xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ece0409a1a45895985a18dfc6c77c497e7ea4de7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/Target/Mangler.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Support/CallSite.h"
46 #include "llvm/Support/ErrorHandling.h"
47 using namespace clang;
48 using namespace CodeGen;
49 
50 static const char AnnotationSection[] = "llvm.metadata";
51 
52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57   }
58 
59   llvm_unreachable("invalid C++ ABI kind");
60 }
61 
62 
63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                              llvm::Module &M, const llvm::TargetData &TD,
65                              DiagnosticsEngine &diags)
66   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68     ABI(createCXXABI(*this)),
69     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
70     TBAA(0),
71     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72     DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
73     ConstantStringClassRef(0), NSConstantStringType(0),
74     VMContext(M.getContext()),
75     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
76     BlockObjectAssign(0), BlockObjectDispose(0),
77     BlockDescriptorType(0), GenericBlockLiteralType(0) {
78 
79   // Initialize the type cache.
80   llvm::LLVMContext &LLVMContext = M.getContext();
81   VoidTy = llvm::Type::getVoidTy(LLVMContext);
82   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
83   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
84   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
85   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
86   FloatTy = llvm::Type::getFloatTy(LLVMContext);
87   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
88   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
89   PointerAlignInBytes =
90   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
91   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
92   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
93   Int8PtrTy = Int8Ty->getPointerTo(0);
94   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
95 
96   if (Features.ObjC1)
97     createObjCRuntime();
98   if (Features.OpenCL)
99     createOpenCLRuntime();
100   if (Features.CUDA)
101     createCUDARuntime();
102 
103   // Enable TBAA unless it's suppressed.
104   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
105     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
106                            ABI.getMangleContext());
107 
108   // If debug info or coverage generation is enabled, create the CGDebugInfo
109   // object.
110   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
111       CodeGenOpts.EmitGcovNotes)
112     DebugInfo = new CGDebugInfo(*this);
113 
114   Block.GlobalUniqueCount = 0;
115 
116   if (C.getLangOptions().ObjCAutoRefCount)
117     ARCData = new ARCEntrypoints();
118   RRData = new RREntrypoints();
119 }
120 
121 CodeGenModule::~CodeGenModule() {
122   delete ObjCRuntime;
123   delete OpenCLRuntime;
124   delete CUDARuntime;
125   delete TheTargetCodeGenInfo;
126   delete &ABI;
127   delete TBAA;
128   delete DebugInfo;
129   delete ARCData;
130   delete RRData;
131 }
132 
133 void CodeGenModule::createObjCRuntime() {
134   if (!Features.NeXTRuntime)
135     ObjCRuntime = CreateGNUObjCRuntime(*this);
136   else
137     ObjCRuntime = CreateMacObjCRuntime(*this);
138 }
139 
140 void CodeGenModule::createOpenCLRuntime() {
141   OpenCLRuntime = new CGOpenCLRuntime(*this);
142 }
143 
144 void CodeGenModule::createCUDARuntime() {
145   CUDARuntime = CreateNVCUDARuntime(*this);
146 }
147 
148 void CodeGenModule::Release() {
149   EmitDeferred();
150   EmitCXXGlobalInitFunc();
151   EmitCXXGlobalDtorFunc();
152   if (ObjCRuntime)
153     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
154       AddGlobalCtor(ObjCInitFunction);
155   EmitCtorList(GlobalCtors, "llvm.global_ctors");
156   EmitCtorList(GlobalDtors, "llvm.global_dtors");
157   EmitGlobalAnnotations();
158   EmitLLVMUsed();
159 
160   SimplifyPersonality();
161 
162   if (getCodeGenOpts().EmitDeclMetadata)
163     EmitDeclMetadata();
164 
165   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
166     EmitCoverageFile();
167 
168   if (DebugInfo)
169     DebugInfo->finalize();
170 }
171 
172 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
173   // Make sure that this type is translated.
174   Types.UpdateCompletedType(TD);
175   if (DebugInfo)
176     DebugInfo->UpdateCompletedType(TD);
177 }
178 
179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
180   if (!TBAA)
181     return 0;
182   return TBAA->getTBAAInfo(QTy);
183 }
184 
185 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
186                                         llvm::MDNode *TBAAInfo) {
187   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
188 }
189 
190 bool CodeGenModule::isTargetDarwin() const {
191   return getContext().getTargetInfo().getTriple().isOSDarwin();
192 }
193 
194 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
195   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
196   getDiags().Report(Context.getFullLoc(loc), diagID);
197 }
198 
199 /// ErrorUnsupported - Print out an error that codegen doesn't support the
200 /// specified stmt yet.
201 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
202                                      bool OmitOnError) {
203   if (OmitOnError && getDiags().hasErrorOccurred())
204     return;
205   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
206                                                "cannot compile this %0 yet");
207   std::string Msg = Type;
208   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
209     << Msg << S->getSourceRange();
210 }
211 
212 /// ErrorUnsupported - Print out an error that codegen doesn't support the
213 /// specified decl yet.
214 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
215                                      bool OmitOnError) {
216   if (OmitOnError && getDiags().hasErrorOccurred())
217     return;
218   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
219                                                "cannot compile this %0 yet");
220   std::string Msg = Type;
221   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
222 }
223 
224 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
225   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
226 }
227 
228 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
229                                         const NamedDecl *D) const {
230   // Internal definitions always have default visibility.
231   if (GV->hasLocalLinkage()) {
232     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
233     return;
234   }
235 
236   // Set visibility for definitions.
237   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
238   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
239     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
240 }
241 
242 /// Set the symbol visibility of type information (vtable and RTTI)
243 /// associated with the given type.
244 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
245                                       const CXXRecordDecl *RD,
246                                       TypeVisibilityKind TVK) const {
247   setGlobalVisibility(GV, RD);
248 
249   if (!CodeGenOpts.HiddenWeakVTables)
250     return;
251 
252   // We never want to drop the visibility for RTTI names.
253   if (TVK == TVK_ForRTTIName)
254     return;
255 
256   // We want to drop the visibility to hidden for weak type symbols.
257   // This isn't possible if there might be unresolved references
258   // elsewhere that rely on this symbol being visible.
259 
260   // This should be kept roughly in sync with setThunkVisibility
261   // in CGVTables.cpp.
262 
263   // Preconditions.
264   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
265       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
266     return;
267 
268   // Don't override an explicit visibility attribute.
269   if (RD->getExplicitVisibility())
270     return;
271 
272   switch (RD->getTemplateSpecializationKind()) {
273   // We have to disable the optimization if this is an EI definition
274   // because there might be EI declarations in other shared objects.
275   case TSK_ExplicitInstantiationDefinition:
276   case TSK_ExplicitInstantiationDeclaration:
277     return;
278 
279   // Every use of a non-template class's type information has to emit it.
280   case TSK_Undeclared:
281     break;
282 
283   // In theory, implicit instantiations can ignore the possibility of
284   // an explicit instantiation declaration because there necessarily
285   // must be an EI definition somewhere with default visibility.  In
286   // practice, it's possible to have an explicit instantiation for
287   // an arbitrary template class, and linkers aren't necessarily able
288   // to deal with mixed-visibility symbols.
289   case TSK_ExplicitSpecialization:
290   case TSK_ImplicitInstantiation:
291     if (!CodeGenOpts.HiddenWeakTemplateVTables)
292       return;
293     break;
294   }
295 
296   // If there's a key function, there may be translation units
297   // that don't have the key function's definition.  But ignore
298   // this if we're emitting RTTI under -fno-rtti.
299   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
300     if (Context.getKeyFunction(RD))
301       return;
302   }
303 
304   // Otherwise, drop the visibility to hidden.
305   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
306   GV->setUnnamedAddr(true);
307 }
308 
309 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
310   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
311 
312   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
313   if (!Str.empty())
314     return Str;
315 
316   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
317     IdentifierInfo *II = ND->getIdentifier();
318     assert(II && "Attempt to mangle unnamed decl.");
319 
320     Str = II->getName();
321     return Str;
322   }
323 
324   SmallString<256> Buffer;
325   llvm::raw_svector_ostream Out(Buffer);
326   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
327     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
328   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
329     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
330   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
331     getCXXABI().getMangleContext().mangleBlock(BD, Out);
332   else
333     getCXXABI().getMangleContext().mangleName(ND, Out);
334 
335   // Allocate space for the mangled name.
336   Out.flush();
337   size_t Length = Buffer.size();
338   char *Name = MangledNamesAllocator.Allocate<char>(Length);
339   std::copy(Buffer.begin(), Buffer.end(), Name);
340 
341   Str = StringRef(Name, Length);
342 
343   return Str;
344 }
345 
346 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
347                                         const BlockDecl *BD) {
348   MangleContext &MangleCtx = getCXXABI().getMangleContext();
349   const Decl *D = GD.getDecl();
350   llvm::raw_svector_ostream Out(Buffer.getBuffer());
351   if (D == 0)
352     MangleCtx.mangleGlobalBlock(BD, Out);
353   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
354     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
355   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
356     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
357   else
358     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
359 }
360 
361 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
362   return getModule().getNamedValue(Name);
363 }
364 
365 /// AddGlobalCtor - Add a function to the list that will be called before
366 /// main() runs.
367 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
368   // FIXME: Type coercion of void()* types.
369   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
370 }
371 
372 /// AddGlobalDtor - Add a function to the list that will be called
373 /// when the module is unloaded.
374 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
375   // FIXME: Type coercion of void()* types.
376   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
377 }
378 
379 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
380   // Ctor function type is void()*.
381   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
382   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
383 
384   // Get the type of a ctor entry, { i32, void ()* }.
385   llvm::StructType *CtorStructTy =
386     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
387 
388   // Construct the constructor and destructor arrays.
