xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ed2c3218f5badf88cb7897fabf8faa01e8aa2044)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeGPU.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ConvertUTF.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MD5.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/X86TargetParser.h"
68 
69 using namespace clang;
70 using namespace CodeGen;
71 
72 static llvm::cl::opt<bool> LimitedCoverage(
73     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
74     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
75     llvm::cl::init(false));
76 
77 static const char AnnotationSection[] = "llvm.metadata";
78 
79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
80   switch (CGM.getContext().getCXXABIKind()) {
81   case TargetCXXABI::AppleARM64:
82   case TargetCXXABI::Fuchsia:
83   case TargetCXXABI::GenericAArch64:
84   case TargetCXXABI::GenericARM:
85   case TargetCXXABI::iOS:
86   case TargetCXXABI::WatchOS:
87   case TargetCXXABI::GenericMIPS:
88   case TargetCXXABI::GenericItanium:
89   case TargetCXXABI::WebAssembly:
90   case TargetCXXABI::XL:
91     return CreateItaniumCXXABI(CGM);
92   case TargetCXXABI::Microsoft:
93     return CreateMicrosoftCXXABI(CGM);
94   }
95 
96   llvm_unreachable("invalid C++ ABI kind");
97 }
98 
99 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
100                              const PreprocessorOptions &PPO,
101                              const CodeGenOptions &CGO, llvm::Module &M,
102                              DiagnosticsEngine &diags,
103                              CoverageSourceInfo *CoverageInfo)
104     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
105       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
106       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
107       VMContext(M.getContext()), Types(*this), VTables(*this),
108       SanitizerMD(new SanitizerMetadata(*this)) {
109 
110   // Initialize the type cache.
111   llvm::LLVMContext &LLVMContext = M.getContext();
112   VoidTy = llvm::Type::getVoidTy(LLVMContext);
113   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
114   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
115   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
116   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
117   HalfTy = llvm::Type::getHalfTy(LLVMContext);
118   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
119   FloatTy = llvm::Type::getFloatTy(LLVMContext);
120   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
121   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
122   PointerAlignInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
124   SizeSizeInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
126   IntAlignInBytes =
127     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
128   CharTy =
129     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
130   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
131   IntPtrTy = llvm::IntegerType::get(LLVMContext,
132     C.getTargetInfo().getMaxPointerWidth());
133   Int8PtrTy = Int8Ty->getPointerTo(0);
134   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
135   const llvm::DataLayout &DL = M.getDataLayout();
136   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
137   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
138   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
139 
140   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
141 
142   if (LangOpts.ObjC)
143     createObjCRuntime();
144   if (LangOpts.OpenCL)
145     createOpenCLRuntime();
146   if (LangOpts.OpenMP)
147     createOpenMPRuntime();
148   if (LangOpts.CUDA)
149     createCUDARuntime();
150   if (LangOpts.HLSL)
151     createHLSLRuntime();
152 
153   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
154   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
155       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
156     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
157                                getCXXABI().getMangleContext()));
158 
159   // If debug info or coverage generation is enabled, create the CGDebugInfo
160   // object.
161   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
162       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
163     DebugInfo.reset(new CGDebugInfo(*this));
164 
165   Block.GlobalUniqueCount = 0;
166 
167   if (C.getLangOpts().ObjC)
168     ObjCData.reset(new ObjCEntrypoints());
169 
170   if (CodeGenOpts.hasProfileClangUse()) {
171     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
172         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
173     if (auto E = ReaderOrErr.takeError()) {
174       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
175                                               "Could not read profile %0: %1");
176       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
177         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
178                                   << EI.message();
179       });
180     } else
181       PGOReader = std::move(ReaderOrErr.get());
182   }
183 
184   // If coverage mapping generation is enabled, create the
185   // CoverageMappingModuleGen object.
186   if (CodeGenOpts.CoverageMapping)
187     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
188 
189   // Generate the module name hash here if needed.
190   if (CodeGenOpts.UniqueInternalLinkageNames &&
191       !getModule().getSourceFileName().empty()) {
192     std::string Path = getModule().getSourceFileName();
193     // Check if a path substitution is needed from the MacroPrefixMap.
194     for (const auto &Entry : LangOpts.MacroPrefixMap)
195       if (Path.rfind(Entry.first, 0) != std::string::npos) {
196         Path = Entry.second + Path.substr(Entry.first.size());
197         break;
198       }
199     llvm::MD5 Md5;
200     Md5.update(Path);
201     llvm::MD5::MD5Result R;
202     Md5.final(R);
203     SmallString<32> Str;
204     llvm::MD5::stringifyResult(R, Str);
205     // Convert MD5hash to Decimal. Demangler suffixes can either contain
206     // numbers or characters but not both.
207     llvm::APInt IntHash(128, Str.str(), 16);
208     // Prepend "__uniq" before the hash for tools like profilers to understand
209     // that this symbol is of internal linkage type.  The "__uniq" is the
210     // pre-determined prefix that is used to tell tools that this symbol was
211     // created with -funique-internal-linakge-symbols and the tools can strip or
212     // keep the prefix as needed.
213     ModuleNameHash = (Twine(".__uniq.") +
214         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
215   }
216 }
217 
218 CodeGenModule::~CodeGenModule() {}
219 
220 void CodeGenModule::createObjCRuntime() {
221   // This is just isGNUFamily(), but we want to force implementors of
222   // new ABIs to decide how best to do this.
223   switch (LangOpts.ObjCRuntime.getKind()) {
224   case ObjCRuntime::GNUstep:
225   case ObjCRuntime::GCC:
226   case ObjCRuntime::ObjFW:
227     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
228     return;
229 
230   case ObjCRuntime::FragileMacOSX:
231   case ObjCRuntime::MacOSX:
232   case ObjCRuntime::iOS:
233   case ObjCRuntime::WatchOS:
234     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
235     return;
236   }
237   llvm_unreachable("bad runtime kind");
238 }
239 
240 void CodeGenModule::createOpenCLRuntime() {
241   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
242 }
243 
244 void CodeGenModule::createOpenMPRuntime() {
245   // Select a specialized code generation class based on the target, if any.
246   // If it does not exist use the default implementation.
247   switch (getTriple().getArch()) {
248   case llvm::Triple::nvptx:
249   case llvm::Triple::nvptx64:
250   case llvm::Triple::amdgcn:
251     assert(getLangOpts().OpenMPIsDevice &&
252            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
253     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
254     break;
255   default:
256     if (LangOpts.OpenMPSimd)
257       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
258     else
259       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
260     break;
261   }
262 }
263 
264 void CodeGenModule::createCUDARuntime() {
265   CUDARuntime.reset(CreateNVCUDARuntime(*this));
266 }
267 
268 void CodeGenModule::createHLSLRuntime() {
269   HLSLRuntime.reset(new CGHLSLRuntime(*this));
270 }
271 
272 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
273   Replacements[Name] = C;
274 }
275 
276 void CodeGenModule::applyReplacements() {
277   for (auto &I : Replacements) {
278     StringRef MangledName = I.first();
279     llvm::Constant *Replacement = I.second;
280     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
281     if (!Entry)
282       continue;
283     auto *OldF = cast<llvm::Function>(Entry);
284     auto *NewF = dyn_cast<llvm::Function>(Replacement);
285     if (!NewF) {
286       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
287         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
288       } else {
289         auto *CE = cast<llvm::ConstantExpr>(Replacement);
290         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
291                CE->getOpcode() == llvm::Instruction::GetElementPtr);
292         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
293       }
294     }
295 
296     // Replace old with new, but keep the old order.
297     OldF->replaceAllUsesWith(Replacement);
298     if (NewF) {
299       NewF->removeFromParent();
300       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
301                                                        NewF);
302     }
303     OldF->eraseFromParent();
304   }
305 }
306 
307 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
308   GlobalValReplacements.push_back(std::make_pair(GV, C));
309 }
310 
311 void CodeGenModule::applyGlobalValReplacements() {
312   for (auto &I : GlobalValReplacements) {
313     llvm::GlobalValue *GV = I.first;
314     llvm::Constant *C = I.second;
315 
316     GV->replaceAllUsesWith(C);
317     GV->eraseFromParent();
318   }
319 }
320 
321 // This is only used in aliases that we created and we know they have a
322 // linear structure.
323 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
324   const llvm::Constant *C;
325   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
326     C = GA->getAliasee();
327   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
328     C = GI->getResolver();
329   else
330     return GV;
331 
332   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
333   if (!AliaseeGV)
334     return nullptr;
335 
336   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
337   if (FinalGV == GV)
338     return nullptr;
339 
340   return FinalGV;
341 }
342 
343 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
344                                SourceLocation Location, bool IsIFunc,
345                                const llvm::GlobalValue *Alias,
346                                const llvm::GlobalValue *&GV) {
347   GV = getAliasedGlobal(Alias);
348   if (!GV) {
349     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
350     return false;
351   }
352 
353   if (GV->isDeclaration()) {
354     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
355     return false;
356   }
357 
358   if (IsIFunc) {
359     // Check resolver function type.
360     const auto *F = dyn_cast<llvm::Function>(GV);
361     if (!F) {
362       Diags.Report(Location, diag::err_alias_to_undefined)
363           << IsIFunc << IsIFunc;
364       return false;
365     }
366 
367     llvm::FunctionType *FTy = F->getFunctionType();
368     if (!FTy->getReturnType()->isPointerTy()) {
369       Diags.Report(Location, diag::err_ifunc_resolver_return);
370       return false;
371     }
372   }
373 
374   return true;
375 }
376 
377 void CodeGenModule::checkAliases() {
378   // Check if the constructed aliases are well formed. It is really unfortunate
379   // that we have to do this in CodeGen, but we only construct mangled names
380   // and aliases during codegen.
381   bool Error = false;
382   DiagnosticsEngine &Diags = getDiags();
383   for (const GlobalDecl &GD : Aliases) {
384     const auto *D = cast<ValueDecl>(GD.getDecl());
385     SourceLocation Location;
386     bool IsIFunc = D->hasAttr<IFuncAttr>();
387     if (const Attr *A = D->getDefiningAttr())
388       Location = A->getLocation();
389     else
390       llvm_unreachable("Not an alias or ifunc?");
391 
392     StringRef MangledName = getMangledName(GD);
393     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
394     const llvm::GlobalValue *GV = nullptr;
395     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
396       Error = true;
397       continue;
398     }
399 
400     llvm::Constant *Aliasee =
401         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
402                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
403 
404     llvm::GlobalValue *AliaseeGV;
405     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
406       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
407     else
408       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
409 
410     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
411       StringRef AliasSection = SA->getName();
412       if (AliasSection != AliaseeGV->getSection())
413         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
414             << AliasSection << IsIFunc << IsIFunc;
415     }
416 
417     // We have to handle alias to weak aliases in here. LLVM itself disallows
418     // this since the object semantics would not match the IL one. For
419     // compatibility with gcc we implement it by just pointing the alias
420     // to its aliasee's aliasee. We also warn, since the user is probably
421     // expecting the link to be weak.
422     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
423       if (GA->isInterposable()) {
424         Diags.Report(Location, diag::warn_alias_to_weak_alias)
425             << GV->getName() << GA->getName() << IsIFunc;
426         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
427             GA->getAliasee(), Alias->getType());
428 
429         if (IsIFunc)
430           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
431         else
432           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
433       }
434     }
435   }
436   if (!Error)
437     return;
438 
439   for (const GlobalDecl &GD : Aliases) {
440     StringRef MangledName = getMangledName(GD);
441     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
442     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
443     Alias->eraseFromParent();
444   }
445 }
446 
447 void CodeGenModule::clear() {
448   DeferredDeclsToEmit.clear();
449   if (OpenMPRuntime)
450     OpenMPRuntime->clear();
451 }
452 
453 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
454                                        StringRef MainFile) {
455   if (!hasDiagnostics())
456     return;
457   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
458     if (MainFile.empty())
459       MainFile = "<stdin>";
460     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
461   } else {
462     if (Mismatched > 0)
463       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
464 
465     if (Missing > 0)
466       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
467   }
468 }
469 
470 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
471                                              llvm::Module &M) {
472   if (!LO.VisibilityFromDLLStorageClass)
473     return;
474 
475   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
476       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
477   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
478       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
479   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
480       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
481   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
482       CodeGenModule::GetLLVMVisibility(
483           LO.getExternDeclNoDLLStorageClassVisibility());
484 
485   for (llvm::GlobalValue &GV : M.global_values()) {
486     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
487       continue;
488 
489     // Reset DSO locality before setting the visibility. This removes
490     // any effects that visibility options and annotations may have
491     // had on the DSO locality. Setting the visibility will implicitly set
492     // appropriate globals to DSO Local; however, this will be pessimistic
493     // w.r.t. to the normal compiler IRGen.
494     GV.setDSOLocal(false);
495 
496     if (GV.isDeclarationForLinker()) {
497       GV.setVisibility(GV.getDLLStorageClass() ==
498                                llvm::GlobalValue::DLLImportStorageClass
499                            ? ExternDeclDLLImportVisibility
500                            : ExternDeclNoDLLStorageClassVisibility);
501     } else {
502       GV.setVisibility(GV.getDLLStorageClass() ==
503                                llvm::GlobalValue::DLLExportStorageClass
504                            ? DLLExportVisibility
505                            : NoDLLStorageClassVisibility);
506     }
507 
508     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
509   }
510 }
511 
512 void CodeGenModule::Release() {
513   EmitDeferred();
514   EmitVTablesOpportunistically();
515   applyGlobalValReplacements();
516   applyReplacements();
517   emitMultiVersionFunctions();
518   EmitCXXGlobalInitFunc();
519   EmitCXXGlobalCleanUpFunc();
520   registerGlobalDtorsWithAtExit();
521   EmitCXXThreadLocalInitFunc();
522   if (ObjCRuntime)
523     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
524       AddGlobalCtor(ObjCInitFunction);
525   if (Context.getLangOpts().CUDA && CUDARuntime) {
526     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
527       AddGlobalCtor(CudaCtorFunction);
528   }
529   if (OpenMPRuntime) {
530     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
531             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
532       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
533     }
534     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
535     OpenMPRuntime->clear();
536   }
537   if (PGOReader) {
538     getModule().setProfileSummary(
539         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
540         llvm::ProfileSummary::PSK_Instr);
541     if (PGOStats.hasDiagnostics())
542       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
543   }
544   EmitCtorList(GlobalCtors, "llvm.global_ctors");
545   EmitCtorList(GlobalDtors, "llvm.global_dtors");
546   EmitGlobalAnnotations();
547   EmitStaticExternCAliases();
548   checkAliases();
549   EmitDeferredUnusedCoverageMappings();
550   CodeGenPGO(*this).setValueProfilingFlag(getModule());
551   if (CoverageMapping)
552     CoverageMapping->emit();
553   if (CodeGenOpts.SanitizeCfiCrossDso) {
554     CodeGenFunction(*this).EmitCfiCheckFail();
555     CodeGenFunction(*this).EmitCfiCheckStub();
556   }
557   emitAtAvailableLinkGuard();
558   if (Context.getTargetInfo().getTriple().isWasm() &&
559       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
560     EmitMainVoidAlias();
561   }
562 
563   if (getTriple().isAMDGPU()) {
564     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
565     // preserve ASAN functions in bitcode libraries.
566     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
567       auto *FT = llvm::FunctionType::get(VoidTy, {});
568       auto *F = llvm::Function::Create(
569           FT, llvm::GlobalValue::ExternalLinkage,
570           "__amdgpu_device_library_preserve_asan_functions", &getModule());
571       auto *Var = new llvm::GlobalVariable(
572           getModule(), FT->getPointerTo(),
573           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
574           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
575           llvm::GlobalVariable::NotThreadLocal);
576       addCompilerUsedGlobal(Var);
577     }
578     // Emit amdgpu_code_object_version module flag, which is code object version
579     // times 100.
580     // ToDo: Enable module flag for all code object version when ROCm device
581     // library is ready.
582     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
583       getModule().addModuleFlag(llvm::Module::Error,
584                                 "amdgpu_code_object_version",
585                                 getTarget().getTargetOpts().CodeObjectVersion);
586     }
587   }
588 
589   // Emit a global array containing all external kernels or device variables
590   // used by host functions and mark it as used for CUDA/HIP. This is necessary
591   // to get kernels or device variables in archives linked in even if these
592   // kernels or device variables are only used in host functions.
593   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
594     SmallVector<llvm::Constant *, 8> UsedArray;
595     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
596       GlobalDecl GD;
597       if (auto *FD = dyn_cast<FunctionDecl>(D))
598         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
599       else
600         GD = GlobalDecl(D);
601       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
602           GetAddrOfGlobal(GD), Int8PtrTy));
603     }
604 
605     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
606 
607     auto *GV = new llvm::GlobalVariable(
608         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
609         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
610     addCompilerUsedGlobal(GV);
611   }
612 
613   emitLLVMUsed();
614   if (SanStats)
615     SanStats->finish();
616 
617   if (CodeGenOpts.Autolink &&
618       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
619     EmitModuleLinkOptions();
620   }
621 
622   // On ELF we pass the dependent library specifiers directly to the linker
623   // without manipulating them. This is in contrast to other platforms where
624   // they are mapped to a specific linker option by the compiler. This
625   // difference is a result of the greater variety of ELF linkers and the fact
626   // that ELF linkers tend to handle libraries in a more complicated fashion
627   // than on other platforms. This forces us to defer handling the dependent
628   // libs to the linker.
629   //
630   // CUDA/HIP device and host libraries are different. Currently there is no
631   // way to differentiate dependent libraries for host or device. Existing
632   // usage of #pragma comment(lib, *) is intended for host libraries on
633   // Windows. Therefore emit llvm.dependent-libraries only for host.
634   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
635     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
636     for (auto *MD : ELFDependentLibraries)
637       NMD->addOperand(MD);
638   }
639 
640   // Record mregparm value now so it is visible through rest of codegen.
641   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
642     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
643                               CodeGenOpts.NumRegisterParameters);
644 
645   if (CodeGenOpts.DwarfVersion) {
646     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
647                               CodeGenOpts.DwarfVersion);
648   }
649 
650   if (CodeGenOpts.Dwarf64)
651     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
652 
653   if (Context.getLangOpts().SemanticInterposition)
654     // Require various optimization to respect semantic interposition.
655     getModule().setSemanticInterposition(true);
656 
657   if (CodeGenOpts.EmitCodeView) {
658     // Indicate that we want CodeView in the metadata.
659     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
660   }
661   if (CodeGenOpts.CodeViewGHash) {
662     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
663   }
664   if (CodeGenOpts.ControlFlowGuard) {
665     // Function ID tables and checks for Control Flow Guard (cfguard=2).
666     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
667   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
668     // Function ID tables for Control Flow Guard (cfguard=1).
669     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
670   }
671   if (CodeGenOpts.EHContGuard) {
672     // Function ID tables for EH Continuation Guard.
673     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
674   }
675   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
676     // We don't support LTO with 2 with different StrictVTablePointers
677     // FIXME: we could support it by stripping all the information introduced
678     // by StrictVTablePointers.
679 
680     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
681 
682     llvm::Metadata *Ops[2] = {
683               llvm::MDString::get(VMContext, "StrictVTablePointers"),
684               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
685                   llvm::Type::getInt32Ty(VMContext), 1))};
686 
687     getModule().addModuleFlag(llvm::Module::Require,
688                               "StrictVTablePointersRequirement",
689                               llvm::MDNode::get(VMContext, Ops));
690   }
691   if (getModuleDebugInfo())
692     // We support a single version in the linked module. The LLVM
693     // parser will drop debug info with a different version number
694     // (and warn about it, too).
695     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
696                               llvm::DEBUG_METADATA_VERSION);
697 
698   // We need to record the widths of enums and wchar_t, so that we can generate
699   // the correct build attributes in the ARM backend. wchar_size is also used by
700   // TargetLibraryInfo.
701   uint64_t WCharWidth =
702       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
703   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
704 
705   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
706   if (   Arch == llvm::Triple::arm
707       || Arch == llvm::Triple::armeb
708       || Arch == llvm::Triple::thumb
709       || Arch == llvm::Triple::thumbeb) {
710     // The minimum width of an enum in bytes
711     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
712     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
713   }
714 
715   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
716     StringRef ABIStr = Target.getABI();
717     llvm::LLVMContext &Ctx = TheModule.getContext();
718     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
719                               llvm::MDString::get(Ctx, ABIStr));
720   }
721 
722   if (CodeGenOpts.SanitizeCfiCrossDso) {
723     // Indicate that we want cross-DSO control flow integrity checks.
724     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
725   }
726 
727   if (CodeGenOpts.WholeProgramVTables) {
728     // Indicate whether VFE was enabled for this module, so that the
729     // vcall_visibility metadata added under whole program vtables is handled
730     // appropriately in the optimizer.
731     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
732                               CodeGenOpts.VirtualFunctionElimination);
733   }
734 
735   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
736     getModule().addModuleFlag(llvm::Module::Override,
737                               "CFI Canonical Jump Tables",
738                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
739   }
740 
741   if (CodeGenOpts.CFProtectionReturn &&
742       Target.checkCFProtectionReturnSupported(getDiags())) {
743     // Indicate that we want to instrument return control flow protection.
744     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
745                               1);
746   }
747 
748   if (CodeGenOpts.CFProtectionBranch &&
749       Target.checkCFProtectionBranchSupported(getDiags())) {
750     // Indicate that we want to instrument branch control flow protection.
751     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
752                               1);
753   }
754 
755   if (CodeGenOpts.IBTSeal)
756     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
757 
758   // Add module metadata for return address signing (ignoring
759   // non-leaf/all) and stack tagging. These are actually turned on by function
760   // attributes, but we use module metadata to emit build attributes. This is
761   // needed for LTO, where the function attributes are inside bitcode
762   // serialised into a global variable by the time build attributes are
763   // emitted, so we can't access them. LTO objects could be compiled with
764   // different flags therefore module flags are set to "Min" behavior to achieve
765   // the same end result of the normal build where e.g BTI is off if any object
766   // doesn't support it.
767   if (Context.getTargetInfo().hasFeature("ptrauth") &&
768       LangOpts.getSignReturnAddressScope() !=
769           LangOptions::SignReturnAddressScopeKind::None)
770     getModule().addModuleFlag(llvm::Module::Override,
771                               "sign-return-address-buildattr", 1);
772   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
773     getModule().addModuleFlag(llvm::Module::Override,
774                               "tag-stack-memory-buildattr", 1);
775 
776   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
777       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
778       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
779       Arch == llvm::Triple::aarch64_be) {
780     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
781                               LangOpts.BranchTargetEnforcement);
782 
783     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
784                               LangOpts.hasSignReturnAddress());
785 
786     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
787                               LangOpts.isSignReturnAddressScopeAll());
788 
789     getModule().addModuleFlag(llvm::Module::Min,
790                               "sign-return-address-with-bkey",
791                               !LangOpts.isSignReturnAddressWithAKey());
792   }
793 
794   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
795     llvm::LLVMContext &Ctx = TheModule.getContext();
796     getModule().addModuleFlag(
797         llvm::Module::Error, "MemProfProfileFilename",
798         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
799   }
800 
801   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
802     // Indicate whether __nvvm_reflect should be configured to flush denormal
803     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
804     // property.)
805     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
806                               CodeGenOpts.FP32DenormalMode.Output !=
807                                   llvm::DenormalMode::IEEE);
808   }
809 
810   if (LangOpts.EHAsynch)
811     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
812 
813   // Indicate whether this Module was compiled with -fopenmp
814   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
815     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
816   if (getLangOpts().OpenMPIsDevice)
817     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
818                               LangOpts.OpenMP);
819 
820   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
821   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
822     EmitOpenCLMetadata();
823     // Emit SPIR version.
824     if (getTriple().isSPIR()) {
825       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
826       // opencl.spir.version named metadata.
827       // C++ for OpenCL has a distinct mapping for version compatibility with
828       // OpenCL.
829       auto Version = LangOpts.getOpenCLCompatibleVersion();
830       llvm::Metadata *SPIRVerElts[] = {
831           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
832               Int32Ty, Version / 100)),
833           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
834               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
835       llvm::NamedMDNode *SPIRVerMD =
836           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
837       llvm::LLVMContext &Ctx = TheModule.getContext();
838       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
839     }
840   }
841 
842   // HLSL related end of code gen work items.
843   if (LangOpts.HLSL)
844     getHLSLRuntime().finishCodeGen();
845 
846   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
847     assert(PLevel < 3 && "Invalid PIC Level");
848     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
849     if (Context.getLangOpts().PIE)
850       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
851   }
852 
853   if (getCodeGenOpts().CodeModel.size() > 0) {
854     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
855                   .Case("tiny", llvm::CodeModel::Tiny)
856                   .Case("small", llvm::CodeModel::Small)
857                   .Case("kernel", llvm::CodeModel::Kernel)
858                   .Case("medium", llvm::CodeModel::Medium)
859                   .Case("large", llvm::CodeModel::Large)
860                   .Default(~0u);
861     if (CM != ~0u) {
862       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
863       getModule().setCodeModel(codeModel);
864     }
865   }
866 
867   if (CodeGenOpts.NoPLT)
868     getModule().setRtLibUseGOT();
869   if (CodeGenOpts.UnwindTables)
870     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
871 
872   switch (CodeGenOpts.getFramePointer()) {
873   case CodeGenOptions::FramePointerKind::None:
874     // 0 ("none") is the default.
875     break;
876   case CodeGenOptions::FramePointerKind::NonLeaf:
877     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
878     break;
879   case CodeGenOptions::FramePointerKind::All:
880     getModule().setFramePointer(llvm::FramePointerKind::All);
881     break;
882   }
883 
884   SimplifyPersonality();
885 
886   if (getCodeGenOpts().EmitDeclMetadata)
887     EmitDeclMetadata();
888 
889   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
890     EmitCoverageFile();
891 
892   if (CGDebugInfo *DI = getModuleDebugInfo())
893     DI->finalize();
894 
895   if (getCodeGenOpts().EmitVersionIdentMetadata)
896     EmitVersionIdentMetadata();
897 
898   if (!getCodeGenOpts().RecordCommandLine.empty())
899     EmitCommandLineMetadata();
900 
901   if (!getCodeGenOpts().StackProtectorGuard.empty())
902     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
903   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
904     getModule().setStackProtectorGuardReg(
905         getCodeGenOpts().StackProtectorGuardReg);
906   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
907     getModule().setStackProtectorGuardOffset(
908         getCodeGenOpts().StackProtectorGuardOffset);
909   if (getCodeGenOpts().StackAlignment)
910     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
911   if (getCodeGenOpts().SkipRaxSetup)
912     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
913 
914   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
915 
916   EmitBackendOptionsMetadata(getCodeGenOpts());
917 
918   // If there is device offloading code embed it in the host now.
