1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 else if (Target.getABI() == "aapcs-soft") 149 Kind = AArch64ABIKind::AAPCSSoft; 150 else if (Target.getABI() == "pauthtest") 151 Kind = AArch64ABIKind::PAuthTest; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && 179 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 180 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 181 Triple.getEnvironment() == llvm::Triple::EABIHF))) 182 Kind = ARMABIKind::AAPCS_VFP; 183 184 return createARMTargetCodeGenInfo(CGM, Kind); 185 } 186 187 case llvm::Triple::ppc: { 188 if (Triple.isOSAIX()) 189 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 190 191 bool IsSoftFloat = 192 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppcle: { 196 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 197 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 198 } 199 case llvm::Triple::ppc64: 200 if (Triple.isOSAIX()) 201 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 202 203 if (Triple.isOSBinFormatELF()) { 204 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 205 if (Target.getABI() == "elfv2") 206 Kind = PPC64_SVR4_ABIKind::ELFv2; 207 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 208 209 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 210 } 211 return createPPC64TargetCodeGenInfo(CGM); 212 case llvm::Triple::ppc64le: { 213 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 214 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 215 if (Target.getABI() == "elfv1") 216 Kind = PPC64_SVR4_ABIKind::ELFv1; 217 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 218 219 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 220 } 221 222 case llvm::Triple::nvptx: 223 case llvm::Triple::nvptx64: 224 return createNVPTXTargetCodeGenInfo(CGM); 225 226 case llvm::Triple::msp430: 227 return createMSP430TargetCodeGenInfo(CGM); 228 229 case llvm::Triple::riscv32: 230 case llvm::Triple::riscv64: { 231 StringRef ABIStr = Target.getABI(); 232 unsigned XLen = Target.getPointerWidth(LangAS::Default); 233 unsigned ABIFLen = 0; 234 if (ABIStr.ends_with("f")) 235 ABIFLen = 32; 236 else if (ABIStr.ends_with("d")) 237 ABIFLen = 64; 238 bool EABI = ABIStr.ends_with("e"); 239 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 240 } 241 242 case llvm::Triple::systemz: { 243 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 244 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 245 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 246 } 247 248 case llvm::Triple::tce: 249 case llvm::Triple::tcele: 250 return createTCETargetCodeGenInfo(CGM); 251 252 case llvm::Triple::x86: { 253 bool IsDarwinVectorABI = Triple.isOSDarwin(); 254 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 255 256 if (Triple.getOS() == llvm::Triple::Win32) { 257 return createWinX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters); 260 } 261 return createX86_32TargetCodeGenInfo( 262 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 263 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 264 } 265 266 case llvm::Triple::x86_64: { 267 StringRef ABI = Target.getABI(); 268 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 269 : ABI == "avx" ? X86AVXABILevel::AVX 270 : X86AVXABILevel::None); 271 272 switch (Triple.getOS()) { 273 case llvm::Triple::Win32: 274 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 default: 276 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 } 278 } 279 case llvm::Triple::hexagon: 280 return createHexagonTargetCodeGenInfo(CGM); 281 case llvm::Triple::lanai: 282 return createLanaiTargetCodeGenInfo(CGM); 283 case llvm::Triple::r600: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::amdgcn: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::sparc: 288 return createSparcV8TargetCodeGenInfo(CGM); 289 case llvm::Triple::sparcv9: 290 return createSparcV9TargetCodeGenInfo(CGM); 291 case llvm::Triple::xcore: 292 return createXCoreTargetCodeGenInfo(CGM); 293 case llvm::Triple::arc: 294 return createARCTargetCodeGenInfo(CGM); 295 case llvm::Triple::spir: 296 case llvm::Triple::spir64: 297 return createCommonSPIRTargetCodeGenInfo(CGM); 298 case llvm::Triple::spirv32: 299 case llvm::Triple::spirv64: 300 return createSPIRVTargetCodeGenInfo(CGM); 301 case llvm::Triple::dxil: 302 return createDirectXTargetCodeGenInfo(CGM); 303 case llvm::Triple::ve: 304 return createVETargetCodeGenInfo(CGM); 305 case llvm::Triple::csky: { 306 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 307 bool hasFP64 = 308 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 309 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 310 : hasFP64 ? 64 311 : 32); 312 } 313 case llvm::Triple::bpfeb: 314 case llvm::Triple::bpfel: 315 return createBPFTargetCodeGenInfo(CGM); 316 case llvm::Triple::loongarch32: 317 case llvm::Triple::loongarch64: { 318 StringRef ABIStr = Target.getABI(); 319 unsigned ABIFRLen = 0; 320 if (ABIStr.ends_with("f")) 321 ABIFRLen = 32; 322 else if (ABIStr.ends_with("d")) 323 ABIFRLen = 64; 324 return createLoongArchTargetCodeGenInfo( 325 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 326 } 327 } 328 } 329 330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 331 if (!TheTargetCodeGenInfo) 332 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 333 return *TheTargetCodeGenInfo; 334 } 335 336 CodeGenModule::CodeGenModule(ASTContext &C, 337 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 338 const HeaderSearchOptions &HSO, 339 const PreprocessorOptions &PPO, 340 const CodeGenOptions &CGO, llvm::Module &M, 341 DiagnosticsEngine &diags, 342 CoverageSourceInfo *CoverageInfo) 343 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 344 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 345 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 346 VMContext(M.getContext()), VTables(*this), 347 SanitizerMD(new SanitizerMetadata(*this)) { 348 349 // Initialize the type cache. 350 Types.reset(new CodeGenTypes(*this)); 351 llvm::LLVMContext &LLVMContext = M.getContext(); 352 VoidTy = llvm::Type::getVoidTy(LLVMContext); 353 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 354 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 355 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 356 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 357 HalfTy = llvm::Type::getHalfTy(LLVMContext); 358 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 359 FloatTy = llvm::Type::getFloatTy(LLVMContext); 360 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 361 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 362 PointerAlignInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 364 .getQuantity(); 365 SizeSizeInBytes = 366 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 367 IntAlignInBytes = 368 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 369 CharTy = 370 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 371 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 372 IntPtrTy = llvm::IntegerType::get(LLVMContext, 373 C.getTargetInfo().getMaxPointerWidth()); 374 Int8PtrTy = llvm::PointerType::get(LLVMContext, 375 C.getTargetAddressSpace(LangAS::Default)); 376 const llvm::DataLayout &DL = M.getDataLayout(); 377 AllocaInt8PtrTy = 378 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 379 GlobalsInt8PtrTy = 380 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 381 ConstGlobalsPtrTy = llvm::PointerType::get( 382 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 383 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 384 385 // Build C++20 Module initializers. 386 // TODO: Add Microsoft here once we know the mangling required for the 387 // initializers. 388 CXX20ModuleInits = 389 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 390 ItaniumMangleContext::MK_Itanium; 391 392 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 393 394 if (LangOpts.ObjC) 395 createObjCRuntime(); 396 if (LangOpts.OpenCL) 397 createOpenCLRuntime(); 398 if (LangOpts.OpenMP) 399 createOpenMPRuntime(); 400 if (LangOpts.CUDA) 401 createCUDARuntime(); 402 if (LangOpts.HLSL) 403 createHLSLRuntime(); 404 405 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 406 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 407 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 408 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 409 getLangOpts())); 410 411 // If debug info or coverage generation is enabled, create the CGDebugInfo 412 // object. 413 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 414 CodeGenOpts.CoverageNotesFile.size() || 415 CodeGenOpts.CoverageDataFile.size()) 416 DebugInfo.reset(new CGDebugInfo(*this)); 417 418 Block.GlobalUniqueCount = 0; 419 420 if (C.getLangOpts().ObjC) 421 ObjCData.reset(new ObjCEntrypoints()); 422 423 if (CodeGenOpts.hasProfileClangUse()) { 424 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 425 CodeGenOpts.ProfileInstrumentUsePath, *FS, 426 CodeGenOpts.ProfileRemappingFile); 427 // We're checking for profile read errors in CompilerInvocation, so if 428 // there was an error it should've already been caught. If it hasn't been 429 // somehow, trip an assertion. 430 assert(ReaderOrErr); 431 PGOReader = std::move(ReaderOrErr.get()); 432 } 433 434 // If coverage mapping generation is enabled, create the 435 // CoverageMappingModuleGen object. 436 if (CodeGenOpts.CoverageMapping) 437 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 438 439 // Generate the module name hash here if needed. 440 if (CodeGenOpts.UniqueInternalLinkageNames && 441 !getModule().getSourceFileName().empty()) { 442 std::string Path = getModule().getSourceFileName(); 443 // Check if a path substitution is needed from the MacroPrefixMap. 444 for (const auto &Entry : LangOpts.MacroPrefixMap) 445 if (Path.rfind(Entry.first, 0) != std::string::npos) { 446 Path = Entry.second + Path.substr(Entry.first.size()); 447 break; 448 } 449 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 450 } 451 452 // Record mregparm value now so it is visible through all of codegen. 453 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 454 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 455 CodeGenOpts.NumRegisterParameters); 456 } 457 458 CodeGenModule::~CodeGenModule() {} 459 460 void CodeGenModule::createObjCRuntime() { 461 // This is just isGNUFamily(), but we want to force implementors of 462 // new ABIs to decide how best to do this. 463 switch (LangOpts.ObjCRuntime.getKind()) { 464 case ObjCRuntime::GNUstep: 465 case ObjCRuntime::GCC: 466 case ObjCRuntime::ObjFW: 467 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 468 return; 469 470 case ObjCRuntime::FragileMacOSX: 471 case ObjCRuntime::MacOSX: 472 case ObjCRuntime::iOS: 473 case ObjCRuntime::WatchOS: 474 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 475 return; 476 } 477 llvm_unreachable("bad runtime kind"); 478 } 479 480 void CodeGenModule::createOpenCLRuntime() { 481 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 482 } 483 484 void CodeGenModule::createOpenMPRuntime() { 485 // Select a specialized code generation class based on the target, if any. 486 // If it does not exist use the default implementation. 487 switch (getTriple().getArch()) { 488 case llvm::Triple::nvptx: 489 case llvm::Triple::nvptx64: 490 case llvm::Triple::amdgcn: 491 assert(getLangOpts().OpenMPIsTargetDevice && 492 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 493 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 494 break; 495 default: 496 if (LangOpts.OpenMPSimd) 497 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 498 else 499 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 500 break; 501 } 502 } 503 504 void CodeGenModule::createCUDARuntime() { 505 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 506 } 507 508 void CodeGenModule::createHLSLRuntime() { 509 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 510 } 511 512 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 513 Replacements[Name] = C; 514 } 515 516 void CodeGenModule::applyReplacements() { 517 for (auto &I : Replacements) { 518 StringRef MangledName = I.first; 519 llvm::Constant *Replacement = I.second; 520 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 521 if (!Entry) 522 continue; 523 auto *OldF = cast<llvm::Function>(Entry); 524 auto *NewF = dyn_cast<llvm::Function>(Replacement); 525 if (!NewF) { 526 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 527 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 528 } else { 529 auto *CE = cast<llvm::ConstantExpr>(Replacement); 530 assert(CE->getOpcode() == llvm::Instruction::BitCast || 531 CE->getOpcode() == llvm::Instruction::GetElementPtr); 532 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 533 } 534 } 535 536 // Replace old with new, but keep the old order. 537 OldF->replaceAllUsesWith(Replacement); 538 if (NewF) { 539 NewF->removeFromParent(); 540 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 541 NewF); 542 } 543 OldF->eraseFromParent(); 544 } 545 } 546 547 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 548 GlobalValReplacements.push_back(std::make_pair(GV, C)); 549 } 550 551 void CodeGenModule::applyGlobalValReplacements() { 552 for (auto &I : GlobalValReplacements) { 553 llvm::GlobalValue *GV = I.first; 554 llvm::Constant *C = I.second; 555 556 GV->replaceAllUsesWith(C); 557 GV->eraseFromParent(); 558 } 559 } 560 561 // This is only used in aliases that we created and we know they have a 562 // linear structure. 563 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 564 const llvm::Constant *C; 565 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 566 C = GA->getAliasee(); 567 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 568 C = GI->getResolver(); 569 else 570 return GV; 571 572 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 573 if (!AliaseeGV) 574 return nullptr; 575 576 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 577 if (FinalGV == GV) 578 return nullptr; 579 580 return FinalGV; 581 } 582 583 static bool checkAliasedGlobal( 584 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 585 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 586 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 587 SourceRange AliasRange) { 588 GV = getAliasedGlobal(Alias); 589 if (!GV) { 590 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 591 return false; 592 } 593 594 if (GV->hasCommonLinkage()) { 595 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 596 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 597 Diags.Report(Location, diag::err_alias_to_common); 598 return false; 599 } 600 } 601 602 if (GV->isDeclaration()) { 603 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 604 Diags.Report(Location, diag::note_alias_requires_mangled_name) 605 << IsIFunc << IsIFunc; 606 // Provide a note if the given function is not found and exists as a 607 // mangled name. 608 for (const auto &[Decl, Name] : MangledDeclNames) { 609 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 610 if (ND->getName() == GV->getName()) { 611 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 612 << Name 613 << FixItHint::CreateReplacement( 614 AliasRange, 615 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 616 .str()); 617 } 618 } 619 } 620 return false; 621 } 622 623 if (IsIFunc) { 624 // Check resolver function type. 625 const auto *F = dyn_cast<llvm::Function>(GV); 626 if (!F) { 627 Diags.Report(Location, diag::err_alias_to_undefined) 628 << IsIFunc << IsIFunc; 629 return false; 630 } 631 632 llvm::FunctionType *FTy = F->getFunctionType(); 633 if (!FTy->getReturnType()->isPointerTy()) { 634 Diags.Report(Location, diag::err_ifunc_resolver_return); 635 return false; 636 } 637 } 638 639 return true; 640 } 641 642 // Emit a warning if toc-data attribute is requested for global variables that 643 // have aliases and remove the toc-data attribute. 644 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 645 const CodeGenOptions &CodeGenOpts, 646 DiagnosticsEngine &Diags, 647 SourceLocation Location) { 648 if (GVar->hasAttribute("toc-data")) { 649 auto GVId = GVar->getName(); 650 // Is this a global variable specified by the user as local? 651 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 652 Diags.Report(Location, diag::warn_toc_unsupported_type) 653 << GVId << "the variable has an alias"; 654 } 655 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 656 llvm::AttributeSet NewAttributes = 657 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 658 GVar->setAttributes(NewAttributes); 659 } 660 } 661 662 void CodeGenModule::checkAliases() { 663 // Check if the constructed aliases are well formed. It is really unfortunate 664 // that we have to do this in CodeGen, but we only construct mangled names 665 // and aliases during codegen. 666 bool Error = false; 667 DiagnosticsEngine &Diags = getDiags(); 668 for (const GlobalDecl &GD : Aliases) { 669 const auto *D = cast<ValueDecl>(GD.getDecl()); 670 SourceLocation Location; 671 SourceRange Range; 672 bool IsIFunc = D->hasAttr<IFuncAttr>(); 673 if (const Attr *A = D->getDefiningAttr()) { 674 Location = A->getLocation(); 675 Range = A->getRange(); 676 } else 677 llvm_unreachable("Not an alias or ifunc?"); 678 679 StringRef MangledName = getMangledName(GD); 680 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 681 const llvm::GlobalValue *GV = nullptr; 682 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 683 MangledDeclNames, Range)) { 684 Error = true; 685 continue; 686 } 687 688 if (getContext().getTargetInfo().getTriple().isOSAIX()) 689 if (const llvm::GlobalVariable *GVar = 690 dyn_cast<const llvm::GlobalVariable>(GV)) 691 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 692 getCodeGenOpts(), Diags, Location); 693 694 llvm::Constant *Aliasee = 695 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 696 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 697 698 llvm::GlobalValue *AliaseeGV; 699 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 700 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 701 else 702 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 703 704 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 705 StringRef AliasSection = SA->getName(); 706 if (AliasSection != AliaseeGV->getSection()) 707 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 708 << AliasSection << IsIFunc << IsIFunc; 709 } 710 711 // We have to handle alias to weak aliases in here. LLVM itself disallows 712 // this since the object semantics would not match the IL one. For 713 // compatibility with gcc we implement it by just pointing the alias 714 // to its aliasee's aliasee. We also warn, since the user is probably 715 // expecting the link to be weak. 716 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 717 if (GA->isInterposable()) { 718 Diags.Report(Location, diag::warn_alias_to_weak_alias) 719 << GV->getName() << GA->getName() << IsIFunc; 720 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 721 GA->getAliasee(), Alias->getType()); 722 723 if (IsIFunc) 724 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 725 else 726 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 727 } 728 } 729 // ifunc resolvers are usually implemented to run before sanitizer 730 // initialization. Disable instrumentation to prevent the ordering issue. 731 if (IsIFunc) 732 cast<llvm::Function>(Aliasee)->addFnAttr( 733 llvm::Attribute::DisableSanitizerInstrumentation); 734 } 735 if (!Error) 736 return; 737 738 for (const GlobalDecl &GD : Aliases) { 739 StringRef MangledName = getMangledName(GD); 740 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 741 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 742 Alias->eraseFromParent(); 743 } 744 } 745 746 void CodeGenModule::clear() { 747 DeferredDeclsToEmit.clear(); 748 EmittedDeferredDecls.clear(); 749 DeferredAnnotations.clear(); 750 if (OpenMPRuntime) 751 OpenMPRuntime->clear(); 752 } 753 754 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 755 StringRef MainFile) { 756 if (!hasDiagnostics()) 757 return; 758 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 759 if (MainFile.empty()) 760 MainFile = "<stdin>"; 761 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 762 } else { 763 if (Mismatched > 0) 764 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 765 766 if (Missing > 0) 767 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 768 } 769 } 770 771 static std::optional<llvm::GlobalValue::VisibilityTypes> 772 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 773 // Map to LLVM visibility. 774 switch (K) { 775 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 776 return std::nullopt; 777 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 778 return llvm::GlobalValue::DefaultVisibility; 779 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 780 return llvm::GlobalValue::HiddenVisibility; 781 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 782 return llvm::GlobalValue::ProtectedVisibility; 783 } 784 llvm_unreachable("unknown option value!"); 785 } 786 787 static void 788 setLLVMVisibility(llvm::GlobalValue &GV, 789 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 790 if (!V) 791 return; 792 793 // Reset DSO locality before setting the visibility. This removes 794 // any effects that visibility options and annotations may have 795 // had on the DSO locality. Setting the visibility will implicitly set 796 // appropriate globals to DSO Local; however, this will be pessimistic 797 // w.r.t. to the normal compiler IRGen. 798 GV.setDSOLocal(false); 799 GV.setVisibility(*V); 800 } 801 802 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 803 llvm::Module &M) { 804 if (!LO.VisibilityFromDLLStorageClass) 805 return; 806 807 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 808 getLLVMVisibility(LO.getDLLExportVisibility()); 809 810 std::optional<llvm::GlobalValue::VisibilityTypes> 811 NoDLLStorageClassVisibility = 812 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 813 814 std::optional<llvm::GlobalValue::VisibilityTypes> 815 ExternDeclDLLImportVisibility = 816 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 817 818 std::optional<llvm::GlobalValue::VisibilityTypes> 819 ExternDeclNoDLLStorageClassVisibility = 820 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 821 822 for (llvm::GlobalValue &GV : M.global_values()) { 823 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 824 continue; 825 826 if (GV.isDeclarationForLinker()) 827 setLLVMVisibility(GV, GV.getDLLStorageClass() == 828 llvm::GlobalValue::DLLImportStorageClass 829 ? ExternDeclDLLImportVisibility 830 : ExternDeclNoDLLStorageClassVisibility); 831 else 832 setLLVMVisibility(GV, GV.getDLLStorageClass() == 833 llvm::GlobalValue::DLLExportStorageClass 834 ? DLLExportVisibility 835 : NoDLLStorageClassVisibility); 836 837 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 838 } 839 } 840 841 static bool isStackProtectorOn(const LangOptions &LangOpts, 842 const llvm::Triple &Triple, 843 clang::LangOptions::StackProtectorMode Mode) { 844 if (Triple.isAMDGPU() || Triple.isNVPTX()) 845 return false; 846 return LangOpts.getStackProtector() == Mode; 847 } 848 849 void CodeGenModule::Release() { 850 Module *Primary = getContext().getCurrentNamedModule(); 851 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 852 EmitModuleInitializers(Primary); 853 EmitDeferred(); 854 DeferredDecls.insert(EmittedDeferredDecls.begin(), 855 EmittedDeferredDecls.end()); 856 EmittedDeferredDecls.clear(); 857 EmitVTablesOpportunistically(); 858 applyGlobalValReplacements(); 859 applyReplacements(); 860 emitMultiVersionFunctions(); 861 862 if (Context.getLangOpts().IncrementalExtensions && 863 GlobalTopLevelStmtBlockInFlight.first) { 864 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 865 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 866 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 867 } 868 869 // Module implementations are initialized the same way as a regular TU that 870 // imports one or more modules. 871 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 872 EmitCXXModuleInitFunc(Primary); 873 else 874 EmitCXXGlobalInitFunc(); 875 EmitCXXGlobalCleanUpFunc(); 876 registerGlobalDtorsWithAtExit(); 877 EmitCXXThreadLocalInitFunc(); 878 if (ObjCRuntime) 879 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 880 AddGlobalCtor(ObjCInitFunction); 881 if (Context.getLangOpts().CUDA && CUDARuntime) { 882 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 883 AddGlobalCtor(CudaCtorFunction); 884 } 885 if (OpenMPRuntime) { 886 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 887 OpenMPRuntime->clear(); 888 } 889 if (PGOReader) { 890 getModule().setProfileSummary( 891 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 892 llvm::ProfileSummary::PSK_Instr); 893 if (PGOStats.hasDiagnostics()) 894 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 895 } 896 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 897 return L.LexOrder < R.LexOrder; 898 }); 899 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 900 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 901 EmitGlobalAnnotations(); 902 EmitStaticExternCAliases(); 903 checkAliases(); 904 EmitDeferredUnusedCoverageMappings(); 905 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 906 CodeGenPGO(*this).setProfileVersion(getModule()); 907 if (CoverageMapping) 908 CoverageMapping->emit(); 909 if (CodeGenOpts.SanitizeCfiCrossDso) { 910 CodeGenFunction(*this).EmitCfiCheckFail(); 911 CodeGenFunction(*this).EmitCfiCheckStub(); 912 } 913 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 914 finalizeKCFITypes(); 915 emitAtAvailableLinkGuard(); 916 if (Context.getTargetInfo().getTriple().isWasm()) 917 EmitMainVoidAlias(); 918 919 if (getTriple().isAMDGPU() || 920 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 921 // Emit amdhsa_code_object_version module flag, which is code object version 922 // times 100. 923 if (getTarget().getTargetOpts().CodeObjectVersion != 924 llvm::CodeObjectVersionKind::COV_None) { 925 getModule().addModuleFlag(llvm::Module::Error, 926 "amdhsa_code_object_version", 927 getTarget().getTargetOpts().CodeObjectVersion); 928 } 929 930 // Currently, "-mprintf-kind" option is only supported for HIP 931 if (LangOpts.HIP) { 932 auto *MDStr = llvm::MDString::get( 933 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 934 TargetOptions::AMDGPUPrintfKind::Hostcall) 935 ? "hostcall" 936 : "buffered"); 937 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 938 MDStr); 939 } 940 } 941 942 // Emit a global array containing all external kernels or device variables 943 // used by host functions and mark it as used for CUDA/HIP. This is necessary 944 // to get kernels or device variables in archives linked in even if these 945 // kernels or device variables are only used in host functions. 946 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 947 SmallVector<llvm::Constant *, 8> UsedArray; 948 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 949 GlobalDecl GD; 950 if (auto *FD = dyn_cast<FunctionDecl>(D)) 951 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 952 else 953 GD = GlobalDecl(D); 954 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 955 GetAddrOfGlobal(GD), Int8PtrTy)); 956 } 957 958 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 959 960 auto *GV = new llvm::GlobalVariable( 961 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 962 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 963 addCompilerUsedGlobal(GV); 964 } 965 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 966 // Emit a unique ID so that host and device binaries from the same 967 // compilation unit can be associated. 968 auto *GV = new llvm::GlobalVariable( 969 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 970 llvm::Constant::getNullValue(Int8Ty), 971 "__hip_cuid_" + getContext().getCUIDHash()); 972 addCompilerUsedGlobal(GV); 973 } 974 emitLLVMUsed(); 975 if (SanStats) 976 SanStats->finish(); 977 978 if (CodeGenOpts.Autolink && 979 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 980 EmitModuleLinkOptions(); 981 } 982 983 // On ELF we pass the dependent library specifiers directly to the linker 984 // without manipulating them. This is in contrast to other platforms where 985 // they are mapped to a specific linker option by the compiler. This 986 // difference is a result of the greater variety of ELF linkers and the fact 987 // that ELF linkers tend to handle libraries in a more complicated fashion 988 // than on other platforms. This forces us to defer handling the dependent 989 // libs to the linker. 990 // 991 // CUDA/HIP device and host libraries are different. Currently there is no 992 // way to differentiate dependent libraries for host or device. Existing 993 // usage of #pragma comment(lib, *) is intended for host libraries on 994 // Windows. Therefore emit llvm.dependent-libraries only for host. 995 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 996 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 997 for (auto *MD : ELFDependentLibraries) 998 NMD->addOperand(MD); 999 } 1000 1001 if (CodeGenOpts.DwarfVersion) { 1002 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 1003 CodeGenOpts.DwarfVersion); 1004 } 1005 1006 if (CodeGenOpts.Dwarf64) 1007 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1008 1009 if (Context.getLangOpts().SemanticInterposition) 1010 // Require various optimization to respect semantic interposition. 1011 getModule().setSemanticInterposition(true); 1012 1013 if (CodeGenOpts.EmitCodeView) { 1014 // Indicate that we want CodeView in the metadata. 1015 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1016 } 1017 if (CodeGenOpts.CodeViewGHash) { 1018 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1019 } 1020 if (CodeGenOpts.ControlFlowGuard) { 1021 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1022 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1023 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1024 // Function ID tables for Control Flow Guard (cfguard=1). 1025 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1026 } 1027 if (CodeGenOpts.EHContGuard) { 1028 // Function ID tables for EH Continuation Guard. 1029 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1030 } 1031 if (Context.getLangOpts().Kernel) { 1032 // Note if we are compiling with /kernel. 1033 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1034 } 1035 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1036 // We don't support LTO with 2 with different StrictVTablePointers 1037 // FIXME: we could support it by stripping all the information introduced 1038 // by StrictVTablePointers. 1039 1040 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1041 1042 llvm::Metadata *Ops[2] = { 1043 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1044 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1045 llvm::Type::getInt32Ty(VMContext), 1))}; 1046 1047 getModule().addModuleFlag(llvm::Module::Require, 1048 "StrictVTablePointersRequirement", 1049 llvm::MDNode::get(VMContext, Ops)); 1050 } 1051 if (getModuleDebugInfo()) 1052 // We support a single version in the linked module. The LLVM 1053 // parser will drop debug info with a different version number 1054 // (and warn about it, too). 1055 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1056 llvm::DEBUG_METADATA_VERSION); 1057 1058 // We need to record the widths of enums and wchar_t, so that we can generate 1059 // the correct build attributes in the ARM backend. wchar_size is also used by 1060 // TargetLibraryInfo. 1061 uint64_t WCharWidth = 1062 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1063 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1064 1065 if (getTriple().isOSzOS()) { 1066 getModule().addModuleFlag(llvm::Module::Warning, 1067 "zos_product_major_version", 1068 uint32_t(CLANG_VERSION_MAJOR)); 1069 getModule().addModuleFlag(llvm::Module::Warning, 1070 "zos_product_minor_version", 1071 uint32_t(CLANG_VERSION_MINOR)); 1072 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1073 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1074 std::string ProductId = getClangVendor() + "clang"; 1075 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1076 llvm::MDString::get(VMContext, ProductId)); 1077 1078 // Record the language because we need it for the PPA2. 1079 StringRef lang_str = languageToString( 1080 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1081 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1082 llvm::MDString::get(VMContext, lang_str)); 1083 1084 time_t TT = PreprocessorOpts.SourceDateEpoch 1085 ? *PreprocessorOpts.SourceDateEpoch 1086 : std::time(nullptr); 1087 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1088 static_cast<uint64_t>(TT)); 1089 1090 // Multiple modes will be supported here. 1091 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1092 llvm::MDString::get(VMContext, "ascii")); 1093 } 1094 1095 llvm::Triple T = Context.getTargetInfo().getTriple(); 1096 if (T.isARM() || T.isThumb()) { 1097 // The minimum width of an enum in bytes 1098 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1099 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1100 } 1101 1102 if (T.isRISCV()) { 1103 StringRef ABIStr = Target.getABI(); 1104 llvm::LLVMContext &Ctx = TheModule.getContext(); 1105 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1106 llvm::MDString::get(Ctx, ABIStr)); 1107 1108 // Add the canonical ISA string as metadata so the backend can set the ELF 1109 // attributes correctly. We use AppendUnique so LTO will keep all of the 1110 // unique ISA strings that were linked together. 1111 const std::vector<std::string> &Features = 1112 getTarget().getTargetOpts().Features; 1113 auto ParseResult = 1114 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1115 if (!errorToBool(ParseResult.takeError())) 1116 getModule().addModuleFlag( 1117 llvm::Module::AppendUnique, "riscv-isa", 1118 llvm::MDNode::get( 1119 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1120 } 1121 1122 if (CodeGenOpts.SanitizeCfiCrossDso) { 1123 // Indicate that we want cross-DSO control flow integrity checks. 1124 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1125 } 1126 1127 if (CodeGenOpts.WholeProgramVTables) { 1128 // Indicate whether VFE was enabled for this module, so that the 1129 // vcall_visibility metadata added under whole program vtables is handled 1130 // appropriately in the optimizer. 1131 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1132 CodeGenOpts.VirtualFunctionElimination); 1133 } 1134 1135 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1136 getModule().addModuleFlag(llvm::Module::Override, 1137 "CFI Canonical Jump Tables", 1138 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1139 } 1140 1141 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) { 1142 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers", 1143 1); 1144 } 1145 1146 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1147 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1148 // KCFI assumes patchable-function-prefix is the same for all indirectly 1149 // called functions. Store the expected offset for code generation. 1150 if (CodeGenOpts.PatchableFunctionEntryOffset) 1151 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1152 CodeGenOpts.PatchableFunctionEntryOffset); 1153 } 1154 1155 if (CodeGenOpts.CFProtectionReturn && 1156 Target.checkCFProtectionReturnSupported(getDiags())) { 1157 // Indicate that we want to instrument return control flow protection. 1158 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1159 1); 1160 } 1161 1162 if (CodeGenOpts.CFProtectionBranch && 1163 Target.checkCFProtectionBranchSupported(getDiags())) { 1164 // Indicate that we want to instrument branch control flow protection. 