389   SmallVector<llvm::Constant*, 8> Ctors;
390   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
391     llvm::Constant *S[] = {
392       llvm::ConstantInt::get(Int32Ty, I->second, false),
393       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
394     };
395     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
396   }
397 
398   if (!Ctors.empty()) {
399     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
400     new llvm::GlobalVariable(TheModule, AT, false,
401                              llvm::GlobalValue::AppendingLinkage,
402                              llvm::ConstantArray::get(AT, Ctors),
403                              GlobalName);
404   }
405 }
406 
407 llvm::GlobalValue::LinkageTypes
408 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
409   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
410 
411   if (Linkage == GVA_Internal)
412     return llvm::Function::InternalLinkage;
413 
414   if (D->hasAttr<DLLExportAttr>())
415     return llvm::Function::DLLExportLinkage;
416 
417   if (D->hasAttr<WeakAttr>())
418     return llvm::Function::WeakAnyLinkage;
419 
420   // In C99 mode, 'inline' functions are guaranteed to have a strong
421   // definition somewhere else, so we can use available_externally linkage.
422   if (Linkage == GVA_C99Inline)
423     return llvm::Function::AvailableExternallyLinkage;
424 
425   // Note that Apple's kernel linker doesn't support symbol
426   // coalescing, so we need to avoid linkonce and weak linkages there.
427   // Normally, this means we just map to internal, but for explicit
428   // instantiations we'll map to external.
429 
430   // In C++, the compiler has to emit a definition in every translation unit
431   // that references the function.  We should use linkonce_odr because
432   // a) if all references in this translation unit are optimized away, we
433   // don't need to codegen it.  b) if the function persists, it needs to be
434   // merged with other definitions. c) C++ has the ODR, so we know the
435   // definition is dependable.
436   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
437     return !Context.getLangOptions().AppleKext
438              ? llvm::Function::LinkOnceODRLinkage
439              : llvm::Function::InternalLinkage;
440 
441   // An explicit instantiation of a template has weak linkage, since
442   // explicit instantiations can occur in multiple translation units
443   // and must all be equivalent. However, we are not allowed to
444   // throw away these explicit instantiations.
445   if (Linkage == GVA_ExplicitTemplateInstantiation)
446     return !Context.getLangOptions().AppleKext
447              ? llvm::Function::WeakODRLinkage
448              : llvm::Function::ExternalLinkage;
449 
450   // Otherwise, we have strong external linkage.
451   assert(Linkage == GVA_StrongExternal);
452   return llvm::Function::ExternalLinkage;
453 }
454 
455 
456 /// SetFunctionDefinitionAttributes - Set attributes for a global.
457 ///
458 /// FIXME: This is currently only done for aliases and functions, but not for
459 /// variables (these details are set in EmitGlobalVarDefinition for variables).
460 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
461                                                     llvm::GlobalValue *GV) {
462   SetCommonAttributes(D, GV);
463 }
464 
465 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
466                                               const CGFunctionInfo &Info,
467                                               llvm::Function *F) {
468   unsigned CallingConv;
469   AttributeListType AttributeList;
470   ConstructAttributeList(Info, D, AttributeList, CallingConv);
471   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
472                                           AttributeList.size()));
473   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
474 }
475 
476 /// Determines whether the language options require us to model
477 /// unwind exceptions.  We treat -fexceptions as mandating this
478 /// except under the fragile ObjC ABI with only ObjC exceptions
479 /// enabled.  This means, for example, that C with -fexceptions
480 /// enables this.
481 static bool hasUnwindExceptions(const LangOptions &Features) {
482   // If exceptions are completely disabled, obviously this is false.
483   if (!Features.Exceptions) return false;
484 
485   // If C++ exceptions are enabled, this is true.
486   if (Features.CXXExceptions) return true;
487 
488   // If ObjC exceptions are enabled, this depends on the ABI.
489   if (Features.ObjCExceptions) {
490     if (!Features.ObjCNonFragileABI) return false;
491   }
492 
493   return true;
494 }
495 
496 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
497                                                            llvm::Function *F) {
498   if (CodeGenOpts.UnwindTables)
499     F->setHasUWTable();
500 
501   if (!hasUnwindExceptions(Features))
502     F->addFnAttr(llvm::Attribute::NoUnwind);
503 
504   if (D->hasAttr<NakedAttr>()) {
505     // Naked implies noinline: we should not be inlining such functions.
506     F->addFnAttr(llvm::Attribute::Naked);
507     F->addFnAttr(llvm::Attribute::NoInline);
508   }
509 
510   if (D->hasAttr<NoInlineAttr>())
511     F->addFnAttr(llvm::Attribute::NoInline);
512 
513   // (noinline wins over always_inline, and we can't specify both in IR)
514   if (D->hasAttr<AlwaysInlineAttr>() &&
515       !F->hasFnAttr(llvm::Attribute::NoInline))
516     F->addFnAttr(llvm::Attribute::AlwaysInline);
517 
518   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
519     F->setUnnamedAddr(true);
520 
521   if (Features.getStackProtector() == LangOptions::SSPOn)
522     F->addFnAttr(llvm::Attribute::StackProtect);
523   else if (Features.getStackProtector() == LangOptions::SSPReq)
524     F->addFnAttr(llvm::Attribute::StackProtectReq);
525 
526   if (Features.AddressSanitizer) {
527     // When AddressSanitizer is enabled, set AddressSafety attribute
528     // unless __attribute__((no_address_safety_analysis)) is used.
529     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
530       F->addFnAttr(llvm::Attribute::AddressSafety);
531   }
532 
533   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
534   if (alignment)
535     F->setAlignment(alignment);
536 
537   // C++ ABI requires 2-byte alignment for member functions.
538   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
539     F->setAlignment(2);
540 }
541 
542 void CodeGenModule::SetCommonAttributes(const Decl *D,
543                                         llvm::GlobalValue *GV) {
544   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
545     setGlobalVisibility(GV, ND);
546   else
547     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
548 
549   if (D->hasAttr<UsedAttr>())
550     AddUsedGlobal(GV);
551 
552   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
553     GV->setSection(SA->getName());
554 
555   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
556 }
557 
558 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
559                                                   llvm::Function *F,
560                                                   const CGFunctionInfo &FI) {
561   SetLLVMFunctionAttributes(D, FI, F);
562   SetLLVMFunctionAttributesForDefinition(D, F);
563 
564   F->setLinkage(llvm::Function::InternalLinkage);
565 
566   SetCommonAttributes(D, F);
567 }
568 
569 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
570                                           llvm::Function *F,
571                                           bool IsIncompleteFunction) {
572   if (unsigned IID = F->getIntrinsicID()) {
573     // If this is an intrinsic function, set the function's attributes
574     // to the intrinsic's attributes.
575     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
576     return;
577   }
578 
579   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
580 
581   if (!IsIncompleteFunction)
582     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
583 
584   // Only a few attributes are set on declarations; these may later be
585   // overridden by a definition.
586 
587   if (FD->hasAttr<DLLImportAttr>()) {
588     F->setLinkage(llvm::Function::DLLImportLinkage);
589   } else if (FD->hasAttr<WeakAttr>() ||
590              FD->isWeakImported()) {
591     // "extern_weak" is overloaded in LLVM; we probably should have
592     // separate linkage types for this.
593     F->setLinkage(llvm::Function::ExternalWeakLinkage);
594   } else {
595     F->setLinkage(llvm::Function::ExternalLinkage);
596 
597     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
598     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
599       F->setVisibility(GetLLVMVisibility(LV.visibility()));
600     }
601   }
602 
603   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
604     F->setSection(SA->getName());
605 }
606 
607 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
608   assert(!GV->isDeclaration() &&
609          "Only globals with definition can force usage.");
610   LLVMUsed.push_back(GV);
611 }
612 
613 void CodeGenModule::EmitLLVMUsed() {
614   // Don't create llvm.used if there is no need.
615   if (LLVMUsed.empty())
616     return;
617 
618   // Convert LLVMUsed to what ConstantArray needs.
619   SmallVector<llvm::Constant*, 8> UsedArray;
620   UsedArray.resize(LLVMUsed.size());
621   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
622     UsedArray[i] =
623      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
624                                     Int8PtrTy);
625   }
626 
627   if (UsedArray.empty())
628     return;
629   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
630 
631   llvm::GlobalVariable *GV =
632     new llvm::GlobalVariable(getModule(), ATy, false,
633                              llvm::GlobalValue::AppendingLinkage,
634                              llvm::ConstantArray::get(ATy, UsedArray),
635                              "llvm.used");
636 
637   GV->setSection("llvm.metadata");
638 }
639 
640 void CodeGenModule::EmitDeferred() {
641   // Emit code for any potentially referenced deferred decls.  Since a
642   // previously unused static decl may become used during the generation of code
643   // for a static function, iterate until no changes are made.
644 
645   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
646     if (!DeferredVTables.empty()) {
647       const CXXRecordDecl *RD = DeferredVTables.back();
648       DeferredVTables.pop_back();
649       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
650       continue;
651     }
652 
653     GlobalDecl D = DeferredDeclsToEmit.back();
654     DeferredDeclsToEmit.pop_back();
655 
656     // Check to see if we've already emitted this.  This is necessary
657     // for a couple of reasons: first, decls can end up in the
658     // deferred-decls queue multiple times, and second, decls can end
659     // up with definitions in unusual ways (e.g. by an extern inline
660     // function acquiring a strong function redefinition).  Just
661     // ignore these cases.
662     //
663     // TODO: That said, looking this up multiple times is very wasteful.
664     StringRef Name = getMangledName(D);
665     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
666     assert(CGRef && "Deferred decl wasn't referenced?");
667 
668     if (!CGRef->isDeclaration())
669       continue;
670 
671     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
672     // purposes an alias counts as a definition.
