xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ec6ada62643cf7cded8160e04cce163323112ade)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 
66 using namespace clang;
67 using namespace CodeGen;
68 
69 static llvm::cl::opt<bool> LimitedCoverage(
70     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
71     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
72     llvm::cl::init(false));
73 
74 static const char AnnotationSection[] = "llvm.metadata";
75 
76 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
77   switch (CGM.getTarget().getCXXABI().getKind()) {
78   case TargetCXXABI::Fuchsia:
79   case TargetCXXABI::GenericAArch64:
80   case TargetCXXABI::GenericARM:
81   case TargetCXXABI::iOS:
82   case TargetCXXABI::iOS64:
83   case TargetCXXABI::WatchOS:
84   case TargetCXXABI::GenericMIPS:
85   case TargetCXXABI::GenericItanium:
86   case TargetCXXABI::WebAssembly:
87   case TargetCXXABI::XL:
88     return CreateItaniumCXXABI(CGM);
89   case TargetCXXABI::Microsoft:
90     return CreateMicrosoftCXXABI(CGM);
91   }
92 
93   llvm_unreachable("invalid C++ ABI kind");
94 }
95 
96 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
97                              const PreprocessorOptions &PPO,
98                              const CodeGenOptions &CGO, llvm::Module &M,
99                              DiagnosticsEngine &diags,
100                              CoverageSourceInfo *CoverageInfo)
101     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
102       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
103       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
104       VMContext(M.getContext()), Types(*this), VTables(*this),
105       SanitizerMD(new SanitizerMetadata(*this)) {
106 
107   // Initialize the type cache.
108   llvm::LLVMContext &LLVMContext = M.getContext();
109   VoidTy = llvm::Type::getVoidTy(LLVMContext);
110   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
111   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
112   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
113   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
114   HalfTy = llvm::Type::getHalfTy(LLVMContext);
115   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
116   FloatTy = llvm::Type::getFloatTy(LLVMContext);
117   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
118   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
119   PointerAlignInBytes =
120     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
121   SizeSizeInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
123   IntAlignInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
125   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
126   IntPtrTy = llvm::IntegerType::get(LLVMContext,
127     C.getTargetInfo().getMaxPointerWidth());
128   Int8PtrTy = Int8Ty->getPointerTo(0);
129   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
130   AllocaInt8PtrTy = Int8Ty->getPointerTo(
131       M.getDataLayout().getAllocaAddrSpace());
132   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
133 
134   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
135 
136   if (LangOpts.ObjC)
137     createObjCRuntime();
138   if (LangOpts.OpenCL)
139     createOpenCLRuntime();
140   if (LangOpts.OpenMP)
141     createOpenMPRuntime();
142   if (LangOpts.CUDA)
143     createCUDARuntime();
144 
145   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
146   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
147       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
148     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
149                                getCXXABI().getMangleContext()));
150 
151   // If debug info or coverage generation is enabled, create the CGDebugInfo
152   // object.
153   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
154       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
155     DebugInfo.reset(new CGDebugInfo(*this));
156 
157   Block.GlobalUniqueCount = 0;
158 
159   if (C.getLangOpts().ObjC)
160     ObjCData.reset(new ObjCEntrypoints());
161 
162   if (CodeGenOpts.hasProfileClangUse()) {
163     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
164         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
165     if (auto E = ReaderOrErr.takeError()) {
166       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
167                                               "Could not read profile %0: %1");
168       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
169         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
170                                   << EI.message();
171       });
172     } else
173       PGOReader = std::move(ReaderOrErr.get());
174   }
175 
176   // If coverage mapping generation is enabled, create the
177   // CoverageMappingModuleGen object.
178   if (CodeGenOpts.CoverageMapping)
179     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
180 }
181 
182 CodeGenModule::~CodeGenModule() {}
183 
184 void CodeGenModule::createObjCRuntime() {
185   // This is just isGNUFamily(), but we want to force implementors of
186   // new ABIs to decide how best to do this.
187   switch (LangOpts.ObjCRuntime.getKind()) {
188   case ObjCRuntime::GNUstep:
189   case ObjCRuntime::GCC:
190   case ObjCRuntime::ObjFW:
191     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
192     return;
193 
194   case ObjCRuntime::FragileMacOSX:
195   case ObjCRuntime::MacOSX:
196   case ObjCRuntime::iOS:
197   case ObjCRuntime::WatchOS:
198     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
199     return;
200   }
201   llvm_unreachable("bad runtime kind");
202 }
203 
204 void CodeGenModule::createOpenCLRuntime() {
205   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
206 }
207 
208 void CodeGenModule::createOpenMPRuntime() {
209   // Select a specialized code generation class based on the target, if any.
210   // If it does not exist use the default implementation.
211   switch (getTriple().getArch()) {
212   case llvm::Triple::nvptx:
213   case llvm::Triple::nvptx64:
214     assert(getLangOpts().OpenMPIsDevice &&
215            "OpenMP NVPTX is only prepared to deal with device code.");
216     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
217     break;
218   default:
219     if (LangOpts.OpenMPSimd)
220       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
221     else
222       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
223     break;
224   }
225 }
226 
227 void CodeGenModule::createCUDARuntime() {
228   CUDARuntime.reset(CreateNVCUDARuntime(*this));
229 }
230 
231 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
232   Replacements[Name] = C;
233 }
234 
235 void CodeGenModule::applyReplacements() {
236   for (auto &I : Replacements) {
237     StringRef MangledName = I.first();
238     llvm::Constant *Replacement = I.second;
239     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
240     if (!Entry)
241       continue;
242     auto *OldF = cast<llvm::Function>(Entry);
243     auto *NewF = dyn_cast<llvm::Function>(Replacement);
244     if (!NewF) {
245       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
246         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
247       } else {
248         auto *CE = cast<llvm::ConstantExpr>(Replacement);
249         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
250                CE->getOpcode() == llvm::Instruction::GetElementPtr);
251         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
252       }
253     }
254 
255     // Replace old with new, but keep the old order.
256     OldF->replaceAllUsesWith(Replacement);
257     if (NewF) {
258       NewF->removeFromParent();
259       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
260                                                        NewF);
261     }
262     OldF->eraseFromParent();
263   }
264 }
265 
266 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
267   GlobalValReplacements.push_back(std::make_pair(GV, C));
268 }
269 
270 void CodeGenModule::applyGlobalValReplacements() {
271   for (auto &I : GlobalValReplacements) {
272     llvm::GlobalValue *GV = I.first;
273     llvm::Constant *C = I.second;
274 
275     GV->replaceAllUsesWith(C);
276     GV->eraseFromParent();
277   }
278 }
279 
280 // This is only used in aliases that we created and we know they have a
281 // linear structure.
282 static const llvm::GlobalObject *getAliasedGlobal(
283     const llvm::GlobalIndirectSymbol &GIS) {
284   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
285   const llvm::Constant *C = &GIS;
286   for (;;) {
287     C = C->stripPointerCasts();
288     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
289       return GO;
290     // stripPointerCasts will not walk over weak aliases.
291     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
292     if (!GIS2)
293       return nullptr;
294     if (!Visited.insert(GIS2).second)
295       return nullptr;
296     C = GIS2->getIndirectSymbol();
297   }
298 }
299 
300 void CodeGenModule::checkAliases() {
301   // Check if the constructed aliases are well formed. It is really unfortunate
302   // that we have to do this in CodeGen, but we only construct mangled names
303   // and aliases during codegen.
304   bool Error = false;
305   DiagnosticsEngine &Diags = getDiags();
306   for (const GlobalDecl &GD : Aliases) {
307     const auto *D = cast<ValueDecl>(GD.getDecl());
308     SourceLocation Location;
309     bool IsIFunc = D->hasAttr<IFuncAttr>();
310     if (const Attr *A = D->getDefiningAttr())
311       Location = A->getLocation();
312     else
313       llvm_unreachable("Not an alias or ifunc?");
314     StringRef MangledName = getMangledName(GD);
315     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
316     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
317     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
318     if (!GV) {
319       Error = true;
320       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
321     } else if (GV->isDeclaration()) {
322       Error = true;
323       Diags.Report(Location, diag::err_alias_to_undefined)
324           << IsIFunc << IsIFunc;
325     } else if (IsIFunc) {
326       // Check resolver function type.