1165 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1166 1); 1167 } 1168 1169 if (CodeGenOpts.FunctionReturnThunks) 1170 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1171 1172 if (CodeGenOpts.IndirectBranchCSPrefix) 1173 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1174 1175 // Add module metadata for return address signing (ignoring 1176 // non-leaf/all) and stack tagging. These are actually turned on by function 1177 // attributes, but we use module metadata to emit build attributes. This is 1178 // needed for LTO, where the function attributes are inside bitcode 1179 // serialised into a global variable by the time build attributes are 1180 // emitted, so we can't access them. LTO objects could be compiled with 1181 // different flags therefore module flags are set to "Min" behavior to achieve 1182 // the same end result of the normal build where e.g BTI is off if any object 1183 // doesn't support it. 1184 if (Context.getTargetInfo().hasFeature("ptrauth") && 1185 LangOpts.getSignReturnAddressScope() != 1186 LangOptions::SignReturnAddressScopeKind::None) 1187 getModule().addModuleFlag(llvm::Module::Override, 1188 "sign-return-address-buildattr", 1); 1189 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1190 getModule().addModuleFlag(llvm::Module::Override, 1191 "tag-stack-memory-buildattr", 1); 1192 1193 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1194 if (LangOpts.BranchTargetEnforcement) 1195 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1196 1); 1197 if (LangOpts.BranchProtectionPAuthLR) 1198 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1199 1); 1200 if (LangOpts.GuardedControlStack) 1201 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1202 if (LangOpts.hasSignReturnAddress()) 1203 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1204 if (LangOpts.isSignReturnAddressScopeAll()) 1205 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1206 1); 1207 if (!LangOpts.isSignReturnAddressWithAKey()) 1208 getModule().addModuleFlag(llvm::Module::Min, 1209 "sign-return-address-with-bkey", 1); 1210 1211 if (getTriple().isOSLinux()) { 1212 assert(getTriple().isOSBinFormatELF()); 1213 using namespace llvm::ELF; 1214 uint64_t PAuthABIVersion = 1215 (LangOpts.PointerAuthIntrinsics 1216 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1217 (LangOpts.PointerAuthCalls 1218 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1219 (LangOpts.PointerAuthReturns 1220 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1221 (LangOpts.PointerAuthAuthTraps 1222 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1223 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1224 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1225 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1226 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1227 (LangOpts.PointerAuthInitFini 1228 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1229 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1230 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1231 (LangOpts.PointerAuthELFGOT 1232 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) | 1233 (LangOpts.PointerAuthIndirectGotos 1234 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) | 1235 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination 1236 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) | 1237 (LangOpts.PointerAuthFunctionTypeDiscrimination 1238 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR); 1239 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR == 1240 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1241 "Update when new enum items are defined"); 1242 if (PAuthABIVersion != 0) { 1243 getModule().addModuleFlag(llvm::Module::Error, 1244 "aarch64-elf-pauthabi-platform", 1245 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1246 getModule().addModuleFlag(llvm::Module::Error, 1247 "aarch64-elf-pauthabi-version", 1248 PAuthABIVersion); 1249 } 1250 } 1251 } 1252 1253 if (CodeGenOpts.StackClashProtector) 1254 getModule().addModuleFlag( 1255 llvm::Module::Override, "probe-stack", 1256 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1257 1258 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1259 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1260 CodeGenOpts.StackProbeSize); 1261 1262 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1263 llvm::LLVMContext &Ctx = TheModule.getContext(); 1264 getModule().addModuleFlag( 1265 llvm::Module::Error, "MemProfProfileFilename", 1266 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1267 } 1268 1269 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1270 // Indicate whether __nvvm_reflect should be configured to flush denormal 1271 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1272 // property.) 1273 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1274 CodeGenOpts.FP32DenormalMode.Output != 1275 llvm::DenormalMode::IEEE); 1276 } 1277 1278 if (LangOpts.EHAsynch) 1279 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1280 1281 // Indicate whether this Module was compiled with -fopenmp 1282 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1283 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1284 if (getLangOpts().OpenMPIsTargetDevice) 1285 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1286 LangOpts.OpenMP); 1287 1288 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1289 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1290 EmitOpenCLMetadata(); 1291 // Emit SPIR version. 1292 if (getTriple().isSPIR()) { 1293 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1294 // opencl.spir.version named metadata. 1295 // C++ for OpenCL has a distinct mapping for version compatibility with 1296 // OpenCL. 1297 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1298 llvm::Metadata *SPIRVerElts[] = { 1299 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1300 Int32Ty, Version / 100)), 1301 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1302 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1303 llvm::NamedMDNode *SPIRVerMD = 1304 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1305 llvm::LLVMContext &Ctx = TheModule.getContext(); 1306 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1307 } 1308 } 1309 1310 // HLSL related end of code gen work items. 1311 if (LangOpts.HLSL) 1312 getHLSLRuntime().finishCodeGen(); 1313 1314 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1315 assert(PLevel < 3 && "Invalid PIC Level"); 1316 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1317 if (Context.getLangOpts().PIE) 1318 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1319 } 1320 1321 if (getCodeGenOpts().CodeModel.size() > 0) { 1322 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1323 .Case("tiny", llvm::CodeModel::Tiny) 1324 .Case("small", llvm::CodeModel::Small) 1325 .Case("kernel", llvm::CodeModel::Kernel) 1326 .Case("medium", llvm::CodeModel::Medium) 1327 .Case("large", llvm::CodeModel::Large) 1328 .Default(~0u); 1329 if (CM != ~0u) { 1330 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1331 getModule().setCodeModel(codeModel); 1332 1333 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1334 Context.getTargetInfo().getTriple().getArch() == 1335 llvm::Triple::x86_64) { 1336 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1337 } 1338 } 1339 } 1340 1341 if (CodeGenOpts.NoPLT) 1342 getModule().setRtLibUseGOT(); 1343 if (getTriple().isOSBinFormatELF() && 1344 CodeGenOpts.DirectAccessExternalData != 1345 getModule().getDirectAccessExternalData()) { 1346 getModule().setDirectAccessExternalData( 1347 CodeGenOpts.DirectAccessExternalData); 1348 } 1349 if (CodeGenOpts.UnwindTables) 1350 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1351 1352 switch (CodeGenOpts.getFramePointer()) { 1353 case CodeGenOptions::FramePointerKind::None: 1354 // 0 ("none") is the default. 1355 break; 1356 case CodeGenOptions::FramePointerKind::Reserved: 1357 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1358 break; 1359 case CodeGenOptions::FramePointerKind::NonLeaf: 1360 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1361 break; 1362 case CodeGenOptions::FramePointerKind::All: 1363 getModule().setFramePointer(llvm::FramePointerKind::All); 1364 break; 1365 } 1366 1367 SimplifyPersonality(); 1368 1369 if (getCodeGenOpts().EmitDeclMetadata) 1370 EmitDeclMetadata(); 1371 1372 if (getCodeGenOpts().CoverageNotesFile.size() || 1373 getCodeGenOpts().CoverageDataFile.size()) 1374 EmitCoverageFile(); 1375 1376 if (CGDebugInfo *DI = getModuleDebugInfo()) 1377 DI->finalize(); 1378 1379 if (getCodeGenOpts().EmitVersionIdentMetadata) 1380 EmitVersionIdentMetadata(); 1381 1382 if (!getCodeGenOpts().RecordCommandLine.empty()) 1383 EmitCommandLineMetadata(); 1384 1385 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1386 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1387 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1388 getModule().setStackProtectorGuardReg( 1389 getCodeGenOpts().StackProtectorGuardReg); 1390 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1391 getModule().setStackProtectorGuardSymbol( 1392 getCodeGenOpts().StackProtectorGuardSymbol); 1393 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1394 getModule().setStackProtectorGuardOffset( 1395 getCodeGenOpts().StackProtectorGuardOffset); 1396 if (getCodeGenOpts().StackAlignment) 1397 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1398 if (getCodeGenOpts().SkipRaxSetup) 1399 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1400 if (getLangOpts().RegCall4) 1401 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1402 1403 if (getContext().getTargetInfo().getMaxTLSAlign()) 1404 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1405 getContext().getTargetInfo().getMaxTLSAlign()); 1406 1407 getTargetCodeGenInfo().emitTargetGlobals(*this); 1408 1409 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1410 1411 EmitBackendOptionsMetadata(getCodeGenOpts()); 1412 1413 // If there is device offloading code embed it in the host now. 1414 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1415 1416 // Set visibility from DLL storage class 1417 // We do this at the end of LLVM IR generation; after any operation 1418 // that might affect the DLL storage class or the visibility, and 1419 // before anything that might act on these. 1420 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1421 1422 // Check the tail call symbols are truly undefined. 1423 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1424 for (auto &I : MustTailCallUndefinedGlobals) { 1425 if (!I.first->isDefined()) 1426 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1427 else { 1428 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1429 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1430 if (!Entry || Entry->isWeakForLinker() || 1431 Entry->isDeclarationForLinker()) 1432 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1433 } 1434 } 1435 } 1436 } 1437 1438 void CodeGenModule::EmitOpenCLMetadata() { 1439 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1440 // opencl.ocl.version named metadata node. 1441 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1442 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1443 1444 auto EmitVersion = [this](StringRef MDName, int Version) { 1445 llvm::Metadata *OCLVerElts[] = { 1446 llvm::ConstantAsMetadata::get( 1447 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1448 llvm::ConstantAsMetadata::get( 1449 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1450 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1451 llvm::LLVMContext &Ctx = TheModule.getContext(); 1452 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1453 }; 1454 1455 EmitVersion("opencl.ocl.version", CLVersion); 1456 if (LangOpts.OpenCLCPlusPlus) { 1457 // In addition to the OpenCL compatible version, emit the C++ version. 1458 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1459 } 1460 } 1461 1462 void CodeGenModule::EmitBackendOptionsMetadata( 1463 const CodeGenOptions &CodeGenOpts) { 1464 if (getTriple().isRISCV()) { 1465 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1466 CodeGenOpts.SmallDataLimit); 1467 } 1468 } 1469 1470 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1471 // Make sure that this type is translated. 1472 getTypes().UpdateCompletedType(TD); 1473 } 1474 1475 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1476 // Make sure that this type is translated. 1477 getTypes().RefreshTypeCacheForClass(RD); 1478 } 1479 1480 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1481 if (!TBAA) 1482 return nullptr; 1483 return TBAA->getTypeInfo(QTy); 1484 } 1485 1486 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1487 if (!TBAA) 1488 return TBAAAccessInfo(); 1489 if (getLangOpts().CUDAIsDevice) { 1490 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1491 // access info. 1492 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1493 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1494 nullptr) 1495 return TBAAAccessInfo(); 1496 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1497 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1498 nullptr) 1499 return TBAAAccessInfo(); 1500 } 1501 } 1502 return TBAA->getAccessInfo(AccessType); 1503 } 1504 1505 TBAAAccessInfo 1506 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1507 if (!TBAA) 1508 return TBAAAccessInfo(); 1509 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1510 } 1511 1512 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1513 if (!TBAA) 1514 return nullptr; 1515 return TBAA->getTBAAStructInfo(QTy); 1516 } 1517 1518 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1519 if (!TBAA) 1520 return nullptr; 1521 return TBAA->getBaseTypeInfo(QTy); 1522 } 1523 1524 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1525 if (!TBAA) 1526 return nullptr; 1527 return TBAA->getAccessTagInfo(Info); 1528 } 1529 1530 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1531 TBAAAccessInfo TargetInfo) { 1532 if (!TBAA) 1533 return TBAAAccessInfo(); 1534 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1535 } 1536 1537 TBAAAccessInfo 1538 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1539 TBAAAccessInfo InfoB) { 1540 if (!TBAA) 1541 return TBAAAccessInfo(); 1542 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1543 } 1544 1545 TBAAAccessInfo 1546 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1547 TBAAAccessInfo SrcInfo) { 1548 if (!TBAA) 1549 return TBAAAccessInfo(); 1550 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1551 } 1552 1553 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1554 TBAAAccessInfo TBAAInfo) { 1555 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1556 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1557 } 1558 1559 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1560 llvm::Instruction *I, const CXXRecordDecl *RD) { 1561 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1562 llvm::MDNode::get(getLLVMContext(), {})); 1563 } 1564 1565 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1566 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1567 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1568 } 1569 1570 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1571 /// specified stmt yet. 1572 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1573 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1574 "cannot compile this %0 yet"); 1575 std::string Msg = Type; 1576 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1577 << Msg << S->getSourceRange(); 1578 } 1579 1580 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1581 /// specified decl yet. 1582 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1583 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1584 "cannot compile this %0 yet"); 1585 std::string Msg = Type; 1586 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1587 } 1588 1589 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1590 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1591 } 1592 1593 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1594 const NamedDecl *D) const { 1595 // Internal definitions always have default visibility. 1596 if (GV->hasLocalLinkage()) { 1597 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1598 return; 1599 } 1600 if (!D) 1601 return; 1602 1603 // Set visibility for definitions, and for declarations if requested globally 1604 // or set explicitly. 1605 LinkageInfo LV = D->getLinkageAndVisibility(); 1606 1607 // OpenMP declare target variables must be visible to the host so they can 1608 // be registered. We require protected visibility unless the variable has 1609 // the DT_nohost modifier and does not need to be registered. 1610 if (Context.getLangOpts().OpenMP && 1611 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1612 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1613 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1614 OMPDeclareTargetDeclAttr::DT_NoHost && 1615 LV.getVisibility() == HiddenVisibility) { 1616 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1617 return; 1618 } 1619 1620 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1621 // Reject incompatible dlllstorage and visibility annotations. 1622 if (!LV.isVisibilityExplicit()) 1623 return; 1624 if (GV->hasDLLExportStorageClass()) { 1625 if (LV.getVisibility() == HiddenVisibility) 1626 getDiags().Report(D->getLocation(), 1627 diag::err_hidden_visibility_dllexport); 1628 } else if (LV.getVisibility() != DefaultVisibility) { 1629 getDiags().Report(D->getLocation(), 1630 diag::err_non_default_visibility_dllimport); 1631 } 1632 return; 1633 } 1634 1635 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1636 !GV->isDeclarationForLinker()) 1637 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1638 } 1639 1640 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1641 llvm::GlobalValue *GV) { 1642 if (GV->hasLocalLinkage()) 1643 return true; 1644 1645 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1646 return true; 1647 1648 // DLLImport explicitly marks the GV as external. 1649 if (GV->hasDLLImportStorageClass()) 1650 return false; 1651 1652 const llvm::Triple &TT = CGM.getTriple(); 1653 const auto &CGOpts = CGM.getCodeGenOpts(); 1654 if (TT.isWindowsGNUEnvironment()) { 1655 // In MinGW, variables without DLLImport can still be automatically 1656 // imported from a DLL by the linker; don't mark variables that 1657 // potentially could come from another DLL as DSO local. 1658 1659 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1660 // (and this actually happens in the public interface of libstdc++), so 1661 // such variables can't be marked as DSO local. (Native TLS variables 1662 // can't be dllimported at all, though.) 1663 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1664 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1665 CGOpts.AutoImport) 1666 return false; 1667 } 1668 1669 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1670 // remain unresolved in the link, they can be resolved to zero, which is 1671 // outside the current DSO. 1672 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1673 return false; 1674 1675 // Every other GV is local on COFF. 1676 // Make an exception for windows OS in the triple: Some firmware builds use 1677 // *-win32-macho triples. This (accidentally?) produced windows relocations 1678 // without GOT tables in older clang versions; Keep this behaviour. 1679 // FIXME: even thread local variables? 1680 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1681 return true; 1682 1683 // Only handle COFF and ELF for now. 1684 if (!TT.isOSBinFormatELF()) 1685 return false; 1686 1687 // If this is not an executable, don't assume anything is local. 1688 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1689 const auto &LOpts = CGM.getLangOpts(); 1690 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1691 // On ELF, if -fno-semantic-interposition is specified and the target 1692 // supports local aliases, there will be neither CC1 1693 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1694 // dso_local on the function if using a local alias is preferable (can avoid 1695 // PLT indirection). 1696 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1697 return false; 1698 return !(CGM.getLangOpts().SemanticInterposition || 1699 CGM.getLangOpts().HalfNoSemanticInterposition); 1700 } 1701 1702 // A definition cannot be preempted from an executable. 1703 if (!GV->isDeclarationForLinker()) 1704 return true; 1705 1706 // Most PIC code sequences that assume that a symbol is local cannot produce a 1707 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1708 // depended, it seems worth it to handle it here. 1709 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1710 return false; 1711 1712 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1713 if (TT.isPPC64()) 1714 return false; 1715 1716 if (CGOpts.DirectAccessExternalData) { 1717 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1718 // for non-thread-local variables. If the symbol is not defined in the 1719 // executable, a copy relocation will be needed at link time. dso_local is 1720 // excluded for thread-local variables because they generally don't support 1721 // copy relocations. 1722 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1723 if (!Var->isThreadLocal()) 1724 return true; 1725 1726 // -fno-pic sets dso_local on a function declaration to allow direct 1727 // accesses when taking its address (similar to a data symbol). If the 1728 // function is not defined in the executable, a canonical PLT entry will be 1729 // needed at link time. -fno-direct-access-external-data can avoid the 1730 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1731 // it could just cause trouble without providing perceptible benefits. 1732 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1733 return true; 1734 } 1735 1736 // If we can use copy relocations we can assume it is local. 1737 1738 // Otherwise don't assume it is local. 1739 return false; 1740 } 1741 1742 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1743 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1744 } 1745 1746 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1747 GlobalDecl GD) const { 1748 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1749 // C++ destructors have a few C++ ABI specific special cases. 1750 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1751 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1752 return; 1753 } 1754 setDLLImportDLLExport(GV, D); 1755 } 1756 1757 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1758 const NamedDecl *D) const { 1759 if (D && D->isExternallyVisible()) { 1760 if (D->hasAttr<DLLImportAttr>()) 1761 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1762 else if ((D->hasAttr<DLLExportAttr>() || 1763 shouldMapVisibilityToDLLExport(D)) && 1764 !GV->isDeclarationForLinker()) 1765 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1766 } 1767 } 1768 1769 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1770 GlobalDecl GD) const { 1771 setDLLImportDLLExport(GV, GD); 1772 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1773 } 1774 1775 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1776 const NamedDecl *D) const { 1777 setDLLImportDLLExport(GV, D); 1778 setGVPropertiesAux(GV, D); 1779 } 1780 1781 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1782 const NamedDecl *D) const { 1783 setGlobalVisibility(GV, D); 1784 setDSOLocal(GV); 1785 GV->setPartition(CodeGenOpts.SymbolPartition); 1786 } 1787 1788 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1789 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1790 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1791 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1792 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1793 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1794 } 1795 1796 llvm::GlobalVariable::ThreadLocalMode 1797 CodeGenModule::GetDefaultLLVMTLSModel() const { 1798 switch (CodeGenOpts.getDefaultTLSModel()) { 1799 case CodeGenOptions::GeneralDynamicTLSModel: 1800 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1801 case CodeGenOptions::LocalDynamicTLSModel: 1802 return llvm::GlobalVariable::LocalDynamicTLSModel; 1803 case CodeGenOptions::InitialExecTLSModel: 1804 return llvm::GlobalVariable::InitialExecTLSModel; 1805 case CodeGenOptions::LocalExecTLSModel: 1806 return llvm::GlobalVariable::LocalExecTLSModel; 1807 } 1808 llvm_unreachable("Invalid TLS model!"); 1809 } 1810 1811 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1812 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1813 1814 llvm::GlobalValue::ThreadLocalMode TLM; 1815 TLM = GetDefaultLLVMTLSModel(); 1816 1817 // Override the TLS model if it is explicitly specified. 1818 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1819 TLM = GetLLVMTLSModel(Attr->getModel()); 1820 } 1821 1822 GV->setThreadLocalMode(TLM); 1823 } 1824 1825 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1826 StringRef Name) { 1827 const TargetInfo &Target = CGM.getTarget(); 1828 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1829 } 1830 1831 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1832 const CPUSpecificAttr *Attr, 1833 unsigned CPUIndex, 1834 raw_ostream &Out) { 1835 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1836 // supported. 1837 if (Attr) 1838 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1839 else if (CGM.getTarget().supportsIFunc()) 1840 Out << ".resolver"; 1841 } 1842 1843 // Returns true if GD is a function decl with internal linkage and 1844 // needs a unique suffix after the mangled name. 1845 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1846 CodeGenModule &CGM) { 1847 const Decl *D = GD.getDecl(); 1848 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1849 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1850 } 1851 1852 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1853 const NamedDecl *ND, 1854 bool OmitMultiVersionMangling = false) { 1855 SmallString<256> Buffer; 1856 llvm::raw_svector_ostream Out(Buffer); 1857 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1858 if (!CGM.getModuleNameHash().empty()) 1859 MC.needsUniqueInternalLinkageNames(); 1860 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1861 if (ShouldMangle) 1862 MC.mangleName(GD.getWithDecl(ND), Out); 1863 else { 1864 IdentifierInfo *II = ND->getIdentifier(); 1865 assert(II && "Attempt to mangle unnamed decl."); 1866 const auto *FD = dyn_cast<FunctionDecl>(ND); 1867 1868 if (FD && 1869 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1870 if (CGM.getLangOpts().RegCall4) 1871 Out << "__regcall4__" << II->getName(); 1872 else 1873 Out << "__regcall3__" << II->getName(); 1874 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1875 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1876 Out << "__device_stub__" << II->getName(); 1877 } else { 1878 Out << II->getName(); 1879 } 1880 } 1881 1882 // Check if the module name hash should be appended for internal linkage 1883 // symbols. This should come before multi-version target suffixes are 1884 // appended. This is to keep the name and module hash suffix of the 1885 // internal linkage function together. The unique suffix should only be 1886 // added when name mangling is done to make sure that the final name can 1887 // be properly demangled. For example, for C functions without prototypes, 1888 // name mangling is not done and the unique suffix should not be appeneded 1889 // then. 1890 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1891 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1892 "Hash computed when not explicitly requested"); 1893 Out << CGM.getModuleNameHash(); 1894 } 1895 1896 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1897 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1898 switch (FD->getMultiVersionKind()) { 1899 case MultiVersionKind::CPUDispatch: 1900 case MultiVersionKind::CPUSpecific: 1901 AppendCPUSpecificCPUDispatchMangling(CGM, 1902 FD->getAttr<CPUSpecificAttr>(), 1903 GD.getMultiVersionIndex(), Out); 1904 break; 1905 case MultiVersionKind::Target: { 1906 auto *Attr = FD->getAttr<TargetAttr>(); 1907 assert(Attr && "Expected TargetAttr to be present " 1908 "for attribute mangling"); 1909 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1910 Info.appendAttributeMangling(Attr, Out); 1911 break; 1912 } 1913 case MultiVersionKind::TargetVersion: { 1914 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1915 assert(Attr && "Expected TargetVersionAttr to be present " 1916 "for attribute mangling"); 1917 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1918 Info.appendAttributeMangling(Attr, Out); 1919 break; 1920 } 1921 case MultiVersionKind::TargetClones: { 1922 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1923 assert(Attr && "Expected TargetClonesAttr to be present " 1924 "for attribute mangling"); 1925 unsigned Index = GD.getMultiVersionIndex(); 1926 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1927 Info.appendAttributeMangling(Attr, Index, Out); 1928 break; 1929 } 1930 case MultiVersionKind::None: 1931 llvm_unreachable("None multiversion type isn't valid here"); 1932 } 1933 } 1934 1935 // Make unique name for device side static file-scope variable for HIP. 1936 if (CGM.getContext().shouldExternalize(ND) && 1937 CGM.getLangOpts().GPURelocatableDeviceCode && 1938 CGM.getLangOpts().CUDAIsDevice) 1939 CGM.printPostfixForExternalizedDecl(Out, ND); 1940 1941 return std::string(Out.str()); 1942 } 1943 1944 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1945 const FunctionDecl *FD, 1946 StringRef &CurName) { 1947 if (!FD->isMultiVersion()) 1948 return; 1949 1950 // Get the name of what this would be without the 'target' attribute. This 1951 // allows us to lookup the version that was emitted when this wasn't a 1952 // multiversion function. 1953 std::string NonTargetName = 1954 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1955 GlobalDecl OtherGD; 1956 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1957 assert(OtherGD.getCanonicalDecl() 1958 .getDecl() 1959 ->getAsFunction() 1960 ->isMultiVersion() && 1961 "Other GD should now be a multiversioned function"); 1962 // OtherFD is the version of this function that was mangled BEFORE 1963 // becoming a MultiVersion function. It potentially needs to be updated. 1964 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1965 .getDecl() 1966 ->getAsFunction() 1967 ->getMostRecentDecl(); 1968 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1969 // This is so that if the initial version was already the 'default' 1970 // version, we don't try to update it. 1971 if (OtherName != NonTargetName) { 1972 // Remove instead of erase, since others may have stored the StringRef 1973 // to this. 1974 const auto ExistingRecord = Manglings.find(NonTargetName); 1975 if (ExistingRecord != std::end(Manglings)) 1976 Manglings.remove(&(*ExistingRecord)); 1977 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1978 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1979 Result.first->first(); 1980 // If this is the current decl is being created, make sure we update the name. 1981 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1982 CurName = OtherNameRef; 1983 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1984 Entry->setName(OtherName); 1985 } 1986 } 1987 } 1988 1989 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1990 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1991 1992 // Some ABIs don't have constructor variants. Make sure that base and 1993 // complete constructors get mangled the same. 1994 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1995 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1996 CXXCtorType OrigCtorType = GD.getCtorType(); 1997 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1998 if (OrigCtorType == Ctor_Base) 1999 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 2000 } 2001 } 2002 2003 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 2004 // static device variable depends on whether the variable is referenced by 2005 // a host or device host function. Therefore the mangled name cannot be 2006 // cached. 2007 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 2008 auto FoundName = MangledDeclNames.find(CanonicalGD); 2009 if (FoundName != MangledDeclNames.end()) 2010 return FoundName->second; 2011 } 2012 2013 // Keep the first result in the case of a mangling collision. 2014 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2015 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2016 2017 // Ensure either we have different ABIs between host and device compilations, 2018 // says host compilation following MSVC ABI but device compilation follows 2019 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2020 // mangling should be the same after name stubbing. The later checking is 2021 // very important as the device kernel name being mangled in host-compilation 2022 // is used to resolve the device binaries to be executed. Inconsistent naming 2023 // result in undefined behavior. Even though we cannot check that naming 2024 // directly between host- and device-compilations, the host- and 2025 // device-mangling in host compilation could help catching certain ones. 2026 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2027 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2028 (getContext().getAuxTargetInfo() && 2029 (getContext().getAuxTargetInfo()->getCXXABI() != 2030 getContext().getTargetInfo().getCXXABI())) || 2031 getCUDARuntime().getDeviceSideName(ND) == 2032 getMangledNameImpl( 2033 *this, 2034 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2035 ND)); 2036 2037 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2038 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2039 } 2040 2041 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2042 const BlockDecl *BD) { 2043 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2044 const Decl *D = GD.getDecl(); 2045 2046 SmallString<256> Buffer; 2047 llvm::raw_svector_ostream Out(Buffer); 2048 if (!D) 2049 MangleCtx.mangleGlobalBlock(BD, 2050 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2051 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2052 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2053 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2054 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2055 else 2056 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2057 2058 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2059 return Result.first->first(); 2060 } 2061 2062 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2063 auto it = MangledDeclNames.begin(); 2064 while (it != MangledDeclNames.end()) { 2065 if (it->second == Name) 2066 return it->first; 2067 it++; 2068 } 2069 return GlobalDecl(); 2070 } 2071 2072 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2073 return getModule().getNamedValue(Name); 2074 } 2075 2076 /// AddGlobalCtor - Add a function to the list that will be called before 2077 /// main() runs. 2078 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2079 unsigned LexOrder, 2080 llvm::Constant *AssociatedData) { 2081 // FIXME: Type coercion of void()* types. 2082 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2083 } 2084 2085 /// AddGlobalDtor - Add a function to the list that will be called 2086 /// when the module is unloaded. 