673     if (isa<llvm::GlobalAlias>(CGRef))
674       continue;
675 
676     // Otherwise, emit the definition and move on to the next one.
677     EmitGlobalDefinition(D);
678   }
679 }
680 
681 void CodeGenModule::EmitGlobalAnnotations() {
682   if (Annotations.empty())
683     return;
684 
685   // Create a new global variable for the ConstantStruct in the Module.
686   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
687     Annotations[0]->getType(), Annotations.size()), Annotations);
688   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
689     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
690     "llvm.global.annotations");
691   gv->setSection(AnnotationSection);
692 }
693 
694 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
695   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
696   if (i != AnnotationStrings.end())
697     return i->second;
698 
699   // Not found yet, create a new global.
700   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
701   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
702     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
703   gv->setSection(AnnotationSection);
704   gv->setUnnamedAddr(true);
705   AnnotationStrings[Str] = gv;
706   return gv;
707 }
708 
709 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
710   SourceManager &SM = getContext().getSourceManager();
711   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
712   if (PLoc.isValid())
713     return EmitAnnotationString(PLoc.getFilename());
714   return EmitAnnotationString(SM.getBufferName(Loc));
715 }
716 
717 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
718   SourceManager &SM = getContext().getSourceManager();
719   PresumedLoc PLoc = SM.getPresumedLoc(L);
720   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
721     SM.getExpansionLineNumber(L);
722   return llvm::ConstantInt::get(Int32Ty, LineNo);
723 }
724 
725 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
726                                                 const AnnotateAttr *AA,
727                                                 SourceLocation L) {
728   // Get the globals for file name, annotation, and the line number.
729   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
730                  *UnitGV = EmitAnnotationUnit(L),
731                  *LineNoCst = EmitAnnotationLineNo(L);
732 
733   // Create the ConstantStruct for the global annotation.
734   llvm::Constant *Fields[4] = {
735     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
736     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
737     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
738     LineNoCst
739   };
740   return llvm::ConstantStruct::getAnon(Fields);
741 }
742 
743 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
744                                          llvm::GlobalValue *GV) {
745   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
746   // Get the struct elements for these annotations.
747   for (specific_attr_iterator<AnnotateAttr>
748        ai = D->specific_attr_begin<AnnotateAttr>(),
749        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
750     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
751 }
752 
753 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
754   // Never defer when EmitAllDecls is specified.
755   if (Features.EmitAllDecls)
756     return false;
757 
758   return !getContext().DeclMustBeEmitted(Global);
759 }
760 
761 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
762   const AliasAttr *AA = VD->getAttr<AliasAttr>();
763   assert(AA && "No alias?");
764 
765   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
766 
767   // See if there is already something with the target's name in the module.
768   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
769 
770   llvm::Constant *Aliasee;
771   if (isa<llvm::FunctionType>(DeclTy))
772     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
773                                       /*ForVTable=*/false);
774   else
775     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
776                                     llvm::PointerType::getUnqual(DeclTy), 0);
777   if (!Entry) {
778     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
779     F->setLinkage(llvm::Function::ExternalWeakLinkage);
780     WeakRefReferences.insert(F);
781   }
782 
783   return Aliasee;
784 }
785 
786 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
787   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
788 
789   // Weak references don't produce any output by themselves.
790   if (Global->hasAttr<WeakRefAttr>())
791     return;
792 
793   // If this is an alias definition (which otherwise looks like a declaration)
794   // emit it now.
795   if (Global->hasAttr<AliasAttr>())
796     return EmitAliasDefinition(GD);
797 
798   // If this is CUDA, be selective about which declarations we emit.
799   if (Features.CUDA) {
800     if (CodeGenOpts.CUDAIsDevice) {
801       if (!Global->hasAttr<CUDADeviceAttr>() &&
802           !Global->hasAttr<CUDAGlobalAttr>() &&
803           !Global->hasAttr<CUDAConstantAttr>() &&
804           !Global->hasAttr<CUDASharedAttr>())
805         return;
806     } else {
807       if (!Global->hasAttr<CUDAHostAttr>() && (
808             Global->hasAttr<CUDADeviceAttr>() ||
809             Global->hasAttr<CUDAConstantAttr>() ||
810             Global->hasAttr<CUDASharedAttr>()))
811         return;
812     }
813   }
814 
815   // Ignore declarations, they will be emitted on their first use.
816   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
817     // Forward declarations are emitted lazily on first use.
818     if (!FD->doesThisDeclarationHaveABody()) {
819       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
820         return;
821 
822       const FunctionDecl *InlineDefinition = 0;
823       FD->getBody(InlineDefinition);
824 
825       StringRef MangledName = getMangledName(GD);
826       llvm::StringMap<GlobalDecl>::iterator DDI =
827           DeferredDecls.find(MangledName);
828       if (DDI != DeferredDecls.end())
829         DeferredDecls.erase(DDI);
830       EmitGlobalDefinition(InlineDefinition);
831       return;
832     }
833   } else {
834     const VarDecl *VD = cast<VarDecl>(Global);
835     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
836 
837     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
838       return;
839   }
840 
841   // Defer code generation when possible if this is a static definition, inline
842   // function etc.  These we only want to emit if they are used.
843   if (!MayDeferGeneration(Global)) {
844     // Emit the definition if it can't be deferred.
845     EmitGlobalDefinition(GD);
846     return;
847   }
848 
849   // If we're deferring emission of a C++ variable with an
850   // initializer, remember the order in which it appeared in the file.
851   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
852       cast<VarDecl>(Global)->hasInit()) {
853     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
854     CXXGlobalInits.push_back(0);
855   }
856 
857   // If the value has already been used, add it directly to the
858   // DeferredDeclsToEmit list.
859   StringRef MangledName = getMangledName(GD);
860   if (GetGlobalValue(MangledName))
861     DeferredDeclsToEmit.push_back(GD);
862   else {
863     // Otherwise, remember that we saw a deferred decl with this name.  The
864     // first use of the mangled name will cause it to move into
865     // DeferredDeclsToEmit.
866     DeferredDecls[MangledName] = GD;
867   }
868 }
869 
870 namespace {
871   struct FunctionIsDirectlyRecursive :
872     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
873     const StringRef Name;
874     const Builtin::Context &BI;
875     bool Result;
876     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
877       Name(N), BI(C), Result(false) {
878     }
879     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
880 
881     bool TraverseCallExpr(CallExpr *E) {
882       const FunctionDecl *FD = E->getDirectCallee();
883       if (!FD)
884         return true;
885       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
886       if (Attr && Name == Attr->getLabel()) {
887         Result = true;
888         return false;
889       }
890       unsigned BuiltinID = FD->getBuiltinID();
891       if (!BuiltinID)
892         return true;
893       StringRef BuiltinName = BI.GetName(BuiltinID);
894       if (BuiltinName.startswith("__builtin_") &&
895           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
896         Result = true;
897         return false;
898       }
899       return true;
900     }
901   };
902 }
903 
904 // isTriviallyRecursive - Check if this function calls another
905 // decl that, because of the asm attribute or the other decl being a builtin,
906 // ends up pointing to itself.
907 bool
908 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
909   StringRef Name;
910   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
911     // asm labels are a special kind of mangling we have to support.
912     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
913     if (!Attr)
914       return false;
915     Name = Attr->getLabel();
916   } else {
917     Name = FD->getName();
918   }
919 
920   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
921   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
922   return Walker.Result;
923 }
924 
925 bool
926 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
927   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
928     return true;
929   if (CodeGenOpts.OptimizationLevel == 0 &&
930       !F->hasAttr<AlwaysInlineAttr>())
931     return false;
932   // PR9614. Avoid cases where the source code is lying to us. An available
933   // externally function should have an equivalent function somewhere else,
934   // but a function that calls itself is clearly not equivalent to the real
935   // implementation.
936   // This happens in glibc's btowc and in some configure checks.
937   return !isTriviallyRecursive(F);
938 }
939 
940 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
941   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
942 
943   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
944                                  Context.getSourceManager(),
945                                  "Generating code for declaration");
946 
947   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
948     // At -O0, don't generate IR for functions with available_externally
949     // linkage.
950     if (!shouldEmitFunction(Function))
951       return;
952 
953     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
954       // Make sure to emit the definition(s) before we emit the thunks.
955       // This is necessary for the generation of certain thunks.
956       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
957         EmitCXXConstructor(CD, GD.getCtorType());
958       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
959         EmitCXXDestructor(DD, GD.getDtorType());
960       else
961         EmitGlobalFunctionDefinition(GD);
962 
963       if (Method->isVirtual())
964         getVTables().EmitThunks(GD);
965 
966       return;
967     }
968 
969     return EmitGlobalFunctionDefinition(GD);
970   }
971 
972   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
973     return EmitGlobalVarDefinition(VD);
974 
975   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
976 }
977 
978 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
979 /// module, create and return an llvm Function with the specified type. If there
980 /// is something in the module with the specified name, return it potentially
981 /// bitcasted to the right type.
982 ///
983 /// If D is non-null, it specifies a decl that correspond to this.  This is used
984 /// to set the attributes on the function when it is first created.
985 llvm::Constant *
986 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
987                                        llvm::Type *Ty,
988                                        GlobalDecl D, bool ForVTable,
989                                        llvm::Attributes ExtraAttrs) {
990   // Lookup the entry, lazily creating it if necessary.
991   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
992   if (Entry) {
993     if (WeakRefReferences.count(Entry)) {
994       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
995       if (FD && !FD->hasAttr<WeakAttr>())
996         Entry->setLinkage(llvm::Function::ExternalLinkage);
997 
998       WeakRefReferences.erase(Entry);
999     }
1000 
1001     if (Entry->getType()->getElementType() == Ty)
1002       return Entry;
1003 
1004     // Make sure the result is of the correct type.