919   EmbedObject(&getModule(), CodeGenOpts, getDiags());
920 
921   // Set visibility from DLL storage class
922   // We do this at the end of LLVM IR generation; after any operation
923   // that might affect the DLL storage class or the visibility, and
924   // before anything that might act on these.
925   setVisibilityFromDLLStorageClass(LangOpts, getModule());
926 }
927 
928 void CodeGenModule::EmitOpenCLMetadata() {
929   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
930   // opencl.ocl.version named metadata node.
931   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
932   auto Version = LangOpts.getOpenCLCompatibleVersion();
933   llvm::Metadata *OCLVerElts[] = {
934       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
935           Int32Ty, Version / 100)),
936       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
937           Int32Ty, (Version % 100) / 10))};
938   llvm::NamedMDNode *OCLVerMD =
939       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
940   llvm::LLVMContext &Ctx = TheModule.getContext();
941   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
942 }
943 
944 void CodeGenModule::EmitBackendOptionsMetadata(
945     const CodeGenOptions CodeGenOpts) {
946   switch (getTriple().getArch()) {
947   default:
948     break;
949   case llvm::Triple::riscv32:
950   case llvm::Triple::riscv64:
951     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
952                               CodeGenOpts.SmallDataLimit);
953     break;
954   }
955 }
956 
957 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
958   // Make sure that this type is translated.
959   Types.UpdateCompletedType(TD);
960 }
961 
962 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
963   // Make sure that this type is translated.
964   Types.RefreshTypeCacheForClass(RD);
965 }
966 
967 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
968   if (!TBAA)
969     return nullptr;
970   return TBAA->getTypeInfo(QTy);
971 }
972 
973 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
974   if (!TBAA)
975     return TBAAAccessInfo();
976   if (getLangOpts().CUDAIsDevice) {
977     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
978     // access info.
979     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
980       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
981           nullptr)
982         return TBAAAccessInfo();
983     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
984       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
985           nullptr)
986         return TBAAAccessInfo();
987     }
988   }
989   return TBAA->getAccessInfo(AccessType);
990 }
991 
992 TBAAAccessInfo
993 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
994   if (!TBAA)
995     return TBAAAccessInfo();
996   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
997 }
998 
999 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1000   if (!TBAA)
1001     return nullptr;
1002   return TBAA->getTBAAStructInfo(QTy);
1003 }
1004 
1005 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1006   if (!TBAA)
1007     return nullptr;
1008   return TBAA->getBaseTypeInfo(QTy);
1009 }
1010 
1011 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1012   if (!TBAA)
1013     return nullptr;
1014   return TBAA->getAccessTagInfo(Info);
1015 }
1016 
1017 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1018                                                    TBAAAccessInfo TargetInfo) {
1019   if (!TBAA)
1020     return TBAAAccessInfo();
1021   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1022 }
1023 
1024 TBAAAccessInfo
1025 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1026                                                    TBAAAccessInfo InfoB) {
1027   if (!TBAA)
1028     return TBAAAccessInfo();
1029   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1030 }
1031 
1032 TBAAAccessInfo
1033 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1034                                               TBAAAccessInfo SrcInfo) {
1035   if (!TBAA)
1036     return TBAAAccessInfo();
1037   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1038 }
1039 
1040 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1041                                                 TBAAAccessInfo TBAAInfo) {
1042   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1043     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1044 }
1045 
1046 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1047     llvm::Instruction *I, const CXXRecordDecl *RD) {
1048   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1049                  llvm::MDNode::get(getLLVMContext(), {}));
1050 }
1051 
1052 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1053   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1054   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1055 }
1056 
1057 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1058 /// specified stmt yet.
1059 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1060   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1061                                                "cannot compile this %0 yet");
1062   std::string Msg = Type;
1063   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1064       << Msg << S->getSourceRange();
1065 }
1066 
1067 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1068 /// specified decl yet.
1069 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1070   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1071                                                "cannot compile this %0 yet");
1072   std::string Msg = Type;
1073   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1074 }
1075 
1076 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1077   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1078 }
1079 
1080 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1081                                         const NamedDecl *D) const {
1082   if (GV->hasDLLImportStorageClass())
1083     return;
1084   // Internal definitions always have default visibility.
1085   if (GV->hasLocalLinkage()) {
1086     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1087     return;
1088   }
1089   if (!D)
1090     return;
1091   // Set visibility for definitions, and for declarations if requested globally
1092   // or set explicitly.
1093   LinkageInfo LV = D->getLinkageAndVisibility();
1094   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1095       !GV->isDeclarationForLinker())
1096     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1097 }
1098 
1099 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1100                                  llvm::GlobalValue *GV) {
1101   if (GV->hasLocalLinkage())
1102     return true;
1103 
1104   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1105     return true;
1106 
1107   // DLLImport explicitly marks the GV as external.
1108   if (GV->hasDLLImportStorageClass())
1109     return false;
1110 
1111   const llvm::Triple &TT = CGM.getTriple();
1112   if (TT.isWindowsGNUEnvironment()) {
1113     // In MinGW, variables without DLLImport can still be automatically
1114     // imported from a DLL by the linker; don't mark variables that
1115     // potentially could come from another DLL as DSO local.
1116 
1117     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1118     // (and this actually happens in the public interface of libstdc++), so
1119     // such variables can't be marked as DSO local. (Native TLS variables
1120     // can't be dllimported at all, though.)
1121     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1122         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1123       return false;
1124   }
1125 
1126   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1127   // remain unresolved in the link, they can be resolved to zero, which is
1128   // outside the current DSO.
1129   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1130     return false;
1131 
1132   // Every other GV is local on COFF.
1133   // Make an exception for windows OS in the triple: Some firmware builds use
1134   // *-win32-macho triples. This (accidentally?) produced windows relocations
1135   // without GOT tables in older clang versions; Keep this behaviour.
1136   // FIXME: even thread local variables?
1137   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1138     return true;
1139 
1140   // Only handle COFF and ELF for now.
1141   if (!TT.isOSBinFormatELF())
1142     return false;
1143 
1144   // If this is not an executable, don't assume anything is local.
1145   const auto &CGOpts = CGM.getCodeGenOpts();
1146   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1147   const auto &LOpts = CGM.getLangOpts();
1148   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1149     // On ELF, if -fno-semantic-interposition is specified and the target
1150     // supports local aliases, there will be neither CC1
1151     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1152     // dso_local on the function if using a local alias is preferable (can avoid
1153     // PLT indirection).
1154     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1155       return false;
1156     return !(CGM.getLangOpts().SemanticInterposition ||
1157              CGM.getLangOpts().HalfNoSemanticInterposition);
1158   }
1159 
1160   // A definition cannot be preempted from an executable.
1161   if (!GV->isDeclarationForLinker())
1162     return true;
1163 
1164   // Most PIC code sequences that assume that a symbol is local cannot produce a
1165   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1166   // depended, it seems worth it to handle it here.
1167   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1168     return false;
1169 
1170   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1171   if (TT.isPPC64())
1172     return false;
1173 
1174   if (CGOpts.DirectAccessExternalData) {
1175     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1176     // for non-thread-local variables. If the symbol is not defined in the
1177     // executable, a copy relocation will be needed at link time. dso_local is
1178     // excluded for thread-local variables because they generally don't support
1179     // copy relocations.
1180     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1181       if (!Var->isThreadLocal())
1182         return true;
1183 
1184     // -fno-pic sets dso_local on a function declaration to allow direct
1185     // accesses when taking its address (similar to a data symbol). If the
1186     // function is not defined in the executable, a canonical PLT entry will be
1187     // needed at link time. -fno-direct-access-external-data can avoid the
1188     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1189     // it could just cause trouble without providing perceptible benefits.
1190     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1191       return true;
1192   }
1193 
1194   // If we can use copy relocations we can assume it is local.
1195 
1196   // Otherwise don't assume it is local.
1197   return false;
1198 }
1199 
1200 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1201   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1202 }
1203 
1204 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1205                                           GlobalDecl GD) const {
1206   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1207   // C++ destructors have a few C++ ABI specific special cases.
1208   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1209     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1210     return;
1211   }
1212   setDLLImportDLLExport(GV, D);
1213 }
1214 
1215 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1216                                           const NamedDecl *D) const {
1217   if (D && D->isExternallyVisible()) {
1218     if (D->hasAttr<DLLImportAttr>())
1219       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1220     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1221       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1222   }
1223 }
1224 
1225 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1226                                     GlobalDecl GD) const {
1227   setDLLImportDLLExport(GV, GD);
1228   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1229 }
1230 
1231 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1232                                     const NamedDecl *D) const {
1233   setDLLImportDLLExport(GV, D);
1234   setGVPropertiesAux(GV, D);
1235 }
1236 
1237 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1238                                        const NamedDecl *D) const {
1239   setGlobalVisibility(GV, D);
1240   setDSOLocal(GV);
1241   GV->setPartition(CodeGenOpts.SymbolPartition);
1242 }
1243 
1244 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1245   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1246       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1247       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1248       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1249       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1250 }
1251 
1252 llvm::GlobalVariable::ThreadLocalMode
1253 CodeGenModule::GetDefaultLLVMTLSModel() const {
1254   switch (CodeGenOpts.getDefaultTLSModel()) {
1255   case CodeGenOptions::GeneralDynamicTLSModel:
1256     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1257   case CodeGenOptions::LocalDynamicTLSModel:
1258     return llvm::GlobalVariable::LocalDynamicTLSModel;
1259   case CodeGenOptions::InitialExecTLSModel:
1260     return llvm::GlobalVariable::InitialExecTLSModel;
1261   case CodeGenOptions::LocalExecTLSModel:
1262     return llvm::GlobalVariable::LocalExecTLSModel;
1263   }
1264   llvm_unreachable("Invalid TLS model!");
1265 }
1266 
1267 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1268   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1269 
1270   llvm::GlobalValue::ThreadLocalMode TLM;
1271   TLM = GetDefaultLLVMTLSModel();
1272 
1273   // Override the TLS model if it is explicitly specified.
1274   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1275     TLM = GetLLVMTLSModel(Attr->getModel());
1276   }
1277 
1278   GV->setThreadLocalMode(TLM);
1279 }
1280 
1281 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1282                                           StringRef Name) {
1283   const TargetInfo &Target = CGM.getTarget();
1284   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1285 }
1286 
1287 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1288                                                  const CPUSpecificAttr *Attr,
1289                                                  unsigned CPUIndex,
1290                                                  raw_ostream &Out) {
1291   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1292   // supported.
1293   if (Attr)
1294     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1295   else if (CGM.getTarget().supportsIFunc())
1296     Out << ".resolver";
1297 }
1298 
1299 static void AppendTargetMangling(const CodeGenModule &CGM,
1300                                  const TargetAttr *Attr, raw_ostream &Out) {
1301   if (Attr->isDefaultVersion())
1302     return;
1303 
1304   Out << '.';
1305   const TargetInfo &Target = CGM.getTarget();
1306   ParsedTargetAttr Info =
1307       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1308         // Multiversioning doesn't allow "no-${feature}", so we can
1309         // only have "+" prefixes here.
1310         assert(LHS.startswith("+") && RHS.startswith("+") &&
1311                "Features should always have a prefix.");
1312         return Target.multiVersionSortPriority(LHS.substr(1)) >
1313                Target.multiVersionSortPriority(RHS.substr(1));
1314       });
1315 
1316   bool IsFirst = true;
1317 
1318   if (!Info.Architecture.empty()) {
1319     IsFirst = false;
1320     Out << "arch_" << Info.Architecture;
1321   }
1322 
1323   for (StringRef Feat : Info.Features) {
1324     if (!IsFirst)
1325       Out << '_';
1326     IsFirst = false;
1327     Out << Feat.substr(1);
1328   }
1329 }
1330 
1331 // Returns true if GD is a function decl with internal linkage and
1332 // needs a unique suffix after the mangled name.
1333 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1334                                         CodeGenModule &CGM) {
1335   const Decl *D = GD.getDecl();
1336   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1337          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1338 }
1339 
1340 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1341                                        const TargetClonesAttr *Attr,
1342                                        unsigned VersionIndex,
1343                                        raw_ostream &Out) {
1344   Out << '.';
1345   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1346   if (FeatureStr.startswith("arch="))
1347     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1348   else
1349     Out << FeatureStr;
1350 
1351   Out << '.' << Attr->getMangledIndex(VersionIndex);
1352 }
1353 
1354 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1355                                       const NamedDecl *ND,
1356                                       bool OmitMultiVersionMangling = false) {
1357   SmallString<256> Buffer;
1358   llvm::raw_svector_ostream Out(Buffer);
1359   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1360   if (!CGM.getModuleNameHash().empty())
1361     MC.needsUniqueInternalLinkageNames();
1362   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1363   if (ShouldMangle)
1364     MC.mangleName(GD.getWithDecl(ND), Out);
1365   else {
1366     IdentifierInfo *II = ND->getIdentifier();
1367     assert(II && "Attempt to mangle unnamed decl.");
1368     const auto *FD = dyn_cast<FunctionDecl>(ND);
1369 
1370     if (FD &&
1371         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1372       Out << "__regcall3__" << II->getName();
1373     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1374                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1375       Out << "__device_stub__" << II->getName();
1376     } else {
1377       Out << II->getName();
1378     }
1379   }
1380 
1381   // Check if the module name hash should be appended for internal linkage
1382   // symbols.   This should come before multi-version target suffixes are
1383   // appended. This is to keep the name and module hash suffix of the
1384   // internal linkage function together.  The unique suffix should only be
1385   // added when name mangling is done to make sure that the final name can
1386   // be properly demangled.  For example, for C functions without prototypes,
1387   // name mangling is not done and the unique suffix should not be appeneded
1388   // then.
1389   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1390     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1391            "Hash computed when not explicitly requested");
1392     Out << CGM.getModuleNameHash();
1393   }
1394 
1395   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1396     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1397       switch (FD->getMultiVersionKind()) {
1398       case MultiVersionKind::CPUDispatch:
1399       case MultiVersionKind::CPUSpecific:
1400         AppendCPUSpecificCPUDispatchMangling(CGM,
1401                                              FD->getAttr<CPUSpecificAttr>(),
1402                                              GD.getMultiVersionIndex(), Out);
1403         break;
1404       case MultiVersionKind::Target:
1405         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1406         break;
1407       case MultiVersionKind::TargetClones:
1408         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1409                                    GD.getMultiVersionIndex(), Out);
1410         break;
1411       case MultiVersionKind::None:
1412         llvm_unreachable("None multiversion type isn't valid here");
1413       }
1414     }
1415 
1416   // Make unique name for device side static file-scope variable for HIP.
1417   if (CGM.getContext().shouldExternalize(ND) &&
1418       CGM.getLangOpts().GPURelocatableDeviceCode &&
1419       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1420     CGM.printPostfixForExternalizedDecl(Out, ND);
1421   return std::string(Out.str());
1422 }
1423 
1424 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1425                                             const FunctionDecl *FD,
1426                                             StringRef &CurName) {
1427   if (!FD->isMultiVersion())
1428     return;
1429 
1430   // Get the name of what this would be without the 'target' attribute.  This
1431   // allows us to lookup the version that was emitted when this wasn't a
1432   // multiversion function.
1433   std::string NonTargetName =
1434       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1435   GlobalDecl OtherGD;
1436   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1437     assert(OtherGD.getCanonicalDecl()
1438                .getDecl()
1439                ->getAsFunction()
1440                ->isMultiVersion() &&
1441            "Other GD should now be a multiversioned function");
1442     // OtherFD is the version of this function that was mangled BEFORE
1443     // becoming a MultiVersion function.  It potentially needs to be updated.
1444     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1445                                       .getDecl()
1446                                       ->getAsFunction()
1447                                       ->getMostRecentDecl();
1448     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1449     // This is so that if the initial version was already the 'default'
1450     // version, we don't try to update it.
1451     if (OtherName != NonTargetName) {
1452       // Remove instead of erase, since others may have stored the StringRef
1453       // to this.
1454       const auto ExistingRecord = Manglings.find(NonTargetName);
1455       if (ExistingRecord != std::end(Manglings))
1456         Manglings.remove(&(*ExistingRecord));
1457       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1458       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1459           Result.first->first();
1460       // If this is the current decl is being created, make sure we update the name.
1461       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1462         CurName = OtherNameRef;
1463       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1464         Entry->setName(OtherName);
1465     }
1466   }
1467 }
1468 
1469 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1470   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1471 
1472   // Some ABIs don't have constructor variants.  Make sure that base and
1473   // complete constructors get mangled the same.
1474   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1475     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1476       CXXCtorType OrigCtorType = GD.getCtorType();
1477       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1478       if (OrigCtorType == Ctor_Base)
1479         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1480     }
1481   }
1482 
1483   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1484   // static device variable depends on whether the variable is referenced by
1485   // a host or device host function. Therefore the mangled name cannot be
1486   // cached.
1487   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1488     auto FoundName = MangledDeclNames.find(CanonicalGD);
1489     if (FoundName != MangledDeclNames.end())
1490       return FoundName->second;
1491   }
1492 
1493   // Keep the first result in the case of a mangling collision.
1494   const auto *ND = cast<NamedDecl>(GD.getDecl());
1495   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1496 
1497   // Ensure either we have different ABIs between host and device compilations,
1498   // says host compilation following MSVC ABI but device compilation follows
1499   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1500   // mangling should be the same after name stubbing. The later checking is
1501   // very important as the device kernel name being mangled in host-compilation
1502   // is used to resolve the device binaries to be executed. Inconsistent naming
1503   // result in undefined behavior. Even though we cannot check that naming
1504   // directly between host- and device-compilations, the host- and
1505   // device-mangling in host compilation could help catching certain ones.
1506   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1507          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1508          (getContext().getAuxTargetInfo() &&
1509           (getContext().getAuxTargetInfo()->getCXXABI() !=
1510            getContext().getTargetInfo().getCXXABI())) ||
1511          getCUDARuntime().getDeviceSideName(ND) ==
1512              getMangledNameImpl(
1513                  *this,
1514                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1515                  ND));
1516 
1517   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1518   return MangledDeclNames[CanonicalGD] = Result.first->first();
1519 }
1520 
1521 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1522                                              const BlockDecl *BD) {
1523   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1524   const Decl *D = GD.getDecl();
1525 
1526   SmallString<256> Buffer;
1527   llvm::raw_svector_ostream Out(Buffer);
1528   if (!D)
1529     MangleCtx.mangleGlobalBlock(BD,
1530       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1531   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1532     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1533   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1534     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1535   else
1536     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1537 
1538   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1539   return Result.first->first();
1540 }
1541 
1542 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1543   auto it = MangledDeclNames.begin();
1544   while (it != MangledDeclNames.end()) {
1545     if (it->second == Name)
1546       return it->first;
1547     it++;
1548   }
1549   return GlobalDecl();
1550 }
1551 
1552 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1553   return getModule().getNamedValue(Name);
1554 }
1555 
1556 /// AddGlobalCtor - Add a function to the list that will be called before
1557 /// main() runs.
1558 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1559                                   llvm::Constant *AssociatedData) {
1560   // FIXME: Type coercion of void()* types.
1561   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1562 }
1563 
1564 /// AddGlobalDtor - Add a function to the list that will be called
1565 /// when the module is unloaded.
1566 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1567                                   bool IsDtorAttrFunc) {
1568   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1569       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1570     DtorsUsingAtExit[Priority].push_back(Dtor);
1571     return;
1572   }
1573 
1574   // FIXME: Type coercion of void()* types.
1575   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1576 }
1577 
1578 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1579   if (Fns.empty()) return;
1580 
1581   // Ctor function type is void()*.
1582   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1583   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1584       TheModule.getDataLayout().getProgramAddressSpace());
1585 
1586   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1587   llvm::StructType *CtorStructTy = llvm::StructType::get(
1588       Int32Ty, CtorPFTy, VoidPtrTy);
1589 
1590   // Construct the constructor and destructor arrays.
1591   ConstantInitBuilder builder(*this);
1592   auto ctors = builder.beginArray(CtorStructTy);
1593   for (const auto &I : Fns) {
1594     auto ctor = ctors.beginStruct(CtorStructTy);
1595     ctor.addInt(Int32Ty, I.Priority);
1596     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1597     if (I.AssociatedData)
1598       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1599     else
1600       ctor.addNullPointer(VoidPtrTy);
1601     ctor.finishAndAddTo(ctors);
1602   }
1603 
1604   auto list =
1605     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1606                                 /*constant*/ false,
1607                                 llvm::GlobalValue::AppendingLinkage);
1608 
1609   // The LTO linker doesn't seem to like it when we set an alignment
1610   // on appending variables.  Take it off as a workaround.
1611   list->setAlignment(llvm::None);
1612 
1613   Fns.clear();
1614 }
1615 
1616 llvm::GlobalValue::LinkageTypes
1617 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1618   const auto *D = cast<FunctionDecl>(GD.getDecl());
1619 
1620   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1621 
1622   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1623     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1624 
1625   if (isa<CXXConstructorDecl>(D) &&
1626       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1627       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1628     // Our approach to inheriting constructors is fundamentally different from
1629     // that used by the MS ABI, so keep our inheriting constructor thunks
1630     // internal rather than trying to pick an unambiguous mangling for them.
1631     return llvm::GlobalValue::InternalLinkage;
1632   }
1633 
1634   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1635 }
1636 
1637 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1638   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1639   if (!MDS) return nullptr;
1640 
1641   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1642 }
1643 
1644 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1645                                               const CGFunctionInfo &Info,
1646                                               llvm::Function *F, bool IsThunk) {
1647   unsigned CallingConv;
1648   llvm::AttributeList PAL;
1649   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1650                          /*AttrOnCallSite=*/false, IsThunk);
1651   F->setAttributes(PAL);
1652   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1653 }
1654 
1655 static void removeImageAccessQualifier(std::string& TyName) {
1656   std::string ReadOnlyQual("__read_only");
1657   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1658   if (ReadOnlyPos != std::string::npos)
1659     // "+ 1" for the space after access qualifier.
1660     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1661   else {
1662     std::string WriteOnlyQual("__write_only");
1663     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1664     if (WriteOnlyPos != std::string::npos)
1665       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1666     else {
1667       std::string ReadWriteQual("__read_write");
1668       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1669       if (ReadWritePos != std::string::npos)
1670         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1671     }
1672   }
1673 }
1674 
1675 // Returns the address space id that should be produced to the
1676 // kernel_arg_addr_space metadata. This is always fixed to the ids
1677 // as specified in the SPIR 2.0 specification in order to differentiate
1678 // for example in clGetKernelArgInfo() implementation between the address
1679 // spaces with targets without unique mapping to the OpenCL address spaces
1680 // (basically all single AS CPUs).
1681 static unsigned ArgInfoAddressSpace(LangAS AS) {
1682   switch (AS) {
1683   case LangAS::opencl_global:
1684     return 1;
1685   case LangAS::opencl_constant:
1686     return 2;
1687   case LangAS::opencl_local:
1688     return 3;
1689   case LangAS::opencl_generic:
1690     return 4; // Not in SPIR 2.0 specs.
1691   case LangAS::opencl_global_device:
1692     return 5;
1693   case LangAS::opencl_global_host:
1694     return 6;
1695   default:
1696     return 0; // Assume private.
1697   }
1698 }
1699 
1700 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1701                                          const FunctionDecl *FD,
1702                                          CodeGenFunction *CGF) {
1703   assert(((FD && CGF) || (!FD && !CGF)) &&
1704          "Incorrect use - FD and CGF should either be both null or not!");
1705   // Create MDNodes that represent the kernel arg metadata.
1706   // Each MDNode is a list in the form of "key", N number of values which is
1707   // the same number of values as their are kernel arguments.
1708 
1709   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1710 
1711   // MDNode for the kernel argument address space qualifiers.
1712   SmallVector<llvm::Metadata *, 8> addressQuals;
1713 
1714   // MDNode for the kernel argument access qualifiers (images only).
1715   SmallVector<llvm::Metadata *, 8> accessQuals;
1716 
1717   // MDNode for the kernel argument type names.
1718   SmallVector<llvm::Metadata *, 8> argTypeNames;
1719 
1720   // MDNode for the kernel argument base type names.
1721   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1722 
1723   // MDNode for the kernel argument type qualifiers.
1724   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1725 
1726   // MDNode for the kernel argument names.
1727   SmallVector<llvm::Metadata *, 8> argNames;
1728 
1729   if (FD && CGF)
1730     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1731       const ParmVarDecl *parm = FD->getParamDecl(i);
1732       QualType ty = parm->getType();
1733       std::string typeQuals;
1734 
1735       // Get image and pipe access qualifier:
1736       if (ty->isImageType() || ty->isPipeType()) {
1737         const Decl *PDecl = parm;
1738         if (auto *TD = dyn_cast<TypedefType>(ty))
1739           PDecl = TD->getDecl();
1740         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1741         if (A && A->isWriteOnly())
1742           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1743         else if (A && A->isReadWrite())
1744           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1745         else
1746           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1747       } else
1748         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1749 
1750       // Get argument name.
1751       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1752 
1753       auto getTypeSpelling = [&](QualType Ty) {
1754         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1755 
1756         if (Ty.isCanonical()) {
1757           StringRef typeNameRef = typeName;
1758           // Turn "unsigned type" to "utype"
1759           if (typeNameRef.consume_front("unsigned "))
1760             return std::string("u") + typeNameRef.str();
1761           if (typeNameRef.consume_front("signed "))
1762             return typeNameRef.str();
1763         }
1764 
1765         return typeName;
1766       };
1767 
1768       if (ty->isPointerType()) {
1769         QualType pointeeTy = ty->getPointeeType();
1770 
1771         // Get address qualifier.
1772         addressQuals.push_back(
1773             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1774                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1775 
1776         // Get argument type name.