2087 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2088 bool IsDtorAttrFunc) { 2089 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2090 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2091 DtorsUsingAtExit[Priority].push_back(Dtor); 2092 return; 2093 } 2094 2095 // FIXME: Type coercion of void()* types. 2096 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2097 } 2098 2099 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2100 if (Fns.empty()) return; 2101 2102 const PointerAuthSchema &InitFiniAuthSchema = 2103 getCodeGenOpts().PointerAuth.InitFiniPointers; 2104 2105 // Ctor function type is ptr. 2106 llvm::PointerType *PtrTy = llvm::PointerType::get( 2107 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2108 2109 // Get the type of a ctor entry, { i32, ptr, ptr }. 2110 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2111 2112 // Construct the constructor and destructor arrays. 2113 ConstantInitBuilder Builder(*this); 2114 auto Ctors = Builder.beginArray(CtorStructTy); 2115 for (const auto &I : Fns) { 2116 auto Ctor = Ctors.beginStruct(CtorStructTy); 2117 Ctor.addInt(Int32Ty, I.Priority); 2118 if (InitFiniAuthSchema) { 2119 llvm::Constant *StorageAddress = 2120 (InitFiniAuthSchema.isAddressDiscriminated() 2121 ? llvm::ConstantExpr::getIntToPtr( 2122 llvm::ConstantInt::get( 2123 IntPtrTy, 2124 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2125 PtrTy) 2126 : nullptr); 2127 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2128 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2129 llvm::ConstantInt::get( 2130 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2131 Ctor.add(SignedCtorPtr); 2132 } else { 2133 Ctor.add(I.Initializer); 2134 } 2135 if (I.AssociatedData) 2136 Ctor.add(I.AssociatedData); 2137 else 2138 Ctor.addNullPointer(PtrTy); 2139 Ctor.finishAndAddTo(Ctors); 2140 } 2141 2142 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2143 /*constant*/ false, 2144 llvm::GlobalValue::AppendingLinkage); 2145 2146 // The LTO linker doesn't seem to like it when we set an alignment 2147 // on appending variables. Take it off as a workaround. 2148 List->setAlignment(std::nullopt); 2149 2150 Fns.clear(); 2151 } 2152 2153 llvm::GlobalValue::LinkageTypes 2154 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2155 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2156 2157 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2158 2159 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2160 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2161 2162 return getLLVMLinkageForDeclarator(D, Linkage); 2163 } 2164 2165 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2166 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2167 if (!MDS) return nullptr; 2168 2169 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2170 } 2171 2172 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2173 if (auto *FnType = T->getAs<FunctionProtoType>()) 2174 T = getContext().getFunctionType( 2175 FnType->getReturnType(), FnType->getParamTypes(), 2176 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2177 2178 std::string OutName; 2179 llvm::raw_string_ostream Out(OutName); 2180 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2181 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2182 2183 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2184 Out << ".normalized"; 2185 2186 return llvm::ConstantInt::get(Int32Ty, 2187 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2188 } 2189 2190 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2191 const CGFunctionInfo &Info, 2192 llvm::Function *F, bool IsThunk) { 2193 unsigned CallingConv; 2194 llvm::AttributeList PAL; 2195 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2196 /*AttrOnCallSite=*/false, IsThunk); 2197 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2198 getTarget().getTriple().isWindowsArm64EC()) { 2199 SourceLocation Loc; 2200 if (const Decl *D = GD.getDecl()) 2201 Loc = D->getLocation(); 2202 2203 Error(Loc, "__vectorcall calling convention is not currently supported"); 2204 } 2205 F->setAttributes(PAL); 2206 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2207 } 2208 2209 static void removeImageAccessQualifier(std::string& TyName) { 2210 std::string ReadOnlyQual("__read_only"); 2211 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2212 if (ReadOnlyPos != std::string::npos) 2213 // "+ 1" for the space after access qualifier. 2214 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2215 else { 2216 std::string WriteOnlyQual("__write_only"); 2217 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2218 if (WriteOnlyPos != std::string::npos) 2219 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2220 else { 2221 std::string ReadWriteQual("__read_write"); 2222 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2223 if (ReadWritePos != std::string::npos) 2224 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2225 } 2226 } 2227 } 2228 2229 // Returns the address space id that should be produced to the 2230 // kernel_arg_addr_space metadata. This is always fixed to the ids 2231 // as specified in the SPIR 2.0 specification in order to differentiate 2232 // for example in clGetKernelArgInfo() implementation between the address 2233 // spaces with targets without unique mapping to the OpenCL address spaces 2234 // (basically all single AS CPUs). 2235 static unsigned ArgInfoAddressSpace(LangAS AS) { 2236 switch (AS) { 2237 case LangAS::opencl_global: 2238 return 1; 2239 case LangAS::opencl_constant: 2240 return 2; 2241 case LangAS::opencl_local: 2242 return 3; 2243 case LangAS::opencl_generic: 2244 return 4; // Not in SPIR 2.0 specs. 2245 case LangAS::opencl_global_device: 2246 return 5; 2247 case LangAS::opencl_global_host: 2248 return 6; 2249 default: 2250 return 0; // Assume private. 2251 } 2252 } 2253 2254 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2255 const FunctionDecl *FD, 2256 CodeGenFunction *CGF) { 2257 assert(((FD && CGF) || (!FD && !CGF)) && 2258 "Incorrect use - FD and CGF should either be both null or not!"); 2259 // Create MDNodes that represent the kernel arg metadata. 2260 // Each MDNode is a list in the form of "key", N number of values which is 2261 // the same number of values as their are kernel arguments. 2262 2263 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2264 2265 // MDNode for the kernel argument address space qualifiers. 2266 SmallVector<llvm::Metadata *, 8> addressQuals; 2267 2268 // MDNode for the kernel argument access qualifiers (images only). 2269 SmallVector<llvm::Metadata *, 8> accessQuals; 2270 2271 // MDNode for the kernel argument type names. 2272 SmallVector<llvm::Metadata *, 8> argTypeNames; 2273 2274 // MDNode for the kernel argument base type names. 2275 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2276 2277 // MDNode for the kernel argument type qualifiers. 2278 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2279 2280 // MDNode for the kernel argument names. 2281 SmallVector<llvm::Metadata *, 8> argNames; 2282 2283 if (FD && CGF) 2284 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2285 const ParmVarDecl *parm = FD->getParamDecl(i); 2286 // Get argument name. 2287 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2288 2289 if (!getLangOpts().OpenCL) 2290 continue; 2291 QualType ty = parm->getType(); 2292 std::string typeQuals; 2293 2294 // Get image and pipe access qualifier: 2295 if (ty->isImageType() || ty->isPipeType()) { 2296 const Decl *PDecl = parm; 2297 if (const auto *TD = ty->getAs<TypedefType>()) 2298 PDecl = TD->getDecl(); 2299 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2300 if (A && A->isWriteOnly()) 2301 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2302 else if (A && A->isReadWrite()) 2303 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2304 else 2305 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2306 } else 2307 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2308 2309 auto getTypeSpelling = [&](QualType Ty) { 2310 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2311 2312 if (Ty.isCanonical()) { 2313 StringRef typeNameRef = typeName; 2314 // Turn "unsigned type" to "utype" 2315 if (typeNameRef.consume_front("unsigned ")) 2316 return std::string("u") + typeNameRef.str(); 2317 if (typeNameRef.consume_front("signed ")) 2318 return typeNameRef.str(); 2319 } 2320 2321 return typeName; 2322 }; 2323 2324 if (ty->isPointerType()) { 2325 QualType pointeeTy = ty->getPointeeType(); 2326 2327 // Get address qualifier. 2328 addressQuals.push_back( 2329 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2330 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2331 2332 // Get argument type name. 2333 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2334 std::string baseTypeName = 2335 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2336 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2337 argBaseTypeNames.push_back( 2338 llvm::MDString::get(VMContext, baseTypeName)); 2339 2340 // Get argument type qualifiers: 2341 if (ty.isRestrictQualified()) 2342 typeQuals = "restrict"; 2343 if (pointeeTy.isConstQualified() || 2344 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2345 typeQuals += typeQuals.empty() ? "const" : " const"; 2346 if (pointeeTy.isVolatileQualified()) 2347 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2348 } else { 2349 uint32_t AddrSpc = 0; 2350 bool isPipe = ty->isPipeType(); 2351 if (ty->isImageType() || isPipe) 2352 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2353 2354 addressQuals.push_back( 2355 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2356 2357 // Get argument type name. 2358 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2359 std::string typeName = getTypeSpelling(ty); 2360 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2361 2362 // Remove access qualifiers on images 2363 // (as they are inseparable from type in clang implementation, 2364 // but OpenCL spec provides a special query to get access qualifier 2365 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2366 if (ty->isImageType()) { 2367 removeImageAccessQualifier(typeName); 2368 removeImageAccessQualifier(baseTypeName); 2369 } 2370 2371 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2372 argBaseTypeNames.push_back( 2373 llvm::MDString::get(VMContext, baseTypeName)); 2374 2375 if (isPipe) 2376 typeQuals = "pipe"; 2377 } 2378 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2379 } 2380 2381 if (getLangOpts().OpenCL) { 2382 Fn->setMetadata("kernel_arg_addr_space", 2383 llvm::MDNode::get(VMContext, addressQuals)); 2384 Fn->setMetadata("kernel_arg_access_qual", 2385 llvm::MDNode::get(VMContext, accessQuals)); 2386 Fn->setMetadata("kernel_arg_type", 2387 llvm::MDNode::get(VMContext, argTypeNames)); 2388 Fn->setMetadata("kernel_arg_base_type", 2389 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2390 Fn->setMetadata("kernel_arg_type_qual", 2391 llvm::MDNode::get(VMContext, argTypeQuals)); 2392 } 2393 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2394 getCodeGenOpts().HIPSaveKernelArgName) 2395 Fn->setMetadata("kernel_arg_name", 2396 llvm::MDNode::get(VMContext, argNames)); 2397 } 2398 2399 /// Determines whether the language options require us to model 2400 /// unwind exceptions. We treat -fexceptions as mandating this 2401 /// except under the fragile ObjC ABI with only ObjC exceptions 2402 /// enabled. This means, for example, that C with -fexceptions 2403 /// enables this. 2404 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2405 // If exceptions are completely disabled, obviously this is false. 2406 if (!LangOpts.Exceptions) return false; 2407 2408 // If C++ exceptions are enabled, this is true. 2409 if (LangOpts.CXXExceptions) return true; 2410 2411 // If ObjC exceptions are enabled, this depends on the ABI. 2412 if (LangOpts.ObjCExceptions) { 2413 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2414 } 2415 2416 return true; 2417 } 2418 2419 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2420 const CXXMethodDecl *MD) { 2421 // Check that the type metadata can ever actually be used by a call. 2422 if (!CGM.getCodeGenOpts().LTOUnit || 2423 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2424 return false; 2425 2426 // Only functions whose address can be taken with a member function pointer 2427 // need this sort of type metadata. 2428 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2429 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2430 } 2431 2432 SmallVector<const CXXRecordDecl *, 0> 2433 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2434 llvm::SetVector<const CXXRecordDecl *> MostBases; 2435 2436 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2437 CollectMostBases = [&](const CXXRecordDecl *RD) { 2438 if (RD->getNumBases() == 0) 2439 MostBases.insert(RD); 2440 for (const CXXBaseSpecifier &B : RD->bases()) 2441 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2442 }; 2443 CollectMostBases(RD); 2444 return MostBases.takeVector(); 2445 } 2446 2447 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2448 llvm::Function *F) { 2449 llvm::AttrBuilder B(F->getContext()); 2450 2451 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2452 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2453 2454 if (CodeGenOpts.StackClashProtector) 2455 B.addAttribute("probe-stack", "inline-asm"); 2456 2457 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2458 B.addAttribute("stack-probe-size", 2459 std::to_string(CodeGenOpts.StackProbeSize)); 2460 2461 if (!hasUnwindExceptions(LangOpts)) 2462 B.addAttribute(llvm::Attribute::NoUnwind); 2463 2464 if (D && D->hasAttr<NoStackProtectorAttr>()) 2465 ; // Do nothing. 2466 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2467 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2468 B.addAttribute(llvm::Attribute::StackProtectStrong); 2469 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2470 B.addAttribute(llvm::Attribute::StackProtect); 2471 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2472 B.addAttribute(llvm::Attribute::StackProtectStrong); 2473 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2474 B.addAttribute(llvm::Attribute::StackProtectReq); 2475 2476 if (!D) { 2477 // Non-entry HLSL functions must always be inlined. 2478 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline)) 2479 B.addAttribute(llvm::Attribute::AlwaysInline); 2480 // If we don't have a declaration to control inlining, the function isn't 2481 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2482 // disabled, mark the function as noinline. 2483 else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2484 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2485 B.addAttribute(llvm::Attribute::NoInline); 2486 2487 F->addFnAttrs(B); 2488 return; 2489 } 2490 2491 // Handle SME attributes that apply to function definitions, 2492 // rather than to function prototypes. 2493 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2494 B.addAttribute("aarch64_pstate_sm_body"); 2495 2496 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2497 if (Attr->isNewZA()) 2498 B.addAttribute("aarch64_new_za"); 2499 if (Attr->isNewZT0()) 2500 B.addAttribute("aarch64_new_zt0"); 2501 } 2502 2503 // Track whether we need to add the optnone LLVM attribute, 2504 // starting with the default for this optimization level. 2505 bool ShouldAddOptNone = 2506 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2507 // We can't add optnone in the following cases, it won't pass the verifier. 2508 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2509 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2510 2511 // Non-entry HLSL functions must always be inlined. 2512 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) && 2513 !D->hasAttr<NoInlineAttr>()) { 2514 B.addAttribute(llvm::Attribute::AlwaysInline); 2515 } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2516 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2517 // Add optnone, but do so only if the function isn't always_inline. 2518 B.addAttribute(llvm::Attribute::OptimizeNone); 2519 2520 // OptimizeNone implies noinline; we should not be inlining such functions. 2521 B.addAttribute(llvm::Attribute::NoInline); 2522 2523 // We still need to handle naked functions even though optnone subsumes 2524 // much of their semantics. 2525 if (D->hasAttr<NakedAttr>()) 2526 B.addAttribute(llvm::Attribute::Naked); 2527 2528 // OptimizeNone wins over OptimizeForSize and MinSize. 2529 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2530 F->removeFnAttr(llvm::Attribute::MinSize); 2531 } else if (D->hasAttr<NakedAttr>()) { 2532 // Naked implies noinline: we should not be inlining such functions. 2533 B.addAttribute(llvm::Attribute::Naked); 2534 B.addAttribute(llvm::Attribute::NoInline); 2535 } else if (D->hasAttr<NoDuplicateAttr>()) { 2536 B.addAttribute(llvm::Attribute::NoDuplicate); 2537 } else if (D->hasAttr<NoInlineAttr>() && 2538 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2539 // Add noinline if the function isn't always_inline. 2540 B.addAttribute(llvm::Attribute::NoInline); 2541 } else if (D->hasAttr<AlwaysInlineAttr>() && 2542 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2543 // (noinline wins over always_inline, and we can't specify both in IR) 2544 B.addAttribute(llvm::Attribute::AlwaysInline); 2545 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2546 // If we're not inlining, then force everything that isn't always_inline to 2547 // carry an explicit noinline attribute. 2548 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2549 B.addAttribute(llvm::Attribute::NoInline); 2550 } else { 2551 // Otherwise, propagate the inline hint attribute and potentially use its 2552 // absence to mark things as noinline. 2553 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2554 // Search function and template pattern redeclarations for inline. 2555 auto CheckForInline = [](const FunctionDecl *FD) { 2556 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2557 return Redecl->isInlineSpecified(); 2558 }; 2559 if (any_of(FD->redecls(), CheckRedeclForInline)) 2560 return true; 2561 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2562 if (!Pattern) 2563 return false; 2564 return any_of(Pattern->redecls(), CheckRedeclForInline); 2565 }; 2566 if (CheckForInline(FD)) { 2567 B.addAttribute(llvm::Attribute::InlineHint); 2568 } else if (CodeGenOpts.getInlining() == 2569 CodeGenOptions::OnlyHintInlining && 2570 !FD->isInlined() && 2571 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2572 B.addAttribute(llvm::Attribute::NoInline); 2573 } 2574 } 2575 } 2576 2577 // Add other optimization related attributes if we are optimizing this 2578 // function. 2579 if (!D->hasAttr<OptimizeNoneAttr>()) { 2580 if (D->hasAttr<ColdAttr>()) { 2581 if (!ShouldAddOptNone) 2582 B.addAttribute(llvm::Attribute::OptimizeForSize); 2583 B.addAttribute(llvm::Attribute::Cold); 2584 } 2585 if (D->hasAttr<HotAttr>()) 2586 B.addAttribute(llvm::Attribute::Hot); 2587 if (D->hasAttr<MinSizeAttr>()) 2588 B.addAttribute(llvm::Attribute::MinSize); 2589 } 2590 2591 F->addFnAttrs(B); 2592 2593 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2594 if (alignment) 2595 F->setAlignment(llvm::Align(alignment)); 2596 2597 if (!D->hasAttr<AlignedAttr>()) 2598 if (LangOpts.FunctionAlignment) 2599 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2600 2601 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2602 // reserve a bit for differentiating between virtual and non-virtual member 2603 // functions. If the current target's C++ ABI requires this and this is a 2604 // member function, set its alignment accordingly. 2605 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2606 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2607 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2608 } 2609 2610 // In the cross-dso CFI mode with canonical jump tables, we want !type 2611 // attributes on definitions only. 2612 if (CodeGenOpts.SanitizeCfiCrossDso && 2613 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2614 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2615 // Skip available_externally functions. They won't be codegen'ed in the 2616 // current module anyway. 2617 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2618 CreateFunctionTypeMetadataForIcall(FD, F); 2619 } 2620 } 2621 2622 // Emit type metadata on member functions for member function pointer checks. 2623 // These are only ever necessary on definitions; we're guaranteed that the 2624 // definition will be present in the LTO unit as a result of LTO visibility. 2625 auto *MD = dyn_cast<CXXMethodDecl>(D); 2626 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2627 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2628 llvm::Metadata *Id = 2629 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2630 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2631 F->addTypeMetadata(0, Id); 2632 } 2633 } 2634 } 2635 2636 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2637 const Decl *D = GD.getDecl(); 2638 if (isa_and_nonnull<NamedDecl>(D)) 2639 setGVProperties(GV, GD); 2640 else 2641 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2642 2643 if (D && D->hasAttr<UsedAttr>()) 2644 addUsedOrCompilerUsedGlobal(GV); 2645 2646 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2647 VD && 2648 ((CodeGenOpts.KeepPersistentStorageVariables && 2649 (VD->getStorageDuration() == SD_Static || 2650 VD->getStorageDuration() == SD_Thread)) || 2651 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2652 VD->getType().isConstQualified()))) 2653 addUsedOrCompilerUsedGlobal(GV); 2654 } 2655 2656 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2657 llvm::AttrBuilder &Attrs, 2658 bool SetTargetFeatures) { 2659 // Add target-cpu and target-features attributes to functions. If 2660 // we have a decl for the function and it has a target attribute then 2661 // parse that and add it to the feature set. 2662 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2663 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2664 std::vector<std::string> Features; 2665 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2666 FD = FD ? FD->getMostRecentDecl() : FD; 2667 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2668 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2669 assert((!TD || !TV) && "both target_version and target specified"); 2670 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2671 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2672 bool AddedAttr = false; 2673 if (TD || TV || SD || TC) { 2674 llvm::StringMap<bool> FeatureMap; 2675 getContext().getFunctionFeatureMap(FeatureMap, GD); 2676 2677 // Produce the canonical string for this set of features. 2678 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2679 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2680 2681 // Now add the target-cpu and target-features to the function. 2682 // While we populated the feature map above, we still need to 2683 // get and parse the target attribute so we can get the cpu for 2684 // the function. 2685 if (TD) { 2686 ParsedTargetAttr ParsedAttr = 2687 Target.parseTargetAttr(TD->getFeaturesStr()); 2688 if (!ParsedAttr.CPU.empty() && 2689 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2690 TargetCPU = ParsedAttr.CPU; 2691 TuneCPU = ""; // Clear the tune CPU. 2692 } 2693 if (!ParsedAttr.Tune.empty() && 2694 getTarget().isValidCPUName(ParsedAttr.Tune)) 2695 TuneCPU = ParsedAttr.Tune; 2696 } 2697 2698 if (SD) { 2699 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2700 // favor this processor. 2701 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2702 } 2703 } else { 2704 // Otherwise just add the existing target cpu and target features to the 2705 // function. 2706 Features = getTarget().getTargetOpts().Features; 2707 } 2708 2709 if (!TargetCPU.empty()) { 2710 Attrs.addAttribute("target-cpu", TargetCPU); 2711 AddedAttr = true; 2712 } 2713 if (!TuneCPU.empty()) { 2714 Attrs.addAttribute("tune-cpu", TuneCPU); 2715 AddedAttr = true; 2716 } 2717 if (!Features.empty() && SetTargetFeatures) { 2718 llvm::erase_if(Features, [&](const std::string& F) { 2719 return getTarget().isReadOnlyFeature(F.substr(1)); 2720 }); 2721 llvm::sort(Features); 2722 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2723 AddedAttr = true; 2724 } 2725 2726 return AddedAttr; 2727 } 2728 2729 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2730 llvm::GlobalObject *GO) { 2731 const Decl *D = GD.getDecl(); 2732 SetCommonAttributes(GD, GO); 2733 2734 if (D) { 2735 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2736 if (D->hasAttr<RetainAttr>()) 2737 addUsedGlobal(GV); 2738 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2739 GV->addAttribute("bss-section", SA->getName()); 2740 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2741 GV->addAttribute("data-section", SA->getName()); 2742 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2743 GV->addAttribute("rodata-section", SA->getName()); 2744 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2745 GV->addAttribute("relro-section", SA->getName()); 2746 } 2747 2748 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2749 if (D->hasAttr<RetainAttr>()) 2750 addUsedGlobal(F); 2751 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2752 if (!D->getAttr<SectionAttr>()) 2753 F->setSection(SA->getName()); 2754 2755 llvm::AttrBuilder Attrs(F->getContext()); 2756 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2757 // We know that GetCPUAndFeaturesAttributes will always have the 2758 // newest set, since it has the newest possible FunctionDecl, so the 2759 // new ones should replace the old. 2760 llvm::AttributeMask RemoveAttrs; 2761 RemoveAttrs.addAttribute("target-cpu"); 2762 RemoveAttrs.addAttribute("target-features"); 2763 RemoveAttrs.addAttribute("tune-cpu"); 2764 F->removeFnAttrs(RemoveAttrs); 2765 F->addFnAttrs(Attrs); 2766 } 2767 } 2768 2769 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2770 GO->setSection(CSA->getName()); 2771 else if (const auto *SA = D->getAttr<SectionAttr>()) 2772 GO->setSection(SA->getName()); 2773 } 2774 2775 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2776 } 2777 2778 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2779 llvm::Function *F, 2780 const CGFunctionInfo &FI) { 2781 const Decl *D = GD.getDecl(); 2782 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2783 SetLLVMFunctionAttributesForDefinition(D, F); 2784 2785 F->setLinkage(llvm::Function::InternalLinkage); 2786 2787 setNonAliasAttributes(GD, F); 2788 } 2789 2790 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2791 // Set linkage and visibility in case we never see a definition. 2792 LinkageInfo LV = ND->getLinkageAndVisibility(); 2793 // Don't set internal linkage on declarations. 2794 // "extern_weak" is overloaded in LLVM; we probably should have 2795 // separate linkage types for this. 2796 if (isExternallyVisible(LV.getLinkage()) && 2797 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2798 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2799 } 2800 2801 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2802 llvm::Function *F) { 2803 // Only if we are checking indirect calls. 2804 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2805 return; 2806 2807 // Non-static class methods are handled via vtable or member function pointer 2808 // checks elsewhere. 2809 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2810 return; 2811 2812 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2813 F->addTypeMetadata(0, MD); 2814 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2815 2816 // Emit a hash-based bit set entry for cross-DSO calls. 2817 if (CodeGenOpts.SanitizeCfiCrossDso) 2818 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2819 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2820 } 2821 2822 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2823 llvm::LLVMContext &Ctx = F->getContext(); 2824 llvm::MDBuilder MDB(Ctx); 2825 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2826 llvm::MDNode::get( 2827 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2828 } 2829 2830 static bool allowKCFIIdentifier(StringRef Name) { 2831 // KCFI type identifier constants are only necessary for external assembly 2832 // functions, which means it's safe to skip unusual names. Subset of 2833 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2834 return llvm::all_of(Name, [](const char &C) { 2835 return llvm::isAlnum(C) || C == '_' || C == '.'; 2836 }); 2837 } 2838 2839 void CodeGenModule::finalizeKCFITypes() { 2840 llvm::Module &M = getModule(); 2841 for (auto &F : M.functions()) { 2842 // Remove KCFI type metadata from non-address-taken local functions. 2843 bool AddressTaken = F.hasAddressTaken(); 2844 if (!AddressTaken && F.hasLocalLinkage()) 2845 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2846 2847 // Generate a constant with the expected KCFI type identifier for all 2848 // address-taken function declarations to support annotating indirectly 2849 // called assembly functions. 2850 if (!AddressTaken || !F.isDeclaration()) 2851 continue; 2852 2853 const llvm::ConstantInt *Type; 2854 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2855 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2856 else 2857 continue; 2858 2859 StringRef Name = F.getName(); 2860 if (!allowKCFIIdentifier(Name)) 2861 continue; 2862 2863 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2864 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2865 .str(); 2866 M.appendModuleInlineAsm(Asm); 2867 } 2868 } 2869 2870 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2871 bool IsIncompleteFunction, 2872 bool IsThunk) { 2873 2874 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2875 // If this is an intrinsic function, set the function's attributes 2876 // to the intrinsic's attributes. 2877 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2878 return; 2879 } 2880 2881 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2882 2883 if (!IsIncompleteFunction) 2884 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2885 IsThunk); 2886 2887 // Add the Returned attribute for "this", except for iOS 5 and earlier 2888 // where substantial code, including the libstdc++ dylib, was compiled with 2889 // GCC and does not actually return "this". 2890 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2891 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2892 assert(!F->arg_empty() && 2893 F->arg_begin()->getType() 2894 ->canLosslesslyBitCastTo(F->getReturnType()) && 2895 "unexpected this return"); 2896 F->addParamAttr(0, llvm::Attribute::Returned); 2897 } 2898 2899 // Only a few attributes are set on declarations; these may later be 2900 // overridden by a definition. 2901 2902 setLinkageForGV(F, FD); 2903 setGVProperties(F, FD); 2904 2905 // Setup target-specific attributes. 2906 if (!IsIncompleteFunction && F->isDeclaration()) 2907 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2908 2909 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2910 F->setSection(CSA->getName()); 2911 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2912 F->setSection(SA->getName()); 2913 2914 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2915 if (EA->isError()) 2916 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2917 else if (EA->isWarning()) 2918 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2919 } 2920 2921 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2922 if (FD->isInlineBuiltinDeclaration()) { 2923 const FunctionDecl *FDBody; 2924 bool HasBody = FD->hasBody(FDBody); 2925 (void)HasBody; 2926 assert(HasBody && "Inline builtin declarations should always have an " 2927 "available body!"); 2928 if (shouldEmitFunction(FDBody)) 2929 F->addFnAttr(llvm::Attribute::NoBuiltin); 2930 } 2931 2932 if (FD->isReplaceableGlobalAllocationFunction()) { 2933 // A replaceable global allocation function does not act like a builtin by 2934 // default, only if it is invoked by a new-expression or delete-expression. 2935 F->addFnAttr(llvm::Attribute::NoBuiltin); 2936 } 2937 2938 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2939 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2940 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2941 if (MD->isVirtual()) 2942 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2943 2944 // Don't emit entries for function declarations in the cross-DSO mode. This 2945 // is handled with better precision by the receiving DSO. But if jump tables 2946 // are non-canonical then we need type metadata in order to produce the local 2947 // jump table. 2948 if (!CodeGenOpts.SanitizeCfiCrossDso || 2949 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2950 CreateFunctionTypeMetadataForIcall(FD, F); 2951 2952 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2953 setKCFIType(FD, F); 2954 2955 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2956 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2957 2958 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2959 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2960 2961 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2962 // Annotate the callback behavior as metadata: 2963 // - The callback callee (as argument number). 2964 // - The callback payloads (as argument numbers). 2965 llvm::LLVMContext &Ctx = F->getContext(); 2966 llvm::MDBuilder MDB(Ctx); 2967 2968 // The payload indices are all but the first one in the encoding. The first 2969 // identifies the callback callee. 2970 int CalleeIdx = *CB->encoding_begin(); 2971 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2972 F->addMetadata(llvm::LLVMContext::MD_callback, 2973 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2974 CalleeIdx, PayloadIndices, 2975 /* VarArgsArePassed */ false)})); 2976 } 2977 } 2978 2979 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2980 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2981 "Only globals with definition can force usage."); 2982 LLVMUsed.emplace_back(GV); 2983 } 2984 2985 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2986 assert(!GV->isDeclaration() && 2987 "Only globals with definition can force usage."); 2988 LLVMCompilerUsed.emplace_back(GV); 2989 } 2990 2991 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2992 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2993 "Only globals with definition can force usage."); 2994 if (getTriple().isOSBinFormatELF()) 2995 LLVMCompilerUsed.emplace_back(GV); 2996 else 2997 LLVMUsed.emplace_back(GV); 2998 } 2999 3000 static void emitUsed(CodeGenModule &CGM, StringRef Name, 3001 std::vector<llvm::WeakTrackingVH> &List) { 3002 // Don't create llvm.used if there is no need. 3003 if (List.empty()) 3004 return; 3005 3006 // Convert List to what ConstantArray needs. 