xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ecc8ac3f081b57c25b94a69a04b3088f22a2794f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 }
184 
185 CodeGenModule::~CodeGenModule() {}
186 
187 void CodeGenModule::createObjCRuntime() {
188   // This is just isGNUFamily(), but we want to force implementors of
189   // new ABIs to decide how best to do this.
190   switch (LangOpts.ObjCRuntime.getKind()) {
191   case ObjCRuntime::GNUstep:
192   case ObjCRuntime::GCC:
193   case ObjCRuntime::ObjFW:
194     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
195     return;
196 
197   case ObjCRuntime::FragileMacOSX:
198   case ObjCRuntime::MacOSX:
199   case ObjCRuntime::iOS:
200   case ObjCRuntime::WatchOS:
201     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
202     return;
203   }
204   llvm_unreachable("bad runtime kind");
205 }
206 
207 void CodeGenModule::createOpenCLRuntime() {
208   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
209 }
210 
211 void CodeGenModule::createOpenMPRuntime() {
212   // Select a specialized code generation class based on the target, if any.
213   // If it does not exist use the default implementation.
214   switch (getTriple().getArch()) {
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     assert(getLangOpts().OpenMPIsDevice &&
218            "OpenMP NVPTX is only prepared to deal with device code.");
219     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
220     break;
221   case llvm::Triple::amdgcn:
222     assert(getLangOpts().OpenMPIsDevice &&
223            "OpenMP AMDGCN is only prepared to deal with device code.");
224     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
225     break;
226   default:
227     if (LangOpts.OpenMPSimd)
228       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
229     else
230       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
231     break;
232   }
233 }
234 
235 void CodeGenModule::createCUDARuntime() {
236   CUDARuntime.reset(CreateNVCUDARuntime(*this));
237 }
238 
239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
240   Replacements[Name] = C;
241 }
242 
243 void CodeGenModule::applyReplacements() {
244   for (auto &I : Replacements) {
245     StringRef MangledName = I.first();
246     llvm::Constant *Replacement = I.second;
247     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
248     if (!Entry)
249       continue;
250     auto *OldF = cast<llvm::Function>(Entry);
251     auto *NewF = dyn_cast<llvm::Function>(Replacement);
252     if (!NewF) {
253       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
254         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
255       } else {
256         auto *CE = cast<llvm::ConstantExpr>(Replacement);
257         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
258                CE->getOpcode() == llvm::Instruction::GetElementPtr);
259         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
260       }
261     }
262 
263     // Replace old with new, but keep the old order.
264     OldF->replaceAllUsesWith(Replacement);
265     if (NewF) {
266       NewF->removeFromParent();
267       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
268                                                        NewF);
269     }
270     OldF->eraseFromParent();
271   }
272 }
273 
274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
275   GlobalValReplacements.push_back(std::make_pair(GV, C));
276 }
277 
278 void CodeGenModule::applyGlobalValReplacements() {
279   for (auto &I : GlobalValReplacements) {
280     llvm::GlobalValue *GV = I.first;
281     llvm::Constant *C = I.second;
282 
283     GV->replaceAllUsesWith(C);
284     GV->eraseFromParent();
285   }
286 }
287 
288 // This is only used in aliases that we created and we know they have a
289 // linear structure.
290 static const llvm::GlobalObject *getAliasedGlobal(
291     const llvm::GlobalIndirectSymbol &GIS) {
292   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
293   const llvm::Constant *C = &GIS;
294   for (;;) {
295     C = C->stripPointerCasts();
296     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
297       return GO;
298     // stripPointerCasts will not walk over weak aliases.
299     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
300     if (!GIS2)
301       return nullptr;
302     if (!Visited.insert(GIS2).second)
303       return nullptr;
304     C = GIS2->getIndirectSymbol();
305   }
306 }
307 
308 void CodeGenModule::checkAliases() {
309   // Check if the constructed aliases are well formed. It is really unfortunate
310   // that we have to do this in CodeGen, but we only construct mangled names
311   // and aliases during codegen.
312   bool Error = false;
313   DiagnosticsEngine &Diags = getDiags();
314   for (const GlobalDecl &GD : Aliases) {
315     const auto *D = cast<ValueDecl>(GD.getDecl());
316     SourceLocation Location;
317     bool IsIFunc = D->hasAttr<IFuncAttr>();
318     if (const Attr *A = D->getDefiningAttr())
319       Location = A->getLocation();
320     else
321       llvm_unreachable("Not an alias or ifunc?");
322     StringRef MangledName = getMangledName(GD);
323     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
324     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
325     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
326     if (!GV) {
327       Error = true;
328       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
329     } else if (GV->isDeclaration()) {
330       Error = true;
331       Diags.Report(Location, diag::err_alias_to_undefined)
332           << IsIFunc << IsIFunc;
333     } else if (IsIFunc) {
334       // Check resolver function type.
335       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
336           GV->getType()->getPointerElementType());
337       assert(FTy);
338       if (!FTy->getReturnType()->isPointerTy())
339         Diags.Report(Location, diag::err_ifunc_resolver_return);
340     }
341 
342     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
343     llvm::GlobalValue *AliaseeGV;
344     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
345       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
346     else
347       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
348 
349     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
350       StringRef AliasSection = SA->getName();
351       if (AliasSection != AliaseeGV->getSection())
352         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
353             << AliasSection << IsIFunc << IsIFunc;
354     }
355 
356     // We have to handle alias to weak aliases in here. LLVM itself disallows
357     // this since the object semantics would not match the IL one. For
358     // compatibility with gcc we implement it by just pointing the alias
359     // to its aliasee's aliasee. We also warn, since the user is probably
360     // expecting the link to be weak.
361     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
362       if (GA->isInterposable()) {
363         Diags.Report(Location, diag::warn_alias_to_weak_alias)
364             << GV->getName() << GA->getName() << IsIFunc;
365         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
366             GA->getIndirectSymbol(), Alias->getType());
367         Alias->setIndirectSymbol(Aliasee);
368       }
369     }
370   }
371   if (!Error)
372     return;
373 
374   for (const GlobalDecl &GD : Aliases) {
375     StringRef MangledName = getMangledName(GD);
376     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
377     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
378     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
379     Alias->eraseFromParent();
380   }
381 }
382 
383 void CodeGenModule::clear() {
384   DeferredDeclsToEmit.clear();
385   if (OpenMPRuntime)
386     OpenMPRuntime->clear();
387 }
388 
389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
390                                        StringRef MainFile) {
391   if (!hasDiagnostics())
392     return;
393   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
394     if (MainFile.empty())
395       MainFile = "<stdin>";
396     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
397   } else {
398     if (Mismatched > 0)
399       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
400 
401     if (Missing > 0)
402       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
403   }
404 }
405 
406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
407                                              llvm::Module &M) {
408   if (!LO.VisibilityFromDLLStorageClass)
409     return;
410 
411   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
412       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
413   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
414       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
415   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
416       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
417   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
418       CodeGenModule::GetLLVMVisibility(
419           LO.getExternDeclNoDLLStorageClassVisibility());
420 
421   for (llvm::GlobalValue &GV : M.global_values()) {
422     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
423       continue;
424 
425     // Reset DSO locality before setting the visibility. This removes
426     // any effects that visibility options and annotations may have
427     // had on the DSO locality. Setting the visibility will implicitly set
428     // appropriate globals to DSO Local; however, this will be pessimistic
429     // w.r.t. to the normal compiler IRGen.
430     GV.setDSOLocal(false);
431 
432     if (GV.isDeclarationForLinker()) {
433       GV.setVisibility(GV.getDLLStorageClass() ==
434                                llvm::GlobalValue::DLLImportStorageClass
435                            ? ExternDeclDLLImportVisibility
436                            : ExternDeclNoDLLStorageClassVisibility);
437     } else {
438       GV.setVisibility(GV.getDLLStorageClass() ==
439                                llvm::GlobalValue::DLLExportStorageClass
440                            ? DLLExportVisibility
441                            : NoDLLStorageClassVisibility);
442     }
443 
444     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
445   }
446 }
447 
448 void CodeGenModule::Release() {
449   EmitDeferred();
450   EmitVTablesOpportunistically();
451   applyGlobalValReplacements();
452   applyReplacements();
453   checkAliases();
454   emitMultiVersionFunctions();
455   EmitCXXGlobalInitFunc();
456   EmitCXXGlobalCleanUpFunc();
457   registerGlobalDtorsWithAtExit();
458   EmitCXXThreadLocalInitFunc();
459   if (ObjCRuntime)
460     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
461       AddGlobalCtor(ObjCInitFunction);
462   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
463       CUDARuntime) {
464     if (llvm::Function *CudaCtorFunction =
465             CUDARuntime->makeModuleCtorFunction())
466       AddGlobalCtor(CudaCtorFunction);
467   }
468   if (OpenMPRuntime) {
469     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
470             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
471       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
472     }
473     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
474     OpenMPRuntime->clear();
475   }
476   if (PGOReader) {
477     getModule().setProfileSummary(
478         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
479         llvm::ProfileSummary::PSK_Instr);
480     if (PGOStats.hasDiagnostics())
481       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
482   }
483   EmitCtorList(GlobalCtors, "llvm.global_ctors");
484   EmitCtorList(GlobalDtors, "llvm.global_dtors");
485   EmitGlobalAnnotations();
486   EmitStaticExternCAliases();
487   EmitDeferredUnusedCoverageMappings();
488   if (CoverageMapping)
489     CoverageMapping->emit();
490   if (CodeGenOpts.SanitizeCfiCrossDso) {
491     CodeGenFunction(*this).EmitCfiCheckFail();
492     CodeGenFunction(*this).EmitCfiCheckStub();
493   }
494   emitAtAvailableLinkGuard();
495   if (Context.getTargetInfo().getTriple().isWasm() &&
496       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
497     EmitMainVoidAlias();
498   }
499   emitLLVMUsed();
500   if (SanStats)
501     SanStats->finish();
502 
503   if (CodeGenOpts.Autolink &&
504       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
505     EmitModuleLinkOptions();
506   }
507 
508   // On ELF we pass the dependent library specifiers directly to the linker
509   // without manipulating them. This is in contrast to other platforms where
510   // they are mapped to a specific linker option by the compiler. This
511   // difference is a result of the greater variety of ELF linkers and the fact
512   // that ELF linkers tend to handle libraries in a more complicated fashion
513   // than on other platforms. This forces us to defer handling the dependent
514   // libs to the linker.
515   //
516   // CUDA/HIP device and host libraries are different. Currently there is no
517   // way to differentiate dependent libraries for host or device. Existing
518   // usage of #pragma comment(lib, *) is intended for host libraries on
519   // Windows. Therefore emit llvm.dependent-libraries only for host.
520   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
521     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
522     for (auto *MD : ELFDependentLibraries)
523       NMD->addOperand(MD);
524   }
525 
526   // Record mregparm value now so it is visible through rest of codegen.
527   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
528     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
529                               CodeGenOpts.NumRegisterParameters);
530 
531   if (CodeGenOpts.DwarfVersion) {
532     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
533                               CodeGenOpts.DwarfVersion);
534   }
535 
536   if (Context.getLangOpts().SemanticInterposition)
537     // Require various optimization to respect semantic interposition.
538     getModule().setSemanticInterposition(1);
539 
540   if (CodeGenOpts.EmitCodeView) {
541     // Indicate that we want CodeView in the metadata.
542     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
543   }
544   if (CodeGenOpts.CodeViewGHash) {
545     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
546   }
547   if (CodeGenOpts.ControlFlowGuard) {
548     // Function ID tables and checks for Control Flow Guard (cfguard=2).
549     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
550   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
551     // Function ID tables for Control Flow Guard (cfguard=1).
552     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
553   }
554   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
555     // We don't support LTO with 2 with different StrictVTablePointers
556     // FIXME: we could support it by stripping all the information introduced
557     // by StrictVTablePointers.
558 
559     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
560 
561     llvm::Metadata *Ops[2] = {
562               llvm::MDString::get(VMContext, "StrictVTablePointers"),
563               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
564                   llvm::Type::getInt32Ty(VMContext), 1))};
565 
566     getModule().addModuleFlag(llvm::Module::Require,
567                               "StrictVTablePointersRequirement",
568                               llvm::MDNode::get(VMContext, Ops));
569   }
570   if (getModuleDebugInfo())
571     // We support a single version in the linked module. The LLVM
572     // parser will drop debug info with a different version number
573     // (and warn about it, too).
574     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
575                               llvm::DEBUG_METADATA_VERSION);
576 
577   // We need to record the widths of enums and wchar_t, so that we can generate
578   // the correct build attributes in the ARM backend. wchar_size is also used by
579   // TargetLibraryInfo.
580   uint64_t WCharWidth =
581       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
582   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
583 
584   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
585   if (   Arch == llvm::Triple::arm
586       || Arch == llvm::Triple::armeb
587       || Arch == llvm::Triple::thumb
588       || Arch == llvm::Triple::thumbeb) {
589     // The minimum width of an enum in bytes
590     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
591     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
592   }
593 
594   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
595     StringRef ABIStr = Target.getABI();
596     llvm::LLVMContext &Ctx = TheModule.getContext();
597     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
598                               llvm::MDString::get(Ctx, ABIStr));
599   }
600 
601   if (CodeGenOpts.SanitizeCfiCrossDso) {
602     // Indicate that we want cross-DSO control flow integrity checks.
603     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
604   }
605 
606   if (CodeGenOpts.WholeProgramVTables) {
607     // Indicate whether VFE was enabled for this module, so that the
608     // vcall_visibility metadata added under whole program vtables is handled
609     // appropriately in the optimizer.
610     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
611                               CodeGenOpts.VirtualFunctionElimination);
612   }
613 
614   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
615     getModule().addModuleFlag(llvm::Module::Override,
616                               "CFI Canonical Jump Tables",
617                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
618   }
619 
620   if (CodeGenOpts.CFProtectionReturn &&
621       Target.checkCFProtectionReturnSupported(getDiags())) {
622     // Indicate that we want to instrument return control flow protection.
623     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
624                               1);
625   }
626 
627   if (CodeGenOpts.CFProtectionBranch &&
628       Target.checkCFProtectionBranchSupported(getDiags())) {
629     // Indicate that we want to instrument branch control flow protection.
630     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
631                               1);
632   }
633 
634   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
635       Arch == llvm::Triple::aarch64_be) {
636     getModule().addModuleFlag(llvm::Module::Error,
637                               "branch-target-enforcement",
638                               LangOpts.BranchTargetEnforcement);
639 
640     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
641                               LangOpts.hasSignReturnAddress());
642 
643     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
644                               LangOpts.isSignReturnAddressScopeAll());
645 
646     getModule().addModuleFlag(llvm::Module::Error,
647                               "sign-return-address-with-bkey",
648                               !LangOpts.isSignReturnAddressWithAKey());
649   }
650 
651   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
652     llvm::LLVMContext &Ctx = TheModule.getContext();
653     getModule().addModuleFlag(
654         llvm::Module::Error, "MemProfProfileFilename",
655         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
656   }
657 
658   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
659     // Indicate whether __nvvm_reflect should be configured to flush denormal
660     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
661     // property.)
662     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
663                               CodeGenOpts.FP32DenormalMode.Output !=
664                                   llvm::DenormalMode::IEEE);
665   }
666 
667   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
668   if (LangOpts.OpenCL) {
669     EmitOpenCLMetadata();
670     // Emit SPIR version.
671     if (getTriple().isSPIR()) {
672       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
673       // opencl.spir.version named metadata.
674       // C++ is backwards compatible with OpenCL v2.0.
675       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
676       llvm::Metadata *SPIRVerElts[] = {
677           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
678               Int32Ty, Version / 100)),
679           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
680               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
681       llvm::NamedMDNode *SPIRVerMD =
682           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
683       llvm::LLVMContext &Ctx = TheModule.getContext();
684       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
685     }
686   }
687 
688   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
689     assert(PLevel < 3 && "Invalid PIC Level");
690     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
691     if (Context.getLangOpts().PIE)
692       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
693   }
694 
695   if (getCodeGenOpts().CodeModel.size() > 0) {
696     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
697                   .Case("tiny", llvm::CodeModel::Tiny)
698                   .Case("small", llvm::CodeModel::Small)
699                   .Case("kernel", llvm::CodeModel::Kernel)
700                   .Case("medium", llvm::CodeModel::Medium)
701                   .Case("large", llvm::CodeModel::Large)
702                   .Default(~0u);
703     if (CM != ~0u) {
704       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
705       getModule().setCodeModel(codeModel);
706     }
707   }
708 
709   if (CodeGenOpts.NoPLT)
710     getModule().setRtLibUseGOT();
711 
712   SimplifyPersonality();
713 
714   if (getCodeGenOpts().EmitDeclMetadata)
715     EmitDeclMetadata();
716 
717   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
718     EmitCoverageFile();
719 
720   if (CGDebugInfo *DI = getModuleDebugInfo())
721     DI->finalize();
722 
723   if (getCodeGenOpts().EmitVersionIdentMetadata)
724     EmitVersionIdentMetadata();
725 
726   if (!getCodeGenOpts().RecordCommandLine.empty())
727     EmitCommandLineMetadata();
728 
729   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
730 
731   EmitBackendOptionsMetadata(getCodeGenOpts());
732 
733   // Set visibility from DLL storage class
734   // We do this at the end of LLVM IR generation; after any operation
735   // that might affect the DLL storage class or the visibility, and
736   // before anything that might act on these.
737   setVisibilityFromDLLStorageClass(LangOpts, getModule());
738 }
739 
740 void CodeGenModule::EmitOpenCLMetadata() {
741   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
742   // opencl.ocl.version named metadata node.
743   // C++ is backwards compatible with OpenCL v2.0.
744   // FIXME: We might need to add CXX version at some point too?
745   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
746   llvm::Metadata *OCLVerElts[] = {
747       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
748           Int32Ty, Version / 100)),
749       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
750           Int32Ty, (Version % 100) / 10))};
751   llvm::NamedMDNode *OCLVerMD =
752       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
753   llvm::LLVMContext &Ctx = TheModule.getContext();
754   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
755 }
756 
757 void CodeGenModule::EmitBackendOptionsMetadata(
758     const CodeGenOptions CodeGenOpts) {
759   switch (getTriple().getArch()) {
760   default:
761     break;
762   case llvm::Triple::riscv32:
763   case llvm::Triple::riscv64:
764     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
765                               CodeGenOpts.SmallDataLimit);
766     break;
767   }
768 }
769 
770 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
771   // Make sure that this type is translated.
772   Types.UpdateCompletedType(TD);
773 }
774 
775 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
776   // Make sure that this type is translated.
777   Types.RefreshTypeCacheForClass(RD);
778 }
779 
780 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
781   if (!TBAA)
782     return nullptr;
783   return TBAA->getTypeInfo(QTy);
784 }
785 
786 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
787   if (!TBAA)
788     return TBAAAccessInfo();
789   if (getLangOpts().CUDAIsDevice) {
790     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
791     // access info.
792     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
793       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
794           nullptr)
795         return TBAAAccessInfo();
796     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
797       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
798           nullptr)
799         return TBAAAccessInfo();
800     }
801   }
802   return TBAA->getAccessInfo(AccessType);
803 }
804 
805 TBAAAccessInfo
806 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
807   if (!TBAA)
808     return TBAAAccessInfo();
809   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
810 }
811 
812 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
813   if (!TBAA)
814     return nullptr;
815   return TBAA->getTBAAStructInfo(QTy);
816 }
817 
818 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
819   if (!TBAA)
820     return nullptr;
821   return TBAA->getBaseTypeInfo(QTy);
822 }
823 
824 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
825   if (!TBAA)
826     return nullptr;
827   return TBAA->getAccessTagInfo(Info);
828 }
829 
830 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
831                                                    TBAAAccessInfo TargetInfo) {
832   if (!TBAA)
833     return TBAAAccessInfo();
834   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
835 }
836 
837 TBAAAccessInfo
838 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
839                                                    TBAAAccessInfo InfoB) {
840   if (!TBAA)
841     return TBAAAccessInfo();
842   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
843 }
844 
845 TBAAAccessInfo
846 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
847                                               TBAAAccessInfo SrcInfo) {
848   if (!TBAA)
849     return TBAAAccessInfo();
850   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
851 }
852 
853 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
854                                                 TBAAAccessInfo TBAAInfo) {
855   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
856     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
857 }
858 
859 void CodeGenModule::DecorateInstructionWithInvariantGroup(
860     llvm::Instruction *I, const CXXRecordDecl *RD) {
861   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
862                  llvm::MDNode::get(getLLVMContext(), {}));
863 }
864 
865 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
866   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
867   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
868 }
869 
870 /// ErrorUnsupported - Print out an error that codegen doesn't support the
871 /// specified stmt yet.
872 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
873   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
874                                                "cannot compile this %0 yet");
875   std::string Msg = Type;
876   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
877       << Msg << S->getSourceRange();
878 }
879 
880 /// ErrorUnsupported - Print out an error that codegen doesn't support the
881 /// specified decl yet.
882 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
883   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
884                                                "cannot compile this %0 yet");
885   std::string Msg = Type;
886   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
887 }
888 
889 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
890   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
891 }
892 
893 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
894                                         const NamedDecl *D) const {
895   if (GV->hasDLLImportStorageClass())
896     return;
897   // Internal definitions always have default visibility.
898   if (GV->hasLocalLinkage()) {
899     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
900     return;
901   }
902   if (!D)
903     return;
904   // Set visibility for definitions, and for declarations if requested globally
905   // or set explicitly.
906   LinkageInfo LV = D->getLinkageAndVisibility();
907   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
908       !GV->isDeclarationForLinker())
909     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
910 }
911 
912 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
913                                  llvm::GlobalValue *GV) {
914   if (GV->hasLocalLinkage())
915     return true;
916 
917   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
918     return true;
919 
920   // DLLImport explicitly marks the GV as external.
921   if (GV->hasDLLImportStorageClass())
922     return false;
923 
924   const llvm::Triple &TT = CGM.getTriple();
925   if (TT.isWindowsGNUEnvironment()) {
926     // In MinGW, variables without DLLImport can still be automatically
927     // imported from a DLL by the linker; don't mark variables that
928     // potentially could come from another DLL as DSO local.
929     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
930         !GV->isThreadLocal())
931       return false;
932   }
933 
934   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
935   // remain unresolved in the link, they can be resolved to zero, which is
936   // outside the current DSO.
937   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
938     return false;
939 
940   // Every other GV is local on COFF.
941   // Make an exception for windows OS in the triple: Some firmware builds use
942   // *-win32-macho triples. This (accidentally?) produced windows relocations
943   // without GOT tables in older clang versions; Keep this behaviour.
944   // FIXME: even thread local variables?
945   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
946     return true;
947 
948   const auto &CGOpts = CGM.getCodeGenOpts();
949   llvm::Reloc::Model RM = CGOpts.RelocationModel;
950   const auto &LOpts = CGM.getLangOpts();
951 
952   if (TT.isOSBinFormatMachO()) {
953     if (RM == llvm::Reloc::Static)
954       return true;
955     return GV->isStrongDefinitionForLinker();
956   }
957 
958   // Only handle COFF and ELF for now.
959   if (!TT.isOSBinFormatELF())
960     return false;
961 
962   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
963     // On ELF, if -fno-semantic-interposition is specified and the target
964     // supports local aliases, there will be neither CC1
965     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
966     // dso_local if using a local alias is preferable (can avoid GOT
967     // indirection).