1777         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1778         std::string baseTypeName =
1779             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1780         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1781         argBaseTypeNames.push_back(
1782             llvm::MDString::get(VMContext, baseTypeName));
1783 
1784         // Get argument type qualifiers:
1785         if (ty.isRestrictQualified())
1786           typeQuals = "restrict";
1787         if (pointeeTy.isConstQualified() ||
1788             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1789           typeQuals += typeQuals.empty() ? "const" : " const";
1790         if (pointeeTy.isVolatileQualified())
1791           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1792       } else {
1793         uint32_t AddrSpc = 0;
1794         bool isPipe = ty->isPipeType();
1795         if (ty->isImageType() || isPipe)
1796           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1797 
1798         addressQuals.push_back(
1799             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1800 
1801         // Get argument type name.
1802         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1803         std::string typeName = getTypeSpelling(ty);
1804         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1805 
1806         // Remove access qualifiers on images
1807         // (as they are inseparable from type in clang implementation,
1808         // but OpenCL spec provides a special query to get access qualifier
1809         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1810         if (ty->isImageType()) {
1811           removeImageAccessQualifier(typeName);
1812           removeImageAccessQualifier(baseTypeName);
1813         }
1814 
1815         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1816         argBaseTypeNames.push_back(
1817             llvm::MDString::get(VMContext, baseTypeName));
1818 
1819         if (isPipe)
1820           typeQuals = "pipe";
1821       }
1822       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1823     }
1824 
1825   Fn->setMetadata("kernel_arg_addr_space",
1826                   llvm::MDNode::get(VMContext, addressQuals));
1827   Fn->setMetadata("kernel_arg_access_qual",
1828                   llvm::MDNode::get(VMContext, accessQuals));
1829   Fn->setMetadata("kernel_arg_type",
1830                   llvm::MDNode::get(VMContext, argTypeNames));
1831   Fn->setMetadata("kernel_arg_base_type",
1832                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1833   Fn->setMetadata("kernel_arg_type_qual",
1834                   llvm::MDNode::get(VMContext, argTypeQuals));
1835   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1836     Fn->setMetadata("kernel_arg_name",
1837                     llvm::MDNode::get(VMContext, argNames));
1838 }
1839 
1840 /// Determines whether the language options require us to model
1841 /// unwind exceptions.  We treat -fexceptions as mandating this
1842 /// except under the fragile ObjC ABI with only ObjC exceptions
1843 /// enabled.  This means, for example, that C with -fexceptions
1844 /// enables this.
1845 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1846   // If exceptions are completely disabled, obviously this is false.
1847   if (!LangOpts.Exceptions) return false;
1848 
1849   // If C++ exceptions are enabled, this is true.
1850   if (LangOpts.CXXExceptions) return true;
1851 
1852   // If ObjC exceptions are enabled, this depends on the ABI.
1853   if (LangOpts.ObjCExceptions) {
1854     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1855   }
1856 
1857   return true;
1858 }
1859 
1860 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1861                                                       const CXXMethodDecl *MD) {
1862   // Check that the type metadata can ever actually be used by a call.
1863   if (!CGM.getCodeGenOpts().LTOUnit ||
1864       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1865     return false;
1866 
1867   // Only functions whose address can be taken with a member function pointer
1868   // need this sort of type metadata.
1869   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1870          !isa<CXXDestructorDecl>(MD);
1871 }
1872 
1873 std::vector<const CXXRecordDecl *>
1874 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1875   llvm::SetVector<const CXXRecordDecl *> MostBases;
1876 
1877   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1878   CollectMostBases = [&](const CXXRecordDecl *RD) {
1879     if (RD->getNumBases() == 0)
1880       MostBases.insert(RD);
1881     for (const CXXBaseSpecifier &B : RD->bases())
1882       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1883   };
1884   CollectMostBases(RD);
1885   return MostBases.takeVector();
1886 }
1887 
1888 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1889                                                            llvm::Function *F) {
1890   llvm::AttrBuilder B(F->getContext());
1891 
1892   if (CodeGenOpts.UnwindTables)
1893     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1894 
1895   if (CodeGenOpts.StackClashProtector)
1896     B.addAttribute("probe-stack", "inline-asm");
1897 
1898   if (!hasUnwindExceptions(LangOpts))
1899     B.addAttribute(llvm::Attribute::NoUnwind);
1900 
1901   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1902     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1903       B.addAttribute(llvm::Attribute::StackProtect);
1904     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1905       B.addAttribute(llvm::Attribute::StackProtectStrong);
1906     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1907       B.addAttribute(llvm::Attribute::StackProtectReq);
1908   }
1909 
1910   if (!D) {
1911     // If we don't have a declaration to control inlining, the function isn't
1912     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1913     // disabled, mark the function as noinline.
1914     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1915         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1916       B.addAttribute(llvm::Attribute::NoInline);
1917 
1918     F->addFnAttrs(B);
1919     return;
1920   }
1921 
1922   // Track whether we need to add the optnone LLVM attribute,
1923   // starting with the default for this optimization level.
1924   bool ShouldAddOptNone =
1925       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1926   // We can't add optnone in the following cases, it won't pass the verifier.
1927   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1928   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1929 
1930   // Add optnone, but do so only if the function isn't always_inline.
1931   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1932       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1933     B.addAttribute(llvm::Attribute::OptimizeNone);
1934 
1935     // OptimizeNone implies noinline; we should not be inlining such functions.
1936     B.addAttribute(llvm::Attribute::NoInline);
1937 
1938     // We still need to handle naked functions even though optnone subsumes
1939     // much of their semantics.
1940     if (D->hasAttr<NakedAttr>())
1941       B.addAttribute(llvm::Attribute::Naked);
1942 
1943     // OptimizeNone wins over OptimizeForSize and MinSize.
1944     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1945     F->removeFnAttr(llvm::Attribute::MinSize);
1946   } else if (D->hasAttr<NakedAttr>()) {
1947     // Naked implies noinline: we should not be inlining such functions.
1948     B.addAttribute(llvm::Attribute::Naked);
1949     B.addAttribute(llvm::Attribute::NoInline);
1950   } else if (D->hasAttr<NoDuplicateAttr>()) {
1951     B.addAttribute(llvm::Attribute::NoDuplicate);
1952   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1953     // Add noinline if the function isn't always_inline.
1954     B.addAttribute(llvm::Attribute::NoInline);
1955   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1956              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1957     // (noinline wins over always_inline, and we can't specify both in IR)
1958     B.addAttribute(llvm::Attribute::AlwaysInline);
1959   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1960     // If we're not inlining, then force everything that isn't always_inline to
1961     // carry an explicit noinline attribute.
1962     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1963       B.addAttribute(llvm::Attribute::NoInline);
1964   } else {
1965     // Otherwise, propagate the inline hint attribute and potentially use its
1966     // absence to mark things as noinline.
1967     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1968       // Search function and template pattern redeclarations for inline.
1969       auto CheckForInline = [](const FunctionDecl *FD) {
1970         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1971           return Redecl->isInlineSpecified();
1972         };
1973         if (any_of(FD->redecls(), CheckRedeclForInline))
1974           return true;
1975         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1976         if (!Pattern)
1977           return false;
1978         return any_of(Pattern->redecls(), CheckRedeclForInline);
1979       };
1980       if (CheckForInline(FD)) {
1981         B.addAttribute(llvm::Attribute::InlineHint);
1982       } else if (CodeGenOpts.getInlining() ==
1983                      CodeGenOptions::OnlyHintInlining &&
1984                  !FD->isInlined() &&
1985                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1986         B.addAttribute(llvm::Attribute::NoInline);
1987       }
1988     }
1989   }
1990 
1991   // Add other optimization related attributes if we are optimizing this
1992   // function.
1993   if (!D->hasAttr<OptimizeNoneAttr>()) {
1994     if (D->hasAttr<ColdAttr>()) {
1995       if (!ShouldAddOptNone)
1996         B.addAttribute(llvm::Attribute::OptimizeForSize);
1997       B.addAttribute(llvm::Attribute::Cold);
1998     }
1999     if (D->hasAttr<HotAttr>())
2000       B.addAttribute(llvm::Attribute::Hot);
2001     if (D->hasAttr<MinSizeAttr>())
2002       B.addAttribute(llvm::Attribute::MinSize);
2003   }
2004 
2005   F->addFnAttrs(B);
2006 
2007   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2008   if (alignment)
2009     F->setAlignment(llvm::Align(alignment));
2010 
2011   if (!D->hasAttr<AlignedAttr>())
2012     if (LangOpts.FunctionAlignment)
2013       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2014 
2015   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2016   // reserve a bit for differentiating between virtual and non-virtual member
2017   // functions. If the current target's C++ ABI requires this and this is a
2018   // member function, set its alignment accordingly.
2019   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2020     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2021       F->setAlignment(llvm::Align(2));
2022   }
2023 
2024   // In the cross-dso CFI mode with canonical jump tables, we want !type
2025   // attributes on definitions only.
2026   if (CodeGenOpts.SanitizeCfiCrossDso &&
2027       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2028     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2029       // Skip available_externally functions. They won't be codegen'ed in the
2030       // current module anyway.
2031       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2032         CreateFunctionTypeMetadataForIcall(FD, F);
2033     }
2034   }
2035 
2036   // Emit type metadata on member functions for member function pointer checks.
2037   // These are only ever necessary on definitions; we're guaranteed that the
2038   // definition will be present in the LTO unit as a result of LTO visibility.
2039   auto *MD = dyn_cast<CXXMethodDecl>(D);
2040   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2041     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2042       llvm::Metadata *Id =
2043           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2044               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2045       F->addTypeMetadata(0, Id);
2046     }
2047   }
2048 }
2049 
2050 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2051                                                   llvm::Function *F) {
2052   if (D->hasAttr<StrictFPAttr>()) {
2053     llvm::AttrBuilder FuncAttrs(F->getContext());
2054     FuncAttrs.addAttribute("strictfp");
2055     F->addFnAttrs(FuncAttrs);
2056   }
2057 }
2058 
2059 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2060   const Decl *D = GD.getDecl();
2061   if (isa_and_nonnull<NamedDecl>(D))
2062     setGVProperties(GV, GD);
2063   else
2064     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2065 
2066   if (D && D->hasAttr<UsedAttr>())
2067     addUsedOrCompilerUsedGlobal(GV);
2068 
2069   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2070     const auto *VD = cast<VarDecl>(D);
2071     if (VD->getType().isConstQualified() &&
2072         VD->getStorageDuration() == SD_Static)
2073       addUsedOrCompilerUsedGlobal(GV);
2074   }
2075 }
2076 
2077 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2078                                                 llvm::AttrBuilder &Attrs) {
2079   // Add target-cpu and target-features attributes to functions. If
2080   // we have a decl for the function and it has a target attribute then
2081   // parse that and add it to the feature set.
2082   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2083   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2084   std::vector<std::string> Features;
2085   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2086   FD = FD ? FD->getMostRecentDecl() : FD;
2087   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2088   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2089   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2090   bool AddedAttr = false;
2091   if (TD || SD || TC) {
2092     llvm::StringMap<bool> FeatureMap;
2093     getContext().getFunctionFeatureMap(FeatureMap, GD);
2094 
2095     // Produce the canonical string for this set of features.
2096     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2097       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2098 
2099     // Now add the target-cpu and target-features to the function.
2100     // While we populated the feature map above, we still need to
2101     // get and parse the target attribute so we can get the cpu for
2102     // the function.
2103     if (TD) {
2104       ParsedTargetAttr ParsedAttr = TD->parse();
2105       if (!ParsedAttr.Architecture.empty() &&
2106           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2107         TargetCPU = ParsedAttr.Architecture;
2108         TuneCPU = ""; // Clear the tune CPU.
2109       }
2110       if (!ParsedAttr.Tune.empty() &&
2111           getTarget().isValidCPUName(ParsedAttr.Tune))
2112         TuneCPU = ParsedAttr.Tune;
2113     }
2114 
2115     if (SD) {
2116       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2117       // favor this processor.
2118       TuneCPU = getTarget().getCPUSpecificTuneName(
2119           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2120     }
2121   } else {
2122     // Otherwise just add the existing target cpu and target features to the
2123     // function.
2124     Features = getTarget().getTargetOpts().Features;
2125   }
2126 
2127   if (!TargetCPU.empty()) {
2128     Attrs.addAttribute("target-cpu", TargetCPU);
2129     AddedAttr = true;
2130   }
2131   if (!TuneCPU.empty()) {
2132     Attrs.addAttribute("tune-cpu", TuneCPU);
2133     AddedAttr = true;
2134   }
2135   if (!Features.empty()) {
2136     llvm::sort(Features);
2137     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2138     AddedAttr = true;
2139   }
2140 
2141   return AddedAttr;
2142 }
2143 
2144 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2145                                           llvm::GlobalObject *GO) {
2146   const Decl *D = GD.getDecl();
2147   SetCommonAttributes(GD, GO);
2148 
2149   if (D) {
2150     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2151       if (D->hasAttr<RetainAttr>())
2152         addUsedGlobal(GV);
2153       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2154         GV->addAttribute("bss-section", SA->getName());
2155       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2156         GV->addAttribute("data-section", SA->getName());
2157       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2158         GV->addAttribute("rodata-section", SA->getName());
2159       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2160         GV->addAttribute("relro-section", SA->getName());
2161     }
2162 
2163     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2164       if (D->hasAttr<RetainAttr>())
2165         addUsedGlobal(F);
2166       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2167         if (!D->getAttr<SectionAttr>())
2168           F->addFnAttr("implicit-section-name", SA->getName());
2169 
2170       llvm::AttrBuilder Attrs(F->getContext());
2171       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2172         // We know that GetCPUAndFeaturesAttributes will always have the
2173         // newest set, since it has the newest possible FunctionDecl, so the
2174         // new ones should replace the old.
2175         llvm::AttributeMask RemoveAttrs;
2176         RemoveAttrs.addAttribute("target-cpu");
2177         RemoveAttrs.addAttribute("target-features");
2178         RemoveAttrs.addAttribute("tune-cpu");
2179         F->removeFnAttrs(RemoveAttrs);
2180         F->addFnAttrs(Attrs);
2181       }
2182     }
2183 
2184     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2185       GO->setSection(CSA->getName());
2186     else if (const auto *SA = D->getAttr<SectionAttr>())
2187       GO->setSection(SA->getName());
2188   }
2189 
2190   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2191 }
2192 
2193 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2194                                                   llvm::Function *F,
2195                                                   const CGFunctionInfo &FI) {
2196   const Decl *D = GD.getDecl();
2197   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2198   SetLLVMFunctionAttributesForDefinition(D, F);
2199 
2200   F->setLinkage(llvm::Function::InternalLinkage);
2201 
2202   setNonAliasAttributes(GD, F);
2203 }
2204 
2205 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2206   // Set linkage and visibility in case we never see a definition.
2207   LinkageInfo LV = ND->getLinkageAndVisibility();
2208   // Don't set internal linkage on declarations.
2209   // "extern_weak" is overloaded in LLVM; we probably should have
2210   // separate linkage types for this.
2211   if (isExternallyVisible(LV.getLinkage()) &&
2212       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2213     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2214 }
2215 
2216 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2217                                                        llvm::Function *F) {
2218   // Only if we are checking indirect calls.
2219   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2220     return;
2221 
2222   // Non-static class methods are handled via vtable or member function pointer
2223   // checks elsewhere.
2224   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2225     return;
2226 
2227   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2228   F->addTypeMetadata(0, MD);
2229   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2230 
2231   // Emit a hash-based bit set entry for cross-DSO calls.
2232   if (CodeGenOpts.SanitizeCfiCrossDso)
2233     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2234       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2235 }
2236 
2237 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2238                                           bool IsIncompleteFunction,
2239                                           bool IsThunk) {
2240 
2241   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2242     // If this is an intrinsic function, set the function's attributes
2243     // to the intrinsic's attributes.
2244     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2245     return;
2246   }
2247 
2248   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2249 
2250   if (!IsIncompleteFunction)
2251     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2252                               IsThunk);
2253 
2254   // Add the Returned attribute for "this", except for iOS 5 and earlier
2255   // where substantial code, including the libstdc++ dylib, was compiled with
2256   // GCC and does not actually return "this".
2257   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2258       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2259     assert(!F->arg_empty() &&
2260            F->arg_begin()->getType()
2261              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2262            "unexpected this return");
2263     F->addParamAttr(0, llvm::Attribute::Returned);
2264   }
2265 
2266   // Only a few attributes are set on declarations; these may later be
2267   // overridden by a definition.
2268 
2269   setLinkageForGV(F, FD);
2270   setGVProperties(F, FD);
2271 
2272   // Setup target-specific attributes.
2273   if (!IsIncompleteFunction && F->isDeclaration())
2274     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2275 
2276   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2277     F->setSection(CSA->getName());
2278   else if (const auto *SA = FD->getAttr<SectionAttr>())
2279      F->setSection(SA->getName());
2280 
2281   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2282     if (EA->isError())
2283       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2284     else if (EA->isWarning())
2285       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2286   }
2287 
2288   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2289   if (FD->isInlineBuiltinDeclaration()) {
2290     const FunctionDecl *FDBody;
2291     bool HasBody = FD->hasBody(FDBody);
2292     (void)HasBody;
2293     assert(HasBody && "Inline builtin declarations should always have an "
2294                       "available body!");
2295     if (shouldEmitFunction(FDBody))
2296       F->addFnAttr(llvm::Attribute::NoBuiltin);
2297   }
2298 
2299   if (FD->isReplaceableGlobalAllocationFunction()) {
2300     // A replaceable global allocation function does not act like a builtin by
2301     // default, only if it is invoked by a new-expression or delete-expression.
2302     F->addFnAttr(llvm::Attribute::NoBuiltin);
2303   }
2304 
2305   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2306     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2307   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2308     if (MD->isVirtual())
2309       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2310 
2311   // Don't emit entries for function declarations in the cross-DSO mode. This
2312   // is handled with better precision by the receiving DSO. But if jump tables
2313   // are non-canonical then we need type metadata in order to produce the local
2314   // jump table.
2315   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2316       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2317     CreateFunctionTypeMetadataForIcall(FD, F);
2318 
2319   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2320     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2321 
2322   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2323     // Annotate the callback behavior as metadata:
2324     //  - The callback callee (as argument number).
2325     //  - The callback payloads (as argument numbers).
2326     llvm::LLVMContext &Ctx = F->getContext();
2327     llvm::MDBuilder MDB(Ctx);
2328 
2329     // The payload indices are all but the first one in the encoding. The first
2330     // identifies the callback callee.
2331     int CalleeIdx = *CB->encoding_begin();
2332     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2333     F->addMetadata(llvm::LLVMContext::MD_callback,
2334                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2335                                                CalleeIdx, PayloadIndices,
2336                                                /* VarArgsArePassed */ false)}));
2337   }
2338 }
2339 
2340 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2341   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2342          "Only globals with definition can force usage.");
2343   LLVMUsed.emplace_back(GV);
2344 }
2345 
2346 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2347   assert(!GV->isDeclaration() &&
2348          "Only globals with definition can force usage.");
2349   LLVMCompilerUsed.emplace_back(GV);
2350 }
2351 
2352 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2353   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2354          "Only globals with definition can force usage.");
2355   if (getTriple().isOSBinFormatELF())
2356     LLVMCompilerUsed.emplace_back(GV);
2357   else
2358     LLVMUsed.emplace_back(GV);
2359 }
2360 
2361 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2362                      std::vector<llvm::WeakTrackingVH> &List) {
2363   // Don't create llvm.used if there is no need.
2364   if (List.empty())
2365     return;
2366 
2367   // Convert List to what ConstantArray needs.
2368   SmallVector<llvm::Constant*, 8> UsedArray;
2369   UsedArray.resize(List.size());
2370   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2371     UsedArray[i] =
2372         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2373             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2374   }
2375 
2376   if (UsedArray.empty())
2377     return;
2378   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2379 
2380   auto *GV = new llvm::GlobalVariable(
2381       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2382       llvm::ConstantArray::get(ATy, UsedArray), Name);
2383 
2384   GV->setSection("llvm.metadata");
2385 }
2386 
2387 void CodeGenModule::emitLLVMUsed() {
2388   emitUsed(*this, "llvm.used", LLVMUsed);
2389   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2390 }
2391 
2392 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2393   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2394   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2395 }
2396 
2397 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2398   llvm::SmallString<32> Opt;
2399   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2400   if (Opt.empty())
2401     return;
2402   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2403   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2404 }
2405 
2406 void CodeGenModule::AddDependentLib(StringRef Lib) {
2407   auto &C = getLLVMContext();
2408   if (getTarget().getTriple().isOSBinFormatELF()) {
2409       ELFDependentLibraries.push_back(
2410         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2411     return;
2412   }
2413 
2414   llvm::SmallString<24> Opt;
2415   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2416   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2417   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2418 }
2419 
2420 /// Add link options implied by the given module, including modules
2421 /// it depends on, using a postorder walk.
2422 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2423                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2424                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2425   // Import this module's parent.
2426   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2427     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2428   }
2429 
2430   // Import this module's dependencies.
2431   for (Module *Import : llvm::reverse(Mod->Imports)) {
2432     if (Visited.insert(Import).second)
2433       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2434   }
2435 
2436   // Add linker options to link against the libraries/frameworks
2437   // described by this module.
2438   llvm::LLVMContext &Context = CGM.getLLVMContext();
2439   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2440 
2441   // For modules that use export_as for linking, use that module
2442   // name instead.
2443   if (Mod->UseExportAsModuleLinkName)
2444     return;
2445 
2446   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2447     // Link against a framework.  Frameworks are currently Darwin only, so we
2448     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2449     if (LL.IsFramework) {
2450       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2451                                  llvm::MDString::get(Context, LL.Library)};
2452 
2453       Metadata.push_back(llvm::MDNode::get(Context, Args));
2454       continue;
2455     }
2456 
2457     // Link against a library.
2458     if (IsELF) {
2459       llvm::Metadata *Args[2] = {
2460           llvm::MDString::get(Context, "lib"),
2461           llvm::MDString::get(Context, LL.Library),
2462       };
2463       Metadata.push_back(llvm::MDNode::get(Context, Args));
2464     } else {
2465       llvm::SmallString<24> Opt;
2466       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2467       auto *OptString = llvm::MDString::get(Context, Opt);
2468       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2469     }
2470   }
2471 }
2472 
2473 void CodeGenModule::EmitModuleLinkOptions() {
2474   // Collect the set of all of the modules we want to visit to emit link
2475   // options, which is essentially the imported modules and all of their
2476   // non-explicit child modules.
2477   llvm::SetVector<clang::Module *> LinkModules;
2478   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2479   SmallVector<clang::Module *, 16> Stack;
2480 
2481   // Seed the stack with imported modules.
2482   for (Module *M : ImportedModules) {
2483     // Do not add any link flags when an implementation TU of a module imports
2484     // a header of that same module.
2485     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2486         !getLangOpts().isCompilingModule())
2487       continue;
2488     if (Visited.insert(M).second)
2489       Stack.push_back(M);
2490   }
2491 
2492   // Find all of the modules to import, making a little effort to prune
2493   // non-leaf modules.
2494   while (!Stack.empty()) {
2495     clang::Module *Mod = Stack.pop_back_val();
2496 
2497     bool AnyChildren = false;
2498 
2499     // Visit the submodules of this module.
2500     for (const auto &SM : Mod->submodules()) {
2501       // Skip explicit children; they need to be explicitly imported to be
2502       // linked against.
2503       if (SM->IsExplicit)
2504         continue;
2505 
2506       if (Visited.insert(SM).second) {
2507         Stack.push_back(SM);
2508         AnyChildren = true;
2509       }
2510     }
2511 
2512     // We didn't find any children, so add this module to the list of
2513     // modules to link against.
2514     if (!AnyChildren) {
2515       LinkModules.insert(Mod);
2516     }
2517   }
2518 
2519   // Add link options for all of the imported modules in reverse topological
2520   // order.  We don't do anything to try to order import link flags with respect
2521   // to linker options inserted by things like #pragma comment().
2522   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2523   Visited.clear();
2524   for (Module *M : LinkModules)
2525     if (Visited.insert(M).second)
2526       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2527   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2528   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2529 
2530   // Add the linker options metadata flag.
2531   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2532   for (auto *MD : LinkerOptionsMetadata)
2533     NMD->addOperand(MD);
2534 }
2535 
2536 void CodeGenModule::EmitDeferred() {
2537   // Emit deferred declare target declarations.
2538   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2539     getOpenMPRuntime().emitDeferredTargetDecls();
2540 
2541   // Emit code for any potentially referenced deferred decls.  Since a
2542   // previously unused static decl may become used during the generation of code
2543   // for a static function, iterate until no changes are made.
2544 
2545   if (!DeferredVTables.empty()) {
2546     EmitDeferredVTables();
2547 
2548     // Emitting a vtable doesn't directly cause more vtables to
2549     // become deferred, although it can cause functions to be
2550     // emitted that then need those vtables.
2551     assert(DeferredVTables.empty());
2552   }
2553 
2554   // Emit CUDA/HIP static device variables referenced by host code only.
2555   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2556   // needed for further handling.
2557   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2558     llvm::append_range(DeferredDeclsToEmit,
2559                        getContext().CUDADeviceVarODRUsedByHost);
2560 
2561   // Stop if we're out of both deferred vtables and deferred declarations.
2562   if (DeferredDeclsToEmit.empty())
2563     return;
2564 
2565   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2566   // work, it will not interfere with this.
2567   std::vector<GlobalDecl> CurDeclsToEmit;
2568   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2569 
2570   for (GlobalDecl &D : CurDeclsToEmit) {
2571     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2572     // to get GlobalValue with exactly the type we need, not something that
2573     // might had been created for another decl with the same mangled name but
2574     // different type.
2575     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2576         GetAddrOfGlobal(D, ForDefinition));
2577 
2578     // In case of different address spaces, we may still get a cast, even with
2579     // IsForDefinition equal to true. Query mangled names table to get
2580     // GlobalValue.
2581     if (!GV)
2582       GV = GetGlobalValue(getMangledName(D));
2583 
2584     // Make sure GetGlobalValue returned non-null.
2585     assert(GV);
2586 
2587     // Check to see if we've already emitted this.  This is necessary
2588     // for a couple of reasons: first, decls can end up in the
2589     // deferred-decls queue multiple times, and second, decls can end
2590     // up with definitions in unusual ways (e.g. by an extern inline
2591     // function acquiring a strong function redefinition).  Just
2592     // ignore these cases.