3007 SmallVector<llvm::Constant*, 8> UsedArray; 3008 UsedArray.resize(List.size()); 3009 for (unsigned i = 0, e = List.size(); i != e; ++i) { 3010 UsedArray[i] = 3011 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 3012 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 3013 } 3014 3015 if (UsedArray.empty()) 3016 return; 3017 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 3018 3019 auto *GV = new llvm::GlobalVariable( 3020 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 3021 llvm::ConstantArray::get(ATy, UsedArray), Name); 3022 3023 GV->setSection("llvm.metadata"); 3024 } 3025 3026 void CodeGenModule::emitLLVMUsed() { 3027 emitUsed(*this, "llvm.used", LLVMUsed); 3028 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3029 } 3030 3031 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3032 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3033 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3034 } 3035 3036 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3037 llvm::SmallString<32> Opt; 3038 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3039 if (Opt.empty()) 3040 return; 3041 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3042 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3043 } 3044 3045 void CodeGenModule::AddDependentLib(StringRef Lib) { 3046 auto &C = getLLVMContext(); 3047 if (getTarget().getTriple().isOSBinFormatELF()) { 3048 ELFDependentLibraries.push_back( 3049 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3050 return; 3051 } 3052 3053 llvm::SmallString<24> Opt; 3054 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3055 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3056 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3057 } 3058 3059 /// Add link options implied by the given module, including modules 3060 /// it depends on, using a postorder walk. 3061 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3062 SmallVectorImpl<llvm::MDNode *> &Metadata, 3063 llvm::SmallPtrSet<Module *, 16> &Visited) { 3064 // Import this module's parent. 3065 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3066 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3067 } 3068 3069 // Import this module's dependencies. 3070 for (Module *Import : llvm::reverse(Mod->Imports)) { 3071 if (Visited.insert(Import).second) 3072 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3073 } 3074 3075 // Add linker options to link against the libraries/frameworks 3076 // described by this module. 3077 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3078 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3079 3080 // For modules that use export_as for linking, use that module 3081 // name instead. 3082 if (Mod->UseExportAsModuleLinkName) 3083 return; 3084 3085 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3086 // Link against a framework. Frameworks are currently Darwin only, so we 3087 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3088 if (LL.IsFramework) { 3089 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3090 llvm::MDString::get(Context, LL.Library)}; 3091 3092 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3093 continue; 3094 } 3095 3096 // Link against a library. 3097 if (IsELF) { 3098 llvm::Metadata *Args[2] = { 3099 llvm::MDString::get(Context, "lib"), 3100 llvm::MDString::get(Context, LL.Library), 3101 }; 3102 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3103 } else { 3104 llvm::SmallString<24> Opt; 3105 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3106 auto *OptString = llvm::MDString::get(Context, Opt); 3107 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3108 } 3109 } 3110 } 3111 3112 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3113 assert(Primary->isNamedModuleUnit() && 3114 "We should only emit module initializers for named modules."); 3115 3116 // Emit the initializers in the order that sub-modules appear in the 3117 // source, first Global Module Fragments, if present. 3118 if (auto GMF = Primary->getGlobalModuleFragment()) { 3119 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3120 if (isa<ImportDecl>(D)) 3121 continue; 3122 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3123 EmitTopLevelDecl(D); 3124 } 3125 } 3126 // Second any associated with the module, itself. 3127 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3128 // Skip import decls, the inits for those are called explicitly. 3129 if (isa<ImportDecl>(D)) 3130 continue; 3131 EmitTopLevelDecl(D); 3132 } 3133 // Third any associated with the Privat eMOdule Fragment, if present. 3134 if (auto PMF = Primary->getPrivateModuleFragment()) { 3135 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3136 // Skip import decls, the inits for those are called explicitly. 3137 if (isa<ImportDecl>(D)) 3138 continue; 3139 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3140 EmitTopLevelDecl(D); 3141 } 3142 } 3143 } 3144 3145 void CodeGenModule::EmitModuleLinkOptions() { 3146 // Collect the set of all of the modules we want to visit to emit link 3147 // options, which is essentially the imported modules and all of their 3148 // non-explicit child modules. 3149 llvm::SetVector<clang::Module *> LinkModules; 3150 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3151 SmallVector<clang::Module *, 16> Stack; 3152 3153 // Seed the stack with imported modules. 3154 for (Module *M : ImportedModules) { 3155 // Do not add any link flags when an implementation TU of a module imports 3156 // a header of that same module. 3157 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3158 !getLangOpts().isCompilingModule()) 3159 continue; 3160 if (Visited.insert(M).second) 3161 Stack.push_back(M); 3162 } 3163 3164 // Find all of the modules to import, making a little effort to prune 3165 // non-leaf modules. 3166 while (!Stack.empty()) { 3167 clang::Module *Mod = Stack.pop_back_val(); 3168 3169 bool AnyChildren = false; 3170 3171 // Visit the submodules of this module. 3172 for (const auto &SM : Mod->submodules()) { 3173 // Skip explicit children; they need to be explicitly imported to be 3174 // linked against. 3175 if (SM->IsExplicit) 3176 continue; 3177 3178 if (Visited.insert(SM).second) { 3179 Stack.push_back(SM); 3180 AnyChildren = true; 3181 } 3182 } 3183 3184 // We didn't find any children, so add this module to the list of 3185 // modules to link against. 3186 if (!AnyChildren) { 3187 LinkModules.insert(Mod); 3188 } 3189 } 3190 3191 // Add link options for all of the imported modules in reverse topological 3192 // order. We don't do anything to try to order import link flags with respect 3193 // to linker options inserted by things like #pragma comment(). 3194 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3195 Visited.clear(); 3196 for (Module *M : LinkModules) 3197 if (Visited.insert(M).second) 3198 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3199 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3200 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3201 3202 // Add the linker options metadata flag. 3203 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3204 for (auto *MD : LinkerOptionsMetadata) 3205 NMD->addOperand(MD); 3206 } 3207 3208 void CodeGenModule::EmitDeferred() { 3209 // Emit deferred declare target declarations. 3210 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3211 getOpenMPRuntime().emitDeferredTargetDecls(); 3212 3213 // Emit code for any potentially referenced deferred decls. Since a 3214 // previously unused static decl may become used during the generation of code 3215 // for a static function, iterate until no changes are made. 3216 3217 if (!DeferredVTables.empty()) { 3218 EmitDeferredVTables(); 3219 3220 // Emitting a vtable doesn't directly cause more vtables to 3221 // become deferred, although it can cause functions to be 3222 // emitted that then need those vtables. 3223 assert(DeferredVTables.empty()); 3224 } 3225 3226 // Emit CUDA/HIP static device variables referenced by host code only. 3227 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3228 // needed for further handling. 3229 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3230 llvm::append_range(DeferredDeclsToEmit, 3231 getContext().CUDADeviceVarODRUsedByHost); 3232 3233 // Stop if we're out of both deferred vtables and deferred declarations. 3234 if (DeferredDeclsToEmit.empty()) 3235 return; 3236 3237 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3238 // work, it will not interfere with this. 3239 std::vector<GlobalDecl> CurDeclsToEmit; 3240 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3241 3242 for (GlobalDecl &D : CurDeclsToEmit) { 3243 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3244 // to get GlobalValue with exactly the type we need, not something that 3245 // might had been created for another decl with the same mangled name but 3246 // different type. 3247 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3248 GetAddrOfGlobal(D, ForDefinition)); 3249 3250 // In case of different address spaces, we may still get a cast, even with 3251 // IsForDefinition equal to true. Query mangled names table to get 3252 // GlobalValue. 3253 if (!GV) 3254 GV = GetGlobalValue(getMangledName(D)); 3255 3256 // Make sure GetGlobalValue returned non-null. 3257 assert(GV); 3258 3259 // Check to see if we've already emitted this. This is necessary 3260 // for a couple of reasons: first, decls can end up in the 3261 // deferred-decls queue multiple times, and second, decls can end 3262 // up with definitions in unusual ways (e.g. by an extern inline 3263 // function acquiring a strong function redefinition). Just 3264 // ignore these cases. 3265 if (!GV->isDeclaration()) 3266 continue; 3267 3268 // If this is OpenMP, check if it is legal to emit this global normally. 3269 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3270 continue; 3271 3272 // Otherwise, emit the definition and move on to the next one. 3273 EmitGlobalDefinition(D, GV); 3274 3275 // If we found out that we need to emit more decls, do that recursively. 3276 // This has the advantage that the decls are emitted in a DFS and related 3277 // ones are close together, which is convenient for testing. 3278 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3279 EmitDeferred(); 3280 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3281 } 3282 } 3283 } 3284 3285 void CodeGenModule::EmitVTablesOpportunistically() { 3286 // Try to emit external vtables as available_externally if they have emitted 3287 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3288 // is not allowed to create new references to things that need to be emitted 3289 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3290 3291 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3292 && "Only emit opportunistic vtables with optimizations"); 3293 3294 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3295 assert(getVTables().isVTableExternal(RD) && 3296 "This queue should only contain external vtables"); 3297 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3298 VTables.GenerateClassData(RD); 3299 } 3300 OpportunisticVTables.clear(); 3301 } 3302 3303 void CodeGenModule::EmitGlobalAnnotations() { 3304 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3305 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3306 if (GV) 3307 AddGlobalAnnotations(VD, GV); 3308 } 3309 DeferredAnnotations.clear(); 3310 3311 if (Annotations.empty()) 3312 return; 3313 3314 // Create a new global variable for the ConstantStruct in the Module. 3315 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3316 Annotations[0]->getType(), Annotations.size()), Annotations); 3317 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3318 llvm::GlobalValue::AppendingLinkage, 3319 Array, "llvm.global.annotations"); 3320 gv->setSection(AnnotationSection); 3321 } 3322 3323 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3324 llvm::Constant *&AStr = AnnotationStrings[Str]; 3325 if (AStr) 3326 return AStr; 3327 3328 // Not found yet, create a new global. 3329 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3330 auto *gv = new llvm::GlobalVariable( 3331 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3332 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3333 ConstGlobalsPtrTy->getAddressSpace()); 3334 gv->setSection(AnnotationSection); 3335 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3336 AStr = gv; 3337 return gv; 3338 } 3339 3340 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3341 SourceManager &SM = getContext().getSourceManager(); 3342 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3343 if (PLoc.isValid()) 3344 return EmitAnnotationString(PLoc.getFilename()); 3345 return EmitAnnotationString(SM.getBufferName(Loc)); 3346 } 3347 3348 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3349 SourceManager &SM = getContext().getSourceManager(); 3350 PresumedLoc PLoc = SM.getPresumedLoc(L); 3351 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3352 SM.getExpansionLineNumber(L); 3353 return llvm::ConstantInt::get(Int32Ty, LineNo); 3354 } 3355 3356 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3357 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3358 if (Exprs.empty()) 3359 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3360 3361 llvm::FoldingSetNodeID ID; 3362 for (Expr *E : Exprs) { 3363 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3364 } 3365 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3366 if (Lookup) 3367 return Lookup; 3368 3369 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3370 LLVMArgs.reserve(Exprs.size()); 3371 ConstantEmitter ConstEmiter(*this); 3372 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3373 const auto *CE = cast<clang::ConstantExpr>(E); 3374 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3375 CE->getType()); 3376 }); 3377 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3378 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3379 llvm::GlobalValue::PrivateLinkage, Struct, 3380 ".args"); 3381 GV->setSection(AnnotationSection); 3382 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3383 3384 Lookup = GV; 3385 return GV; 3386 } 3387 3388 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3389 const AnnotateAttr *AA, 3390 SourceLocation L) { 3391 // Get the globals for file name, annotation, and the line number. 3392 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3393 *UnitGV = EmitAnnotationUnit(L), 3394 *LineNoCst = EmitAnnotationLineNo(L), 3395 *Args = EmitAnnotationArgs(AA); 3396 3397 llvm::Constant *GVInGlobalsAS = GV; 3398 if (GV->getAddressSpace() != 3399 getDataLayout().getDefaultGlobalsAddressSpace()) { 3400 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3401 GV, 3402 llvm::PointerType::get( 3403 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3404 } 3405 3406 // Create the ConstantStruct for the global annotation. 3407 llvm::Constant *Fields[] = { 3408 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3409 }; 3410 return llvm::ConstantStruct::getAnon(Fields); 3411 } 3412 3413 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3414 llvm::GlobalValue *GV) { 3415 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3416 // Get the struct elements for these annotations. 3417 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3418 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3419 } 3420 3421 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3422 SourceLocation Loc) const { 3423 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3424 // NoSanitize by function name. 3425 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3426 return true; 3427 // NoSanitize by location. Check "mainfile" prefix. 3428 auto &SM = Context.getSourceManager(); 3429 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3430 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3431 return true; 3432 3433 // Check "src" prefix. 3434 if (Loc.isValid()) 3435 return NoSanitizeL.containsLocation(Kind, Loc); 3436 // If location is unknown, this may be a compiler-generated function. Assume 3437 // it's located in the main file. 3438 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3439 } 3440 3441 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3442 llvm::GlobalVariable *GV, 3443 SourceLocation Loc, QualType Ty, 3444 StringRef Category) const { 3445 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3446 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3447 return true; 3448 auto &SM = Context.getSourceManager(); 3449 if (NoSanitizeL.containsMainFile( 3450 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3451 Category)) 3452 return true; 3453 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3454 return true; 3455 3456 // Check global type. 3457 if (!Ty.isNull()) { 3458 // Drill down the array types: if global variable of a fixed type is 3459 // not sanitized, we also don't instrument arrays of them. 3460 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3461 Ty = AT->getElementType(); 3462 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3463 // Only record types (classes, structs etc.) are ignored. 3464 if (Ty->isRecordType()) { 3465 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3466 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3467 return true; 3468 } 3469 } 3470 return false; 3471 } 3472 3473 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3474 StringRef Category) const { 3475 const auto &XRayFilter = getContext().getXRayFilter(); 3476 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3477 auto Attr = ImbueAttr::NONE; 3478 if (Loc.isValid()) 3479 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3480 if (Attr == ImbueAttr::NONE) 3481 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3482 switch (Attr) { 3483 case ImbueAttr::NONE: 3484 return false; 3485 case ImbueAttr::ALWAYS: 3486 Fn->addFnAttr("function-instrument", "xray-always"); 3487 break; 3488 case ImbueAttr::ALWAYS_ARG1: 3489 Fn->addFnAttr("function-instrument", "xray-always"); 3490 Fn->addFnAttr("xray-log-args", "1"); 3491 break; 3492 case ImbueAttr::NEVER: 3493 Fn->addFnAttr("function-instrument", "xray-never"); 3494 break; 3495 } 3496 return true; 3497 } 3498 3499 ProfileList::ExclusionType 3500 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3501 SourceLocation Loc) const { 3502 const auto &ProfileList = getContext().getProfileList(); 3503 // If the profile list is empty, then instrument everything. 3504 if (ProfileList.isEmpty()) 3505 return ProfileList::Allow; 3506 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3507 // First, check the function name. 3508 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3509 return *V; 3510 // Next, check the source location. 3511 if (Loc.isValid()) 3512 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3513 return *V; 3514 // If location is unknown, this may be a compiler-generated function. Assume 3515 // it's located in the main file. 3516 auto &SM = Context.getSourceManager(); 3517 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3518 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3519 return *V; 3520 return ProfileList.getDefault(Kind); 3521 } 3522 3523 ProfileList::ExclusionType 3524 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3525 SourceLocation Loc) const { 3526 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3527 if (V != ProfileList::Allow) 3528 return V; 3529 3530 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3531 if (NumGroups > 1) { 3532 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3533 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3534 return ProfileList::Skip; 3535 } 3536 return ProfileList::Allow; 3537 } 3538 3539 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3540 // Never defer when EmitAllDecls is specified. 3541 if (LangOpts.EmitAllDecls) 3542 return true; 3543 3544 const auto *VD = dyn_cast<VarDecl>(Global); 3545 if (VD && 3546 ((CodeGenOpts.KeepPersistentStorageVariables && 3547 (VD->getStorageDuration() == SD_Static || 3548 VD->getStorageDuration() == SD_Thread)) || 3549 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3550 VD->getType().isConstQualified()))) 3551 return true; 3552 3553 return getContext().DeclMustBeEmitted(Global); 3554 } 3555 3556 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3557 // In OpenMP 5.0 variables and function may be marked as 3558 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3559 // that they must be emitted on the host/device. To be sure we need to have 3560 // seen a declare target with an explicit mentioning of the function, we know 3561 // we have if the level of the declare target attribute is -1. Note that we 3562 // check somewhere else if we should emit this at all. 3563 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3564 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3565 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3566 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3567 return false; 3568 } 3569 3570 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3571 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3572 // Implicit template instantiations may change linkage if they are later 3573 // explicitly instantiated, so they should not be emitted eagerly. 3574 return false; 3575 // Defer until all versions have been semantically checked. 3576 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3577 return false; 3578 } 3579 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3580 if (Context.getInlineVariableDefinitionKind(VD) == 3581 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3582 // A definition of an inline constexpr static data member may change 3583 // linkage later if it's redeclared outside the class. 3584 return false; 3585 if (CXX20ModuleInits && VD->getOwningModule() && 3586 !VD->getOwningModule()->isModuleMapModule()) { 3587 // For CXX20, module-owned initializers need to be deferred, since it is 3588 // not known at this point if they will be run for the current module or 3589 // as part of the initializer for an imported one. 3590 return false; 3591 } 3592 } 3593 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3594 // codegen for global variables, because they may be marked as threadprivate. 3595 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3596 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3597 !Global->getType().isConstantStorage(getContext(), false, false) && 3598 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3599 return false; 3600 3601 return true; 3602 } 3603 3604 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3605 StringRef Name = getMangledName(GD); 3606 3607 // The UUID descriptor should be pointer aligned. 3608 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3609 3610 // Look for an existing global. 3611 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3612 return ConstantAddress(GV, GV->getValueType(), Alignment); 3613 3614 ConstantEmitter Emitter(*this); 3615 llvm::Constant *Init; 3616 3617 APValue &V = GD->getAsAPValue(); 3618 if (!V.isAbsent()) { 3619 // If possible, emit the APValue version of the initializer. In particular, 3620 // this gets the type of the constant right. 3621 Init = Emitter.emitForInitializer( 3622 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3623 } else { 3624 // As a fallback, directly construct the constant. 3625 // FIXME: This may get padding wrong under esoteric struct layout rules. 3626 // MSVC appears to create a complete type 'struct __s_GUID' that it 3627 // presumably uses to represent these constants. 3628 MSGuidDecl::Parts Parts = GD->getParts(); 3629 llvm::Constant *Fields[4] = { 3630 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3631 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3632 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3633 llvm::ConstantDataArray::getRaw( 3634 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3635 Int8Ty)}; 3636 Init = llvm::ConstantStruct::getAnon(Fields); 3637 } 3638 3639 auto *GV = new llvm::GlobalVariable( 3640 getModule(), Init->getType(), 3641 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3642 if (supportsCOMDAT()) 3643 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3644 setDSOLocal(GV); 3645 3646 if (!V.isAbsent()) { 3647 Emitter.finalize(GV); 3648 return ConstantAddress(GV, GV->getValueType(), Alignment); 3649 } 3650 3651 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3652 return ConstantAddress(GV, Ty, Alignment); 3653 } 3654 3655 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3656 const UnnamedGlobalConstantDecl *GCD) { 3657 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3658 3659 llvm::GlobalVariable **Entry = nullptr; 3660 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3661 if (*Entry) 3662 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3663 3664 ConstantEmitter Emitter(*this); 3665 llvm::Constant *Init; 3666 3667 const APValue &V = GCD->getValue(); 3668 3669 assert(!V.isAbsent()); 3670 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3671 GCD->getType()); 3672 3673 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3674 /*isConstant=*/true, 3675 llvm::GlobalValue::PrivateLinkage, Init, 3676 ".constant"); 3677 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3678 GV->setAlignment(Alignment.getAsAlign()); 3679 3680 Emitter.finalize(GV); 3681 3682 *Entry = GV; 3683 return ConstantAddress(GV, GV->getValueType(), Alignment); 3684 } 3685 3686 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3687 const TemplateParamObjectDecl *TPO) { 3688 StringRef Name = getMangledName(TPO); 3689 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3690 3691 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3692 return ConstantAddress(GV, GV->getValueType(), Alignment); 3693 3694 ConstantEmitter Emitter(*this); 3695 llvm::Constant *Init = Emitter.emitForInitializer( 3696 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3697 3698 if (!Init) { 3699 ErrorUnsupported(TPO, "template parameter object"); 3700 return ConstantAddress::invalid(); 3701 } 3702 3703 llvm::GlobalValue::LinkageTypes Linkage = 3704 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3705 ? llvm::GlobalValue::LinkOnceODRLinkage 3706 : llvm::GlobalValue::InternalLinkage; 3707 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3708 /*isConstant=*/true, Linkage, Init, Name); 3709 setGVProperties(GV, TPO); 3710 if (supportsCOMDAT()) 3711 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3712 Emitter.finalize(GV); 3713 3714 return ConstantAddress(GV, GV->getValueType(), Alignment); 3715 } 3716 3717 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3718 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3719 assert(AA && "No alias?"); 3720 3721 CharUnits Alignment = getContext().getDeclAlign(VD); 3722 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3723 3724 // See if there is already something with the target's name in the module. 3725 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3726 if (Entry) 3727 return ConstantAddress(Entry, DeclTy, Alignment); 3728 3729 llvm::Constant *Aliasee; 3730 if (isa<llvm::FunctionType>(DeclTy)) 3731 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3732 GlobalDecl(cast<FunctionDecl>(VD)), 3733 /*ForVTable=*/false); 3734 else 3735 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3736 nullptr); 3737 3738 auto *F = cast<llvm::GlobalValue>(Aliasee); 3739 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3740 WeakRefReferences.insert(F); 3741 3742 return ConstantAddress(Aliasee, DeclTy, Alignment); 3743 } 3744 3745 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3746 if (!D) 3747 return false; 3748 if (auto *A = D->getAttr<AttrT>()) 3749 return A->isImplicit(); 3750 return D->isImplicit(); 3751 } 3752 3753 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3754 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3755 // We need to emit host-side 'shadows' for all global 3756 // device-side variables because the CUDA runtime needs their 3757 // size and host-side address in order to provide access to 3758 // their device-side incarnations. 3759 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3760 Global->hasAttr<CUDAConstantAttr>() || 3761 Global->hasAttr<CUDASharedAttr>() || 3762 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3763 Global->getType()->isCUDADeviceBuiltinTextureType(); 3764 } 3765 3766 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3767 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3768 3769 // Weak references don't produce any output by themselves. 3770 if (Global->hasAttr<WeakRefAttr>()) 3771 return; 3772 3773 // If this is an alias definition (which otherwise looks like a declaration) 3774 // emit it now. 3775 if (Global->hasAttr<AliasAttr>()) 3776 return EmitAliasDefinition(GD); 3777 3778 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3779 if (Global->hasAttr<IFuncAttr>()) 3780 return emitIFuncDefinition(GD); 3781 3782 // If this is a cpu_dispatch multiversion function, emit the resolver. 3783 if (Global->hasAttr<CPUDispatchAttr>()) 3784 return emitCPUDispatchDefinition(GD); 3785 3786 // If this is CUDA, be selective about which declarations we emit. 3787 // Non-constexpr non-lambda implicit host device functions are not emitted 3788 // unless they are used on device side. 3789 if (LangOpts.CUDA) { 3790 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3791 "Expected Variable or Function"); 3792 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3793 if (!shouldEmitCUDAGlobalVar(VD)) 3794 return; 3795 } else if (LangOpts.CUDAIsDevice) { 3796 const auto *FD = dyn_cast<FunctionDecl>(Global); 3797 if ((!Global->hasAttr<CUDADeviceAttr>() || 3798 (LangOpts.OffloadImplicitHostDeviceTemplates && 3799 hasImplicitAttr<CUDAHostAttr>(FD) && 3800 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3801 !isLambdaCallOperator(FD) && 3802 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3803 !Global->hasAttr<CUDAGlobalAttr>() && 3804 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3805 !Global->hasAttr<CUDAHostAttr>())) 3806 return; 3807 // Device-only functions are the only things we skip. 3808 } else if (!Global->hasAttr<CUDAHostAttr>() && 3809 Global->hasAttr<CUDADeviceAttr>()) 3810 return; 3811 } 3812 3813 if (LangOpts.OpenMP) { 3814 // If this is OpenMP, check if it is legal to emit this global normally. 3815 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3816 return; 3817 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3818 if (MustBeEmitted(Global)) 3819 EmitOMPDeclareReduction(DRD); 3820 return; 3821 } 3822 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3823 if (MustBeEmitted(Global)) 3824 EmitOMPDeclareMapper(DMD); 3825 return; 3826 } 3827 } 3828 3829 // Ignore declarations, they will be emitted on their first use. 3830 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3831 // Update deferred annotations with the latest declaration if the function 3832 // function was already used or defined. 3833 if (FD->hasAttr<AnnotateAttr>()) { 3834 StringRef MangledName = getMangledName(GD); 3835 if (GetGlobalValue(MangledName)) 3836 DeferredAnnotations[MangledName] = FD; 3837 } 3838 3839 // Forward declarations are emitted lazily on first use. 3840 if (!FD->doesThisDeclarationHaveABody()) { 3841 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3842 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3843 return; 3844 3845 StringRef MangledName = getMangledName(GD); 3846 3847 // Compute the function info and LLVM type. 3848 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3849 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3850 3851 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3852 /*DontDefer=*/false); 3853 return; 3854 } 3855 } else { 3856 const auto *VD = cast<VarDecl>(Global); 3857 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3858 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3859 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3860 if (LangOpts.OpenMP) { 3861 // Emit declaration of the must-be-emitted declare target variable. 3862 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3863 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3864 3865 // If this variable has external storage and doesn't require special 3866 // link handling we defer to its canonical definition. 3867 if (VD->hasExternalStorage() && 3868 Res != OMPDeclareTargetDeclAttr::MT_Link) 3869 return; 3870 3871 bool UnifiedMemoryEnabled = 3872 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3873 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3874 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3875 !UnifiedMemoryEnabled) { 3876 (void)GetAddrOfGlobalVar(VD); 3877 } else { 3878 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3879 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3880 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3881 UnifiedMemoryEnabled)) && 3882 "Link clause or to clause with unified memory expected."); 3883 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3884 } 3885 3886 return; 3887 } 3888 } 3889 // If this declaration may have caused an inline variable definition to 3890 // change linkage, make sure that it's emitted. 3891 if (Context.getInlineVariableDefinitionKind(VD) == 3892 ASTContext::InlineVariableDefinitionKind::Strong) 3893 GetAddrOfGlobalVar(VD); 3894 return; 3895 } 3896 } 3897 3898 // Defer code generation to first use when possible, e.g. if this is an inline 3899 // function. If the global must always be emitted, do it eagerly if possible 3900 // to benefit from cache locality. 3901 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3902 // Emit the definition if it can't be deferred. 3903 EmitGlobalDefinition(GD); 3904 addEmittedDeferredDecl(GD); 3905 return; 3906 } 3907 3908 // If we're deferring emission of a C++ variable with an 3909 // initializer, remember the order in which it appeared in the file. 3910 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3911 cast<VarDecl>(Global)->hasInit()) { 3912 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3913 CXXGlobalInits.push_back(nullptr); 3914 } 3915 3916 StringRef MangledName = getMangledName(GD); 3917 if (GetGlobalValue(MangledName) != nullptr) { 3918 // The value has already been used and should therefore be emitted. 3919 addDeferredDeclToEmit(GD); 3920 } else if (MustBeEmitted(Global)) { 3921 // The value must be emitted, but cannot be emitted eagerly. 3922 assert(!MayBeEmittedEagerly(Global)); 3923 addDeferredDeclToEmit(GD); 3924 } else { 3925 // Otherwise, remember that we saw a deferred decl with this name. The 3926 // first use of the mangled name will cause it to move into 3927 // DeferredDeclsToEmit. 3928 DeferredDecls[MangledName] = GD; 3929 } 3930 } 3931 3932 // Check if T is a class type with a destructor that's not dllimport. 3933 static bool HasNonDllImportDtor(QualType T) { 3934 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3935 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3936 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3937 return true; 3938 3939 return false; 3940 } 3941 3942 namespace { 3943 struct FunctionIsDirectlyRecursive 3944 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3945 const StringRef Name; 3946 const Builtin::Context &BI; 3947 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3948 : Name(N), BI(C) {} 3949 3950 bool VisitCallExpr(const CallExpr *E) { 3951 const FunctionDecl *FD = E->getDirectCallee(); 3952 if (!FD) 3953 return false; 3954 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3955 if (Attr && Name == Attr->getLabel()) 3956 return true; 3957 unsigned BuiltinID = FD->getBuiltinID(); 3958 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3959 return false; 3960 StringRef BuiltinName = BI.getName(BuiltinID); 3961 if (BuiltinName.starts_with("__builtin_") && 3962 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3963 return true; 3964 } 3965 return false; 3966 } 3967 3968 bool VisitStmt(const Stmt *S) { 3969 for (const Stmt *Child : S->children()) 3970 if (Child && this->Visit(Child)) 3971 return true; 3972 return false; 3973 } 3974 }; 3975 3976 // Make sure we're not referencing non-imported vars or functions. 3977 struct DLLImportFunctionVisitor 3978 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3979 bool SafeToInline = true; 3980 3981 bool shouldVisitImplicitCode() const { return true; } 3982 3983 bool VisitVarDecl(VarDecl *VD) { 3984 if (VD->getTLSKind()) { 3985 // A thread-local variable cannot be imported. 