968     if (!GV->canBenefitFromLocalAlias())
969       return false;
970     return !(CGM.getLangOpts().SemanticInterposition ||
971              CGM.getLangOpts().HalfNoSemanticInterposition);
972   }
973 
974   // A definition cannot be preempted from an executable.
975   if (!GV->isDeclarationForLinker())
976     return true;
977 
978   // Most PIC code sequences that assume that a symbol is local cannot produce a
979   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
980   // depended, it seems worth it to handle it here.
981   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
982     return false;
983 
984   // PowerPC64 prefers TOC indirection to avoid copy relocations.
985   if (TT.isPPC64())
986     return false;
987 
988   if (CGOpts.DirectAccessExternalData) {
989     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
990     // for non-thread-local variables. If the symbol is not defined in the
991     // executable, a copy relocation will be needed at link time. dso_local is
992     // excluded for thread-local variables because they generally don't support
993     // copy relocations.
994     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
995       if (!Var->isThreadLocal())
996         return true;
997 
998     // -fno-pic sets dso_local on a function declaration to allow direct
999     // accesses when taking its address (similar to a data symbol). If the
1000     // function is not defined in the executable, a canonical PLT entry will be
1001     // needed at link time. -fno-direct-access-external-data can avoid the
1002     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1003     // it could just cause trouble without providing perceptible benefits.
1004     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1005       return true;
1006   }
1007 
1008   // If we can use copy relocations we can assume it is local.
1009 
1010   // Otherwise don't assume it is local.
1011   return false;
1012 }
1013 
1014 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1015   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1016 }
1017 
1018 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1019                                           GlobalDecl GD) const {
1020   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1021   // C++ destructors have a few C++ ABI specific special cases.
1022   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1023     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1024     return;
1025   }
1026   setDLLImportDLLExport(GV, D);
1027 }
1028 
1029 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1030                                           const NamedDecl *D) const {
1031   if (D && D->isExternallyVisible()) {
1032     if (D->hasAttr<DLLImportAttr>())
1033       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1034     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1035       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1036   }
1037 }
1038 
1039 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1040                                     GlobalDecl GD) const {
1041   setDLLImportDLLExport(GV, GD);
1042   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1043 }
1044 
1045 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1046                                     const NamedDecl *D) const {
1047   setDLLImportDLLExport(GV, D);
1048   setGVPropertiesAux(GV, D);
1049 }
1050 
1051 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1052                                        const NamedDecl *D) const {
1053   setGlobalVisibility(GV, D);
1054   setDSOLocal(GV);
1055   GV->setPartition(CodeGenOpts.SymbolPartition);
1056 }
1057 
1058 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1059   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1060       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1061       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1062       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1063       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1064 }
1065 
1066 llvm::GlobalVariable::ThreadLocalMode
1067 CodeGenModule::GetDefaultLLVMTLSModel() const {
1068   switch (CodeGenOpts.getDefaultTLSModel()) {
1069   case CodeGenOptions::GeneralDynamicTLSModel:
1070     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1071   case CodeGenOptions::LocalDynamicTLSModel:
1072     return llvm::GlobalVariable::LocalDynamicTLSModel;
1073   case CodeGenOptions::InitialExecTLSModel:
1074     return llvm::GlobalVariable::InitialExecTLSModel;
1075   case CodeGenOptions::LocalExecTLSModel:
1076     return llvm::GlobalVariable::LocalExecTLSModel;
1077   }
1078   llvm_unreachable("Invalid TLS model!");
1079 }
1080 
1081 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1082   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1083 
1084   llvm::GlobalValue::ThreadLocalMode TLM;
1085   TLM = GetDefaultLLVMTLSModel();
1086 
1087   // Override the TLS model if it is explicitly specified.
1088   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1089     TLM = GetLLVMTLSModel(Attr->getModel());
1090   }
1091 
1092   GV->setThreadLocalMode(TLM);
1093 }
1094 
1095 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1096                                           StringRef Name) {
1097   const TargetInfo &Target = CGM.getTarget();
1098   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1099 }
1100 
1101 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1102                                                  const CPUSpecificAttr *Attr,
1103                                                  unsigned CPUIndex,
1104                                                  raw_ostream &Out) {
1105   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1106   // supported.
1107   if (Attr)
1108     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1109   else if (CGM.getTarget().supportsIFunc())
1110     Out << ".resolver";
1111 }
1112 
1113 static void AppendTargetMangling(const CodeGenModule &CGM,
1114                                  const TargetAttr *Attr, raw_ostream &Out) {
1115   if (Attr->isDefaultVersion())
1116     return;
1117 
1118   Out << '.';
1119   const TargetInfo &Target = CGM.getTarget();
1120   ParsedTargetAttr Info =
1121       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1122         // Multiversioning doesn't allow "no-${feature}", so we can
1123         // only have "+" prefixes here.
1124         assert(LHS.startswith("+") && RHS.startswith("+") &&
1125                "Features should always have a prefix.");
1126         return Target.multiVersionSortPriority(LHS.substr(1)) >
1127                Target.multiVersionSortPriority(RHS.substr(1));
1128       });
1129 
1130   bool IsFirst = true;
1131 
1132   if (!Info.Architecture.empty()) {
1133     IsFirst = false;
1134     Out << "arch_" << Info.Architecture;
1135   }
1136 
1137   for (StringRef Feat : Info.Features) {
1138     if (!IsFirst)
1139       Out << '_';
1140     IsFirst = false;
1141     Out << Feat.substr(1);
1142   }
1143 }
1144 
1145 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1146                                       const NamedDecl *ND,
1147                                       bool OmitMultiVersionMangling = false) {
1148   SmallString<256> Buffer;
1149   llvm::raw_svector_ostream Out(Buffer);
1150   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1151   if (MC.shouldMangleDeclName(ND))
1152     MC.mangleName(GD.getWithDecl(ND), Out);
1153   else {
1154     IdentifierInfo *II = ND->getIdentifier();
1155     assert(II && "Attempt to mangle unnamed decl.");
1156     const auto *FD = dyn_cast<FunctionDecl>(ND);
1157 
1158     if (FD &&
1159         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1160       Out << "__regcall3__" << II->getName();
1161     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1162                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1163       Out << "__device_stub__" << II->getName();
1164     } else {
1165       Out << II->getName();
1166     }
1167   }
1168 
1169   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1170     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1171       switch (FD->getMultiVersionKind()) {
1172       case MultiVersionKind::CPUDispatch:
1173       case MultiVersionKind::CPUSpecific:
1174         AppendCPUSpecificCPUDispatchMangling(CGM,
1175                                              FD->getAttr<CPUSpecificAttr>(),
1176                                              GD.getMultiVersionIndex(), Out);
1177         break;
1178       case MultiVersionKind::Target:
1179         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1180         break;
1181       case MultiVersionKind::None:
1182         llvm_unreachable("None multiversion type isn't valid here");
1183       }
1184     }
1185 
1186   return std::string(Out.str());
1187 }
1188 
1189 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1190                                             const FunctionDecl *FD) {
1191   if (!FD->isMultiVersion())
1192     return;
1193 
1194   // Get the name of what this would be without the 'target' attribute.  This
1195   // allows us to lookup the version that was emitted when this wasn't a
1196   // multiversion function.
1197   std::string NonTargetName =
1198       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1199   GlobalDecl OtherGD;
1200   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1201     assert(OtherGD.getCanonicalDecl()
1202                .getDecl()
1203                ->getAsFunction()
1204                ->isMultiVersion() &&
1205            "Other GD should now be a multiversioned function");
1206     // OtherFD is the version of this function that was mangled BEFORE
1207     // becoming a MultiVersion function.  It potentially needs to be updated.
1208     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1209                                       .getDecl()
1210                                       ->getAsFunction()
1211                                       ->getMostRecentDecl();
1212     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1213     // This is so that if the initial version was already the 'default'
1214     // version, we don't try to update it.
1215     if (OtherName != NonTargetName) {
1216       // Remove instead of erase, since others may have stored the StringRef
1217       // to this.
1218       const auto ExistingRecord = Manglings.find(NonTargetName);
1219       if (ExistingRecord != std::end(Manglings))
1220         Manglings.remove(&(*ExistingRecord));
1221       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1222       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1223       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1224         Entry->setName(OtherName);
1225     }
1226   }
1227 }
1228 
1229 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1230   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1231 
1232   // Some ABIs don't have constructor variants.  Make sure that base and
1233   // complete constructors get mangled the same.
1234   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1235     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1236       CXXCtorType OrigCtorType = GD.getCtorType();
1237       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1238       if (OrigCtorType == Ctor_Base)
1239         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1240     }
1241   }
1242 
1243   auto FoundName = MangledDeclNames.find(CanonicalGD);
1244   if (FoundName != MangledDeclNames.end())
1245     return FoundName->second;
1246 
1247   // Keep the first result in the case of a mangling collision.
1248   const auto *ND = cast<NamedDecl>(GD.getDecl());
1249   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1250 
1251   // Ensure either we have different ABIs between host and device compilations,
1252   // says host compilation following MSVC ABI but device compilation follows
1253   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1254   // mangling should be the same after name stubbing. The later checking is
1255   // very important as the device kernel name being mangled in host-compilation
1256   // is used to resolve the device binaries to be executed. Inconsistent naming
1257   // result in undefined behavior. Even though we cannot check that naming
1258   // directly between host- and device-compilations, the host- and
1259   // device-mangling in host compilation could help catching certain ones.
1260   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1261          getLangOpts().CUDAIsDevice ||
1262          (getContext().getAuxTargetInfo() &&
1263           (getContext().getAuxTargetInfo()->getCXXABI() !=
1264            getContext().getTargetInfo().getCXXABI())) ||
1265          getCUDARuntime().getDeviceSideName(ND) ==
1266              getMangledNameImpl(
1267                  *this,
1268                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1269                  ND));
1270 
1271   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1272   return MangledDeclNames[CanonicalGD] = Result.first->first();
1273 }
1274 
1275 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1276                                              const BlockDecl *BD) {
1277   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1278   const Decl *D = GD.getDecl();
1279 
1280   SmallString<256> Buffer;
1281   llvm::raw_svector_ostream Out(Buffer);
1282   if (!D)
1283     MangleCtx.mangleGlobalBlock(BD,
1284       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1285   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1286     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1287   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1288     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1289   else
1290     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1291 
1292   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1293   return Result.first->first();
1294 }
1295 
1296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1297   return getModule().getNamedValue(Name);
1298 }
1299 
1300 /// AddGlobalCtor - Add a function to the list that will be called before
1301 /// main() runs.
1302 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1303                                   llvm::Constant *AssociatedData) {
1304   // FIXME: Type coercion of void()* types.
1305   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1306 }
1307 
1308 /// AddGlobalDtor - Add a function to the list that will be called
1309 /// when the module is unloaded.
1310 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1311                                   bool IsDtorAttrFunc) {
1312   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1313       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1314     DtorsUsingAtExit[Priority].push_back(Dtor);
1315     return;
1316   }
1317 
1318   // FIXME: Type coercion of void()* types.
1319   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1320 }
1321 
1322 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1323   if (Fns.empty()) return;
1324 
1325   // Ctor function type is void()*.
1326   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1327   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1328       TheModule.getDataLayout().getProgramAddressSpace());
1329 
1330   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1331   llvm::StructType *CtorStructTy = llvm::StructType::get(
1332       Int32Ty, CtorPFTy, VoidPtrTy);
1333 
1334   // Construct the constructor and destructor arrays.
1335   ConstantInitBuilder builder(*this);
1336   auto ctors = builder.beginArray(CtorStructTy);
1337   for (const auto &I : Fns) {
1338     auto ctor = ctors.beginStruct(CtorStructTy);
1339     ctor.addInt(Int32Ty, I.Priority);
1340     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1341     if (I.AssociatedData)
1342       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1343     else
1344       ctor.addNullPointer(VoidPtrTy);
1345     ctor.finishAndAddTo(ctors);
1346   }
1347 
1348   auto list =
1349     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1350                                 /*constant*/ false,
1351                                 llvm::GlobalValue::AppendingLinkage);
1352 
1353   // The LTO linker doesn't seem to like it when we set an alignment
1354   // on appending variables.  Take it off as a workaround.
1355   list->setAlignment(llvm::None);
1356 
1357   Fns.clear();
1358 }
1359 
1360 llvm::GlobalValue::LinkageTypes
1361 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1362   const auto *D = cast<FunctionDecl>(GD.getDecl());
1363 
1364   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1365 
1366   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1367     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1368 
1369   if (isa<CXXConstructorDecl>(D) &&
1370       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1371       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1372     // Our approach to inheriting constructors is fundamentally different from
1373     // that used by the MS ABI, so keep our inheriting constructor thunks
1374     // internal rather than trying to pick an unambiguous mangling for them.
1375     return llvm::GlobalValue::InternalLinkage;
1376   }
1377 
1378   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1379 }
1380 
1381 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1382   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1383   if (!MDS) return nullptr;
1384 
1385   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1386 }
1387 
1388 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1389                                               const CGFunctionInfo &Info,
1390                                               llvm::Function *F) {
1391   unsigned CallingConv;
1392   llvm::AttributeList PAL;
1393   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1394   F->setAttributes(PAL);
1395   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1396 }
1397 
1398 static void removeImageAccessQualifier(std::string& TyName) {
1399   std::string ReadOnlyQual("__read_only");
1400   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1401   if (ReadOnlyPos != std::string::npos)
1402     // "+ 1" for the space after access qualifier.
1403     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1404   else {
1405     std::string WriteOnlyQual("__write_only");
1406     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1407     if (WriteOnlyPos != std::string::npos)
1408       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1409     else {
1410       std::string ReadWriteQual("__read_write");
1411       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1412       if (ReadWritePos != std::string::npos)
1413         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1414     }
1415   }
1416 }
1417 
1418 // Returns the address space id that should be produced to the
1419 // kernel_arg_addr_space metadata. This is always fixed to the ids
1420 // as specified in the SPIR 2.0 specification in order to differentiate
1421 // for example in clGetKernelArgInfo() implementation between the address
1422 // spaces with targets without unique mapping to the OpenCL address spaces
1423 // (basically all single AS CPUs).
1424 static unsigned ArgInfoAddressSpace(LangAS AS) {
1425   switch (AS) {
1426   case LangAS::opencl_global:
1427     return 1;
1428   case LangAS::opencl_constant:
1429     return 2;
1430   case LangAS::opencl_local:
1431     return 3;
1432   case LangAS::opencl_generic:
1433     return 4; // Not in SPIR 2.0 specs.
1434   case LangAS::opencl_global_device:
1435     return 5;
1436   case LangAS::opencl_global_host:
1437     return 6;
1438   default:
1439     return 0; // Assume private.
1440   }
1441 }
1442 
1443 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1444                                          const FunctionDecl *FD,
1445                                          CodeGenFunction *CGF) {
1446   assert(((FD && CGF) || (!FD && !CGF)) &&
1447          "Incorrect use - FD and CGF should either be both null or not!");
1448   // Create MDNodes that represent the kernel arg metadata.
1449   // Each MDNode is a list in the form of "key", N number of values which is
1450   // the same number of values as their are kernel arguments.
1451 
1452   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1453 
1454   // MDNode for the kernel argument address space qualifiers.
1455   SmallVector<llvm::Metadata *, 8> addressQuals;
1456 
1457   // MDNode for the kernel argument access qualifiers (images only).
1458   SmallVector<llvm::Metadata *, 8> accessQuals;
1459 
1460   // MDNode for the kernel argument type names.
1461   SmallVector<llvm::Metadata *, 8> argTypeNames;
1462 
1463   // MDNode for the kernel argument base type names.
1464   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1465 
1466   // MDNode for the kernel argument type qualifiers.
1467   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1468 
1469   // MDNode for the kernel argument names.
1470   SmallVector<llvm::Metadata *, 8> argNames;
1471 
1472   if (FD && CGF)
1473     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1474       const ParmVarDecl *parm = FD->getParamDecl(i);
1475       QualType ty = parm->getType();
1476       std::string typeQuals;
1477 
1478       // Get image and pipe access qualifier:
1479       if (ty->isImageType() || ty->isPipeType()) {
1480         const Decl *PDecl = parm;
1481         if (auto *TD = dyn_cast<TypedefType>(ty))
1482           PDecl = TD->getDecl();
1483         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1484         if (A && A->isWriteOnly())
1485           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1486         else if (A && A->isReadWrite())
1487           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1488         else
1489           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1490       } else
1491         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1492 
1493       // Get argument name.
1494       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1495 
1496       auto getTypeSpelling = [&](QualType Ty) {
1497         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1498 
1499         if (Ty.isCanonical()) {
1500           StringRef typeNameRef = typeName;
1501           // Turn "unsigned type" to "utype"
1502           if (typeNameRef.consume_front("unsigned "))
1503             return std::string("u") + typeNameRef.str();
1504         }
1505 
1506         return typeName;
1507       };
1508 
1509       if (ty->isPointerType()) {
1510         QualType pointeeTy = ty->getPointeeType();
1511 
1512         // Get address qualifier.
1513         addressQuals.push_back(
1514             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1515                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1516 
1517         // Get argument type name.
1518         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1519         std::string baseTypeName =
1520             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1521         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1522         argBaseTypeNames.push_back(
1523             llvm::MDString::get(VMContext, baseTypeName));
1524 
1525         // Get argument type qualifiers:
1526         if (ty.isRestrictQualified())
1527           typeQuals = "restrict";
1528         if (pointeeTy.isConstQualified() ||
1529             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1530           typeQuals += typeQuals.empty() ? "const" : " const";
1531         if (pointeeTy.isVolatileQualified())
1532           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1533       } else {
1534         uint32_t AddrSpc = 0;
1535         bool isPipe = ty->isPipeType();
1536         if (ty->isImageType() || isPipe)
1537           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1538 
1539         addressQuals.push_back(
1540             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1541 
1542         // Get argument type name.
1543         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1544         std::string typeName = getTypeSpelling(ty);
1545         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1546 
1547         // Remove access qualifiers on images
1548         // (as they are inseparable from type in clang implementation,
1549         // but OpenCL spec provides a special query to get access qualifier
1550         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1551         if (ty->isImageType()) {
1552           removeImageAccessQualifier(typeName);
1553           removeImageAccessQualifier(baseTypeName);
1554         }
1555 
1556         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1557         argBaseTypeNames.push_back(
1558             llvm::MDString::get(VMContext, baseTypeName));
1559 
1560         if (isPipe)
1561           typeQuals = "pipe";
1562       }
1563       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1564     }
1565 
1566   Fn->setMetadata("kernel_arg_addr_space",
1567                   llvm::MDNode::get(VMContext, addressQuals));
1568   Fn->setMetadata("kernel_arg_access_qual",
1569                   llvm::MDNode::get(VMContext, accessQuals));
1570   Fn->setMetadata("kernel_arg_type",
1571                   llvm::MDNode::get(VMContext, argTypeNames));
1572   Fn->setMetadata("kernel_arg_base_type",
1573                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1574   Fn->setMetadata("kernel_arg_type_qual",
1575                   llvm::MDNode::get(VMContext, argTypeQuals));
1576   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1577     Fn->setMetadata("kernel_arg_name",
1578                     llvm::MDNode::get(VMContext, argNames));
1579 }
1580 
1581 /// Determines whether the language options require us to model
1582 /// unwind exceptions.  We treat -fexceptions as mandating this
1583 /// except under the fragile ObjC ABI with only ObjC exceptions
1584 /// enabled.  This means, for example, that C with -fexceptions
1585 /// enables this.
1586 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1587   // If exceptions are completely disabled, obviously this is false.
1588   if (!LangOpts.Exceptions) return false;
1589 
1590   // If C++ exceptions are enabled, this is true.
1591   if (LangOpts.CXXExceptions) return true;
1592 
1593   // If ObjC exceptions are enabled, this depends on the ABI.
1594   if (LangOpts.ObjCExceptions) {
1595     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1596   }
1597 
1598   return true;
1599 }
1600 
1601 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1602                                                       const CXXMethodDecl *MD) {
1603   // Check that the type metadata can ever actually be used by a call.
1604   if (!CGM.getCodeGenOpts().LTOUnit ||
1605       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1606     return false;
1607 
1608   // Only functions whose address can be taken with a member function pointer
1609   // need this sort of type metadata.
1610   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1611          !isa<CXXDestructorDecl>(MD);
1612 }
1613 
1614 std::vector<const CXXRecordDecl *>
1615 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1616   llvm::SetVector<const CXXRecordDecl *> MostBases;
1617 
1618   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1619   CollectMostBases = [&](const CXXRecordDecl *RD) {
1620     if (RD->getNumBases() == 0)
1621       MostBases.insert(RD);
1622     for (const CXXBaseSpecifier &B : RD->bases())
1623       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1624   };
1625   CollectMostBases(RD);
1626   return MostBases.takeVector();
1627 }
1628 
1629 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1630                                                            llvm::Function *F) {
1631   llvm::AttrBuilder B;
1632 
1633   if (CodeGenOpts.UnwindTables)
1634     B.addAttribute(llvm::Attribute::UWTable);
1635 
1636   if (CodeGenOpts.StackClashProtector)
1637     B.addAttribute("probe-stack", "inline-asm");
1638 
1639   if (!hasUnwindExceptions(LangOpts))
1640     B.addAttribute(llvm::Attribute::NoUnwind);
1641 
1642   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1643     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1644       B.addAttribute(llvm::Attribute::StackProtect);
1645     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1646       B.addAttribute(llvm::Attribute::StackProtectStrong);
1647     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1648       B.addAttribute(llvm::Attribute::StackProtectReq);
1649   }
1650 
1651   if (!D) {
1652     // If we don't have a declaration to control inlining, the function isn't
1653     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1654     // disabled, mark the function as noinline.
1655     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1656         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1657       B.addAttribute(llvm::Attribute::NoInline);
1658 
1659     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1660     return;
1661   }
1662 
1663   // Track whether we need to add the optnone LLVM attribute,
1664   // starting with the default for this optimization level.
1665   bool ShouldAddOptNone =
1666       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1667   // We can't add optnone in the following cases, it won't pass the verifier.
1668   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1669   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1670 
1671   // Add optnone, but do so only if the function isn't always_inline.
1672   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1673       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1674     B.addAttribute(llvm::Attribute::OptimizeNone);
1675 
1676     // OptimizeNone implies noinline; we should not be inlining such functions.
1677     B.addAttribute(llvm::Attribute::NoInline);
1678 
1679     // We still need to handle naked functions even though optnone subsumes
1680     // much of their semantics.
1681     if (D->hasAttr<NakedAttr>())
1682       B.addAttribute(llvm::Attribute::Naked);
1683 
1684     // OptimizeNone wins over OptimizeForSize and MinSize.
1685     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1686     F->removeFnAttr(llvm::Attribute::MinSize);
1687   } else if (D->hasAttr<NakedAttr>()) {
1688     // Naked implies noinline: we should not be inlining such functions.
1689     B.addAttribute(llvm::Attribute::Naked);
1690     B.addAttribute(llvm::Attribute::NoInline);
1691   } else if (D->hasAttr<NoDuplicateAttr>()) {
1692     B.addAttribute(llvm::Attribute::NoDuplicate);
1693   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1694     // Add noinline if the function isn't always_inline.
1695     B.addAttribute(llvm::Attribute::NoInline);
1696   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1697              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1698     // (noinline wins over always_inline, and we can't specify both in IR)
1699     B.addAttribute(llvm::Attribute::AlwaysInline);
1700   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1701     // If we're not inlining, then force everything that isn't always_inline to
1702     // carry an explicit noinline attribute.
