) 2903 GlobalName = ".str"; 2904 // Create a global variable for this. 2905 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2906 GlobalName, Alignment); 2907 if (Entry) 2908 *Entry = GV; 2909 return GV; 2910 } 2911 2912 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2913 const MaterializeTemporaryExpr *E, const Expr *Init) { 2914 assert((E->getStorageDuration() == SD_Static || 2915 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2916 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2917 2918 // If we're not materializing a subobject of the temporary, keep the 2919 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2920 QualType MaterializedType = Init->getType(); 2921 if (Init == E->GetTemporaryExpr()) 2922 MaterializedType = E->getType(); 2923 2924 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2925 if (Slot) 2926 return Slot; 2927 2928 // FIXME: If an externally-visible declaration extends multiple temporaries, 2929 // we need to give each temporary the same name in every translation unit (and 2930 // we also need to make the temporaries externally-visible). 2931 SmallString<256> Name; 2932 llvm::raw_svector_ostream Out(Name); 2933 getCXXABI().getMangleContext().mangleReferenceTemporary( 2934 VD, E->getManglingNumber(), Out); 2935 Out.flush(); 2936 2937 APValue *Value = nullptr; 2938 if (E->getStorageDuration() == SD_Static) { 2939 // We might have a cached constant initializer for this temporary. Note 2940 // that this might have a different value from the value computed by 2941 // evaluating the initializer if the surrounding constant expression 2942 // modifies the temporary. 2943 Value = getContext().getMaterializedTemporaryValue(E, false); 2944 if (Value && Value->isUninit()) 2945 Value = nullptr; 2946 } 2947 2948 // Try evaluating it now, it might have a constant initializer. 2949 Expr::EvalResult EvalResult; 2950 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2951 !EvalResult.hasSideEffects()) 2952 Value = &EvalResult.Val; 2953 2954 llvm::Constant *InitialValue = nullptr; 2955 bool Constant = false; 2956 llvm::Type *Type; 2957 if (Value) { 2958 // The temporary has a constant initializer, use it. 2959 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2960 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2961 Type = InitialValue->getType(); 2962 } else { 2963 // No initializer, the initialization will be provided when we 2964 // initialize the declaration which performed lifetime extension. 2965 Type = getTypes().ConvertTypeForMem(MaterializedType); 2966 } 2967 2968 // Create a global variable for this lifetime-extended temporary. 2969 llvm::GlobalValue::LinkageTypes Linkage = 2970 getLLVMLinkageVarDefinition(VD, Constant); 2971 // There is no need for this temporary to have global linkage if the global 2972 // variable has external linkage. 2973 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2974 Linkage = llvm::GlobalVariable::PrivateLinkage; 2975 unsigned AddrSpace = GetGlobalVarAddressSpace( 2976 VD, getContext().getTargetAddressSpace(MaterializedType)); 2977 auto *GV = new llvm::GlobalVariable( 2978 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2979 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2980 AddrSpace); 2981 setGlobalVisibility(GV, VD); 2982 GV->setAlignment( 2983 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2984 if (VD->getTLSKind()) 2985 setTLSMode(GV, *VD); 2986 Slot = GV; 2987 return GV; 2988 } 2989 2990 /// EmitObjCPropertyImplementations - Emit information for synthesized 2991 /// properties for an implementation. 2992 void CodeGenModule::EmitObjCPropertyImplementations(const 2993 ObjCImplementationDecl *D) { 2994 for (const auto *PID : D->property_impls()) { 2995 // Dynamic is just for type-checking. 2996 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2997 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2998 2999 // Determine which methods need to be implemented, some may have 3000 // been overridden. Note that ::isPropertyAccessor is not the method 3001 // we want, that just indicates if the decl came from a 3002 // property. What we want to know is if the method is defined in 3003 // this implementation. 