2593     if (!GV->isDeclaration())
2594       continue;
2595 
2596     // If this is OpenMP, check if it is legal to emit this global normally.
2597     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2598       continue;
2599 
2600     // Otherwise, emit the definition and move on to the next one.
2601     EmitGlobalDefinition(D, GV);
2602 
2603     // If we found out that we need to emit more decls, do that recursively.
2604     // This has the advantage that the decls are emitted in a DFS and related
2605     // ones are close together, which is convenient for testing.
2606     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2607       EmitDeferred();
2608       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2609     }
2610   }
2611 }
2612 
2613 void CodeGenModule::EmitVTablesOpportunistically() {
2614   // Try to emit external vtables as available_externally if they have emitted
2615   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2616   // is not allowed to create new references to things that need to be emitted
2617   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2618 
2619   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2620          && "Only emit opportunistic vtables with optimizations");
2621 
2622   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2623     assert(getVTables().isVTableExternal(RD) &&
2624            "This queue should only contain external vtables");
2625     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2626       VTables.GenerateClassData(RD);
2627   }
2628   OpportunisticVTables.clear();
2629 }
2630 
2631 void CodeGenModule::EmitGlobalAnnotations() {
2632   if (Annotations.empty())
2633     return;
2634 
2635   // Create a new global variable for the ConstantStruct in the Module.
2636   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2637     Annotations[0]->getType(), Annotations.size()), Annotations);
2638   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2639                                       llvm::GlobalValue::AppendingLinkage,
2640                                       Array, "llvm.global.annotations");
2641   gv->setSection(AnnotationSection);
2642 }
2643 
2644 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2645   llvm::Constant *&AStr = AnnotationStrings[Str];
2646   if (AStr)
2647     return AStr;
2648 
2649   // Not found yet, create a new global.
2650   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2651   auto *gv =
2652       new llvm::GlobalVariable(getModule(), s->getType(), true,
2653                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2654   gv->setSection(AnnotationSection);
2655   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2656   AStr = gv;
2657   return gv;
2658 }
2659 
2660 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2661   SourceManager &SM = getContext().getSourceManager();
2662   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2663   if (PLoc.isValid())
2664     return EmitAnnotationString(PLoc.getFilename());
2665   return EmitAnnotationString(SM.getBufferName(Loc));
2666 }
2667 
2668 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2669   SourceManager &SM = getContext().getSourceManager();
2670   PresumedLoc PLoc = SM.getPresumedLoc(L);
2671   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2672     SM.getExpansionLineNumber(L);
2673   return llvm::ConstantInt::get(Int32Ty, LineNo);
2674 }
2675 
2676 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2677   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2678   if (Exprs.empty())
2679     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2680 
2681   llvm::FoldingSetNodeID ID;
2682   for (Expr *E : Exprs) {
2683     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2684   }
2685   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2686   if (Lookup)
2687     return Lookup;
2688 
2689   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2690   LLVMArgs.reserve(Exprs.size());
2691   ConstantEmitter ConstEmiter(*this);
2692   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2693     const auto *CE = cast<clang::ConstantExpr>(E);
2694     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2695                                     CE->getType());
2696   });
2697   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2698   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2699                                       llvm::GlobalValue::PrivateLinkage, Struct,
2700                                       ".args");
2701   GV->setSection(AnnotationSection);
2702   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2703   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2704 
2705   Lookup = Bitcasted;
2706   return Bitcasted;
2707 }
2708 
2709 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2710                                                 const AnnotateAttr *AA,
2711                                                 SourceLocation L) {
2712   // Get the globals for file name, annotation, and the line number.
2713   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2714                  *UnitGV = EmitAnnotationUnit(L),
2715                  *LineNoCst = EmitAnnotationLineNo(L),
2716                  *Args = EmitAnnotationArgs(AA);
2717 
2718   llvm::Constant *GVInGlobalsAS = GV;
2719   if (GV->getAddressSpace() !=
2720       getDataLayout().getDefaultGlobalsAddressSpace()) {
2721     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2722         GV, GV->getValueType()->getPointerTo(
2723                 getDataLayout().getDefaultGlobalsAddressSpace()));
2724   }
2725 
2726   // Create the ConstantStruct for the global annotation.
2727   llvm::Constant *Fields[] = {
2728       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2729       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2730       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2731       LineNoCst,
2732       Args,
2733   };
2734   return llvm::ConstantStruct::getAnon(Fields);
2735 }
2736 
2737 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2738                                          llvm::GlobalValue *GV) {
2739   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2740   // Get the struct elements for these annotations.
2741   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2742     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2743 }
2744 
2745 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2746                                        SourceLocation Loc) const {
2747   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2748   // NoSanitize by function name.
2749   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2750     return true;
2751   // NoSanitize by location.
2752   if (Loc.isValid())
2753     return NoSanitizeL.containsLocation(Kind, Loc);
2754   // If location is unknown, this may be a compiler-generated function. Assume
2755   // it's located in the main file.
2756   auto &SM = Context.getSourceManager();
2757   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2758     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2759   }
2760   return false;
2761 }
2762 
2763 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2764                                        SourceLocation Loc, QualType Ty,
2765                                        StringRef Category) const {
2766   // For now globals can be ignored only in ASan and KASan.
2767   const SanitizerMask EnabledAsanMask =
2768       LangOpts.Sanitize.Mask &
2769       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2770        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2771        SanitizerKind::MemTag);
2772   if (!EnabledAsanMask)
2773     return false;
2774   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2775   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2776     return true;
2777   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2778     return true;
2779   // Check global type.
2780   if (!Ty.isNull()) {
2781     // Drill down the array types: if global variable of a fixed type is
2782     // not sanitized, we also don't instrument arrays of them.
2783     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2784       Ty = AT->getElementType();
2785     Ty = Ty.getCanonicalType().getUnqualifiedType();
2786     // Only record types (classes, structs etc.) are ignored.
2787     if (Ty->isRecordType()) {
2788       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2789       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2790         return true;
2791     }
2792   }
2793   return false;
2794 }
2795 
2796 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2797                                    StringRef Category) const {
2798   const auto &XRayFilter = getContext().getXRayFilter();
2799   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2800   auto Attr = ImbueAttr::NONE;
2801   if (Loc.isValid())
2802     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2803   if (Attr == ImbueAttr::NONE)
2804     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2805   switch (Attr) {
2806   case ImbueAttr::NONE:
2807     return false;
2808   case ImbueAttr::ALWAYS:
2809     Fn->addFnAttr("function-instrument", "xray-always");
2810     break;
2811   case ImbueAttr::ALWAYS_ARG1:
2812     Fn->addFnAttr("function-instrument", "xray-always");
2813     Fn->addFnAttr("xray-log-args", "1");
2814     break;
2815   case ImbueAttr::NEVER:
2816     Fn->addFnAttr("function-instrument", "xray-never");
2817     break;
2818   }
2819   return true;
2820 }
2821 
2822 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2823                                            SourceLocation Loc) const {
2824   const auto &ProfileList = getContext().getProfileList();
2825   // If the profile list is empty, then instrument everything.
2826   if (ProfileList.isEmpty())
2827     return false;
2828   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2829   // First, check the function name.
2830   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2831   if (V.hasValue())
2832     return *V;
2833   // Next, check the source location.
2834   if (Loc.isValid()) {
2835     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2836     if (V.hasValue())
2837       return *V;
2838   }
2839   // If location is unknown, this may be a compiler-generated function. Assume
2840   // it's located in the main file.
2841   auto &SM = Context.getSourceManager();
2842   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2843     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2844     if (V.hasValue())
2845       return *V;
2846   }
2847   return ProfileList.getDefault();
2848 }
2849 
2850 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2851   // Never defer when EmitAllDecls is specified.
2852   if (LangOpts.EmitAllDecls)
2853     return true;
2854 
2855   if (CodeGenOpts.KeepStaticConsts) {
2856     const auto *VD = dyn_cast<VarDecl>(Global);
2857     if (VD && VD->getType().isConstQualified() &&
2858         VD->getStorageDuration() == SD_Static)
2859       return true;
2860   }
2861 
2862   return getContext().DeclMustBeEmitted(Global);
2863 }
2864 
2865 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2866   // In OpenMP 5.0 variables and function may be marked as
2867   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2868   // that they must be emitted on the host/device. To be sure we need to have
2869   // seen a declare target with an explicit mentioning of the function, we know
2870   // we have if the level of the declare target attribute is -1. Note that we
2871   // check somewhere else if we should emit this at all.
2872   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2873     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2874         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2875     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2876       return false;
2877   }
2878 
2879   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2880     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2881       // Implicit template instantiations may change linkage if they are later
2882       // explicitly instantiated, so they should not be emitted eagerly.
2883       return false;
2884   }
2885   if (const auto *VD = dyn_cast<VarDecl>(Global))
2886     if (Context.getInlineVariableDefinitionKind(VD) ==
2887         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2888       // A definition of an inline constexpr static data member may change
2889       // linkage later if it's redeclared outside the class.
2890       return false;
2891   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2892   // codegen for global variables, because they may be marked as threadprivate.
2893   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2894       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2895       !isTypeConstant(Global->getType(), false) &&
2896       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2897     return false;
2898 
2899   return true;
2900 }
2901 
2902 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2903   StringRef Name = getMangledName(GD);
2904 
2905   // The UUID descriptor should be pointer aligned.
2906   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2907 
2908   // Look for an existing global.
2909   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2910     return ConstantAddress(GV, GV->getValueType(), Alignment);
2911 
2912   ConstantEmitter Emitter(*this);
2913   llvm::Constant *Init;
2914 
2915   APValue &V = GD->getAsAPValue();
2916   if (!V.isAbsent()) {
2917     // If possible, emit the APValue version of the initializer. In particular,
2918     // this gets the type of the constant right.
2919     Init = Emitter.emitForInitializer(
2920         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2921   } else {
2922     // As a fallback, directly construct the constant.
2923     // FIXME: This may get padding wrong under esoteric struct layout rules.
2924     // MSVC appears to create a complete type 'struct __s_GUID' that it
2925     // presumably uses to represent these constants.
2926     MSGuidDecl::Parts Parts = GD->getParts();
2927     llvm::Constant *Fields[4] = {
2928         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2929         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2930         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2931         llvm::ConstantDataArray::getRaw(
2932             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2933             Int8Ty)};
2934     Init = llvm::ConstantStruct::getAnon(Fields);
2935   }
2936 
2937   auto *GV = new llvm::GlobalVariable(
2938       getModule(), Init->getType(),
2939       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2940   if (supportsCOMDAT())
2941     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2942   setDSOLocal(GV);
2943 
2944   if (!V.isAbsent()) {
2945     Emitter.finalize(GV);
2946     return ConstantAddress(GV, GV->getValueType(), Alignment);
2947   }
2948 
2949   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2950   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2951       GV, Ty->getPointerTo(GV->getAddressSpace()));
2952   return ConstantAddress(Addr, Ty, Alignment);
2953 }
2954 
2955 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2956     const UnnamedGlobalConstantDecl *GCD) {
2957   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2958 
2959   llvm::GlobalVariable **Entry = nullptr;
2960   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2961   if (*Entry)
2962     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2963 
2964   ConstantEmitter Emitter(*this);
2965   llvm::Constant *Init;
2966 
2967   const APValue &V = GCD->getValue();
2968 
2969   assert(!V.isAbsent());
2970   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2971                                     GCD->getType());
2972 
2973   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2974                                       /*isConstant=*/true,
2975                                       llvm::GlobalValue::PrivateLinkage, Init,
2976                                       ".constant");
2977   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2978   GV->setAlignment(Alignment.getAsAlign());
2979 
2980   Emitter.finalize(GV);
2981 
2982   *Entry = GV;
2983   return ConstantAddress(GV, GV->getValueType(), Alignment);
2984 }
2985 
2986 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2987     const TemplateParamObjectDecl *TPO) {
2988   StringRef Name = getMangledName(TPO);
2989   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2990 
2991   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2992     return ConstantAddress(GV, GV->getValueType(), Alignment);
2993 
2994   ConstantEmitter Emitter(*this);
2995   llvm::Constant *Init = Emitter.emitForInitializer(
2996         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2997 
2998   if (!Init) {
2999     ErrorUnsupported(TPO, "template parameter object");
3000     return ConstantAddress::invalid();
3001   }
3002 
3003   auto *GV = new llvm::GlobalVariable(
3004       getModule(), Init->getType(),
3005       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3006   if (supportsCOMDAT())
3007     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3008   Emitter.finalize(GV);
3009 
3010   return ConstantAddress(GV, GV->getValueType(), Alignment);
3011 }
3012 
3013 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3014   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3015   assert(AA && "No alias?");
3016 
3017   CharUnits Alignment = getContext().getDeclAlign(VD);
3018   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3019 
3020   // See if there is already something with the target's name in the module.
3021   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3022   if (Entry) {
3023     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3024     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3025     return ConstantAddress(Ptr, DeclTy, Alignment);
3026   }
3027 
3028   llvm::Constant *Aliasee;
3029   if (isa<llvm::FunctionType>(DeclTy))
3030     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3031                                       GlobalDecl(cast<FunctionDecl>(VD)),
3032                                       /*ForVTable=*/false);
3033   else
3034     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3035                                     nullptr);
3036 
3037   auto *F = cast<llvm::GlobalValue>(Aliasee);
3038   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3039   WeakRefReferences.insert(F);
3040 
3041   return ConstantAddress(Aliasee, DeclTy, Alignment);
3042 }
3043 
3044 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3045   const auto *Global = cast<ValueDecl>(GD.getDecl());
3046 
3047   // Weak references don't produce any output by themselves.
3048   if (Global->hasAttr<WeakRefAttr>())
3049     return;
3050 
3051   // If this is an alias definition (which otherwise looks like a declaration)
3052   // emit it now.
3053   if (Global->hasAttr<AliasAttr>())
3054     return EmitAliasDefinition(GD);
3055 
3056   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3057   if (Global->hasAttr<IFuncAttr>())
3058     return emitIFuncDefinition(GD);
3059 
3060   // If this is a cpu_dispatch multiversion function, emit the resolver.
3061   if (Global->hasAttr<CPUDispatchAttr>())
3062     return emitCPUDispatchDefinition(GD);
3063 
3064   // If this is CUDA, be selective about which declarations we emit.
3065   if (LangOpts.CUDA) {
3066     if (LangOpts.CUDAIsDevice) {
3067       if (!Global->hasAttr<CUDADeviceAttr>() &&
3068           !Global->hasAttr<CUDAGlobalAttr>() &&
3069           !Global->hasAttr<CUDAConstantAttr>() &&
3070           !Global->hasAttr<CUDASharedAttr>() &&
3071           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3072           !Global->getType()->isCUDADeviceBuiltinTextureType())
3073         return;
3074     } else {
3075       // We need to emit host-side 'shadows' for all global
3076       // device-side variables because the CUDA runtime needs their
3077       // size and host-side address in order to provide access to
3078       // their device-side incarnations.
3079 
3080       // So device-only functions are the only things we skip.
3081       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3082           Global->hasAttr<CUDADeviceAttr>())
3083         return;
3084 
3085       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3086              "Expected Variable or Function");
3087     }
3088   }
3089 
3090   if (LangOpts.OpenMP) {
3091     // If this is OpenMP, check if it is legal to emit this global normally.
3092     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3093       return;
3094     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3095       if (MustBeEmitted(Global))
3096         EmitOMPDeclareReduction(DRD);
3097       return;
3098     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3099       if (MustBeEmitted(Global))
3100         EmitOMPDeclareMapper(DMD);
3101       return;
3102     }
3103   }
3104 
3105   // Ignore declarations, they will be emitted on their first use.
3106   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3107     // Forward declarations are emitted lazily on first use.
3108     if (!FD->doesThisDeclarationHaveABody()) {
3109       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3110         return;
3111 
3112       StringRef MangledName = getMangledName(GD);
3113 
3114       // Compute the function info and LLVM type.
3115       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3116       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3117 
3118       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3119                               /*DontDefer=*/false);
3120       return;
3121     }
3122   } else {
3123     const auto *VD = cast<VarDecl>(Global);
3124     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3125     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3126         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3127       if (LangOpts.OpenMP) {
3128         // Emit declaration of the must-be-emitted declare target variable.
3129         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3130                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3131           bool UnifiedMemoryEnabled =
3132               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3133           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3134               !UnifiedMemoryEnabled) {
3135             (void)GetAddrOfGlobalVar(VD);
3136           } else {
3137             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3138                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3139                      UnifiedMemoryEnabled)) &&
3140                    "Link clause or to clause with unified memory expected.");
3141             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3142           }
3143 
3144           return;
3145         }
3146       }
3147       // If this declaration may have caused an inline variable definition to
3148       // change linkage, make sure that it's emitted.
3149       if (Context.getInlineVariableDefinitionKind(VD) ==
3150           ASTContext::InlineVariableDefinitionKind::Strong)
3151         GetAddrOfGlobalVar(VD);
3152       return;
3153     }
3154   }
3155 
3156   // Defer code generation to first use when possible, e.g. if this is an inline
3157   // function. If the global must always be emitted, do it eagerly if possible
3158   // to benefit from cache locality.
3159   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3160     // Emit the definition if it can't be deferred.
3161     EmitGlobalDefinition(GD);
3162     return;
3163   }
3164 
3165   // If we're deferring emission of a C++ variable with an
3166   // initializer, remember the order in which it appeared in the file.
3167   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3168       cast<VarDecl>(Global)->hasInit()) {
3169     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3170     CXXGlobalInits.push_back(nullptr);
3171   }
3172 
3173   StringRef MangledName = getMangledName(GD);
3174   if (GetGlobalValue(MangledName) != nullptr) {
3175     // The value has already been used and should therefore be emitted.
3176     addDeferredDeclToEmit(GD);
3177   } else if (MustBeEmitted(Global)) {
3178     // The value must be emitted, but cannot be emitted eagerly.
3179     assert(!MayBeEmittedEagerly(Global));
3180     addDeferredDeclToEmit(GD);
3181   } else {
3182     // Otherwise, remember that we saw a deferred decl with this name.  The
3183     // first use of the mangled name will cause it to move into
3184     // DeferredDeclsToEmit.
3185     DeferredDecls[MangledName] = GD;
3186   }
3187 }
3188 
3189 // Check if T is a class type with a destructor that's not dllimport.
3190 static bool HasNonDllImportDtor(QualType T) {
3191   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3192     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3193       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3194         return true;
3195 
3196   return false;
3197 }
3198 
3199 namespace {
3200   struct FunctionIsDirectlyRecursive
3201       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3202     const StringRef Name;
3203     const Builtin::Context &BI;
3204     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3205         : Name(N), BI(C) {}
3206 
3207     bool VisitCallExpr(const CallExpr *E) {
3208       const FunctionDecl *FD = E->getDirectCallee();
3209       if (!FD)
3210         return false;
3211       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3212       if (Attr && Name == Attr->getLabel())
3213         return true;
3214       unsigned BuiltinID = FD->getBuiltinID();
3215       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3216         return false;
3217       StringRef BuiltinName = BI.getName(BuiltinID);
3218       if (BuiltinName.startswith("__builtin_") &&
3219           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3220         return true;
3221       }
3222       return false;
3223     }
3224 
3225     bool VisitStmt(const Stmt *S) {
3226       for (const Stmt *Child : S->children())
3227         if (Child && this->Visit(Child))
3228           return true;
3229       return false;
3230     }
3231   };
3232 
3233   // Make sure we're not referencing non-imported vars or functions.
3234   struct DLLImportFunctionVisitor
3235       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3236     bool SafeToInline = true;
3237 
3238     bool shouldVisitImplicitCode() const { return true; }
3239 
3240     bool VisitVarDecl(VarDecl *VD) {
3241       if (VD->getTLSKind()) {
3242         // A thread-local variable cannot be imported.
3243         SafeToInline = false;
3244         return SafeToInline;
3245       }
3246 
3247       // A variable definition might imply a destructor call.
3248       if (VD->isThisDeclarationADefinition())
3249         SafeToInline = !HasNonDllImportDtor(VD->getType());
3250 
3251       return SafeToInline;
3252     }
3253 
3254     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3255       if (const auto *D = E->getTemporary()->getDestructor())
3256         SafeToInline = D->hasAttr<DLLImportAttr>();
3257       return SafeToInline;
3258     }
3259 
3260     bool VisitDeclRefExpr(DeclRefExpr *E) {
3261       ValueDecl *VD = E->getDecl();
3262       if (isa<FunctionDecl>(VD))
3263         SafeToInline = VD->hasAttr<DLLImportAttr>();
3264       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3265         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3266       return SafeToInline;
3267     }
3268 
3269     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3270       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3271       return SafeToInline;
3272     }
3273 
3274     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3275       CXXMethodDecl *M = E->getMethodDecl();
3276       if (!M) {
3277         // Call through a pointer to member function. This is safe to inline.
3278         SafeToInline = true;
3279       } else {
3280         SafeToInline = M->hasAttr<DLLImportAttr>();
3281       }
3282       return SafeToInline;
3283     }
3284 
3285     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3286       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3287       return SafeToInline;
3288     }
3289 
3290     bool VisitCXXNewExpr(CXXNewExpr *E) {
3291       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3292       return SafeToInline;
3293     }
3294   };
3295 }
3296 
3297 // isTriviallyRecursive - Check if this function calls another
3298 // decl that, because of the asm attribute or the other decl being a builtin,
3299 // ends up pointing to itself.
3300 bool
3301 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3302   StringRef Name;
3303   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3304     // asm labels are a special kind of mangling we have to support.
3305     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3306     if (!Attr)
3307       return false;
3308     Name = Attr->getLabel();
3309   } else {
3310     Name = FD->getName();
3311   }
3312 
3313   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3314   const Stmt *Body = FD->getBody();
3315   return Body ? Walker.Visit(Body) : false;
3316 }
3317 
3318 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3319   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3320     return true;
3321   const auto *F = cast<FunctionDecl>(GD.getDecl());
3322   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3323     return false;
3324 
3325   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3326     // Check whether it would be safe to inline this dllimport function.
3327     DLLImportFunctionVisitor Visitor;
3328     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3329     if (!Visitor.SafeToInline)
3330       return false;
3331 
3332     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3333       // Implicit destructor invocations aren't captured in the AST, so the
3334       // check above can't see them. Check for them manually here.
3335       for (const Decl *Member : Dtor->getParent()->decls())
3336         if (isa<FieldDecl>(Member))
3337           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3338             return false;
3339       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3340         if (HasNonDllImportDtor(B.getType()))
3341           return false;
3342     }
3343   }
3344 
3345   // Inline builtins declaration must be emitted. They often are fortified
3346   // functions.
3347   if (F->isInlineBuiltinDeclaration())
3348     return true;
3349 
3350   // PR9614. Avoid cases where the source code is lying to us. An available
3351   // externally function should have an equivalent function somewhere else,
3352   // but a function that calls itself through asm label/`__builtin_` trickery is
3353   // clearly not equivalent to the real implementation.
3354   // This happens in glibc's btowc and in some configure checks.
3355   return !isTriviallyRecursive(F);
3356 }
3357 
3358 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3359   return CodeGenOpts.OptimizationLevel > 0;
3360 }
3361 
3362 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3363                                                        llvm::GlobalValue *GV) {
3364   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3365 
3366   if (FD->isCPUSpecificMultiVersion()) {
3367     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3368     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3369       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3370   } else if (FD->isTargetClonesMultiVersion()) {
3371     auto *Clone = FD->getAttr<TargetClonesAttr>();
3372     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3373       if (Clone->isFirstOfVersion(I))
3374         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3375     // Ensure that the resolver function is also emitted.
3376     GetOrCreateMultiVersionResolver(GD);
3377   } else
3378     EmitGlobalFunctionDefinition(GD, GV);
3379 }
3380 
3381 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3382   const auto *D = cast<ValueDecl>(GD.getDecl());
3383 
3384   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3385                                  Context.getSourceManager(),
3386                                  "Generating code for declaration");
3387 
3388   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3389     // At -O0, don't generate IR for functions with available_externally
3390     // linkage.
3391     if (!shouldEmitFunction(GD))
3392       return;
3393 
3394     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3395       std::string Name;
3396       llvm::raw_string_ostream OS(Name);
3397       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3398                                /*Qualified=*/true);
3399       return Name;
3400     });
3401 
3402     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3403       // Make sure to emit the definition(s) before we emit the thunks.
3404       // This is necessary for the generation of certain thunks.
3405       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3406         ABI->emitCXXStructor(GD);
3407       else if (FD->isMultiVersion())
3408         EmitMultiVersionFunctionDefinition(GD, GV);
3409       else
3410         EmitGlobalFunctionDefinition(GD, GV);
3411 
3412       if (Method->isVirtual())
3413         getVTables().EmitThunks(GD);
3414 
3415       return;
3416     }
3417 
3418     if (FD->isMultiVersion())
3419       return EmitMultiVersionFunctionDefinition(GD, GV);
3420     return EmitGlobalFunctionDefinition(GD, GV);
3421   }
3422 
3423   if (const auto *VD = dyn_cast<VarDecl>(D))
3424     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3425 
3426   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3427 }
3428 
3429 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3430                                                       llvm::Function *NewFn);
3431 
3432 static unsigned
3433 TargetMVPriority(const TargetInfo &TI,
3434                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3435   unsigned Priority = 0;
3436   for (StringRef Feat : RO.Conditions.Features)
3437     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3438 
3439   if (!RO.Conditions.Architecture.empty())
3440     Priority = std::max(
3441         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3442   return Priority;
3443 }
3444 
3445 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3446 // TU can forward declare the function without causing problems.  Particularly
3447 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3448 // work with internal linkage functions, so that the same function name can be
3449 // used with internal linkage in multiple TUs.