1703     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1704       B.addAttribute(llvm::Attribute::NoInline);
1705   } else {
1706     // Otherwise, propagate the inline hint attribute and potentially use its
1707     // absence to mark things as noinline.
1708     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1709       // Search function and template pattern redeclarations for inline.
1710       auto CheckForInline = [](const FunctionDecl *FD) {
1711         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1712           return Redecl->isInlineSpecified();
1713         };
1714         if (any_of(FD->redecls(), CheckRedeclForInline))
1715           return true;
1716         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1717         if (!Pattern)
1718           return false;
1719         return any_of(Pattern->redecls(), CheckRedeclForInline);
1720       };
1721       if (CheckForInline(FD)) {
1722         B.addAttribute(llvm::Attribute::InlineHint);
1723       } else if (CodeGenOpts.getInlining() ==
1724                      CodeGenOptions::OnlyHintInlining &&
1725                  !FD->isInlined() &&
1726                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1727         B.addAttribute(llvm::Attribute::NoInline);
1728       }
1729     }
1730   }
1731 
1732   // Add other optimization related attributes if we are optimizing this
1733   // function.
1734   if (!D->hasAttr<OptimizeNoneAttr>()) {
1735     if (D->hasAttr<ColdAttr>()) {
1736       if (!ShouldAddOptNone)
1737         B.addAttribute(llvm::Attribute::OptimizeForSize);
1738       B.addAttribute(llvm::Attribute::Cold);
1739     }
1740     if (D->hasAttr<HotAttr>())
1741       B.addAttribute(llvm::Attribute::Hot);
1742     if (D->hasAttr<MinSizeAttr>())
1743       B.addAttribute(llvm::Attribute::MinSize);
1744   }
1745 
1746   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1747 
1748   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1749   if (alignment)
1750     F->setAlignment(llvm::Align(alignment));
1751 
1752   if (!D->hasAttr<AlignedAttr>())
1753     if (LangOpts.FunctionAlignment)
1754       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1755 
1756   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1757   // reserve a bit for differentiating between virtual and non-virtual member
1758   // functions. If the current target's C++ ABI requires this and this is a
1759   // member function, set its alignment accordingly.
1760   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1761     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1762       F->setAlignment(llvm::Align(2));
1763   }
1764 
1765   // In the cross-dso CFI mode with canonical jump tables, we want !type
1766   // attributes on definitions only.
1767   if (CodeGenOpts.SanitizeCfiCrossDso &&
1768       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1769     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1770       // Skip available_externally functions. They won't be codegen'ed in the
1771       // current module anyway.
1772       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1773         CreateFunctionTypeMetadataForIcall(FD, F);
1774     }
1775   }
1776 
1777   // Emit type metadata on member functions for member function pointer checks.
1778   // These are only ever necessary on definitions; we're guaranteed that the
1779   // definition will be present in the LTO unit as a result of LTO visibility.
1780   auto *MD = dyn_cast<CXXMethodDecl>(D);
1781   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1782     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1783       llvm::Metadata *Id =
1784           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1785               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1786       F->addTypeMetadata(0, Id);
1787     }
1788   }
1789 }
1790 
1791 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1792                                                   llvm::Function *F) {
1793   if (D->hasAttr<StrictFPAttr>()) {
1794     llvm::AttrBuilder FuncAttrs;
1795     FuncAttrs.addAttribute("strictfp");
1796     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1797   }
1798 }
1799 
1800 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1801   const Decl *D = GD.getDecl();
1802   if (dyn_cast_or_null<NamedDecl>(D))
1803     setGVProperties(GV, GD);
1804   else
1805     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1806 
1807   if (D && D->hasAttr<UsedAttr>())
1808     addUsedGlobal(GV);
1809 
1810   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1811     const auto *VD = cast<VarDecl>(D);
1812     if (VD->getType().isConstQualified() &&
1813         VD->getStorageDuration() == SD_Static)
1814       addUsedGlobal(GV);
1815   }
1816 }
1817 
1818 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1819                                                 llvm::AttrBuilder &Attrs) {
1820   // Add target-cpu and target-features attributes to functions. If
1821   // we have a decl for the function and it has a target attribute then
1822   // parse that and add it to the feature set.
1823   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1824   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1825   std::vector<std::string> Features;
1826   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1827   FD = FD ? FD->getMostRecentDecl() : FD;
1828   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1829   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1830   bool AddedAttr = false;
1831   if (TD || SD) {
1832     llvm::StringMap<bool> FeatureMap;
1833     getContext().getFunctionFeatureMap(FeatureMap, GD);
1834 
1835     // Produce the canonical string for this set of features.
1836     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1837       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1838 
1839     // Now add the target-cpu and target-features to the function.
1840     // While we populated the feature map above, we still need to
1841     // get and parse the target attribute so we can get the cpu for
1842     // the function.
1843     if (TD) {
1844       ParsedTargetAttr ParsedAttr = TD->parse();
1845       if (!ParsedAttr.Architecture.empty() &&
1846           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1847         TargetCPU = ParsedAttr.Architecture;
1848         TuneCPU = ""; // Clear the tune CPU.
1849       }
1850       if (!ParsedAttr.Tune.empty() &&
1851           getTarget().isValidCPUName(ParsedAttr.Tune))
1852         TuneCPU = ParsedAttr.Tune;
1853     }
1854   } else {
1855     // Otherwise just add the existing target cpu and target features to the
1856     // function.
1857     Features = getTarget().getTargetOpts().Features;
1858   }
1859 
1860   if (!TargetCPU.empty()) {
1861     Attrs.addAttribute("target-cpu", TargetCPU);
1862     AddedAttr = true;
1863   }
1864   if (!TuneCPU.empty()) {
1865     Attrs.addAttribute("tune-cpu", TuneCPU);
1866     AddedAttr = true;
1867   }
1868   if (!Features.empty()) {
1869     llvm::sort(Features);
1870     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1871     AddedAttr = true;
1872   }
1873 
1874   return AddedAttr;
1875 }
1876 
1877 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1878                                           llvm::GlobalObject *GO) {
1879   const Decl *D = GD.getDecl();
1880   SetCommonAttributes(GD, GO);
1881 
1882   if (D) {
1883     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1884       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1885         GV->addAttribute("bss-section", SA->getName());
1886       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1887         GV->addAttribute("data-section", SA->getName());
1888       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1889         GV->addAttribute("rodata-section", SA->getName());
1890       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1891         GV->addAttribute("relro-section", SA->getName());
1892     }
1893 
1894     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1895       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1896         if (!D->getAttr<SectionAttr>())
1897           F->addFnAttr("implicit-section-name", SA->getName());
1898 
1899       llvm::AttrBuilder Attrs;
1900       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1901         // We know that GetCPUAndFeaturesAttributes will always have the
1902         // newest set, since it has the newest possible FunctionDecl, so the
1903         // new ones should replace the old.
1904         llvm::AttrBuilder RemoveAttrs;
1905         RemoveAttrs.addAttribute("target-cpu");
1906         RemoveAttrs.addAttribute("target-features");
1907         RemoveAttrs.addAttribute("tune-cpu");
1908         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1909         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1910       }
1911     }
1912 
1913     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1914       GO->setSection(CSA->getName());
1915     else if (const auto *SA = D->getAttr<SectionAttr>())
1916       GO->setSection(SA->getName());
1917   }
1918 
1919   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1920 }
1921 
1922 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1923                                                   llvm::Function *F,
1924                                                   const CGFunctionInfo &FI) {
1925   const Decl *D = GD.getDecl();
1926   SetLLVMFunctionAttributes(GD, FI, F);
1927   SetLLVMFunctionAttributesForDefinition(D, F);
1928 
1929   F->setLinkage(llvm::Function::InternalLinkage);
1930 
1931   setNonAliasAttributes(GD, F);
1932 }
1933 
1934 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1935   // Set linkage and visibility in case we never see a definition.
1936   LinkageInfo LV = ND->getLinkageAndVisibility();
1937   // Don't set internal linkage on declarations.
1938   // "extern_weak" is overloaded in LLVM; we probably should have
1939   // separate linkage types for this.
1940   if (isExternallyVisible(LV.getLinkage()) &&
1941       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1942     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1943 }
1944 
1945 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1946                                                        llvm::Function *F) {
1947   // Only if we are checking indirect calls.
1948   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1949     return;
1950 
1951   // Non-static class methods are handled via vtable or member function pointer
1952   // checks elsewhere.
1953   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1954     return;
1955 
1956   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1957   F->addTypeMetadata(0, MD);
1958   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1959 
1960   // Emit a hash-based bit set entry for cross-DSO calls.
1961   if (CodeGenOpts.SanitizeCfiCrossDso)
1962     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1963       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1964 }
1965 
1966 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1967                                           bool IsIncompleteFunction,
1968                                           bool IsThunk) {
1969 
1970   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1971     // If this is an intrinsic function, set the function's attributes
1972     // to the intrinsic's attributes.
1973     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1974     return;
1975   }
1976 
1977   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1978 
1979   if (!IsIncompleteFunction)
1980     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1981 
1982   // Add the Returned attribute for "this", except for iOS 5 and earlier
1983   // where substantial code, including the libstdc++ dylib, was compiled with
1984   // GCC and does not actually return "this".
1985   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1986       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1987     assert(!F->arg_empty() &&
1988            F->arg_begin()->getType()
1989              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1990            "unexpected this return");
1991     F->addAttribute(1, llvm::Attribute::Returned);
1992   }
1993 
1994   // Only a few attributes are set on declarations; these may later be
1995   // overridden by a definition.
1996 
1997   setLinkageForGV(F, FD);
1998   setGVProperties(F, FD);
1999 
2000   // Setup target-specific attributes.
2001   if (!IsIncompleteFunction && F->isDeclaration())
2002     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2003 
2004   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2005     F->setSection(CSA->getName());
2006   else if (const auto *SA = FD->getAttr<SectionAttr>())
2007      F->setSection(SA->getName());
2008 
2009   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2010   if (FD->isInlineBuiltinDeclaration()) {
2011     const FunctionDecl *FDBody;
2012     bool HasBody = FD->hasBody(FDBody);
2013     (void)HasBody;
2014     assert(HasBody && "Inline builtin declarations should always have an "
2015                       "available body!");
2016     if (shouldEmitFunction(FDBody))
2017       F->addAttribute(llvm::AttributeList::FunctionIndex,
2018                       llvm::Attribute::NoBuiltin);
2019   }
2020 
2021   if (FD->isReplaceableGlobalAllocationFunction()) {
2022     // A replaceable global allocation function does not act like a builtin by
2023     // default, only if it is invoked by a new-expression or delete-expression.
2024     F->addAttribute(llvm::AttributeList::FunctionIndex,
2025                     llvm::Attribute::NoBuiltin);
2026   }
2027 
2028   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2029     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2030   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2031     if (MD->isVirtual())
2032       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2033 
2034   // Don't emit entries for function declarations in the cross-DSO mode. This
2035   // is handled with better precision by the receiving DSO. But if jump tables
2036   // are non-canonical then we need type metadata in order to produce the local
2037   // jump table.
2038   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2039       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2040     CreateFunctionTypeMetadataForIcall(FD, F);
2041 
2042   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2043     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2044 
2045   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2046     // Annotate the callback behavior as metadata:
2047     //  - The callback callee (as argument number).
2048     //  - The callback payloads (as argument numbers).
2049     llvm::LLVMContext &Ctx = F->getContext();
2050     llvm::MDBuilder MDB(Ctx);
2051 
2052     // The payload indices are all but the first one in the encoding. The first
2053     // identifies the callback callee.
2054     int CalleeIdx = *CB->encoding_begin();
2055     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2056     F->addMetadata(llvm::LLVMContext::MD_callback,
2057                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2058                                                CalleeIdx, PayloadIndices,
2059                                                /* VarArgsArePassed */ false)}));
2060   }
2061 }
2062 
2063 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2064   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2065          "Only globals with definition can force usage.");
2066   LLVMUsed.emplace_back(GV);
2067 }
2068 
2069 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2070   assert(!GV->isDeclaration() &&
2071          "Only globals with definition can force usage.");
2072   LLVMCompilerUsed.emplace_back(GV);
2073 }
2074 
2075 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2076                      std::vector<llvm::WeakTrackingVH> &List) {
2077   // Don't create llvm.used if there is no need.
2078   if (List.empty())
2079     return;
2080 
2081   // Convert List to what ConstantArray needs.
2082   SmallVector<llvm::Constant*, 8> UsedArray;
2083   UsedArray.resize(List.size());
2084   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2085     UsedArray[i] =
2086         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2087             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2088   }
2089 
2090   if (UsedArray.empty())
2091     return;
2092   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2093 
2094   auto *GV = new llvm::GlobalVariable(
2095       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2096       llvm::ConstantArray::get(ATy, UsedArray), Name);
2097 
2098   GV->setSection("llvm.metadata");
2099 }
2100 
2101 void CodeGenModule::emitLLVMUsed() {
2102   emitUsed(*this, "llvm.used", LLVMUsed);
2103   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2104 }
2105 
2106 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2107   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2108   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2109 }
2110 
2111 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2112   llvm::SmallString<32> Opt;
2113   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2114   if (Opt.empty())
2115     return;
2116   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2117   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2118 }
2119 
2120 void CodeGenModule::AddDependentLib(StringRef Lib) {
2121   auto &C = getLLVMContext();
2122   if (getTarget().getTriple().isOSBinFormatELF()) {
2123       ELFDependentLibraries.push_back(
2124         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2125     return;
2126   }
2127 
2128   llvm::SmallString<24> Opt;
2129   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2130   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2131   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2132 }
2133 
2134 /// Add link options implied by the given module, including modules
2135 /// it depends on, using a postorder walk.
2136 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2137                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2138                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2139   // Import this module's parent.
2140   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2141     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2142   }
2143 
2144   // Import this module's dependencies.
2145   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2146     if (Visited.insert(Mod->Imports[I - 1]).second)
2147       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2148   }
2149 
2150   // Add linker options to link against the libraries/frameworks
2151   // described by this module.
2152   llvm::LLVMContext &Context = CGM.getLLVMContext();
2153   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2154 
2155   // For modules that use export_as for linking, use that module
2156   // name instead.
2157   if (Mod->UseExportAsModuleLinkName)
2158     return;
2159 
2160   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2161     // Link against a framework.  Frameworks are currently Darwin only, so we
2162     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2163     if (Mod->LinkLibraries[I-1].IsFramework) {
2164       llvm::Metadata *Args[2] = {
2165           llvm::MDString::get(Context, "-framework"),
2166           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2167 
2168       Metadata.push_back(llvm::MDNode::get(Context, Args));
2169       continue;
2170     }
2171 
2172     // Link against a library.
2173     if (IsELF) {
2174       llvm::Metadata *Args[2] = {
2175           llvm::MDString::get(Context, "lib"),
2176           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2177       };
2178       Metadata.push_back(llvm::MDNode::get(Context, Args));
2179     } else {
2180       llvm::SmallString<24> Opt;
2181       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2182           Mod->LinkLibraries[I - 1].Library, Opt);
2183       auto *OptString = llvm::MDString::get(Context, Opt);
2184       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2185     }
2186   }
2187 }
2188 
2189 void CodeGenModule::EmitModuleLinkOptions() {
2190   // Collect the set of all of the modules we want to visit to emit link
2191   // options, which is essentially the imported modules and all of their
2192   // non-explicit child modules.
2193   llvm::SetVector<clang::Module *> LinkModules;
2194   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2195   SmallVector<clang::Module *, 16> Stack;
2196 
2197   // Seed the stack with imported modules.
2198   for (Module *M : ImportedModules) {
2199     // Do not add any link flags when an implementation TU of a module imports
2200     // a header of that same module.
2201     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2202         !getLangOpts().isCompilingModule())
2203       continue;
2204     if (Visited.insert(M).second)
2205       Stack.push_back(M);
2206   }
2207 
2208   // Find all of the modules to import, making a little effort to prune
2209   // non-leaf modules.
2210   while (!Stack.empty()) {
2211     clang::Module *Mod = Stack.pop_back_val();
2212 
2213     bool AnyChildren = false;
2214 
2215     // Visit the submodules of this module.
2216     for (const auto &SM : Mod->submodules()) {
2217       // Skip explicit children; they need to be explicitly imported to be
2218       // linked against.
2219       if (SM->IsExplicit)
2220         continue;
2221 
2222       if (Visited.insert(SM).second) {
2223         Stack.push_back(SM);
2224         AnyChildren = true;
2225       }
2226     }
2227 
2228     // We didn't find any children, so add this module to the list of
2229     // modules to link against.
2230     if (!AnyChildren) {
2231       LinkModules.insert(Mod);
2232     }
2233   }
2234 
2235   // Add link options for all of the imported modules in reverse topological
2236   // order.  We don't do anything to try to order import link flags with respect
2237   // to linker options inserted by things like #pragma comment().
2238   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2239   Visited.clear();
2240   for (Module *M : LinkModules)
2241     if (Visited.insert(M).second)
2242       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2243   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2244   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2245 
2246   // Add the linker options metadata flag.
2247   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2248   for (auto *MD : LinkerOptionsMetadata)
2249     NMD->addOperand(MD);
2250 }
2251 
2252 void CodeGenModule::EmitDeferred() {
2253   // Emit deferred declare target declarations.
2254   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2255     getOpenMPRuntime().emitDeferredTargetDecls();
2256 
2257   // Emit code for any potentially referenced deferred decls.  Since a
2258   // previously unused static decl may become used during the generation of code
2259   // for a static function, iterate until no changes are made.
2260 
2261   if (!DeferredVTables.empty()) {
2262     EmitDeferredVTables();
2263 
2264     // Emitting a vtable doesn't directly cause more vtables to
2265     // become deferred, although it can cause functions to be
2266     // emitted that then need those vtables.
2267     assert(DeferredVTables.empty());
2268   }
2269 
2270   // Emit CUDA/HIP static device variables referenced by host code only.
2271   if (getLangOpts().CUDA)
2272     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2273       DeferredDeclsToEmit.push_back(V);
2274 
2275   // Stop if we're out of both deferred vtables and deferred declarations.
2276   if (DeferredDeclsToEmit.empty())
2277     return;
2278 
2279   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2280   // work, it will not interfere with this.
2281   std::vector<GlobalDecl> CurDeclsToEmit;
2282   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2283 
2284   for (GlobalDecl &D : CurDeclsToEmit) {
2285     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2286     // to get GlobalValue with exactly the type we need, not something that
2287     // might had been created for another decl with the same mangled name but
2288     // different type.
2289     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2290         GetAddrOfGlobal(D, ForDefinition));
2291 
2292     // In case of different address spaces, we may still get a cast, even with
2293     // IsForDefinition equal to true. Query mangled names table to get
2294     // GlobalValue.
2295     if (!GV)
2296       GV = GetGlobalValue(getMangledName(D));
2297 
2298     // Make sure GetGlobalValue returned non-null.
2299     assert(GV);
2300 
2301     // Check to see if we've already emitted this.  This is necessary
2302     // for a couple of reasons: first, decls can end up in the
2303     // deferred-decls queue multiple times, and second, decls can end
2304     // up with definitions in unusual ways (e.g. by an extern inline
2305     // function acquiring a strong function redefinition).  Just
2306     // ignore these cases.
2307     if (!GV->isDeclaration())
2308       continue;
2309 
2310     // If this is OpenMP, check if it is legal to emit this global normally.
2311     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2312       continue;
2313 
2314     // Otherwise, emit the definition and move on to the next one.
2315     EmitGlobalDefinition(D, GV);
2316 
2317     // If we found out that we need to emit more decls, do that recursively.
2318     // This has the advantage that the decls are emitted in a DFS and related
2319     // ones are close together, which is convenient for testing.
2320     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2321       EmitDeferred();
2322       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2323     }
2324   }
2325 }
2326 
2327 void CodeGenModule::EmitVTablesOpportunistically() {
2328   // Try to emit external vtables as available_externally if they have emitted
2329   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2330   // is not allowed to create new references to things that need to be emitted
2331   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2332 
2333   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2334          && "Only emit opportunistic vtables with optimizations");
2335 
2336   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2337     assert(getVTables().isVTableExternal(RD) &&
2338            "This queue should only contain external vtables");
2339     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2340       VTables.GenerateClassData(RD);
2341   }
2342   OpportunisticVTables.clear();
2343 }
2344 
2345 void CodeGenModule::EmitGlobalAnnotations() {
2346   if (Annotations.empty())
2347     return;
2348 
2349   // Create a new global variable for the ConstantStruct in the Module.
2350   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2351     Annotations[0]->getType(), Annotations.size()), Annotations);
2352   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2353                                       llvm::GlobalValue::AppendingLinkage,
2354                                       Array, "llvm.global.annotations");
2355   gv->setSection(AnnotationSection);
2356 }
2357 
2358 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2359   llvm::Constant *&AStr = AnnotationStrings[Str];
2360   if (AStr)
2361     return AStr;
2362 
2363   // Not found yet, create a new global.
2364   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2365   auto *gv =
2366       new llvm::GlobalVariable(getModule(), s->getType(), true,
2367                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2368   gv->setSection(AnnotationSection);
2369   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2370   AStr = gv;
2371   return gv;
2372 }
2373 
2374 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2375   SourceManager &SM = getContext().getSourceManager();
2376   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2377   if (PLoc.isValid())
2378     return EmitAnnotationString(PLoc.getFilename());
2379   return EmitAnnotationString(SM.getBufferName(Loc));
2380 }
2381 
2382 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2383   SourceManager &SM = getContext().getSourceManager();
2384   PresumedLoc PLoc = SM.getPresumedLoc(L);
2385   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2386     SM.getExpansionLineNumber(L);
2387   return llvm::ConstantInt::get(Int32Ty, LineNo);
2388 }
2389 
2390 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2391   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2392   if (Exprs.empty())
2393     return llvm::ConstantPointerNull::get(Int8PtrTy);
2394 
2395   llvm::FoldingSetNodeID ID;
2396   for (Expr *E : Exprs) {
2397     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2398   }
2399   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2400   if (Lookup)
2401     return Lookup;
2402 
2403   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2404   LLVMArgs.reserve(Exprs.size());
2405   ConstantEmitter ConstEmiter(*this);
2406   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2407     const auto *CE = cast<clang::ConstantExpr>(E);
2408     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2409                                     CE->getType());
2410   });
2411   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2412   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2413                                       llvm::GlobalValue::PrivateLinkage, Struct,
2414                                       ".args");
2415   GV->setSection(AnnotationSection);
2416   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2417   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2418 
2419   Lookup = Bitcasted;
2420   return Bitcasted;
2421 }
2422 
2423 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2424                                                 const AnnotateAttr *AA,
2425                                                 SourceLocation L) {
2426   // Get the globals for file name, annotation, and the line number.
2427   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2428                  *UnitGV = EmitAnnotationUnit(L),
2429                  *LineNoCst = EmitAnnotationLineNo(L),
2430                  *Args = EmitAnnotationArgs(AA);
2431 
2432   llvm::Constant *ASZeroGV = GV;
2433   if (GV->getAddressSpace() != 0) {
2434     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2435                    GV, GV->getValueType()->getPointerTo(0));
2436   }
2437 
2438   // Create the ConstantStruct for the global annotation.
2439   llvm::Constant *Fields[] = {
2440       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2441       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2442       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2443       LineNoCst,
2444       Args,
2445   };
2446   return llvm::ConstantStruct::getAnon(Fields);
2447 }
2448 
2449 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2450                                          llvm::GlobalValue *GV) {
2451   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2452   // Get the struct elements for these annotations.