3004 if (!D->getInstanceMethod(PD->getGetterName())) 3005 CodeGenFunction(*this).GenerateObjCGetter( 3006 const_cast<ObjCImplementationDecl *>(D), PID); 3007 if (!PD->isReadOnly() && 3008 !D->getInstanceMethod(PD->getSetterName())) 3009 CodeGenFunction(*this).GenerateObjCSetter( 3010 const_cast<ObjCImplementationDecl *>(D), PID); 3011 } 3012 } 3013 } 3014 3015 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3016 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3017 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3018 ivar; ivar = ivar->getNextIvar()) 3019 if (ivar->getType().isDestructedType()) 3020 return true; 3021 3022 return false; 3023 } 3024 3025 static bool AllTrivialInitializers(CodeGenModule &CGM, 3026 ObjCImplementationDecl *D) { 3027 CodeGenFunction CGF(CGM); 3028 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3029 E = D->init_end(); B != E; ++B) { 3030 CXXCtorInitializer *CtorInitExp = *B; 3031 Expr *Init = CtorInitExp->getInit(); 3032 if (!CGF.isTrivialInitializer(Init)) 3033 return false; 3034 } 3035 return true; 3036 } 3037 3038 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3039 /// for an implementation. 3040 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3041 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3042 if (needsDestructMethod(D)) { 3043 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3044 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3045 ObjCMethodDecl *DTORMethod = 3046 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3047 cxxSelector, getContext().VoidTy, nullptr, D, 3048 /*isInstance=*/true, /*isVariadic=*/false, 3049 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3050 /*isDefined=*/false, ObjCMethodDecl::Required); 3051 D->addInstanceMethod(DTORMethod); 3052 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3053 D->setHasDestructors(true); 3054 } 3055 3056 // If the implementation doesn't have any ivar initializers, we don't need 3057 // a .cxx_construct. 3058 if (D->getNumIvarInitializers() == 0 || 3059 AllTrivialInitializers(*this, D)) 3060 return; 3061 3062 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3063 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3064 // The constructor returns 'self'. 3065 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3066 D->getLocation(), 3067 D->getLocation(), 3068 cxxSelector, 3069 getContext().getObjCIdType(), 3070 nullptr, D, /*isInstance=*/true, 3071 /*isVariadic=*/false, 3072 /*isPropertyAccessor=*/true, 3073 /*isImplicitlyDeclared=*/true, 3074 /*isDefined=*/false, 3075 ObjCMethodDecl::Required); 3076 D->addInstanceMethod(CTORMethod); 3077 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3078 D->setHasNonZeroConstructors(true); 3079 } 3080 3081 /// EmitNamespace - Emit all declarations in a namespace. 3082 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3083 for (auto *I : ND->decls()) { 3084 if (const auto *VD = dyn_cast<VarDecl>(I)) 3085 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3086 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3087 continue; 3088 EmitTopLevelDecl(I); 3089 } 3090 } 3091 3092 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3093 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3094 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3095 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3096 ErrorUnsupported(LSD, "linkage spec"); 3097 return; 3098 } 3099 3100 for (auto *I : LSD->decls()) { 3101 // Meta-data for ObjC class includes references to implemented methods. 3102 // Generate class's method definitions first. 3103 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3104 for (auto *M : OID->methods()) 3105 EmitTopLevelDecl(M); 3106 } 3107 EmitTopLevelDecl(I); 3108 } 3109 } 3110 3111 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3112 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3113 // Ignore dependent declarations. 3114 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3115 return; 3116 3117 switch (D->getKind()) { 3118 case Decl::CXXConversion: 3119 case Decl::CXXMethod: 3120 case Decl::Function: 3121 // Skip function templates 3122 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3123 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3124 return; 3125 3126 EmitGlobal(cast<FunctionDecl>(D)); 3127 // Always provide some coverage mapping 3128 // even for the functions that aren't emitted. 3129 AddDeferredUnusedCoverageMapping(D); 3130 break; 3131 3132 case Decl::Var: 3133 // Skip variable templates 3134 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3135 return; 3136 case Decl::VarTemplateSpecialization: 3137 EmitGlobal(cast<VarDecl>(D)); 3138 break; 3139 3140 // Indirect fields from global anonymous structs and unions can be 3141 // ignored; only the actual variable requires IR gen support. 3142 case Decl::IndirectField: 3143 break; 3144 3145 // C++ Decls 3146 case Decl::Namespace: 3147 EmitNamespace(cast<NamespaceDecl>(D)); 3148 break; 3149 // No code generation needed. 