327       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
328           GV->getType()->getPointerElementType());
329       assert(FTy);
330       if (!FTy->getReturnType()->isPointerTy())
331         Diags.Report(Location, diag::err_ifunc_resolver_return);
332     }
333 
334     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
335     llvm::GlobalValue *AliaseeGV;
336     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
337       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
338     else
339       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
340 
341     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
342       StringRef AliasSection = SA->getName();
343       if (AliasSection != AliaseeGV->getSection())
344         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
345             << AliasSection << IsIFunc << IsIFunc;
346     }
347 
348     // We have to handle alias to weak aliases in here. LLVM itself disallows
349     // this since the object semantics would not match the IL one. For
350     // compatibility with gcc we implement it by just pointing the alias
351     // to its aliasee's aliasee. We also warn, since the user is probably
352     // expecting the link to be weak.
353     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
354       if (GA->isInterposable()) {
355         Diags.Report(Location, diag::warn_alias_to_weak_alias)
356             << GV->getName() << GA->getName() << IsIFunc;
357         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
358             GA->getIndirectSymbol(), Alias->getType());
359         Alias->setIndirectSymbol(Aliasee);
360       }
361     }
362   }
363   if (!Error)
364     return;
365 
366   for (const GlobalDecl &GD : Aliases) {
367     StringRef MangledName = getMangledName(GD);
368     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
369     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
370     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
371     Alias->eraseFromParent();
372   }
373 }
374 
375 void CodeGenModule::clear() {
376   DeferredDeclsToEmit.clear();
377   if (OpenMPRuntime)
378     OpenMPRuntime->clear();
379 }
380 
381 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
382                                        StringRef MainFile) {
383   if (!hasDiagnostics())
384     return;
385   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
386     if (MainFile.empty())
387       MainFile = "<stdin>";
388     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
389   } else {
390     if (Mismatched > 0)
391       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
392 
393     if (Missing > 0)
394       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
395   }
396 }
397 
398 void CodeGenModule::Release() {
399   EmitDeferred();
400   EmitVTablesOpportunistically();
401   applyGlobalValReplacements();
402   applyReplacements();
403   checkAliases();
404   emitMultiVersionFunctions();
405   EmitCXXGlobalInitFunc();
406   EmitCXXGlobalCleanUpFunc();
407   registerGlobalDtorsWithAtExit();
408   EmitCXXThreadLocalInitFunc();
409   if (ObjCRuntime)
410     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
411       AddGlobalCtor(ObjCInitFunction);
412   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
413       CUDARuntime) {
414     if (llvm::Function *CudaCtorFunction =
415             CUDARuntime->makeModuleCtorFunction())
416       AddGlobalCtor(CudaCtorFunction);
417   }
418   if (OpenMPRuntime) {
419     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
420             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
421       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
422     }
423     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
424     OpenMPRuntime->clear();
425   }
426   if (PGOReader) {
427     getModule().setProfileSummary(
428         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
429         llvm::ProfileSummary::PSK_Instr);
430     if (PGOStats.hasDiagnostics())
431       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
432   }
433   EmitCtorList(GlobalCtors, "llvm.global_ctors");
434   EmitCtorList(GlobalDtors, "llvm.global_dtors");
435   EmitGlobalAnnotations();
436   EmitStaticExternCAliases();
437   EmitDeferredUnusedCoverageMappings();
438   if (CoverageMapping)
439     CoverageMapping->emit();
440   if (CodeGenOpts.SanitizeCfiCrossDso) {
441     CodeGenFunction(*this).EmitCfiCheckFail();
442     CodeGenFunction(*this).EmitCfiCheckStub();
443   }
444   emitAtAvailableLinkGuard();
445   if (Context.getTargetInfo().getTriple().isWasm() &&
446       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
447     EmitMainVoidAlias();
448   }
449   emitLLVMUsed();
450   if (SanStats)
451     SanStats->finish();
452 
453   if (CodeGenOpts.Autolink &&
454       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
455     EmitModuleLinkOptions();
456   }
457 
458   // On ELF we pass the dependent library specifiers directly to the linker
459   // without manipulating them. This is in contrast to other platforms where
460   // they are mapped to a specific linker option by the compiler. This
461   // difference is a result of the greater variety of ELF linkers and the fact
462   // that ELF linkers tend to handle libraries in a more complicated fashion
463   // than on other platforms. This forces us to defer handling the dependent
464   // libs to the linker.
465   //
466   // CUDA/HIP device and host libraries are different. Currently there is no
467   // way to differentiate dependent libraries for host or device. Existing
468   // usage of #pragma comment(lib, *) is intended for host libraries on
469   // Windows. Therefore emit llvm.dependent-libraries only for host.
470   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
471     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
472     for (auto *MD : ELFDependentLibraries)
473       NMD->addOperand(MD);
474   }
475 
476   // Record mregparm value now so it is visible through rest of codegen.
477   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
478     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
479                               CodeGenOpts.NumRegisterParameters);
480 
481   if (CodeGenOpts.DwarfVersion) {
482     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
483                               CodeGenOpts.DwarfVersion);
484   }
485 
486   if (Context.getLangOpts().SemanticInterposition)
487     // Require various optimization to respect semantic interposition.
488     getModule().setSemanticInterposition(1);
489   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
490     // Allow dso_local on applicable targets.
491     getModule().setSemanticInterposition(0);
492 
493   if (CodeGenOpts.EmitCodeView) {
494     // Indicate that we want CodeView in the metadata.
495     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
496   }
497   if (CodeGenOpts.CodeViewGHash) {
498     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
499   }
500   if (CodeGenOpts.ControlFlowGuard) {
501     // Function ID tables and checks for Control Flow Guard (cfguard=2).
502     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
503   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
504     // Function ID tables for Control Flow Guard (cfguard=1).
505     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
506   }
507   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
508     // We don't support LTO with 2 with different StrictVTablePointers
509     // FIXME: we could support it by stripping all the information introduced
510     // by StrictVTablePointers.
511 
512     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
513 
514     llvm::Metadata *Ops[2] = {
515               llvm::MDString::get(VMContext, "StrictVTablePointers"),
516               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
517                   llvm::Type::getInt32Ty(VMContext), 1))};
518 
519     getModule().addModuleFlag(llvm::Module::Require,
520                               "StrictVTablePointersRequirement",
521                               llvm::MDNode::get(VMContext, Ops));
522   }
523   if (getModuleDebugInfo())
524     // We support a single version in the linked module. The LLVM
525     // parser will drop debug info with a different version number
526     // (and warn about it, too).
527     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
528                               llvm::DEBUG_METADATA_VERSION);
529 
530   // We need to record the widths of enums and wchar_t, so that we can generate
531   // the correct build attributes in the ARM backend. wchar_size is also used by
532   // TargetLibraryInfo.
533   uint64_t WCharWidth =
534       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
535   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
536 
537   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
538   if (   Arch == llvm::Triple::arm
539       || Arch == llvm::Triple::armeb
540       || Arch == llvm::Triple::thumb
541       || Arch == llvm::Triple::thumbeb) {
542     // The minimum width of an enum in bytes
543     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
544     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
545   }
546 
547   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
548     StringRef ABIStr = Target.getABI();
549     llvm::LLVMContext &Ctx = TheModule.getContext();
550     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
551                               llvm::MDString::get(Ctx, ABIStr));
552   }
553 
554   if (CodeGenOpts.SanitizeCfiCrossDso) {
555     // Indicate that we want cross-DSO control flow integrity checks.
556     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
557   }
558 
559   if (CodeGenOpts.WholeProgramVTables) {
560     // Indicate whether VFE was enabled for this module, so that the
561     // vcall_visibility metadata added under whole program vtables is handled
562     // appropriately in the optimizer.