2453   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2454     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2455 }
2456 
2457 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2458                                            llvm::Function *Fn,
2459                                            SourceLocation Loc) const {
2460   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2461   // Blacklist by function name.
2462   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2463     return true;
2464   // Blacklist by location.
2465   if (Loc.isValid())
2466     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2467   // If location is unknown, this may be a compiler-generated function. Assume
2468   // it's located in the main file.
2469   auto &SM = Context.getSourceManager();
2470   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2471     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2472   }
2473   return false;
2474 }
2475 
2476 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2477                                            SourceLocation Loc, QualType Ty,
2478                                            StringRef Category) const {
2479   // For now globals can be blacklisted only in ASan and KASan.
2480   const SanitizerMask EnabledAsanMask =
2481       LangOpts.Sanitize.Mask &
2482       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2483        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2484        SanitizerKind::MemTag);
2485   if (!EnabledAsanMask)
2486     return false;
2487   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2488   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2489     return true;
2490   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2491     return true;
2492   // Check global type.
2493   if (!Ty.isNull()) {
2494     // Drill down the array types: if global variable of a fixed type is
2495     // blacklisted, we also don't instrument arrays of them.
2496     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2497       Ty = AT->getElementType();
2498     Ty = Ty.getCanonicalType().getUnqualifiedType();
2499     // We allow to blacklist only record types (classes, structs etc.)
2500     if (Ty->isRecordType()) {
2501       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2502       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2503         return true;
2504     }
2505   }
2506   return false;
2507 }
2508 
2509 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2510                                    StringRef Category) const {
2511   const auto &XRayFilter = getContext().getXRayFilter();
2512   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2513   auto Attr = ImbueAttr::NONE;
2514   if (Loc.isValid())
2515     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2516   if (Attr == ImbueAttr::NONE)
2517     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2518   switch (Attr) {
2519   case ImbueAttr::NONE:
2520     return false;
2521   case ImbueAttr::ALWAYS:
2522     Fn->addFnAttr("function-instrument", "xray-always");
2523     break;
2524   case ImbueAttr::ALWAYS_ARG1:
2525     Fn->addFnAttr("function-instrument", "xray-always");
2526     Fn->addFnAttr("xray-log-args", "1");
2527     break;
2528   case ImbueAttr::NEVER:
2529     Fn->addFnAttr("function-instrument", "xray-never");
2530     break;
2531   }
2532   return true;
2533 }
2534 
2535 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2536                                            SourceLocation Loc) const {
2537   const auto &ProfileList = getContext().getProfileList();
2538   // If the profile list is empty, then instrument everything.
2539   if (ProfileList.isEmpty())
2540     return false;
2541   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2542   // First, check the function name.
2543   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2544   if (V.hasValue())
2545     return *V;
2546   // Next, check the source location.
2547   if (Loc.isValid()) {
2548     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2549     if (V.hasValue())
2550       return *V;
2551   }
2552   // If location is unknown, this may be a compiler-generated function. Assume
2553   // it's located in the main file.
2554   auto &SM = Context.getSourceManager();
2555   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2556     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2557     if (V.hasValue())
2558       return *V;
2559   }
2560   return ProfileList.getDefault();
2561 }
2562 
2563 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2564   // Never defer when EmitAllDecls is specified.
2565   if (LangOpts.EmitAllDecls)
2566     return true;
2567 
2568   if (CodeGenOpts.KeepStaticConsts) {
2569     const auto *VD = dyn_cast<VarDecl>(Global);
2570     if (VD && VD->getType().isConstQualified() &&
2571         VD->getStorageDuration() == SD_Static)
2572       return true;
2573   }
2574 
2575   return getContext().DeclMustBeEmitted(Global);
2576 }
2577 
2578 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2579   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2580     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2581       // Implicit template instantiations may change linkage if they are later
2582       // explicitly instantiated, so they should not be emitted eagerly.
2583       return false;
2584     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2585     // not emit them eagerly unless we sure that the function must be emitted on
2586     // the host.
2587     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2588         !LangOpts.OpenMPIsDevice &&
2589         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2590         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2591       return false;
2592   }
2593   if (const auto *VD = dyn_cast<VarDecl>(Global))
2594     if (Context.getInlineVariableDefinitionKind(VD) ==
2595         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2596       // A definition of an inline constexpr static data member may change
2597       // linkage later if it's redeclared outside the class.
2598       return false;
2599   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2600   // codegen for global variables, because they may be marked as threadprivate.
2601   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2602       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2603       !isTypeConstant(Global->getType(), false) &&
2604       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2605     return false;
2606 
2607   return true;
2608 }
2609 
2610 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2611   StringRef Name = getMangledName(GD);
2612 
2613   // The UUID descriptor should be pointer aligned.
2614   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2615 
2616   // Look for an existing global.
2617   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2618     return ConstantAddress(GV, Alignment);
2619 
2620   ConstantEmitter Emitter(*this);
2621   llvm::Constant *Init;
2622 
2623   APValue &V = GD->getAsAPValue();
2624   if (!V.isAbsent()) {
2625     // If possible, emit the APValue version of the initializer. In particular,
2626     // this gets the type of the constant right.
2627     Init = Emitter.emitForInitializer(
2628         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2629   } else {
2630     // As a fallback, directly construct the constant.
2631     // FIXME: This may get padding wrong under esoteric struct layout rules.
2632     // MSVC appears to create a complete type 'struct __s_GUID' that it
2633     // presumably uses to represent these constants.
2634     MSGuidDecl::Parts Parts = GD->getParts();
2635     llvm::Constant *Fields[4] = {
2636         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2637         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2638         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2639         llvm::ConstantDataArray::getRaw(
2640             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2641             Int8Ty)};
2642     Init = llvm::ConstantStruct::getAnon(Fields);
2643   }
2644 
2645   auto *GV = new llvm::GlobalVariable(
2646       getModule(), Init->getType(),
2647       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2648   if (supportsCOMDAT())
2649     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2650   setDSOLocal(GV);
2651 
2652   llvm::Constant *Addr = GV;
2653   if (!V.isAbsent()) {
2654     Emitter.finalize(GV);
2655   } else {
2656     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2657     Addr = llvm::ConstantExpr::getBitCast(
2658         GV, Ty->getPointerTo(GV->getAddressSpace()));
2659   }
2660   return ConstantAddress(Addr, Alignment);
2661 }
2662 
2663 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2664     const TemplateParamObjectDecl *TPO) {
2665   StringRef Name = getMangledName(TPO);
2666   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2667 
2668   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2669     return ConstantAddress(GV, Alignment);
2670 
2671   ConstantEmitter Emitter(*this);
2672   llvm::Constant *Init = Emitter.emitForInitializer(
2673         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2674 
2675   if (!Init) {
2676     ErrorUnsupported(TPO, "template parameter object");
2677     return ConstantAddress::invalid();
2678   }
2679 
2680   auto *GV = new llvm::GlobalVariable(
2681       getModule(), Init->getType(),
2682       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2683   if (supportsCOMDAT())
2684     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2685   Emitter.finalize(GV);
2686 
2687   return ConstantAddress(GV, Alignment);
2688 }
2689 
2690 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2691   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2692   assert(AA && "No alias?");
2693 
2694   CharUnits Alignment = getContext().getDeclAlign(VD);
2695   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2696 
2697   // See if there is already something with the target's name in the module.
2698   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2699   if (Entry) {
2700     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2701     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2702     return ConstantAddress(Ptr, Alignment);
2703   }
2704 
2705   llvm::Constant *Aliasee;
2706   if (isa<llvm::FunctionType>(DeclTy))
2707     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2708                                       GlobalDecl(cast<FunctionDecl>(VD)),
2709                                       /*ForVTable=*/false);
2710   else
2711     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2712                                     llvm::PointerType::getUnqual(DeclTy),
2713                                     nullptr);
2714 
2715   auto *F = cast<llvm::GlobalValue>(Aliasee);
2716   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2717   WeakRefReferences.insert(F);
2718 
2719   return ConstantAddress(Aliasee, Alignment);
2720 }
2721 
2722 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2723   const auto *Global = cast<ValueDecl>(GD.getDecl());
2724 
2725   // Weak references don't produce any output by themselves.
2726   if (Global->hasAttr<WeakRefAttr>())
2727     return;
2728 
2729   // If this is an alias definition (which otherwise looks like a declaration)
2730   // emit it now.
2731   if (Global->hasAttr<AliasAttr>())
2732     return EmitAliasDefinition(GD);
2733 
2734   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2735   if (Global->hasAttr<IFuncAttr>())
2736     return emitIFuncDefinition(GD);
2737 
2738   // If this is a cpu_dispatch multiversion function, emit the resolver.
2739   if (Global->hasAttr<CPUDispatchAttr>())
2740     return emitCPUDispatchDefinition(GD);
2741 
2742   // If this is CUDA, be selective about which declarations we emit.
2743   if (LangOpts.CUDA) {
2744     if (LangOpts.CUDAIsDevice) {
2745       if (!Global->hasAttr<CUDADeviceAttr>() &&
2746           !Global->hasAttr<CUDAGlobalAttr>() &&
2747           !Global->hasAttr<CUDAConstantAttr>() &&
2748           !Global->hasAttr<CUDASharedAttr>() &&
2749           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2750           !Global->getType()->isCUDADeviceBuiltinTextureType())
2751         return;
2752     } else {
2753       // We need to emit host-side 'shadows' for all global
2754       // device-side variables because the CUDA runtime needs their
2755       // size and host-side address in order to provide access to
2756       // their device-side incarnations.
2757 
2758       // So device-only functions are the only things we skip.
2759       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2760           Global->hasAttr<CUDADeviceAttr>())
2761         return;
2762 
2763       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2764              "Expected Variable or Function");
2765     }
2766   }
2767 
2768   if (LangOpts.OpenMP) {
2769     // If this is OpenMP, check if it is legal to emit this global normally.
2770     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2771       return;
2772     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2773       if (MustBeEmitted(Global))
2774         EmitOMPDeclareReduction(DRD);
2775       return;
2776     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2777       if (MustBeEmitted(Global))
2778         EmitOMPDeclareMapper(DMD);
2779       return;
2780     }
2781   }
2782 
2783   // Ignore declarations, they will be emitted on their first use.
2784   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2785     // Forward declarations are emitted lazily on first use.
2786     if (!FD->doesThisDeclarationHaveABody()) {
2787       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2788         return;
2789 
2790       StringRef MangledName = getMangledName(GD);
2791 
2792       // Compute the function info and LLVM type.
2793       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2794       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2795 
2796       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2797                               /*DontDefer=*/false);
2798       return;
2799     }
2800   } else {
2801     const auto *VD = cast<VarDecl>(Global);
2802     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2803     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2804         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2805       if (LangOpts.OpenMP) {
2806         // Emit declaration of the must-be-emitted declare target variable.
2807         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2808                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2809           bool UnifiedMemoryEnabled =
2810               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2811           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2812               !UnifiedMemoryEnabled) {
2813             (void)GetAddrOfGlobalVar(VD);
2814           } else {
2815             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2816                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2817                      UnifiedMemoryEnabled)) &&
2818                    "Link clause or to clause with unified memory expected.");
2819             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2820           }
2821 
2822           return;
2823         }
2824       }
2825       // If this declaration may have caused an inline variable definition to
2826       // change linkage, make sure that it's emitted.
2827       if (Context.getInlineVariableDefinitionKind(VD) ==
2828           ASTContext::InlineVariableDefinitionKind::Strong)
2829         GetAddrOfGlobalVar(VD);
2830       return;
2831     }
2832   }
2833 
2834   // Defer code generation to first use when possible, e.g. if this is an inline
2835   // function. If the global must always be emitted, do it eagerly if possible
2836   // to benefit from cache locality.
2837   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2838     // Emit the definition if it can't be deferred.
2839     EmitGlobalDefinition(GD);
2840     return;
2841   }
2842 
2843   // If we're deferring emission of a C++ variable with an
2844   // initializer, remember the order in which it appeared in the file.
2845   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2846       cast<VarDecl>(Global)->hasInit()) {
2847     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2848     CXXGlobalInits.push_back(nullptr);
2849   }
2850 
2851   StringRef MangledName = getMangledName(GD);
2852   if (GetGlobalValue(MangledName) != nullptr) {
2853     // The value has already been used and should therefore be emitted.
2854     addDeferredDeclToEmit(GD);
2855   } else if (MustBeEmitted(Global)) {
2856     // The value must be emitted, but cannot be emitted eagerly.
2857     assert(!MayBeEmittedEagerly(Global));
2858     addDeferredDeclToEmit(GD);
2859   } else {
2860     // Otherwise, remember that we saw a deferred decl with this name.  The
2861     // first use of the mangled name will cause it to move into
2862     // DeferredDeclsToEmit.
2863     DeferredDecls[MangledName] = GD;
2864   }
2865 }
2866 
2867 // Check if T is a class type with a destructor that's not dllimport.
2868 static bool HasNonDllImportDtor(QualType T) {
2869   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2870     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2871       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2872         return true;
2873 
2874   return false;
2875 }
2876 
2877 namespace {
2878   struct FunctionIsDirectlyRecursive
2879       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2880     const StringRef Name;
2881     const Builtin::Context &BI;
2882     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2883         : Name(N), BI(C) {}
2884 
2885     bool VisitCallExpr(const CallExpr *E) {
2886       const FunctionDecl *FD = E->getDirectCallee();
2887       if (!FD)
2888         return false;
2889       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2890       if (Attr && Name == Attr->getLabel())
2891         return true;
2892       unsigned BuiltinID = FD->getBuiltinID();
2893       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2894         return false;
2895       StringRef BuiltinName = BI.getName(BuiltinID);
2896       if (BuiltinName.startswith("__builtin_") &&
2897           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2898         return true;
2899       }
2900       return false;
2901     }
2902 
2903     bool VisitStmt(const Stmt *S) {
2904       for (const Stmt *Child : S->children())
2905         if (Child && this->Visit(Child))
2906           return true;
2907       return false;
2908     }
2909   };
2910 
2911   // Make sure we're not referencing non-imported vars or functions.
2912   struct DLLImportFunctionVisitor
2913       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2914     bool SafeToInline = true;
2915 
2916     bool shouldVisitImplicitCode() const { return true; }
2917 
2918     bool VisitVarDecl(VarDecl *VD) {
2919       if (VD->getTLSKind()) {
2920         // A thread-local variable cannot be imported.
2921         SafeToInline = false;
2922         return SafeToInline;
2923       }
2924 
2925       // A variable definition might imply a destructor call.
2926       if (VD->isThisDeclarationADefinition())
2927         SafeToInline = !HasNonDllImportDtor(VD->getType());
2928 
2929       return SafeToInline;
2930     }
2931 
2932     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2933       if (const auto *D = E->getTemporary()->getDestructor())
2934         SafeToInline = D->hasAttr<DLLImportAttr>();
2935       return SafeToInline;
2936     }
2937 
2938     bool VisitDeclRefExpr(DeclRefExpr *E) {
2939       ValueDecl *VD = E->getDecl();
2940       if (isa<FunctionDecl>(VD))
2941         SafeToInline = VD->hasAttr<DLLImportAttr>();
2942       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2943         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2944       return SafeToInline;
2945     }
2946 
2947     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2948       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2949       return SafeToInline;
2950     }
2951 
2952     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2953       CXXMethodDecl *M = E->getMethodDecl();
2954       if (!M) {
2955         // Call through a pointer to member function. This is safe to inline.
2956         SafeToInline = true;
2957       } else {
2958         SafeToInline = M->hasAttr<DLLImportAttr>();
2959       }
2960       return SafeToInline;
2961     }
2962 
2963     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2964       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2965       return SafeToInline;
2966     }
2967 
2968     bool VisitCXXNewExpr(CXXNewExpr *E) {
2969       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2970       return SafeToInline;
2971     }
2972   };
2973 }
2974 
2975 // isTriviallyRecursive - Check if this function calls another
2976 // decl that, because of the asm attribute or the other decl being a builtin,
2977 // ends up pointing to itself.
2978 bool
2979 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2980   StringRef Name;
2981   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2982     // asm labels are a special kind of mangling we have to support.
2983     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2984     if (!Attr)
2985       return false;
2986     Name = Attr->getLabel();
2987   } else {
2988     Name = FD->getName();
2989   }
2990 
2991   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2992   const Stmt *Body = FD->getBody();
2993   return Body ? Walker.Visit(Body) : false;
2994 }
2995 
2996 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2997   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2998     return true;
2999   const auto *F = cast<FunctionDecl>(GD.getDecl());
3000   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3001     return false;
3002 
3003   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3004     // Check whether it would be safe to inline this dllimport function.
3005     DLLImportFunctionVisitor Visitor;
3006     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3007     if (!Visitor.SafeToInline)
3008       return false;
3009 
3010     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3011       // Implicit destructor invocations aren't captured in the AST, so the
3012       // check above can't see them. Check for them manually here.
3013       for (const Decl *Member : Dtor->getParent()->decls())
3014         if (isa<FieldDecl>(Member))
3015           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3016             return false;
3017       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3018         if (HasNonDllImportDtor(B.getType()))
3019           return false;
3020     }
3021   }
3022 
3023   // PR9614. Avoid cases where the source code is lying to us. An available
3024   // externally function should have an equivalent function somewhere else,
3025   // but a function that calls itself through asm label/`__builtin_` trickery is
3026   // clearly not equivalent to the real implementation.
3027   // This happens in glibc's btowc and in some configure checks.
3028   return !isTriviallyRecursive(F);
3029 }
3030 
3031 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3032   return CodeGenOpts.OptimizationLevel > 0;
3033 }
3034 
3035 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3036                                                        llvm::GlobalValue *GV) {
3037   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3038 
3039   if (FD->isCPUSpecificMultiVersion()) {
3040     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3041     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3042       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3043     // Requires multiple emits.
3044   } else
3045     EmitGlobalFunctionDefinition(GD, GV);
3046 }
3047 
3048 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3049   const auto *D = cast<ValueDecl>(GD.getDecl());
3050 
3051   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3052                                  Context.getSourceManager(),
3053                                  "Generating code for declaration");
3054 
3055   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3056     // At -O0, don't generate IR for functions with available_externally
3057     // linkage.
3058     if (!shouldEmitFunction(GD))
3059       return;
3060 
3061     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3062       std::string Name;
3063       llvm::raw_string_ostream OS(Name);
3064       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3065                                /*Qualified=*/true);
3066       return Name;
3067     });
3068 
3069     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3070       // Make sure to emit the definition(s) before we emit the thunks.
3071       // This is necessary for the generation of certain thunks.
3072       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3073         ABI->emitCXXStructor(GD);
3074       else if (FD->isMultiVersion())
3075         EmitMultiVersionFunctionDefinition(GD, GV);
3076       else
3077         EmitGlobalFunctionDefinition(GD, GV);
3078 
3079       if (Method->isVirtual())
3080         getVTables().EmitThunks(GD);
3081 
3082       return;
3083     }
3084 
3085     if (FD->isMultiVersion())
3086       return EmitMultiVersionFunctionDefinition(GD, GV);
3087     return EmitGlobalFunctionDefinition(GD, GV);
3088   }
3089 
3090   if (const auto *VD = dyn_cast<VarDecl>(D))
3091     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3092 
3093   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3094 }
3095 
3096 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3097                                                       llvm::Function *NewFn);
3098 
3099 static unsigned
3100 TargetMVPriority(const TargetInfo &TI,
3101                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3102   unsigned Priority = 0;
3103   for (StringRef Feat : RO.Conditions.Features)
3104     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3105 
3106   if (!RO.Conditions.Architecture.empty())
3107     Priority = std::max(
3108         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3109   return Priority;
3110 }
3111 
3112 void CodeGenModule::emitMultiVersionFunctions() {
3113   for (GlobalDecl GD : MultiVersionFuncs) {
3114     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3115     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3116     getContext().forEachMultiversionedFunctionVersion(
3117         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3118           GlobalDecl CurGD{
3119               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3120           StringRef MangledName = getMangledName(CurGD);
3121           llvm::Constant *Func = GetGlobalValue(MangledName);
3122           if (!Func) {
3123             if (CurFD->isDefined()) {
3124               EmitGlobalFunctionDefinition(CurGD, nullptr);
3125               Func = GetGlobalValue(MangledName);
3126             } else {
3127               const CGFunctionInfo &FI =
3128                   getTypes().arrangeGlobalDeclaration(GD);
3129               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3130               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3131                                        /*DontDefer=*/false, ForDefinition);
3132             }
3133             assert(Func && "This should have just been created");
3134           }
3135 
3136           const auto *TA = CurFD->getAttr<TargetAttr>();
3137           llvm::SmallVector<StringRef, 8> Feats;
3138           TA->getAddedFeatures(Feats);
3139 
3140           Options.emplace_back(cast<llvm::Function>(Func),
3141                                TA->getArchitecture(), Feats);
3142         });
3143 
3144     llvm::Function *ResolverFunc;
3145     const TargetInfo &TI = getTarget();
3146 
3147     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3148       ResolverFunc = cast<llvm::Function>(
3149           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3150       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3151     } else {
3152       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3153     }
3154 
3155     if (supportsCOMDAT())
3156       ResolverFunc->setComdat(
3157           getModule().getOrInsertComdat(ResolverFunc->getName()));
3158 
3159     llvm::stable_sort(
3160         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3161                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3162           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3163         });
3164     CodeGenFunction CGF(*this);
3165     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3166   }
3167 }
3168 
3169 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3170   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3171   assert(FD && "Not a FunctionDecl?");
3172   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3173   assert(DD && "Not a cpu_dispatch Function?");
3174   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3175 
3176   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3177     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3178     DeclTy = getTypes().GetFunctionType(FInfo);
3179   }
3180 
3181   StringRef ResolverName = getMangledName(GD);
3182 
3183   llvm::Type *ResolverType;
3184   GlobalDecl ResolverGD;
3185   if (getTarget().supportsIFunc())
3186     ResolverType = llvm::FunctionType::get(
3187         llvm::PointerType::get(DeclTy,
3188                                Context.getTargetAddressSpace(FD->getType())),
3189         false);
3190   else {
3191     ResolverType = DeclTy;
3192     ResolverGD = GD;
3193   }
3194 
3195   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3196       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3197   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3198   if (supportsCOMDAT())
3199     ResolverFunc->setComdat(
3200         getModule().getOrInsertComdat(ResolverFunc->getName()));
3201 
3202   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3203   const TargetInfo &Target = getTarget();
3204   unsigned Index = 0;
3205   for (const IdentifierInfo *II : DD->cpus()) {
3206     // Get the name of the target function so we can look it up/create it.
3207     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3208                               getCPUSpecificMangling(*this, II->getName());
3209 
3210     llvm::Constant *Func = GetGlobalValue(MangledName);
3211 
3212     if (!Func) {
3213       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3214       if (ExistingDecl.getDecl() &&
3215           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3216         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3217         Func = GetGlobalValue(MangledName);
3218       } else {
3219         if (!ExistingDecl.getDecl())
3220           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3221 
3222       Func = GetOrCreateLLVMFunction(
3223           MangledName, DeclTy, ExistingDecl,
3224           /*ForVTable=*/false, /*DontDefer=*/true,
3225           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3226       }
3227     }
3228 
3229     llvm::SmallVector<StringRef, 32> Features;
3230     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3231     llvm::transform(Features, Features.begin(),
3232                     [](StringRef Str) { return Str.substr(1); });
3233     Features.erase(std::remove_if(
3234         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3235           return !Target.validateCpuSupports(Feat);
3236         }), Features.end());
3237     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3238     ++Index;
3239   }
3240 
3241   llvm::sort(
3242       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3243                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3244         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3245                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3246       });
3247 
3248   // If the list contains multiple 'default' versions, such as when it contains
3249   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3250   // always run on at least a 'pentium'). We do this by deleting the 'least
3251   // advanced' (read, lowest mangling letter).