1005     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1006   }
1007 
1008   // This function doesn't have a complete type (for example, the return
1009   // type is an incomplete struct). Use a fake type instead, and make
1010   // sure not to try to set attributes.
1011   bool IsIncompleteFunction = false;
1012 
1013   llvm::FunctionType *FTy;
1014   if (isa<llvm::FunctionType>(Ty)) {
1015     FTy = cast<llvm::FunctionType>(Ty);
1016   } else {
1017     FTy = llvm::FunctionType::get(VoidTy, false);
1018     IsIncompleteFunction = true;
1019   }
1020 
1021   llvm::Function *F = llvm::Function::Create(FTy,
1022                                              llvm::Function::ExternalLinkage,
1023                                              MangledName, &getModule());
1024   assert(F->getName() == MangledName && "name was uniqued!");
1025   if (D.getDecl())
1026     SetFunctionAttributes(D, F, IsIncompleteFunction);
1027   if (ExtraAttrs != llvm::Attribute::None)
1028     F->addFnAttr(ExtraAttrs);
1029 
1030   // This is the first use or definition of a mangled name.  If there is a
1031   // deferred decl with this name, remember that we need to emit it at the end
1032   // of the file.
1033   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1034   if (DDI != DeferredDecls.end()) {
1035     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1036     // list, and remove it from DeferredDecls (since we don't need it anymore).
1037     DeferredDeclsToEmit.push_back(DDI->second);
1038     DeferredDecls.erase(DDI);
1039 
1040   // Otherwise, there are cases we have to worry about where we're
1041   // using a declaration for which we must emit a definition but where
1042   // we might not find a top-level definition:
1043   //   - member functions defined inline in their classes
1044   //   - friend functions defined inline in some class
1045   //   - special member functions with implicit definitions
1046   // If we ever change our AST traversal to walk into class methods,
1047   // this will be unnecessary.
1048   //
1049   // We also don't emit a definition for a function if it's going to be an entry
1050   // in a vtable, unless it's already marked as used.
1051   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1052     // Look for a declaration that's lexically in a record.
1053     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1054     do {
1055       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1056         if (FD->isImplicit() && !ForVTable) {
1057           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1058           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1059           break;
1060         } else if (FD->doesThisDeclarationHaveABody()) {
1061           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1062           break;
1063         }
1064       }
1065       FD = FD->getPreviousDecl();
1066     } while (FD);
1067   }
1068 
1069   // Make sure the result is of the requested type.
1070   if (!IsIncompleteFunction) {
1071     assert(F->getType()->getElementType() == Ty);
1072     return F;
1073   }
1074 
1075   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1076   return llvm::ConstantExpr::getBitCast(F, PTy);
1077 }
1078 
1079 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1080 /// non-null, then this function will use the specified type if it has to
1081 /// create it (this occurs when we see a definition of the function).
1082 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1083                                                  llvm::Type *Ty,
1084                                                  bool ForVTable) {
1085   // If there was no specific requested type, just convert it now.
1086   if (!Ty)
1087     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1088 
1089   StringRef MangledName = getMangledName(GD);
1090   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1091 }
1092 
1093 /// CreateRuntimeFunction - Create a new runtime function with the specified
1094 /// type and name.
1095 llvm::Constant *
1096 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1097                                      StringRef Name,
1098                                      llvm::Attributes ExtraAttrs) {
1099   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1100                                  ExtraAttrs);
1101 }
1102 
1103 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1104                                  bool ConstantInit) {
1105   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1106     return false;
1107 
1108   if (Context.getLangOptions().CPlusPlus) {
1109     if (const RecordType *Record
1110           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1111       return ConstantInit &&
1112              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1113              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1114   }
1115 
1116   return true;
1117 }
1118 
1119 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1120 /// create and return an llvm GlobalVariable with the specified type.  If there
1121 /// is something in the module with the specified name, return it potentially
1122 /// bitcasted to the right type.
1123 ///
1124 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1125 /// to set the attributes on the global when it is first created.
1126 llvm::Constant *
1127 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1128                                      llvm::PointerType *Ty,
1129                                      const VarDecl *D,
1130                                      bool UnnamedAddr) {
1131   // Lookup the entry, lazily creating it if necessary.
1132   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1133   if (Entry) {
1134     if (WeakRefReferences.count(Entry)) {
1135       if (D && !D->hasAttr<WeakAttr>())
1136         Entry->setLinkage(llvm::Function::ExternalLinkage);
1137 
1138       WeakRefReferences.erase(Entry);
1139     }
1140 
1141     if (UnnamedAddr)
1142       Entry->setUnnamedAddr(true);
1143 
1144     if (Entry->getType() == Ty)
1145       return Entry;
1146 
1147     // Make sure the result is of the correct type.
1148     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1149   }
1150 
1151   // This is the first use or definition of a mangled name.  If there is a
1152   // deferred decl with this name, remember that we need to emit it at the end
1153   // of the file.
1154   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1155   if (DDI != DeferredDecls.end()) {
1156     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1157     // list, and remove it from DeferredDecls (since we don't need it anymore).
1158     DeferredDeclsToEmit.push_back(DDI->second);
1159     DeferredDecls.erase(DDI);
1160   }
1161 
1162   llvm::GlobalVariable *GV =
1163     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1164                              llvm::GlobalValue::ExternalLinkage,
1165                              0, MangledName, 0,
1166                              false, Ty->getAddressSpace());
1167 
1168   // Handle things which are present even on external declarations.
1169   if (D) {
1170     // FIXME: This code is overly simple and should be merged with other global
1171     // handling.
1172     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1173 
1174     // Set linkage and visibility in case we never see a definition.
1175     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1176     if (LV.linkage() != ExternalLinkage) {
1177       // Don't set internal linkage on declarations.
1178     } else {
1179       if (D->hasAttr<DLLImportAttr>())
1180         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1181       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1182         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1183 
1184       // Set visibility on a declaration only if it's explicit.
1185       if (LV.visibilityExplicit())
1186         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1187     }
1188 
1189     GV->setThreadLocal(D->isThreadSpecified());
1190   }
1191 
1192   return GV;
1193 }
1194 
1195 
1196 llvm::GlobalVariable *
1197 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1198                                       llvm::Type *Ty,
1199                                       llvm::GlobalValue::LinkageTypes Linkage) {
1200   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1201   llvm::GlobalVariable *OldGV = 0;
1202 
1203 
1204   if (GV) {
1205     // Check if the variable has the right type.
1206     if (GV->getType()->getElementType() == Ty)
1207       return GV;
1208 
1209     // Because C++ name mangling, the only way we can end up with an already
1210     // existing global with the same name is if it has been declared extern "C".
1211       assert(GV->isDeclaration() && "Declaration has wrong type!");
1212     OldGV = GV;
1213   }
1214 
1215   // Create a new variable.
1216   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1217                                 Linkage, 0, Name);
1218 
1219   if (OldGV) {
1220     // Replace occurrences of the old variable if needed.
1221     GV->takeName(OldGV);
1222 
1223     if (!OldGV->use_empty()) {
1224       llvm::Constant *NewPtrForOldDecl =
1225       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1226       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1227     }
1228 
1229     OldGV->eraseFromParent();
1230   }
1231 
1232   return GV;
1233 }
1234 
1235 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1236 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1237 /// then it will be greated with the specified type instead of whatever the
1238 /// normal requested type would be.
1239 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1240                                                   llvm::Type *Ty) {
1241   assert(D->hasGlobalStorage() && "Not a global variable");
1242   QualType ASTTy = D->getType();
1243   if (Ty == 0)
1244     Ty = getTypes().ConvertTypeForMem(ASTTy);
1245 
1246   llvm::PointerType *PTy =
1247     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1248 
1249   StringRef MangledName = getMangledName(D);
1250   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1251 }
1252 
1253 /// CreateRuntimeVariable - Create a new runtime global variable with the
1254 /// specified type and name.
1255 llvm::Constant *
1256 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1257                                      StringRef Name) {
1258   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1259                                true);
1260 }
1261 
1262 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1263   assert(!D->getInit() && "Cannot emit definite definitions here!");
1264 
1265   if (MayDeferGeneration(D)) {
1266     // If we have not seen a reference to this variable yet, place it
1267     // into the deferred declarations table to be emitted if needed
1268     // later.
1269     StringRef MangledName = getMangledName(D);
1270     if (!GetGlobalValue(MangledName)) {
1271       DeferredDecls[MangledName] = D;
1272       return;
1273     }
1274   }
1275 
1276   // The tentative definition is the only definition.
1277   EmitGlobalVarDefinition(D);
1278 }
1279 
1280 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1281   if (DefinitionRequired)
1282     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1283 }
1284 
1285 llvm::GlobalVariable::LinkageTypes
1286 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1287   if (RD->getLinkage() != ExternalLinkage)
1288     return llvm::GlobalVariable::InternalLinkage;
1289 
1290   if (const CXXMethodDecl *KeyFunction
1291                                     = RD->getASTContext().getKeyFunction(RD)) {
1292     // If this class has a key function, use that to determine the linkage of
1293     // the vtable.
1294     const FunctionDecl *Def = 0;
1295     if (KeyFunction->hasBody(Def))
1296       KeyFunction = cast<CXXMethodDecl>(Def);
1297 
1298     switch (KeyFunction->getTemplateSpecializationKind()) {
1299       case TSK_Undeclared:
1300       case TSK_ExplicitSpecialization:
1301         // When compiling with optimizations turned on, we emit all vtables,
1302         // even if the key function is not defined in the current translation
1303         // unit. If this is the case, use available_externally linkage.
1304         if (!Def && CodeGenOpts.OptimizationLevel)
1305           return llvm::GlobalVariable::AvailableExternallyLinkage;
1306 
1307         if (KeyFunction->isInlined())
1308           return !Context.getLangOptions().AppleKext ?