563     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
564                               CodeGenOpts.VirtualFunctionElimination);
565   }
566 
567   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
568     getModule().addModuleFlag(llvm::Module::Override,
569                               "CFI Canonical Jump Tables",
570                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
571   }
572 
573   if (CodeGenOpts.CFProtectionReturn &&
574       Target.checkCFProtectionReturnSupported(getDiags())) {
575     // Indicate that we want to instrument return control flow protection.
576     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
577                               1);
578   }
579 
580   if (CodeGenOpts.CFProtectionBranch &&
581       Target.checkCFProtectionBranchSupported(getDiags())) {
582     // Indicate that we want to instrument branch control flow protection.
583     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
584                               1);
585   }
586 
587   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
588     // Indicate whether __nvvm_reflect should be configured to flush denormal
589     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
590     // property.)
591     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
592                               CodeGenOpts.FP32DenormalMode.Output !=
593                                   llvm::DenormalMode::IEEE);
594   }
595 
596   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
597   if (LangOpts.OpenCL) {
598     EmitOpenCLMetadata();
599     // Emit SPIR version.
600     if (getTriple().isSPIR()) {
601       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
602       // opencl.spir.version named metadata.
603       // C++ is backwards compatible with OpenCL v2.0.
604       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
605       llvm::Metadata *SPIRVerElts[] = {
606           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
607               Int32Ty, Version / 100)),
608           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
609               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
610       llvm::NamedMDNode *SPIRVerMD =
611           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
612       llvm::LLVMContext &Ctx = TheModule.getContext();
613       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
614     }
615   }
616 
617   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
618     assert(PLevel < 3 && "Invalid PIC Level");
619     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
620     if (Context.getLangOpts().PIE)
621       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
622   }
623 
624   if (getCodeGenOpts().CodeModel.size() > 0) {
625     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
626                   .Case("tiny", llvm::CodeModel::Tiny)
627                   .Case("small", llvm::CodeModel::Small)
628                   .Case("kernel", llvm::CodeModel::Kernel)
629                   .Case("medium", llvm::CodeModel::Medium)
630                   .Case("large", llvm::CodeModel::Large)
631                   .Default(~0u);
632     if (CM != ~0u) {
633       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
634       getModule().setCodeModel(codeModel);
635     }
636   }
637 
638   if (CodeGenOpts.NoPLT)
639     getModule().setRtLibUseGOT();
640 
641   SimplifyPersonality();
642 
643   if (getCodeGenOpts().EmitDeclMetadata)
644     EmitDeclMetadata();
645 
646   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
647     EmitCoverageFile();
648 
649   if (CGDebugInfo *DI = getModuleDebugInfo())
650     DI->finalize();
651 
652   if (getCodeGenOpts().EmitVersionIdentMetadata)
653     EmitVersionIdentMetadata();
654 
655   if (!getCodeGenOpts().RecordCommandLine.empty())
656     EmitCommandLineMetadata();
657 
658   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
659 
660   EmitBackendOptionsMetadata(getCodeGenOpts());
661 }
662 
663 void CodeGenModule::EmitOpenCLMetadata() {
664   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
665   // opencl.ocl.version named metadata node.
666   // C++ is backwards compatible with OpenCL v2.0.
667   // FIXME: We might need to add CXX version at some point too?
668   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
669   llvm::Metadata *OCLVerElts[] = {
670       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
671           Int32Ty, Version / 100)),
672       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
673           Int32Ty, (Version % 100) / 10))};
674   llvm::NamedMDNode *OCLVerMD =
675       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
676   llvm::LLVMContext &Ctx = TheModule.getContext();
677   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
678 }
679 
680 void CodeGenModule::EmitBackendOptionsMetadata(
681     const CodeGenOptions CodeGenOpts) {
682   switch (getTriple().getArch()) {
683   default:
684     break;
685   case llvm::Triple::riscv32:
686   case llvm::Triple::riscv64:
687     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
688                               CodeGenOpts.SmallDataLimit);
689     break;
690   }
691 }
692 
693 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
694   // Make sure that this type is translated.
695   Types.UpdateCompletedType(TD);
696 }
697 
698 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
699   // Make sure that this type is translated.
700   Types.RefreshTypeCacheForClass(RD);
701 }
702 
703 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
704   if (!TBAA)
705     return nullptr;
706   return TBAA->getTypeInfo(QTy);
707 }
708 
709 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
710   if (!TBAA)
711     return TBAAAccessInfo();
712   if (getLangOpts().CUDAIsDevice) {
713     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
714     // access info.
715     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
716       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
717           nullptr)
718         return TBAAAccessInfo();
719     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
720       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
721           nullptr)
722         return TBAAAccessInfo();
723     }
724   }
725   return TBAA->getAccessInfo(AccessType);
726 }
727 
728 TBAAAccessInfo
729 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
730   if (!TBAA)
731     return TBAAAccessInfo();
732   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
733 }
734 
735 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
736   if (!TBAA)
737     return nullptr;
738   return TBAA->getTBAAStructInfo(QTy);
739 }
740 
741 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
742   if (!TBAA)
743     return nullptr;
744   return TBAA->getBaseTypeInfo(QTy);
745 }
746 
747 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
748   if (!TBAA)
749     return nullptr;
750   return TBAA->getAccessTagInfo(Info);
751 }
752 
753 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
754                                                    TBAAAccessInfo TargetInfo) {
755   if (!TBAA)
756     return TBAAAccessInfo();
757   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
758 }
759 
760 TBAAAccessInfo
761 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
762                                                    TBAAAccessInfo InfoB) {
763   if (!TBAA)
764     return TBAAAccessInfo();
765   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
766 }
767 
768 TBAAAccessInfo
769 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
770                                               TBAAAccessInfo SrcInfo) {
771   if (!TBAA)
772     return TBAAAccessInfo();
773   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
774 }
775 
776 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
777                                                 TBAAAccessInfo TBAAInfo) {
778   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
779     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
780 }
781 
782 void CodeGenModule::DecorateInstructionWithInvariantGroup(
783     llvm::Instruction *I, const CXXRecordDecl *RD) {
784   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
785                  llvm::MDNode::get(getLLVMContext(), {}));
786 }
787 
788 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
789   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
790   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
791 }
792 
793 /// ErrorUnsupported - Print out an error that codegen doesn't support the
794 /// specified stmt yet.
795 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
796   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
797                                                "cannot compile this %0 yet");
798   std::string Msg = Type;
799   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
800       << Msg << S->getSourceRange();
801 }
802 
803 /// ErrorUnsupported - Print out an error that codegen doesn't support the
804 /// specified decl yet.
805 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
806   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
807                                                "cannot compile this %0 yet");
808   std::string Msg = Type;
809   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
810 }
811 
812 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
813   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
814 }
815 
816 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
817                                         const NamedDecl *D) const {
818   if (GV->hasDLLImportStorageClass())
819     return;
820   // Internal definitions always have default visibility.
821   if (GV->hasLocalLinkage()) {
822     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
823     return;
824   }
825   if (!D)
826     return;
827   // Set visibility for definitions, and for declarations if requested globally
828   // or set explicitly.
829   LinkageInfo LV = D->getLinkageAndVisibility();
830   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
831       !GV->isDeclarationForLinker())
832     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
833 }
834 
835 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
836                                  llvm::GlobalValue *GV) {
837   if (GV->hasLocalLinkage())
838     return true;
839 
840   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
841     return true;
842 
843   // DLLImport explicitly marks the GV as external.
844   if (GV->hasDLLImportStorageClass())
845     return false;
846 
847   const llvm::Triple &TT = CGM.getTriple();
848   if (TT.isWindowsGNUEnvironment()) {
849     // In MinGW, variables without DLLImport can still be automatically
850     // imported from a DLL by the linker; don't mark variables that
851     // potentially could come from another DLL as DSO local.
852     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
853         !GV->isThreadLocal())
854       return false;
855   }
856 
857   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
858   // remain unresolved in the link, they can be resolved to zero, which is
859   // outside the current DSO.