3450 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3451                                                        GlobalDecl GD) {
3452   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3453   if (FD->getFormalLinkage() == InternalLinkage)
3454     return llvm::GlobalValue::InternalLinkage;
3455   return llvm::GlobalValue::WeakODRLinkage;
3456 }
3457 
3458 void CodeGenModule::emitMultiVersionFunctions() {
3459   std::vector<GlobalDecl> MVFuncsToEmit;
3460   MultiVersionFuncs.swap(MVFuncsToEmit);
3461   for (GlobalDecl GD : MVFuncsToEmit) {
3462     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3463     assert(FD && "Expected a FunctionDecl");
3464 
3465     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3466     if (FD->isTargetMultiVersion()) {
3467       getContext().forEachMultiversionedFunctionVersion(
3468           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3469             GlobalDecl CurGD{
3470                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3471             StringRef MangledName = getMangledName(CurGD);
3472             llvm::Constant *Func = GetGlobalValue(MangledName);
3473             if (!Func) {
3474               if (CurFD->isDefined()) {
3475                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3476                 Func = GetGlobalValue(MangledName);
3477               } else {
3478                 const CGFunctionInfo &FI =
3479                     getTypes().arrangeGlobalDeclaration(GD);
3480                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3481                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3482                                          /*DontDefer=*/false, ForDefinition);
3483               }
3484               assert(Func && "This should have just been created");
3485             }
3486 
3487             const auto *TA = CurFD->getAttr<TargetAttr>();
3488             llvm::SmallVector<StringRef, 8> Feats;
3489             TA->getAddedFeatures(Feats);
3490 
3491             Options.emplace_back(cast<llvm::Function>(Func),
3492                                  TA->getArchitecture(), Feats);
3493           });
3494     } else if (FD->isTargetClonesMultiVersion()) {
3495       const auto *TC = FD->getAttr<TargetClonesAttr>();
3496       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3497            ++VersionIndex) {
3498         if (!TC->isFirstOfVersion(VersionIndex))
3499           continue;
3500         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3501                          VersionIndex};
3502         StringRef Version = TC->getFeatureStr(VersionIndex);
3503         StringRef MangledName = getMangledName(CurGD);
3504         llvm::Constant *Func = GetGlobalValue(MangledName);
3505         if (!Func) {
3506           if (FD->isDefined()) {
3507             EmitGlobalFunctionDefinition(CurGD, nullptr);
3508             Func = GetGlobalValue(MangledName);
3509           } else {
3510             const CGFunctionInfo &FI =
3511                 getTypes().arrangeGlobalDeclaration(CurGD);
3512             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3513             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3514                                      /*DontDefer=*/false, ForDefinition);
3515           }
3516           assert(Func && "This should have just been created");
3517         }
3518 
3519         StringRef Architecture;
3520         llvm::SmallVector<StringRef, 1> Feature;
3521 
3522         if (Version.startswith("arch="))
3523           Architecture = Version.drop_front(sizeof("arch=") - 1);
3524         else if (Version != "default")
3525           Feature.push_back(Version);
3526 
3527         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3528       }
3529     } else {
3530       assert(0 && "Expected a target or target_clones multiversion function");
3531       continue;
3532     }
3533 
3534     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3535     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3536       ResolverConstant = IFunc->getResolver();
3537     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3538 
3539     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3540 
3541     if (supportsCOMDAT())
3542       ResolverFunc->setComdat(
3543           getModule().getOrInsertComdat(ResolverFunc->getName()));
3544 
3545     const TargetInfo &TI = getTarget();
3546     llvm::stable_sort(
3547         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3548                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3549           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3550         });
3551     CodeGenFunction CGF(*this);
3552     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3553   }
3554 
3555   // Ensure that any additions to the deferred decls list caused by emitting a
3556   // variant are emitted.  This can happen when the variant itself is inline and
3557   // calls a function without linkage.
3558   if (!MVFuncsToEmit.empty())
3559     EmitDeferred();
3560 
3561   // Ensure that any additions to the multiversion funcs list from either the
3562   // deferred decls or the multiversion functions themselves are emitted.
3563   if (!MultiVersionFuncs.empty())
3564     emitMultiVersionFunctions();
3565 }
3566 
3567 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3568   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3569   assert(FD && "Not a FunctionDecl?");
3570   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3571   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3572   assert(DD && "Not a cpu_dispatch Function?");
3573 
3574   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3575   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3576 
3577   StringRef ResolverName = getMangledName(GD);
3578   UpdateMultiVersionNames(GD, FD, ResolverName);
3579 
3580   llvm::Type *ResolverType;
3581   GlobalDecl ResolverGD;
3582   if (getTarget().supportsIFunc()) {
3583     ResolverType = llvm::FunctionType::get(
3584         llvm::PointerType::get(DeclTy,
3585                                Context.getTargetAddressSpace(FD->getType())),
3586         false);
3587   }
3588   else {
3589     ResolverType = DeclTy;
3590     ResolverGD = GD;
3591   }
3592 
3593   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3594       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3595   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3596   if (supportsCOMDAT())
3597     ResolverFunc->setComdat(
3598         getModule().getOrInsertComdat(ResolverFunc->getName()));
3599 
3600   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3601   const TargetInfo &Target = getTarget();
3602   unsigned Index = 0;
3603   for (const IdentifierInfo *II : DD->cpus()) {
3604     // Get the name of the target function so we can look it up/create it.
3605     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3606                               getCPUSpecificMangling(*this, II->getName());
3607 
3608     llvm::Constant *Func = GetGlobalValue(MangledName);
3609 
3610     if (!Func) {
3611       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3612       if (ExistingDecl.getDecl() &&
3613           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3614         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3615         Func = GetGlobalValue(MangledName);
3616       } else {
3617         if (!ExistingDecl.getDecl())
3618           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3619 
3620       Func = GetOrCreateLLVMFunction(
3621           MangledName, DeclTy, ExistingDecl,
3622           /*ForVTable=*/false, /*DontDefer=*/true,
3623           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3624       }
3625     }
3626 
3627     llvm::SmallVector<StringRef, 32> Features;
3628     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3629     llvm::transform(Features, Features.begin(),
3630                     [](StringRef Str) { return Str.substr(1); });
3631     llvm::erase_if(Features, [&Target](StringRef Feat) {
3632       return !Target.validateCpuSupports(Feat);
3633     });
3634     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3635     ++Index;
3636   }
3637 
3638   llvm::stable_sort(
3639       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3640                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3641         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3642                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3643       });
3644 
3645   // If the list contains multiple 'default' versions, such as when it contains
3646   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3647   // always run on at least a 'pentium'). We do this by deleting the 'least
3648   // advanced' (read, lowest mangling letter).
3649   while (Options.size() > 1 &&
3650          llvm::X86::getCpuSupportsMask(
3651              (Options.end() - 2)->Conditions.Features) == 0) {
3652     StringRef LHSName = (Options.end() - 2)->Function->getName();
3653     StringRef RHSName = (Options.end() - 1)->Function->getName();
3654     if (LHSName.compare(RHSName) < 0)
3655       Options.erase(Options.end() - 2);
3656     else
3657       Options.erase(Options.end() - 1);
3658   }
3659 
3660   CodeGenFunction CGF(*this);
3661   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3662 
3663   if (getTarget().supportsIFunc()) {
3664     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3665     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3666 
3667     // Fix up function declarations that were created for cpu_specific before
3668     // cpu_dispatch was known
3669     if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) {
3670       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3671       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3672                                            &getModule());
3673       GI->takeName(IFunc);
3674       IFunc->replaceAllUsesWith(GI);
3675       IFunc->eraseFromParent();
3676       IFunc = GI;
3677     }
3678 
3679     std::string AliasName = getMangledNameImpl(
3680         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3681     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3682     if (!AliasFunc) {
3683       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3684                                            &getModule());
3685       SetCommonAttributes(GD, GA);
3686     }
3687   }
3688 }
3689 
3690 /// If a dispatcher for the specified mangled name is not in the module, create
3691 /// and return an llvm Function with the specified type.
3692 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3693   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3694   assert(FD && "Not a FunctionDecl?");
3695 
3696   std::string MangledName =
3697       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3698 
3699   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3700   // a separate resolver).
3701   std::string ResolverName = MangledName;
3702   if (getTarget().supportsIFunc())
3703     ResolverName += ".ifunc";
3704   else if (FD->isTargetMultiVersion())
3705     ResolverName += ".resolver";
3706 
3707   // If the resolver has already been created, just return it.
3708   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3709     return ResolverGV;
3710 
3711   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3712   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3713 
3714   // The resolver needs to be created. For target and target_clones, defer
3715   // creation until the end of the TU.
3716   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3717     MultiVersionFuncs.push_back(GD);
3718 
3719   // For cpu_specific, don't create an ifunc yet because we don't know if the
3720   // cpu_dispatch will be emitted in this translation unit.
3721   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3722     llvm::Type *ResolverType = llvm::FunctionType::get(
3723         llvm::PointerType::get(
3724             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3725         false);
3726     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3727         MangledName + ".resolver", ResolverType, GlobalDecl{},
3728         /*ForVTable=*/false);
3729     llvm::GlobalIFunc *GIF =
3730         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3731                                   "", Resolver, &getModule());
3732     GIF->setName(ResolverName);
3733     SetCommonAttributes(FD, GIF);
3734 
3735     return GIF;
3736   }
3737 
3738   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3739       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3740   assert(isa<llvm::GlobalValue>(Resolver) &&
3741          "Resolver should be created for the first time");
3742   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3743   return Resolver;
3744 }
3745 
3746 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3747 /// module, create and return an llvm Function with the specified type. If there
3748 /// is something in the module with the specified name, return it potentially
3749 /// bitcasted to the right type.
3750 ///
3751 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3752 /// to set the attributes on the function when it is first created.
3753 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3754     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3755     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3756     ForDefinition_t IsForDefinition) {
3757   const Decl *D = GD.getDecl();
3758 
3759   // Any attempts to use a MultiVersion function should result in retrieving
3760   // the iFunc instead. Name Mangling will handle the rest of the changes.
3761   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3762     // For the device mark the function as one that should be emitted.
3763     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3764         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3765         !DontDefer && !IsForDefinition) {
3766       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3767         GlobalDecl GDDef;
3768         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3769           GDDef = GlobalDecl(CD, GD.getCtorType());
3770         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3771           GDDef = GlobalDecl(DD, GD.getDtorType());
3772         else
3773           GDDef = GlobalDecl(FDDef);
3774         EmitGlobal(GDDef);
3775       }
3776     }
3777 
3778     if (FD->isMultiVersion()) {
3779       UpdateMultiVersionNames(GD, FD, MangledName);
3780       if (!IsForDefinition)
3781         return GetOrCreateMultiVersionResolver(GD);
3782     }
3783   }
3784 
3785   // Lookup the entry, lazily creating it if necessary.
3786   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3787   if (Entry) {
3788     if (WeakRefReferences.erase(Entry)) {
3789       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3790       if (FD && !FD->hasAttr<WeakAttr>())
3791         Entry->setLinkage(llvm::Function::ExternalLinkage);
3792     }
3793 
3794     // Handle dropped DLL attributes.
3795     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3796       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3797       setDSOLocal(Entry);
3798     }
3799 
3800     // If there are two attempts to define the same mangled name, issue an
3801     // error.
3802     if (IsForDefinition && !Entry->isDeclaration()) {
3803       GlobalDecl OtherGD;
3804       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3805       // to make sure that we issue an error only once.
3806       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3807           (GD.getCanonicalDecl().getDecl() !=
3808            OtherGD.getCanonicalDecl().getDecl()) &&
3809           DiagnosedConflictingDefinitions.insert(GD).second) {
3810         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3811             << MangledName;
3812         getDiags().Report(OtherGD.getDecl()->getLocation(),
3813                           diag::note_previous_definition);
3814       }
3815     }
3816 
3817     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3818         (Entry->getValueType() == Ty)) {
3819       return Entry;
3820     }
3821 
3822     // Make sure the result is of the correct type.
3823     // (If function is requested for a definition, we always need to create a new
3824     // function, not just return a bitcast.)
3825     if (!IsForDefinition)
3826       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3827   }
3828 
3829   // This function doesn't have a complete type (for example, the return
3830   // type is an incomplete struct). Use a fake type instead, and make
3831   // sure not to try to set attributes.
3832   bool IsIncompleteFunction = false;
3833 
3834   llvm::FunctionType *FTy;
3835   if (isa<llvm::FunctionType>(Ty)) {
3836     FTy = cast<llvm::FunctionType>(Ty);
3837   } else {
3838     FTy = llvm::FunctionType::get(VoidTy, false);
3839     IsIncompleteFunction = true;
3840   }
3841 
3842   llvm::Function *F =
3843       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3844                              Entry ? StringRef() : MangledName, &getModule());
3845 
3846   // If we already created a function with the same mangled name (but different
3847   // type) before, take its name and add it to the list of functions to be
3848   // replaced with F at the end of CodeGen.
3849   //
3850   // This happens if there is a prototype for a function (e.g. "int f()") and
3851   // then a definition of a different type (e.g. "int f(int x)").
3852   if (Entry) {
3853     F->takeName(Entry);
3854 
3855     // This might be an implementation of a function without a prototype, in
3856     // which case, try to do special replacement of calls which match the new
3857     // prototype.  The really key thing here is that we also potentially drop
3858     // arguments from the call site so as to make a direct call, which makes the
3859     // inliner happier and suppresses a number of optimizer warnings (!) about
3860     // dropping arguments.
3861     if (!Entry->use_empty()) {
3862       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3863       Entry->removeDeadConstantUsers();
3864     }
3865 
3866     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3867         F, Entry->getValueType()->getPointerTo());
3868     addGlobalValReplacement(Entry, BC);
3869   }
3870 
3871   assert(F->getName() == MangledName && "name was uniqued!");
3872   if (D)
3873     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3874   if (ExtraAttrs.hasFnAttrs()) {
3875     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3876     F->addFnAttrs(B);
3877   }
3878 
3879   if (!DontDefer) {
3880     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3881     // each other bottoming out with the base dtor.  Therefore we emit non-base
3882     // dtors on usage, even if there is no dtor definition in the TU.
3883     if (D && isa<CXXDestructorDecl>(D) &&
3884         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3885                                            GD.getDtorType()))
3886       addDeferredDeclToEmit(GD);
3887 
3888     // This is the first use or definition of a mangled name.  If there is a
3889     // deferred decl with this name, remember that we need to emit it at the end
3890     // of the file.
3891     auto DDI = DeferredDecls.find(MangledName);
3892     if (DDI != DeferredDecls.end()) {
3893       // Move the potentially referenced deferred decl to the
3894       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3895       // don't need it anymore).
3896       addDeferredDeclToEmit(DDI->second);
3897       DeferredDecls.erase(DDI);
3898 
3899       // Otherwise, there are cases we have to worry about where we're
3900       // using a declaration for which we must emit a definition but where
3901       // we might not find a top-level definition:
3902       //   - member functions defined inline in their classes
3903       //   - friend functions defined inline in some class
3904       //   - special member functions with implicit definitions
3905       // If we ever change our AST traversal to walk into class methods,
3906       // this will be unnecessary.
3907       //
3908       // We also don't emit a definition for a function if it's going to be an
3909       // entry in a vtable, unless it's already marked as used.
3910     } else if (getLangOpts().CPlusPlus && D) {
3911       // Look for a declaration that's lexically in a record.
3912       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3913            FD = FD->getPreviousDecl()) {
3914         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3915           if (FD->doesThisDeclarationHaveABody()) {
3916             addDeferredDeclToEmit(GD.getWithDecl(FD));
3917             break;
3918           }
3919         }
3920       }
3921     }
3922   }
3923 
3924   // Make sure the result is of the requested type.
3925   if (!IsIncompleteFunction) {
3926     assert(F->getFunctionType() == Ty);
3927     return F;
3928   }
3929 
3930   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3931   return llvm::ConstantExpr::getBitCast(F, PTy);
3932 }
3933 
3934 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3935 /// non-null, then this function will use the specified type if it has to
3936 /// create it (this occurs when we see a definition of the function).
3937 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3938                                                  llvm::Type *Ty,
3939                                                  bool ForVTable,
3940                                                  bool DontDefer,
3941                                               ForDefinition_t IsForDefinition) {
3942   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3943          "consteval function should never be emitted");
3944   // If there was no specific requested type, just convert it now.
3945   if (!Ty) {
3946     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3947     Ty = getTypes().ConvertType(FD->getType());
3948   }
3949 
3950   // Devirtualized destructor calls may come through here instead of via
3951   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3952   // of the complete destructor when necessary.
3953   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3954     if (getTarget().getCXXABI().isMicrosoft() &&
3955         GD.getDtorType() == Dtor_Complete &&
3956         DD->getParent()->getNumVBases() == 0)
3957       GD = GlobalDecl(DD, Dtor_Base);
3958   }
3959 
3960   StringRef MangledName = getMangledName(GD);
3961   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3962                                     /*IsThunk=*/false, llvm::AttributeList(),
3963                                     IsForDefinition);
3964   // Returns kernel handle for HIP kernel stub function.
3965   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3966       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3967     auto *Handle = getCUDARuntime().getKernelHandle(
3968         cast<llvm::Function>(F->stripPointerCasts()), GD);
3969     if (IsForDefinition)
3970       return F;
3971     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3972   }
3973   return F;
3974 }
3975 
3976 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3977   llvm::GlobalValue *F =
3978       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3979 
3980   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3981                                         llvm::Type::getInt8PtrTy(VMContext));
3982 }
3983 
3984 static const FunctionDecl *
3985 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3986   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3987   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3988 
3989   IdentifierInfo &CII = C.Idents.get(Name);
3990   for (const auto *Result : DC->lookup(&CII))
3991     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3992       return FD;
3993 
3994   if (!C.getLangOpts().CPlusPlus)
3995     return nullptr;
3996 
3997   // Demangle the premangled name from getTerminateFn()
3998   IdentifierInfo &CXXII =
3999       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4000           ? C.Idents.get("terminate")
4001           : C.Idents.get(Name);
4002 
4003   for (const auto &N : {"__cxxabiv1", "std"}) {
4004     IdentifierInfo &NS = C.Idents.get(N);
4005     for (const auto *Result : DC->lookup(&NS)) {
4006       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4007       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4008         for (const auto *Result : LSD->lookup(&NS))
4009           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4010             break;
4011 
4012       if (ND)
4013         for (const auto *Result : ND->lookup(&CXXII))
4014           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4015             return FD;
4016     }
4017   }
4018 
4019   return nullptr;
4020 }
4021 
4022 /// CreateRuntimeFunction - Create a new runtime function with the specified
4023 /// type and name.
4024 llvm::FunctionCallee
4025 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4026                                      llvm::AttributeList ExtraAttrs, bool Local,
4027                                      bool AssumeConvergent) {
4028   if (AssumeConvergent) {
4029     ExtraAttrs =
4030         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4031   }
4032 
4033   llvm::Constant *C =
4034       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4035                               /*DontDefer=*/false, /*IsThunk=*/false,
4036                               ExtraAttrs);
4037 
4038   if (auto *F = dyn_cast<llvm::Function>(C)) {
4039     if (F->empty()) {
4040       F->setCallingConv(getRuntimeCC());
4041 
4042       // In Windows Itanium environments, try to mark runtime functions
4043       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4044       // will link their standard library statically or dynamically. Marking
4045       // functions imported when they are not imported can cause linker errors
4046       // and warnings.
4047       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4048           !getCodeGenOpts().LTOVisibilityPublicStd) {
4049         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4050         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4051           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4052           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4053         }
4054       }
4055       setDSOLocal(F);
4056     }
4057   }
4058 
4059   return {FTy, C};
4060 }
4061 
4062 /// isTypeConstant - Determine whether an object of this type can be emitted
4063 /// as a constant.
4064 ///
4065 /// If ExcludeCtor is true, the duration when the object's constructor runs
4066 /// will not be considered. The caller will need to verify that the object is
4067 /// not written to during its construction.
4068 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4069   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4070     return false;
4071 
4072   if (Context.getLangOpts().CPlusPlus) {
4073     if (const CXXRecordDecl *Record
4074           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4075       return ExcludeCtor && !Record->hasMutableFields() &&
4076              Record->hasTrivialDestructor();
4077   }
4078 
4079   return true;
4080 }
4081 
4082 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4083 /// create and return an llvm GlobalVariable with the specified type and address
4084 /// space. If there is something in the module with the specified name, return
4085 /// it potentially bitcasted to the right type.
4086 ///
4087 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4088 /// to set the attributes on the global when it is first created.
4089 ///
4090 /// If IsForDefinition is true, it is guaranteed that an actual global with
4091 /// type Ty will be returned, not conversion of a variable with the same
4092 /// mangled name but some other type.
4093 llvm::Constant *
4094 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4095                                      LangAS AddrSpace, const VarDecl *D,
4096                                      ForDefinition_t IsForDefinition) {
4097   // Lookup the entry, lazily creating it if necessary.
4098   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4099   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4100   if (Entry) {
4101     if (WeakRefReferences.erase(Entry)) {
4102       if (D && !D->hasAttr<WeakAttr>())
4103         Entry->setLinkage(llvm::Function::ExternalLinkage);
4104     }
4105 
4106     // Handle dropped DLL attributes.
4107     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
4108       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4109 
4110     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4111       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4112 
4113     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4114       return Entry;
4115 
4116     // If there are two attempts to define the same mangled name, issue an
4117     // error.
4118     if (IsForDefinition && !Entry->isDeclaration()) {
4119       GlobalDecl OtherGD;
4120       const VarDecl *OtherD;
4121 
4122       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4123       // to make sure that we issue an error only once.
4124       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4125           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4126           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4127           OtherD->hasInit() &&
4128           DiagnosedConflictingDefinitions.insert(D).second) {
4129         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4130             << MangledName;
4131         getDiags().Report(OtherGD.getDecl()->getLocation(),
4132                           diag::note_previous_definition);
4133       }
4134     }
4135 
4136     // Make sure the result is of the correct type.
4137     if (Entry->getType()->getAddressSpace() != TargetAS) {
4138       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4139                                                   Ty->getPointerTo(TargetAS));
4140     }
4141 
4142     // (If global is requested for a definition, we always need to create a new
4143     // global, not just return a bitcast.)
4144     if (!IsForDefinition)
4145       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4146   }
4147 
4148   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4149 
4150   auto *GV = new llvm::GlobalVariable(
4151       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4152       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4153       getContext().getTargetAddressSpace(DAddrSpace));
4154 
4155   // If we already created a global with the same mangled name (but different
4156   // type) before, take its name and remove it from its parent.
4157   if (Entry) {
4158     GV->takeName(Entry);
4159 
4160     if (!Entry->use_empty()) {
4161       llvm::Constant *NewPtrForOldDecl =
4162           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4163       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4164     }
4165 
4166     Entry->eraseFromParent();
4167   }
4168 
4169   // This is the first use or definition of a mangled name.  If there is a
4170   // deferred decl with this name, remember that we need to emit it at the end
4171   // of the file.
4172   auto DDI = DeferredDecls.find(MangledName);
4173   if (DDI != DeferredDecls.end()) {
4174     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4175     // list, and remove it from DeferredDecls (since we don't need it anymore).
4176     addDeferredDeclToEmit(DDI->second);
4177     DeferredDecls.erase(DDI);
4178   }
4179 
4180   // Handle things which are present even on external declarations.
4181   if (D) {
4182     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4183       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4184 
4185     // FIXME: This code is overly simple and should be merged with other global
4186     // handling.
4187     GV->setConstant(isTypeConstant(D->getType(), false));
4188 
4189     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4190 
4191     setLinkageForGV(GV, D);
4192 
4193     if (D->getTLSKind()) {
4194       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4195         CXXThreadLocals.push_back(D);
4196       setTLSMode(GV, *D);
4197     }
4198 
4199     setGVProperties(GV, D);
4200 
4201     // If required by the ABI, treat declarations of static data members with
4202     // inline initializers as definitions.
4203     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4204       EmitGlobalVarDefinition(D);
4205     }
4206 
4207     // Emit section information for extern variables.
4208     if (D->hasExternalStorage()) {
4209       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4210         GV->setSection(SA->getName());
4211     }
4212 
4213     // Handle XCore specific ABI requirements.
4214     if (getTriple().getArch() == llvm::Triple::xcore &&
4215         D->getLanguageLinkage() == CLanguageLinkage &&
4216         D->getType().isConstant(Context) &&
4217         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4218       GV->setSection(".cp.rodata");
4219 
4220     // Check if we a have a const declaration with an initializer, we may be
4221     // able to emit it as available_externally to expose it's value to the
4222     // optimizer.
4223     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4224         D->getType().isConstQualified() && !GV->hasInitializer() &&
4225         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4226       const auto *Record =
4227           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4228       bool HasMutableFields = Record && Record->hasMutableFields();
4229       if (!HasMutableFields) {
4230         const VarDecl *InitDecl;
4231         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4232         if (InitExpr) {
4233           ConstantEmitter emitter(*this);
4234           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4235           if (Init) {
4236             auto *InitType = Init->getType();
4237             if (GV->getValueType() != InitType) {
4238               // The type of the initializer does not match the definition.
4239               // This happens when an initializer has a different type from
4240               // the type of the global (because of padding at the end of a
4241               // structure for instance).
4242               GV->setName(StringRef());
4243               // Make a new global with the correct type, this is now guaranteed
4244               // to work.
4245               auto *NewGV = cast<llvm::GlobalVariable>(
4246                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4247                       ->stripPointerCasts());
4248 
4249               // Erase the old global, since it is no longer used.
4250               GV->eraseFromParent();
4251               GV = NewGV;
4252             } else {
4253               GV->setInitializer(Init);
4254               GV->setConstant(true);
4255               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4256             }
4257             emitter.finalize(GV);
4258           }
4259         }
4260       }
4261     }
4262   }
4263 
4264   if (GV->isDeclaration()) {
4265     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4266     // External HIP managed variables needed to be recorded for transformation
4267     // in both device and host compilations.
4268     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4269         D->hasExternalStorage())
4270       getCUDARuntime().handleVarRegistration(D, *GV);
4271   }
4272 
4273   LangAS ExpectedAS =
4274       D ? D->getType().getAddressSpace()
4275         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4276   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4277   if (DAddrSpace != ExpectedAS) {
4278     return getTargetCodeGenInfo().performAddrSpaceCast(
4279         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4280   }
4281 
4282   return GV;
4283 }
4284 
4285 llvm::Constant *
4286 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4287   const Decl *D = GD.getDecl();
4288 
4289   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4290     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4291                                 /*DontDefer=*/false, IsForDefinition);
4292 
4293   if (isa<CXXMethodDecl>(D)) {
4294     auto FInfo =
4295         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4296     auto Ty = getTypes().GetFunctionType(*FInfo);
4297     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4298                              IsForDefinition);
4299   }
4300 
4301   if (isa<FunctionDecl>(D)) {
4302     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4303     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4304     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4305                              IsForDefinition);
4306   }
4307 
4308   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4309 }
4310 
4311 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4312     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4313     unsigned Alignment) {
4314   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4315   llvm::GlobalVariable *OldGV = nullptr;
4316 
4317   if (GV) {
4318     // Check if the variable has the right type.