1309                    llvm::GlobalVariable::LinkOnceODRLinkage :
1310                    llvm::Function::InternalLinkage;
1311 
1312         return llvm::GlobalVariable::ExternalLinkage;
1313 
1314       case TSK_ImplicitInstantiation:
1315         return !Context.getLangOptions().AppleKext ?
1316                  llvm::GlobalVariable::LinkOnceODRLinkage :
1317                  llvm::Function::InternalLinkage;
1318 
1319       case TSK_ExplicitInstantiationDefinition:
1320         return !Context.getLangOptions().AppleKext ?
1321                  llvm::GlobalVariable::WeakODRLinkage :
1322                  llvm::Function::InternalLinkage;
1323 
1324       case TSK_ExplicitInstantiationDeclaration:
1325         // FIXME: Use available_externally linkage. However, this currently
1326         // breaks LLVM's build due to undefined symbols.
1327         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1328         return !Context.getLangOptions().AppleKext ?
1329                  llvm::GlobalVariable::LinkOnceODRLinkage :
1330                  llvm::Function::InternalLinkage;
1331     }
1332   }
1333 
1334   if (Context.getLangOptions().AppleKext)
1335     return llvm::Function::InternalLinkage;
1336 
1337   switch (RD->getTemplateSpecializationKind()) {
1338   case TSK_Undeclared:
1339   case TSK_ExplicitSpecialization:
1340   case TSK_ImplicitInstantiation:
1341     // FIXME: Use available_externally linkage. However, this currently
1342     // breaks LLVM's build due to undefined symbols.
1343     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1344   case TSK_ExplicitInstantiationDeclaration:
1345     return llvm::GlobalVariable::LinkOnceODRLinkage;
1346 
1347   case TSK_ExplicitInstantiationDefinition:
1348       return llvm::GlobalVariable::WeakODRLinkage;
1349   }
1350 
1351   llvm_unreachable("Invalid TemplateSpecializationKind!");
1352 }
1353 
1354 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1355     return Context.toCharUnitsFromBits(
1356       TheTargetData.getTypeStoreSizeInBits(Ty));
1357 }
1358 
1359 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1360   llvm::Constant *Init = 0;
1361   QualType ASTTy = D->getType();
1362   bool NonConstInit = false;
1363 
1364   const VarDecl *InitDecl;
1365   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1366 
1367   if (!InitExpr) {
1368     // This is a tentative definition; tentative definitions are
1369     // implicitly initialized with { 0 }.
1370     //
1371     // Note that tentative definitions are only emitted at the end of
1372     // a translation unit, so they should never have incomplete
1373     // type. In addition, EmitTentativeDefinition makes sure that we
1374     // never attempt to emit a tentative definition if a real one
1375     // exists. A use may still exists, however, so we still may need
1376     // to do a RAUW.
1377     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1378     Init = EmitNullConstant(D->getType());
1379   } else {
1380     Init = EmitConstantInit(*InitDecl);
1381     if (!Init) {
1382       QualType T = InitExpr->getType();
1383       if (D->getType()->isReferenceType())
1384         T = D->getType();
1385 
1386       if (getLangOptions().CPlusPlus) {
1387         Init = EmitNullConstant(T);
1388         NonConstInit = true;
1389       } else {
1390         ErrorUnsupported(D, "static initializer");
1391         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1392       }
1393     } else {
1394       // We don't need an initializer, so remove the entry for the delayed
1395       // initializer position (just in case this entry was delayed).
1396       if (getLangOptions().CPlusPlus)
1397         DelayedCXXInitPosition.erase(D);
1398     }
1399   }
1400 
1401   llvm::Type* InitType = Init->getType();
1402   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1403 
1404   // Strip off a bitcast if we got one back.
1405   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1406     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1407            // all zero index gep.
1408            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1409     Entry = CE->getOperand(0);
1410   }
1411 
1412   // Entry is now either a Function or GlobalVariable.
1413   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1414 
1415   // We have a definition after a declaration with the wrong type.
1416   // We must make a new GlobalVariable* and update everything that used OldGV
1417   // (a declaration or tentative definition) with the new GlobalVariable*
1418   // (which will be a definition).
1419   //
1420   // This happens if there is a prototype for a global (e.g.
1421   // "extern int x[];") and then a definition of a different type (e.g.
1422   // "int x[10];"). This also happens when an initializer has a different type
1423   // from the type of the global (this happens with unions).
1424   if (GV == 0 ||
1425       GV->getType()->getElementType() != InitType ||
1426       GV->getType()->getAddressSpace() !=
1427         getContext().getTargetAddressSpace(ASTTy)) {
1428 
1429     // Move the old entry aside so that we'll create a new one.
1430     Entry->setName(StringRef());
1431 
1432     // Make a new global with the correct type, this is now guaranteed to work.
1433     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1434 
1435     // Replace all uses of the old global with the new global
1436     llvm::Constant *NewPtrForOldDecl =
1437         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1438     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1439 
1440     // Erase the old global, since it is no longer used.
1441     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1442   }
1443 
1444   if (D->hasAttr<AnnotateAttr>())
1445     AddGlobalAnnotations(D, GV);
1446 
1447   GV->setInitializer(Init);
1448 
1449   // If it is safe to mark the global 'constant', do so now.
1450   GV->setConstant(false);
1451   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1452     GV->setConstant(true);
1453 
1454   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1455 
1456   // Set the llvm linkage type as appropriate.
1457   llvm::GlobalValue::LinkageTypes Linkage =
1458     GetLLVMLinkageVarDefinition(D, GV);
1459   GV->setLinkage(Linkage);
1460   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1461     // common vars aren't constant even if declared const.
1462     GV->setConstant(false);
1463 
1464   SetCommonAttributes(D, GV);
1465 
1466   // Emit the initializer function if necessary.
1467   if (NonConstInit)
1468     EmitCXXGlobalVarDeclInitFunc(D, GV);
1469 
1470   // Emit global variable debug information.
1471   if (CGDebugInfo *DI = getModuleDebugInfo())
1472     DI->EmitGlobalVariable(GV, D);
1473 }
1474 
1475 llvm::GlobalValue::LinkageTypes
1476 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1477                                            llvm::GlobalVariable *GV) {
1478   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1479   if (Linkage == GVA_Internal)
1480     return llvm::Function::InternalLinkage;
1481   else if (D->hasAttr<DLLImportAttr>())
1482     return llvm::Function::DLLImportLinkage;
1483   else if (D->hasAttr<DLLExportAttr>())
1484     return llvm::Function::DLLExportLinkage;
1485   else if (D->hasAttr<WeakAttr>()) {
1486     if (GV->isConstant())
1487       return llvm::GlobalVariable::WeakODRLinkage;
1488     else
1489       return llvm::GlobalVariable::WeakAnyLinkage;
1490   } else if (Linkage == GVA_TemplateInstantiation ||
1491              Linkage == GVA_ExplicitTemplateInstantiation)
1492     return llvm::GlobalVariable::WeakODRLinkage;
1493   else if (!getLangOptions().CPlusPlus &&
1494            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1495              D->getAttr<CommonAttr>()) &&
1496            !D->hasExternalStorage() && !D->getInit() &&
1497            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1498            !D->getAttr<WeakImportAttr>()) {
1499     // Thread local vars aren't considered common linkage.
1500     return llvm::GlobalVariable::CommonLinkage;
1501   }
1502   return llvm::GlobalVariable::ExternalLinkage;
1503 }
1504 
1505 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1506 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1507 /// existing call uses of the old function in the module, this adjusts them to
1508 /// call the new function directly.
1509 ///
1510 /// This is not just a cleanup: the always_inline pass requires direct calls to
1511 /// functions to be able to inline them.  If there is a bitcast in the way, it
1512 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1513 /// run at -O0.
1514 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1515                                                       llvm::Function *NewFn) {
1516   // If we're redefining a global as a function, don't transform it.
1517   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1518   if (OldFn == 0) return;
1519 
1520   llvm::Type *NewRetTy = NewFn->getReturnType();
1521   SmallVector<llvm::Value*, 4> ArgList;
1522 
1523   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1524        UI != E; ) {
1525     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1526     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1527     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1528     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1529     llvm::CallSite CS(CI);
1530     if (!CI || !CS.isCallee(I)) continue;
1531 
1532     // If the return types don't match exactly, and if the call isn't dead, then
1533     // we can't transform this call.
1534     if (CI->getType() != NewRetTy && !CI->use_empty())
1535       continue;
1536 
1537     // Get the attribute list.
1538     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1539     llvm::AttrListPtr AttrList = CI->getAttributes();
1540 
1541     // Get any return attributes.
1542     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1543 
1544     // Add the return attributes.
1545     if (RAttrs)
1546       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1547 
1548     // If the function was passed too few arguments, don't transform.  If extra
1549     // arguments were passed, we silently drop them.  If any of the types
1550     // mismatch, we don't transform.
1551     unsigned ArgNo = 0;
1552     bool DontTransform = false;
1553     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1554          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1555       if (CS.arg_size() == ArgNo ||
1556           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1557         DontTransform = true;
1558         break;
1559       }
1560 
1561       // Add any parameter attributes.
1562       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1563         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1564     }
1565     if (DontTransform)
1566       continue;
1567 
1568     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1569       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1570 
1571     // Okay, we can transform this.  Create the new call instruction and copy
1572     // over the required information.
1573     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1574     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1575     ArgList.clear();
1576     if (!NewCall->getType()->isVoidTy())
1577       NewCall->takeName(CI);
1578     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1579                                                   AttrVec.end()));
1580     NewCall->setCallingConv(CI->getCallingConv());
1581 
1582     // Finally, remove the old call, replacing any uses with the new one.
1583     if (!CI->use_empty())
1584       CI->replaceAllUsesWith(NewCall);
1585 
1586     // Copy debug location attached to CI.