860   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
861     return false;
862 
863   // Every other GV is local on COFF.
864   // Make an exception for windows OS in the triple: Some firmware builds use
865   // *-win32-macho triples. This (accidentally?) produced windows relocations
866   // without GOT tables in older clang versions; Keep this behaviour.
867   // FIXME: even thread local variables?
868   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
869     return true;
870 
871   // Only handle COFF and ELF for now.
872   if (!TT.isOSBinFormatELF())
873     return false;
874 
875   // If this is not an executable, don't assume anything is local.
876   const auto &CGOpts = CGM.getCodeGenOpts();
877   llvm::Reloc::Model RM = CGOpts.RelocationModel;
878   const auto &LOpts = CGM.getLangOpts();
879   if (RM != llvm::Reloc::Static && !LOpts.PIE)
880     return false;
881 
882   // A definition cannot be preempted from an executable.
883   if (!GV->isDeclarationForLinker())
884     return true;
885 
886   // Most PIC code sequences that assume that a symbol is local cannot produce a
887   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
888   // depended, it seems worth it to handle it here.
889   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
890     return false;
891 
892   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
893   llvm::Triple::ArchType Arch = TT.getArch();
894   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
895       Arch == llvm::Triple::ppc64le)
896     return false;
897 
898   // If we can use copy relocations we can assume it is local.
899   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
900     if (!Var->isThreadLocal() &&
901         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
902       return true;
903 
904   // If we can use a plt entry as the symbol address we can assume it
905   // is local.
906   // FIXME: This should work for PIE, but the gold linker doesn't support it.
907   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
908     return true;
909 
910   // Otherwise don't assume it is local.
911   return false;
912 }
913 
914 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
915   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
916 }
917 
918 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
919                                           GlobalDecl GD) const {
920   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
921   // C++ destructors have a few C++ ABI specific special cases.
922   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
923     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
924     return;
925   }
926   setDLLImportDLLExport(GV, D);
927 }
928 
929 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
930                                           const NamedDecl *D) const {
931   if (D && D->isExternallyVisible()) {
932     if (D->hasAttr<DLLImportAttr>())
933       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
934     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
935       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
936   }
937 }
938 
939 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
940                                     GlobalDecl GD) const {
941   setDLLImportDLLExport(GV, GD);
942   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
943 }
944 
945 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
946                                     const NamedDecl *D) const {
947   setDLLImportDLLExport(GV, D);
948   setGVPropertiesAux(GV, D);
949 }
950 
951 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
952                                        const NamedDecl *D) const {
953   setGlobalVisibility(GV, D);
954   setDSOLocal(GV);
955   GV->setPartition(CodeGenOpts.SymbolPartition);
956 }
957 
958 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
959   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
960       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
961       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
962       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
963       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
964 }
965 
966 llvm::GlobalVariable::ThreadLocalMode
967 CodeGenModule::GetDefaultLLVMTLSModel() const {
968   switch (CodeGenOpts.getDefaultTLSModel()) {
969   case CodeGenOptions::GeneralDynamicTLSModel:
970     return llvm::GlobalVariable::GeneralDynamicTLSModel;
971   case CodeGenOptions::LocalDynamicTLSModel:
972     return llvm::GlobalVariable::LocalDynamicTLSModel;
973   case CodeGenOptions::InitialExecTLSModel:
974     return llvm::GlobalVariable::InitialExecTLSModel;
975   case CodeGenOptions::LocalExecTLSModel:
976     return llvm::GlobalVariable::LocalExecTLSModel;
977   }
978   llvm_unreachable("Invalid TLS model!");
979 }
980 
981 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
982   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
983 
984   llvm::GlobalValue::ThreadLocalMode TLM;
985   TLM = GetDefaultLLVMTLSModel();
986 
987   // Override the TLS model if it is explicitly specified.
988   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
989     TLM = GetLLVMTLSModel(Attr->getModel());
990   }
991 
992   GV->setThreadLocalMode(TLM);
993 }
994 
995 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
996                                           StringRef Name) {
997   const TargetInfo &Target = CGM.getTarget();
998   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
999 }
1000 
1001 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1002                                                  const CPUSpecificAttr *Attr,
1003                                                  unsigned CPUIndex,
1004                                                  raw_ostream &Out) {
1005   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1006   // supported.
1007   if (Attr)
1008     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1009   else if (CGM.getTarget().supportsIFunc())
1010     Out << ".resolver";
1011 }
1012 
1013 static void AppendTargetMangling(const CodeGenModule &CGM,
1014                                  const TargetAttr *Attr, raw_ostream &Out) {
1015   if (Attr->isDefaultVersion())
1016     return;
1017 
1018   Out << '.';
1019   const TargetInfo &Target = CGM.getTarget();
1020   ParsedTargetAttr Info =
1021       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1022         // Multiversioning doesn't allow "no-${feature}", so we can
1023         // only have "+" prefixes here.
1024         assert(LHS.startswith("+") && RHS.startswith("+") &&
1025                "Features should always have a prefix.");
1026         return Target.multiVersionSortPriority(LHS.substr(1)) >
1027                Target.multiVersionSortPriority(RHS.substr(1));
1028       });
1029 
1030   bool IsFirst = true;
1031 
1032   if (!Info.Architecture.empty()) {
1033     IsFirst = false;
1034     Out << "arch_" << Info.Architecture;
1035   }
1036 
1037   for (StringRef Feat : Info.Features) {
1038     if (!IsFirst)
1039       Out << '_';
1040     IsFirst = false;
1041     Out << Feat.substr(1);
1042   }
1043 }
1044 
1045 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1046                                       const NamedDecl *ND,
1047                                       bool OmitMultiVersionMangling = false) {
1048   SmallString<256> Buffer;
1049   llvm::raw_svector_ostream Out(Buffer);
1050   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1051   if (MC.shouldMangleDeclName(ND))
1052     MC.mangleName(GD.getWithDecl(ND), Out);
1053   else {
1054     IdentifierInfo *II = ND->getIdentifier();
1055     assert(II && "Attempt to mangle unnamed decl.");
1056     const auto *FD = dyn_cast<FunctionDecl>(ND);
1057 
1058     if (FD &&
1059         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1060       Out << "__regcall3__" << II->getName();
1061     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1062                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1063       Out << "__device_stub__" << II->getName();
1064     } else {
1065       Out << II->getName();
1066     }
1067   }
1068 
1069   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1070     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1071       switch (FD->getMultiVersionKind()) {
1072       case MultiVersionKind::CPUDispatch:
1073       case MultiVersionKind::CPUSpecific:
1074         AppendCPUSpecificCPUDispatchMangling(CGM,
1075                                              FD->getAttr<CPUSpecificAttr>(),
1076                                              GD.getMultiVersionIndex(), Out);
1077         break;
1078       case MultiVersionKind::Target:
1079         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1080         break;
1081       case MultiVersionKind::None:
1082         llvm_unreachable("None multiversion type isn't valid here");
1083       }
1084     }
1085 
1086   return std::string(Out.str());
1087 }
1088 
1089 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1090                                             const FunctionDecl *FD) {
1091   if (!FD->isMultiVersion())
1092     return;
1093 
1094   // Get the name of what this would be without the 'target' attribute.  This
1095   // allows us to lookup the version that was emitted when this wasn't a
1096   // multiversion function.
1097   std::string NonTargetName =
1098       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1099   GlobalDecl OtherGD;
1100   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1101     assert(OtherGD.getCanonicalDecl()
1102                .getDecl()
1103                ->getAsFunction()
1104                ->isMultiVersion() &&
1105            "Other GD should now be a multiversioned function");
1106     // OtherFD is the version of this function that was mangled BEFORE
1107     // becoming a MultiVersion function.  It potentially needs to be updated.
1108     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1109                                       .getDecl()
1110                                       ->getAsFunction()
1111                                       ->getMostRecentDecl();
1112     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1113     // This is so that if the initial version was already the 'default'
1114     // version, we don't try to update it.