4319     if (GV->getValueType() == Ty)
4320       return GV;
4321 
4322     // Because C++ name mangling, the only way we can end up with an already
4323     // existing global with the same name is if it has been declared extern "C".
4324     assert(GV->isDeclaration() && "Declaration has wrong type!");
4325     OldGV = GV;
4326   }
4327 
4328   // Create a new variable.
4329   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4330                                 Linkage, nullptr, Name);
4331 
4332   if (OldGV) {
4333     // Replace occurrences of the old variable if needed.
4334     GV->takeName(OldGV);
4335 
4336     if (!OldGV->use_empty()) {
4337       llvm::Constant *NewPtrForOldDecl =
4338       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4339       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4340     }
4341 
4342     OldGV->eraseFromParent();
4343   }
4344 
4345   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4346       !GV->hasAvailableExternallyLinkage())
4347     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4348 
4349   GV->setAlignment(llvm::MaybeAlign(Alignment));
4350 
4351   return GV;
4352 }
4353 
4354 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4355 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4356 /// then it will be created with the specified type instead of whatever the
4357 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4358 /// that an actual global with type Ty will be returned, not conversion of a
4359 /// variable with the same mangled name but some other type.
4360 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4361                                                   llvm::Type *Ty,
4362                                            ForDefinition_t IsForDefinition) {
4363   assert(D->hasGlobalStorage() && "Not a global variable");
4364   QualType ASTTy = D->getType();
4365   if (!Ty)
4366     Ty = getTypes().ConvertTypeForMem(ASTTy);
4367 
4368   StringRef MangledName = getMangledName(D);
4369   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4370                                IsForDefinition);
4371 }
4372 
4373 /// CreateRuntimeVariable - Create a new runtime global variable with the
4374 /// specified type and name.
4375 llvm::Constant *
4376 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4377                                      StringRef Name) {
4378   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4379                                                        : LangAS::Default;
4380   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4381   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4382   return Ret;
4383 }
4384 
4385 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4386   assert(!D->getInit() && "Cannot emit definite definitions here!");
4387 
4388   StringRef MangledName = getMangledName(D);
4389   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4390 
4391   // We already have a definition, not declaration, with the same mangled name.
4392   // Emitting of declaration is not required (and actually overwrites emitted
4393   // definition).
4394   if (GV && !GV->isDeclaration())
4395     return;
4396 
4397   // If we have not seen a reference to this variable yet, place it into the
4398   // deferred declarations table to be emitted if needed later.
4399   if (!MustBeEmitted(D) && !GV) {
4400       DeferredDecls[MangledName] = D;
4401       return;
4402   }
4403 
4404   // The tentative definition is the only definition.
4405   EmitGlobalVarDefinition(D);
4406 }
4407 
4408 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4409   EmitExternalVarDeclaration(D);
4410 }
4411 
4412 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4413   return Context.toCharUnitsFromBits(
4414       getDataLayout().getTypeStoreSizeInBits(Ty));
4415 }
4416 
4417 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4418   if (LangOpts.OpenCL) {
4419     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4420     assert(AS == LangAS::opencl_global ||
4421            AS == LangAS::opencl_global_device ||
4422            AS == LangAS::opencl_global_host ||
4423            AS == LangAS::opencl_constant ||
4424            AS == LangAS::opencl_local ||
4425            AS >= LangAS::FirstTargetAddressSpace);
4426     return AS;
4427   }
4428 
4429   if (LangOpts.SYCLIsDevice &&
4430       (!D || D->getType().getAddressSpace() == LangAS::Default))
4431     return LangAS::sycl_global;
4432 
4433   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4434     if (D && D->hasAttr<CUDAConstantAttr>())
4435       return LangAS::cuda_constant;
4436     else if (D && D->hasAttr<CUDASharedAttr>())
4437       return LangAS::cuda_shared;
4438     else if (D && D->hasAttr<CUDADeviceAttr>())
4439       return LangAS::cuda_device;
4440     else if (D && D->getType().isConstQualified())
4441       return LangAS::cuda_constant;
4442     else
4443       return LangAS::cuda_device;
4444   }
4445 
4446   if (LangOpts.OpenMP) {
4447     LangAS AS;
4448     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4449       return AS;
4450   }
4451   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4452 }
4453 
4454 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4455   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4456   if (LangOpts.OpenCL)
4457     return LangAS::opencl_constant;
4458   if (LangOpts.SYCLIsDevice)
4459     return LangAS::sycl_global;
4460   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4461     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4462     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4463     // with OpVariable instructions with Generic storage class which is not
4464     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4465     // UniformConstant storage class is not viable as pointers to it may not be
4466     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4467     return LangAS::cuda_device;
4468   if (auto AS = getTarget().getConstantAddressSpace())
4469     return AS.getValue();
4470   return LangAS::Default;
4471 }
4472 
4473 // In address space agnostic languages, string literals are in default address
4474 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4475 // emitted in constant address space in LLVM IR. To be consistent with other
4476 // parts of AST, string literal global variables in constant address space
4477 // need to be casted to default address space before being put into address
4478 // map and referenced by other part of CodeGen.
4479 // In OpenCL, string literals are in constant address space in AST, therefore
4480 // they should not be casted to default address space.
4481 static llvm::Constant *
4482 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4483                                        llvm::GlobalVariable *GV) {
4484   llvm::Constant *Cast = GV;
4485   if (!CGM.getLangOpts().OpenCL) {
4486     auto AS = CGM.GetGlobalConstantAddressSpace();
4487     if (AS != LangAS::Default)
4488       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4489           CGM, GV, AS, LangAS::Default,
4490           GV->getValueType()->getPointerTo(
4491               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4492   }
4493   return Cast;
4494 }
4495 
4496 template<typename SomeDecl>
4497 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4498                                                llvm::GlobalValue *GV) {
4499   if (!getLangOpts().CPlusPlus)
4500     return;
4501 
4502   // Must have 'used' attribute, or else inline assembly can't rely on
4503   // the name existing.
4504   if (!D->template hasAttr<UsedAttr>())
4505     return;
4506 
4507   // Must have internal linkage and an ordinary name.
4508   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4509     return;
4510 
4511   // Must be in an extern "C" context. Entities declared directly within
4512   // a record are not extern "C" even if the record is in such a context.
4513   const SomeDecl *First = D->getFirstDecl();
4514   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4515     return;
4516 
4517   // OK, this is an internal linkage entity inside an extern "C" linkage
4518   // specification. Make a note of that so we can give it the "expected"
4519   // mangled name if nothing else is using that name.
4520   std::pair<StaticExternCMap::iterator, bool> R =
4521       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4522 
4523   // If we have multiple internal linkage entities with the same name
4524   // in extern "C" regions, none of them gets that name.
4525   if (!R.second)
4526     R.first->second = nullptr;
4527 }
4528 
4529 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4530   if (!CGM.supportsCOMDAT())
4531     return false;
4532 
4533   if (D.hasAttr<SelectAnyAttr>())
4534     return true;
4535 
4536   GVALinkage Linkage;
4537   if (auto *VD = dyn_cast<VarDecl>(&D))
4538     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4539   else
4540     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4541 
4542   switch (Linkage) {
4543   case GVA_Internal:
4544   case GVA_AvailableExternally:
4545   case GVA_StrongExternal:
4546     return false;
4547   case GVA_DiscardableODR:
4548   case GVA_StrongODR:
4549     return true;
4550   }
4551   llvm_unreachable("No such linkage");
4552 }
4553 
4554 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4555                                           llvm::GlobalObject &GO) {
4556   if (!shouldBeInCOMDAT(*this, D))
4557     return;
4558   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4559 }
4560 
4561 /// Pass IsTentative as true if you want to create a tentative definition.
4562 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4563                                             bool IsTentative) {
4564   // OpenCL global variables of sampler type are translated to function calls,
4565   // therefore no need to be translated.
4566   QualType ASTTy = D->getType();
4567   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4568     return;
4569 
4570   // If this is OpenMP device, check if it is legal to emit this global
4571   // normally.
4572   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4573       OpenMPRuntime->emitTargetGlobalVariable(D))
4574     return;
4575 
4576   llvm::TrackingVH<llvm::Constant> Init;
4577   bool NeedsGlobalCtor = false;
4578   bool NeedsGlobalDtor =
4579       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4580 
4581   const VarDecl *InitDecl;
4582   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4583 
4584   Optional<ConstantEmitter> emitter;
4585 
4586   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4587   // as part of their declaration."  Sema has already checked for
4588   // error cases, so we just need to set Init to UndefValue.
4589   bool IsCUDASharedVar =
4590       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4591   // Shadows of initialized device-side global variables are also left
4592   // undefined.
4593   // Managed Variables should be initialized on both host side and device side.
4594   bool IsCUDAShadowVar =
4595       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4596       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4597        D->hasAttr<CUDASharedAttr>());
4598   bool IsCUDADeviceShadowVar =
4599       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4600       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4601        D->getType()->isCUDADeviceBuiltinTextureType());
4602   if (getLangOpts().CUDA &&
4603       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4604     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4605   else if (D->hasAttr<LoaderUninitializedAttr>())
4606     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4607   else if (!InitExpr) {
4608     // This is a tentative definition; tentative definitions are
4609     // implicitly initialized with { 0 }.
4610     //
4611     // Note that tentative definitions are only emitted at the end of
4612     // a translation unit, so they should never have incomplete
4613     // type. In addition, EmitTentativeDefinition makes sure that we
4614     // never attempt to emit a tentative definition if a real one
4615     // exists. A use may still exists, however, so we still may need
4616     // to do a RAUW.
4617     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4618     Init = EmitNullConstant(D->getType());
4619   } else {
4620     initializedGlobalDecl = GlobalDecl(D);
4621     emitter.emplace(*this);
4622     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4623     if (!Initializer) {
4624       QualType T = InitExpr->getType();
4625       if (D->getType()->isReferenceType())
4626         T = D->getType();
4627 
4628       if (getLangOpts().CPlusPlus) {
4629         if (InitDecl->hasFlexibleArrayInit(getContext()))
4630           ErrorUnsupported(D, "flexible array initializer");
4631         Init = EmitNullConstant(T);
4632         NeedsGlobalCtor = true;
4633       } else {
4634         ErrorUnsupported(D, "static initializer");
4635         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4636       }
4637     } else {
4638       Init = Initializer;
4639       // We don't need an initializer, so remove the entry for the delayed
4640       // initializer position (just in case this entry was delayed) if we
4641       // also don't need to register a destructor.
4642       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4643         DelayedCXXInitPosition.erase(D);
4644 
4645 #ifndef NDEBUG
4646       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4647                           InitDecl->getFlexibleArrayInitChars(getContext());
4648       CharUnits CstSize = CharUnits::fromQuantity(
4649           getDataLayout().getTypeAllocSize(Init->getType()));
4650       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4651 #endif
4652     }
4653   }
4654 
4655   llvm::Type* InitType = Init->getType();
4656   llvm::Constant *Entry =
4657       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4658 
4659   // Strip off pointer casts if we got them.
4660   Entry = Entry->stripPointerCasts();
4661 
4662   // Entry is now either a Function or GlobalVariable.
4663   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4664 
4665   // We have a definition after a declaration with the wrong type.
4666   // We must make a new GlobalVariable* and update everything that used OldGV
4667   // (a declaration or tentative definition) with the new GlobalVariable*
4668   // (which will be a definition).
4669   //
4670   // This happens if there is a prototype for a global (e.g.
4671   // "extern int x[];") and then a definition of a different type (e.g.
4672   // "int x[10];"). This also happens when an initializer has a different type
4673   // from the type of the global (this happens with unions).
4674   if (!GV || GV->getValueType() != InitType ||
4675       GV->getType()->getAddressSpace() !=
4676           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4677 
4678     // Move the old entry aside so that we'll create a new one.
4679     Entry->setName(StringRef());
4680 
4681     // Make a new global with the correct type, this is now guaranteed to work.
4682     GV = cast<llvm::GlobalVariable>(
4683         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4684             ->stripPointerCasts());
4685 
4686     // Replace all uses of the old global with the new global
4687     llvm::Constant *NewPtrForOldDecl =
4688         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4689                                                              Entry->getType());
4690     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4691 
4692     // Erase the old global, since it is no longer used.
4693     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4694   }
4695 
4696   MaybeHandleStaticInExternC(D, GV);
4697 
4698   if (D->hasAttr<AnnotateAttr>())
4699     AddGlobalAnnotations(D, GV);
4700 
4701   // Set the llvm linkage type as appropriate.
4702   llvm::GlobalValue::LinkageTypes Linkage =
4703       getLLVMLinkageVarDefinition(D, GV->isConstant());
4704 
4705   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4706   // the device. [...]"
4707   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4708   // __device__, declares a variable that: [...]
4709   // Is accessible from all the threads within the grid and from the host
4710   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4711   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4712   if (GV && LangOpts.CUDA) {
4713     if (LangOpts.CUDAIsDevice) {
4714       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4715           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4716            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4717            D->getType()->isCUDADeviceBuiltinTextureType()))
4718         GV->setExternallyInitialized(true);
4719     } else {
4720       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4721     }
4722     getCUDARuntime().handleVarRegistration(D, *GV);
4723   }
4724 
4725   GV->setInitializer(Init);
4726   if (emitter)
4727     emitter->finalize(GV);
4728 
4729   // If it is safe to mark the global 'constant', do so now.
4730   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4731                   isTypeConstant(D->getType(), true));
4732 
4733   // If it is in a read-only section, mark it 'constant'.
4734   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4735     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4736     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4737       GV->setConstant(true);
4738   }
4739 
4740   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4741 
4742   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4743   // function is only defined alongside the variable, not also alongside
4744   // callers. Normally, all accesses to a thread_local go through the
4745   // thread-wrapper in order to ensure initialization has occurred, underlying
4746   // variable will never be used other than the thread-wrapper, so it can be
4747   // converted to internal linkage.
4748   //
4749   // However, if the variable has the 'constinit' attribute, it _can_ be
4750   // referenced directly, without calling the thread-wrapper, so the linkage
4751   // must not be changed.
4752   //
4753   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4754   // weak or linkonce, the de-duplication semantics are important to preserve,
4755   // so we don't change the linkage.
4756   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4757       Linkage == llvm::GlobalValue::ExternalLinkage &&
4758       Context.getTargetInfo().getTriple().isOSDarwin() &&
4759       !D->hasAttr<ConstInitAttr>())
4760     Linkage = llvm::GlobalValue::InternalLinkage;
4761 
4762   GV->setLinkage(Linkage);
4763   if (D->hasAttr<DLLImportAttr>())
4764     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4765   else if (D->hasAttr<DLLExportAttr>())
4766     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4767   else
4768     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4769 
4770   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4771     // common vars aren't constant even if declared const.
4772     GV->setConstant(false);
4773     // Tentative definition of global variables may be initialized with
4774     // non-zero null pointers. In this case they should have weak linkage
4775     // since common linkage must have zero initializer and must not have
4776     // explicit section therefore cannot have non-zero initial value.
4777     if (!GV->getInitializer()->isNullValue())
4778       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4779   }
4780 
4781   setNonAliasAttributes(D, GV);
4782 
4783   if (D->getTLSKind() && !GV->isThreadLocal()) {
4784     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4785       CXXThreadLocals.push_back(D);
4786     setTLSMode(GV, *D);
4787   }
4788 
4789   maybeSetTrivialComdat(*D, *GV);
4790 
4791   // Emit the initializer function if necessary.
4792   if (NeedsGlobalCtor || NeedsGlobalDtor)
4793     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4794 
4795   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4796 
4797   // Emit global variable debug information.
4798   if (CGDebugInfo *DI = getModuleDebugInfo())
4799     if (getCodeGenOpts().hasReducedDebugInfo())
4800       DI->EmitGlobalVariable(GV, D);
4801 }
4802 
4803 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4804   if (CGDebugInfo *DI = getModuleDebugInfo())
4805     if (getCodeGenOpts().hasReducedDebugInfo()) {
4806       QualType ASTTy = D->getType();
4807       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4808       llvm::Constant *GV =
4809           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4810       DI->EmitExternalVariable(
4811           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4812     }
4813 }
4814 
4815 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4816                                       CodeGenModule &CGM, const VarDecl *D,
4817                                       bool NoCommon) {
4818   // Don't give variables common linkage if -fno-common was specified unless it
4819   // was overridden by a NoCommon attribute.
4820   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4821     return true;
4822 
4823   // C11 6.9.2/2:
4824   //   A declaration of an identifier for an object that has file scope without
4825   //   an initializer, and without a storage-class specifier or with the
4826   //   storage-class specifier static, constitutes a tentative definition.
4827   if (D->getInit() || D->hasExternalStorage())
4828     return true;
4829 
4830   // A variable cannot be both common and exist in a section.
4831   if (D->hasAttr<SectionAttr>())
4832     return true;
4833 
4834   // A variable cannot be both common and exist in a section.
4835   // We don't try to determine which is the right section in the front-end.
4836   // If no specialized section name is applicable, it will resort to default.
4837   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4838       D->hasAttr<PragmaClangDataSectionAttr>() ||
4839       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4840       D->hasAttr<PragmaClangRodataSectionAttr>())
4841     return true;
4842 
4843   // Thread local vars aren't considered common linkage.
4844   if (D->getTLSKind())
4845     return true;
4846 
4847   // Tentative definitions marked with WeakImportAttr are true definitions.
4848   if (D->hasAttr<WeakImportAttr>())
4849     return true;
4850 
4851   // A variable cannot be both common and exist in a comdat.
4852   if (shouldBeInCOMDAT(CGM, *D))
4853     return true;
4854 
4855   // Declarations with a required alignment do not have common linkage in MSVC
4856   // mode.
4857   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4858     if (D->hasAttr<AlignedAttr>())
4859       return true;
4860     QualType VarType = D->getType();
4861     if (Context.isAlignmentRequired(VarType))
4862       return true;
4863 
4864     if (const auto *RT = VarType->getAs<RecordType>()) {
4865       const RecordDecl *RD = RT->getDecl();
4866       for (const FieldDecl *FD : RD->fields()) {
4867         if (FD->isBitField())
4868           continue;
4869         if (FD->hasAttr<AlignedAttr>())
4870           return true;
4871         if (Context.isAlignmentRequired(FD->getType()))
4872           return true;
4873       }
4874     }
4875   }
4876 
4877   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4878   // common symbols, so symbols with greater alignment requirements cannot be
4879   // common.
4880   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4881   // alignments for common symbols via the aligncomm directive, so this
4882   // restriction only applies to MSVC environments.
4883   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4884       Context.getTypeAlignIfKnown(D->getType()) >
4885           Context.toBits(CharUnits::fromQuantity(32)))
4886     return true;
4887 
4888   return false;
4889 }
4890 
4891 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4892     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4893   if (Linkage == GVA_Internal)
4894     return llvm::Function::InternalLinkage;
4895 
4896   if (D->hasAttr<WeakAttr>()) {
4897     if (IsConstantVariable)
4898       return llvm::GlobalVariable::WeakODRLinkage;
4899     else
4900       return llvm::GlobalVariable::WeakAnyLinkage;
4901   }
4902 
4903   if (const auto *FD = D->getAsFunction())
4904     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4905       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4906 
4907   // We are guaranteed to have a strong definition somewhere else,
4908   // so we can use available_externally linkage.
4909   if (Linkage == GVA_AvailableExternally)
4910     return llvm::GlobalValue::AvailableExternallyLinkage;
4911 
4912   // Note that Apple's kernel linker doesn't support symbol
4913   // coalescing, so we need to avoid linkonce and weak linkages there.
4914   // Normally, this means we just map to internal, but for explicit
4915   // instantiations we'll map to external.
4916 
4917   // In C++, the compiler has to emit a definition in every translation unit
4918   // that references the function.  We should use linkonce_odr because
4919   // a) if all references in this translation unit are optimized away, we
4920   // don't need to codegen it.  b) if the function persists, it needs to be
4921   // merged with other definitions. c) C++ has the ODR, so we know the
4922   // definition is dependable.
4923   if (Linkage == GVA_DiscardableODR)
4924     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4925                                             : llvm::Function::InternalLinkage;
4926 
4927   // An explicit instantiation of a template has weak linkage, since
4928   // explicit instantiations can occur in multiple translation units
4929   // and must all be equivalent. However, we are not allowed to
4930   // throw away these explicit instantiations.
4931   //
4932   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4933   // so say that CUDA templates are either external (for kernels) or internal.
4934   // This lets llvm perform aggressive inter-procedural optimizations. For
4935   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4936   // therefore we need to follow the normal linkage paradigm.
4937   if (Linkage == GVA_StrongODR) {
4938     if (getLangOpts().AppleKext)
4939       return llvm::Function::ExternalLinkage;
4940     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4941         !getLangOpts().GPURelocatableDeviceCode)
4942       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4943                                           : llvm::Function::InternalLinkage;
4944     return llvm::Function::WeakODRLinkage;
4945   }
4946 
4947   // C++ doesn't have tentative definitions and thus cannot have common
4948   // linkage.
4949   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4950       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4951                                  CodeGenOpts.NoCommon))
4952     return llvm::GlobalVariable::CommonLinkage;
4953 
4954   // selectany symbols are externally visible, so use weak instead of
4955   // linkonce.  MSVC optimizes away references to const selectany globals, so
4956   // all definitions should be the same and ODR linkage should be used.
4957   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4958   if (D->hasAttr<SelectAnyAttr>())
4959     return llvm::GlobalVariable::WeakODRLinkage;
4960 
4961   // Otherwise, we have strong external linkage.
4962   assert(Linkage == GVA_StrongExternal);
4963   return llvm::GlobalVariable::ExternalLinkage;
4964 }
4965 
4966 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4967     const VarDecl *VD, bool IsConstant) {
4968   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4969   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4970 }
4971 
4972 /// Replace the uses of a function that was declared with a non-proto type.
4973 /// We want to silently drop extra arguments from call sites
4974 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4975                                           llvm::Function *newFn) {
4976   // Fast path.
4977   if (old->use_empty()) return;
4978 
4979   llvm::Type *newRetTy = newFn->getReturnType();
4980   SmallVector<llvm::Value*, 4> newArgs;
4981 
4982   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4983          ui != ue; ) {
4984     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4985     llvm::User *user = use->getUser();
4986 
4987     // Recognize and replace uses of bitcasts.  Most calls to
4988     // unprototyped functions will use bitcasts.
4989     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4990       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4991         replaceUsesOfNonProtoConstant(bitcast, newFn);
4992       continue;
4993     }
4994 
4995     // Recognize calls to the function.
4996     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4997     if (!callSite) continue;
4998     if (!callSite->isCallee(&*use))
4999       continue;
5000 
5001     // If the return types don't match exactly, then we can't
5002     // transform this call unless it's dead.
5003     if (callSite->getType() != newRetTy && !callSite->use_empty())
5004       continue;
5005 
5006     // Get the call site's attribute list.
5007     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5008     llvm::AttributeList oldAttrs = callSite->getAttributes();
5009 
5010     // If the function was passed too few arguments, don't transform.
5011     unsigned newNumArgs = newFn->arg_size();
5012     if (callSite->arg_size() < newNumArgs)
5013       continue;
5014 
5015     // If extra arguments were passed, we silently drop them.
5016     // If any of the types mismatch, we don't transform.
5017     unsigned argNo = 0;
5018     bool dontTransform = false;
5019     for (llvm::Argument &A : newFn->args()) {
5020       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5021         dontTransform = true;
5022         break;
5023       }
5024 
5025       // Add any parameter attributes.
5026       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5027       argNo++;
5028     }
5029     if (dontTransform)
5030       continue;
5031 
5032     // Okay, we can transform this.  Create the new call instruction and copy
5033     // over the required information.
5034     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5035 
5036     // Copy over any operand bundles.
5037     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5038     callSite->getOperandBundlesAsDefs(newBundles);
5039 
5040     llvm::CallBase *newCall;
5041     if (isa<llvm::CallInst>(callSite)) {
5042       newCall =
5043           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5044     } else {
5045       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5046       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5047                                          oldInvoke->getUnwindDest(), newArgs,
5048                                          newBundles, "", callSite);
5049     }
5050     newArgs.clear(); // for the next iteration
5051 
5052     if (!newCall->getType()->isVoidTy())
5053       newCall->takeName(callSite);
5054     newCall->setAttributes(
5055         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5056                                  oldAttrs.getRetAttrs(), newArgAttrs));
5057     newCall->setCallingConv(callSite->getCallingConv());
5058 
5059     // Finally, remove the old call, replacing any uses with the new one.
5060     if (!callSite->use_empty())
5061       callSite->replaceAllUsesWith(newCall);
5062 
5063     // Copy debug location attached to CI.
5064     if (callSite->getDebugLoc())
5065       newCall->setDebugLoc(callSite->getDebugLoc());
5066 
5067     callSite->eraseFromParent();
5068   }
5069 }
5070 
5071 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5072 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5073 /// existing call uses of the old function in the module, this adjusts them to
5074 /// call the new function directly.
5075 ///
5076 /// This is not just a cleanup: the always_inline pass requires direct calls to
5077 /// functions to be able to inline them.  If there is a bitcast in the way, it
5078 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5079 /// run at -O0.
5080 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5081                                                       llvm::Function *NewFn) {
5082   // If we're redefining a global as a function, don't transform it.
5083   if (!isa<llvm::Function>(Old)) return;
5084 
5085   replaceUsesOfNonProtoConstant(Old, NewFn);
5086 }
5087 
5088 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5089   auto DK = VD->isThisDeclarationADefinition();
5090   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5091     return;
5092 
5093   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5094   // If we have a definition, this might be a deferred decl. If the
5095   // instantiation is explicit, make sure we emit it at the end.
5096   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5097     GetAddrOfGlobalVar(VD);
5098 
5099   EmitTopLevelDecl(VD);
5100 }
5101 
5102 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5103                                                  llvm::GlobalValue *GV) {
5104   const auto *D = cast<FunctionDecl>(GD.getDecl());
5105 
5106   // Compute the function info and LLVM type.
5107   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5108   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5109 
5110   // Get or create the prototype for the function.
5111   if (!GV || (GV->getValueType() != Ty))
5112     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5113                                                    /*DontDefer=*/true,
5114                                                    ForDefinition));
5115 
5116   // Already emitted.