3150 case Decl::UsingShadow: 3151 case Decl::ClassTemplate: 3152 case Decl::VarTemplate: 3153 case Decl::VarTemplatePartialSpecialization: 3154 case Decl::FunctionTemplate: 3155 case Decl::TypeAliasTemplate: 3156 case Decl::Block: 3157 case Decl::Empty: 3158 break; 3159 case Decl::Using: // using X; [C++] 3160 if (CGDebugInfo *DI = getModuleDebugInfo()) 3161 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3162 return; 3163 case Decl::NamespaceAlias: 3164 if (CGDebugInfo *DI = getModuleDebugInfo()) 3165 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3166 return; 3167 case Decl::UsingDirective: // using namespace X; [C++] 3168 if (CGDebugInfo *DI = getModuleDebugInfo()) 3169 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3170 return; 3171 case Decl::CXXConstructor: 3172 // Skip function templates 3173 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3174 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3175 return; 3176 3177 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3178 break; 3179 case Decl::CXXDestructor: 3180 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3181 return; 3182 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3183 break; 3184 3185 case Decl::StaticAssert: 3186 // Nothing to do. 3187 break; 3188 3189 // Objective-C Decls 3190 3191 // Forward declarations, no (immediate) code generation. 3192 case Decl::ObjCInterface: 3193 case Decl::ObjCCategory: 3194 break; 3195 3196 case Decl::ObjCProtocol: { 3197 auto *Proto = cast<ObjCProtocolDecl>(D); 3198 if (Proto->isThisDeclarationADefinition()) 3199 ObjCRuntime->GenerateProtocol(Proto); 3200 break; 3201 } 3202 3203 case Decl::ObjCCategoryImpl: 3204 // Categories have properties but don't support synthesize so we 3205 // can ignore them here. 3206 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3207 break; 3208 3209 case Decl::ObjCImplementation: { 3210 auto *OMD = cast<ObjCImplementationDecl>(D); 3211 EmitObjCPropertyImplementations(OMD); 3212 EmitObjCIvarInitializations(OMD); 3213 ObjCRuntime->GenerateClass(OMD); 3214 // Emit global variable debug information. 3215 if (CGDebugInfo *DI = getModuleDebugInfo()) 3216 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3217 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3218 OMD->getClassInterface()), OMD->getLocation()); 3219 break; 3220 } 3221 case Decl::ObjCMethod: { 3222 auto *OMD = cast<ObjCMethodDecl>(D); 3223 // If this is not a prototype, emit the body. 3224 if (OMD->getBody()) 3225 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3226 break; 3227 } 3228 case Decl::ObjCCompatibleAlias: 3229 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3230 break; 3231 3232 case Decl::LinkageSpec: 3233 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3234 break; 3235 3236 case Decl::FileScopeAsm: { 3237 auto *AD = cast<FileScopeAsmDecl>(D); 3238 StringRef AsmString = AD->getAsmString()->getString(); 3239 3240 const std::string &S = getModule().getModuleInlineAsm(); 3241 if (S.empty()) 3242 getModule().setModuleInlineAsm(AsmString); 3243 else if (S.end()[-1] == '\n') 3244 getModule().setModuleInlineAsm(S + AsmString.str()); 3245 else 3246 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3247 break; 3248 } 3249 3250 case Decl::Import: { 3251 auto *Import = cast<ImportDecl>(D); 3252 3253 // Ignore import declarations that come from imported modules. 3254 if (clang::Module *Owner = Import->getOwningModule()) { 3255 if (getLangOpts().CurrentModule.empty() || 3256 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3257 break; 3258 } 3259 3260 ImportedModules.insert(Import->getImportedModule()); 3261 break; 3262 } 3263 3264 case Decl::OMPThreadPrivate: 3265 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3266 break; 3267 3268 case Decl::ClassTemplateSpecialization: { 3269 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3270 if (DebugInfo && 3271 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3272 DebugInfo->completeTemplateDefinition(*Spec); 3273 break; 3274 } 3275 3276 default: 3277 // Make sure we handled everything we should, every other kind is a 3278 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3279 // function. Need to recode Decl::Kind to do that easily. 3280 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3281 break; 3282 } 3283 } 3284 3285 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3286 // Do we need to generate coverage mapping? 3287 if (!CodeGenOpts.CoverageMapping) 3288 return; 3289 switch (D->getKind()) { 3290 case Decl::CXXConversion: 3291 case Decl::CXXMethod: 3292 case Decl::Function: 3293 case Decl::ObjCMethod: 3294 case Decl::CXXConstructor: 3295 case Decl::CXXDestructor: { 3296 if (!cast<FunctionDecl>(D)->hasBody()) 3297 return; 3298 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3299 if (I == DeferredEmptyCoverageMappingDecls.end()) 3300 DeferredEmptyCoverageMappingDecls[D] = true; 3301 break; 3302 } 3303 default: 3304 break; 3305 }; 3306 } 3307 3308 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3309 // Do we need to generate coverage mapping? 