1115     if (OtherName != NonTargetName) {
1116       // Remove instead of erase, since others may have stored the StringRef
1117       // to this.
1118       const auto ExistingRecord = Manglings.find(NonTargetName);
1119       if (ExistingRecord != std::end(Manglings))
1120         Manglings.remove(&(*ExistingRecord));
1121       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1122       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1123       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1124         Entry->setName(OtherName);
1125     }
1126   }
1127 }
1128 
1129 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1130   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1131 
1132   // Some ABIs don't have constructor variants.  Make sure that base and
1133   // complete constructors get mangled the same.
1134   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1135     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1136       CXXCtorType OrigCtorType = GD.getCtorType();
1137       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1138       if (OrigCtorType == Ctor_Base)
1139         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1140     }
1141   }
1142 
1143   auto FoundName = MangledDeclNames.find(CanonicalGD);
1144   if (FoundName != MangledDeclNames.end())
1145     return FoundName->second;
1146 
1147   // Keep the first result in the case of a mangling collision.
1148   const auto *ND = cast<NamedDecl>(GD.getDecl());
1149   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1150 
1151   // Ensure either we have different ABIs between host and device compilations,
1152   // says host compilation following MSVC ABI but device compilation follows
1153   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1154   // mangling should be the same after name stubbing. The later checking is
1155   // very important as the device kernel name being mangled in host-compilation
1156   // is used to resolve the device binaries to be executed. Inconsistent naming
1157   // result in undefined behavior. Even though we cannot check that naming
1158   // directly between host- and device-compilations, the host- and
1159   // device-mangling in host compilation could help catching certain ones.
1160   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1161          getLangOpts().CUDAIsDevice ||
1162          (getContext().getAuxTargetInfo() &&
1163           (getContext().getAuxTargetInfo()->getCXXABI() !=
1164            getContext().getTargetInfo().getCXXABI())) ||
1165          getCUDARuntime().getDeviceSideName(ND) ==
1166              getMangledNameImpl(
1167                  *this,
1168                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1169                  ND));
1170 
1171   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1172   return MangledDeclNames[CanonicalGD] = Result.first->first();
1173 }
1174 
1175 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1176                                              const BlockDecl *BD) {
1177   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1178   const Decl *D = GD.getDecl();
1179 
1180   SmallString<256> Buffer;
1181   llvm::raw_svector_ostream Out(Buffer);
1182   if (!D)
1183     MangleCtx.mangleGlobalBlock(BD,
1184       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1185   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1186     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1187   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1188     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1189   else
1190     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1191 
1192   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1193   return Result.first->first();
1194 }
1195 
1196 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1197   return getModule().getNamedValue(Name);
1198 }
1199 
1200 /// AddGlobalCtor - Add a function to the list that will be called before
1201 /// main() runs.
1202 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1203                                   llvm::Constant *AssociatedData) {
1204   // FIXME: Type coercion of void()* types.
1205   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1206 }
1207 
1208 /// AddGlobalDtor - Add a function to the list that will be called
1209 /// when the module is unloaded.
1210 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1211   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1212     if (getCXXABI().useSinitAndSterm())
1213       llvm::report_fatal_error(
1214           "register global dtors with atexit() is not supported yet");
1215     DtorsUsingAtExit[Priority].push_back(Dtor);
1216     return;
1217   }
1218 
1219   // FIXME: Type coercion of void()* types.
1220   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1221 }
1222 
1223 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1224   if (Fns.empty()) return;
1225 
1226   // Ctor function type is void()*.
1227   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1228   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1229       TheModule.getDataLayout().getProgramAddressSpace());
1230 
1231   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1232   llvm::StructType *CtorStructTy = llvm::StructType::get(
1233       Int32Ty, CtorPFTy, VoidPtrTy);
1234 
1235   // Construct the constructor and destructor arrays.
1236   ConstantInitBuilder builder(*this);
1237   auto ctors = builder.beginArray(CtorStructTy);
1238   for (const auto &I : Fns) {
1239     auto ctor = ctors.beginStruct(CtorStructTy);
1240     ctor.addInt(Int32Ty, I.Priority);
1241     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1242     if (I.AssociatedData)
1243       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1244     else
1245       ctor.addNullPointer(VoidPtrTy);
1246     ctor.finishAndAddTo(ctors);
1247   }
1248 
1249   auto list =
1250     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1251                                 /*constant*/ false,
1252                                 llvm::GlobalValue::AppendingLinkage);
1253 
1254   // The LTO linker doesn't seem to like it when we set an alignment
1255   // on appending variables.  Take it off as a workaround.
1256   list->setAlignment(llvm::None);
1257 
1258   Fns.clear();
1259 }
1260 
1261 llvm::GlobalValue::LinkageTypes
1262 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1263   const auto *D = cast<FunctionDecl>(GD.getDecl());
1264 
1265   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1266 
1267   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1268     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1269 
1270   if (isa<CXXConstructorDecl>(D) &&
1271       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1272       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1273     // Our approach to inheriting constructors is fundamentally different from
1274     // that used by the MS ABI, so keep our inheriting constructor thunks
1275     // internal rather than trying to pick an unambiguous mangling for them.
1276     return llvm::GlobalValue::InternalLinkage;
1277   }
1278 
1279   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1280 }
1281 
1282 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1283   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1284   if (!MDS) return nullptr;
1285 
1286   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1287 }
1288 
1289 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1290                                               const CGFunctionInfo &Info,
1291                                               llvm::Function *F) {
1292   unsigned CallingConv;
1293   llvm::AttributeList PAL;
1294   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1295   F->setAttributes(PAL);
1296   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1297 }
1298 
1299 static void removeImageAccessQualifier(std::string& TyName) {
1300   std::string ReadOnlyQual("__read_only");
1301   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1302   if (ReadOnlyPos != std::string::npos)
1303     // "+ 1" for the space after access qualifier.
1304     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1305   else {
1306     std::string WriteOnlyQual("__write_only");
1307     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1308     if (WriteOnlyPos != std::string::npos)
1309       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1310     else {
1311       std::string ReadWriteQual("__read_write");
1312       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1313       if (ReadWritePos != std::string::npos)
1314         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1315     }
1316   }
1317 }
1318 
1319 // Returns the address space id that should be produced to the
1320 // kernel_arg_addr_space metadata. This is always fixed to the ids
1321 // as specified in the SPIR 2.0 specification in order to differentiate
1322 // for example in clGetKernelArgInfo() implementation between the address
1323 // spaces with targets without unique mapping to the OpenCL address spaces
1324 // (basically all single AS CPUs).
1325 static unsigned ArgInfoAddressSpace(LangAS AS) {
1326   switch (AS) {
1327   case LangAS::opencl_global:   return 1;
1328   case LangAS::opencl_constant: return 2;
1329   case LangAS::opencl_local:    return 3;
1330   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1331   default:
1332     return 0; // Assume private.
1333   }
1334 }
1335 
1336 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1337                                          const FunctionDecl *FD,
1338                                          CodeGenFunction *CGF) {
1339   assert(((FD && CGF) || (!FD && !CGF)) &&
1340          "Incorrect use - FD and CGF should either be both null or not!");
1341   // Create MDNodes that represent the kernel arg metadata.
1342   // Each MDNode is a list in the form of "key", N number of values which is
1343   // the same number of values as their are kernel arguments.
1344 
1345   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1346 
1347   // MDNode for the kernel argument address space qualifiers.
1348   SmallVector<llvm::Metadata *, 8> addressQuals;
1349 
1350   // MDNode for the kernel argument access qualifiers (images only).
1351   SmallVector<llvm::Metadata *, 8> accessQuals;
1352 
1353   // MDNode for the kernel argument type names.
1354   SmallVector<llvm::Metadata *, 8> argTypeNames;
1355 
1356   // MDNode for the kernel argument base type names.
1357   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1358 
1359   // MDNode for the kernel argument type qualifiers.
1360   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1361 
1362   // MDNode for the kernel argument names.