1587     if (!CI->getDebugLoc().isUnknown())
1588       NewCall->setDebugLoc(CI->getDebugLoc());
1589     CI->eraseFromParent();
1590   }
1591 }
1592 
1593 
1594 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1595   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1596 
1597   // Compute the function info and LLVM type.
1598   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1599   bool variadic = false;
1600   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1601     variadic = fpt->isVariadic();
1602   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1603 
1604   // Get or create the prototype for the function.
1605   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1606 
1607   // Strip off a bitcast if we got one back.
1608   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1609     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1610     Entry = CE->getOperand(0);
1611   }
1612 
1613 
1614   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1615     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1616 
1617     // If the types mismatch then we have to rewrite the definition.
1618     assert(OldFn->isDeclaration() &&
1619            "Shouldn't replace non-declaration");
1620 
1621     // F is the Function* for the one with the wrong type, we must make a new
1622     // Function* and update everything that used F (a declaration) with the new
1623     // Function* (which will be a definition).
1624     //
1625     // This happens if there is a prototype for a function
1626     // (e.g. "int f()") and then a definition of a different type
1627     // (e.g. "int f(int x)").  Move the old function aside so that it
1628     // doesn't interfere with GetAddrOfFunction.
1629     OldFn->setName(StringRef());
1630     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1631 
1632     // If this is an implementation of a function without a prototype, try to
1633     // replace any existing uses of the function (which may be calls) with uses
1634     // of the new function
1635     if (D->getType()->isFunctionNoProtoType()) {
1636       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1637       OldFn->removeDeadConstantUsers();
1638     }
1639 
1640     // Replace uses of F with the Function we will endow with a body.
1641     if (!Entry->use_empty()) {
1642       llvm::Constant *NewPtrForOldDecl =
1643         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1644       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1645     }
1646 
1647     // Ok, delete the old function now, which is dead.
1648     OldFn->eraseFromParent();
1649 
1650     Entry = NewFn;
1651   }
1652 
1653   // We need to set linkage and visibility on the function before
1654   // generating code for it because various parts of IR generation
1655   // want to propagate this information down (e.g. to local static
1656   // declarations).
1657   llvm::Function *Fn = cast<llvm::Function>(Entry);
1658   setFunctionLinkage(D, Fn);
1659 
1660   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1661   setGlobalVisibility(Fn, D);
1662 
1663   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1664 
1665   SetFunctionDefinitionAttributes(D, Fn);
1666   SetLLVMFunctionAttributesForDefinition(D, Fn);
1667 
1668   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1669     AddGlobalCtor(Fn, CA->getPriority());
1670   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1671     AddGlobalDtor(Fn, DA->getPriority());
1672   if (D->hasAttr<AnnotateAttr>())
1673     AddGlobalAnnotations(D, Fn);
1674 }
1675 
1676 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1677   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1678   const AliasAttr *AA = D->getAttr<AliasAttr>();
1679   assert(AA && "Not an alias?");
1680 
1681   StringRef MangledName = getMangledName(GD);
1682 
1683   // If there is a definition in the module, then it wins over the alias.
1684   // This is dubious, but allow it to be safe.  Just ignore the alias.
1685   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1686   if (Entry && !Entry->isDeclaration())
1687     return;
1688 
1689   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1690 
1691   // Create a reference to the named value.  This ensures that it is emitted
1692   // if a deferred decl.
1693   llvm::Constant *Aliasee;
1694   if (isa<llvm::FunctionType>(DeclTy))
1695     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1696                                       /*ForVTable=*/false);
1697   else
1698     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1699                                     llvm::PointerType::getUnqual(DeclTy), 0);
1700 
1701   // Create the new alias itself, but don't set a name yet.
1702   llvm::GlobalValue *GA =
1703     new llvm::GlobalAlias(Aliasee->getType(),
1704                           llvm::Function::ExternalLinkage,
1705                           "", Aliasee, &getModule());
1706 
1707   if (Entry) {
1708     assert(Entry->isDeclaration());
1709 
1710     // If there is a declaration in the module, then we had an extern followed
1711     // by the alias, as in:
1712     //   extern int test6();
1713     //   ...
1714     //   int test6() __attribute__((alias("test7")));
1715     //
1716     // Remove it and replace uses of it with the alias.
1717     GA->takeName(Entry);
1718 
1719     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1720                                                           Entry->getType()));
1721     Entry->eraseFromParent();
1722   } else {
1723     GA->setName(MangledName);
1724   }
1725 
1726   // Set attributes which are particular to an alias; this is a
1727   // specialization of the attributes which may be set on a global
1728   // variable/function.
1729   if (D->hasAttr<DLLExportAttr>()) {
1730     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1731       // The dllexport attribute is ignored for undefined symbols.
1732       if (FD->hasBody())
1733         GA->setLinkage(llvm::Function::DLLExportLinkage);
1734     } else {
1735       GA->setLinkage(llvm::Function::DLLExportLinkage);
1736     }
1737   } else if (D->hasAttr<WeakAttr>() ||
1738              D->hasAttr<WeakRefAttr>() ||
1739              D->isWeakImported()) {
1740     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1741   }
1742 
1743   SetCommonAttributes(D, GA);
1744 }
1745 
1746 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1747                                             ArrayRef<llvm::Type*> Tys) {
1748   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1749                                          Tys);
1750 }
1751 
1752 static llvm::StringMapEntry<llvm::Constant*> &
1753 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1754                          const StringLiteral *Literal,
1755                          bool TargetIsLSB,
1756                          bool &IsUTF16,
1757                          unsigned &StringLength) {
1758   StringRef String = Literal->getString();
1759   unsigned NumBytes = String.size();
1760 
1761   // Check for simple case.
1762   if (!Literal->containsNonAsciiOrNull()) {
1763     StringLength = NumBytes;
1764     return Map.GetOrCreateValue(String);
1765   }
1766 
1767   // Otherwise, convert the UTF8 literals into a byte string.
1768   SmallVector<UTF16, 128> ToBuf(NumBytes);
1769   const UTF8 *FromPtr = (UTF8 *)String.data();
1770   UTF16 *ToPtr = &ToBuf[0];
1771 
1772   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1773                            &ToPtr, ToPtr + NumBytes,
1774                            strictConversion);
1775 
1776   // ConvertUTF8toUTF16 returns the length in ToPtr.
1777   StringLength = ToPtr - &ToBuf[0];
1778 
1779   // Render the UTF-16 string into a byte array and convert to the target byte
1780   // order.
1781   //
1782   // FIXME: This isn't something we should need to do here.
1783   SmallString<128> AsBytes;
1784   AsBytes.reserve(StringLength * 2);
1785   for (unsigned i = 0; i != StringLength; ++i) {
1786     unsigned short Val = ToBuf[i];
1787     if (TargetIsLSB) {
1788       AsBytes.push_back(Val & 0xFF);
1789       AsBytes.push_back(Val >> 8);
1790     } else {
1791       AsBytes.push_back(Val >> 8);
1792       AsBytes.push_back(Val & 0xFF);
1793     }
1794   }
1795   // Append one extra null character, the second is automatically added by our
1796   // caller.
1797   AsBytes.push_back(0);
1798 
1799   IsUTF16 = true;
1800   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1801 }
1802 
1803 static llvm::StringMapEntry<llvm::Constant*> &
1804 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1805 		       const StringLiteral *Literal,
1806 		       unsigned &StringLength)
1807 {
1808 	StringRef String = Literal->getString();
1809 	StringLength = String.size();
1810 	return Map.GetOrCreateValue(String);
1811 }
1812 
1813 llvm::Constant *
1814 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1815   unsigned StringLength = 0;
1816   bool isUTF16 = false;
1817   llvm::StringMapEntry<llvm::Constant*> &Entry =
1818     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1819                              getTargetData().isLittleEndian(),
1820                              isUTF16, StringLength);
1821 
1822   if (llvm::Constant *C = Entry.getValue())
1823     return C;
1824 
1825   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1826   llvm::Constant *Zeros[] = { Zero, Zero };
1827 
1828   // If we don't already have it, get __CFConstantStringClassReference.
1829   if (!CFConstantStringClassRef) {
1830     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1831     Ty = llvm::ArrayType::get(Ty, 0);
1832     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1833                                            "__CFConstantStringClassReference");
1834     // Decay array -> ptr
1835     CFConstantStringClassRef =
1836       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1837   }
1838 
1839   QualType CFTy = getContext().getCFConstantStringType();
1840 
1841   llvm::StructType *STy =
1842     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1843 
1844   llvm::Constant *Fields[4];
1845 
1846   // Class pointer.
1847   Fields[0] = CFConstantStringClassRef;
1848 
1849   // Flags.
1850   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1851   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1852     llvm::ConstantInt::get(Ty, 0x07C8);
1853 
1854   // String pointer.
1855   llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext,
1856                                                          Entry.getKey());
1857 
1858   llvm::GlobalValue::LinkageTypes Linkage;
1859   if (isUTF16)
1860     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1861     Linkage = llvm::GlobalValue::InternalLinkage;
1862   else
1863     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1864     // when using private linkage. It is not clear if this is a bug in ld
1865     // or a reasonable new restriction.
1866     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1867 
1868   // Note: -fwritable-strings doesn't make the backing store strings of
1869   // CFStrings writable. (See <rdar://problem/10657500>)
1870   llvm::GlobalVariable *GV =
1871     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
1872                              Linkage, C, ".str");
1873   GV->setUnnamedAddr(true);
1874   if (isUTF16) {
1875     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1876     GV->setAlignment(Align.getQuantity());
1877   } else {
1878     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1879     GV->setAlignment(Align.getQuantity());
1880   }
1881   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1882 
1883   // String length.