3986 SafeToInline = false; 3987 return SafeToInline; 3988 } 3989 3990 // A variable definition might imply a destructor call. 3991 if (VD->isThisDeclarationADefinition()) 3992 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3993 3994 return SafeToInline; 3995 } 3996 3997 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3998 if (const auto *D = E->getTemporary()->getDestructor()) 3999 SafeToInline = D->hasAttr<DLLImportAttr>(); 4000 return SafeToInline; 4001 } 4002 4003 bool VisitDeclRefExpr(DeclRefExpr *E) { 4004 ValueDecl *VD = E->getDecl(); 4005 if (isa<FunctionDecl>(VD)) 4006 SafeToInline = VD->hasAttr<DLLImportAttr>(); 4007 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 4008 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 4009 return SafeToInline; 4010 } 4011 4012 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 4013 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 4014 return SafeToInline; 4015 } 4016 4017 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 4018 CXXMethodDecl *M = E->getMethodDecl(); 4019 if (!M) { 4020 // Call through a pointer to member function. This is safe to inline. 4021 SafeToInline = true; 4022 } else { 4023 SafeToInline = M->hasAttr<DLLImportAttr>(); 4024 } 4025 return SafeToInline; 4026 } 4027 4028 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4029 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4030 return SafeToInline; 4031 } 4032 4033 bool VisitCXXNewExpr(CXXNewExpr *E) { 4034 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4035 return SafeToInline; 4036 } 4037 }; 4038 } 4039 4040 // isTriviallyRecursive - Check if this function calls another 4041 // decl that, because of the asm attribute or the other decl being a builtin, 4042 // ends up pointing to itself. 4043 bool 4044 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4045 StringRef Name; 4046 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4047 // asm labels are a special kind of mangling we have to support. 4048 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4049 if (!Attr) 4050 return false; 4051 Name = Attr->getLabel(); 4052 } else { 4053 Name = FD->getName(); 4054 } 4055 4056 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4057 const Stmt *Body = FD->getBody(); 4058 return Body ? Walker.Visit(Body) : false; 4059 } 4060 4061 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4062 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4063 return true; 4064 4065 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4066 // Inline builtins declaration must be emitted. They often are fortified 4067 // functions. 4068 if (F->isInlineBuiltinDeclaration()) 4069 return true; 4070 4071 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4072 return false; 4073 4074 // We don't import function bodies from other named module units since that 4075 // behavior may break ABI compatibility of the current unit. 4076 if (const Module *M = F->getOwningModule(); 4077 M && M->getTopLevelModule()->isNamedModule() && 4078 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4079 // There are practices to mark template member function as always-inline 4080 // and mark the template as extern explicit instantiation but not give 4081 // the definition for member function. So we have to emit the function 4082 // from explicitly instantiation with always-inline. 4083 // 4084 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4085 // 4086 // TODO: Maybe it is better to give it a warning if we call a non-inline 4087 // function from other module units which is marked as always-inline. 4088 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4089 return false; 4090 } 4091 } 4092 4093 if (F->hasAttr<NoInlineAttr>()) 4094 return false; 4095 4096 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4097 // Check whether it would be safe to inline this dllimport function. 4098 DLLImportFunctionVisitor Visitor; 4099 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4100 if (!Visitor.SafeToInline) 4101 return false; 4102 4103 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4104 // Implicit destructor invocations aren't captured in the AST, so the 4105 // check above can't see them. Check for them manually here. 4106 for (const Decl *Member : Dtor->getParent()->decls()) 4107 if (isa<FieldDecl>(Member)) 4108 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4109 return false; 4110 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4111 if (HasNonDllImportDtor(B.getType())) 4112 return false; 4113 } 4114 } 4115 4116 // PR9614. Avoid cases where the source code is lying to us. An available 4117 // externally function should have an equivalent function somewhere else, 4118 // but a function that calls itself through asm label/`__builtin_` trickery is 4119 // clearly not equivalent to the real implementation. 4120 // This happens in glibc's btowc and in some configure checks. 4121 return !isTriviallyRecursive(F); 4122 } 4123 4124 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4125 return CodeGenOpts.OptimizationLevel > 0; 4126 } 4127 4128 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4129 llvm::GlobalValue *GV) { 4130 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4131 4132 if (FD->isCPUSpecificMultiVersion()) { 4133 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4134 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4135 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4136 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4137 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4138 // AArch64 favors the default target version over the clone if any. 4139 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4140 TC->isFirstOfVersion(I)) 4141 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4142 // Ensure that the resolver function is also emitted. 4143 GetOrCreateMultiVersionResolver(GD); 4144 } else 4145 EmitGlobalFunctionDefinition(GD, GV); 4146 4147 // Defer the resolver emission until we can reason whether the TU 4148 // contains a default target version implementation. 4149 if (FD->isTargetVersionMultiVersion()) 4150 AddDeferredMultiVersionResolverToEmit(GD); 4151 } 4152 4153 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4154 const auto *D = cast<ValueDecl>(GD.getDecl()); 4155 4156 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4157 Context.getSourceManager(), 4158 "Generating code for declaration"); 4159 4160 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4161 // At -O0, don't generate IR for functions with available_externally 4162 // linkage. 4163 if (!shouldEmitFunction(GD)) 4164 return; 4165 4166 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4167 std::string Name; 4168 llvm::raw_string_ostream OS(Name); 4169 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4170 /*Qualified=*/true); 4171 return Name; 4172 }); 4173 4174 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4175 // Make sure to emit the definition(s) before we emit the thunks. 4176 // This is necessary for the generation of certain thunks. 4177 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4178 ABI->emitCXXStructor(GD); 4179 else if (FD->isMultiVersion()) 4180 EmitMultiVersionFunctionDefinition(GD, GV); 4181 else 4182 EmitGlobalFunctionDefinition(GD, GV); 4183 4184 if (Method->isVirtual()) 4185 getVTables().EmitThunks(GD); 4186 4187 return; 4188 } 4189 4190 if (FD->isMultiVersion()) 4191 return EmitMultiVersionFunctionDefinition(GD, GV); 4192 return EmitGlobalFunctionDefinition(GD, GV); 4193 } 4194 4195 if (const auto *VD = dyn_cast<VarDecl>(D)) 4196 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4197 4198 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4199 } 4200 4201 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4202 llvm::Function *NewFn); 4203 4204 static unsigned 4205 TargetMVPriority(const TargetInfo &TI, 4206 const CodeGenFunction::MultiVersionResolverOption &RO) { 4207 unsigned Priority = 0; 4208 unsigned NumFeatures = 0; 4209 for (StringRef Feat : RO.Conditions.Features) { 4210 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4211 NumFeatures++; 4212 } 4213 4214 if (!RO.Conditions.Architecture.empty()) 4215 Priority = std::max( 4216 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4217 4218 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4219 4220 return Priority; 4221 } 4222 4223 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4224 // TU can forward declare the function without causing problems. Particularly 4225 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4226 // work with internal linkage functions, so that the same function name can be 4227 // used with internal linkage in multiple TUs. 4228 static llvm::GlobalValue::LinkageTypes 4229 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) { 4230 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4231 if (FD->getFormalLinkage() == Linkage::Internal) 4232 return llvm::GlobalValue::InternalLinkage; 4233 return llvm::GlobalValue::WeakODRLinkage; 4234 } 4235 4236 void CodeGenModule::emitMultiVersionFunctions() { 4237 std::vector<GlobalDecl> MVFuncsToEmit; 4238 MultiVersionFuncs.swap(MVFuncsToEmit); 4239 for (GlobalDecl GD : MVFuncsToEmit) { 4240 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4241 assert(FD && "Expected a FunctionDecl"); 4242 4243 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4244 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4245 StringRef MangledName = getMangledName(CurGD); 4246 llvm::Constant *Func = GetGlobalValue(MangledName); 4247 if (!Func) { 4248 if (Decl->isDefined()) { 4249 EmitGlobalFunctionDefinition(CurGD, nullptr); 4250 Func = GetGlobalValue(MangledName); 4251 } else { 4252 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4253 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4254 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4255 /*DontDefer=*/false, ForDefinition); 4256 } 4257 assert(Func && "This should have just been created"); 4258 } 4259 return cast<llvm::Function>(Func); 4260 }; 4261 4262 // For AArch64, a resolver is only emitted if a function marked with 4263 // target_version("default")) or target_clones() is present and defined 4264 // in this TU. For other architectures it is always emitted. 4265 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4266 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4267 4268 getContext().forEachMultiversionedFunctionVersion( 4269 FD, [&](const FunctionDecl *CurFD) { 4270 llvm::SmallVector<StringRef, 8> Feats; 4271 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4272 4273 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4274 TA->getAddedFeatures(Feats); 4275 llvm::Function *Func = createFunction(CurFD); 4276 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4277 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4278 if (TVA->isDefaultVersion() && IsDefined) 4279 ShouldEmitResolver = true; 4280 TVA->getFeatures(Feats); 4281 llvm::Function *Func = createFunction(CurFD); 4282 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4283 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4284 if (IsDefined) 4285 ShouldEmitResolver = true; 4286 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4287 if (!TC->isFirstOfVersion(I)) 4288 continue; 4289 4290 llvm::Function *Func = createFunction(CurFD, I); 4291 StringRef Architecture; 4292 Feats.clear(); 4293 if (getTarget().getTriple().isAArch64()) 4294 TC->getFeatures(Feats, I); 4295 else if (getTarget().getTriple().isRISCV()) { 4296 StringRef Version = TC->getFeatureStr(I); 4297 Feats.push_back(Version); 4298 } else { 4299 StringRef Version = TC->getFeatureStr(I); 4300 if (Version.starts_with("arch=")) 4301 Architecture = Version.drop_front(sizeof("arch=") - 1); 4302 else if (Version != "default") 4303 Feats.push_back(Version); 4304 } 4305 Options.emplace_back(Func, Architecture, Feats); 4306 } 4307 } else 4308 llvm_unreachable("unexpected MultiVersionKind"); 4309 }); 4310 4311 if (!ShouldEmitResolver) 4312 continue; 4313 4314 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4315 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4316 ResolverConstant = IFunc->getResolver(); 4317 if (FD->isTargetClonesMultiVersion() && 4318 !getTarget().getTriple().isAArch64()) { 4319 std::string MangledName = getMangledNameImpl( 4320 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4321 if (!GetGlobalValue(MangledName + ".ifunc")) { 4322 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4323 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4324 // In prior versions of Clang, the mangling for ifuncs incorrectly 4325 // included an .ifunc suffix. This alias is generated for backward 4326 // compatibility. It is deprecated, and may be removed in the future. 4327 auto *Alias = llvm::GlobalAlias::create( 4328 DeclTy, 0, getMultiversionLinkage(*this, GD), 4329 MangledName + ".ifunc", IFunc, &getModule()); 4330 SetCommonAttributes(FD, Alias); 4331 } 4332 } 4333 } 4334 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4335 4336 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4337 4338 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4339 ResolverFunc->setComdat( 4340 getModule().getOrInsertComdat(ResolverFunc->getName())); 4341 4342 const TargetInfo &TI = getTarget(); 4343 llvm::stable_sort( 4344 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4345 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4346 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4347 }); 4348 CodeGenFunction CGF(*this); 4349 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4350 } 4351 4352 // Ensure that any additions to the deferred decls list caused by emitting a 4353 // variant are emitted. This can happen when the variant itself is inline and 4354 // calls a function without linkage. 4355 if (!MVFuncsToEmit.empty()) 4356 EmitDeferred(); 4357 4358 // Ensure that any additions to the multiversion funcs list from either the 4359 // deferred decls or the multiversion functions themselves are emitted. 4360 if (!MultiVersionFuncs.empty()) 4361 emitMultiVersionFunctions(); 4362 } 4363 4364 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4365 llvm::Constant *New) { 4366 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4367 New->takeName(Old); 4368 Old->replaceAllUsesWith(New); 4369 Old->eraseFromParent(); 4370 } 4371 4372 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4373 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4374 assert(FD && "Not a FunctionDecl?"); 4375 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4376 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4377 assert(DD && "Not a cpu_dispatch Function?"); 4378 4379 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4380 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4381 4382 StringRef ResolverName = getMangledName(GD); 4383 UpdateMultiVersionNames(GD, FD, ResolverName); 4384 4385 llvm::Type *ResolverType; 4386 GlobalDecl ResolverGD; 4387 if (getTarget().supportsIFunc()) { 4388 ResolverType = llvm::FunctionType::get( 4389 llvm::PointerType::get(DeclTy, 4390 getTypes().getTargetAddressSpace(FD->getType())), 4391 false); 4392 } 4393 else { 4394 ResolverType = DeclTy; 4395 ResolverGD = GD; 4396 } 4397 4398 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4399 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4400 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4401 if (supportsCOMDAT()) 4402 ResolverFunc->setComdat( 4403 getModule().getOrInsertComdat(ResolverFunc->getName())); 4404 4405 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4406 const TargetInfo &Target = getTarget(); 4407 unsigned Index = 0; 4408 for (const IdentifierInfo *II : DD->cpus()) { 4409 // Get the name of the target function so we can look it up/create it. 4410 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4411 getCPUSpecificMangling(*this, II->getName()); 4412 4413 llvm::Constant *Func = GetGlobalValue(MangledName); 4414 4415 if (!Func) { 4416 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4417 if (ExistingDecl.getDecl() && 4418 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4419 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4420 Func = GetGlobalValue(MangledName); 4421 } else { 4422 if (!ExistingDecl.getDecl()) 4423 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4424 4425 Func = GetOrCreateLLVMFunction( 4426 MangledName, DeclTy, ExistingDecl, 4427 /*ForVTable=*/false, /*DontDefer=*/true, 4428 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4429 } 4430 } 4431 4432 llvm::SmallVector<StringRef, 32> Features; 4433 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4434 llvm::transform(Features, Features.begin(), 4435 [](StringRef Str) { return Str.substr(1); }); 4436 llvm::erase_if(Features, [&Target](StringRef Feat) { 4437 return !Target.validateCpuSupports(Feat); 4438 }); 4439 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4440 ++Index; 4441 } 4442 4443 llvm::stable_sort( 4444 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4445 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4446 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4447 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4448 }); 4449 4450 // If the list contains multiple 'default' versions, such as when it contains 4451 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4452 // always run on at least a 'pentium'). We do this by deleting the 'least 4453 // advanced' (read, lowest mangling letter). 4454 while (Options.size() > 1 && 4455 llvm::all_of(llvm::X86::getCpuSupportsMask( 4456 (Options.end() - 2)->Conditions.Features), 4457 [](auto X) { return X == 0; })) { 4458 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4459 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4460 if (LHSName.compare(RHSName) < 0) 4461 Options.erase(Options.end() - 2); 4462 else 4463 Options.erase(Options.end() - 1); 4464 } 4465 4466 CodeGenFunction CGF(*this); 4467 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4468 4469 if (getTarget().supportsIFunc()) { 4470 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4471 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4472 unsigned AS = IFunc->getType()->getPointerAddressSpace(); 4473 4474 // Fix up function declarations that were created for cpu_specific before 4475 // cpu_dispatch was known 4476 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4477 auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "", 4478 ResolverFunc, &getModule()); 4479 replaceDeclarationWith(IFunc, GI); 4480 IFunc = GI; 4481 } 4482 4483 std::string AliasName = getMangledNameImpl( 4484 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4485 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4486 if (!AliasFunc) { 4487 auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName, 4488 IFunc, &getModule()); 4489 SetCommonAttributes(GD, GA); 4490 } 4491 } 4492 } 4493 4494 /// Adds a declaration to the list of multi version functions if not present. 4495 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4496 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4497 assert(FD && "Not a FunctionDecl?"); 4498 4499 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4500 std::string MangledName = 4501 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4502 if (!DeferredResolversToEmit.insert(MangledName).second) 4503 return; 4504 } 4505 MultiVersionFuncs.push_back(GD); 4506 } 4507 4508 /// If a dispatcher for the specified mangled name is not in the module, create 4509 /// and return it. The dispatcher is either an llvm Function with the specified 4510 /// type, or a global ifunc. 4511 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4512 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4513 assert(FD && "Not a FunctionDecl?"); 4514 4515 std::string MangledName = 4516 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4517 4518 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4519 // a separate resolver). 4520 std::string ResolverName = MangledName; 4521 if (getTarget().supportsIFunc()) { 4522 switch (FD->getMultiVersionKind()) { 4523 case MultiVersionKind::None: 4524 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4525 case MultiVersionKind::Target: 4526 case MultiVersionKind::CPUSpecific: 4527 case MultiVersionKind::CPUDispatch: 4528 ResolverName += ".ifunc"; 4529 break; 4530 case MultiVersionKind::TargetClones: 4531 case MultiVersionKind::TargetVersion: 4532 break; 4533 } 4534 } else if (FD->isTargetMultiVersion()) { 4535 ResolverName += ".resolver"; 4536 } 4537 4538 // If the resolver has already been created, just return it. This lookup may 4539 // yield a function declaration instead of a resolver on AArch64. That is 4540 // because we didn't know whether a resolver will be generated when we first 4541 // encountered a use of the symbol named after this resolver. Therefore, 4542 // targets which support ifuncs should not return here unless we actually 4543 // found an ifunc. 4544 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4545 if (ResolverGV && 4546 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4547 return ResolverGV; 4548 4549 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4550 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4551 4552 // The resolver needs to be created. For target and target_clones, defer 4553 // creation until the end of the TU. 4554 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4555 AddDeferredMultiVersionResolverToEmit(GD); 4556 4557 // For cpu_specific, don't create an ifunc yet because we don't know if the 4558 // cpu_dispatch will be emitted in this translation unit. 4559 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4560 unsigned AS = getTypes().getTargetAddressSpace(FD->getType()); 4561 llvm::Type *ResolverType = 4562 llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false); 4563 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4564 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4565 /*ForVTable=*/false); 4566 llvm::GlobalIFunc *GIF = 4567 llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD), 4568 "", Resolver, &getModule()); 4569 GIF->setName(ResolverName); 4570 SetCommonAttributes(FD, GIF); 4571 if (ResolverGV) 4572 replaceDeclarationWith(ResolverGV, GIF); 4573 return GIF; 4574 } 4575 4576 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4577 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4578 assert(isa<llvm::GlobalValue>(Resolver) && 4579 "Resolver should be created for the first time"); 4580 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4581 if (ResolverGV) 4582 replaceDeclarationWith(ResolverGV, Resolver); 4583 return Resolver; 4584 } 4585 4586 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4587 const llvm::GlobalValue *GV) const { 4588 auto SC = GV->getDLLStorageClass(); 4589 if (SC == llvm::GlobalValue::DefaultStorageClass) 4590 return false; 4591 const Decl *MRD = D->getMostRecentDecl(); 4592 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4593 !MRD->hasAttr<DLLImportAttr>()) || 4594 (SC == llvm::GlobalValue::DLLExportStorageClass && 4595 !MRD->hasAttr<DLLExportAttr>())) && 4596 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4597 } 4598 4599 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4600 /// module, create and return an llvm Function with the specified type. If there 4601 /// is something in the module with the specified name, return it potentially 4602 /// bitcasted to the right type. 4603 /// 4604 /// If D is non-null, it specifies a decl that correspond to this. This is used 4605 /// to set the attributes on the function when it is first created. 4606 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4607 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4608 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4609 ForDefinition_t IsForDefinition) { 4610 const Decl *D = GD.getDecl(); 4611 4612 std::string NameWithoutMultiVersionMangling; 4613 // Any attempts to use a MultiVersion function should result in retrieving 4614 // the iFunc instead. Name Mangling will handle the rest of the changes. 4615 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4616 // For the device mark the function as one that should be emitted. 4617 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4618 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4619 !DontDefer && !IsForDefinition) { 4620 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4621 GlobalDecl GDDef; 4622 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4623 GDDef = GlobalDecl(CD, GD.getCtorType()); 4624 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4625 GDDef = GlobalDecl(DD, GD.getDtorType()); 4626 else 4627 GDDef = GlobalDecl(FDDef); 4628 EmitGlobal(GDDef); 4629 } 4630 } 4631 4632 if (FD->isMultiVersion()) { 4633 UpdateMultiVersionNames(GD, FD, MangledName); 4634 if (!IsForDefinition) { 4635 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4636 // function is used. Instead we defer the emission until we see a 4637 // default definition. In the meantime we just reference the symbol 4638 // without FMV mangling (it may or may not be replaced later). 4639 if (getTarget().getTriple().isAArch64()) { 4640 AddDeferredMultiVersionResolverToEmit(GD); 4641 NameWithoutMultiVersionMangling = getMangledNameImpl( 4642 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4643 } else 4644 return GetOrCreateMultiVersionResolver(GD); 4645 } 4646 } 4647 } 4648 4649 if (!NameWithoutMultiVersionMangling.empty()) 4650 MangledName = NameWithoutMultiVersionMangling; 4651 4652 // Lookup the entry, lazily creating it if necessary. 4653 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4654 if (Entry) { 4655 if (WeakRefReferences.erase(Entry)) { 4656 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4657 if (FD && !FD->hasAttr<WeakAttr>()) 4658 Entry->setLinkage(llvm::Function::ExternalLinkage); 4659 } 4660 4661 // Handle dropped DLL attributes. 4662 if (D && shouldDropDLLAttribute(D, Entry)) { 4663 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4664 setDSOLocal(Entry); 4665 } 4666 4667 // If there are two attempts to define the same mangled name, issue an 4668 // error. 4669 if (IsForDefinition && !Entry->isDeclaration()) { 4670 GlobalDecl OtherGD; 4671 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4672 // to make sure that we issue an error only once. 4673 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4674 (GD.getCanonicalDecl().getDecl() != 4675 OtherGD.getCanonicalDecl().getDecl()) && 4676 DiagnosedConflictingDefinitions.insert(GD).second) { 4677 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4678 << MangledName; 4679 getDiags().Report(OtherGD.getDecl()->getLocation(), 4680 diag::note_previous_definition); 4681 } 4682 } 4683 4684 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4685 (Entry->getValueType() == Ty)) { 4686 return Entry; 4687 } 4688 4689 // Make sure the result is of the correct type. 4690 // (If function is requested for a definition, we always need to create a new 4691 // function, not just return a bitcast.) 4692 if (!IsForDefinition) 4693 return Entry; 4694 } 4695 4696 // This function doesn't have a complete type (for example, the return 4697 // type is an incomplete struct). Use a fake type instead, and make 4698 // sure not to try to set attributes. 4699 bool IsIncompleteFunction = false; 4700 4701 llvm::FunctionType *FTy; 4702 if (isa<llvm::FunctionType>(Ty)) { 4703 FTy = cast<llvm::FunctionType>(Ty); 4704 } else { 4705 FTy = llvm::FunctionType::get(VoidTy, false); 4706 IsIncompleteFunction = true; 4707 } 4708 4709 llvm::Function *F = 4710 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4711 Entry ? StringRef() : MangledName, &getModule()); 4712 4713 // Store the declaration associated with this function so it is potentially 4714 // updated by further declarations or definitions and emitted at the end. 4715 if (D && D->hasAttr<AnnotateAttr>()) 4716 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4717 4718 // If we already created a function with the same mangled name (but different 4719 // type) before, take its name and add it to the list of functions to be 4720 // replaced with F at the end of CodeGen. 4721 // 4722 // This happens if there is a prototype for a function (e.g. "int f()") and 4723 // then a definition of a different type (e.g. "int f(int x)"). 4724 if (Entry) { 4725 F->takeName(Entry); 4726 4727 // This might be an implementation of a function without a prototype, in 4728 // which case, try to do special replacement of calls which match the new 4729 // prototype. The really key thing here is that we also potentially drop 4730 // arguments from the call site so as to make a direct call, which makes the 4731 // inliner happier and suppresses a number of optimizer warnings (!) about 4732 // dropping arguments. 4733 if (!Entry->use_empty()) { 4734 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4735 Entry->removeDeadConstantUsers(); 4736 } 4737 4738 addGlobalValReplacement(Entry, F); 4739 } 4740 4741 assert(F->getName() == MangledName && "name was uniqued!"); 4742 if (D) 4743 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4744 if (ExtraAttrs.hasFnAttrs()) { 4745 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4746 F->addFnAttrs(B); 4747 } 4748 4749 if (!DontDefer) { 4750 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4751 // each other bottoming out with the base dtor. Therefore we emit non-base 4752 // dtors on usage, even if there is no dtor definition in the TU. 4753 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4754 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4755 GD.getDtorType())) 4756 addDeferredDeclToEmit(GD); 4757 4758 // This is the first use or definition of a mangled name. If there is a 4759 // deferred decl with this name, remember that we need to emit it at the end 4760 // of the file. 4761 auto DDI = DeferredDecls.find(MangledName); 4762 if (DDI != DeferredDecls.end()) { 4763 // Move the potentially referenced deferred decl to the 4764 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4765 // don't need it anymore). 4766 addDeferredDeclToEmit(DDI->second); 4767 DeferredDecls.erase(DDI); 4768 4769 // Otherwise, there are cases we have to worry about where we're 4770 // using a declaration for which we must emit a definition but where 4771 // we might not find a top-level definition: 4772 // - member functions defined inline in their classes 4773 // - friend functions defined inline in some class 4774 // - special member functions with implicit definitions 4775 // If we ever change our AST traversal to walk into class methods, 4776 // this will be unnecessary. 4777 // 4778 // We also don't emit a definition for a function if it's going to be an 4779 // entry in a vtable, unless it's already marked as used. 4780 } else if (getLangOpts().CPlusPlus && D) { 4781 // Look for a declaration that's lexically in a record. 4782 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4783 FD = FD->getPreviousDecl()) { 4784 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4785 if (FD->doesThisDeclarationHaveABody()) { 4786 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4787 break; 4788 } 4789 } 4790 } 4791 } 4792 } 4793 4794 // Make sure the result is of the requested type. 4795 if (!IsIncompleteFunction) { 4796 assert(F->getFunctionType() == Ty); 4797 return F; 4798 } 4799 4800 return F; 4801 } 4802 4803 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4804 /// non-null, then this function will use the specified type if it has to 4805 /// create it (this occurs when we see a definition of the function). 4806 llvm::Constant * 4807 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4808 bool DontDefer, 4809 ForDefinition_t IsForDefinition) { 4810 // If there was no specific requested type, just convert it now. 4811 if (!Ty) { 4812 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4813 Ty = getTypes().ConvertType(FD->getType()); 4814 } 4815 4816 // Devirtualized destructor calls may come through here instead of via 4817 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4818 // of the complete destructor when necessary. 4819 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4820 if (getTarget().getCXXABI().isMicrosoft() && 4821 GD.getDtorType() == Dtor_Complete && 4822 DD->getParent()->getNumVBases() == 0) 4823 GD = GlobalDecl(DD, Dtor_Base); 4824 } 4825 4826 StringRef MangledName = getMangledName(GD); 4827 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4828 /*IsThunk=*/false, llvm::AttributeList(), 4829 IsForDefinition); 4830 // Returns kernel handle for HIP kernel stub function. 4831 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4832 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4833 auto *Handle = getCUDARuntime().getKernelHandle( 4834 cast<llvm::Function>(F->stripPointerCasts()), GD); 4835 if (IsForDefinition) 4836 return F; 4837 return Handle; 4838 } 4839 return F; 4840 } 4841 4842 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4843 llvm::GlobalValue *F = 4844 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4845 4846 return llvm::NoCFIValue::get(F); 4847 } 4848 4849 static const FunctionDecl * 4850 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4851 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4852 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4853 4854 IdentifierInfo &CII = C.Idents.get(Name); 4855 for (const auto *Result : DC->lookup(&CII)) 4856 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4857 return FD; 4858 4859 if (!C.getLangOpts().CPlusPlus) 4860 return nullptr; 4861 4862 // Demangle the premangled name from getTerminateFn() 4863 IdentifierInfo &CXXII = 4864 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4865 ? C.Idents.get("terminate") 4866 : C.Idents.get(Name); 4867 4868 for (const auto &N : {"__cxxabiv1", "std"}) { 4869 IdentifierInfo &NS = C.Idents.get(N); 4870 for (const auto *Result : DC->lookup(&NS)) { 4871 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4872 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4873 for (const auto *Result : LSD->lookup(&NS)) 4874 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4875 break; 4876 4877 if (ND) 4878 for (const auto *Result : ND->lookup(&CXXII)) 4879 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4880 return FD; 4881 } 4882 } 4883 4884 return nullptr; 4885 } 4886 4887 /// CreateRuntimeFunction - Create a new runtime function with the specified 4888 /// type and name. 4889 llvm::FunctionCallee 4890 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4891 llvm::AttributeList ExtraAttrs, bool Local, 4892 bool AssumeConvergent) { 4893 if (AssumeConvergent) { 4894 ExtraAttrs = 4895 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4896 } 4897 4898 llvm::Constant *C = 4899 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4900 /*DontDefer=*/false, /*IsThunk=*/false, 4901 ExtraAttrs); 4902 4903 if (auto *F = dyn_cast<llvm::Function>(C)) { 4904 if (F->empty()) { 4905 F->setCallingConv(getRuntimeCC()); 4906 4907 // In Windows Itanium environments, try to mark runtime functions 4908 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4909 // will link their standard library statically or dynamically. Marking 4910 // functions imported when they are not imported can cause linker errors 4911 // and warnings. 4912 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4913 !getCodeGenOpts().LTOVisibilityPublicStd) { 4914 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4915 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4916 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4917 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4918 } 4919 } 4920 setDSOLocal(F); 4921 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4922 // of trying to approximate the attributes using the LLVM function 4923 // signature. This requires revising the API of CreateRuntimeFunction(). 