5117   if (!GV->isDeclaration())
5118     return;
5119 
5120   // We need to set linkage and visibility on the function before
5121   // generating code for it because various parts of IR generation
5122   // want to propagate this information down (e.g. to local static
5123   // declarations).
5124   auto *Fn = cast<llvm::Function>(GV);
5125   setFunctionLinkage(GD, Fn);
5126 
5127   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5128   setGVProperties(Fn, GD);
5129 
5130   MaybeHandleStaticInExternC(D, Fn);
5131 
5132   maybeSetTrivialComdat(*D, *Fn);
5133 
5134   // Set CodeGen attributes that represent floating point environment.
5135   setLLVMFunctionFEnvAttributes(D, Fn);
5136 
5137   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5138 
5139   setNonAliasAttributes(GD, Fn);
5140   SetLLVMFunctionAttributesForDefinition(D, Fn);
5141 
5142   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5143     AddGlobalCtor(Fn, CA->getPriority());
5144   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5145     AddGlobalDtor(Fn, DA->getPriority(), true);
5146   if (D->hasAttr<AnnotateAttr>())
5147     AddGlobalAnnotations(D, Fn);
5148 }
5149 
5150 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5151   const auto *D = cast<ValueDecl>(GD.getDecl());
5152   const AliasAttr *AA = D->getAttr<AliasAttr>();
5153   assert(AA && "Not an alias?");
5154 
5155   StringRef MangledName = getMangledName(GD);
5156 
5157   if (AA->getAliasee() == MangledName) {
5158     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5159     return;
5160   }
5161 
5162   // If there is a definition in the module, then it wins over the alias.
5163   // This is dubious, but allow it to be safe.  Just ignore the alias.
5164   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5165   if (Entry && !Entry->isDeclaration())
5166     return;
5167 
5168   Aliases.push_back(GD);
5169 
5170   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5171 
5172   // Create a reference to the named value.  This ensures that it is emitted
5173   // if a deferred decl.
5174   llvm::Constant *Aliasee;
5175   llvm::GlobalValue::LinkageTypes LT;
5176   if (isa<llvm::FunctionType>(DeclTy)) {
5177     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5178                                       /*ForVTable=*/false);
5179     LT = getFunctionLinkage(GD);
5180   } else {
5181     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5182                                     /*D=*/nullptr);
5183     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5184       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5185     else
5186       LT = getFunctionLinkage(GD);
5187   }
5188 
5189   // Create the new alias itself, but don't set a name yet.
5190   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5191   auto *GA =
5192       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5193 
5194   if (Entry) {
5195     if (GA->getAliasee() == Entry) {
5196       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5197       return;
5198     }
5199 
5200     assert(Entry->isDeclaration());
5201 
5202     // If there is a declaration in the module, then we had an extern followed
5203     // by the alias, as in:
5204     //   extern int test6();
5205     //   ...
5206     //   int test6() __attribute__((alias("test7")));
5207     //
5208     // Remove it and replace uses of it with the alias.
5209     GA->takeName(Entry);
5210 
5211     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5212                                                           Entry->getType()));
5213     Entry->eraseFromParent();
5214   } else {
5215     GA->setName(MangledName);
5216   }
5217 
5218   // Set attributes which are particular to an alias; this is a
5219   // specialization of the attributes which may be set on a global
5220   // variable/function.
5221   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5222       D->isWeakImported()) {
5223     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5224   }
5225 
5226   if (const auto *VD = dyn_cast<VarDecl>(D))
5227     if (VD->getTLSKind())
5228       setTLSMode(GA, *VD);
5229 
5230   SetCommonAttributes(GD, GA);
5231 
5232   // Emit global alias debug information.
5233   if (isa<VarDecl>(D))
5234     if (CGDebugInfo *DI = getModuleDebugInfo())
5235       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5236 }
5237 
5238 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5239   const auto *D = cast<ValueDecl>(GD.getDecl());
5240   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5241   assert(IFA && "Not an ifunc?");
5242 
5243   StringRef MangledName = getMangledName(GD);
5244 
5245   if (IFA->getResolver() == MangledName) {
5246     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5247     return;
5248   }
5249 
5250   // Report an error if some definition overrides ifunc.
5251   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5252   if (Entry && !Entry->isDeclaration()) {
5253     GlobalDecl OtherGD;
5254     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5255         DiagnosedConflictingDefinitions.insert(GD).second) {
5256       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5257           << MangledName;
5258       Diags.Report(OtherGD.getDecl()->getLocation(),
5259                    diag::note_previous_definition);
5260     }
5261     return;
5262   }
5263 
5264   Aliases.push_back(GD);
5265 
5266   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5267   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5268   llvm::Constant *Resolver =
5269       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5270                               /*ForVTable=*/false);
5271   llvm::GlobalIFunc *GIF =
5272       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5273                                 "", Resolver, &getModule());
5274   if (Entry) {
5275     if (GIF->getResolver() == Entry) {
5276       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5277       return;
5278     }
5279     assert(Entry->isDeclaration());
5280 
5281     // If there is a declaration in the module, then we had an extern followed
5282     // by the ifunc, as in:
5283     //   extern int test();
5284     //   ...
5285     //   int test() __attribute__((ifunc("resolver")));
5286     //
5287     // Remove it and replace uses of it with the ifunc.
5288     GIF->takeName(Entry);
5289 
5290     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5291                                                           Entry->getType()));
5292     Entry->eraseFromParent();
5293   } else
5294     GIF->setName(MangledName);
5295 
5296   SetCommonAttributes(GD, GIF);
5297 }
5298 
5299 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5300                                             ArrayRef<llvm::Type*> Tys) {
5301   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5302                                          Tys);
5303 }
5304 
5305 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5306 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5307                          const StringLiteral *Literal, bool TargetIsLSB,
5308                          bool &IsUTF16, unsigned &StringLength) {
5309   StringRef String = Literal->getString();
5310   unsigned NumBytes = String.size();
5311 
5312   // Check for simple case.
5313   if (!Literal->containsNonAsciiOrNull()) {
5314     StringLength = NumBytes;
5315     return *Map.insert(std::make_pair(String, nullptr)).first;
5316   }
5317 
5318   // Otherwise, convert the UTF8 literals into a string of shorts.
5319   IsUTF16 = true;
5320 
5321   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5322   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5323   llvm::UTF16 *ToPtr = &ToBuf[0];
5324 
5325   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5326                                  ToPtr + NumBytes, llvm::strictConversion);
5327 
5328   // ConvertUTF8toUTF16 returns the length in ToPtr.
5329   StringLength = ToPtr - &ToBuf[0];
5330 
5331   // Add an explicit null.
5332   *ToPtr = 0;
5333   return *Map.insert(std::make_pair(
5334                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5335                                    (StringLength + 1) * 2),
5336                          nullptr)).first;
5337 }
5338 
5339 ConstantAddress
5340 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5341   unsigned StringLength = 0;
5342   bool isUTF16 = false;
5343   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5344       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5345                                getDataLayout().isLittleEndian(), isUTF16,
5346                                StringLength);
5347 
5348   if (auto *C = Entry.second)
5349     return ConstantAddress(
5350         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5351 
5352   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5353   llvm::Constant *Zeros[] = { Zero, Zero };
5354 
5355   const ASTContext &Context = getContext();
5356   const llvm::Triple &Triple = getTriple();
5357 
5358   const auto CFRuntime = getLangOpts().CFRuntime;
5359   const bool IsSwiftABI =
5360       static_cast<unsigned>(CFRuntime) >=
5361       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5362   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5363 
5364   // If we don't already have it, get __CFConstantStringClassReference.
5365   if (!CFConstantStringClassRef) {
5366     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5367     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5368     Ty = llvm::ArrayType::get(Ty, 0);
5369 
5370     switch (CFRuntime) {
5371     default: break;
5372     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5373     case LangOptions::CoreFoundationABI::Swift5_0:
5374       CFConstantStringClassName =
5375           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5376                               : "$s10Foundation19_NSCFConstantStringCN";
5377       Ty = IntPtrTy;
5378       break;
5379     case LangOptions::CoreFoundationABI::Swift4_2:
5380       CFConstantStringClassName =
5381           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5382                               : "$S10Foundation19_NSCFConstantStringCN";
5383       Ty = IntPtrTy;
5384       break;
5385     case LangOptions::CoreFoundationABI::Swift4_1:
5386       CFConstantStringClassName =
5387           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5388                               : "__T010Foundation19_NSCFConstantStringCN";
5389       Ty = IntPtrTy;
5390       break;
5391     }
5392 
5393     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5394 
5395     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5396       llvm::GlobalValue *GV = nullptr;
5397 
5398       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5399         IdentifierInfo &II = Context.Idents.get(GV->getName());
5400         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5401         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5402 
5403         const VarDecl *VD = nullptr;
5404         for (const auto *Result : DC->lookup(&II))
5405           if ((VD = dyn_cast<VarDecl>(Result)))
5406             break;
5407 
5408         if (Triple.isOSBinFormatELF()) {
5409           if (!VD)
5410             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5411         } else {
5412           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5413           if (!VD || !VD->hasAttr<DLLExportAttr>())
5414             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5415           else
5416             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5417         }
5418 
5419         setDSOLocal(GV);
5420       }
5421     }
5422 
5423     // Decay array -> ptr
5424     CFConstantStringClassRef =
5425         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5426                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5427   }
5428 
5429   QualType CFTy = Context.getCFConstantStringType();
5430 
5431   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5432 
5433   ConstantInitBuilder Builder(*this);
5434   auto Fields = Builder.beginStruct(STy);
5435 
5436   // Class pointer.
5437   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5438 
5439   // Flags.
5440   if (IsSwiftABI) {
5441     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5442     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5443   } else {
5444     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5445   }
5446 
5447   // String pointer.
5448   llvm::Constant *C = nullptr;
5449   if (isUTF16) {
5450     auto Arr = llvm::makeArrayRef(
5451         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5452         Entry.first().size() / 2);
5453     C = llvm::ConstantDataArray::get(VMContext, Arr);
5454   } else {
5455     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5456   }
5457 
5458   // Note: -fwritable-strings doesn't make the backing store strings of
5459   // CFStrings writable. (See <rdar://problem/10657500>)
5460   auto *GV =
5461       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5462                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5463   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5464   // Don't enforce the target's minimum global alignment, since the only use
5465   // of the string is via this class initializer.
5466   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5467                             : Context.getTypeAlignInChars(Context.CharTy);
5468   GV->setAlignment(Align.getAsAlign());
5469 
5470   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5471   // Without it LLVM can merge the string with a non unnamed_addr one during
5472   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5473   if (Triple.isOSBinFormatMachO())
5474     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5475                            : "__TEXT,__cstring,cstring_literals");
5476   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5477   // the static linker to adjust permissions to read-only later on.
5478   else if (Triple.isOSBinFormatELF())
5479     GV->setSection(".rodata");
5480 
5481   // String.
5482   llvm::Constant *Str =
5483       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5484 
5485   if (isUTF16)
5486     // Cast the UTF16 string to the correct type.
5487     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5488   Fields.add(Str);
5489 
5490   // String length.
5491   llvm::IntegerType *LengthTy =
5492       llvm::IntegerType::get(getModule().getContext(),
5493                              Context.getTargetInfo().getLongWidth());
5494   if (IsSwiftABI) {
5495     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5496         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5497       LengthTy = Int32Ty;
5498     else
5499       LengthTy = IntPtrTy;
5500   }
5501   Fields.addInt(LengthTy, StringLength);
5502 
5503   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5504   // properly aligned on 32-bit platforms.
5505   CharUnits Alignment =
5506       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5507 
5508   // The struct.
5509   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5510                                     /*isConstant=*/false,
5511                                     llvm::GlobalVariable::PrivateLinkage);
5512   GV->addAttribute("objc_arc_inert");
5513   switch (Triple.getObjectFormat()) {
5514   case llvm::Triple::UnknownObjectFormat:
5515     llvm_unreachable("unknown file format");
5516   case llvm::Triple::DXContainer:
5517   case llvm::Triple::GOFF:
5518   case llvm::Triple::SPIRV:
5519   case llvm::Triple::XCOFF:
5520     llvm_unreachable("unimplemented");
5521   case llvm::Triple::COFF:
5522   case llvm::Triple::ELF:
5523   case llvm::Triple::Wasm:
5524     GV->setSection("cfstring");
5525     break;
5526   case llvm::Triple::MachO:
5527     GV->setSection("__DATA,__cfstring");
5528     break;
5529   }
5530   Entry.second = GV;
5531 
5532   return ConstantAddress(GV, GV->getValueType(), Alignment);
5533 }
5534 
5535 bool CodeGenModule::getExpressionLocationsEnabled() const {
5536   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5537 }
5538 
5539 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5540   if (ObjCFastEnumerationStateType.isNull()) {
5541     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5542     D->startDefinition();
5543 
5544     QualType FieldTypes[] = {
5545       Context.UnsignedLongTy,
5546       Context.getPointerType(Context.getObjCIdType()),
5547       Context.getPointerType(Context.UnsignedLongTy),
5548       Context.getConstantArrayType(Context.UnsignedLongTy,
5549                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5550     };
5551 
5552     for (size_t i = 0; i < 4; ++i) {
5553       FieldDecl *Field = FieldDecl::Create(Context,
5554                                            D,
5555                                            SourceLocation(),
5556                                            SourceLocation(), nullptr,
5557                                            FieldTypes[i], /*TInfo=*/nullptr,
5558                                            /*BitWidth=*/nullptr,
5559                                            /*Mutable=*/false,
5560                                            ICIS_NoInit);
5561       Field->setAccess(AS_public);
5562       D->addDecl(Field);
5563     }
5564 
5565     D->completeDefinition();
5566     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5567   }
5568 
5569   return ObjCFastEnumerationStateType;
5570 }
5571 
5572 llvm::Constant *
5573 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5574   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5575 
5576   // Don't emit it as the address of the string, emit the string data itself
5577   // as an inline array.
5578   if (E->getCharByteWidth() == 1) {
5579     SmallString<64> Str(E->getString());
5580 
5581     // Resize the string to the right size, which is indicated by its type.
5582     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5583     Str.resize(CAT->getSize().getZExtValue());
5584     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5585   }
5586 
5587   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5588   llvm::Type *ElemTy = AType->getElementType();
5589   unsigned NumElements = AType->getNumElements();
5590 
5591   // Wide strings have either 2-byte or 4-byte elements.
5592   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5593     SmallVector<uint16_t, 32> Elements;
5594     Elements.reserve(NumElements);
5595 
5596     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5597       Elements.push_back(E->getCodeUnit(i));
5598     Elements.resize(NumElements);
5599     return llvm::ConstantDataArray::get(VMContext, Elements);
5600   }
5601 
5602   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5603   SmallVector<uint32_t, 32> Elements;
5604   Elements.reserve(NumElements);
5605 
5606   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5607     Elements.push_back(E->getCodeUnit(i));
5608   Elements.resize(NumElements);
5609   return llvm::ConstantDataArray::get(VMContext, Elements);
5610 }
5611 
5612 static llvm::GlobalVariable *
5613 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5614                       CodeGenModule &CGM, StringRef GlobalName,
5615                       CharUnits Alignment) {
5616   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5617       CGM.GetGlobalConstantAddressSpace());
5618 
5619   llvm::Module &M = CGM.getModule();
5620   // Create a global variable for this string
5621   auto *GV = new llvm::GlobalVariable(
5622       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5623       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5624   GV->setAlignment(Alignment.getAsAlign());
5625   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5626   if (GV->isWeakForLinker()) {
5627     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5628     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5629   }
5630   CGM.setDSOLocal(GV);
5631 
5632   return GV;
5633 }
5634 
5635 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5636 /// constant array for the given string literal.
5637 ConstantAddress
5638 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5639                                                   StringRef Name) {
5640   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5641 
5642   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5643   llvm::GlobalVariable **Entry = nullptr;
5644   if (!LangOpts.WritableStrings) {
5645     Entry = &ConstantStringMap[C];
5646     if (auto GV = *Entry) {
5647       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5648         GV->setAlignment(Alignment.getAsAlign());
5649       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5650                              GV->getValueType(), Alignment);
5651     }
5652   }
5653 
5654   SmallString<256> MangledNameBuffer;
5655   StringRef GlobalVariableName;
5656   llvm::GlobalValue::LinkageTypes LT;
5657 
5658   // Mangle the string literal if that's how the ABI merges duplicate strings.
5659   // Don't do it if they are writable, since we don't want writes in one TU to
5660   // affect strings in another.
5661   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5662       !LangOpts.WritableStrings) {
5663     llvm::raw_svector_ostream Out(MangledNameBuffer);
5664     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5665     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5666     GlobalVariableName = MangledNameBuffer;
5667   } else {
5668     LT = llvm::GlobalValue::PrivateLinkage;
5669     GlobalVariableName = Name;
5670   }
5671 
5672   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5673   if (Entry)
5674     *Entry = GV;
5675 
5676   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5677                                   QualType());
5678 
5679   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5680                          GV->getValueType(), Alignment);
5681 }
5682 
5683 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5684 /// array for the given ObjCEncodeExpr node.
5685 ConstantAddress
5686 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5687   std::string Str;
5688   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5689 
5690   return GetAddrOfConstantCString(Str);
5691 }
5692 
5693 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5694 /// the literal and a terminating '\0' character.
5695 /// The result has pointer to array type.
5696 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5697     const std::string &Str, const char *GlobalName) {
5698   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5699   CharUnits Alignment =
5700     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5701 
5702   llvm::Constant *C =
5703       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5704 
5705   // Don't share any string literals if strings aren't constant.
5706   llvm::GlobalVariable **Entry = nullptr;
5707   if (!LangOpts.WritableStrings) {
5708     Entry = &ConstantStringMap[C];
5709     if (auto GV = *Entry) {
5710       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5711         GV->setAlignment(Alignment.getAsAlign());
5712       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5713                              GV->getValueType(), Alignment);
5714     }
5715   }
5716 
5717   // Get the default prefix if a name wasn't specified.
5718   if (!GlobalName)
5719     GlobalName = ".str";
5720   // Create a global variable for this.
5721   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5722                                   GlobalName, Alignment);
5723   if (Entry)
5724     *Entry = GV;
5725 
5726   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5727                          GV->getValueType(), Alignment);
5728 }
5729 
5730 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5731     const MaterializeTemporaryExpr *E, const Expr *Init) {
5732   assert((E->getStorageDuration() == SD_Static ||
5733           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5734   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5735 
5736   // If we're not materializing a subobject of the temporary, keep the
5737   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5738   QualType MaterializedType = Init->getType();
5739   if (Init == E->getSubExpr())
5740     MaterializedType = E->getType();
5741 
5742   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5743 
5744   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5745   if (!InsertResult.second) {
5746     // We've seen this before: either we already created it or we're in the
5747     // process of doing so.
5748     if (!InsertResult.first->second) {
5749       // We recursively re-entered this function, probably during emission of
5750       // the initializer. Create a placeholder. We'll clean this up in the
5751       // outer call, at the end of this function.
5752       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5753       InsertResult.first->second = new llvm::GlobalVariable(
5754           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5755           nullptr);
5756     }
5757     return ConstantAddress(InsertResult.first->second,
5758                            llvm::cast<llvm::GlobalVariable>(
5759                                InsertResult.first->second->stripPointerCasts())
5760                                ->getValueType(),
5761                            Align);
5762   }
5763 
5764   // FIXME: If an externally-visible declaration extends multiple temporaries,
5765   // we need to give each temporary the same name in every translation unit (and
5766   // we also need to make the temporaries externally-visible).
5767   SmallString<256> Name;
5768   llvm::raw_svector_ostream Out(Name);
5769   getCXXABI().getMangleContext().mangleReferenceTemporary(
5770       VD, E->getManglingNumber(), Out);
5771 
5772   APValue *Value = nullptr;
5773   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5774     // If the initializer of the extending declaration is a constant
5775     // initializer, we should have a cached constant initializer for this
5776     // temporary. Note that this might have a different value from the value
5777     // computed by evaluating the initializer if the surrounding constant
5778     // expression modifies the temporary.
5779     Value = E->getOrCreateValue(false);
5780   }
5781 
5782   // Try evaluating it now, it might have a constant initializer.
5783   Expr::EvalResult EvalResult;
5784   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5785       !EvalResult.hasSideEffects())
5786     Value = &EvalResult.Val;
5787 
5788   LangAS AddrSpace =
5789       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5790 
5791   Optional<ConstantEmitter> emitter;
5792   llvm::Constant *InitialValue = nullptr;
5793   bool Constant = false;
5794   llvm::Type *Type;
5795   if (Value) {
5796     // The temporary has a constant initializer, use it.
5797     emitter.emplace(*this);
5798     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5799                                                MaterializedType);
5800     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5801     Type = InitialValue->getType();
5802   } else {
5803     // No initializer, the initialization will be provided when we
5804     // initialize the declaration which performed lifetime extension.
5805     Type = getTypes().ConvertTypeForMem(MaterializedType);
5806   }
5807 
5808   // Create a global variable for this lifetime-extended temporary.
5809   llvm::GlobalValue::LinkageTypes Linkage =
5810       getLLVMLinkageVarDefinition(VD, Constant);
5811   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5812     const VarDecl *InitVD;
5813     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5814         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5815       // Temporaries defined inside a class get linkonce_odr linkage because the
5816       // class can be defined in multiple translation units.
5817       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5818     } else {
5819       // There is no need for this temporary to have external linkage if the
5820       // VarDecl has external linkage.
5821       Linkage = llvm::GlobalVariable::InternalLinkage;
5822     }
5823   }
5824   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5825   auto *GV = new llvm::GlobalVariable(
5826       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5827       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5828   if (emitter) emitter->finalize(GV);
5829   setGVProperties(GV, VD);
5830   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5831     // The reference temporary should never be dllexport.
5832     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5833   GV->setAlignment(Align.getAsAlign());
5834   if (supportsCOMDAT() && GV->isWeakForLinker())
5835     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5836   if (VD->getTLSKind())
5837     setTLSMode(GV, *VD);
5838   llvm::Constant *CV = GV;
5839   if (AddrSpace != LangAS::Default)
5840     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5841         *this, GV, AddrSpace, LangAS::Default,
5842         Type->getPointerTo(
5843             getContext().getTargetAddressSpace(LangAS::Default)));
5844 
5845   // Update the map with the new temporary. If we created a placeholder above,
5846   // replace it with the new global now.
5847   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5848   if (Entry) {
5849     Entry->replaceAllUsesWith(
5850         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5851     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5852   }
5853   Entry = CV;
5854 
5855   return ConstantAddress(CV, Type, Align);
5856 }
5857 
5858 /// EmitObjCPropertyImplementations - Emit information for synthesized
5859 /// properties for an implementation.
5860 void CodeGenModule::EmitObjCPropertyImplementations(const
5861                                                     ObjCImplementationDecl *D) {
5862   for (const auto *PID : D->property_impls()) {
5863     // Dynamic is just for type-checking.
5864     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5865       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5866 
5867       // Determine which methods need to be implemented, some may have
5868       // been overridden. Note that ::isPropertyAccessor is not the method
5869       // we want, that just indicates if the decl came from a
5870       // property. What we want to know is if the method is defined in
5871       // this implementation.
5872       auto *Getter = PID->getGetterMethodDecl();
5873       if (!Getter || Getter->isSynthesizedAccessorStub())
5874         CodeGenFunction(*this).GenerateObjCGetter(
5875             const_cast<ObjCImplementationDecl *>(D), PID);
5876       auto *Setter = PID->getSetterMethodDecl();
5877       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5878         CodeGenFunction(*this).GenerateObjCSetter(
5879                                  const_cast<ObjCImplementationDecl *>(D), PID);
5880     }
5881   }
5882 }
5883 
5884 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5885   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5886   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5887        ivar; ivar = ivar->getNextIvar())
5888     if (ivar->getType().isDestructedType())
5889       return true;
5890 
5891   return false;
5892 }
5893 
5894 static bool AllTrivialInitializers(CodeGenModule &CGM,
5895                                    ObjCImplementationDecl *D) {
5896   CodeGenFunction CGF(CGM);
5897   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5898        E = D->init_end(); B != E; ++B) {
5899     CXXCtorInitializer *CtorInitExp = *B;
5900     Expr *Init = CtorInitExp->getInit();
5901     if (!CGF.isTrivialInitializer(Init))
5902       return false;
5903   }
5904   return true;
5905 }
5906 
5907 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5908 /// for an implementation.
5909 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5910   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5911   if (needsDestructMethod(D)) {
5912     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5913     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5914     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5915         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5916         getContext().VoidTy, nullptr, D,
5917         /*isInstance=*/true, /*isVariadic=*/false,
5918         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5919         /*isImplicitlyDeclared=*/true,
5920         /*isDefined=*/false, ObjCMethodDecl::Required);
5921     D->addInstanceMethod(DTORMethod);
5922     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5923     D->setHasDestructors(true);
5924   }
5925 
5926   // If the implementation doesn't have any ivar initializers, we don't need
5927   // a .cxx_construct.
5928   if (D->getNumIvarInitializers() == 0 ||
5929       AllTrivialInitializers(*this, D))
5930     return;
5931 
5932   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5933   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5934   // The constructor returns 'self'.
5935   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5936       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5937       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5938       /*isVariadic=*/false,
5939       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5940       /*isImplicitlyDeclared=*/true,
5941       /*isDefined=*/false, ObjCMethodDecl::Required);
5942   D->addInstanceMethod(CTORMethod);
5943   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5944   D->setHasNonZeroConstructors(true);
5945 }
5946 
5947 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5948 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5949   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5950       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5951     ErrorUnsupported(LSD, "linkage spec");
5952     return;
5953   }
5954 
5955   EmitDeclContext(LSD);
5956 }
5957 
5958 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5959   for (auto *I : DC->decls()) {
5960     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5961     // are themselves considered "top-level", so EmitTopLevelDecl on an
5962     // ObjCImplDecl does not recursively visit them. We need to do that in
5963     // case they're nested inside another construct (LinkageSpecDecl /
5964     // ExportDecl) that does stop them from being considered "top-level".
5965     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5966       for (auto *M : OID->methods())
5967         EmitTopLevelDecl(M);
5968     }
5969 
5970     EmitTopLevelDecl(I);
5971   }
5972 }
5973 
5974 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5975 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5976   // Ignore dependent declarations.