3310 if (!CodeGenOpts.CoverageMapping) 3311 return; 3312 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3313 if (Fn->isTemplateInstantiation()) 3314 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3315 } 3316 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3317 if (I == DeferredEmptyCoverageMappingDecls.end()) 3318 DeferredEmptyCoverageMappingDecls[D] = false; 3319 else 3320 I->second = false; 3321 } 3322 3323 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3324 std::vector<const Decl *> DeferredDecls; 3325 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3326 if (!I.second) 3327 continue; 3328 DeferredDecls.push_back(I.first); 3329 } 3330 // Sort the declarations by their location to make sure that the tests get a 3331 // predictable order for the coverage mapping for the unused declarations. 3332 if (CodeGenOpts.DumpCoverageMapping) 3333 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3334 [] (const Decl *LHS, const Decl *RHS) { 3335 return LHS->getLocStart() < RHS->getLocStart(); 3336 }); 3337 for (const auto *D : DeferredDecls) { 3338 switch (D->getKind()) { 3339 case Decl::CXXConversion: 3340 case Decl::CXXMethod: 3341 case Decl::Function: 3342 case Decl::ObjCMethod: { 3343 CodeGenPGO PGO(*this); 3344 GlobalDecl GD(cast<FunctionDecl>(D)); 3345 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3346 getFunctionLinkage(GD)); 3347 break; 3348 } 3349 case Decl::CXXConstructor: { 3350 CodeGenPGO PGO(*this); 3351 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3352 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3353 getFunctionLinkage(GD)); 3354 break; 3355 } 3356 case Decl::CXXDestructor: { 3357 CodeGenPGO PGO(*this); 3358 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3359 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3360 getFunctionLinkage(GD)); 3361 break; 3362 } 3363 default: 3364 break; 3365 }; 3366 } 3367 } 3368 3369 /// Turns the given pointer into a constant. 3370 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3371 const void *Ptr) { 3372 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3373 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3374 return llvm::ConstantInt::get(i64, PtrInt); 3375 } 3376 3377 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3378 llvm::NamedMDNode *&GlobalMetadata, 3379 GlobalDecl D, 3380 llvm::GlobalValue *Addr) { 3381 if (!GlobalMetadata) 3382 GlobalMetadata = 3383 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3384 3385 // TODO: should we report variant information for ctors/dtors? 3386 llvm::Value *Ops[] = { 3387 Addr, 3388 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3389 }; 3390 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3391 } 3392 3393 /// For each function which is declared within an extern "C" region and marked 3394 /// as 'used', but has internal linkage, create an alias from the unmangled 3395 /// name to the mangled name if possible. People expect to be able to refer 3396 /// to such functions with an unmangled name from inline assembly within the 3397 /// same translation unit. 3398 void CodeGenModule::EmitStaticExternCAliases() { 3399 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3400 E = StaticExternCValues.end(); 3401 I != E; ++I) { 3402 IdentifierInfo *Name = I->first; 3403 llvm::GlobalValue *Val = I->second; 3404 if (Val && !getModule().getNamedValue(Name->getName())) 3405 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3406 } 3407 } 3408 3409 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3410 GlobalDecl &Result) const { 3411 auto Res = Manglings.find(MangledName); 3412 if (Res == Manglings.end()) 3413 return false; 3414 Result = Res->getValue(); 3415 return true; 3416 } 3417 3418 /// Emits metadata nodes associating all the global values in the 3419 /// current module with the Decls they came from. This is useful for 3420 /// projects using IR gen as a subroutine. 3421 /// 3422 /// Since there's currently no way to associate an MDNode directly 3423 /// with an llvm::GlobalValue, we create a global named metadata 3424 /// with the name 'clang.global.decl.ptrs'. 3425 void CodeGenModule::EmitDeclMetadata() { 3426 llvm::NamedMDNode *GlobalMetadata = nullptr; 3427 3428 // StaticLocalDeclMap 3429 for (auto &I : MangledDeclNames) { 3430 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3431 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3432 } 3433 } 3434 3435 /// Emits metadata nodes for all the local variables in the current 3436 /// function. 