1884   Ty = getTypes().ConvertType(getContext().LongTy);
1885   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1886 
1887   // The struct.
1888   C = llvm::ConstantStruct::get(STy, Fields);
1889   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1890                                 llvm::GlobalVariable::PrivateLinkage, C,
1891                                 "_unnamed_cfstring_");
1892   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1893     GV->setSection(Sect);
1894   Entry.setValue(GV);
1895 
1896   return GV;
1897 }
1898 
1899 static RecordDecl *
1900 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1901                  DeclContext *DC, IdentifierInfo *Id) {
1902   SourceLocation Loc;
1903   if (Ctx.getLangOptions().CPlusPlus)
1904     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1905   else
1906     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1907 }
1908 
1909 llvm::Constant *
1910 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1911   unsigned StringLength = 0;
1912   llvm::StringMapEntry<llvm::Constant*> &Entry =
1913     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1914 
1915   if (llvm::Constant *C = Entry.getValue())
1916     return C;
1917 
1918   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1919   llvm::Constant *Zeros[] = { Zero, Zero };
1920 
1921   // If we don't already have it, get _NSConstantStringClassReference.
1922   if (!ConstantStringClassRef) {
1923     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1924     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1925     llvm::Constant *GV;
1926     if (Features.ObjCNonFragileABI) {
1927       std::string str =
1928         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1929                             : "OBJC_CLASS_$_" + StringClass;
1930       GV = getObjCRuntime().GetClassGlobal(str);
1931       // Make sure the result is of the correct type.
1932       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1933       ConstantStringClassRef =
1934         llvm::ConstantExpr::getBitCast(GV, PTy);
1935     } else {
1936       std::string str =
1937         StringClass.empty() ? "_NSConstantStringClassReference"
1938                             : "_" + StringClass + "ClassReference";
1939       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1940       GV = CreateRuntimeVariable(PTy, str);
1941       // Decay array -> ptr
1942       ConstantStringClassRef =
1943         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1944     }
1945   }
1946 
1947   if (!NSConstantStringType) {
1948     // Construct the type for a constant NSString.
1949     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1950                                      Context.getTranslationUnitDecl(),
1951                                    &Context.Idents.get("__builtin_NSString"));
1952     D->startDefinition();
1953 
1954     QualType FieldTypes[3];
1955 
1956     // const int *isa;
1957     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1958     // const char *str;
1959     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1960     // unsigned int length;
1961     FieldTypes[2] = Context.UnsignedIntTy;
1962 
1963     // Create fields
1964     for (unsigned i = 0; i < 3; ++i) {
1965       FieldDecl *Field = FieldDecl::Create(Context, D,
1966                                            SourceLocation(),
1967                                            SourceLocation(), 0,
1968                                            FieldTypes[i], /*TInfo=*/0,
1969                                            /*BitWidth=*/0,
1970                                            /*Mutable=*/false,
1971                                            /*HasInit=*/false);
1972       Field->setAccess(AS_public);
1973       D->addDecl(Field);
1974     }
1975 
1976     D->completeDefinition();
1977     QualType NSTy = Context.getTagDeclType(D);
1978     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1979   }
1980 
1981   llvm::Constant *Fields[3];
1982 
1983   // Class pointer.
1984   Fields[0] = ConstantStringClassRef;
1985 
1986   // String pointer.
1987   llvm::Constant *C =
1988     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
1989 
1990   llvm::GlobalValue::LinkageTypes Linkage;
1991   bool isConstant;
1992   Linkage = llvm::GlobalValue::PrivateLinkage;
1993   isConstant = !Features.WritableStrings;
1994 
1995   llvm::GlobalVariable *GV =
1996   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1997                            ".str");
1998   GV->setUnnamedAddr(true);
1999   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2000   GV->setAlignment(Align.getQuantity());
2001   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2002 
2003   // String length.
2004   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2005   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2006 
2007   // The struct.
2008   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2009   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2010                                 llvm::GlobalVariable::PrivateLinkage, C,
2011                                 "_unnamed_nsstring_");
2012   // FIXME. Fix section.
2013   if (const char *Sect =
2014         Features.ObjCNonFragileABI
2015           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2016           : getContext().getTargetInfo().getNSStringSection())
2017     GV->setSection(Sect);
2018   Entry.setValue(GV);
2019 
2020   return GV;
2021 }
2022 
2023 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2024   if (ObjCFastEnumerationStateType.isNull()) {
2025     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2026                                      Context.getTranslationUnitDecl(),
2027                       &Context.Idents.get("__objcFastEnumerationState"));
2028     D->startDefinition();
2029 
2030     QualType FieldTypes[] = {
2031       Context.UnsignedLongTy,
2032       Context.getPointerType(Context.getObjCIdType()),
2033       Context.getPointerType(Context.UnsignedLongTy),
2034       Context.getConstantArrayType(Context.UnsignedLongTy,
2035                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2036     };
2037 
2038     for (size_t i = 0; i < 4; ++i) {
2039       FieldDecl *Field = FieldDecl::Create(Context,
2040                                            D,
2041                                            SourceLocation(),
2042                                            SourceLocation(), 0,
2043                                            FieldTypes[i], /*TInfo=*/0,
2044                                            /*BitWidth=*/0,
2045                                            /*Mutable=*/false,
2046                                            /*HasInit=*/false);
2047       Field->setAccess(AS_public);
2048       D->addDecl(Field);
2049     }
2050 
2051     D->completeDefinition();
2052     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2053   }
2054 
2055   return ObjCFastEnumerationStateType;
2056 }
2057 
2058 llvm::Constant *
2059 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2060   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2061 
2062   // Don't emit it as the address of the string, emit the string data itself
2063   // as an inline array.
2064   if (E->getCharByteWidth() == 1) {
2065     SmallString<64> Str(E->getString());
2066 
2067     // Resize the string to the right size, which is indicated by its type.
2068     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2069     Str.resize(CAT->getSize().getZExtValue());
2070     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2071   }
2072 
2073   llvm::ArrayType *AType =
2074     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2075   llvm::Type *ElemTy = AType->getElementType();
2076   unsigned NumElements = AType->getNumElements();
2077 
2078   // Wide strings have either 2-byte or 4-byte elements.
2079   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2080     SmallVector<uint16_t, 32> Elements;
2081     Elements.reserve(NumElements);
2082 
2083     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2084       Elements.push_back(E->getCodeUnit(i));
2085     Elements.resize(NumElements);
2086     return llvm::ConstantDataArray::get(VMContext, Elements);
2087   }
2088 
2089   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2090   SmallVector<uint32_t, 32> Elements;
2091   Elements.reserve(NumElements);
2092 
2093   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2094     Elements.push_back(E->getCodeUnit(i));
2095   Elements.resize(NumElements);
2096   return llvm::ConstantDataArray::get(VMContext, Elements);
2097 }
2098 
2099 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2100 /// constant array for the given string literal.
2101 llvm::Constant *
2102 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2103   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2104   if (S->isAscii() || S->isUTF8()) {
2105     SmallString<64> Str(S->getString());
2106 
2107     // Resize the string to the right size, which is indicated by its type.
2108     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2109     Str.resize(CAT->getSize().getZExtValue());
2110     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2111   }
2112 
2113   // FIXME: the following does not memoize wide strings.
2114   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2115   llvm::GlobalVariable *GV =
2116     new llvm::GlobalVariable(getModule(),C->getType(),
2117                              !Features.WritableStrings,
2118                              llvm::GlobalValue::PrivateLinkage,
2119                              C,".str");
2120 
2121   GV->setAlignment(Align.getQuantity());
2122   GV->setUnnamedAddr(true);
2123   return GV;
2124 }
2125 
2126 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2127 /// array for the given ObjCEncodeExpr node.
2128 llvm::Constant *
2129 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2130   std::string Str;
2131   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2132 
2133   return GetAddrOfConstantCString(Str);
2134 }
2135 
2136 
2137 /// GenerateWritableString -- Creates storage for a string literal.
2138 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2139                                              bool constant,
2140                                              CodeGenModule &CGM,
2141                                              const char *GlobalName,
2142                                              unsigned Alignment) {
2143   // Create Constant for this string literal. Don't add a '\0'.
2144   llvm::Constant *C =
2145       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2146 
2147   // Create a global variable for this string
2148   llvm::GlobalVariable *GV =
2149     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2150                              llvm::GlobalValue::PrivateLinkage,
2151                              C, GlobalName);
2152   GV->setAlignment(Alignment);
2153   GV->setUnnamedAddr(true);
2154   return GV;
2155 }
2156 
2157 /// GetAddrOfConstantString - Returns a pointer to a character array
2158 /// containing the literal. This contents are exactly that of the
2159 /// given string, i.e. it will not be null terminated automatically;
2160 /// see GetAddrOfConstantCString. Note that whether the result is
2161 /// actually a pointer to an LLVM constant depends on
2162 /// Feature.WriteableStrings.
2163 ///
2164 /// The result has pointer to array type.
2165 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2166                                                        const char *GlobalName,
2167                                                        unsigned Alignment) {
2168   // Get the default prefix if a name wasn't specified.
2169   if (!GlobalName)
2170     GlobalName = ".str";
2171 
2172   // Don't share any string literals if strings aren't constant.
2173   if (Features.WritableStrings)
2174     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2175 
2176   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2177     ConstantStringMap.GetOrCreateValue(Str);
2178 
2179   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2180     if (Alignment > GV->getAlignment()) {
2181       GV->setAlignment(Alignment);
2182     }
2183     return GV;
2184   }
2185 
2186   // Create a global variable for this.
2187   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2188                                                    Alignment);
2189   Entry.setValue(GV);
2190   return GV;
2191 }
2192 
2193 /// GetAddrOfConstantCString - Returns a pointer to a character
2194 /// array containing the literal and a terminating '\0'
2195 /// character. The result has pointer to array type.