1363   SmallVector<llvm::Metadata *, 8> argNames;
1364 
1365   if (FD && CGF)
1366     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1367       const ParmVarDecl *parm = FD->getParamDecl(i);
1368       QualType ty = parm->getType();
1369       std::string typeQuals;
1370 
1371       if (ty->isPointerType()) {
1372         QualType pointeeTy = ty->getPointeeType();
1373 
1374         // Get address qualifier.
1375         addressQuals.push_back(
1376             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1377                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1378 
1379         // Get argument type name.
1380         std::string typeName =
1381             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1382 
1383         // Turn "unsigned type" to "utype"
1384         std::string::size_type pos = typeName.find("unsigned");
1385         if (pointeeTy.isCanonical() && pos != std::string::npos)
1386           typeName.erase(pos + 1, 8);
1387 
1388         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1389 
1390         std::string baseTypeName =
1391             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1392                 Policy) +
1393             "*";
1394 
1395         // Turn "unsigned type" to "utype"
1396         pos = baseTypeName.find("unsigned");
1397         if (pos != std::string::npos)
1398           baseTypeName.erase(pos + 1, 8);
1399 
1400         argBaseTypeNames.push_back(
1401             llvm::MDString::get(VMContext, baseTypeName));
1402 
1403         // Get argument type qualifiers:
1404         if (ty.isRestrictQualified())
1405           typeQuals = "restrict";
1406         if (pointeeTy.isConstQualified() ||
1407             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1408           typeQuals += typeQuals.empty() ? "const" : " const";
1409         if (pointeeTy.isVolatileQualified())
1410           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1411       } else {
1412         uint32_t AddrSpc = 0;
1413         bool isPipe = ty->isPipeType();
1414         if (ty->isImageType() || isPipe)
1415           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1416 
1417         addressQuals.push_back(
1418             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1419 
1420         // Get argument type name.
1421         std::string typeName;
1422         if (isPipe)
1423           typeName = ty.getCanonicalType()
1424                          ->castAs<PipeType>()
1425                          ->getElementType()
1426                          .getAsString(Policy);
1427         else
1428           typeName = ty.getUnqualifiedType().getAsString(Policy);
1429 
1430         // Turn "unsigned type" to "utype"
1431         std::string::size_type pos = typeName.find("unsigned");
1432         if (ty.isCanonical() && pos != std::string::npos)
1433           typeName.erase(pos + 1, 8);
1434 
1435         std::string baseTypeName;
1436         if (isPipe)
1437           baseTypeName = ty.getCanonicalType()
1438                              ->castAs<PipeType>()
1439                              ->getElementType()
1440                              .getCanonicalType()
1441                              .getAsString(Policy);
1442         else
1443           baseTypeName =
1444               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1445 
1446         // Remove access qualifiers on images
1447         // (as they are inseparable from type in clang implementation,
1448         // but OpenCL spec provides a special query to get access qualifier
1449         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1450         if (ty->isImageType()) {
1451           removeImageAccessQualifier(typeName);
1452           removeImageAccessQualifier(baseTypeName);
1453         }
1454 
1455         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1456 
1457         // Turn "unsigned type" to "utype"
1458         pos = baseTypeName.find("unsigned");
1459         if (pos != std::string::npos)
1460           baseTypeName.erase(pos + 1, 8);
1461 
1462         argBaseTypeNames.push_back(
1463             llvm::MDString::get(VMContext, baseTypeName));
1464 
1465         if (isPipe)
1466           typeQuals = "pipe";
1467       }
1468 
1469       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1470 
1471       // Get image and pipe access qualifier:
1472       if (ty->isImageType() || ty->isPipeType()) {
1473         const Decl *PDecl = parm;
1474         if (auto *TD = dyn_cast<TypedefType>(ty))
1475           PDecl = TD->getDecl();
1476         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1477         if (A && A->isWriteOnly())
1478           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1479         else if (A && A->isReadWrite())
1480           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1481         else
1482           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1483       } else
1484         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1485 
1486       // Get argument name.
1487       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1488     }
1489 
1490   Fn->setMetadata("kernel_arg_addr_space",
1491                   llvm::MDNode::get(VMContext, addressQuals));
1492   Fn->setMetadata("kernel_arg_access_qual",
1493                   llvm::MDNode::get(VMContext, accessQuals));
1494   Fn->setMetadata("kernel_arg_type",
1495                   llvm::MDNode::get(VMContext, argTypeNames));
1496   Fn->setMetadata("kernel_arg_base_type",
1497                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1498   Fn->setMetadata("kernel_arg_type_qual",
1499                   llvm::MDNode::get(VMContext, argTypeQuals));
1500   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1501     Fn->setMetadata("kernel_arg_name",
1502                     llvm::MDNode::get(VMContext, argNames));
1503 }
1504 
1505 /// Determines whether the language options require us to model
1506 /// unwind exceptions.  We treat -fexceptions as mandating this
1507 /// except under the fragile ObjC ABI with only ObjC exceptions
1508 /// enabled.  This means, for example, that C with -fexceptions
1509 /// enables this.
1510 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1511   // If exceptions are completely disabled, obviously this is false.
1512   if (!LangOpts.Exceptions) return false;
1513 
1514   // If C++ exceptions are enabled, this is true.
1515   if (LangOpts.CXXExceptions) return true;
1516 
1517   // If ObjC exceptions are enabled, this depends on the ABI.
1518   if (LangOpts.ObjCExceptions) {
1519     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1520   }
1521 
1522   return true;
1523 }
1524 
1525 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1526                                                       const CXXMethodDecl *MD) {
1527   // Check that the type metadata can ever actually be used by a call.
1528   if (!CGM.getCodeGenOpts().LTOUnit ||
1529       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1530     return false;
1531 
1532   // Only functions whose address can be taken with a member function pointer
1533   // need this sort of type metadata.
1534   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1535          !isa<CXXDestructorDecl>(MD);
1536 }
1537 
1538 std::vector<const CXXRecordDecl *>
1539 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1540   llvm::SetVector<const CXXRecordDecl *> MostBases;
1541 
1542   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1543   CollectMostBases = [&](const CXXRecordDecl *RD) {
1544     if (RD->getNumBases() == 0)
1545       MostBases.insert(RD);
1546     for (const CXXBaseSpecifier &B : RD->bases())
1547       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1548   };
1549   CollectMostBases(RD);
1550   return MostBases.takeVector();
1551 }
1552 
1553 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1554                                                            llvm::Function *F) {
1555   llvm::AttrBuilder B;
1556 
1557   if (CodeGenOpts.UnwindTables)
1558     B.addAttribute(llvm::Attribute::UWTable);
1559 
1560   if (CodeGenOpts.StackClashProtector)
1561     B.addAttribute("probe-stack", "inline-asm");
1562 
1563   if (!hasUnwindExceptions(LangOpts))
1564     B.addAttribute(llvm::Attribute::NoUnwind);
1565 
1566   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1567     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1568       B.addAttribute(llvm::Attribute::StackProtect);
1569     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1570       B.addAttribute(llvm::Attribute::StackProtectStrong);
1571     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1572       B.addAttribute(llvm::Attribute::StackProtectReq);
1573   }
1574 
1575   if (!D) {
1576     // If we don't have a declaration to control inlining, the function isn't
1577     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1578     // disabled, mark the function as noinline.
1579     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1580         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1581       B.addAttribute(llvm::Attribute::NoInline);
1582 
1583     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1584     return;
1585   }
1586 
1587   // Track whether we need to add the optnone LLVM attribute,
1588   // starting with the default for this optimization level.
1589   bool ShouldAddOptNone =
1590       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1591   // We can't add optnone in the following cases, it won't pass the verifier.
1592   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1593   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1594 
1595   // Add optnone, but do so only if the function isn't always_inline.
1596   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1597       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1598     B.addAttribute(llvm::Attribute::OptimizeNone);
1599 
1600     // OptimizeNone implies noinline; we should not be inlining such functions.