3252   while (Options.size() > 1 &&
3253          CodeGenFunction::GetX86CpuSupportsMask(
3254              (Options.end() - 2)->Conditions.Features) == 0) {
3255     StringRef LHSName = (Options.end() - 2)->Function->getName();
3256     StringRef RHSName = (Options.end() - 1)->Function->getName();
3257     if (LHSName.compare(RHSName) < 0)
3258       Options.erase(Options.end() - 2);
3259     else
3260       Options.erase(Options.end() - 1);
3261   }
3262 
3263   CodeGenFunction CGF(*this);
3264   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3265 
3266   if (getTarget().supportsIFunc()) {
3267     std::string AliasName = getMangledNameImpl(
3268         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3269     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3270     if (!AliasFunc) {
3271       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3272           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3273           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3274       auto *GA = llvm::GlobalAlias::create(
3275          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3276       GA->setLinkage(llvm::Function::WeakODRLinkage);
3277       SetCommonAttributes(GD, GA);
3278     }
3279   }
3280 }
3281 
3282 /// If a dispatcher for the specified mangled name is not in the module, create
3283 /// and return an llvm Function with the specified type.
3284 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3285     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3286   std::string MangledName =
3287       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3288 
3289   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3290   // a separate resolver).
3291   std::string ResolverName = MangledName;
3292   if (getTarget().supportsIFunc())
3293     ResolverName += ".ifunc";
3294   else if (FD->isTargetMultiVersion())
3295     ResolverName += ".resolver";
3296 
3297   // If this already exists, just return that one.
3298   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3299     return ResolverGV;
3300 
3301   // Since this is the first time we've created this IFunc, make sure
3302   // that we put this multiversioned function into the list to be
3303   // replaced later if necessary (target multiversioning only).
3304   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3305     MultiVersionFuncs.push_back(GD);
3306 
3307   if (getTarget().supportsIFunc()) {
3308     llvm::Type *ResolverType = llvm::FunctionType::get(
3309         llvm::PointerType::get(
3310             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3311         false);
3312     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3313         MangledName + ".resolver", ResolverType, GlobalDecl{},
3314         /*ForVTable=*/false);
3315     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3316         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3317     GIF->setName(ResolverName);
3318     SetCommonAttributes(FD, GIF);
3319 
3320     return GIF;
3321   }
3322 
3323   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3324       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3325   assert(isa<llvm::GlobalValue>(Resolver) &&
3326          "Resolver should be created for the first time");
3327   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3328   return Resolver;
3329 }
3330 
3331 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3332 /// module, create and return an llvm Function with the specified type. If there
3333 /// is something in the module with the specified name, return it potentially
3334 /// bitcasted to the right type.
3335 ///
3336 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3337 /// to set the attributes on the function when it is first created.
3338 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3339     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3340     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3341     ForDefinition_t IsForDefinition) {
3342   const Decl *D = GD.getDecl();
3343 
3344   // Any attempts to use a MultiVersion function should result in retrieving
3345   // the iFunc instead. Name Mangling will handle the rest of the changes.
3346   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3347     // For the device mark the function as one that should be emitted.
3348     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3349         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3350         !DontDefer && !IsForDefinition) {
3351       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3352         GlobalDecl GDDef;
3353         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3354           GDDef = GlobalDecl(CD, GD.getCtorType());
3355         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3356           GDDef = GlobalDecl(DD, GD.getDtorType());
3357         else
3358           GDDef = GlobalDecl(FDDef);
3359         EmitGlobal(GDDef);
3360       }
3361     }
3362 
3363     if (FD->isMultiVersion()) {
3364       if (FD->hasAttr<TargetAttr>())
3365         UpdateMultiVersionNames(GD, FD);
3366       if (!IsForDefinition)
3367         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3368     }
3369   }
3370 
3371   // Lookup the entry, lazily creating it if necessary.
3372   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3373   if (Entry) {
3374     if (WeakRefReferences.erase(Entry)) {
3375       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3376       if (FD && !FD->hasAttr<WeakAttr>())
3377         Entry->setLinkage(llvm::Function::ExternalLinkage);
3378     }
3379 
3380     // Handle dropped DLL attributes.
3381     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3382       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3383       setDSOLocal(Entry);
3384     }
3385 
3386     // If there are two attempts to define the same mangled name, issue an
3387     // error.
3388     if (IsForDefinition && !Entry->isDeclaration()) {
3389       GlobalDecl OtherGD;
3390       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3391       // to make sure that we issue an error only once.
3392       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3393           (GD.getCanonicalDecl().getDecl() !=
3394            OtherGD.getCanonicalDecl().getDecl()) &&
3395           DiagnosedConflictingDefinitions.insert(GD).second) {
3396         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3397             << MangledName;
3398         getDiags().Report(OtherGD.getDecl()->getLocation(),
3399                           diag::note_previous_definition);
3400       }
3401     }
3402 
3403     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3404         (Entry->getValueType() == Ty)) {
3405       return Entry;
3406     }
3407 
3408     // Make sure the result is of the correct type.
3409     // (If function is requested for a definition, we always need to create a new
3410     // function, not just return a bitcast.)
3411     if (!IsForDefinition)
3412       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3413   }
3414 
3415   // This function doesn't have a complete type (for example, the return
3416   // type is an incomplete struct). Use a fake type instead, and make
3417   // sure not to try to set attributes.
3418   bool IsIncompleteFunction = false;
3419 
3420   llvm::FunctionType *FTy;
3421   if (isa<llvm::FunctionType>(Ty)) {
3422     FTy = cast<llvm::FunctionType>(Ty);
3423   } else {
3424     FTy = llvm::FunctionType::get(VoidTy, false);
3425     IsIncompleteFunction = true;
3426   }
3427 
3428   llvm::Function *F =
3429       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3430                              Entry ? StringRef() : MangledName, &getModule());
3431 
3432   // If we already created a function with the same mangled name (but different
3433   // type) before, take its name and add it to the list of functions to be
3434   // replaced with F at the end of CodeGen.
3435   //
3436   // This happens if there is a prototype for a function (e.g. "int f()") and
3437   // then a definition of a different type (e.g. "int f(int x)").
3438   if (Entry) {
3439     F->takeName(Entry);
3440 
3441     // This might be an implementation of a function without a prototype, in
3442     // which case, try to do special replacement of calls which match the new
3443     // prototype.  The really key thing here is that we also potentially drop
3444     // arguments from the call site so as to make a direct call, which makes the
3445     // inliner happier and suppresses a number of optimizer warnings (!) about
3446     // dropping arguments.
3447     if (!Entry->use_empty()) {
3448       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3449       Entry->removeDeadConstantUsers();
3450     }
3451 
3452     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3453         F, Entry->getValueType()->getPointerTo());
3454     addGlobalValReplacement(Entry, BC);
3455   }
3456 
3457   assert(F->getName() == MangledName && "name was uniqued!");
3458   if (D)
3459     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3460   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3461     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3462     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3463   }
3464 
3465   if (!DontDefer) {
3466     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3467     // each other bottoming out with the base dtor.  Therefore we emit non-base
3468     // dtors on usage, even if there is no dtor definition in the TU.
3469     if (D && isa<CXXDestructorDecl>(D) &&
3470         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3471                                            GD.getDtorType()))
3472       addDeferredDeclToEmit(GD);
3473 
3474     // This is the first use or definition of a mangled name.  If there is a
3475     // deferred decl with this name, remember that we need to emit it at the end
3476     // of the file.
3477     auto DDI = DeferredDecls.find(MangledName);
3478     if (DDI != DeferredDecls.end()) {
3479       // Move the potentially referenced deferred decl to the
3480       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3481       // don't need it anymore).
3482       addDeferredDeclToEmit(DDI->second);
3483       DeferredDecls.erase(DDI);
3484 
3485       // Otherwise, there are cases we have to worry about where we're
3486       // using a declaration for which we must emit a definition but where
3487       // we might not find a top-level definition:
3488       //   - member functions defined inline in their classes
3489       //   - friend functions defined inline in some class
3490       //   - special member functions with implicit definitions
3491       // If we ever change our AST traversal to walk into class methods,
3492       // this will be unnecessary.
3493       //
3494       // We also don't emit a definition for a function if it's going to be an
3495       // entry in a vtable, unless it's already marked as used.
3496     } else if (getLangOpts().CPlusPlus && D) {
3497       // Look for a declaration that's lexically in a record.
3498       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3499            FD = FD->getPreviousDecl()) {
3500         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3501           if (FD->doesThisDeclarationHaveABody()) {
3502             addDeferredDeclToEmit(GD.getWithDecl(FD));
3503             break;
3504           }
3505         }
3506       }
3507     }
3508   }
3509 
3510   // Make sure the result is of the requested type.
3511   if (!IsIncompleteFunction) {
3512     assert(F->getFunctionType() == Ty);
3513     return F;
3514   }
3515 
3516   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3517   return llvm::ConstantExpr::getBitCast(F, PTy);
3518 }
3519 
3520 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3521 /// non-null, then this function will use the specified type if it has to
3522 /// create it (this occurs when we see a definition of the function).
3523 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3524                                                  llvm::Type *Ty,
3525                                                  bool ForVTable,
3526                                                  bool DontDefer,
3527                                               ForDefinition_t IsForDefinition) {
3528   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3529          "consteval function should never be emitted");
3530   // If there was no specific requested type, just convert it now.
3531   if (!Ty) {
3532     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3533     Ty = getTypes().ConvertType(FD->getType());
3534   }
3535 
3536   // Devirtualized destructor calls may come through here instead of via
3537   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3538   // of the complete destructor when necessary.
3539   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3540     if (getTarget().getCXXABI().isMicrosoft() &&
3541         GD.getDtorType() == Dtor_Complete &&
3542         DD->getParent()->getNumVBases() == 0)
3543       GD = GlobalDecl(DD, Dtor_Base);
3544   }
3545 
3546   StringRef MangledName = getMangledName(GD);
3547   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3548                                  /*IsThunk=*/false, llvm::AttributeList(),
3549                                  IsForDefinition);
3550 }
3551 
3552 static const FunctionDecl *
3553 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3554   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3555   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3556 
3557   IdentifierInfo &CII = C.Idents.get(Name);
3558   for (const auto &Result : DC->lookup(&CII))
3559     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3560       return FD;
3561 
3562   if (!C.getLangOpts().CPlusPlus)
3563     return nullptr;
3564 
3565   // Demangle the premangled name from getTerminateFn()
3566   IdentifierInfo &CXXII =
3567       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3568           ? C.Idents.get("terminate")
3569           : C.Idents.get(Name);
3570 
3571   for (const auto &N : {"__cxxabiv1", "std"}) {
3572     IdentifierInfo &NS = C.Idents.get(N);
3573     for (const auto &Result : DC->lookup(&NS)) {
3574       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3575       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3576         for (const auto &Result : LSD->lookup(&NS))
3577           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3578             break;
3579 
3580       if (ND)
3581         for (const auto &Result : ND->lookup(&CXXII))
3582           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3583             return FD;
3584     }
3585   }
3586 
3587   return nullptr;
3588 }
3589 
3590 /// CreateRuntimeFunction - Create a new runtime function with the specified
3591 /// type and name.
3592 llvm::FunctionCallee
3593 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3594                                      llvm::AttributeList ExtraAttrs, bool Local,
3595                                      bool AssumeConvergent) {
3596   if (AssumeConvergent) {
3597     ExtraAttrs =
3598         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3599                                 llvm::Attribute::Convergent);
3600   }
3601 
3602   llvm::Constant *C =
3603       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3604                               /*DontDefer=*/false, /*IsThunk=*/false,
3605                               ExtraAttrs);
3606 
3607   if (auto *F = dyn_cast<llvm::Function>(C)) {
3608     if (F->empty()) {
3609       F->setCallingConv(getRuntimeCC());
3610 
3611       // In Windows Itanium environments, try to mark runtime functions
3612       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3613       // will link their standard library statically or dynamically. Marking
3614       // functions imported when they are not imported can cause linker errors
3615       // and warnings.
3616       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3617           !getCodeGenOpts().LTOVisibilityPublicStd) {
3618         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3619         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3620           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3621           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3622         }
3623       }
3624       setDSOLocal(F);
3625     }
3626   }
3627 
3628   return {FTy, C};
3629 }
3630 
3631 /// isTypeConstant - Determine whether an object of this type can be emitted
3632 /// as a constant.
3633 ///
3634 /// If ExcludeCtor is true, the duration when the object's constructor runs
3635 /// will not be considered. The caller will need to verify that the object is
3636 /// not written to during its construction.
3637 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3638   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3639     return false;
3640 
3641   if (Context.getLangOpts().CPlusPlus) {
3642     if (const CXXRecordDecl *Record
3643           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3644       return ExcludeCtor && !Record->hasMutableFields() &&
3645              Record->hasTrivialDestructor();
3646   }
3647 
3648   return true;
3649 }
3650 
3651 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3652 /// create and return an llvm GlobalVariable with the specified type.  If there
3653 /// is something in the module with the specified name, return it potentially
3654 /// bitcasted to the right type.
3655 ///
3656 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3657 /// to set the attributes on the global when it is first created.
3658 ///
3659 /// If IsForDefinition is true, it is guaranteed that an actual global with
3660 /// type Ty will be returned, not conversion of a variable with the same
3661 /// mangled name but some other type.
3662 llvm::Constant *
3663 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3664                                      llvm::PointerType *Ty,
3665                                      const VarDecl *D,
3666                                      ForDefinition_t IsForDefinition) {
3667   // Lookup the entry, lazily creating it if necessary.
3668   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3669   if (Entry) {
3670     if (WeakRefReferences.erase(Entry)) {
3671       if (D && !D->hasAttr<WeakAttr>())
3672         Entry->setLinkage(llvm::Function::ExternalLinkage);
3673     }
3674 
3675     // Handle dropped DLL attributes.
3676     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3677       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3678 
3679     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3680       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3681 
3682     if (Entry->getType() == Ty)
3683       return Entry;
3684 
3685     // If there are two attempts to define the same mangled name, issue an
3686     // error.
3687     if (IsForDefinition && !Entry->isDeclaration()) {
3688       GlobalDecl OtherGD;
3689       const VarDecl *OtherD;
3690 
3691       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3692       // to make sure that we issue an error only once.
3693       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3694           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3695           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3696           OtherD->hasInit() &&
3697           DiagnosedConflictingDefinitions.insert(D).second) {
3698         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3699             << MangledName;
3700         getDiags().Report(OtherGD.getDecl()->getLocation(),
3701                           diag::note_previous_definition);
3702       }
3703     }
3704 
3705     // Make sure the result is of the correct type.
3706     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3707       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3708 
3709     // (If global is requested for a definition, we always need to create a new
3710     // global, not just return a bitcast.)
3711     if (!IsForDefinition)
3712       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3713   }
3714 
3715   auto AddrSpace = GetGlobalVarAddressSpace(D);
3716   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3717 
3718   auto *GV = new llvm::GlobalVariable(
3719       getModule(), Ty->getElementType(), false,
3720       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3721       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3722 
3723   // If we already created a global with the same mangled name (but different
3724   // type) before, take its name and remove it from its parent.
3725   if (Entry) {
3726     GV->takeName(Entry);
3727 
3728     if (!Entry->use_empty()) {
3729       llvm::Constant *NewPtrForOldDecl =
3730           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3731       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3732     }
3733 
3734     Entry->eraseFromParent();
3735   }
3736 
3737   // This is the first use or definition of a mangled name.  If there is a
3738   // deferred decl with this name, remember that we need to emit it at the end
3739   // of the file.
3740   auto DDI = DeferredDecls.find(MangledName);
3741   if (DDI != DeferredDecls.end()) {
3742     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3743     // list, and remove it from DeferredDecls (since we don't need it anymore).
3744     addDeferredDeclToEmit(DDI->second);
3745     DeferredDecls.erase(DDI);
3746   }
3747 
3748   // Handle things which are present even on external declarations.
3749   if (D) {
3750     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3751       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3752 
3753     // FIXME: This code is overly simple and should be merged with other global
3754     // handling.
3755     GV->setConstant(isTypeConstant(D->getType(), false));
3756 
3757     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3758 
3759     setLinkageForGV(GV, D);
3760 
3761     if (D->getTLSKind()) {
3762       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3763         CXXThreadLocals.push_back(D);
3764       setTLSMode(GV, *D);
3765     }
3766 
3767     setGVProperties(GV, D);
3768 
3769     // If required by the ABI, treat declarations of static data members with
3770     // inline initializers as definitions.
3771     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3772       EmitGlobalVarDefinition(D);
3773     }
3774 
3775     // Emit section information for extern variables.
3776     if (D->hasExternalStorage()) {
3777       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3778         GV->setSection(SA->getName());
3779     }
3780 
3781     // Handle XCore specific ABI requirements.
3782     if (getTriple().getArch() == llvm::Triple::xcore &&
3783         D->getLanguageLinkage() == CLanguageLinkage &&
3784         D->getType().isConstant(Context) &&
3785         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3786       GV->setSection(".cp.rodata");
3787 
3788     // Check if we a have a const declaration with an initializer, we may be
3789     // able to emit it as available_externally to expose it's value to the
3790     // optimizer.
3791     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3792         D->getType().isConstQualified() && !GV->hasInitializer() &&
3793         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3794       const auto *Record =
3795           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3796       bool HasMutableFields = Record && Record->hasMutableFields();
3797       if (!HasMutableFields) {
3798         const VarDecl *InitDecl;
3799         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3800         if (InitExpr) {
3801           ConstantEmitter emitter(*this);
3802           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3803           if (Init) {
3804             auto *InitType = Init->getType();
3805             if (GV->getValueType() != InitType) {
3806               // The type of the initializer does not match the definition.
3807               // This happens when an initializer has a different type from
3808               // the type of the global (because of padding at the end of a
3809               // structure for instance).
3810               GV->setName(StringRef());
3811               // Make a new global with the correct type, this is now guaranteed
3812               // to work.
3813               auto *NewGV = cast<llvm::GlobalVariable>(
3814                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3815                       ->stripPointerCasts());
3816 
3817               // Erase the old global, since it is no longer used.
3818               GV->eraseFromParent();
3819               GV = NewGV;
3820             } else {
3821               GV->setInitializer(Init);
3822               GV->setConstant(true);
3823               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3824             }
3825             emitter.finalize(GV);
3826           }
3827         }
3828       }
3829     }
3830   }
3831 
3832   if (GV->isDeclaration())
3833     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3834 
3835   LangAS ExpectedAS =
3836       D ? D->getType().getAddressSpace()
3837         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3838   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3839          Ty->getPointerAddressSpace());
3840   if (AddrSpace != ExpectedAS)
3841     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3842                                                        ExpectedAS, Ty);
3843 
3844   return GV;
3845 }
3846 
3847 llvm::Constant *
3848 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3849   const Decl *D = GD.getDecl();
3850 
3851   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3852     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3853                                 /*DontDefer=*/false, IsForDefinition);
3854 
3855   if (isa<CXXMethodDecl>(D)) {
3856     auto FInfo =
3857         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3858     auto Ty = getTypes().GetFunctionType(*FInfo);
3859     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3860                              IsForDefinition);
3861   }
3862 
3863   if (isa<FunctionDecl>(D)) {
3864     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3865     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3866     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3867                              IsForDefinition);
3868   }
3869 
3870   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3871 }
3872 
3873 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3874     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3875     unsigned Alignment) {
3876   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3877   llvm::GlobalVariable *OldGV = nullptr;
3878 
3879   if (GV) {
3880     // Check if the variable has the right type.
3881     if (GV->getValueType() == Ty)
3882       return GV;
3883 
3884     // Because C++ name mangling, the only way we can end up with an already
3885     // existing global with the same name is if it has been declared extern "C".
3886     assert(GV->isDeclaration() && "Declaration has wrong type!");
3887     OldGV = GV;
3888   }
3889 
3890   // Create a new variable.
3891   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3892                                 Linkage, nullptr, Name);
3893 
3894   if (OldGV) {
3895     // Replace occurrences of the old variable if needed.
3896     GV->takeName(OldGV);
3897 
3898     if (!OldGV->use_empty()) {
3899       llvm::Constant *NewPtrForOldDecl =
3900       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3901       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3902     }
3903 
3904     OldGV->eraseFromParent();
3905   }
3906 
3907   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3908       !GV->hasAvailableExternallyLinkage())
3909     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3910 
3911   GV->setAlignment(llvm::MaybeAlign(Alignment));
3912 
3913   return GV;
3914 }
3915 
3916 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3917 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3918 /// then it will be created with the specified type instead of whatever the
3919 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3920 /// that an actual global with type Ty will be returned, not conversion of a
3921 /// variable with the same mangled name but some other type.
3922 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3923                                                   llvm::Type *Ty,
3924                                            ForDefinition_t IsForDefinition) {
3925   assert(D->hasGlobalStorage() && "Not a global variable");
3926   QualType ASTTy = D->getType();
3927   if (!Ty)
3928     Ty = getTypes().ConvertTypeForMem(ASTTy);
3929 
3930   llvm::PointerType *PTy =
3931     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3932 
3933   StringRef MangledName = getMangledName(D);
3934   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3935 }
3936 
3937 /// CreateRuntimeVariable - Create a new runtime global variable with the
3938 /// specified type and name.
3939 llvm::Constant *
3940 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3941                                      StringRef Name) {
3942   auto PtrTy =
3943       getContext().getLangOpts().OpenCL
3944           ? llvm::PointerType::get(
3945                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3946           : llvm::PointerType::getUnqual(Ty);
3947   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3948   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3949   return Ret;
3950 }
3951 
3952 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3953   assert(!D->getInit() && "Cannot emit definite definitions here!");
3954 
3955   StringRef MangledName = getMangledName(D);
3956   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3957 
3958   // We already have a definition, not declaration, with the same mangled name.
3959   // Emitting of declaration is not required (and actually overwrites emitted
3960   // definition).
3961   if (GV && !GV->isDeclaration())
3962     return;
3963 
3964   // If we have not seen a reference to this variable yet, place it into the
3965   // deferred declarations table to be emitted if needed later.
3966   if (!MustBeEmitted(D) && !GV) {
3967       DeferredDecls[MangledName] = D;
3968       return;
3969   }
3970 
3971   // The tentative definition is the only definition.
3972   EmitGlobalVarDefinition(D);
3973 }
3974 
3975 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3976   EmitExternalVarDeclaration(D);
3977 }
3978 
3979 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3980   return Context.toCharUnitsFromBits(
3981       getDataLayout().getTypeStoreSizeInBits(Ty));
3982 }
3983 
3984 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3985   LangAS AddrSpace = LangAS::Default;
3986   if (LangOpts.OpenCL) {
3987     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3988     assert(AddrSpace == LangAS::opencl_global ||
3989            AddrSpace == LangAS::opencl_global_device ||
3990            AddrSpace == LangAS::opencl_global_host ||
3991            AddrSpace == LangAS::opencl_constant ||
3992            AddrSpace == LangAS::opencl_local ||
3993            AddrSpace >= LangAS::FirstTargetAddressSpace);
3994     return AddrSpace;
3995   }
3996 
3997   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3998     if (D && D->hasAttr<CUDAConstantAttr>())
3999       return LangAS::cuda_constant;
4000     else if (D && D->hasAttr<CUDASharedAttr>())
4001       return LangAS::cuda_shared;
4002     else if (D && D->hasAttr<CUDADeviceAttr>())
4003       return LangAS::cuda_device;
4004     else if (D && D->getType().isConstQualified())
4005       return LangAS::cuda_constant;
4006     else
4007       return LangAS::cuda_device;
4008   }
4009 
4010   if (LangOpts.OpenMP) {
4011     LangAS AS;
4012     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4013       return AS;
4014   }
4015   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4016 }
4017 
4018 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
4019   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4020   if (LangOpts.OpenCL)
4021     return LangAS::opencl_constant;
4022   if (auto AS = getTarget().getConstantAddressSpace())
4023     return AS.getValue();
4024   return LangAS::Default;
4025 }
4026 
4027 // In address space agnostic languages, string literals are in default address
4028 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4029 // emitted in constant address space in LLVM IR. To be consistent with other
4030 // parts of AST, string literal global variables in constant address space
4031 // need to be casted to default address space before being put into address
4032 // map and referenced by other part of CodeGen.