4924 markRegisterParameterAttributes(F); 4925 } 4926 } 4927 4928 return {FTy, C}; 4929 } 4930 4931 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4932 /// create and return an llvm GlobalVariable with the specified type and address 4933 /// space. If there is something in the module with the specified name, return 4934 /// it potentially bitcasted to the right type. 4935 /// 4936 /// If D is non-null, it specifies a decl that correspond to this. This is used 4937 /// to set the attributes on the global when it is first created. 4938 /// 4939 /// If IsForDefinition is true, it is guaranteed that an actual global with 4940 /// type Ty will be returned, not conversion of a variable with the same 4941 /// mangled name but some other type. 4942 llvm::Constant * 4943 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4944 LangAS AddrSpace, const VarDecl *D, 4945 ForDefinition_t IsForDefinition) { 4946 // Lookup the entry, lazily creating it if necessary. 4947 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4948 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4949 if (Entry) { 4950 if (WeakRefReferences.erase(Entry)) { 4951 if (D && !D->hasAttr<WeakAttr>()) 4952 Entry->setLinkage(llvm::Function::ExternalLinkage); 4953 } 4954 4955 // Handle dropped DLL attributes. 4956 if (D && shouldDropDLLAttribute(D, Entry)) 4957 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4958 4959 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4960 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4961 4962 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4963 return Entry; 4964 4965 // If there are two attempts to define the same mangled name, issue an 4966 // error. 4967 if (IsForDefinition && !Entry->isDeclaration()) { 4968 GlobalDecl OtherGD; 4969 const VarDecl *OtherD; 4970 4971 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4972 // to make sure that we issue an error only once. 4973 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4974 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4975 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4976 OtherD->hasInit() && 4977 DiagnosedConflictingDefinitions.insert(D).second) { 4978 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4979 << MangledName; 4980 getDiags().Report(OtherGD.getDecl()->getLocation(), 4981 diag::note_previous_definition); 4982 } 4983 } 4984 4985 // Make sure the result is of the correct type. 4986 if (Entry->getType()->getAddressSpace() != TargetAS) 4987 return llvm::ConstantExpr::getAddrSpaceCast( 4988 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4989 4990 // (If global is requested for a definition, we always need to create a new 4991 // global, not just return a bitcast.) 4992 if (!IsForDefinition) 4993 return Entry; 4994 } 4995 4996 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4997 4998 auto *GV = new llvm::GlobalVariable( 4999 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 5000 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 5001 getContext().getTargetAddressSpace(DAddrSpace)); 5002 5003 // If we already created a global with the same mangled name (but different 5004 // type) before, take its name and remove it from its parent. 5005 if (Entry) { 5006 GV->takeName(Entry); 5007 5008 if (!Entry->use_empty()) { 5009 Entry->replaceAllUsesWith(GV); 5010 } 5011 5012 Entry->eraseFromParent(); 5013 } 5014 5015 // This is the first use or definition of a mangled name. If there is a 5016 // deferred decl with this name, remember that we need to emit it at the end 5017 // of the file. 5018 auto DDI = DeferredDecls.find(MangledName); 5019 if (DDI != DeferredDecls.end()) { 5020 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 5021 // list, and remove it from DeferredDecls (since we don't need it anymore). 5022 addDeferredDeclToEmit(DDI->second); 5023 DeferredDecls.erase(DDI); 5024 } 5025 5026 // Handle things which are present even on external declarations. 5027 if (D) { 5028 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5029 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5030 5031 // FIXME: This code is overly simple and should be merged with other global 5032 // handling. 5033 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5034 5035 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5036 5037 setLinkageForGV(GV, D); 5038 5039 if (D->getTLSKind()) { 5040 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5041 CXXThreadLocals.push_back(D); 5042 setTLSMode(GV, *D); 5043 } 5044 5045 setGVProperties(GV, D); 5046 5047 // If required by the ABI, treat declarations of static data members with 5048 // inline initializers as definitions. 5049 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5050 EmitGlobalVarDefinition(D); 5051 } 5052 5053 // Emit section information for extern variables. 5054 if (D->hasExternalStorage()) { 5055 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5056 GV->setSection(SA->getName()); 5057 } 5058 5059 // Handle XCore specific ABI requirements. 5060 if (getTriple().getArch() == llvm::Triple::xcore && 5061 D->getLanguageLinkage() == CLanguageLinkage && 5062 D->getType().isConstant(Context) && 5063 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5064 GV->setSection(".cp.rodata"); 5065 5066 // Handle code model attribute 5067 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5068 GV->setCodeModel(CMA->getModel()); 5069 5070 // Check if we a have a const declaration with an initializer, we may be 5071 // able to emit it as available_externally to expose it's value to the 5072 // optimizer. 5073 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5074 D->getType().isConstQualified() && !GV->hasInitializer() && 5075 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5076 const auto *Record = 5077 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5078 bool HasMutableFields = Record && Record->hasMutableFields(); 5079 if (!HasMutableFields) { 5080 const VarDecl *InitDecl; 5081 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5082 if (InitExpr) { 5083 ConstantEmitter emitter(*this); 5084 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5085 if (Init) { 5086 auto *InitType = Init->getType(); 5087 if (GV->getValueType() != InitType) { 5088 // The type of the initializer does not match the definition. 5089 // This happens when an initializer has a different type from 5090 // the type of the global (because of padding at the end of a 5091 // structure for instance). 5092 GV->setName(StringRef()); 5093 // Make a new global with the correct type, this is now guaranteed 5094 // to work. 5095 auto *NewGV = cast<llvm::GlobalVariable>( 5096 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5097 ->stripPointerCasts()); 5098 5099 // Erase the old global, since it is no longer used. 5100 GV->eraseFromParent(); 5101 GV = NewGV; 5102 } else { 5103 GV->setInitializer(Init); 5104 GV->setConstant(true); 5105 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5106 } 5107 emitter.finalize(GV); 5108 } 5109 } 5110 } 5111 } 5112 } 5113 5114 if (D && 5115 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5116 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5117 // External HIP managed variables needed to be recorded for transformation 5118 // in both device and host compilations. 5119 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5120 D->hasExternalStorage()) 5121 getCUDARuntime().handleVarRegistration(D, *GV); 5122 } 5123 5124 if (D) 5125 SanitizerMD->reportGlobal(GV, *D); 5126 5127 LangAS ExpectedAS = 5128 D ? D->getType().getAddressSpace() 5129 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5130 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5131 if (DAddrSpace != ExpectedAS) { 5132 return getTargetCodeGenInfo().performAddrSpaceCast( 5133 *this, GV, DAddrSpace, ExpectedAS, 5134 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5135 } 5136 5137 return GV; 5138 } 5139 5140 llvm::Constant * 5141 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5142 const Decl *D = GD.getDecl(); 5143 5144 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5145 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5146 /*DontDefer=*/false, IsForDefinition); 5147 5148 if (isa<CXXMethodDecl>(D)) { 5149 auto FInfo = 5150 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5151 auto Ty = getTypes().GetFunctionType(*FInfo); 5152 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5153 IsForDefinition); 5154 } 5155 5156 if (isa<FunctionDecl>(D)) { 5157 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5158 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5159 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5160 IsForDefinition); 5161 } 5162 5163 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5164 } 5165 5166 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5167 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5168 llvm::Align Alignment) { 5169 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5170 llvm::GlobalVariable *OldGV = nullptr; 5171 5172 if (GV) { 5173 // Check if the variable has the right type. 5174 if (GV->getValueType() == Ty) 5175 return GV; 5176 5177 // Because C++ name mangling, the only way we can end up with an already 5178 // existing global with the same name is if it has been declared extern "C". 5179 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5180 OldGV = GV; 5181 } 5182 5183 // Create a new variable. 5184 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5185 Linkage, nullptr, Name); 5186 5187 if (OldGV) { 5188 // Replace occurrences of the old variable if needed. 5189 GV->takeName(OldGV); 5190 5191 if (!OldGV->use_empty()) { 5192 OldGV->replaceAllUsesWith(GV); 5193 } 5194 5195 OldGV->eraseFromParent(); 5196 } 5197 5198 if (supportsCOMDAT() && GV->isWeakForLinker() && 5199 !GV->hasAvailableExternallyLinkage()) 5200 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5201 5202 GV->setAlignment(Alignment); 5203 5204 return GV; 5205 } 5206 5207 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5208 /// given global variable. If Ty is non-null and if the global doesn't exist, 5209 /// then it will be created with the specified type instead of whatever the 5210 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5211 /// that an actual global with type Ty will be returned, not conversion of a 5212 /// variable with the same mangled name but some other type. 5213 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5214 llvm::Type *Ty, 5215 ForDefinition_t IsForDefinition) { 5216 assert(D->hasGlobalStorage() && "Not a global variable"); 5217 QualType ASTTy = D->getType(); 5218 if (!Ty) 5219 Ty = getTypes().ConvertTypeForMem(ASTTy); 5220 5221 StringRef MangledName = getMangledName(D); 5222 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5223 IsForDefinition); 5224 } 5225 5226 /// CreateRuntimeVariable - Create a new runtime global variable with the 5227 /// specified type and name. 5228 llvm::Constant * 5229 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5230 StringRef Name) { 5231 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5232 : LangAS::Default; 5233 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5234 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5235 return Ret; 5236 } 5237 5238 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5239 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5240 5241 StringRef MangledName = getMangledName(D); 5242 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5243 5244 // We already have a definition, not declaration, with the same mangled name. 5245 // Emitting of declaration is not required (and actually overwrites emitted 5246 // definition). 5247 if (GV && !GV->isDeclaration()) 5248 return; 5249 5250 // If we have not seen a reference to this variable yet, place it into the 5251 // deferred declarations table to be emitted if needed later. 5252 if (!MustBeEmitted(D) && !GV) { 5253 DeferredDecls[MangledName] = D; 5254 return; 5255 } 5256 5257 // The tentative definition is the only definition. 5258 EmitGlobalVarDefinition(D); 5259 } 5260 5261 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5262 if (auto const *V = dyn_cast<const VarDecl>(D)) 5263 EmitExternalVarDeclaration(V); 5264 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5265 EmitExternalFunctionDeclaration(FD); 5266 } 5267 5268 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5269 return Context.toCharUnitsFromBits( 5270 getDataLayout().getTypeStoreSizeInBits(Ty)); 5271 } 5272 5273 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5274 if (LangOpts.OpenCL) { 5275 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5276 assert(AS == LangAS::opencl_global || 5277 AS == LangAS::opencl_global_device || 5278 AS == LangAS::opencl_global_host || 5279 AS == LangAS::opencl_constant || 5280 AS == LangAS::opencl_local || 5281 AS >= LangAS::FirstTargetAddressSpace); 5282 return AS; 5283 } 5284 5285 if (LangOpts.SYCLIsDevice && 5286 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5287 return LangAS::sycl_global; 5288 5289 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5290 if (D) { 5291 if (D->hasAttr<CUDAConstantAttr>()) 5292 return LangAS::cuda_constant; 5293 if (D->hasAttr<CUDASharedAttr>()) 5294 return LangAS::cuda_shared; 5295 if (D->hasAttr<CUDADeviceAttr>()) 5296 return LangAS::cuda_device; 5297 if (D->getType().isConstQualified()) 5298 return LangAS::cuda_constant; 5299 } 5300 return LangAS::cuda_device; 5301 } 5302 5303 if (LangOpts.OpenMP) { 5304 LangAS AS; 5305 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5306 return AS; 5307 } 5308 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5309 } 5310 5311 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5312 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5313 if (LangOpts.OpenCL) 5314 return LangAS::opencl_constant; 5315 if (LangOpts.SYCLIsDevice) 5316 return LangAS::sycl_global; 5317 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5318 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5319 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5320 // with OpVariable instructions with Generic storage class which is not 5321 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5322 // UniformConstant storage class is not viable as pointers to it may not be 5323 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5324 return LangAS::cuda_device; 5325 if (auto AS = getTarget().getConstantAddressSpace()) 5326 return *AS; 5327 return LangAS::Default; 5328 } 5329 5330 // In address space agnostic languages, string literals are in default address 5331 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5332 // emitted in constant address space in LLVM IR. To be consistent with other 5333 // parts of AST, string literal global variables in constant address space 5334 // need to be casted to default address space before being put into address 5335 // map and referenced by other part of CodeGen. 5336 // In OpenCL, string literals are in constant address space in AST, therefore 5337 // they should not be casted to default address space. 5338 static llvm::Constant * 5339 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5340 llvm::GlobalVariable *GV) { 5341 llvm::Constant *Cast = GV; 5342 if (!CGM.getLangOpts().OpenCL) { 5343 auto AS = CGM.GetGlobalConstantAddressSpace(); 5344 if (AS != LangAS::Default) 5345 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5346 CGM, GV, AS, LangAS::Default, 5347 llvm::PointerType::get( 5348 CGM.getLLVMContext(), 5349 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5350 } 5351 return Cast; 5352 } 5353 5354 template<typename SomeDecl> 5355 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5356 llvm::GlobalValue *GV) { 5357 if (!getLangOpts().CPlusPlus) 5358 return; 5359 5360 // Must have 'used' attribute, or else inline assembly can't rely on 5361 // the name existing. 5362 if (!D->template hasAttr<UsedAttr>()) 5363 return; 5364 5365 // Must have internal linkage and an ordinary name. 5366 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5367 return; 5368 5369 // Must be in an extern "C" context. Entities declared directly within 5370 // a record are not extern "C" even if the record is in such a context. 5371 const SomeDecl *First = D->getFirstDecl(); 5372 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5373 return; 5374 5375 // OK, this is an internal linkage entity inside an extern "C" linkage 5376 // specification. Make a note of that so we can give it the "expected" 5377 // mangled name if nothing else is using that name. 5378 std::pair<StaticExternCMap::iterator, bool> R = 5379 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5380 5381 // If we have multiple internal linkage entities with the same name 5382 // in extern "C" regions, none of them gets that name. 5383 if (!R.second) 5384 R.first->second = nullptr; 5385 } 5386 5387 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5388 if (!CGM.supportsCOMDAT()) 5389 return false; 5390 5391 if (D.hasAttr<SelectAnyAttr>()) 5392 return true; 5393 5394 GVALinkage Linkage; 5395 if (auto *VD = dyn_cast<VarDecl>(&D)) 5396 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5397 else 5398 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5399 5400 switch (Linkage) { 5401 case GVA_Internal: 5402 case GVA_AvailableExternally: 5403 case GVA_StrongExternal: 5404 return false; 5405 case GVA_DiscardableODR: 5406 case GVA_StrongODR: 5407 return true; 5408 } 5409 llvm_unreachable("No such linkage"); 5410 } 5411 5412 bool CodeGenModule::supportsCOMDAT() const { 5413 return getTriple().supportsCOMDAT(); 5414 } 5415 5416 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5417 llvm::GlobalObject &GO) { 5418 if (!shouldBeInCOMDAT(*this, D)) 5419 return; 5420 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5421 } 5422 5423 const ABIInfo &CodeGenModule::getABIInfo() { 5424 return getTargetCodeGenInfo().getABIInfo(); 5425 } 5426 5427 /// Pass IsTentative as true if you want to create a tentative definition. 5428 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5429 bool IsTentative) { 5430 // OpenCL global variables of sampler type are translated to function calls, 5431 // therefore no need to be translated. 5432 QualType ASTTy = D->getType(); 5433 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5434 return; 5435 5436 // If this is OpenMP device, check if it is legal to emit this global 5437 // normally. 5438 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5439 OpenMPRuntime->emitTargetGlobalVariable(D)) 5440 return; 5441 5442 llvm::TrackingVH<llvm::Constant> Init; 5443 bool NeedsGlobalCtor = false; 5444 // Whether the definition of the variable is available externally. 5445 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5446 // since this is the job for its original source. 5447 bool IsDefinitionAvailableExternally = 5448 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5449 bool NeedsGlobalDtor = 5450 !IsDefinitionAvailableExternally && 5451 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5452 5453 // It is helpless to emit the definition for an available_externally variable 5454 // which can't be marked as const. 5455 // We don't need to check if it needs global ctor or dtor. See the above 5456 // comment for ideas. 5457 if (IsDefinitionAvailableExternally && 5458 (!D->hasConstantInitialization() || 5459 // TODO: Update this when we have interface to check constexpr 5460 // destructor. 5461 D->needsDestruction(getContext()) || 5462 !D->getType().isConstantStorage(getContext(), true, true))) 5463 return; 5464 5465 const VarDecl *InitDecl; 5466 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5467 5468 std::optional<ConstantEmitter> emitter; 5469 5470 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5471 // as part of their declaration." Sema has already checked for 5472 // error cases, so we just need to set Init to UndefValue. 5473 bool IsCUDASharedVar = 5474 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5475 // Shadows of initialized device-side global variables are also left 5476 // undefined. 5477 // Managed Variables should be initialized on both host side and device side. 5478 bool IsCUDAShadowVar = 5479 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5480 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5481 D->hasAttr<CUDASharedAttr>()); 5482 bool IsCUDADeviceShadowVar = 5483 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5484 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5485 D->getType()->isCUDADeviceBuiltinTextureType()); 5486 if (getLangOpts().CUDA && 5487 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5488 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5489 else if (D->hasAttr<LoaderUninitializedAttr>()) 5490 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5491 else if (!InitExpr) { 5492 // This is a tentative definition; tentative definitions are 5493 // implicitly initialized with { 0 }. 5494 // 5495 // Note that tentative definitions are only emitted at the end of 5496 // a translation unit, so they should never have incomplete 5497 // type. In addition, EmitTentativeDefinition makes sure that we 5498 // never attempt to emit a tentative definition if a real one 5499 // exists. A use may still exists, however, so we still may need 5500 // to do a RAUW. 5501 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5502 Init = EmitNullConstant(D->getType()); 5503 } else { 5504 initializedGlobalDecl = GlobalDecl(D); 5505 emitter.emplace(*this); 5506 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5507 if (!Initializer) { 5508 QualType T = InitExpr->getType(); 5509 if (D->getType()->isReferenceType()) 5510 T = D->getType(); 5511 5512 if (getLangOpts().CPlusPlus) { 5513 if (InitDecl->hasFlexibleArrayInit(getContext())) 5514 ErrorUnsupported(D, "flexible array initializer"); 5515 Init = EmitNullConstant(T); 5516 5517 if (!IsDefinitionAvailableExternally) 5518 NeedsGlobalCtor = true; 5519 } else { 5520 ErrorUnsupported(D, "static initializer"); 5521 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5522 } 5523 } else { 5524 Init = Initializer; 5525 // We don't need an initializer, so remove the entry for the delayed 5526 // initializer position (just in case this entry was delayed) if we 5527 // also don't need to register a destructor. 5528 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5529 DelayedCXXInitPosition.erase(D); 5530 5531 #ifndef NDEBUG 5532 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5533 InitDecl->getFlexibleArrayInitChars(getContext()); 5534 CharUnits CstSize = CharUnits::fromQuantity( 5535 getDataLayout().getTypeAllocSize(Init->getType())); 5536 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5537 #endif 5538 } 5539 } 5540 5541 llvm::Type* InitType = Init->getType(); 5542 llvm::Constant *Entry = 5543 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5544 5545 // Strip off pointer casts if we got them. 5546 Entry = Entry->stripPointerCasts(); 5547 5548 // Entry is now either a Function or GlobalVariable. 5549 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5550 5551 // We have a definition after a declaration with the wrong type. 5552 // We must make a new GlobalVariable* and update everything that used OldGV 5553 // (a declaration or tentative definition) with the new GlobalVariable* 5554 // (which will be a definition). 5555 // 5556 // This happens if there is a prototype for a global (e.g. 5557 // "extern int x[];") and then a definition of a different type (e.g. 5558 // "int x[10];"). This also happens when an initializer has a different type 5559 // from the type of the global (this happens with unions). 5560 if (!GV || GV->getValueType() != InitType || 5561 GV->getType()->getAddressSpace() != 5562 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5563 5564 // Move the old entry aside so that we'll create a new one. 5565 Entry->setName(StringRef()); 5566 5567 // Make a new global with the correct type, this is now guaranteed to work. 5568 GV = cast<llvm::GlobalVariable>( 5569 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5570 ->stripPointerCasts()); 5571 5572 // Replace all uses of the old global with the new global 5573 llvm::Constant *NewPtrForOldDecl = 5574 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5575 Entry->getType()); 5576 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5577 5578 // Erase the old global, since it is no longer used. 5579 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5580 } 5581 5582 MaybeHandleStaticInExternC(D, GV); 5583 5584 if (D->hasAttr<AnnotateAttr>()) 5585 AddGlobalAnnotations(D, GV); 5586 5587 // Set the llvm linkage type as appropriate. 5588 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5589 5590 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5591 // the device. [...]" 5592 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5593 // __device__, declares a variable that: [...] 5594 // Is accessible from all the threads within the grid and from the host 5595 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5596 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5597 if (LangOpts.CUDA) { 5598 if (LangOpts.CUDAIsDevice) { 5599 if (Linkage != llvm::GlobalValue::InternalLinkage && 5600 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5601 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5602 D->getType()->isCUDADeviceBuiltinTextureType())) 5603 GV->setExternallyInitialized(true); 5604 } else { 5605 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5606 } 5607 getCUDARuntime().handleVarRegistration(D, *GV); 5608 } 5609 5610 GV->setInitializer(Init); 5611 if (emitter) 5612 emitter->finalize(GV); 5613 5614 // If it is safe to mark the global 'constant', do so now. 5615 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5616 D->getType().isConstantStorage(getContext(), true, true)); 5617 5618 // If it is in a read-only section, mark it 'constant'. 5619 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5620 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5621 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5622 GV->setConstant(true); 5623 } 5624 5625 CharUnits AlignVal = getContext().getDeclAlign(D); 5626 // Check for alignment specifed in an 'omp allocate' directive. 5627 if (std::optional<CharUnits> AlignValFromAllocate = 5628 getOMPAllocateAlignment(D)) 5629 AlignVal = *AlignValFromAllocate; 5630 GV->setAlignment(AlignVal.getAsAlign()); 5631 5632 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5633 // function is only defined alongside the variable, not also alongside 5634 // callers. Normally, all accesses to a thread_local go through the 5635 // thread-wrapper in order to ensure initialization has occurred, underlying 5636 // variable will never be used other than the thread-wrapper, so it can be 5637 // converted to internal linkage. 5638 // 5639 // However, if the variable has the 'constinit' attribute, it _can_ be 5640 // referenced directly, without calling the thread-wrapper, so the linkage 5641 // must not be changed. 5642 // 5643 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5644 // weak or linkonce, the de-duplication semantics are important to preserve, 5645 // so we don't change the linkage. 5646 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5647 Linkage == llvm::GlobalValue::ExternalLinkage && 5648 Context.getTargetInfo().getTriple().isOSDarwin() && 5649 !D->hasAttr<ConstInitAttr>()) 5650 Linkage = llvm::GlobalValue::InternalLinkage; 5651 5652 GV->setLinkage(Linkage); 5653 if (D->hasAttr<DLLImportAttr>()) 5654 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5655 else if (D->hasAttr<DLLExportAttr>()) 5656 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5657 else 5658 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5659 5660 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5661 // common vars aren't constant even if declared const. 5662 GV->setConstant(false); 5663 // Tentative definition of global variables may be initialized with 5664 // non-zero null pointers. In this case they should have weak linkage 5665 // since common linkage must have zero initializer and must not have 5666 // explicit section therefore cannot have non-zero initial value. 5667 if (!GV->getInitializer()->isNullValue()) 5668 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5669 } 5670 5671 setNonAliasAttributes(D, GV); 5672 5673 if (D->getTLSKind() && !GV->isThreadLocal()) { 5674 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5675 CXXThreadLocals.push_back(D); 5676 setTLSMode(GV, *D); 5677 } 5678 5679 maybeSetTrivialComdat(*D, *GV); 5680 5681 // Emit the initializer function if necessary. 5682 if (NeedsGlobalCtor || NeedsGlobalDtor) 5683 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5684 5685 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5686 5687 // Emit global variable debug information. 5688 if (CGDebugInfo *DI = getModuleDebugInfo()) 5689 if (getCodeGenOpts().hasReducedDebugInfo()) 5690 DI->EmitGlobalVariable(GV, D); 5691 } 5692 5693 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5694 if (CGDebugInfo *DI = getModuleDebugInfo()) 5695 if (getCodeGenOpts().hasReducedDebugInfo()) { 5696 QualType ASTTy = D->getType(); 5697 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5698 llvm::Constant *GV = 5699 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5700 DI->EmitExternalVariable( 5701 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5702 } 5703 } 5704 5705 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5706 if (CGDebugInfo *DI = getModuleDebugInfo()) 5707 if (getCodeGenOpts().hasReducedDebugInfo()) { 5708 auto *Ty = getTypes().ConvertType(FD->getType()); 5709 StringRef MangledName = getMangledName(FD); 5710 auto *Fn = cast<llvm::Function>( 5711 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5712 if (!Fn->getSubprogram()) 5713 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5714 } 5715 } 5716 5717 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5718 CodeGenModule &CGM, const VarDecl *D, 5719 bool NoCommon) { 5720 // Don't give variables common linkage if -fno-common was specified unless it 5721 // was overridden by a NoCommon attribute. 5722 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5723 return true; 5724 5725 // C11 6.9.2/2: 5726 // A declaration of an identifier for an object that has file scope without 5727 // an initializer, and without a storage-class specifier or with the 5728 // storage-class specifier static, constitutes a tentative definition. 5729 if (D->getInit() || D->hasExternalStorage()) 5730 return true; 5731 5732 // A variable cannot be both common and exist in a section. 5733 if (D->hasAttr<SectionAttr>()) 5734 return true; 5735 5736 // A variable cannot be both common and exist in a section. 5737 // We don't try to determine which is the right section in the front-end. 5738 // If no specialized section name is applicable, it will resort to default. 5739 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5740 D->hasAttr<PragmaClangDataSectionAttr>() || 5741 D->hasAttr<PragmaClangRelroSectionAttr>() || 5742 D->hasAttr<PragmaClangRodataSectionAttr>()) 5743 return true; 5744 5745 // Thread local vars aren't considered common linkage. 5746 if (D->getTLSKind()) 5747 return true; 5748 5749 // Tentative definitions marked with WeakImportAttr are true definitions. 5750 if (D->hasAttr<WeakImportAttr>()) 5751 return true; 5752 5753 // A variable cannot be both common and exist in a comdat. 5754 if (shouldBeInCOMDAT(CGM, *D)) 5755 return true; 5756 5757 // Declarations with a required alignment do not have common linkage in MSVC 5758 // mode. 5759 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5760 if (D->hasAttr<AlignedAttr>()) 5761 return true; 5762 QualType VarType = D->getType(); 5763 if (Context.isAlignmentRequired(VarType)) 5764 return true; 5765 5766 if (const auto *RT = VarType->getAs<RecordType>()) { 5767 const RecordDecl *RD = RT->getDecl(); 5768 for (const FieldDecl *FD : RD->fields()) { 5769 if (FD->isBitField()) 5770 continue; 5771 if (FD->hasAttr<AlignedAttr>()) 5772 return true; 5773 if (Context.isAlignmentRequired(FD->getType())) 5774 return true; 5775 } 5776 } 5777 } 5778 5779 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5780 // common symbols, so symbols with greater alignment requirements cannot be 5781 // common. 5782 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5783 // alignments for common symbols via the aligncomm directive, so this 5784 // restriction only applies to MSVC environments. 5785 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5786 Context.getTypeAlignIfKnown(D->getType()) > 5787 Context.toBits(CharUnits::fromQuantity(32))) 5788 return true; 5789 5790 return false; 5791 } 5792 5793 llvm::GlobalValue::LinkageTypes 5794 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5795 GVALinkage Linkage) { 5796 if (Linkage == GVA_Internal) 5797 return llvm::Function::InternalLinkage; 5798 5799 if (D->hasAttr<WeakAttr>()) 5800 return llvm::GlobalVariable::WeakAnyLinkage; 5801 5802 if (const auto *FD = D->getAsFunction()) 5803 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5804 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5805 5806 // We are guaranteed to have a strong definition somewhere else, 5807 // so we can use available_externally linkage. 5808 if (Linkage == GVA_AvailableExternally) 5809 return llvm::GlobalValue::AvailableExternallyLinkage; 5810 5811 // Note that Apple's kernel linker doesn't support symbol 5812 // coalescing, so we need to avoid linkonce and weak linkages there. 5813 // Normally, this means we just map to internal, but for explicit 5814 // instantiations we'll map to external. 5815 5816 // In C++, the compiler has to emit a definition in every translation unit 5817 // that references the function. We should use linkonce_odr because 5818 // a) if all references in this translation unit are optimized away, we 5819 // don't need to codegen it. b) if the function persists, it needs to be 5820 // merged with other definitions. c) C++ has the ODR, so we know the 5821 // definition is dependable. 5822 if (Linkage == GVA_DiscardableODR) 5823 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5824 : llvm::Function::InternalLinkage; 5825 5826 // An explicit instantiation of a template has weak linkage, since 5827 // explicit instantiations can occur in multiple translation units 5828 // and must all be equivalent. However, we are not allowed to 5829 // throw away these explicit instantiations. 5830 // 5831 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5832 // so say that CUDA templates are either external (for kernels) or internal. 5833 // This lets llvm perform aggressive inter-procedural optimizations. For 5834 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5835 // therefore we need to follow the normal linkage paradigm. 5836 if (Linkage == GVA_StrongODR) { 5837 if (getLangOpts().AppleKext) 5838 return llvm::Function::ExternalLinkage; 5839 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5840 !getLangOpts().GPURelocatableDeviceCode) 5841 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5842 : llvm::Function::InternalLinkage; 5843 return llvm::Function::WeakODRLinkage; 5844 } 5845 5846 // C++ doesn't have tentative definitions and thus cannot have common 5847 // linkage. 