2196 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2197                                                         const char *GlobalName,
2198                                                         unsigned Alignment) {
2199   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2200   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2201 }
2202 
2203 /// EmitObjCPropertyImplementations - Emit information for synthesized
2204 /// properties for an implementation.
2205 void CodeGenModule::EmitObjCPropertyImplementations(const
2206                                                     ObjCImplementationDecl *D) {
2207   for (ObjCImplementationDecl::propimpl_iterator
2208          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2209     ObjCPropertyImplDecl *PID = *i;
2210 
2211     // Dynamic is just for type-checking.
2212     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2213       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2214 
2215       // Determine which methods need to be implemented, some may have
2216       // been overridden. Note that ::isSynthesized is not the method
2217       // we want, that just indicates if the decl came from a
2218       // property. What we want to know is if the method is defined in
2219       // this implementation.
2220       if (!D->getInstanceMethod(PD->getGetterName()))
2221         CodeGenFunction(*this).GenerateObjCGetter(
2222                                  const_cast<ObjCImplementationDecl *>(D), PID);
2223       if (!PD->isReadOnly() &&
2224           !D->getInstanceMethod(PD->getSetterName()))
2225         CodeGenFunction(*this).GenerateObjCSetter(
2226                                  const_cast<ObjCImplementationDecl *>(D), PID);
2227     }
2228   }
2229 }
2230 
2231 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2232   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2233   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2234        ivar; ivar = ivar->getNextIvar())
2235     if (ivar->getType().isDestructedType())
2236       return true;
2237 
2238   return false;
2239 }
2240 
2241 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2242 /// for an implementation.
2243 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2244   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2245   if (needsDestructMethod(D)) {
2246     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2247     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2248     ObjCMethodDecl *DTORMethod =
2249       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2250                              cxxSelector, getContext().VoidTy, 0, D,
2251                              /*isInstance=*/true, /*isVariadic=*/false,
2252                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2253                              /*isDefined=*/false, ObjCMethodDecl::Required);
2254     D->addInstanceMethod(DTORMethod);
2255     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2256     D->setHasCXXStructors(true);
2257   }
2258 
2259   // If the implementation doesn't have any ivar initializers, we don't need
2260   // a .cxx_construct.
2261   if (D->getNumIvarInitializers() == 0)
2262     return;
2263 
2264   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2265   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2266   // The constructor returns 'self'.
2267   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2268                                                 D->getLocation(),
2269                                                 D->getLocation(),
2270                                                 cxxSelector,
2271                                                 getContext().getObjCIdType(), 0,
2272                                                 D, /*isInstance=*/true,
2273                                                 /*isVariadic=*/false,
2274                                                 /*isSynthesized=*/true,
2275                                                 /*isImplicitlyDeclared=*/true,
2276                                                 /*isDefined=*/false,
2277                                                 ObjCMethodDecl::Required);
2278   D->addInstanceMethod(CTORMethod);
2279   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2280   D->setHasCXXStructors(true);
2281 }
2282 
2283 /// EmitNamespace - Emit all declarations in a namespace.
2284 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2285   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2286        I != E; ++I)
2287     EmitTopLevelDecl(*I);
2288 }
2289 
2290 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2291 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2292   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2293       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2294     ErrorUnsupported(LSD, "linkage spec");
2295     return;
2296   }
2297 
2298   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2299        I != E; ++I)
2300     EmitTopLevelDecl(*I);
2301 }
2302 
2303 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2304 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2305   // If an error has occurred, stop code generation, but continue
2306   // parsing and semantic analysis (to ensure all warnings and errors
2307   // are emitted).
2308   if (Diags.hasErrorOccurred())
2309     return;
2310 
2311   // Ignore dependent declarations.
2312   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2313     return;
2314 
2315   switch (D->getKind()) {
2316   case Decl::CXXConversion:
2317   case Decl::CXXMethod:
2318   case Decl::Function:
2319     // Skip function templates
2320     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2321         cast<FunctionDecl>(D)->isLateTemplateParsed())
2322       return;
2323 
2324     EmitGlobal(cast<FunctionDecl>(D));
2325     break;
2326 
2327   case Decl::Var:
2328     EmitGlobal(cast<VarDecl>(D));
2329     break;
2330 
2331   // Indirect fields from global anonymous structs and unions can be
2332   // ignored; only the actual variable requires IR gen support.
2333   case Decl::IndirectField:
2334     break;
2335 
2336   // C++ Decls
2337   case Decl::Namespace:
2338     EmitNamespace(cast<NamespaceDecl>(D));
2339     break;
2340     // No code generation needed.
2341   case Decl::UsingShadow:
2342   case Decl::Using:
2343   case Decl::UsingDirective:
2344   case Decl::ClassTemplate:
2345   case Decl::FunctionTemplate:
2346   case Decl::TypeAliasTemplate:
2347   case Decl::NamespaceAlias:
2348   case Decl::Block:
2349   case Decl::Import:
2350     break;
2351   case Decl::CXXConstructor:
2352     // Skip function templates
2353     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2354         cast<FunctionDecl>(D)->isLateTemplateParsed())
2355       return;
2356 
2357     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2358     break;
2359   case Decl::CXXDestructor:
2360     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2361       return;
2362     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2363     break;
2364 
2365   case Decl::StaticAssert:
2366     // Nothing to do.
2367     break;
2368 
2369   // Objective-C Decls
2370 
2371   // Forward declarations, no (immediate) code generation.
2372   case Decl::ObjCInterface:
2373     break;
2374 
2375   case Decl::ObjCCategory: {
2376     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2377     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2378       Context.ResetObjCLayout(CD->getClassInterface());
2379     break;
2380   }
2381 
2382   case Decl::ObjCProtocol: {
2383     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2384     if (Proto->isThisDeclarationADefinition())
2385       ObjCRuntime->GenerateProtocol(Proto);
2386     break;
2387   }
2388 
2389   case Decl::ObjCCategoryImpl:
2390     // Categories have properties but don't support synthesize so we
2391     // can ignore them here.
2392     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2393     break;
2394 
2395   case Decl::ObjCImplementation: {
2396     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2397     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2398       Context.ResetObjCLayout(OMD->getClassInterface());
2399     EmitObjCPropertyImplementations(OMD);
2400     EmitObjCIvarInitializations(OMD);
2401     ObjCRuntime->GenerateClass(OMD);
2402     break;
2403   }
2404   case Decl::ObjCMethod: {
2405     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2406     // If this is not a prototype, emit the body.
2407     if (OMD->getBody())
2408       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2409     break;
2410   }
2411   case Decl::ObjCCompatibleAlias:
2412     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2413     break;
2414 
2415   case Decl::LinkageSpec:
2416     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2417     break;
2418 
2419   case Decl::FileScopeAsm: {
2420     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2421     StringRef AsmString = AD->getAsmString()->getString();
2422 
2423     const std::string &S = getModule().getModuleInlineAsm();
2424     if (S.empty())
2425       getModule().setModuleInlineAsm(AsmString);
2426     else if (*--S.end() == '\n')
2427       getModule().setModuleInlineAsm(S + AsmString.str());
2428     else
2429       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2430     break;
2431   }
2432 
2433   default:
2434     // Make sure we handled everything we should, every other kind is a
2435     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2436     // function. Need to recode Decl::Kind to do that easily.
2437     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2438   }
2439 }
2440 
2441 /// Turns the given pointer into a constant.
2442 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2443                                           const void *Ptr) {
2444   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2445   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2446   return llvm::ConstantInt::get(i64, PtrInt);
2447 }
2448 
2449 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2450                                    llvm::NamedMDNode *&GlobalMetadata,
2451                                    GlobalDecl D,
2452                                    llvm::GlobalValue *Addr) {
2453   if (!GlobalMetadata)
2454     GlobalMetadata =
2455       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2456 
2457   // TODO: should we report variant information for ctors/dtors?
2458   llvm::Value *Ops[] = {
2459     Addr,
2460     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2461   };
2462   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2463 }
2464 
2465 /// Emits metadata nodes associating all the global values in the
2466 /// current module with the Decls they came from.  This is useful for
2467 /// projects using IR gen as a subroutine.
2468 ///
2469 /// Since there's currently no way to associate an MDNode directly
2470 /// with an llvm::GlobalValue, we create a global named metadata
2471 /// with the name 'clang.global.decl.ptrs'.
2472 void CodeGenModule::EmitDeclMetadata() {
2473   llvm::NamedMDNode *GlobalMetadata = 0;
2474 
2475   // StaticLocalDeclMap
2476   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2477          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2478        I != E; ++I) {
2479     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2480     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2481   }
2482 }
2483 
2484 /// Emits metadata nodes for all the local variables in the current
2485 /// function.
2486 void CodeGenFunction::EmitDeclMetadata() {
2487   if (LocalDeclMap.empty()) return;
2488 
2489   llvm::LLVMContext &Context = getLLVMContext();
2490 
2491   // Find the unique metadata ID for this name.
2492   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2493 
2494   llvm::NamedMDNode *GlobalMetadata = 0;
2495 
2496   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2497          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2498     const Decl *D = I->first;
2499     llvm::Value *Addr = I->second;
2500 
2501     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2502       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2503       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2504     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2505       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2506       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2507     }
2508   }
2509 }
2510 
2511 void CodeGenModule::EmitCoverageFile() {
2512   if (!getCodeGenOpts().CoverageFile.empty()) {
2513     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2514       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2515       llvm::LLVMContext &Ctx = TheModule.getContext();
2516       llvm::MDString *CoverageFile =
2517           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2518       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2519         llvm::MDNode *CU = CUNode->getOperand(i);
2520         llvm::Value *node[] = { CoverageFile, CU };
2521         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2522         GCov->addOperand(N);
2523       }
2524     }
2525   }
2526 }
2527