1601     B.addAttribute(llvm::Attribute::NoInline);
1602 
1603     // We still need to handle naked functions even though optnone subsumes
1604     // much of their semantics.
1605     if (D->hasAttr<NakedAttr>())
1606       B.addAttribute(llvm::Attribute::Naked);
1607 
1608     // OptimizeNone wins over OptimizeForSize and MinSize.
1609     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1610     F->removeFnAttr(llvm::Attribute::MinSize);
1611   } else if (D->hasAttr<NakedAttr>()) {
1612     // Naked implies noinline: we should not be inlining such functions.
1613     B.addAttribute(llvm::Attribute::Naked);
1614     B.addAttribute(llvm::Attribute::NoInline);
1615   } else if (D->hasAttr<NoDuplicateAttr>()) {
1616     B.addAttribute(llvm::Attribute::NoDuplicate);
1617   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1618     // Add noinline if the function isn't always_inline.
1619     B.addAttribute(llvm::Attribute::NoInline);
1620   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1621              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1622     // (noinline wins over always_inline, and we can't specify both in IR)
1623     B.addAttribute(llvm::Attribute::AlwaysInline);
1624   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1625     // If we're not inlining, then force everything that isn't always_inline to
1626     // carry an explicit noinline attribute.
1627     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1628       B.addAttribute(llvm::Attribute::NoInline);
1629   } else {
1630     // Otherwise, propagate the inline hint attribute and potentially use its
1631     // absence to mark things as noinline.
1632     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1633       // Search function and template pattern redeclarations for inline.
1634       auto CheckForInline = [](const FunctionDecl *FD) {
1635         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1636           return Redecl->isInlineSpecified();
1637         };
1638         if (any_of(FD->redecls(), CheckRedeclForInline))
1639           return true;
1640         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1641         if (!Pattern)
1642           return false;
1643         return any_of(Pattern->redecls(), CheckRedeclForInline);
1644       };
1645       if (CheckForInline(FD)) {
1646         B.addAttribute(llvm::Attribute::InlineHint);
1647       } else if (CodeGenOpts.getInlining() ==
1648                      CodeGenOptions::OnlyHintInlining &&
1649                  !FD->isInlined() &&
1650                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1651         B.addAttribute(llvm::Attribute::NoInline);
1652       }
1653     }
1654   }
1655 
1656   // Add other optimization related attributes if we are optimizing this
1657   // function.
1658   if (!D->hasAttr<OptimizeNoneAttr>()) {
1659     if (D->hasAttr<ColdAttr>()) {
1660       if (!ShouldAddOptNone)
1661         B.addAttribute(llvm::Attribute::OptimizeForSize);
1662       B.addAttribute(llvm::Attribute::Cold);
1663     }
1664 
1665     if (D->hasAttr<MinSizeAttr>())
1666       B.addAttribute(llvm::Attribute::MinSize);
1667   }
1668 
1669   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1670 
1671   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1672   if (alignment)
1673     F->setAlignment(llvm::Align(alignment));
1674 
1675   if (!D->hasAttr<AlignedAttr>())
1676     if (LangOpts.FunctionAlignment)
1677       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1678 
1679   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1680   // reserve a bit for differentiating between virtual and non-virtual member
1681   // functions. If the current target's C++ ABI requires this and this is a
1682   // member function, set its alignment accordingly.
1683   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1684     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1685       F->setAlignment(llvm::Align(2));
1686   }
1687 
1688   // In the cross-dso CFI mode with canonical jump tables, we want !type
1689   // attributes on definitions only.
1690   if (CodeGenOpts.SanitizeCfiCrossDso &&
1691       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1692     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1693       // Skip available_externally functions. They won't be codegen'ed in the
1694       // current module anyway.
1695       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1696         CreateFunctionTypeMetadataForIcall(FD, F);
1697     }
1698   }
1699 
1700   // Emit type metadata on member functions for member function pointer checks.
1701   // These are only ever necessary on definitions; we're guaranteed that the
1702   // definition will be present in the LTO unit as a result of LTO visibility.
1703   auto *MD = dyn_cast<CXXMethodDecl>(D);
1704   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1705     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1706       llvm::Metadata *Id =
1707           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1708               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1709       F->addTypeMetadata(0, Id);
1710     }
1711   }
1712 }
1713 
1714 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1715   const Decl *D = GD.getDecl();
1716   if (dyn_cast_or_null<NamedDecl>(D))
1717     setGVProperties(GV, GD);
1718   else
1719     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1720 
1721   if (D && D->hasAttr<UsedAttr>())
1722     addUsedGlobal(GV);
1723 
1724   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1725     const auto *VD = cast<VarDecl>(D);
1726     if (VD->getType().isConstQualified() &&
1727         VD->getStorageDuration() == SD_Static)
1728       addUsedGlobal(GV);
1729   }
1730 }
1731 
1732 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1733                                                 llvm::AttrBuilder &Attrs) {
1734   // Add target-cpu and target-features attributes to functions. If
1735   // we have a decl for the function and it has a target attribute then
1736   // parse that and add it to the feature set.
1737   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1738   std::vector<std::string> Features;
1739   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1740   FD = FD ? FD->getMostRecentDecl() : FD;
1741   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1742   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1743   bool AddedAttr = false;
1744   if (TD || SD) {
1745     llvm::StringMap<bool> FeatureMap;
1746     getContext().getFunctionFeatureMap(FeatureMap, GD);
1747 
1748     // Produce the canonical string for this set of features.
1749     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1750       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1751 
1752     // Now add the target-cpu and target-features to the function.
1753     // While we populated the feature map above, we still need to
1754     // get and parse the target attribute so we can get the cpu for
1755     // the function.
1756     if (TD) {
1757       ParsedTargetAttr ParsedAttr = TD->parse();
1758       if (ParsedAttr.Architecture != "" &&
1759           getTarget().isValidCPUName(ParsedAttr.Architecture))
1760         TargetCPU = ParsedAttr.Architecture;
1761     }
1762   } else {
1763     // Otherwise just add the existing target cpu and target features to the
1764     // function.
1765     Features = getTarget().getTargetOpts().Features;
1766   }
1767 
1768   if (TargetCPU != "") {
1769     Attrs.addAttribute("target-cpu", TargetCPU);
1770     AddedAttr = true;
1771   }
1772   if (!Features.empty()) {
1773     llvm::sort(Features);
1774     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1775     AddedAttr = true;
1776   }
1777 
1778   return AddedAttr;
1779 }
1780 
1781 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1782                                           llvm::GlobalObject *GO) {
1783   const Decl *D = GD.getDecl();
1784   SetCommonAttributes(GD, GO);
1785 
1786   if (D) {
1787     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1788       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1789         GV->addAttribute("bss-section", SA->getName());
1790       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1791         GV->addAttribute("data-section", SA->getName());
1792       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1793         GV->addAttribute("rodata-section", SA->getName());
1794       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1795         GV->addAttribute("relro-section", SA->getName());
1796     }
1797 
1798     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1799       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1800         if (!D->getAttr<SectionAttr>())
1801           F->addFnAttr("implicit-section-name", SA->getName());
1802 
1803       llvm::AttrBuilder Attrs;
1804       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1805         // We know that GetCPUAndFeaturesAttributes will always have the
1806         // newest set, since it has the newest possible FunctionDecl, so the
1807         // new ones should replace the old.
1808         F->removeFnAttr("target-cpu");
1809         F->removeFnAttr("target-features");
1810         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1811       }
1812     }
1813 
1814     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1815       GO->setSection(CSA->getName());
1816     else if (const auto *SA = D->getAttr<SectionAttr>())
1817       GO->setSection(SA->getName());
1818   }
1819 
1820   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1821 }
1822 
1823 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1824                                                   llvm::Function *F,
1825                                                   const CGFunctionInfo &FI) {
1826   const Decl *D = GD.getDecl();
1827   SetLLVMFunctionAttributes(GD, FI, F);
1828   SetLLVMFunctionAttributesForDefinition(D, F);
1829 
1830   F->setLinkage(llvm::Function::InternalLinkage);
1831 
1832   setNonAliasAttributes(GD, F);
1833 }
1834 
1835 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1836   // Set linkage and visibility in case we never see a definition.