5848 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5849 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5850 CodeGenOpts.NoCommon)) 5851 return llvm::GlobalVariable::CommonLinkage; 5852 5853 // selectany symbols are externally visible, so use weak instead of 5854 // linkonce. MSVC optimizes away references to const selectany globals, so 5855 // all definitions should be the same and ODR linkage should be used. 5856 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5857 if (D->hasAttr<SelectAnyAttr>()) 5858 return llvm::GlobalVariable::WeakODRLinkage; 5859 5860 // Otherwise, we have strong external linkage. 5861 assert(Linkage == GVA_StrongExternal); 5862 return llvm::GlobalVariable::ExternalLinkage; 5863 } 5864 5865 llvm::GlobalValue::LinkageTypes 5866 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5867 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5868 return getLLVMLinkageForDeclarator(VD, Linkage); 5869 } 5870 5871 /// Replace the uses of a function that was declared with a non-proto type. 5872 /// We want to silently drop extra arguments from call sites 5873 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5874 llvm::Function *newFn) { 5875 // Fast path. 5876 if (old->use_empty()) 5877 return; 5878 5879 llvm::Type *newRetTy = newFn->getReturnType(); 5880 SmallVector<llvm::Value *, 4> newArgs; 5881 5882 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5883 5884 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5885 ui != ue; ui++) { 5886 llvm::User *user = ui->getUser(); 5887 5888 // Recognize and replace uses of bitcasts. Most calls to 5889 // unprototyped functions will use bitcasts. 5890 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5891 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5892 replaceUsesOfNonProtoConstant(bitcast, newFn); 5893 continue; 5894 } 5895 5896 // Recognize calls to the function. 5897 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5898 if (!callSite) 5899 continue; 5900 if (!callSite->isCallee(&*ui)) 5901 continue; 5902 5903 // If the return types don't match exactly, then we can't 5904 // transform this call unless it's dead. 5905 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5906 continue; 5907 5908 // Get the call site's attribute list. 5909 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5910 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5911 5912 // If the function was passed too few arguments, don't transform. 5913 unsigned newNumArgs = newFn->arg_size(); 5914 if (callSite->arg_size() < newNumArgs) 5915 continue; 5916 5917 // If extra arguments were passed, we silently drop them. 5918 // If any of the types mismatch, we don't transform. 5919 unsigned argNo = 0; 5920 bool dontTransform = false; 5921 for (llvm::Argument &A : newFn->args()) { 5922 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5923 dontTransform = true; 5924 break; 5925 } 5926 5927 // Add any parameter attributes. 5928 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5929 argNo++; 5930 } 5931 if (dontTransform) 5932 continue; 5933 5934 // Okay, we can transform this. Create the new call instruction and copy 5935 // over the required information. 5936 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5937 5938 // Copy over any operand bundles. 5939 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5940 callSite->getOperandBundlesAsDefs(newBundles); 5941 5942 llvm::CallBase *newCall; 5943 if (isa<llvm::CallInst>(callSite)) { 5944 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 5945 callSite->getIterator()); 5946 } else { 5947 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5948 newCall = llvm::InvokeInst::Create( 5949 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 5950 newArgs, newBundles, "", callSite->getIterator()); 5951 } 5952 newArgs.clear(); // for the next iteration 5953 5954 if (!newCall->getType()->isVoidTy()) 5955 newCall->takeName(callSite); 5956 newCall->setAttributes( 5957 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5958 oldAttrs.getRetAttrs(), newArgAttrs)); 5959 newCall->setCallingConv(callSite->getCallingConv()); 5960 5961 // Finally, remove the old call, replacing any uses with the new one. 5962 if (!callSite->use_empty()) 5963 callSite->replaceAllUsesWith(newCall); 5964 5965 // Copy debug location attached to CI. 5966 if (callSite->getDebugLoc()) 5967 newCall->setDebugLoc(callSite->getDebugLoc()); 5968 5969 callSitesToBeRemovedFromParent.push_back(callSite); 5970 } 5971 5972 for (auto *callSite : callSitesToBeRemovedFromParent) { 5973 callSite->eraseFromParent(); 5974 } 5975 } 5976 5977 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5978 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5979 /// existing call uses of the old function in the module, this adjusts them to 5980 /// call the new function directly. 5981 /// 5982 /// This is not just a cleanup: the always_inline pass requires direct calls to 5983 /// functions to be able to inline them. If there is a bitcast in the way, it 5984 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5985 /// run at -O0. 5986 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5987 llvm::Function *NewFn) { 5988 // If we're redefining a global as a function, don't transform it. 5989 if (!isa<llvm::Function>(Old)) return; 5990 5991 replaceUsesOfNonProtoConstant(Old, NewFn); 5992 } 5993 5994 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5995 auto DK = VD->isThisDeclarationADefinition(); 5996 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 5997 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 5998 return; 5999 6000 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 6001 // If we have a definition, this might be a deferred decl. If the 6002 // instantiation is explicit, make sure we emit it at the end. 6003 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 6004 GetAddrOfGlobalVar(VD); 6005 6006 EmitTopLevelDecl(VD); 6007 } 6008 6009 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 6010 llvm::GlobalValue *GV) { 6011 const auto *D = cast<FunctionDecl>(GD.getDecl()); 6012 6013 // Compute the function info and LLVM type. 6014 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 6015 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 6016 6017 // Get or create the prototype for the function. 6018 if (!GV || (GV->getValueType() != Ty)) 6019 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 6020 /*DontDefer=*/true, 6021 ForDefinition)); 6022 6023 // Already emitted. 6024 if (!GV->isDeclaration()) 6025 return; 6026 6027 // We need to set linkage and visibility on the function before 6028 // generating code for it because various parts of IR generation 6029 // want to propagate this information down (e.g. to local static 6030 // declarations). 6031 auto *Fn = cast<llvm::Function>(GV); 6032 setFunctionLinkage(GD, Fn); 6033 6034 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6035 setGVProperties(Fn, GD); 6036 6037 MaybeHandleStaticInExternC(D, Fn); 6038 6039 maybeSetTrivialComdat(*D, *Fn); 6040 6041 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6042 6043 setNonAliasAttributes(GD, Fn); 6044 SetLLVMFunctionAttributesForDefinition(D, Fn); 6045 6046 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6047 AddGlobalCtor(Fn, CA->getPriority()); 6048 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6049 AddGlobalDtor(Fn, DA->getPriority(), true); 6050 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6051 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6052 } 6053 6054 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6055 const auto *D = cast<ValueDecl>(GD.getDecl()); 6056 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6057 assert(AA && "Not an alias?"); 6058 6059 StringRef MangledName = getMangledName(GD); 6060 6061 if (AA->getAliasee() == MangledName) { 6062 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6063 return; 6064 } 6065 6066 // If there is a definition in the module, then it wins over the alias. 6067 // This is dubious, but allow it to be safe. Just ignore the alias. 6068 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6069 if (Entry && !Entry->isDeclaration()) 6070 return; 6071 6072 Aliases.push_back(GD); 6073 6074 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6075 6076 // Create a reference to the named value. This ensures that it is emitted 6077 // if a deferred decl. 6078 llvm::Constant *Aliasee; 6079 llvm::GlobalValue::LinkageTypes LT; 6080 if (isa<llvm::FunctionType>(DeclTy)) { 6081 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6082 /*ForVTable=*/false); 6083 LT = getFunctionLinkage(GD); 6084 } else { 6085 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6086 /*D=*/nullptr); 6087 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6088 LT = getLLVMLinkageVarDefinition(VD); 6089 else 6090 LT = getFunctionLinkage(GD); 6091 } 6092 6093 // Create the new alias itself, but don't set a name yet. 6094 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6095 auto *GA = 6096 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6097 6098 if (Entry) { 6099 if (GA->getAliasee() == Entry) { 6100 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6101 return; 6102 } 6103 6104 assert(Entry->isDeclaration()); 6105 6106 // If there is a declaration in the module, then we had an extern followed 6107 // by the alias, as in: 6108 // extern int test6(); 6109 // ... 6110 // int test6() __attribute__((alias("test7"))); 6111 // 6112 // Remove it and replace uses of it with the alias. 6113 GA->takeName(Entry); 6114 6115 Entry->replaceAllUsesWith(GA); 6116 Entry->eraseFromParent(); 6117 } else { 6118 GA->setName(MangledName); 6119 } 6120 6121 // Set attributes which are particular to an alias; this is a 6122 // specialization of the attributes which may be set on a global 6123 // variable/function. 6124 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6125 D->isWeakImported()) { 6126 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6127 } 6128 6129 if (const auto *VD = dyn_cast<VarDecl>(D)) 6130 if (VD->getTLSKind()) 6131 setTLSMode(GA, *VD); 6132 6133 SetCommonAttributes(GD, GA); 6134 6135 // Emit global alias debug information. 6136 if (isa<VarDecl>(D)) 6137 if (CGDebugInfo *DI = getModuleDebugInfo()) 6138 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6139 } 6140 6141 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6142 const auto *D = cast<ValueDecl>(GD.getDecl()); 6143 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6144 assert(IFA && "Not an ifunc?"); 6145 6146 StringRef MangledName = getMangledName(GD); 6147 6148 if (IFA->getResolver() == MangledName) { 6149 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6150 return; 6151 } 6152 6153 // Report an error if some definition overrides ifunc. 6154 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6155 if (Entry && !Entry->isDeclaration()) { 6156 GlobalDecl OtherGD; 6157 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6158 DiagnosedConflictingDefinitions.insert(GD).second) { 6159 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6160 << MangledName; 6161 Diags.Report(OtherGD.getDecl()->getLocation(), 6162 diag::note_previous_definition); 6163 } 6164 return; 6165 } 6166 6167 Aliases.push_back(GD); 6168 6169 // The resolver might not be visited yet. Specify a dummy non-function type to 6170 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6171 // was emitted) or the whole function will be replaced (if the resolver has 6172 // not been emitted). 6173 llvm::Constant *Resolver = 6174 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6175 /*ForVTable=*/false); 6176 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6177 unsigned AS = getTypes().getTargetAddressSpace(D->getType()); 6178 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 6179 DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 6180 if (Entry) { 6181 if (GIF->getResolver() == Entry) { 6182 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6183 return; 6184 } 6185 assert(Entry->isDeclaration()); 6186 6187 // If there is a declaration in the module, then we had an extern followed 6188 // by the ifunc, as in: 6189 // extern int test(); 6190 // ... 6191 // int test() __attribute__((ifunc("resolver"))); 6192 // 6193 // Remove it and replace uses of it with the ifunc. 6194 GIF->takeName(Entry); 6195 6196 Entry->replaceAllUsesWith(GIF); 6197 Entry->eraseFromParent(); 6198 } else 6199 GIF->setName(MangledName); 6200 SetCommonAttributes(GD, GIF); 6201 } 6202 6203 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6204 ArrayRef<llvm::Type*> Tys) { 6205 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6206 Tys); 6207 } 6208 6209 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6210 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6211 const StringLiteral *Literal, bool TargetIsLSB, 6212 bool &IsUTF16, unsigned &StringLength) { 6213 StringRef String = Literal->getString(); 6214 unsigned NumBytes = String.size(); 6215 6216 // Check for simple case. 6217 if (!Literal->containsNonAsciiOrNull()) { 6218 StringLength = NumBytes; 6219 return *Map.insert(std::make_pair(String, nullptr)).first; 6220 } 6221 6222 // Otherwise, convert the UTF8 literals into a string of shorts. 6223 IsUTF16 = true; 6224 6225 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6226 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6227 llvm::UTF16 *ToPtr = &ToBuf[0]; 6228 6229 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6230 ToPtr + NumBytes, llvm::strictConversion); 6231 6232 // ConvertUTF8toUTF16 returns the length in ToPtr. 6233 StringLength = ToPtr - &ToBuf[0]; 6234 6235 // Add an explicit null. 6236 *ToPtr = 0; 6237 return *Map.insert(std::make_pair( 6238 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6239 (StringLength + 1) * 2), 6240 nullptr)).first; 6241 } 6242 6243 ConstantAddress 6244 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6245 unsigned StringLength = 0; 6246 bool isUTF16 = false; 6247 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6248 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6249 getDataLayout().isLittleEndian(), isUTF16, 6250 StringLength); 6251 6252 if (auto *C = Entry.second) 6253 return ConstantAddress( 6254 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6255 6256 const ASTContext &Context = getContext(); 6257 const llvm::Triple &Triple = getTriple(); 6258 6259 const auto CFRuntime = getLangOpts().CFRuntime; 6260 const bool IsSwiftABI = 6261 static_cast<unsigned>(CFRuntime) >= 6262 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6263 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6264 6265 // If we don't already have it, get __CFConstantStringClassReference. 6266 if (!CFConstantStringClassRef) { 6267 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6268 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6269 Ty = llvm::ArrayType::get(Ty, 0); 6270 6271 switch (CFRuntime) { 6272 default: break; 6273 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6274 case LangOptions::CoreFoundationABI::Swift5_0: 6275 CFConstantStringClassName = 6276 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6277 : "$s10Foundation19_NSCFConstantStringCN"; 6278 Ty = IntPtrTy; 6279 break; 6280 case LangOptions::CoreFoundationABI::Swift4_2: 6281 CFConstantStringClassName = 6282 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6283 : "$S10Foundation19_NSCFConstantStringCN"; 6284 Ty = IntPtrTy; 6285 break; 6286 case LangOptions::CoreFoundationABI::Swift4_1: 6287 CFConstantStringClassName = 6288 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6289 : "__T010Foundation19_NSCFConstantStringCN"; 6290 Ty = IntPtrTy; 6291 break; 6292 } 6293 6294 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6295 6296 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6297 llvm::GlobalValue *GV = nullptr; 6298 6299 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6300 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6301 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6302 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6303 6304 const VarDecl *VD = nullptr; 6305 for (const auto *Result : DC->lookup(&II)) 6306 if ((VD = dyn_cast<VarDecl>(Result))) 6307 break; 6308 6309 if (Triple.isOSBinFormatELF()) { 6310 if (!VD) 6311 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6312 } else { 6313 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6314 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6315 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6316 else 6317 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6318 } 6319 6320 setDSOLocal(GV); 6321 } 6322 } 6323 6324 // Decay array -> ptr 6325 CFConstantStringClassRef = 6326 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6327 } 6328 6329 QualType CFTy = Context.getCFConstantStringType(); 6330 6331 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6332 6333 ConstantInitBuilder Builder(*this); 6334 auto Fields = Builder.beginStruct(STy); 6335 6336 // Class pointer. 6337 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6338 6339 // Flags. 6340 if (IsSwiftABI) { 6341 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6342 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6343 } else { 6344 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6345 } 6346 6347 // String pointer. 6348 llvm::Constant *C = nullptr; 6349 if (isUTF16) { 6350 auto Arr = llvm::ArrayRef( 6351 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6352 Entry.first().size() / 2); 6353 C = llvm::ConstantDataArray::get(VMContext, Arr); 6354 } else { 6355 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6356 } 6357 6358 // Note: -fwritable-strings doesn't make the backing store strings of 6359 // CFStrings writable. 6360 auto *GV = 6361 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6362 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6363 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6364 // Don't enforce the target's minimum global alignment, since the only use 6365 // of the string is via this class initializer. 6366 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6367 : Context.getTypeAlignInChars(Context.CharTy); 6368 GV->setAlignment(Align.getAsAlign()); 6369 6370 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6371 // Without it LLVM can merge the string with a non unnamed_addr one during 6372 // LTO. Doing that changes the section it ends in, which surprises ld64. 6373 if (Triple.isOSBinFormatMachO()) 6374 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6375 : "__TEXT,__cstring,cstring_literals"); 6376 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6377 // the static linker to adjust permissions to read-only later on. 6378 else if (Triple.isOSBinFormatELF()) 6379 GV->setSection(".rodata"); 6380 6381 // String. 6382 Fields.add(GV); 6383 6384 // String length. 6385 llvm::IntegerType *LengthTy = 6386 llvm::IntegerType::get(getModule().getContext(), 6387 Context.getTargetInfo().getLongWidth()); 6388 if (IsSwiftABI) { 6389 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6390 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6391 LengthTy = Int32Ty; 6392 else 6393 LengthTy = IntPtrTy; 6394 } 6395 Fields.addInt(LengthTy, StringLength); 6396 6397 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6398 // properly aligned on 32-bit platforms. 6399 CharUnits Alignment = 6400 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6401 6402 // The struct. 6403 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6404 /*isConstant=*/false, 6405 llvm::GlobalVariable::PrivateLinkage); 6406 GV->addAttribute("objc_arc_inert"); 6407 switch (Triple.getObjectFormat()) { 6408 case llvm::Triple::UnknownObjectFormat: 6409 llvm_unreachable("unknown file format"); 6410 case llvm::Triple::DXContainer: 6411 case llvm::Triple::GOFF: 6412 case llvm::Triple::SPIRV: 6413 case llvm::Triple::XCOFF: 6414 llvm_unreachable("unimplemented"); 6415 case llvm::Triple::COFF: 6416 case llvm::Triple::ELF: 6417 case llvm::Triple::Wasm: 6418 GV->setSection("cfstring"); 6419 break; 6420 case llvm::Triple::MachO: 6421 GV->setSection("__DATA,__cfstring"); 6422 break; 6423 } 6424 Entry.second = GV; 6425 6426 return ConstantAddress(GV, GV->getValueType(), Alignment); 6427 } 6428 6429 bool CodeGenModule::getExpressionLocationsEnabled() const { 6430 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6431 } 6432 6433 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6434 if (ObjCFastEnumerationStateType.isNull()) { 6435 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6436 D->startDefinition(); 6437 6438 QualType FieldTypes[] = { 6439 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6440 Context.getPointerType(Context.UnsignedLongTy), 6441 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6442 nullptr, ArraySizeModifier::Normal, 0)}; 6443 6444 for (size_t i = 0; i < 4; ++i) { 6445 FieldDecl *Field = FieldDecl::Create(Context, 6446 D, 6447 SourceLocation(), 6448 SourceLocation(), nullptr, 6449 FieldTypes[i], /*TInfo=*/nullptr, 6450 /*BitWidth=*/nullptr, 6451 /*Mutable=*/false, 6452 ICIS_NoInit); 6453 Field->setAccess(AS_public); 6454 D->addDecl(Field); 6455 } 6456 6457 D->completeDefinition(); 6458 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6459 } 6460 6461 return ObjCFastEnumerationStateType; 6462 } 6463 6464 llvm::Constant * 6465 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6466 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6467 6468 // Don't emit it as the address of the string, emit the string data itself 6469 // as an inline array. 6470 if (E->getCharByteWidth() == 1) { 6471 SmallString<64> Str(E->getString()); 6472 6473 // Resize the string to the right size, which is indicated by its type. 6474 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6475 assert(CAT && "String literal not of constant array type!"); 6476 Str.resize(CAT->getZExtSize()); 6477 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6478 } 6479 6480 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6481 llvm::Type *ElemTy = AType->getElementType(); 6482 unsigned NumElements = AType->getNumElements(); 6483 6484 // Wide strings have either 2-byte or 4-byte elements. 6485 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6486 SmallVector<uint16_t, 32> Elements; 6487 Elements.reserve(NumElements); 6488 6489 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6490 Elements.push_back(E->getCodeUnit(i)); 6491 Elements.resize(NumElements); 6492 return llvm::ConstantDataArray::get(VMContext, Elements); 6493 } 6494 6495 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6496 SmallVector<uint32_t, 32> Elements; 6497 Elements.reserve(NumElements); 6498 6499 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6500 Elements.push_back(E->getCodeUnit(i)); 6501 Elements.resize(NumElements); 6502 return llvm::ConstantDataArray::get(VMContext, Elements); 6503 } 6504 6505 static llvm::GlobalVariable * 6506 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6507 CodeGenModule &CGM, StringRef GlobalName, 6508 CharUnits Alignment) { 6509 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6510 CGM.GetGlobalConstantAddressSpace()); 6511 6512 llvm::Module &M = CGM.getModule(); 6513 // Create a global variable for this string 6514 auto *GV = new llvm::GlobalVariable( 6515 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6516 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6517 GV->setAlignment(Alignment.getAsAlign()); 6518 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6519 if (GV->isWeakForLinker()) { 6520 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6521 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6522 } 6523 CGM.setDSOLocal(GV); 6524 6525 return GV; 6526 } 6527 6528 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6529 /// constant array for the given string literal. 6530 ConstantAddress 6531 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6532 StringRef Name) { 6533 CharUnits Alignment = 6534 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6535 6536 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6537 llvm::GlobalVariable **Entry = nullptr; 6538 if (!LangOpts.WritableStrings) { 6539 Entry = &ConstantStringMap[C]; 6540 if (auto GV = *Entry) { 6541 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6542 GV->setAlignment(Alignment.getAsAlign()); 6543 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6544 GV->getValueType(), Alignment); 6545 } 6546 } 6547 6548 SmallString<256> MangledNameBuffer; 6549 StringRef GlobalVariableName; 6550 llvm::GlobalValue::LinkageTypes LT; 6551 6552 // Mangle the string literal if that's how the ABI merges duplicate strings. 6553 // Don't do it if they are writable, since we don't want writes in one TU to 6554 // affect strings in another. 6555 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6556 !LangOpts.WritableStrings) { 6557 llvm::raw_svector_ostream Out(MangledNameBuffer); 6558 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6559 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6560 GlobalVariableName = MangledNameBuffer; 6561 } else { 6562 LT = llvm::GlobalValue::PrivateLinkage; 6563 GlobalVariableName = Name; 6564 } 6565 6566 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6567 6568 CGDebugInfo *DI = getModuleDebugInfo(); 6569 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6570 DI->AddStringLiteralDebugInfo(GV, S); 6571 6572 if (Entry) 6573 *Entry = GV; 6574 6575 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6576 6577 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6578 GV->getValueType(), Alignment); 6579 } 6580 6581 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6582 /// array for the given ObjCEncodeExpr node. 6583 ConstantAddress 6584 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6585 std::string Str; 6586 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6587 6588 return GetAddrOfConstantCString(Str); 6589 } 6590 6591 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6592 /// the literal and a terminating '\0' character. 6593 /// The result has pointer to array type. 6594 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6595 const std::string &Str, const char *GlobalName) { 6596 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6597 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6598 getContext().CharTy, /*VD=*/nullptr); 6599 6600 llvm::Constant *C = 6601 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6602 6603 // Don't share any string literals if strings aren't constant. 6604 llvm::GlobalVariable **Entry = nullptr; 6605 if (!LangOpts.WritableStrings) { 6606 Entry = &ConstantStringMap[C]; 6607 if (auto GV = *Entry) { 6608 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6609 GV->setAlignment(Alignment.getAsAlign()); 6610 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6611 GV->getValueType(), Alignment); 6612 } 6613 } 6614 6615 // Get the default prefix if a name wasn't specified. 6616 if (!GlobalName) 6617 GlobalName = ".str"; 6618 // Create a global variable for this. 6619 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6620 GlobalName, Alignment); 6621 if (Entry) 6622 *Entry = GV; 6623 6624 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6625 GV->getValueType(), Alignment); 6626 } 6627 6628 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6629 const MaterializeTemporaryExpr *E, const Expr *Init) { 6630 assert((E->getStorageDuration() == SD_Static || 6631 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6632 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6633 6634 // If we're not materializing a subobject of the temporary, keep the 6635 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6636 QualType MaterializedType = Init->getType(); 6637 if (Init == E->getSubExpr()) 6638 MaterializedType = E->getType(); 6639 6640 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6641 6642 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6643 if (!InsertResult.second) { 6644 // We've seen this before: either we already created it or we're in the 6645 // process of doing so. 6646 if (!InsertResult.first->second) { 6647 // We recursively re-entered this function, probably during emission of 6648 // the initializer. Create a placeholder. We'll clean this up in the 6649 // outer call, at the end of this function. 6650 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6651 InsertResult.first->second = new llvm::GlobalVariable( 6652 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6653 nullptr); 6654 } 6655 return ConstantAddress(InsertResult.first->second, 6656 llvm::cast<llvm::GlobalVariable>( 6657 InsertResult.first->second->stripPointerCasts()) 6658 ->getValueType(), 6659 Align); 6660 } 6661 6662 // FIXME: If an externally-visible declaration extends multiple temporaries, 6663 // we need to give each temporary the same name in every translation unit (and 6664 // we also need to make the temporaries externally-visible). 6665 SmallString<256> Name; 6666 llvm::raw_svector_ostream Out(Name); 6667 getCXXABI().getMangleContext().mangleReferenceTemporary( 6668 VD, E->getManglingNumber(), Out); 6669 6670 APValue *Value = nullptr; 6671 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6672 // If the initializer of the extending declaration is a constant 6673 // initializer, we should have a cached constant initializer for this 6674 // temporary. Note that this might have a different value from the value 6675 // computed by evaluating the initializer if the surrounding constant 6676 // expression modifies the temporary. 6677 Value = E->getOrCreateValue(false); 6678 } 6679 6680 // Try evaluating it now, it might have a constant initializer. 6681 Expr::EvalResult EvalResult; 6682 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6683 !EvalResult.hasSideEffects()) 6684 Value = &EvalResult.Val; 6685 6686 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6687 6688 std::optional<ConstantEmitter> emitter; 6689 llvm::Constant *InitialValue = nullptr; 6690 bool Constant = false; 6691 llvm::Type *Type; 6692 if (Value) { 6693 // The temporary has a constant initializer, use it. 6694 emitter.emplace(*this); 6695 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6696 MaterializedType); 6697 Constant = 6698 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6699 /*ExcludeDtor*/ false); 6700 Type = InitialValue->getType(); 6701 } else { 6702 // No initializer, the initialization will be provided when we 6703 // initialize the declaration which performed lifetime extension. 6704 Type = getTypes().ConvertTypeForMem(MaterializedType); 6705 } 6706 6707 // Create a global variable for this lifetime-extended temporary. 6708 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6709 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6710 const VarDecl *InitVD; 6711 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6712 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6713 // Temporaries defined inside a class get linkonce_odr linkage because the 6714 // class can be defined in multiple translation units. 6715 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6716 } else { 6717 // There is no need for this temporary to have external linkage if the 6718 // VarDecl has external linkage. 6719 Linkage = llvm::GlobalVariable::InternalLinkage; 6720 } 6721 } 6722 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6723 auto *GV = new llvm::GlobalVariable( 6724 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6725 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6726 if (emitter) emitter->finalize(GV); 6727 // Don't assign dllimport or dllexport to local linkage globals. 6728 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6729 setGVProperties(GV, VD); 6730 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6731 // The reference temporary should never be dllexport. 6732 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6733 } 6734 GV->setAlignment(Align.getAsAlign()); 6735 if (supportsCOMDAT() && GV->isWeakForLinker()) 6736 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6737 if (VD->getTLSKind()) 6738 setTLSMode(GV, *VD); 6739 llvm::Constant *CV = GV; 6740 if (AddrSpace != LangAS::Default) 6741 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6742 *this, GV, AddrSpace, LangAS::Default, 6743 llvm::PointerType::get( 6744 getLLVMContext(), 6745 getContext().getTargetAddressSpace(LangAS::Default))); 6746 6747 // Update the map with the new temporary. If we created a placeholder above, 6748 // replace it with the new global now. 6749 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6750 if (Entry) { 6751 Entry->replaceAllUsesWith(CV); 6752 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6753 } 6754 Entry = CV; 6755 6756 return ConstantAddress(CV, Type, Align); 6757 } 6758 6759 /// EmitObjCPropertyImplementations - Emit information for synthesized 6760 /// properties for an implementation. 6761 void CodeGenModule::EmitObjCPropertyImplementations(const 6762 ObjCImplementationDecl *D) { 6763 for (const auto *PID : D->property_impls()) { 6764 // Dynamic is just for type-checking. 6765 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6766 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6767 6768 // Determine which methods need to be implemented, some may have 6769 // been overridden. Note that ::isPropertyAccessor is not the method 6770 // we want, that just indicates if the decl came from a 6771 // property. What we want to know is if the method is defined in 6772 // this implementation. 6773 auto *Getter = PID->getGetterMethodDecl(); 6774 if (!Getter || Getter->isSynthesizedAccessorStub()) 6775 CodeGenFunction(*this).GenerateObjCGetter( 6776 const_cast<ObjCImplementationDecl *>(D), PID); 6777 auto *Setter = PID->getSetterMethodDecl(); 6778 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6779 CodeGenFunction(*this).GenerateObjCSetter( 6780 const_cast<ObjCImplementationDecl *>(D), PID); 6781 } 6782 } 6783 } 6784 6785 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6786 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6787 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6788 ivar; ivar = ivar->getNextIvar()) 6789 if (ivar->getType().isDestructedType()) 6790 return true; 6791 6792 return false; 6793 } 6794 6795 static bool AllTrivialInitializers(CodeGenModule &CGM, 6796 ObjCImplementationDecl *D) { 6797 CodeGenFunction CGF(CGM); 6798 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6799 E = D->init_end(); B != E; ++B) { 6800 CXXCtorInitializer *CtorInitExp = *B; 6801 Expr *Init = CtorInitExp->getInit(); 6802 if (!CGF.isTrivialInitializer(Init)) 6803 return false; 6804 } 6805 return true; 6806 } 6807 6808 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6809 /// for an implementation. 6810 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6811 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6812 if (needsDestructMethod(D)) { 6813 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6814 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6815 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6816 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6817 getContext().VoidTy, nullptr, D, 6818 /*isInstance=*/true, /*isVariadic=*/false, 6819 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6820 /*isImplicitlyDeclared=*/true, 6821 /*isDefined=*/false, ObjCImplementationControl::Required); 6822 D->addInstanceMethod(DTORMethod); 6823 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6824 D->setHasDestructors(true); 6825 } 6826 6827 // If the implementation doesn't have any ivar initializers, we don't need 6828 // a .cxx_construct. 6829 if (D->getNumIvarInitializers() == 0 || 6830 AllTrivialInitializers(*this, D)) 6831 return; 6832 6833 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6834 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6835 // The constructor returns 'self'. 