4033 // In OpenCL, string literals are in constant address space in AST, therefore
4034 // they should not be casted to default address space.
4035 static llvm::Constant *
4036 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4037                                        llvm::GlobalVariable *GV) {
4038   llvm::Constant *Cast = GV;
4039   if (!CGM.getLangOpts().OpenCL) {
4040     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4041       if (AS != LangAS::Default)
4042         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4043             CGM, GV, AS.getValue(), LangAS::Default,
4044             GV->getValueType()->getPointerTo(
4045                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4046     }
4047   }
4048   return Cast;
4049 }
4050 
4051 template<typename SomeDecl>
4052 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4053                                                llvm::GlobalValue *GV) {
4054   if (!getLangOpts().CPlusPlus)
4055     return;
4056 
4057   // Must have 'used' attribute, or else inline assembly can't rely on
4058   // the name existing.
4059   if (!D->template hasAttr<UsedAttr>())
4060     return;
4061 
4062   // Must have internal linkage and an ordinary name.
4063   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4064     return;
4065 
4066   // Must be in an extern "C" context. Entities declared directly within
4067   // a record are not extern "C" even if the record is in such a context.
4068   const SomeDecl *First = D->getFirstDecl();
4069   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4070     return;
4071 
4072   // OK, this is an internal linkage entity inside an extern "C" linkage
4073   // specification. Make a note of that so we can give it the "expected"
4074   // mangled name if nothing else is using that name.
4075   std::pair<StaticExternCMap::iterator, bool> R =
4076       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4077 
4078   // If we have multiple internal linkage entities with the same name
4079   // in extern "C" regions, none of them gets that name.
4080   if (!R.second)
4081     R.first->second = nullptr;
4082 }
4083 
4084 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4085   if (!CGM.supportsCOMDAT())
4086     return false;
4087 
4088   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4089   // them being "merged" by the COMDAT Folding linker optimization.
4090   if (D.hasAttr<CUDAGlobalAttr>())
4091     return false;
4092 
4093   if (D.hasAttr<SelectAnyAttr>())
4094     return true;
4095 
4096   GVALinkage Linkage;
4097   if (auto *VD = dyn_cast<VarDecl>(&D))
4098     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4099   else
4100     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4101 
4102   switch (Linkage) {
4103   case GVA_Internal:
4104   case GVA_AvailableExternally:
4105   case GVA_StrongExternal:
4106     return false;
4107   case GVA_DiscardableODR:
4108   case GVA_StrongODR:
4109     return true;
4110   }
4111   llvm_unreachable("No such linkage");
4112 }
4113 
4114 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4115                                           llvm::GlobalObject &GO) {
4116   if (!shouldBeInCOMDAT(*this, D))
4117     return;
4118   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4119 }
4120 
4121 /// Pass IsTentative as true if you want to create a tentative definition.
4122 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4123                                             bool IsTentative) {
4124   // OpenCL global variables of sampler type are translated to function calls,
4125   // therefore no need to be translated.
4126   QualType ASTTy = D->getType();
4127   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4128     return;
4129 
4130   // If this is OpenMP device, check if it is legal to emit this global
4131   // normally.
4132   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4133       OpenMPRuntime->emitTargetGlobalVariable(D))
4134     return;
4135 
4136   llvm::Constant *Init = nullptr;
4137   bool NeedsGlobalCtor = false;
4138   bool NeedsGlobalDtor =
4139       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4140 
4141   bool IsHIPManagedVarOnDevice =
4142       getLangOpts().CUDAIsDevice && D->hasAttr<HIPManagedAttr>();
4143 
4144   const VarDecl *InitDecl;
4145   const Expr *InitExpr =
4146       IsHIPManagedVarOnDevice ? nullptr : D->getAnyInitializer(InitDecl);
4147 
4148   Optional<ConstantEmitter> emitter;
4149 
4150   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4151   // as part of their declaration."  Sema has already checked for
4152   // error cases, so we just need to set Init to UndefValue.
4153   bool IsCUDASharedVar =
4154       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4155   // Shadows of initialized device-side global variables are also left
4156   // undefined.
4157   bool IsCUDAShadowVar =
4158       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4159       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4160        D->hasAttr<CUDASharedAttr>());
4161   bool IsCUDADeviceShadowVar =
4162       getLangOpts().CUDAIsDevice &&
4163       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4164        D->getType()->isCUDADeviceBuiltinTextureType() ||
4165        D->hasAttr<HIPManagedAttr>());
4166   if (getLangOpts().CUDA &&
4167       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4168     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4169   else if (D->hasAttr<LoaderUninitializedAttr>())
4170     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4171   else if (!InitExpr) {
4172     // This is a tentative definition; tentative definitions are
4173     // implicitly initialized with { 0 }.
4174     //
4175     // Note that tentative definitions are only emitted at the end of
4176     // a translation unit, so they should never have incomplete
4177     // type. In addition, EmitTentativeDefinition makes sure that we
4178     // never attempt to emit a tentative definition if a real one
4179     // exists. A use may still exists, however, so we still may need
4180     // to do a RAUW.
4181     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4182     Init = EmitNullConstant(D->getType());
4183   } else {
4184     initializedGlobalDecl = GlobalDecl(D);
4185     emitter.emplace(*this);
4186     Init = emitter->tryEmitForInitializer(*InitDecl);
4187 
4188     if (!Init) {
4189       QualType T = InitExpr->getType();
4190       if (D->getType()->isReferenceType())
4191         T = D->getType();
4192 
4193       if (getLangOpts().CPlusPlus) {
4194         Init = EmitNullConstant(T);
4195         NeedsGlobalCtor = true;
4196       } else {
4197         ErrorUnsupported(D, "static initializer");
4198         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4199       }
4200     } else {
4201       // We don't need an initializer, so remove the entry for the delayed
4202       // initializer position (just in case this entry was delayed) if we
4203       // also don't need to register a destructor.
4204       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4205         DelayedCXXInitPosition.erase(D);
4206     }
4207   }
4208 
4209   llvm::Type* InitType = Init->getType();
4210   llvm::Constant *Entry =
4211       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4212 
4213   // Strip off pointer casts if we got them.
4214   Entry = Entry->stripPointerCasts();
4215 
4216   // Entry is now either a Function or GlobalVariable.
4217   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4218 
4219   // We have a definition after a declaration with the wrong type.
4220   // We must make a new GlobalVariable* and update everything that used OldGV
4221   // (a declaration or tentative definition) with the new GlobalVariable*
4222   // (which will be a definition).
4223   //
4224   // This happens if there is a prototype for a global (e.g.
4225   // "extern int x[];") and then a definition of a different type (e.g.
4226   // "int x[10];"). This also happens when an initializer has a different type
4227   // from the type of the global (this happens with unions).
4228   if (!GV || GV->getValueType() != InitType ||
4229       GV->getType()->getAddressSpace() !=
4230           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4231 
4232     // Move the old entry aside so that we'll create a new one.
4233     Entry->setName(StringRef());
4234 
4235     // Make a new global with the correct type, this is now guaranteed to work.
4236     GV = cast<llvm::GlobalVariable>(
4237         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4238             ->stripPointerCasts());
4239 
4240     // Replace all uses of the old global with the new global
4241     llvm::Constant *NewPtrForOldDecl =
4242         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4243     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4244 
4245     // Erase the old global, since it is no longer used.
4246     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4247   }
4248 
4249   MaybeHandleStaticInExternC(D, GV);
4250 
4251   if (D->hasAttr<AnnotateAttr>())
4252     AddGlobalAnnotations(D, GV);
4253 
4254   // Set the llvm linkage type as appropriate.
4255   llvm::GlobalValue::LinkageTypes Linkage =
4256       getLLVMLinkageVarDefinition(D, GV->isConstant());
4257 
4258   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4259   // the device. [...]"
4260   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4261   // __device__, declares a variable that: [...]
4262   // Is accessible from all the threads within the grid and from the host
4263   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4264   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4265   if (GV && LangOpts.CUDA) {
4266     if (LangOpts.CUDAIsDevice) {
4267       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4268           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4269         GV->setExternallyInitialized(true);
4270     } else {
4271       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4272       getCUDARuntime().handleVarRegistration(D, *GV);
4273     }
4274   }
4275 
4276   // HIP managed variables need to be emitted as declarations in device
4277   // compilation.
4278   if (!IsHIPManagedVarOnDevice)
4279     GV->setInitializer(Init);
4280   if (emitter)
4281     emitter->finalize(GV);
4282 
4283   // If it is safe to mark the global 'constant', do so now.
4284   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4285                   isTypeConstant(D->getType(), true));
4286 
4287   // If it is in a read-only section, mark it 'constant'.
4288   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4289     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4290     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4291       GV->setConstant(true);
4292   }
4293 
4294   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4295 
4296   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4297   // function is only defined alongside the variable, not also alongside
4298   // callers. Normally, all accesses to a thread_local go through the
4299   // thread-wrapper in order to ensure initialization has occurred, underlying
4300   // variable will never be used other than the thread-wrapper, so it can be
4301   // converted to internal linkage.
4302   //
4303   // However, if the variable has the 'constinit' attribute, it _can_ be
4304   // referenced directly, without calling the thread-wrapper, so the linkage
4305   // must not be changed.
4306   //
4307   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4308   // weak or linkonce, the de-duplication semantics are important to preserve,
4309   // so we don't change the linkage.
4310   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4311       Linkage == llvm::GlobalValue::ExternalLinkage &&
4312       Context.getTargetInfo().getTriple().isOSDarwin() &&
4313       !D->hasAttr<ConstInitAttr>())
4314     Linkage = llvm::GlobalValue::InternalLinkage;
4315 
4316   GV->setLinkage(Linkage);
4317   if (D->hasAttr<DLLImportAttr>())
4318     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4319   else if (D->hasAttr<DLLExportAttr>())
4320     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4321   else
4322     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4323 
4324   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4325     // common vars aren't constant even if declared const.
4326     GV->setConstant(false);
4327     // Tentative definition of global variables may be initialized with
4328     // non-zero null pointers. In this case they should have weak linkage
4329     // since common linkage must have zero initializer and must not have
4330     // explicit section therefore cannot have non-zero initial value.
4331     if (!GV->getInitializer()->isNullValue())
4332       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4333   }
4334 
4335   setNonAliasAttributes(D, GV);
4336 
4337   if (D->getTLSKind() && !GV->isThreadLocal()) {
4338     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4339       CXXThreadLocals.push_back(D);
4340     setTLSMode(GV, *D);
4341   }
4342 
4343   maybeSetTrivialComdat(*D, *GV);
4344 
4345   // Emit the initializer function if necessary.
4346   if (NeedsGlobalCtor || NeedsGlobalDtor)
4347     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4348 
4349   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4350 
4351   // Emit global variable debug information.
4352   if (CGDebugInfo *DI = getModuleDebugInfo())
4353     if (getCodeGenOpts().hasReducedDebugInfo())
4354       DI->EmitGlobalVariable(GV, D);
4355 }
4356 
4357 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4358   if (CGDebugInfo *DI = getModuleDebugInfo())
4359     if (getCodeGenOpts().hasReducedDebugInfo()) {
4360       QualType ASTTy = D->getType();
4361       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4362       llvm::PointerType *PTy =
4363           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4364       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4365       DI->EmitExternalVariable(
4366           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4367     }
4368 }
4369 
4370 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4371                                       CodeGenModule &CGM, const VarDecl *D,
4372                                       bool NoCommon) {
4373   // Don't give variables common linkage if -fno-common was specified unless it
4374   // was overridden by a NoCommon attribute.
4375   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4376     return true;
4377 
4378   // C11 6.9.2/2:
4379   //   A declaration of an identifier for an object that has file scope without
4380   //   an initializer, and without a storage-class specifier or with the
4381   //   storage-class specifier static, constitutes a tentative definition.
4382   if (D->getInit() || D->hasExternalStorage())
4383     return true;
4384 
4385   // A variable cannot be both common and exist in a section.
4386   if (D->hasAttr<SectionAttr>())
4387     return true;
4388 
4389   // A variable cannot be both common and exist in a section.
4390   // We don't try to determine which is the right section in the front-end.
4391   // If no specialized section name is applicable, it will resort to default.
4392   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4393       D->hasAttr<PragmaClangDataSectionAttr>() ||
4394       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4395       D->hasAttr<PragmaClangRodataSectionAttr>())
4396     return true;
4397 
4398   // Thread local vars aren't considered common linkage.
4399   if (D->getTLSKind())
4400     return true;
4401 
4402   // Tentative definitions marked with WeakImportAttr are true definitions.
4403   if (D->hasAttr<WeakImportAttr>())
4404     return true;
4405 
4406   // A variable cannot be both common and exist in a comdat.
4407   if (shouldBeInCOMDAT(CGM, *D))
4408     return true;
4409 
4410   // Declarations with a required alignment do not have common linkage in MSVC
4411   // mode.
4412   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4413     if (D->hasAttr<AlignedAttr>())
4414       return true;
4415     QualType VarType = D->getType();
4416     if (Context.isAlignmentRequired(VarType))
4417       return true;
4418 
4419     if (const auto *RT = VarType->getAs<RecordType>()) {
4420       const RecordDecl *RD = RT->getDecl();
4421       for (const FieldDecl *FD : RD->fields()) {
4422         if (FD->isBitField())
4423           continue;
4424         if (FD->hasAttr<AlignedAttr>())
4425           return true;
4426         if (Context.isAlignmentRequired(FD->getType()))
4427           return true;
4428       }
4429     }
4430   }
4431 
4432   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4433   // common symbols, so symbols with greater alignment requirements cannot be
4434   // common.
4435   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4436   // alignments for common symbols via the aligncomm directive, so this
4437   // restriction only applies to MSVC environments.
4438   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4439       Context.getTypeAlignIfKnown(D->getType()) >
4440           Context.toBits(CharUnits::fromQuantity(32)))
4441     return true;
4442 
4443   return false;
4444 }
4445 
4446 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4447     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4448   if (Linkage == GVA_Internal)
4449     return llvm::Function::InternalLinkage;
4450 
4451   if (D->hasAttr<WeakAttr>()) {
4452     if (IsConstantVariable)
4453       return llvm::GlobalVariable::WeakODRLinkage;
4454     else
4455       return llvm::GlobalVariable::WeakAnyLinkage;
4456   }
4457 
4458   if (const auto *FD = D->getAsFunction())
4459     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4460       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4461 
4462   // We are guaranteed to have a strong definition somewhere else,
4463   // so we can use available_externally linkage.
4464   if (Linkage == GVA_AvailableExternally)
4465     return llvm::GlobalValue::AvailableExternallyLinkage;
4466 
4467   // Note that Apple's kernel linker doesn't support symbol
4468   // coalescing, so we need to avoid linkonce and weak linkages there.
4469   // Normally, this means we just map to internal, but for explicit
4470   // instantiations we'll map to external.
4471 
4472   // In C++, the compiler has to emit a definition in every translation unit
4473   // that references the function.  We should use linkonce_odr because
4474   // a) if all references in this translation unit are optimized away, we
4475   // don't need to codegen it.  b) if the function persists, it needs to be
4476   // merged with other definitions. c) C++ has the ODR, so we know the
4477   // definition is dependable.
4478   if (Linkage == GVA_DiscardableODR)
4479     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4480                                             : llvm::Function::InternalLinkage;
4481 
4482   // An explicit instantiation of a template has weak linkage, since
4483   // explicit instantiations can occur in multiple translation units
4484   // and must all be equivalent. However, we are not allowed to
4485   // throw away these explicit instantiations.
4486   //
4487   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4488   // so say that CUDA templates are either external (for kernels) or internal.
4489   // This lets llvm perform aggressive inter-procedural optimizations. For
4490   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4491   // therefore we need to follow the normal linkage paradigm.
4492   if (Linkage == GVA_StrongODR) {
4493     if (getLangOpts().AppleKext)
4494       return llvm::Function::ExternalLinkage;
4495     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4496         !getLangOpts().GPURelocatableDeviceCode)
4497       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4498                                           : llvm::Function::InternalLinkage;
4499     return llvm::Function::WeakODRLinkage;
4500   }
4501 
4502   // C++ doesn't have tentative definitions and thus cannot have common
4503   // linkage.
4504   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4505       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4506                                  CodeGenOpts.NoCommon))
4507     return llvm::GlobalVariable::CommonLinkage;
4508 
4509   // selectany symbols are externally visible, so use weak instead of
4510   // linkonce.  MSVC optimizes away references to const selectany globals, so
4511   // all definitions should be the same and ODR linkage should be used.
4512   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4513   if (D->hasAttr<SelectAnyAttr>())
4514     return llvm::GlobalVariable::WeakODRLinkage;
4515 
4516   // Otherwise, we have strong external linkage.
4517   assert(Linkage == GVA_StrongExternal);
4518   return llvm::GlobalVariable::ExternalLinkage;
4519 }
4520 
4521 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4522     const VarDecl *VD, bool IsConstant) {
4523   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4524   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4525 }
4526 
4527 /// Replace the uses of a function that was declared with a non-proto type.
4528 /// We want to silently drop extra arguments from call sites
4529 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4530                                           llvm::Function *newFn) {
4531   // Fast path.
4532   if (old->use_empty()) return;
4533 
4534   llvm::Type *newRetTy = newFn->getReturnType();
4535   SmallVector<llvm::Value*, 4> newArgs;
4536   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4537 
4538   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4539          ui != ue; ) {
4540     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4541     llvm::User *user = use->getUser();
4542 
4543     // Recognize and replace uses of bitcasts.  Most calls to
4544     // unprototyped functions will use bitcasts.
4545     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4546       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4547         replaceUsesOfNonProtoConstant(bitcast, newFn);
4548       continue;
4549     }
4550 
4551     // Recognize calls to the function.
4552     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4553     if (!callSite) continue;
4554     if (!callSite->isCallee(&*use))
4555       continue;
4556 
4557     // If the return types don't match exactly, then we can't
4558     // transform this call unless it's dead.
4559     if (callSite->getType() != newRetTy && !callSite->use_empty())
4560       continue;
4561 
4562     // Get the call site's attribute list.
4563     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4564     llvm::AttributeList oldAttrs = callSite->getAttributes();
4565 
4566     // If the function was passed too few arguments, don't transform.
4567     unsigned newNumArgs = newFn->arg_size();
4568     if (callSite->arg_size() < newNumArgs)
4569       continue;
4570 
4571     // If extra arguments were passed, we silently drop them.
4572     // If any of the types mismatch, we don't transform.
4573     unsigned argNo = 0;
4574     bool dontTransform = false;
4575     for (llvm::Argument &A : newFn->args()) {
4576       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4577         dontTransform = true;
4578         break;
4579       }
4580 
4581       // Add any parameter attributes.
4582       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4583       argNo++;
4584     }
4585     if (dontTransform)
4586       continue;
4587 
4588     // Okay, we can transform this.  Create the new call instruction and copy
4589     // over the required information.
4590     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4591 
4592     // Copy over any operand bundles.
4593     callSite->getOperandBundlesAsDefs(newBundles);
4594 
4595     llvm::CallBase *newCall;
4596     if (dyn_cast<llvm::CallInst>(callSite)) {
4597       newCall =
4598           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4599     } else {
4600       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4601       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4602                                          oldInvoke->getUnwindDest(), newArgs,
4603                                          newBundles, "", callSite);
4604     }
4605     newArgs.clear(); // for the next iteration
4606 
4607     if (!newCall->getType()->isVoidTy())
4608       newCall->takeName(callSite);
4609     newCall->setAttributes(llvm::AttributeList::get(
4610         newFn->getContext(), oldAttrs.getFnAttributes(),
4611         oldAttrs.getRetAttributes(), newArgAttrs));
4612     newCall->setCallingConv(callSite->getCallingConv());
4613 
4614     // Finally, remove the old call, replacing any uses with the new one.
4615     if (!callSite->use_empty())
4616       callSite->replaceAllUsesWith(newCall);
4617 
4618     // Copy debug location attached to CI.
4619     if (callSite->getDebugLoc())
4620       newCall->setDebugLoc(callSite->getDebugLoc());
4621 
4622     callSite->eraseFromParent();
4623   }
4624 }
4625 
4626 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4627 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4628 /// existing call uses of the old function in the module, this adjusts them to
4629 /// call the new function directly.
4630 ///
4631 /// This is not just a cleanup: the always_inline pass requires direct calls to
4632 /// functions to be able to inline them.  If there is a bitcast in the way, it
4633 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4634 /// run at -O0.
4635 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4636                                                       llvm::Function *NewFn) {
4637   // If we're redefining a global as a function, don't transform it.
4638   if (!isa<llvm::Function>(Old)) return;
4639 
4640   replaceUsesOfNonProtoConstant(Old, NewFn);
4641 }
4642 
4643 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4644   auto DK = VD->isThisDeclarationADefinition();
4645   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4646     return;
4647 
4648   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4649   // If we have a definition, this might be a deferred decl. If the
4650   // instantiation is explicit, make sure we emit it at the end.
4651   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4652     GetAddrOfGlobalVar(VD);
4653 
4654   EmitTopLevelDecl(VD);
4655 }
4656 
4657 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4658                                                  llvm::GlobalValue *GV) {
4659   const auto *D = cast<FunctionDecl>(GD.getDecl());
4660 
4661   // Compute the function info and LLVM type.
4662   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4663   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4664 
4665   // Get or create the prototype for the function.
4666   if (!GV || (GV->getValueType() != Ty))
4667     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4668                                                    /*DontDefer=*/true,
4669                                                    ForDefinition));
4670 
4671   // Already emitted.
4672   if (!GV->isDeclaration())
4673     return;
4674 
4675   // We need to set linkage and visibility on the function before
4676   // generating code for it because various parts of IR generation
4677   // want to propagate this information down (e.g. to local static
4678   // declarations).
4679   auto *Fn = cast<llvm::Function>(GV);
4680   setFunctionLinkage(GD, Fn);
4681 
4682   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4683   setGVProperties(Fn, GD);
4684 
4685   MaybeHandleStaticInExternC(D, Fn);
4686 
4687   maybeSetTrivialComdat(*D, *Fn);
4688 
4689   // Set CodeGen attributes that represent floating point environment.