3437 void CodeGenFunction::EmitDeclMetadata() { 3438 if (LocalDeclMap.empty()) return; 3439 3440 llvm::LLVMContext &Context = getLLVMContext(); 3441 3442 // Find the unique metadata ID for this name. 3443 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3444 3445 llvm::NamedMDNode *GlobalMetadata = nullptr; 3446 3447 for (auto &I : LocalDeclMap) { 3448 const Decl *D = I.first; 3449 llvm::Value *Addr = I.second; 3450 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3451 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3452 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3453 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3454 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3455 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3456 } 3457 } 3458 } 3459 3460 void CodeGenModule::EmitVersionIdentMetadata() { 3461 llvm::NamedMDNode *IdentMetadata = 3462 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3463 std::string Version = getClangFullVersion(); 3464 llvm::LLVMContext &Ctx = TheModule.getContext(); 3465 3466 llvm::Value *IdentNode[] = { 3467 llvm::MDString::get(Ctx, Version) 3468 }; 3469 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3470 } 3471 3472 void CodeGenModule::EmitTargetMetadata() { 3473 // Warning, new MangledDeclNames may be appended within this loop. 3474 // We rely on MapVector insertions adding new elements to the end 3475 // of the container. 3476 // FIXME: Move this loop into the one target that needs it, and only 3477 // loop over those declarations for which we couldn't emit the target 3478 // metadata when we emitted the declaration. 3479 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3480 auto Val = *(MangledDeclNames.begin() + I); 3481 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3482 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3483 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3484 } 3485 } 3486 3487 void CodeGenModule::EmitCoverageFile() { 3488 if (!getCodeGenOpts().CoverageFile.empty()) { 3489 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3490 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3491 llvm::LLVMContext &Ctx = TheModule.getContext(); 3492 llvm::MDString *CoverageFile = 3493 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3494 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3495 llvm::MDNode *CU = CUNode->getOperand(i); 3496 llvm::Value *node[] = { CoverageFile, CU }; 3497 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3498 GCov->addOperand(N); 3499 } 3500 } 3501 } 3502 } 3503 3504 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3505 // Sema has checked that all uuid strings are of the form 3506 // "12345678-1234-1234-1234-1234567890ab". 3507 assert(Uuid.size() == 36); 3508 for (unsigned i = 0; i < 36; ++i) { 3509 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3510 else assert(isHexDigit(Uuid[i])); 3511 } 3512 3513 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3514 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3515 3516 llvm::Constant *Field3[8]; 3517 for (unsigned Idx = 0; Idx < 8; ++Idx) 3518 Field3[Idx] = llvm::ConstantInt::get( 3519 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3520 3521 llvm::Constant *Fields[4] = { 3522 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3523 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3524 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3525 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3526 }; 3527 3528 return llvm::ConstantStruct::getAnon(Fields); 3529 } 3530 3531 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3532 bool ForEH) { 3533 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3534 // FIXME: should we even be calling this method if RTTI is disabled 3535 // and it's not for EH? 3536 if (!ForEH && !getLangOpts().RTTI) 3537 return llvm::Constant::getNullValue(Int8PtrTy); 3538 3539 if (ForEH && Ty->isObjCObjectPointerType() && 3540 LangOpts.ObjCRuntime.isGNUFamily()) 3541 return ObjCRuntime->GetEHType(Ty); 3542 3543 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3544 } 3545 3546 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3547 for (auto RefExpr : D->varlists()) { 3548 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3549 bool PerformInit = 3550 VD->getAnyInitializer() && 3551 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3552 /*ForRef=*/false); 3553 if (auto InitFunction = 3554 getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition( 3555 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), 3556 PerformInit)) 3557 CXXGlobalInits.push_back(InitFunction); 3558 } 3559 } 3560 3561