6836 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6837 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6838 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6839 /*isVariadic=*/false, 6840 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6841 /*isImplicitlyDeclared=*/true, 6842 /*isDefined=*/false, ObjCImplementationControl::Required); 6843 D->addInstanceMethod(CTORMethod); 6844 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6845 D->setHasNonZeroConstructors(true); 6846 } 6847 6848 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6849 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6850 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6851 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6852 ErrorUnsupported(LSD, "linkage spec"); 6853 return; 6854 } 6855 6856 EmitDeclContext(LSD); 6857 } 6858 6859 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6860 // Device code should not be at top level. 6861 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6862 return; 6863 6864 std::unique_ptr<CodeGenFunction> &CurCGF = 6865 GlobalTopLevelStmtBlockInFlight.first; 6866 6867 // We emitted a top-level stmt but after it there is initialization. 6868 // Stop squashing the top-level stmts into a single function. 6869 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6870 CurCGF->FinishFunction(D->getEndLoc()); 6871 CurCGF = nullptr; 6872 } 6873 6874 if (!CurCGF) { 6875 // void __stmts__N(void) 6876 // FIXME: Ask the ABI name mangler to pick a name. 6877 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6878 FunctionArgList Args; 6879 QualType RetTy = getContext().VoidTy; 6880 const CGFunctionInfo &FnInfo = 6881 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6882 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6883 llvm::Function *Fn = llvm::Function::Create( 6884 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6885 6886 CurCGF.reset(new CodeGenFunction(*this)); 6887 GlobalTopLevelStmtBlockInFlight.second = D; 6888 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6889 D->getBeginLoc(), D->getBeginLoc()); 6890 CXXGlobalInits.push_back(Fn); 6891 } 6892 6893 CurCGF->EmitStmt(D->getStmt()); 6894 } 6895 6896 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6897 for (auto *I : DC->decls()) { 6898 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6899 // are themselves considered "top-level", so EmitTopLevelDecl on an 6900 // ObjCImplDecl does not recursively visit them. We need to do that in 6901 // case they're nested inside another construct (LinkageSpecDecl / 6902 // ExportDecl) that does stop them from being considered "top-level". 6903 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6904 for (auto *M : OID->methods()) 6905 EmitTopLevelDecl(M); 6906 } 6907 6908 EmitTopLevelDecl(I); 6909 } 6910 } 6911 6912 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6913 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6914 // Ignore dependent declarations. 6915 if (D->isTemplated()) 6916 return; 6917 6918 // Consteval function shouldn't be emitted. 6919 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6920 return; 6921 6922 switch (D->getKind()) { 6923 case Decl::CXXConversion: 6924 case Decl::CXXMethod: 6925 case Decl::Function: 6926 EmitGlobal(cast<FunctionDecl>(D)); 6927 // Always provide some coverage mapping 6928 // even for the functions that aren't emitted. 6929 AddDeferredUnusedCoverageMapping(D); 6930 break; 6931 6932 case Decl::CXXDeductionGuide: 6933 // Function-like, but does not result in code emission. 6934 break; 6935 6936 case Decl::Var: 6937 case Decl::Decomposition: 6938 case Decl::VarTemplateSpecialization: 6939 EmitGlobal(cast<VarDecl>(D)); 6940 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6941 for (auto *B : DD->bindings()) 6942 if (auto *HD = B->getHoldingVar()) 6943 EmitGlobal(HD); 6944 break; 6945 6946 // Indirect fields from global anonymous structs and unions can be 6947 // ignored; only the actual variable requires IR gen support. 6948 case Decl::IndirectField: 6949 break; 6950 6951 // C++ Decls 6952 case Decl::Namespace: 6953 EmitDeclContext(cast<NamespaceDecl>(D)); 6954 break; 6955 case Decl::ClassTemplateSpecialization: { 6956 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6957 if (CGDebugInfo *DI = getModuleDebugInfo()) 6958 if (Spec->getSpecializationKind() == 6959 TSK_ExplicitInstantiationDefinition && 6960 Spec->hasDefinition()) 6961 DI->completeTemplateDefinition(*Spec); 6962 } [[fallthrough]]; 6963 case Decl::CXXRecord: { 6964 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6965 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6966 if (CRD->hasDefinition()) 6967 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6968 if (auto *ES = D->getASTContext().getExternalSource()) 6969 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6970 DI->completeUnusedClass(*CRD); 6971 } 6972 // Emit any static data members, they may be definitions. 6973 for (auto *I : CRD->decls()) 6974 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6975 EmitTopLevelDecl(I); 6976 break; 6977 } 6978 // No code generation needed. 6979 case Decl::UsingShadow: 6980 case Decl::ClassTemplate: 6981 case Decl::VarTemplate: 6982 case Decl::Concept: 6983 case Decl::VarTemplatePartialSpecialization: 6984 case Decl::FunctionTemplate: 6985 case Decl::TypeAliasTemplate: 6986 case Decl::Block: 6987 case Decl::Empty: 6988 case Decl::Binding: 6989 break; 6990 case Decl::Using: // using X; [C++] 6991 if (CGDebugInfo *DI = getModuleDebugInfo()) 6992 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6993 break; 6994 case Decl::UsingEnum: // using enum X; [C++] 6995 if (CGDebugInfo *DI = getModuleDebugInfo()) 6996 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6997 break; 6998 case Decl::NamespaceAlias: 6999 if (CGDebugInfo *DI = getModuleDebugInfo()) 7000 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 7001 break; 7002 case Decl::UsingDirective: // using namespace X; [C++] 7003 if (CGDebugInfo *DI = getModuleDebugInfo()) 7004 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 7005 break; 7006 case Decl::CXXConstructor: 7007 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 7008 break; 7009 case Decl::CXXDestructor: 7010 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 7011 break; 7012 7013 case Decl::StaticAssert: 7014 // Nothing to do. 7015 break; 7016 7017 // Objective-C Decls 7018 7019 // Forward declarations, no (immediate) code generation. 7020 case Decl::ObjCInterface: 7021 case Decl::ObjCCategory: 7022 break; 7023 7024 case Decl::ObjCProtocol: { 7025 auto *Proto = cast<ObjCProtocolDecl>(D); 7026 if (Proto->isThisDeclarationADefinition()) 7027 ObjCRuntime->GenerateProtocol(Proto); 7028 break; 7029 } 7030 7031 case Decl::ObjCCategoryImpl: 7032 // Categories have properties but don't support synthesize so we 7033 // can ignore them here. 7034 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7035 break; 7036 7037 case Decl::ObjCImplementation: { 7038 auto *OMD = cast<ObjCImplementationDecl>(D); 7039 EmitObjCPropertyImplementations(OMD); 7040 EmitObjCIvarInitializations(OMD); 7041 ObjCRuntime->GenerateClass(OMD); 7042 // Emit global variable debug information. 7043 if (CGDebugInfo *DI = getModuleDebugInfo()) 7044 if (getCodeGenOpts().hasReducedDebugInfo()) 7045 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7046 OMD->getClassInterface()), OMD->getLocation()); 7047 break; 7048 } 7049 case Decl::ObjCMethod: { 7050 auto *OMD = cast<ObjCMethodDecl>(D); 7051 // If this is not a prototype, emit the body. 7052 if (OMD->getBody()) 7053 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7054 break; 7055 } 7056 case Decl::ObjCCompatibleAlias: 7057 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7058 break; 7059 7060 case Decl::PragmaComment: { 7061 const auto *PCD = cast<PragmaCommentDecl>(D); 7062 switch (PCD->getCommentKind()) { 7063 case PCK_Unknown: 7064 llvm_unreachable("unexpected pragma comment kind"); 7065 case PCK_Linker: 7066 AppendLinkerOptions(PCD->getArg()); 7067 break; 7068 case PCK_Lib: 7069 AddDependentLib(PCD->getArg()); 7070 break; 7071 case PCK_Compiler: 7072 case PCK_ExeStr: 7073 case PCK_User: 7074 break; // We ignore all of these. 7075 } 7076 break; 7077 } 7078 7079 case Decl::PragmaDetectMismatch: { 7080 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7081 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7082 break; 7083 } 7084 7085 case Decl::LinkageSpec: 7086 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7087 break; 7088 7089 case Decl::FileScopeAsm: { 7090 // File-scope asm is ignored during device-side CUDA compilation. 7091 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7092 break; 7093 // File-scope asm is ignored during device-side OpenMP compilation. 7094 if (LangOpts.OpenMPIsTargetDevice) 7095 break; 7096 // File-scope asm is ignored during device-side SYCL compilation. 7097 if (LangOpts.SYCLIsDevice) 7098 break; 7099 auto *AD = cast<FileScopeAsmDecl>(D); 7100 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7101 break; 7102 } 7103 7104 case Decl::TopLevelStmt: 7105 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7106 break; 7107 7108 case Decl::Import: { 7109 auto *Import = cast<ImportDecl>(D); 7110 7111 // If we've already imported this module, we're done. 7112 if (!ImportedModules.insert(Import->getImportedModule())) 7113 break; 7114 7115 // Emit debug information for direct imports. 7116 if (!Import->getImportedOwningModule()) { 7117 if (CGDebugInfo *DI = getModuleDebugInfo()) 7118 DI->EmitImportDecl(*Import); 7119 } 7120 7121 // For C++ standard modules we are done - we will call the module 7122 // initializer for imported modules, and that will likewise call those for 7123 // any imports it has. 7124 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7125 !Import->getImportedOwningModule()->isModuleMapModule()) 7126 break; 7127 7128 // For clang C++ module map modules the initializers for sub-modules are 7129 // emitted here. 7130 7131 // Find all of the submodules and emit the module initializers. 7132 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7133 SmallVector<clang::Module *, 16> Stack; 7134 Visited.insert(Import->getImportedModule()); 7135 Stack.push_back(Import->getImportedModule()); 7136 7137 while (!Stack.empty()) { 7138 clang::Module *Mod = Stack.pop_back_val(); 7139 if (!EmittedModuleInitializers.insert(Mod).second) 7140 continue; 7141 7142 for (auto *D : Context.getModuleInitializers(Mod)) 7143 EmitTopLevelDecl(D); 7144 7145 // Visit the submodules of this module. 7146 for (auto *Submodule : Mod->submodules()) { 7147 // Skip explicit children; they need to be explicitly imported to emit 7148 // the initializers. 7149 if (Submodule->IsExplicit) 7150 continue; 7151 7152 if (Visited.insert(Submodule).second) 7153 Stack.push_back(Submodule); 7154 } 7155 } 7156 break; 7157 } 7158 7159 case Decl::Export: 7160 EmitDeclContext(cast<ExportDecl>(D)); 7161 break; 7162 7163 case Decl::OMPThreadPrivate: 7164 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7165 break; 7166 7167 case Decl::OMPAllocate: 7168 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7169 break; 7170 7171 case Decl::OMPDeclareReduction: 7172 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7173 break; 7174 7175 case Decl::OMPDeclareMapper: 7176 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7177 break; 7178 7179 case Decl::OMPRequires: 7180 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7181 break; 7182 7183 case Decl::Typedef: 7184 case Decl::TypeAlias: // using foo = bar; [C++11] 7185 if (CGDebugInfo *DI = getModuleDebugInfo()) 7186 DI->EmitAndRetainType( 7187 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7188 break; 7189 7190 case Decl::Record: 7191 if (CGDebugInfo *DI = getModuleDebugInfo()) 7192 if (cast<RecordDecl>(D)->getDefinition()) 7193 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7194 break; 7195 7196 case Decl::Enum: 7197 if (CGDebugInfo *DI = getModuleDebugInfo()) 7198 if (cast<EnumDecl>(D)->getDefinition()) 7199 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7200 break; 7201 7202 case Decl::HLSLBuffer: 7203 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7204 break; 7205 7206 default: 7207 // Make sure we handled everything we should, every other kind is a 7208 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7209 // function. Need to recode Decl::Kind to do that easily. 7210 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7211 break; 7212 } 7213 } 7214 7215 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7216 // Do we need to generate coverage mapping? 7217 if (!CodeGenOpts.CoverageMapping) 7218 return; 7219 switch (D->getKind()) { 7220 case Decl::CXXConversion: 7221 case Decl::CXXMethod: 7222 case Decl::Function: 7223 case Decl::ObjCMethod: 7224 case Decl::CXXConstructor: 7225 case Decl::CXXDestructor: { 7226 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7227 break; 7228 SourceManager &SM = getContext().getSourceManager(); 7229 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7230 break; 7231 if (!llvm::coverage::SystemHeadersCoverage && 7232 SM.isInSystemHeader(D->getBeginLoc())) 7233 break; 7234 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7235 break; 7236 } 7237 default: 7238 break; 7239 }; 7240 } 7241 7242 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7243 // Do we need to generate coverage mapping? 7244 if (!CodeGenOpts.CoverageMapping) 7245 return; 7246 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7247 if (Fn->isTemplateInstantiation()) 7248 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7249 } 7250 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7251 } 7252 7253 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7254 // We call takeVector() here to avoid use-after-free. 7255 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7256 // we deserialize function bodies to emit coverage info for them, and that 7257 // deserializes more declarations. How should we handle that case? 7258 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7259 if (!Entry.second) 7260 continue; 7261 const Decl *D = Entry.first; 7262 switch (D->getKind()) { 7263 case Decl::CXXConversion: 7264 case Decl::CXXMethod: 7265 case Decl::Function: 7266 case Decl::ObjCMethod: { 7267 CodeGenPGO PGO(*this); 7268 GlobalDecl GD(cast<FunctionDecl>(D)); 7269 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7270 getFunctionLinkage(GD)); 7271 break; 7272 } 7273 case Decl::CXXConstructor: { 7274 CodeGenPGO PGO(*this); 7275 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7276 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7277 getFunctionLinkage(GD)); 7278 break; 7279 } 7280 case Decl::CXXDestructor: { 7281 CodeGenPGO PGO(*this); 7282 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7283 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7284 getFunctionLinkage(GD)); 7285 break; 7286 } 7287 default: 7288 break; 7289 }; 7290 } 7291 } 7292 7293 void CodeGenModule::EmitMainVoidAlias() { 7294 // In order to transition away from "__original_main" gracefully, emit an 7295 // alias for "main" in the no-argument case so that libc can detect when 7296 // new-style no-argument main is in used. 7297 if (llvm::Function *F = getModule().getFunction("main")) { 7298 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7299 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7300 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7301 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7302 } 7303 } 7304 } 7305 7306 /// Turns the given pointer into a constant. 7307 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7308 const void *Ptr) { 7309 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7310 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7311 return llvm::ConstantInt::get(i64, PtrInt); 7312 } 7313 7314 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7315 llvm::NamedMDNode *&GlobalMetadata, 7316 GlobalDecl D, 7317 llvm::GlobalValue *Addr) { 7318 if (!GlobalMetadata) 7319 GlobalMetadata = 7320 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7321 7322 // TODO: should we report variant information for ctors/dtors? 7323 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7324 llvm::ConstantAsMetadata::get(GetPointerConstant( 7325 CGM.getLLVMContext(), D.getDecl()))}; 7326 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7327 } 7328 7329 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7330 llvm::GlobalValue *CppFunc) { 7331 // Store the list of ifuncs we need to replace uses in. 7332 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7333 // List of ConstantExprs that we should be able to delete when we're done 7334 // here. 7335 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7336 7337 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7338 if (Elem == CppFunc) 7339 return false; 7340 7341 // First make sure that all users of this are ifuncs (or ifuncs via a 7342 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7343 // later. 7344 for (llvm::User *User : Elem->users()) { 7345 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7346 // ifunc directly. In any other case, just give up, as we don't know what we 7347 // could break by changing those. 7348 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7349 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7350 return false; 7351 7352 for (llvm::User *CEUser : ConstExpr->users()) { 7353 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7354 IFuncs.push_back(IFunc); 7355 } else { 7356 return false; 7357 } 7358 } 7359 CEs.push_back(ConstExpr); 7360 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7361 IFuncs.push_back(IFunc); 7362 } else { 7363 // This user is one we don't know how to handle, so fail redirection. This 7364 // will result in an ifunc retaining a resolver name that will ultimately 7365 // fail to be resolved to a defined function. 7366 return false; 7367 } 7368 } 7369 7370 // Now we know this is a valid case where we can do this alias replacement, we 7371 // need to remove all of the references to Elem (and the bitcasts!) so we can 7372 // delete it. 7373 for (llvm::GlobalIFunc *IFunc : IFuncs) 7374 IFunc->setResolver(nullptr); 7375 for (llvm::ConstantExpr *ConstExpr : CEs) 7376 ConstExpr->destroyConstant(); 7377 7378 // We should now be out of uses for the 'old' version of this function, so we 7379 // can erase it as well. 7380 Elem->eraseFromParent(); 7381 7382 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7383 // The type of the resolver is always just a function-type that returns the 7384 // type of the IFunc, so create that here. If the type of the actual 7385 // resolver doesn't match, it just gets bitcast to the right thing. 7386 auto *ResolverTy = 7387 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7388 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7389 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7390 IFunc->setResolver(Resolver); 7391 } 7392 return true; 7393 } 7394 7395 /// For each function which is declared within an extern "C" region and marked 7396 /// as 'used', but has internal linkage, create an alias from the unmangled 7397 /// name to the mangled name if possible. People expect to be able to refer 7398 /// to such functions with an unmangled name from inline assembly within the 7399 /// same translation unit. 7400 void CodeGenModule::EmitStaticExternCAliases() { 7401 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7402 return; 7403 for (auto &I : StaticExternCValues) { 7404 const IdentifierInfo *Name = I.first; 7405 llvm::GlobalValue *Val = I.second; 7406 7407 // If Val is null, that implies there were multiple declarations that each 7408 // had a claim to the unmangled name. In this case, generation of the alias 7409 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7410 if (!Val) 7411 break; 7412 7413 llvm::GlobalValue *ExistingElem = 7414 getModule().getNamedValue(Name->getName()); 7415 7416 // If there is either not something already by this name, or we were able to 7417 // replace all uses from IFuncs, create the alias. 7418 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7419 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7420 } 7421 } 7422 7423 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7424 GlobalDecl &Result) const { 7425 auto Res = Manglings.find(MangledName); 7426 if (Res == Manglings.end()) 7427 return false; 7428 Result = Res->getValue(); 7429 return true; 7430 } 7431 7432 /// Emits metadata nodes associating all the global values in the 7433 /// current module with the Decls they came from. This is useful for 7434 /// projects using IR gen as a subroutine. 7435 /// 7436 /// Since there's currently no way to associate an MDNode directly 7437 /// with an llvm::GlobalValue, we create a global named metadata 7438 /// with the name 'clang.global.decl.ptrs'. 7439 void CodeGenModule::EmitDeclMetadata() { 7440 llvm::NamedMDNode *GlobalMetadata = nullptr; 7441 7442 for (auto &I : MangledDeclNames) { 7443 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7444 // Some mangled names don't necessarily have an associated GlobalValue 7445 // in this module, e.g. if we mangled it for DebugInfo. 7446 if (Addr) 7447 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7448 } 7449 } 7450 7451 /// Emits metadata nodes for all the local variables in the current 7452 /// function. 7453 void CodeGenFunction::EmitDeclMetadata() { 7454 if (LocalDeclMap.empty()) return; 7455 7456 llvm::LLVMContext &Context = getLLVMContext(); 7457 7458 // Find the unique metadata ID for this name. 7459 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7460 7461 llvm::NamedMDNode *GlobalMetadata = nullptr; 7462 7463 for (auto &I : LocalDeclMap) { 7464 const Decl *D = I.first; 7465 llvm::Value *Addr = I.second.emitRawPointer(*this); 7466 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7467 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7468 Alloca->setMetadata( 7469 DeclPtrKind, llvm::MDNode::get( 7470 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7471 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7472 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7473 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7474 } 7475 } 7476 } 7477 7478 void CodeGenModule::EmitVersionIdentMetadata() { 7479 llvm::NamedMDNode *IdentMetadata = 7480 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7481 std::string Version = getClangFullVersion(); 7482 llvm::LLVMContext &Ctx = TheModule.getContext(); 7483 7484 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7485 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7486 } 7487 7488 void CodeGenModule::EmitCommandLineMetadata() { 7489 llvm::NamedMDNode *CommandLineMetadata = 7490 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7491 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7492 llvm::LLVMContext &Ctx = TheModule.getContext(); 7493 7494 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7495 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7496 } 7497 7498 void CodeGenModule::EmitCoverageFile() { 7499 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7500 if (!CUNode) 7501 return; 7502 7503 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7504 llvm::LLVMContext &Ctx = TheModule.getContext(); 7505 auto *CoverageDataFile = 7506 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7507 auto *CoverageNotesFile = 7508 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7509 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7510 llvm::MDNode *CU = CUNode->getOperand(i); 7511 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7512 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7513 } 7514 } 7515 7516 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7517 bool ForEH) { 7518 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7519 // FIXME: should we even be calling this method if RTTI is disabled 7520 // and it's not for EH? 7521 if (!shouldEmitRTTI(ForEH)) 7522 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7523 7524 if (ForEH && Ty->isObjCObjectPointerType() && 7525 LangOpts.ObjCRuntime.isGNUFamily()) 7526 return ObjCRuntime->GetEHType(Ty); 7527 7528 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7529 } 7530 7531 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7532 // Do not emit threadprivates in simd-only mode. 7533 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7534 return; 7535 for (auto RefExpr : D->varlist()) { 7536 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7537 bool PerformInit = 7538 VD->getAnyInitializer() && 7539 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7540 /*ForRef=*/false); 7541 7542 Address Addr(GetAddrOfGlobalVar(VD), 7543 getTypes().ConvertTypeForMem(VD->getType()), 7544 getContext().getDeclAlign(VD)); 7545 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7546 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7547 CXXGlobalInits.push_back(InitFunction); 7548 } 7549 } 7550 7551 llvm::Metadata * 7552 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7553 StringRef Suffix) { 7554 if (auto *FnType = T->getAs<FunctionProtoType>()) 7555 T = getContext().getFunctionType( 7556 FnType->getReturnType(), FnType->getParamTypes(), 7557 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7558 7559 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7560 if (InternalId) 7561 return InternalId; 7562 7563 if (isExternallyVisible(T->getLinkage())) { 7564 std::string OutName; 7565 llvm::raw_string_ostream Out(OutName); 7566 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7567 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7568 7569 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7570 Out << ".normalized"; 7571 7572 Out << Suffix; 7573 7574 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7575 } else { 7576 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7577 llvm::ArrayRef<llvm::Metadata *>()); 7578 } 7579 7580 return InternalId; 7581 } 7582 7583 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7584 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7585 } 7586 7587 llvm::Metadata * 7588 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7589 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7590 } 7591 7592 // Generalize pointer types to a void pointer with the qualifiers of the 7593 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7594 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7595 // 'void *'. 7596 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7597 if (!Ty->isPointerType()) 7598 return Ty; 7599 7600 return Ctx.getPointerType( 7601 QualType(Ctx.VoidTy).withCVRQualifiers( 7602 Ty->getPointeeType().getCVRQualifiers())); 7603 } 7604 7605 // Apply type generalization to a FunctionType's return and argument types 7606 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7607 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7608 SmallVector<QualType, 8> GeneralizedParams; 7609 for (auto &Param : FnType->param_types()) 7610 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7611 7612 return Ctx.getFunctionType( 7613 GeneralizeType(Ctx, FnType->getReturnType()), 7614 GeneralizedParams, FnType->getExtProtoInfo()); 7615 } 7616 7617 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7618 return Ctx.getFunctionNoProtoType( 7619 GeneralizeType(Ctx, FnType->getReturnType())); 7620 7621 llvm_unreachable("Encountered unknown FunctionType"); 7622 } 7623 7624 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7625 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7626 GeneralizedMetadataIdMap, ".generalized"); 7627 } 7628 7629 /// Returns whether this module needs the "all-vtables" type identifier. 7630 bool CodeGenModule::NeedAllVtablesTypeId() const { 7631 // Returns true if at least one of vtable-based CFI checkers is enabled and 7632 // is not in the trapping mode. 7633 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7634 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7635 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7636 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7637 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7638 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7639 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7640 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7641 } 7642 7643 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7644 CharUnits Offset, 7645 const CXXRecordDecl *RD) { 7646 llvm::Metadata *MD = 7647 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7648 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7649 7650 if (CodeGenOpts.SanitizeCfiCrossDso) 7651 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7652 VTable->addTypeMetadata(Offset.getQuantity(), 7653 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7654 7655 if (NeedAllVtablesTypeId()) { 7656 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7657 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7658 } 7659 } 7660 7661 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7662 if (!SanStats) 7663 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7664 7665 return *SanStats; 7666 } 7667 7668 llvm::Value * 7669 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7670 CodeGenFunction &CGF) { 7671 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7672 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7673 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7674 auto *Call = CGF.EmitRuntimeCall( 7675 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7676 return Call; 7677 } 7678 7679 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7680 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7681 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7682 /* forPointeeType= */ true); 7683 } 7684 7685 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7686 LValueBaseInfo *BaseInfo, 7687 TBAAAccessInfo *TBAAInfo, 7688 bool forPointeeType) { 7689 if (TBAAInfo) 7690 *TBAAInfo = getTBAAAccessInfo(T); 7691 7692 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7693 // that doesn't return the information we need to compute BaseInfo. 7694 7695 // Honor alignment typedef attributes even on incomplete types. 7696 // We also honor them straight for C++ class types, even as pointees; 7697 // there's an expressivity gap here. 7698 if (auto TT = T->getAs<TypedefType>()) { 7699 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7700 if (BaseInfo) 7701 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7702 return getContext().toCharUnitsFromBits(Align); 7703 } 7704 } 7705 7706 bool AlignForArray = T->isArrayType(); 7707 7708 // Analyze the base element type, so we don't get confused by incomplete 7709 // array types. 7710 T = getContext().getBaseElementType(T); 7711 7712 if (T->isIncompleteType()) { 7713 // We could try to replicate the logic from 7714 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7715 // type is incomplete, so it's impossible to test. We could try to reuse 7716 // getTypeAlignIfKnown, but that doesn't return the information we need 7717 // to set BaseInfo. So just ignore the possibility that the alignment is 7718 // greater than one. 7719 if (BaseInfo) 7720 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7721 return CharUnits::One(); 7722 } 7723 7724 if (BaseInfo) 7725 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7726 7727 CharUnits Alignment; 7728 const CXXRecordDecl *RD; 7729 if (T.getQualifiers().hasUnaligned()) { 7730 Alignment = CharUnits::One(); 7731 } else if (forPointeeType && !AlignForArray && 7732 (RD = T->getAsCXXRecordDecl())) { 7733 // For C++ class pointees, we don't know whether we're pointing at a 7734 // base or a complete object, so we generally need to use the 7735 // non-virtual alignment. 7736 Alignment = getClassPointerAlignment(RD); 7737 } else { 7738 Alignment = getContext().getTypeAlignInChars(T); 7739 } 7740 7741 // Cap to the global maximum type alignment unless the alignment 7742 // was somehow explicit on the type. 7743 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7744 if (Alignment.getQuantity() > MaxAlign && 7745 !getContext().isAlignmentRequired(T)) 7746 Alignment = CharUnits::fromQuantity(MaxAlign); 7747 } 7748 return Alignment; 7749 } 7750 7751 bool CodeGenModule::stopAutoInit() { 7752 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7753 if (StopAfter) { 7754 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7755 // used 7756 if (NumAutoVarInit >= StopAfter) { 7757 return true; 7758 } 7759 if (!NumAutoVarInit) { 7760 unsigned DiagID = getDiags().getCustomDiagID( 7761 DiagnosticsEngine::Warning, 7762 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7763 "number of times ftrivial-auto-var-init=%1 gets applied."); 7764 getDiags().Report(DiagID) 7765 << StopAfter 7766 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7767 LangOptions::TrivialAutoVarInitKind::Zero 7768 ? "zero" 7769 : "pattern"); 7770 } 7771 ++NumAutoVarInit; 7772 } 7773 return false; 7774 } 7775 7776 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7777 const Decl *D) const { 7778 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7779 // postfix beginning with '.' since the symbol name can be demangled. 7780 if (LangOpts.HIP) 7781 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7782 else 7783 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7784 7785 // If the CUID is not specified we try to generate a unique postfix. 7786 if (getLangOpts().CUID.empty()) { 7787 SourceManager &SM = getContext().getSourceManager(); 7788 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7789 assert(PLoc.isValid() && "Source location is expected to be valid."); 7790 7791 // Get the hash of the user defined macros. 7792 llvm::MD5 Hash; 7793 llvm::MD5::MD5Result Result; 7794 for (const auto &Arg : PreprocessorOpts.Macros) 7795 Hash.update(Arg.first); 7796 Hash.final(Result); 7797 7798 // Get the UniqueID for the file containing the decl. 7799 llvm::sys::fs::UniqueID ID; 7800 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7801 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7802 assert(PLoc.isValid() && "Source location is expected to be valid."); 7803 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7804 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7805 << PLoc.getFilename() << EC.message(); 7806 } 7807 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7808 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7809 } else { 7810 OS << getContext().getCUIDHash(); 7811 } 7812 } 7813 7814 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7815 assert(DeferredDeclsToEmit.empty() && 7816 "Should have emitted all decls deferred to emit."); 7817 assert(NewBuilder->DeferredDecls.empty() && 7818 "Newly created module should not have deferred decls"); 7819 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7820 assert(EmittedDeferredDecls.empty() && 7821 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7822 7823 assert(NewBuilder->DeferredVTables.empty() && 7824 "Newly created module should not have deferred vtables"); 7825 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7826 7827 assert(NewBuilder->MangledDeclNames.empty() && 7828 "Newly created module should not have mangled decl names"); 7829 assert(NewBuilder->Manglings.empty() && 7830 "Newly created module should not have manglings"); 7831 NewBuilder->Manglings = std::move(Manglings); 7832 7833 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7834 7835 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7836 } 7837