4690   setLLVMFunctionFEnvAttributes(D, Fn);
4691 
4692   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4693 
4694   setNonAliasAttributes(GD, Fn);
4695   SetLLVMFunctionAttributesForDefinition(D, Fn);
4696 
4697   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4698     AddGlobalCtor(Fn, CA->getPriority());
4699   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4700     AddGlobalDtor(Fn, DA->getPriority(), true);
4701   if (D->hasAttr<AnnotateAttr>())
4702     AddGlobalAnnotations(D, Fn);
4703 }
4704 
4705 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4706   const auto *D = cast<ValueDecl>(GD.getDecl());
4707   const AliasAttr *AA = D->getAttr<AliasAttr>();
4708   assert(AA && "Not an alias?");
4709 
4710   StringRef MangledName = getMangledName(GD);
4711 
4712   if (AA->getAliasee() == MangledName) {
4713     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4714     return;
4715   }
4716 
4717   // If there is a definition in the module, then it wins over the alias.
4718   // This is dubious, but allow it to be safe.  Just ignore the alias.
4719   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4720   if (Entry && !Entry->isDeclaration())
4721     return;
4722 
4723   Aliases.push_back(GD);
4724 
4725   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4726 
4727   // Create a reference to the named value.  This ensures that it is emitted
4728   // if a deferred decl.
4729   llvm::Constant *Aliasee;
4730   llvm::GlobalValue::LinkageTypes LT;
4731   if (isa<llvm::FunctionType>(DeclTy)) {
4732     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4733                                       /*ForVTable=*/false);
4734     LT = getFunctionLinkage(GD);
4735   } else {
4736     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4737                                     llvm::PointerType::getUnqual(DeclTy),
4738                                     /*D=*/nullptr);
4739     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4740       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4741     else
4742       LT = getFunctionLinkage(GD);
4743   }
4744 
4745   // Create the new alias itself, but don't set a name yet.
4746   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4747   auto *GA =
4748       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4749 
4750   if (Entry) {
4751     if (GA->getAliasee() == Entry) {
4752       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4753       return;
4754     }
4755 
4756     assert(Entry->isDeclaration());
4757 
4758     // If there is a declaration in the module, then we had an extern followed
4759     // by the alias, as in:
4760     //   extern int test6();
4761     //   ...
4762     //   int test6() __attribute__((alias("test7")));
4763     //
4764     // Remove it and replace uses of it with the alias.
4765     GA->takeName(Entry);
4766 
4767     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4768                                                           Entry->getType()));
4769     Entry->eraseFromParent();
4770   } else {
4771     GA->setName(MangledName);
4772   }
4773 
4774   // Set attributes which are particular to an alias; this is a
4775   // specialization of the attributes which may be set on a global
4776   // variable/function.
4777   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4778       D->isWeakImported()) {
4779     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4780   }
4781 
4782   if (const auto *VD = dyn_cast<VarDecl>(D))
4783     if (VD->getTLSKind())
4784       setTLSMode(GA, *VD);
4785 
4786   SetCommonAttributes(GD, GA);
4787 }
4788 
4789 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4790   const auto *D = cast<ValueDecl>(GD.getDecl());
4791   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4792   assert(IFA && "Not an ifunc?");
4793 
4794   StringRef MangledName = getMangledName(GD);
4795 
4796   if (IFA->getResolver() == MangledName) {
4797     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4798     return;
4799   }
4800 
4801   // Report an error if some definition overrides ifunc.
4802   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4803   if (Entry && !Entry->isDeclaration()) {
4804     GlobalDecl OtherGD;
4805     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4806         DiagnosedConflictingDefinitions.insert(GD).second) {
4807       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4808           << MangledName;
4809       Diags.Report(OtherGD.getDecl()->getLocation(),
4810                    diag::note_previous_definition);
4811     }
4812     return;
4813   }
4814 
4815   Aliases.push_back(GD);
4816 
4817   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4818   llvm::Constant *Resolver =
4819       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4820                               /*ForVTable=*/false);
4821   llvm::GlobalIFunc *GIF =
4822       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4823                                 "", Resolver, &getModule());
4824   if (Entry) {
4825     if (GIF->getResolver() == Entry) {
4826       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4827       return;
4828     }
4829     assert(Entry->isDeclaration());
4830 
4831     // If there is a declaration in the module, then we had an extern followed
4832     // by the ifunc, as in:
4833     //   extern int test();
4834     //   ...
4835     //   int test() __attribute__((ifunc("resolver")));
4836     //
4837     // Remove it and replace uses of it with the ifunc.
4838     GIF->takeName(Entry);
4839 
4840     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4841                                                           Entry->getType()));
4842     Entry->eraseFromParent();
4843   } else
4844     GIF->setName(MangledName);
4845 
4846   SetCommonAttributes(GD, GIF);
4847 }
4848 
4849 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4850                                             ArrayRef<llvm::Type*> Tys) {
4851   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4852                                          Tys);
4853 }
4854 
4855 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4856 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4857                          const StringLiteral *Literal, bool TargetIsLSB,
4858                          bool &IsUTF16, unsigned &StringLength) {
4859   StringRef String = Literal->getString();
4860   unsigned NumBytes = String.size();
4861 
4862   // Check for simple case.
4863   if (!Literal->containsNonAsciiOrNull()) {
4864     StringLength = NumBytes;
4865     return *Map.insert(std::make_pair(String, nullptr)).first;
4866   }
4867 
4868   // Otherwise, convert the UTF8 literals into a string of shorts.
4869   IsUTF16 = true;
4870 
4871   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4872   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4873   llvm::UTF16 *ToPtr = &ToBuf[0];
4874 
4875   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4876                                  ToPtr + NumBytes, llvm::strictConversion);
4877 
4878   // ConvertUTF8toUTF16 returns the length in ToPtr.
4879   StringLength = ToPtr - &ToBuf[0];
4880 
4881   // Add an explicit null.
4882   *ToPtr = 0;
4883   return *Map.insert(std::make_pair(
4884                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4885                                    (StringLength + 1) * 2),
4886                          nullptr)).first;
4887 }
4888 
4889 ConstantAddress
4890 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4891   unsigned StringLength = 0;
4892   bool isUTF16 = false;
4893   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4894       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4895                                getDataLayout().isLittleEndian(), isUTF16,
4896                                StringLength);
4897 
4898   if (auto *C = Entry.second)
4899     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4900 
4901   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4902   llvm::Constant *Zeros[] = { Zero, Zero };
4903 
4904   const ASTContext &Context = getContext();
4905   const llvm::Triple &Triple = getTriple();
4906 
4907   const auto CFRuntime = getLangOpts().CFRuntime;
4908   const bool IsSwiftABI =
4909       static_cast<unsigned>(CFRuntime) >=
4910       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4911   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4912 
4913   // If we don't already have it, get __CFConstantStringClassReference.
4914   if (!CFConstantStringClassRef) {
4915     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4916     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4917     Ty = llvm::ArrayType::get(Ty, 0);
4918 
4919     switch (CFRuntime) {
4920     default: break;
4921     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4922     case LangOptions::CoreFoundationABI::Swift5_0:
4923       CFConstantStringClassName =
4924           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4925                               : "$s10Foundation19_NSCFConstantStringCN";
4926       Ty = IntPtrTy;
4927       break;
4928     case LangOptions::CoreFoundationABI::Swift4_2:
4929       CFConstantStringClassName =
4930           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4931                               : "$S10Foundation19_NSCFConstantStringCN";
4932       Ty = IntPtrTy;
4933       break;
4934     case LangOptions::CoreFoundationABI::Swift4_1:
4935       CFConstantStringClassName =
4936           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4937                               : "__T010Foundation19_NSCFConstantStringCN";
4938       Ty = IntPtrTy;
4939       break;
4940     }
4941 
4942     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4943 
4944     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4945       llvm::GlobalValue *GV = nullptr;
4946 
4947       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4948         IdentifierInfo &II = Context.Idents.get(GV->getName());
4949         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4950         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4951 
4952         const VarDecl *VD = nullptr;
4953         for (const auto &Result : DC->lookup(&II))
4954           if ((VD = dyn_cast<VarDecl>(Result)))
4955             break;
4956 
4957         if (Triple.isOSBinFormatELF()) {
4958           if (!VD)
4959             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4960         } else {
4961           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4962           if (!VD || !VD->hasAttr<DLLExportAttr>())
4963             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4964           else
4965             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4966         }
4967 
4968         setDSOLocal(GV);
4969       }
4970     }
4971 
4972     // Decay array -> ptr
4973     CFConstantStringClassRef =
4974         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4975                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4976   }
4977 
4978   QualType CFTy = Context.getCFConstantStringType();
4979 
4980   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4981 
4982   ConstantInitBuilder Builder(*this);
4983   auto Fields = Builder.beginStruct(STy);
4984 
4985   // Class pointer.
4986   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4987 
4988   // Flags.
4989   if (IsSwiftABI) {
4990     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4991     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4992   } else {
4993     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4994   }
4995 
4996   // String pointer.
4997   llvm::Constant *C = nullptr;
4998   if (isUTF16) {
4999     auto Arr = llvm::makeArrayRef(
5000         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5001         Entry.first().size() / 2);
5002     C = llvm::ConstantDataArray::get(VMContext, Arr);
5003   } else {
5004     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5005   }
5006 
5007   // Note: -fwritable-strings doesn't make the backing store strings of
5008   // CFStrings writable. (See <rdar://problem/10657500>)
5009   auto *GV =
5010       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5011                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5012   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5013   // Don't enforce the target's minimum global alignment, since the only use
5014   // of the string is via this class initializer.
5015   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5016                             : Context.getTypeAlignInChars(Context.CharTy);
5017   GV->setAlignment(Align.getAsAlign());
5018 
5019   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5020   // Without it LLVM can merge the string with a non unnamed_addr one during
5021   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5022   if (Triple.isOSBinFormatMachO())
5023     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5024                            : "__TEXT,__cstring,cstring_literals");
5025   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5026   // the static linker to adjust permissions to read-only later on.
5027   else if (Triple.isOSBinFormatELF())
5028     GV->setSection(".rodata");
5029 
5030   // String.
5031   llvm::Constant *Str =
5032       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5033 
5034   if (isUTF16)
5035     // Cast the UTF16 string to the correct type.
5036     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5037   Fields.add(Str);
5038 
5039   // String length.
5040   llvm::IntegerType *LengthTy =
5041       llvm::IntegerType::get(getModule().getContext(),
5042                              Context.getTargetInfo().getLongWidth());
5043   if (IsSwiftABI) {
5044     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5045         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5046       LengthTy = Int32Ty;
5047     else
5048       LengthTy = IntPtrTy;
5049   }
5050   Fields.addInt(LengthTy, StringLength);
5051 
5052   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5053   // properly aligned on 32-bit platforms.
5054   CharUnits Alignment =
5055       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5056 
5057   // The struct.
5058   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5059                                     /*isConstant=*/false,
5060                                     llvm::GlobalVariable::PrivateLinkage);
5061   GV->addAttribute("objc_arc_inert");
5062   switch (Triple.getObjectFormat()) {
5063   case llvm::Triple::UnknownObjectFormat:
5064     llvm_unreachable("unknown file format");
5065   case llvm::Triple::GOFF:
5066     llvm_unreachable("GOFF is not yet implemented");
5067   case llvm::Triple::XCOFF:
5068     llvm_unreachable("XCOFF is not yet implemented");
5069   case llvm::Triple::COFF:
5070   case llvm::Triple::ELF:
5071   case llvm::Triple::Wasm:
5072     GV->setSection("cfstring");
5073     break;
5074   case llvm::Triple::MachO:
5075     GV->setSection("__DATA,__cfstring");
5076     break;
5077   }
5078   Entry.second = GV;
5079 
5080   return ConstantAddress(GV, Alignment);
5081 }
5082 
5083 bool CodeGenModule::getExpressionLocationsEnabled() const {
5084   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5085 }
5086 
5087 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5088   if (ObjCFastEnumerationStateType.isNull()) {
5089     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5090     D->startDefinition();
5091 
5092     QualType FieldTypes[] = {
5093       Context.UnsignedLongTy,
5094       Context.getPointerType(Context.getObjCIdType()),
5095       Context.getPointerType(Context.UnsignedLongTy),
5096       Context.getConstantArrayType(Context.UnsignedLongTy,
5097                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5098     };
5099 
5100     for (size_t i = 0; i < 4; ++i) {
5101       FieldDecl *Field = FieldDecl::Create(Context,
5102                                            D,
5103                                            SourceLocation(),
5104                                            SourceLocation(), nullptr,
5105                                            FieldTypes[i], /*TInfo=*/nullptr,
5106                                            /*BitWidth=*/nullptr,
5107                                            /*Mutable=*/false,
5108                                            ICIS_NoInit);
5109       Field->setAccess(AS_public);
5110       D->addDecl(Field);
5111     }
5112 
5113     D->completeDefinition();
5114     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5115   }
5116 
5117   return ObjCFastEnumerationStateType;
5118 }
5119 
5120 llvm::Constant *
5121 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5122   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5123 
5124   // Don't emit it as the address of the string, emit the string data itself
5125   // as an inline array.
5126   if (E->getCharByteWidth() == 1) {
5127     SmallString<64> Str(E->getString());
5128 
5129     // Resize the string to the right size, which is indicated by its type.
5130     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5131     Str.resize(CAT->getSize().getZExtValue());
5132     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5133   }
5134 
5135   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5136   llvm::Type *ElemTy = AType->getElementType();
5137   unsigned NumElements = AType->getNumElements();
5138 
5139   // Wide strings have either 2-byte or 4-byte elements.
5140   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5141     SmallVector<uint16_t, 32> Elements;
5142     Elements.reserve(NumElements);
5143 
5144     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5145       Elements.push_back(E->getCodeUnit(i));
5146     Elements.resize(NumElements);
5147     return llvm::ConstantDataArray::get(VMContext, Elements);
5148   }
5149 
5150   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5151   SmallVector<uint32_t, 32> Elements;
5152   Elements.reserve(NumElements);
5153 
5154   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5155     Elements.push_back(E->getCodeUnit(i));
5156   Elements.resize(NumElements);
5157   return llvm::ConstantDataArray::get(VMContext, Elements);
5158 }
5159 
5160 static llvm::GlobalVariable *
5161 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5162                       CodeGenModule &CGM, StringRef GlobalName,
5163                       CharUnits Alignment) {
5164   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5165       CGM.getStringLiteralAddressSpace());
5166 
5167   llvm::Module &M = CGM.getModule();
5168   // Create a global variable for this string
5169   auto *GV = new llvm::GlobalVariable(
5170       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5171       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5172   GV->setAlignment(Alignment.getAsAlign());
5173   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5174   if (GV->isWeakForLinker()) {
5175     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5176     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5177   }
5178   CGM.setDSOLocal(GV);
5179 
5180   return GV;
5181 }
5182 
5183 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5184 /// constant array for the given string literal.
5185 ConstantAddress
5186 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5187                                                   StringRef Name) {
5188   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5189 
5190   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5191   llvm::GlobalVariable **Entry = nullptr;
5192   if (!LangOpts.WritableStrings) {
5193     Entry = &ConstantStringMap[C];
5194     if (auto GV = *Entry) {
5195       if (Alignment.getQuantity() > GV->getAlignment())
5196         GV->setAlignment(Alignment.getAsAlign());
5197       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5198                              Alignment);
5199     }
5200   }
5201 
5202   SmallString<256> MangledNameBuffer;
5203   StringRef GlobalVariableName;
5204   llvm::GlobalValue::LinkageTypes LT;
5205 
5206   // Mangle the string literal if that's how the ABI merges duplicate strings.
5207   // Don't do it if they are writable, since we don't want writes in one TU to
5208   // affect strings in another.
5209   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5210       !LangOpts.WritableStrings) {
5211     llvm::raw_svector_ostream Out(MangledNameBuffer);
5212     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5213     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5214     GlobalVariableName = MangledNameBuffer;
5215   } else {
5216     LT = llvm::GlobalValue::PrivateLinkage;
5217     GlobalVariableName = Name;
5218   }
5219 
5220   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5221   if (Entry)
5222     *Entry = GV;
5223 
5224   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5225                                   QualType());
5226 
5227   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5228                          Alignment);
5229 }
5230 
5231 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5232 /// array for the given ObjCEncodeExpr node.
5233 ConstantAddress
5234 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5235   std::string Str;
5236   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5237 
5238   return GetAddrOfConstantCString(Str);
5239 }
5240 
5241 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5242 /// the literal and a terminating '\0' character.
5243 /// The result has pointer to array type.
5244 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5245     const std::string &Str, const char *GlobalName) {
5246   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5247   CharUnits Alignment =
5248     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5249 
5250   llvm::Constant *C =
5251       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5252 
5253   // Don't share any string literals if strings aren't constant.
5254   llvm::GlobalVariable **Entry = nullptr;
5255   if (!LangOpts.WritableStrings) {
5256     Entry = &ConstantStringMap[C];
5257     if (auto GV = *Entry) {
5258       if (Alignment.getQuantity() > GV->getAlignment())
5259         GV->setAlignment(Alignment.getAsAlign());
5260       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5261                              Alignment);
5262     }
5263   }
5264 
5265   // Get the default prefix if a name wasn't specified.
5266   if (!GlobalName)
5267     GlobalName = ".str";
5268   // Create a global variable for this.
5269   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5270                                   GlobalName, Alignment);
5271   if (Entry)
5272     *Entry = GV;
5273 
5274   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5275                          Alignment);
5276 }
5277 
5278 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5279     const MaterializeTemporaryExpr *E, const Expr *Init) {
5280   assert((E->getStorageDuration() == SD_Static ||
5281           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5282   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5283 
5284   // If we're not materializing a subobject of the temporary, keep the
5285   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5286   QualType MaterializedType = Init->getType();
5287   if (Init == E->getSubExpr())
5288     MaterializedType = E->getType();
5289 
5290   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5291 
5292   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5293     return ConstantAddress(Slot, Align);
5294 
5295   // FIXME: If an externally-visible declaration extends multiple temporaries,
5296   // we need to give each temporary the same name in every translation unit (and
5297   // we also need to make the temporaries externally-visible).
5298   SmallString<256> Name;
5299   llvm::raw_svector_ostream Out(Name);
5300   getCXXABI().getMangleContext().mangleReferenceTemporary(
5301       VD, E->getManglingNumber(), Out);
5302 
5303   APValue *Value = nullptr;
5304   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5305     // If the initializer of the extending declaration is a constant
5306     // initializer, we should have a cached constant initializer for this
5307     // temporary. Note that this might have a different value from the value
5308     // computed by evaluating the initializer if the surrounding constant
5309     // expression modifies the temporary.
5310     Value = E->getOrCreateValue(false);
5311   }
5312 
5313   // Try evaluating it now, it might have a constant initializer.
5314   Expr::EvalResult EvalResult;
5315   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5316       !EvalResult.hasSideEffects())
5317     Value = &EvalResult.Val;
5318 
5319   LangAS AddrSpace =
5320       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5321 
5322   Optional<ConstantEmitter> emitter;
5323   llvm::Constant *InitialValue = nullptr;
5324   bool Constant = false;
5325   llvm::Type *Type;
5326   if (Value) {
5327     // The temporary has a constant initializer, use it.
5328     emitter.emplace(*this);
5329     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5330                                                MaterializedType);
5331     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5332     Type = InitialValue->getType();
5333   } else {
5334     // No initializer, the initialization will be provided when we
5335     // initialize the declaration which performed lifetime extension.
5336     Type = getTypes().ConvertTypeForMem(MaterializedType);
5337   }
5338 
5339   // Create a global variable for this lifetime-extended temporary.
5340   llvm::GlobalValue::LinkageTypes Linkage =
5341       getLLVMLinkageVarDefinition(VD, Constant);
5342   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5343     const VarDecl *InitVD;
5344     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5345         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5346       // Temporaries defined inside a class get linkonce_odr linkage because the
5347       // class can be defined in multiple translation units.
5348       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5349     } else {
5350       // There is no need for this temporary to have external linkage if the
5351       // VarDecl has external linkage.
5352       Linkage = llvm::GlobalVariable::InternalLinkage;
5353     }
5354   }
5355   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5356   auto *GV = new llvm::GlobalVariable(
5357       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5358       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5359   if (emitter) emitter->finalize(GV);
5360   setGVProperties(GV, VD);
5361   GV->setAlignment(Align.getAsAlign());
5362   if (supportsCOMDAT() && GV->isWeakForLinker())
5363     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5364   if (VD->getTLSKind())
5365     setTLSMode(GV, *VD);
5366   llvm::Constant *CV = GV;
5367   if (AddrSpace != LangAS::Default)
5368     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5369         *this, GV, AddrSpace, LangAS::Default,
5370         Type->getPointerTo(
5371             getContext().getTargetAddressSpace(LangAS::Default)));
5372   MaterializedGlobalTemporaryMap[E] = CV;
5373   return ConstantAddress(CV, Align);
5374 }
5375 
5376 /// EmitObjCPropertyImplementations - Emit information for synthesized
5377 /// properties for an implementation.
5378 void CodeGenModule::EmitObjCPropertyImplementations(const
5379                                                     ObjCImplementationDecl *D) {
5380   for (const auto *PID : D->property_impls()) {
5381     // Dynamic is just for type-checking.
5382     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5383       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5384 
5385       // Determine which methods need to be implemented, some may have
5386       // been overridden. Note that ::isPropertyAccessor is not the method
5387       // we want, that just indicates if the decl came from a
5388       // property. What we want to know is if the method is defined in
5389       // this implementation.
5390       auto *Getter = PID->getGetterMethodDecl();
5391       if (!Getter || Getter->isSynthesizedAccessorStub())
5392         CodeGenFunction(*this).GenerateObjCGetter(
5393             const_cast<ObjCImplementationDecl *>(D), PID);
5394       auto *Setter = PID->getSetterMethodDecl();
5395       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5396         CodeGenFunction(*this).GenerateObjCSetter(
5397                                  const_cast<ObjCImplementationDecl *>(D), PID);
5398     }
5399   }
5400 }
5401 
5402 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5403   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5404   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5405        ivar; ivar = ivar->getNextIvar())
5406     if (ivar->getType().isDestructedType())
5407       return true;
5408 
5409   return false;
5410 }
5411 
5412 static bool AllTrivialInitializers(CodeGenModule &CGM,
5413                                    ObjCImplementationDecl *D) {
5414   CodeGenFunction CGF(CGM);
5415   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5416        E = D->init_end(); B != E; ++B) {
5417     CXXCtorInitializer *CtorInitExp = *B;
5418     Expr *Init = CtorInitExp->getInit();
5419     if (!CGF.isTrivialInitializer(Init))
5420       return false;
5421   }
5422   return true;
5423 }
5424 
5425 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5426 /// for an implementation.
5427 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5428   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5429   if (needsDestructMethod(D)) {
5430     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5431     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5432     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5433         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5434         getContext().VoidTy, nullptr, D,
5435         /*isInstance=*/true, /*isVariadic=*/false,
5436         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5437         /*isImplicitlyDeclared=*/true,
5438         /*isDefined=*/false, ObjCMethodDecl::Required);
5439     D->addInstanceMethod(DTORMethod);
5440     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5441     D->setHasDestructors(true);
5442   }
5443 
5444   // If the implementation doesn't have any ivar initializers, we don't need
5445   // a .cxx_construct.
5446   if (D->getNumIvarInitializers() == 0 ||
5447       AllTrivialInitializers(*this, D))
5448     return;
5449 
5450   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5451   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5452   // The constructor returns 'self'.