5977   if (D->isTemplated())
5978     return;
5979 
5980   // Consteval function shouldn't be emitted.
5981   if (auto *FD = dyn_cast<FunctionDecl>(D))
5982     if (FD->isConsteval())
5983       return;
5984 
5985   switch (D->getKind()) {
5986   case Decl::CXXConversion:
5987   case Decl::CXXMethod:
5988   case Decl::Function:
5989     EmitGlobal(cast<FunctionDecl>(D));
5990     // Always provide some coverage mapping
5991     // even for the functions that aren't emitted.
5992     AddDeferredUnusedCoverageMapping(D);
5993     break;
5994 
5995   case Decl::CXXDeductionGuide:
5996     // Function-like, but does not result in code emission.
5997     break;
5998 
5999   case Decl::Var:
6000   case Decl::Decomposition:
6001   case Decl::VarTemplateSpecialization:
6002     EmitGlobal(cast<VarDecl>(D));
6003     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6004       for (auto *B : DD->bindings())
6005         if (auto *HD = B->getHoldingVar())
6006           EmitGlobal(HD);
6007     break;
6008 
6009   // Indirect fields from global anonymous structs and unions can be
6010   // ignored; only the actual variable requires IR gen support.
6011   case Decl::IndirectField:
6012     break;
6013 
6014   // C++ Decls
6015   case Decl::Namespace:
6016     EmitDeclContext(cast<NamespaceDecl>(D));
6017     break;
6018   case Decl::ClassTemplateSpecialization: {
6019     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6020     if (CGDebugInfo *DI = getModuleDebugInfo())
6021       if (Spec->getSpecializationKind() ==
6022               TSK_ExplicitInstantiationDefinition &&
6023           Spec->hasDefinition())
6024         DI->completeTemplateDefinition(*Spec);
6025   } LLVM_FALLTHROUGH;
6026   case Decl::CXXRecord: {
6027     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6028     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6029       if (CRD->hasDefinition())
6030         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6031       if (auto *ES = D->getASTContext().getExternalSource())
6032         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6033           DI->completeUnusedClass(*CRD);
6034     }
6035     // Emit any static data members, they may be definitions.
6036     for (auto *I : CRD->decls())
6037       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6038         EmitTopLevelDecl(I);
6039     break;
6040   }
6041     // No code generation needed.
6042   case Decl::UsingShadow:
6043   case Decl::ClassTemplate:
6044   case Decl::VarTemplate:
6045   case Decl::Concept:
6046   case Decl::VarTemplatePartialSpecialization:
6047   case Decl::FunctionTemplate:
6048   case Decl::TypeAliasTemplate:
6049   case Decl::Block:
6050   case Decl::Empty:
6051   case Decl::Binding:
6052     break;
6053   case Decl::Using:          // using X; [C++]
6054     if (CGDebugInfo *DI = getModuleDebugInfo())
6055         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6056     break;
6057   case Decl::UsingEnum: // using enum X; [C++]
6058     if (CGDebugInfo *DI = getModuleDebugInfo())
6059       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6060     break;
6061   case Decl::NamespaceAlias:
6062     if (CGDebugInfo *DI = getModuleDebugInfo())
6063         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6064     break;
6065   case Decl::UsingDirective: // using namespace X; [C++]
6066     if (CGDebugInfo *DI = getModuleDebugInfo())
6067       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6068     break;
6069   case Decl::CXXConstructor:
6070     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6071     break;
6072   case Decl::CXXDestructor:
6073     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6074     break;
6075 
6076   case Decl::StaticAssert:
6077     // Nothing to do.
6078     break;
6079 
6080   // Objective-C Decls
6081 
6082   // Forward declarations, no (immediate) code generation.
6083   case Decl::ObjCInterface:
6084   case Decl::ObjCCategory:
6085     break;
6086 
6087   case Decl::ObjCProtocol: {
6088     auto *Proto = cast<ObjCProtocolDecl>(D);
6089     if (Proto->isThisDeclarationADefinition())
6090       ObjCRuntime->GenerateProtocol(Proto);
6091     break;
6092   }
6093 
6094   case Decl::ObjCCategoryImpl:
6095     // Categories have properties but don't support synthesize so we
6096     // can ignore them here.
6097     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6098     break;
6099 
6100   case Decl::ObjCImplementation: {
6101     auto *OMD = cast<ObjCImplementationDecl>(D);
6102     EmitObjCPropertyImplementations(OMD);
6103     EmitObjCIvarInitializations(OMD);
6104     ObjCRuntime->GenerateClass(OMD);
6105     // Emit global variable debug information.
6106     if (CGDebugInfo *DI = getModuleDebugInfo())
6107       if (getCodeGenOpts().hasReducedDebugInfo())
6108         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6109             OMD->getClassInterface()), OMD->getLocation());
6110     break;
6111   }
6112   case Decl::ObjCMethod: {
6113     auto *OMD = cast<ObjCMethodDecl>(D);
6114     // If this is not a prototype, emit the body.
6115     if (OMD->getBody())
6116       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6117     break;
6118   }
6119   case Decl::ObjCCompatibleAlias:
6120     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6121     break;
6122 
6123   case Decl::PragmaComment: {
6124     const auto *PCD = cast<PragmaCommentDecl>(D);
6125     switch (PCD->getCommentKind()) {
6126     case PCK_Unknown:
6127       llvm_unreachable("unexpected pragma comment kind");
6128     case PCK_Linker:
6129       AppendLinkerOptions(PCD->getArg());
6130       break;
6131     case PCK_Lib:
6132         AddDependentLib(PCD->getArg());
6133       break;
6134     case PCK_Compiler:
6135     case PCK_ExeStr:
6136     case PCK_User:
6137       break; // We ignore all of these.
6138     }
6139     break;
6140   }
6141 
6142   case Decl::PragmaDetectMismatch: {
6143     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6144     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6145     break;
6146   }
6147 
6148   case Decl::LinkageSpec:
6149     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6150     break;
6151 
6152   case Decl::FileScopeAsm: {
6153     // File-scope asm is ignored during device-side CUDA compilation.
6154     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6155       break;
6156     // File-scope asm is ignored during device-side OpenMP compilation.
6157     if (LangOpts.OpenMPIsDevice)
6158       break;
6159     // File-scope asm is ignored during device-side SYCL compilation.
6160     if (LangOpts.SYCLIsDevice)
6161       break;
6162     auto *AD = cast<FileScopeAsmDecl>(D);
6163     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6164     break;
6165   }
6166 
6167   case Decl::Import: {
6168     auto *Import = cast<ImportDecl>(D);
6169 
6170     // If we've already imported this module, we're done.
6171     if (!ImportedModules.insert(Import->getImportedModule()))
6172       break;
6173 
6174     // Emit debug information for direct imports.
6175     if (!Import->getImportedOwningModule()) {
6176       if (CGDebugInfo *DI = getModuleDebugInfo())
6177         DI->EmitImportDecl(*Import);
6178     }
6179 
6180     // Find all of the submodules and emit the module initializers.
6181     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6182     SmallVector<clang::Module *, 16> Stack;
6183     Visited.insert(Import->getImportedModule());
6184     Stack.push_back(Import->getImportedModule());
6185 
6186     while (!Stack.empty()) {
6187       clang::Module *Mod = Stack.pop_back_val();
6188       if (!EmittedModuleInitializers.insert(Mod).second)
6189         continue;
6190 
6191       for (auto *D : Context.getModuleInitializers(Mod))
6192         EmitTopLevelDecl(D);
6193 
6194       // Visit the submodules of this module.
6195       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6196                                              SubEnd = Mod->submodule_end();
6197            Sub != SubEnd; ++Sub) {
6198         // Skip explicit children; they need to be explicitly imported to emit
6199         // the initializers.
6200         if ((*Sub)->IsExplicit)
6201           continue;
6202 
6203         if (Visited.insert(*Sub).second)
6204           Stack.push_back(*Sub);
6205       }
6206     }
6207     break;
6208   }
6209 
6210   case Decl::Export:
6211     EmitDeclContext(cast<ExportDecl>(D));
6212     break;
6213 
6214   case Decl::OMPThreadPrivate:
6215     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6216     break;
6217 
6218   case Decl::OMPAllocate:
6219     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6220     break;
6221 
6222   case Decl::OMPDeclareReduction:
6223     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6224     break;
6225 
6226   case Decl::OMPDeclareMapper:
6227     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6228     break;
6229 
6230   case Decl::OMPRequires:
6231     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6232     break;
6233 
6234   case Decl::Typedef:
6235   case Decl::TypeAlias: // using foo = bar; [C++11]
6236     if (CGDebugInfo *DI = getModuleDebugInfo())
6237       DI->EmitAndRetainType(
6238           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6239     break;
6240 
6241   case Decl::Record:
6242     if (CGDebugInfo *DI = getModuleDebugInfo())
6243       if (cast<RecordDecl>(D)->getDefinition())
6244         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6245     break;
6246 
6247   case Decl::Enum:
6248     if (CGDebugInfo *DI = getModuleDebugInfo())
6249       if (cast<EnumDecl>(D)->getDefinition())
6250         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6251     break;
6252 
6253   default:
6254     // Make sure we handled everything we should, every other kind is a
6255     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6256     // function. Need to recode Decl::Kind to do that easily.
6257     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6258     break;
6259   }
6260 }
6261 
6262 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6263   // Do we need to generate coverage mapping?
6264   if (!CodeGenOpts.CoverageMapping)
6265     return;
6266   switch (D->getKind()) {
6267   case Decl::CXXConversion:
6268   case Decl::CXXMethod:
6269   case Decl::Function:
6270   case Decl::ObjCMethod:
6271   case Decl::CXXConstructor:
6272   case Decl::CXXDestructor: {
6273     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6274       break;
6275     SourceManager &SM = getContext().getSourceManager();
6276     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6277       break;
6278     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6279     if (I == DeferredEmptyCoverageMappingDecls.end())
6280       DeferredEmptyCoverageMappingDecls[D] = true;
6281     break;
6282   }
6283   default:
6284     break;
6285   };
6286 }
6287 
6288 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6289   // Do we need to generate coverage mapping?
6290   if (!CodeGenOpts.CoverageMapping)
6291     return;
6292   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6293     if (Fn->isTemplateInstantiation())
6294       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6295   }
6296   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6297   if (I == DeferredEmptyCoverageMappingDecls.end())
6298     DeferredEmptyCoverageMappingDecls[D] = false;
6299   else
6300     I->second = false;
6301 }
6302 
6303 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6304   // We call takeVector() here to avoid use-after-free.
6305   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6306   // we deserialize function bodies to emit coverage info for them, and that
6307   // deserializes more declarations. How should we handle that case?
6308   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6309     if (!Entry.second)
6310       continue;
6311     const Decl *D = Entry.first;
6312     switch (D->getKind()) {
6313     case Decl::CXXConversion:
6314     case Decl::CXXMethod:
6315     case Decl::Function:
6316     case Decl::ObjCMethod: {
6317       CodeGenPGO PGO(*this);
6318       GlobalDecl GD(cast<FunctionDecl>(D));
6319       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6320                                   getFunctionLinkage(GD));
6321       break;
6322     }
6323     case Decl::CXXConstructor: {
6324       CodeGenPGO PGO(*this);
6325       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6326       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6327                                   getFunctionLinkage(GD));
6328       break;
6329     }
6330     case Decl::CXXDestructor: {
6331       CodeGenPGO PGO(*this);
6332       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6333       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6334                                   getFunctionLinkage(GD));
6335       break;
6336     }
6337     default:
6338       break;
6339     };
6340   }
6341 }
6342 
6343 void CodeGenModule::EmitMainVoidAlias() {
6344   // In order to transition away from "__original_main" gracefully, emit an
6345   // alias for "main" in the no-argument case so that libc can detect when
6346   // new-style no-argument main is in used.
6347   if (llvm::Function *F = getModule().getFunction("main")) {
6348     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6349         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6350       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6351   }
6352 }
6353 
6354 /// Turns the given pointer into a constant.
6355 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6356                                           const void *Ptr) {
6357   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6358   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6359   return llvm::ConstantInt::get(i64, PtrInt);
6360 }
6361 
6362 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6363                                    llvm::NamedMDNode *&GlobalMetadata,
6364                                    GlobalDecl D,
6365                                    llvm::GlobalValue *Addr) {
6366   if (!GlobalMetadata)
6367     GlobalMetadata =
6368       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6369 
6370   // TODO: should we report variant information for ctors/dtors?
6371   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6372                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6373                                CGM.getLLVMContext(), D.getDecl()))};
6374   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6375 }
6376 
6377 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6378                                                  llvm::GlobalValue *CppFunc) {
6379   // Store the list of ifuncs we need to replace uses in.
6380   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6381   // List of ConstantExprs that we should be able to delete when we're done
6382   // here.
6383   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6384 
6385   // First make sure that all users of this are ifuncs (or ifuncs via a
6386   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6387   // later.
6388   for (llvm::User *User : Elem->users()) {
6389     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6390     // ifunc directly. In any other case, just give up, as we don't know what we
6391     // could break by changing those.
6392     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6393       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6394         return false;
6395 
6396       for (llvm::User *CEUser : ConstExpr->users()) {
6397         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6398           IFuncs.push_back(IFunc);
6399         } else {
6400           return false;
6401         }
6402       }
6403       CEs.push_back(ConstExpr);
6404     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6405       IFuncs.push_back(IFunc);
6406     } else {
6407       // This user is one we don't know how to handle, so fail redirection. This
6408       // will result in an ifunc retaining a resolver name that will ultimately
6409       // fail to be resolved to a defined function.
6410       return false;
6411     }
6412   }
6413 
6414   // Now we know this is a valid case where we can do this alias replacement, we
6415   // need to remove all of the references to Elem (and the bitcasts!) so we can
6416   // delete it.
6417   for (llvm::GlobalIFunc *IFunc : IFuncs)
6418     IFunc->setResolver(nullptr);
6419   for (llvm::ConstantExpr *ConstExpr : CEs)
6420     ConstExpr->destroyConstant();
6421 
6422   // We should now be out of uses for the 'old' version of this function, so we
6423   // can erase it as well.
6424   Elem->eraseFromParent();
6425 
6426   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6427     // The type of the resolver is always just a function-type that returns the
6428     // type of the IFunc, so create that here. If the type of the actual
6429     // resolver doesn't match, it just gets bitcast to the right thing.
6430     auto *ResolverTy =
6431         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6432     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6433         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6434     IFunc->setResolver(Resolver);
6435   }
6436   return true;
6437 }
6438 
6439 /// For each function which is declared within an extern "C" region and marked
6440 /// as 'used', but has internal linkage, create an alias from the unmangled
6441 /// name to the mangled name if possible. People expect to be able to refer
6442 /// to such functions with an unmangled name from inline assembly within the
6443 /// same translation unit.
6444 void CodeGenModule::EmitStaticExternCAliases() {
6445   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6446     return;
6447   for (auto &I : StaticExternCValues) {
6448     IdentifierInfo *Name = I.first;
6449     llvm::GlobalValue *Val = I.second;
6450 
6451     // If Val is null, that implies there were multiple declarations that each
6452     // had a claim to the unmangled name. In this case, generation of the alias
6453     // is suppressed. See CodeGenModule::MaybeHandleStaticInExterC.
6454     if (!Val)
6455       break;
6456 
6457     llvm::GlobalValue *ExistingElem =
6458         getModule().getNamedValue(Name->getName());
6459 
6460     // If there is either not something already by this name, or we were able to
6461     // replace all uses from IFuncs, create the alias.
6462     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6463       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6464   }
6465 }
6466 
6467 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6468                                              GlobalDecl &Result) const {
6469   auto Res = Manglings.find(MangledName);
6470   if (Res == Manglings.end())
6471     return false;
6472   Result = Res->getValue();
6473   return true;
6474 }
6475 
6476 /// Emits metadata nodes associating all the global values in the
6477 /// current module with the Decls they came from.  This is useful for
6478 /// projects using IR gen as a subroutine.
6479 ///
6480 /// Since there's currently no way to associate an MDNode directly
6481 /// with an llvm::GlobalValue, we create a global named metadata
6482 /// with the name 'clang.global.decl.ptrs'.
6483 void CodeGenModule::EmitDeclMetadata() {
6484   llvm::NamedMDNode *GlobalMetadata = nullptr;
6485 
6486   for (auto &I : MangledDeclNames) {
6487     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6488     // Some mangled names don't necessarily have an associated GlobalValue
6489     // in this module, e.g. if we mangled it for DebugInfo.
6490     if (Addr)
6491       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6492   }
6493 }
6494 
6495 /// Emits metadata nodes for all the local variables in the current
6496 /// function.
6497 void CodeGenFunction::EmitDeclMetadata() {
6498   if (LocalDeclMap.empty()) return;
6499 
6500   llvm::LLVMContext &Context = getLLVMContext();
6501 
6502   // Find the unique metadata ID for this name.
6503   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6504 
6505   llvm::NamedMDNode *GlobalMetadata = nullptr;
6506 
6507   for (auto &I : LocalDeclMap) {
6508     const Decl *D = I.first;
6509     llvm::Value *Addr = I.second.getPointer();
6510     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6511       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6512       Alloca->setMetadata(
6513           DeclPtrKind, llvm::MDNode::get(
6514                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6515     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6516       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6517       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6518     }
6519   }
6520 }
6521 
6522 void CodeGenModule::EmitVersionIdentMetadata() {
6523   llvm::NamedMDNode *IdentMetadata =
6524     TheModule.getOrInsertNamedMetadata("llvm.ident");
6525   std::string Version = getClangFullVersion();
6526   llvm::LLVMContext &Ctx = TheModule.getContext();
6527 
6528   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6529   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6530 }
6531 
6532 void CodeGenModule::EmitCommandLineMetadata() {
6533   llvm::NamedMDNode *CommandLineMetadata =
6534     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6535   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6536   llvm::LLVMContext &Ctx = TheModule.getContext();
6537 
6538   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6539   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6540 }
6541 
6542 void CodeGenModule::EmitCoverageFile() {
6543   if (getCodeGenOpts().CoverageDataFile.empty() &&
6544       getCodeGenOpts().CoverageNotesFile.empty())
6545     return;
6546 
6547   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6548   if (!CUNode)
6549     return;
6550 
6551   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6552   llvm::LLVMContext &Ctx = TheModule.getContext();
6553   auto *CoverageDataFile =
6554       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6555   auto *CoverageNotesFile =
6556       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6557   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6558     llvm::MDNode *CU = CUNode->getOperand(i);
6559     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6560     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6561   }
6562 }
6563 
6564 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6565                                                        bool ForEH) {
6566   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6567   // FIXME: should we even be calling this method if RTTI is disabled
6568   // and it's not for EH?
6569   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6570       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6571        getTriple().isNVPTX()))
6572     return llvm::Constant::getNullValue(Int8PtrTy);
6573 
6574   if (ForEH && Ty->isObjCObjectPointerType() &&
6575       LangOpts.ObjCRuntime.isGNUFamily())
6576     return ObjCRuntime->GetEHType(Ty);
6577 
6578   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6579 }
6580 
6581 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6582   // Do not emit threadprivates in simd-only mode.
6583   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6584     return;
6585   for (auto RefExpr : D->varlists()) {
6586     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6587     bool PerformInit =
6588         VD->getAnyInitializer() &&
6589         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6590                                                         /*ForRef=*/false);
6591 
6592     Address Addr(GetAddrOfGlobalVar(VD),
6593                  getTypes().ConvertTypeForMem(VD->getType()),
6594                  getContext().getDeclAlign(VD));
6595     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6596             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6597       CXXGlobalInits.push_back(InitFunction);
6598   }
6599 }
6600 
6601 llvm::Metadata *
6602 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6603                                             StringRef Suffix) {
6604   if (auto *FnType = T->getAs<FunctionProtoType>())
6605     T = getContext().getFunctionType(
6606         FnType->getReturnType(), FnType->getParamTypes(),
6607         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6608 
6609   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6610   if (InternalId)
6611     return InternalId;
6612 
6613   if (isExternallyVisible(T->getLinkage())) {
6614     std::string OutName;
6615     llvm::raw_string_ostream Out(OutName);
6616     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6617     Out << Suffix;
6618 
6619     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6620   } else {
6621     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6622                                            llvm::ArrayRef<llvm::Metadata *>());
6623   }
6624 
6625   return InternalId;
6626 }
6627 
6628 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6629   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6630 }
6631 
6632 llvm::Metadata *
6633 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6634   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6635 }
6636 
6637 // Generalize pointer types to a void pointer with the qualifiers of the
6638 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6639 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6640 // 'void *'.
6641 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6642   if (!Ty->isPointerType())
6643     return Ty;
6644 
6645   return Ctx.getPointerType(
6646       QualType(Ctx.VoidTy).withCVRQualifiers(
6647           Ty->getPointeeType().getCVRQualifiers()));
6648 }
6649 
6650 // Apply type generalization to a FunctionType's return and argument types
6651 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6652   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6653     SmallVector<QualType, 8> GeneralizedParams;
6654     for (auto &Param : FnType->param_types())
6655       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6656 
6657     return Ctx.getFunctionType(
6658         GeneralizeType(Ctx, FnType->getReturnType()),
6659         GeneralizedParams, FnType->getExtProtoInfo());
6660   }
6661 
6662   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6663     return Ctx.getFunctionNoProtoType(
6664         GeneralizeType(Ctx, FnType->getReturnType()));
6665 
6666   llvm_unreachable("Encountered unknown FunctionType");
6667 }
6668 
6669 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6670   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6671                                       GeneralizedMetadataIdMap, ".generalized");
6672 }
6673 
6674 /// Returns whether this module needs the "all-vtables" type identifier.
6675 bool CodeGenModule::NeedAllVtablesTypeId() const {
6676   // Returns true if at least one of vtable-based CFI checkers is enabled and
6677   // is not in the trapping mode.
6678   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6679            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6680           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6681            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6682           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6683            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6684           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6685            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6686 }
6687 
6688 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6689                                           CharUnits Offset,
6690                                           const CXXRecordDecl *RD) {
6691   llvm::Metadata *MD =
6692       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6693   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6694 
6695   if (CodeGenOpts.SanitizeCfiCrossDso)
6696     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6697       VTable->addTypeMetadata(Offset.getQuantity(),
6698                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6699 
6700   if (NeedAllVtablesTypeId()) {
6701     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6702     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6703   }
6704 }
6705 
6706 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6707   if (!SanStats)
6708     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6709 
6710   return *SanStats;
6711 }
6712 
6713 llvm::Value *
6714 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6715                                                   CodeGenFunction &CGF) {
6716   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6717   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6718   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6719   auto *Call = CGF.EmitRuntimeCall(
6720       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6721   return Call;
6722 }
6723 
6724 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6725     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6726   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6727                                  /* forPointeeType= */ true);
6728 }
6729 
6730 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6731                                                  LValueBaseInfo *BaseInfo,
6732                                                  TBAAAccessInfo *TBAAInfo,
6733                                                  bool forPointeeType) {
6734   if (TBAAInfo)
6735     *TBAAInfo = getTBAAAccessInfo(T);
6736 
6737   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6738   // that doesn't return the information we need to compute BaseInfo.
6739 
6740   // Honor alignment typedef attributes even on incomplete types.
6741   // We also honor them straight for C++ class types, even as pointees;
6742   // there's an expressivity gap here.
6743   if (auto TT = T->getAs<TypedefType>()) {
6744     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6745       if (BaseInfo)
6746         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6747       return getContext().toCharUnitsFromBits(Align);
6748     }
6749   }
6750 
6751   bool AlignForArray = T->isArrayType();
6752 
6753   // Analyze the base element type, so we don't get confused by incomplete
6754   // array types.
6755   T = getContext().getBaseElementType(T);
6756 
6757   if (T->isIncompleteType()) {
6758     // We could try to replicate the logic from
6759     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6760     // type is incomplete, so it's impossible to test. We could try to reuse
6761     // getTypeAlignIfKnown, but that doesn't return the information we need
6762     // to set BaseInfo.  So just ignore the possibility that the alignment is
6763     // greater than one.
6764     if (BaseInfo)
6765       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6766     return CharUnits::One();
6767   }
6768 
6769   if (BaseInfo)
6770     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6771 
6772   CharUnits Alignment;
6773   const CXXRecordDecl *RD;
6774   if (T.getQualifiers().hasUnaligned()) {
6775     Alignment = CharUnits::One();
6776   } else if (forPointeeType && !AlignForArray &&
6777              (RD = T->getAsCXXRecordDecl())) {
6778     // For C++ class pointees, we don't know whether we're pointing at a
6779     // base or a complete object, so we generally need to use the
6780     // non-virtual alignment.
6781     Alignment = getClassPointerAlignment(RD);
6782   } else {
6783     Alignment = getContext().getTypeAlignInChars(T);
6784   }
6785 
6786   // Cap to the global maximum type alignment unless the alignment
6787   // was somehow explicit on the type.
6788   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6789     if (Alignment.getQuantity() > MaxAlign &&
6790         !getContext().isAlignmentRequired(T))
6791       Alignment = CharUnits::fromQuantity(MaxAlign);
6792   }
6793   return Alignment;
6794 }
6795 
6796 bool CodeGenModule::stopAutoInit() {
6797   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6798   if (StopAfter) {
6799     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6800     // used
6801     if (NumAutoVarInit >= StopAfter) {
6802       return true;
6803     }
6804     if (!NumAutoVarInit) {
6805       unsigned DiagID = getDiags().getCustomDiagID(
6806           DiagnosticsEngine::Warning,
6807           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6808           "number of times ftrivial-auto-var-init=%1 gets applied.");
6809       getDiags().Report(DiagID)
6810           << StopAfter
6811           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6812                       LangOptions::TrivialAutoVarInitKind::Zero
6813                   ? "zero"
6814                   : "pattern");
6815     }
6816     ++NumAutoVarInit;
6817   }
6818   return false;
6819 }
6820 
6821 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6822                                                     const Decl *D) const {
6823   StringRef Tag;
6824   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6825   // postfix beginning with '.' since the symbol name can be demangled.
6826   if (LangOpts.HIP)
6827     Tag = (isa<VarDecl>(D) ? ".static." : ".intern.");
6828   else
6829     Tag = (isa<VarDecl>(D) ? "__static__" : "__intern__");
6830   OS << Tag << getContext().getCUIDHash();
6831 }
6832