5453   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5454       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5455       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5456       /*isVariadic=*/false,
5457       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5458       /*isImplicitlyDeclared=*/true,
5459       /*isDefined=*/false, ObjCMethodDecl::Required);
5460   D->addInstanceMethod(CTORMethod);
5461   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5462   D->setHasNonZeroConstructors(true);
5463 }
5464 
5465 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5466 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5467   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5468       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5469     ErrorUnsupported(LSD, "linkage spec");
5470     return;
5471   }
5472 
5473   EmitDeclContext(LSD);
5474 }
5475 
5476 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5477   for (auto *I : DC->decls()) {
5478     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5479     // are themselves considered "top-level", so EmitTopLevelDecl on an
5480     // ObjCImplDecl does not recursively visit them. We need to do that in
5481     // case they're nested inside another construct (LinkageSpecDecl /
5482     // ExportDecl) that does stop them from being considered "top-level".
5483     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5484       for (auto *M : OID->methods())
5485         EmitTopLevelDecl(M);
5486     }
5487 
5488     EmitTopLevelDecl(I);
5489   }
5490 }
5491 
5492 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5493 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5494   // Ignore dependent declarations.
5495   if (D->isTemplated())
5496     return;
5497 
5498   // Consteval function shouldn't be emitted.
5499   if (auto *FD = dyn_cast<FunctionDecl>(D))
5500     if (FD->isConsteval())
5501       return;
5502 
5503   switch (D->getKind()) {
5504   case Decl::CXXConversion:
5505   case Decl::CXXMethod:
5506   case Decl::Function:
5507     EmitGlobal(cast<FunctionDecl>(D));
5508     // Always provide some coverage mapping
5509     // even for the functions that aren't emitted.
5510     AddDeferredUnusedCoverageMapping(D);
5511     break;
5512 
5513   case Decl::CXXDeductionGuide:
5514     // Function-like, but does not result in code emission.
5515     break;
5516 
5517   case Decl::Var:
5518   case Decl::Decomposition:
5519   case Decl::VarTemplateSpecialization:
5520     EmitGlobal(cast<VarDecl>(D));
5521     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5522       for (auto *B : DD->bindings())
5523         if (auto *HD = B->getHoldingVar())
5524           EmitGlobal(HD);
5525     break;
5526 
5527   // Indirect fields from global anonymous structs and unions can be
5528   // ignored; only the actual variable requires IR gen support.
5529   case Decl::IndirectField:
5530     break;
5531 
5532   // C++ Decls
5533   case Decl::Namespace:
5534     EmitDeclContext(cast<NamespaceDecl>(D));
5535     break;
5536   case Decl::ClassTemplateSpecialization: {
5537     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5538     if (CGDebugInfo *DI = getModuleDebugInfo())
5539       if (Spec->getSpecializationKind() ==
5540               TSK_ExplicitInstantiationDefinition &&
5541           Spec->hasDefinition())
5542         DI->completeTemplateDefinition(*Spec);
5543   } LLVM_FALLTHROUGH;
5544   case Decl::CXXRecord: {
5545     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5546     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5547       if (CRD->hasDefinition())
5548         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5549       if (auto *ES = D->getASTContext().getExternalSource())
5550         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5551           DI->completeUnusedClass(*CRD);
5552     }
5553     // Emit any static data members, they may be definitions.
5554     for (auto *I : CRD->decls())
5555       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5556         EmitTopLevelDecl(I);
5557     break;
5558   }
5559     // No code generation needed.
5560   case Decl::UsingShadow:
5561   case Decl::ClassTemplate:
5562   case Decl::VarTemplate:
5563   case Decl::Concept:
5564   case Decl::VarTemplatePartialSpecialization:
5565   case Decl::FunctionTemplate:
5566   case Decl::TypeAliasTemplate:
5567   case Decl::Block:
5568   case Decl::Empty:
5569   case Decl::Binding:
5570     break;
5571   case Decl::Using:          // using X; [C++]
5572     if (CGDebugInfo *DI = getModuleDebugInfo())
5573         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5574     break;
5575   case Decl::NamespaceAlias:
5576     if (CGDebugInfo *DI = getModuleDebugInfo())
5577         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5578     break;
5579   case Decl::UsingDirective: // using namespace X; [C++]
5580     if (CGDebugInfo *DI = getModuleDebugInfo())
5581       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5582     break;
5583   case Decl::CXXConstructor:
5584     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5585     break;
5586   case Decl::CXXDestructor:
5587     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5588     break;
5589 
5590   case Decl::StaticAssert:
5591     // Nothing to do.
5592     break;
5593 
5594   // Objective-C Decls
5595 
5596   // Forward declarations, no (immediate) code generation.
5597   case Decl::ObjCInterface:
5598   case Decl::ObjCCategory:
5599     break;
5600 
5601   case Decl::ObjCProtocol: {
5602     auto *Proto = cast<ObjCProtocolDecl>(D);
5603     if (Proto->isThisDeclarationADefinition())
5604       ObjCRuntime->GenerateProtocol(Proto);
5605     break;
5606   }
5607 
5608   case Decl::ObjCCategoryImpl:
5609     // Categories have properties but don't support synthesize so we
5610     // can ignore them here.
5611     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5612     break;
5613 
5614   case Decl::ObjCImplementation: {
5615     auto *OMD = cast<ObjCImplementationDecl>(D);
5616     EmitObjCPropertyImplementations(OMD);
5617     EmitObjCIvarInitializations(OMD);
5618     ObjCRuntime->GenerateClass(OMD);
5619     // Emit global variable debug information.
5620     if (CGDebugInfo *DI = getModuleDebugInfo())
5621       if (getCodeGenOpts().hasReducedDebugInfo())
5622         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5623             OMD->getClassInterface()), OMD->getLocation());
5624     break;
5625   }
5626   case Decl::ObjCMethod: {
5627     auto *OMD = cast<ObjCMethodDecl>(D);
5628     // If this is not a prototype, emit the body.
5629     if (OMD->getBody())
5630       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5631     break;
5632   }
5633   case Decl::ObjCCompatibleAlias:
5634     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5635     break;
5636 
5637   case Decl::PragmaComment: {
5638     const auto *PCD = cast<PragmaCommentDecl>(D);
5639     switch (PCD->getCommentKind()) {
5640     case PCK_Unknown:
5641       llvm_unreachable("unexpected pragma comment kind");
5642     case PCK_Linker:
5643       AppendLinkerOptions(PCD->getArg());
5644       break;
5645     case PCK_Lib:
5646         AddDependentLib(PCD->getArg());
5647       break;
5648     case PCK_Compiler:
5649     case PCK_ExeStr:
5650     case PCK_User:
5651       break; // We ignore all of these.
5652     }
5653     break;
5654   }
5655 
5656   case Decl::PragmaDetectMismatch: {
5657     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5658     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5659     break;
5660   }
5661 
5662   case Decl::LinkageSpec:
5663     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5664     break;
5665 
5666   case Decl::FileScopeAsm: {
5667     // File-scope asm is ignored during device-side CUDA compilation.
5668     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5669       break;
5670     // File-scope asm is ignored during device-side OpenMP compilation.
5671     if (LangOpts.OpenMPIsDevice)
5672       break;
5673     auto *AD = cast<FileScopeAsmDecl>(D);
5674     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5675     break;
5676   }
5677 
5678   case Decl::Import: {
5679     auto *Import = cast<ImportDecl>(D);
5680 
5681     // If we've already imported this module, we're done.
5682     if (!ImportedModules.insert(Import->getImportedModule()))
5683       break;
5684 
5685     // Emit debug information for direct imports.
5686     if (!Import->getImportedOwningModule()) {
5687       if (CGDebugInfo *DI = getModuleDebugInfo())
5688         DI->EmitImportDecl(*Import);
5689     }
5690 
5691     // Find all of the submodules and emit the module initializers.
5692     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5693     SmallVector<clang::Module *, 16> Stack;
5694     Visited.insert(Import->getImportedModule());
5695     Stack.push_back(Import->getImportedModule());
5696 
5697     while (!Stack.empty()) {
5698       clang::Module *Mod = Stack.pop_back_val();
5699       if (!EmittedModuleInitializers.insert(Mod).second)
5700         continue;
5701 
5702       for (auto *D : Context.getModuleInitializers(Mod))
5703         EmitTopLevelDecl(D);
5704 
5705       // Visit the submodules of this module.
5706       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5707                                              SubEnd = Mod->submodule_end();
5708            Sub != SubEnd; ++Sub) {
5709         // Skip explicit children; they need to be explicitly imported to emit
5710         // the initializers.
5711         if ((*Sub)->IsExplicit)
5712           continue;
5713 
5714         if (Visited.insert(*Sub).second)
5715           Stack.push_back(*Sub);
5716       }
5717     }
5718     break;
5719   }
5720 
5721   case Decl::Export:
5722     EmitDeclContext(cast<ExportDecl>(D));
5723     break;
5724 
5725   case Decl::OMPThreadPrivate:
5726     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5727     break;
5728 
5729   case Decl::OMPAllocate:
5730     break;
5731 
5732   case Decl::OMPDeclareReduction:
5733     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5734     break;
5735 
5736   case Decl::OMPDeclareMapper:
5737     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5738     break;
5739 
5740   case Decl::OMPRequires:
5741     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5742     break;
5743 
5744   case Decl::Typedef:
5745   case Decl::TypeAlias: // using foo = bar; [C++11]
5746     if (CGDebugInfo *DI = getModuleDebugInfo())
5747       DI->EmitAndRetainType(
5748           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5749     break;
5750 
5751   case Decl::Record:
5752     if (CGDebugInfo *DI = getModuleDebugInfo())
5753       if (cast<RecordDecl>(D)->getDefinition())
5754         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5755     break;
5756 
5757   case Decl::Enum:
5758     if (CGDebugInfo *DI = getModuleDebugInfo())
5759       if (cast<EnumDecl>(D)->getDefinition())
5760         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5761     break;
5762 
5763   default:
5764     // Make sure we handled everything we should, every other kind is a
5765     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5766     // function. Need to recode Decl::Kind to do that easily.
5767     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5768     break;
5769   }
5770 }
5771 
5772 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5773   // Do we need to generate coverage mapping?
5774   if (!CodeGenOpts.CoverageMapping)
5775     return;
5776   switch (D->getKind()) {
5777   case Decl::CXXConversion:
5778   case Decl::CXXMethod:
5779   case Decl::Function:
5780   case Decl::ObjCMethod:
5781   case Decl::CXXConstructor:
5782   case Decl::CXXDestructor: {
5783     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5784       break;
5785     SourceManager &SM = getContext().getSourceManager();
5786     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5787       break;
5788     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5789     if (I == DeferredEmptyCoverageMappingDecls.end())
5790       DeferredEmptyCoverageMappingDecls[D] = true;
5791     break;
5792   }
5793   default:
5794     break;
5795   };
5796 }
5797 
5798 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5799   // Do we need to generate coverage mapping?
5800   if (!CodeGenOpts.CoverageMapping)
5801     return;
5802   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5803     if (Fn->isTemplateInstantiation())
5804       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5805   }
5806   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5807   if (I == DeferredEmptyCoverageMappingDecls.end())
5808     DeferredEmptyCoverageMappingDecls[D] = false;
5809   else
5810     I->second = false;
5811 }
5812 
5813 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5814   // We call takeVector() here to avoid use-after-free.
5815   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5816   // we deserialize function bodies to emit coverage info for them, and that
5817   // deserializes more declarations. How should we handle that case?
5818   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5819     if (!Entry.second)
5820       continue;
5821     const Decl *D = Entry.first;
5822     switch (D->getKind()) {
5823     case Decl::CXXConversion:
5824     case Decl::CXXMethod:
5825     case Decl::Function:
5826     case Decl::ObjCMethod: {
5827       CodeGenPGO PGO(*this);
5828       GlobalDecl GD(cast<FunctionDecl>(D));
5829       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5830                                   getFunctionLinkage(GD));
5831       break;
5832     }
5833     case Decl::CXXConstructor: {
5834       CodeGenPGO PGO(*this);
5835       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5836       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5837                                   getFunctionLinkage(GD));
5838       break;
5839     }
5840     case Decl::CXXDestructor: {
5841       CodeGenPGO PGO(*this);
5842       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5843       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5844                                   getFunctionLinkage(GD));
5845       break;
5846     }
5847     default:
5848       break;
5849     };
5850   }
5851 }
5852 
5853 void CodeGenModule::EmitMainVoidAlias() {
5854   // In order to transition away from "__original_main" gracefully, emit an
5855   // alias for "main" in the no-argument case so that libc can detect when
5856   // new-style no-argument main is in used.
5857   if (llvm::Function *F = getModule().getFunction("main")) {
5858     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5859         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5860       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5861   }
5862 }
5863 
5864 /// Turns the given pointer into a constant.
5865 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5866                                           const void *Ptr) {
5867   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5868   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5869   return llvm::ConstantInt::get(i64, PtrInt);
5870 }
5871 
5872 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5873                                    llvm::NamedMDNode *&GlobalMetadata,
5874                                    GlobalDecl D,
5875                                    llvm::GlobalValue *Addr) {
5876   if (!GlobalMetadata)
5877     GlobalMetadata =
5878       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5879 
5880   // TODO: should we report variant information for ctors/dtors?
5881   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5882                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5883                                CGM.getLLVMContext(), D.getDecl()))};
5884   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5885 }
5886 
5887 /// For each function which is declared within an extern "C" region and marked
5888 /// as 'used', but has internal linkage, create an alias from the unmangled
5889 /// name to the mangled name if possible. People expect to be able to refer
5890 /// to such functions with an unmangled name from inline assembly within the
5891 /// same translation unit.
5892 void CodeGenModule::EmitStaticExternCAliases() {
5893   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5894     return;
5895   for (auto &I : StaticExternCValues) {
5896     IdentifierInfo *Name = I.first;
5897     llvm::GlobalValue *Val = I.second;
5898     if (Val && !getModule().getNamedValue(Name->getName()))
5899       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5900   }
5901 }
5902 
5903 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5904                                              GlobalDecl &Result) const {
5905   auto Res = Manglings.find(MangledName);
5906   if (Res == Manglings.end())
5907     return false;
5908   Result = Res->getValue();
5909   return true;
5910 }
5911 
5912 /// Emits metadata nodes associating all the global values in the
5913 /// current module with the Decls they came from.  This is useful for
5914 /// projects using IR gen as a subroutine.
5915 ///
5916 /// Since there's currently no way to associate an MDNode directly
5917 /// with an llvm::GlobalValue, we create a global named metadata
5918 /// with the name 'clang.global.decl.ptrs'.
5919 void CodeGenModule::EmitDeclMetadata() {
5920   llvm::NamedMDNode *GlobalMetadata = nullptr;
5921 
5922   for (auto &I : MangledDeclNames) {
5923     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5924     // Some mangled names don't necessarily have an associated GlobalValue
5925     // in this module, e.g. if we mangled it for DebugInfo.
5926     if (Addr)
5927       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5928   }
5929 }
5930 
5931 /// Emits metadata nodes for all the local variables in the current
5932 /// function.
5933 void CodeGenFunction::EmitDeclMetadata() {
5934   if (LocalDeclMap.empty()) return;
5935 
5936   llvm::LLVMContext &Context = getLLVMContext();
5937 
5938   // Find the unique metadata ID for this name.
5939   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5940 
5941   llvm::NamedMDNode *GlobalMetadata = nullptr;
5942 
5943   for (auto &I : LocalDeclMap) {
5944     const Decl *D = I.first;
5945     llvm::Value *Addr = I.second.getPointer();
5946     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5947       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5948       Alloca->setMetadata(
5949           DeclPtrKind, llvm::MDNode::get(
5950                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5951     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5952       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5953       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5954     }
5955   }
5956 }
5957 
5958 void CodeGenModule::EmitVersionIdentMetadata() {
5959   llvm::NamedMDNode *IdentMetadata =
5960     TheModule.getOrInsertNamedMetadata("llvm.ident");
5961   std::string Version = getClangFullVersion();
5962   llvm::LLVMContext &Ctx = TheModule.getContext();
5963 
5964   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5965   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5966 }
5967 
5968 void CodeGenModule::EmitCommandLineMetadata() {
5969   llvm::NamedMDNode *CommandLineMetadata =
5970     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5971   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5972   llvm::LLVMContext &Ctx = TheModule.getContext();
5973 
5974   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5975   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5976 }
5977 
5978 void CodeGenModule::EmitCoverageFile() {
5979   if (getCodeGenOpts().CoverageDataFile.empty() &&
5980       getCodeGenOpts().CoverageNotesFile.empty())
5981     return;
5982 
5983   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5984   if (!CUNode)
5985     return;
5986 
5987   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5988   llvm::LLVMContext &Ctx = TheModule.getContext();
5989   auto *CoverageDataFile =
5990       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5991   auto *CoverageNotesFile =
5992       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5993   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5994     llvm::MDNode *CU = CUNode->getOperand(i);
5995     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5996     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5997   }
5998 }
5999 
6000 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6001                                                        bool ForEH) {
6002   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6003   // FIXME: should we even be calling this method if RTTI is disabled
6004   // and it's not for EH?
6005   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6006       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6007        getTriple().isNVPTX()))
6008     return llvm::Constant::getNullValue(Int8PtrTy);
6009 
6010   if (ForEH && Ty->isObjCObjectPointerType() &&
6011       LangOpts.ObjCRuntime.isGNUFamily())
6012     return ObjCRuntime->GetEHType(Ty);
6013 
6014   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6015 }
6016 
6017 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6018   // Do not emit threadprivates in simd-only mode.
6019   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6020     return;
6021   for (auto RefExpr : D->varlists()) {
6022     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6023     bool PerformInit =
6024         VD->getAnyInitializer() &&
6025         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6026                                                         /*ForRef=*/false);
6027 
6028     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6029     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6030             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6031       CXXGlobalInits.push_back(InitFunction);
6032   }
6033 }
6034 
6035 llvm::Metadata *
6036 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6037                                             StringRef Suffix) {
6038   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6039   if (InternalId)
6040     return InternalId;
6041 
6042   if (isExternallyVisible(T->getLinkage())) {
6043     std::string OutName;
6044     llvm::raw_string_ostream Out(OutName);
6045     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6046     Out << Suffix;
6047 
6048     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6049   } else {
6050     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6051                                            llvm::ArrayRef<llvm::Metadata *>());
6052   }
6053 
6054   return InternalId;
6055 }
6056 
6057 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6058   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6059 }
6060 
6061 llvm::Metadata *
6062 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6063   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6064 }
6065 
6066 // Generalize pointer types to a void pointer with the qualifiers of the
6067 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6068 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6069 // 'void *'.
6070 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6071   if (!Ty->isPointerType())
6072     return Ty;
6073 
6074   return Ctx.getPointerType(
6075       QualType(Ctx.VoidTy).withCVRQualifiers(
6076           Ty->getPointeeType().getCVRQualifiers()));
6077 }
6078 
6079 // Apply type generalization to a FunctionType's return and argument types
6080 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6081   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6082     SmallVector<QualType, 8> GeneralizedParams;
6083     for (auto &Param : FnType->param_types())
6084       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6085 
6086     return Ctx.getFunctionType(
6087         GeneralizeType(Ctx, FnType->getReturnType()),
6088         GeneralizedParams, FnType->getExtProtoInfo());
6089   }
6090 
6091   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6092     return Ctx.getFunctionNoProtoType(
6093         GeneralizeType(Ctx, FnType->getReturnType()));
6094 
6095   llvm_unreachable("Encountered unknown FunctionType");
6096 }
6097 
6098 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6099   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6100                                       GeneralizedMetadataIdMap, ".generalized");
6101 }
6102 
6103 /// Returns whether this module needs the "all-vtables" type identifier.
6104 bool CodeGenModule::NeedAllVtablesTypeId() const {
6105   // Returns true if at least one of vtable-based CFI checkers is enabled and
6106   // is not in the trapping mode.
6107   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6108            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6109           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6110            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6111           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6112            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6113           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6114            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6115 }
6116 
6117 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6118                                           CharUnits Offset,
6119                                           const CXXRecordDecl *RD) {
6120   llvm::Metadata *MD =
6121       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6122   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6123 
6124   if (CodeGenOpts.SanitizeCfiCrossDso)
6125     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6126       VTable->addTypeMetadata(Offset.getQuantity(),
6127                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6128 
6129   if (NeedAllVtablesTypeId()) {
6130     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6131     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6132   }
6133 }
6134 
6135 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6136   if (!SanStats)
6137     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6138 
6139   return *SanStats;
6140 }
6141 llvm::Value *
6142 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6143                                                   CodeGenFunction &CGF) {
6144   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6145   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6146   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6147   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6148                                 "__translate_sampler_initializer"),
6149                                 {C});
6150 }
6151 
6152 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6153     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6154   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6155                                  /* forPointeeType= */ true);
6156 }
6157 
6158 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6159                                                  LValueBaseInfo *BaseInfo,
6160                                                  TBAAAccessInfo *TBAAInfo,
6161                                                  bool forPointeeType) {
6162   if (TBAAInfo)
6163     *TBAAInfo = getTBAAAccessInfo(T);
6164 
6165   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6166   // that doesn't return the information we need to compute BaseInfo.
6167 
6168   // Honor alignment typedef attributes even on incomplete types.
6169   // We also honor them straight for C++ class types, even as pointees;
6170   // there's an expressivity gap here.
6171   if (auto TT = T->getAs<TypedefType>()) {
6172     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6173       if (BaseInfo)
6174         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6175       return getContext().toCharUnitsFromBits(Align);
6176     }
6177   }
6178 
6179   bool AlignForArray = T->isArrayType();
6180 
6181   // Analyze the base element type, so we don't get confused by incomplete
6182   // array types.
6183   T = getContext().getBaseElementType(T);
6184 
6185   if (T->isIncompleteType()) {
6186     // We could try to replicate the logic from
6187     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6188     // type is incomplete, so it's impossible to test. We could try to reuse
6189     // getTypeAlignIfKnown, but that doesn't return the information we need
6190     // to set BaseInfo.  So just ignore the possibility that the alignment is
6191     // greater than one.
6192     if (BaseInfo)
6193       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6194     return CharUnits::One();
6195   }
6196 
6197   if (BaseInfo)
6198     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6199 
6200   CharUnits Alignment;
6201   const CXXRecordDecl *RD;
6202   if (T.getQualifiers().hasUnaligned()) {
6203     Alignment = CharUnits::One();
6204   } else if (forPointeeType && !AlignForArray &&
6205              (RD = T->getAsCXXRecordDecl())) {
6206     // For C++ class pointees, we don't know whether we're pointing at a
6207     // base or a complete object, so we generally need to use the
6208     // non-virtual alignment.
6209     Alignment = getClassPointerAlignment(RD);
6210   } else {
6211     Alignment = getContext().getTypeAlignInChars(T);
6212   }
6213 
6214   // Cap to the global maximum type alignment unless the alignment
6215   // was somehow explicit on the type.
6216   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6217     if (Alignment.getQuantity() > MaxAlign &&
6218         !getContext().isAlignmentRequired(T))
6219       Alignment = CharUnits::fromQuantity(MaxAlign);
6220   }
6221   return Alignment;
6222 }
6223 
6224 bool CodeGenModule::stopAutoInit() {
6225   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6226   if (StopAfter) {
6227     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6228     // used
6229     if (NumAutoVarInit >= StopAfter) {
6230       return true;
6231     }
6232     if (!NumAutoVarInit) {
6233       unsigned DiagID = getDiags().getCustomDiagID(
6234           DiagnosticsEngine::Warning,
6235           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6236           "number of times ftrivial-auto-var-init=%1 gets applied.");
6237       getDiags().Report(DiagID)
6238           << StopAfter
6239           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6240                       LangOptions::TrivialAutoVarInitKind::Zero
6241                   ? "zero"
6242                   : "pattern");
6243     }
6244     ++NumAutoVarInit;
6245   }
6246   return false;
6247 }
6248