1837   LinkageInfo LV = ND->getLinkageAndVisibility();
1838   // Don't set internal linkage on declarations.
1839   // "extern_weak" is overloaded in LLVM; we probably should have
1840   // separate linkage types for this.
1841   if (isExternallyVisible(LV.getLinkage()) &&
1842       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1843     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1844 }
1845 
1846 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1847                                                        llvm::Function *F) {
1848   // Only if we are checking indirect calls.
1849   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1850     return;
1851 
1852   // Non-static class methods are handled via vtable or member function pointer
1853   // checks elsewhere.
1854   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1855     return;
1856 
1857   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1858   F->addTypeMetadata(0, MD);
1859   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1860 
1861   // Emit a hash-based bit set entry for cross-DSO calls.
1862   if (CodeGenOpts.SanitizeCfiCrossDso)
1863     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1864       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1865 }
1866 
1867 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1868                                           bool IsIncompleteFunction,
1869                                           bool IsThunk) {
1870 
1871   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1872     // If this is an intrinsic function, set the function's attributes
1873     // to the intrinsic's attributes.
1874     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1875     return;
1876   }
1877 
1878   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1879 
1880   if (!IsIncompleteFunction)
1881     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1882 
1883   // Add the Returned attribute for "this", except for iOS 5 and earlier
1884   // where substantial code, including the libstdc++ dylib, was compiled with
1885   // GCC and does not actually return "this".
1886   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1887       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1888     assert(!F->arg_empty() &&
1889            F->arg_begin()->getType()
1890              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1891            "unexpected this return");
1892     F->addAttribute(1, llvm::Attribute::Returned);
1893   }
1894 
1895   // Only a few attributes are set on declarations; these may later be
1896   // overridden by a definition.
1897 
1898   setLinkageForGV(F, FD);
1899   setGVProperties(F, FD);
1900 
1901   // Setup target-specific attributes.
1902   if (!IsIncompleteFunction && F->isDeclaration())
1903     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1904 
1905   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1906     F->setSection(CSA->getName());
1907   else if (const auto *SA = FD->getAttr<SectionAttr>())
1908      F->setSection(SA->getName());
1909 
1910   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1911   if (FD->isInlineBuiltinDeclaration()) {
1912     const FunctionDecl *FDBody;
1913     bool HasBody = FD->hasBody(FDBody);
1914     (void)HasBody;
1915     assert(HasBody && "Inline builtin declarations should always have an "
1916                       "available body!");
1917     if (shouldEmitFunction(FDBody))
1918       F->addAttribute(llvm::AttributeList::FunctionIndex,
1919                       llvm::Attribute::NoBuiltin);
1920   }
1921 
1922   if (FD->isReplaceableGlobalAllocationFunction()) {
1923     // A replaceable global allocation function does not act like a builtin by
1924     // default, only if it is invoked by a new-expression or delete-expression.
1925     F->addAttribute(llvm::AttributeList::FunctionIndex,
1926                     llvm::Attribute::NoBuiltin);
1927   }
1928 
1929   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1930     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1931   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1932     if (MD->isVirtual())
1933       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1934 
1935   // Don't emit entries for function declarations in the cross-DSO mode. This
1936   // is handled with better precision by the receiving DSO. But if jump tables
1937   // are non-canonical then we need type metadata in order to produce the local
1938   // jump table.
1939   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1940       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1941     CreateFunctionTypeMetadataForIcall(FD, F);
1942 
1943   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1944     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1945 
1946   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1947     // Annotate the callback behavior as metadata:
1948     //  - The callback callee (as argument number).
1949     //  - The callback payloads (as argument numbers).
1950     llvm::LLVMContext &Ctx = F->getContext();
1951     llvm::MDBuilder MDB(Ctx);
1952 
1953     // The payload indices are all but the first one in the encoding. The first
1954     // identifies the callback callee.
1955     int CalleeIdx = *CB->encoding_begin();
1956     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1957     F->addMetadata(llvm::LLVMContext::MD_callback,
1958                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1959                                                CalleeIdx, PayloadIndices,
1960                                                /* VarArgsArePassed */ false)}));
1961   }
1962 }
1963 
1964 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1965   assert(!GV->isDeclaration() &&
1966          "Only globals with definition can force usage.");
1967   LLVMUsed.emplace_back(GV);
1968 }
1969 
1970 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1971   assert(!GV->isDeclaration() &&
1972          "Only globals with definition can force usage.");
1973   LLVMCompilerUsed.emplace_back(GV);
1974 }
1975 
1976 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1977                      std::vector<llvm::WeakTrackingVH> &List) {
1978   // Don't create llvm.used if there is no need.
1979   if (List.empty())
1980     return;
1981 
1982   // Convert List to what ConstantArray needs.
1983   SmallVector<llvm::Constant*, 8> UsedArray;
1984   UsedArray.resize(List.size());
1985   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1986     UsedArray[i] =
1987         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1988             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1989   }
1990 
1991   if (UsedArray.empty())
1992     return;
1993   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1994 
1995   auto *GV = new llvm::GlobalVariable(
1996       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1997       llvm::ConstantArray::get(ATy, UsedArray), Name);
1998 
1999   GV->setSection("llvm.metadata");
2000 }
2001 
2002 void CodeGenModule::emitLLVMUsed() {
2003   emitUsed(*this, "llvm.used", LLVMUsed);
2004   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2005 }
2006 
2007 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2008   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2009   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2010 }
2011 
2012 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2013   llvm::SmallString<32> Opt;
2014   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2015   if (Opt.empty())
2016     return;
2017   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2018   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2019 }
2020 
2021 void CodeGenModule::AddDependentLib(StringRef Lib) {
2022   auto &C = getLLVMContext();
2023   if (getTarget().getTriple().isOSBinFormatELF()) {
2024       ELFDependentLibraries.push_back(
2025         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2026     return;
2027   }
2028 
2029   llvm::SmallString<24> Opt;
2030   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2031   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2032   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2033 }
2034 
2035 /// Add link options implied by the given module, including modules
2036 /// it depends on, using a postorder walk.
2037 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2038                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2039                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2040   // Import this module's parent.
2041   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2042     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2043   }
2044 
2045   // Import this module's dependencies.
2046   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2047     if (Visited.insert(Mod->Imports[I - 1]).second)
2048       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2049   }
2050 
2051   // Add linker options to link against the libraries/frameworks
2052   // described by this module.
2053   llvm::LLVMContext &Context = CGM.getLLVMContext();
2054   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2055 
2056   // For modules that use export_as for linking, use that module
2057   // name instead.
2058   if (Mod->UseExportAsModuleLinkName)
2059     return;
2060 
2061   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2062     // Link against a framework.  Frameworks are currently Darwin only, so we
2063     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2064     if (Mod->LinkLibraries[I-1].IsFramework) {
2065       llvm::Metadata *Args[2] = {
2066           llvm::MDString::get(Context, "-framework"),
2067           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2068 
2069       Metadata.push_back(llvm::MDNode::get(Context, Args));
2070       continue;
2071     }
2072 
2073     // Link against a library.
2074     if (IsELF) {
2075       llvm::Metadata *Args[2] = {
2076           llvm::MDString::get(Context, "lib"),
2077           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2078       };
2079       Metadata.push_back(llvm::MDNode::get(Context, Args));
2080     } else {
2081       llvm::SmallString<24> Opt;
2082       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2083           Mod->LinkLibraries[I - 1].Library, Opt);
2084       auto *OptString = llvm::MDString::get(Context, Opt);
2085       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2086     }
2087   }
2088 }
2089 
2090 void CodeGenModule::EmitModuleLinkOptions() {
2091   // Collect the set of all of the modules we want to visit to emit link
2092   // options, which is essentially the imported modules and all of their
2093   // non-explicit child modules.
2094   llvm::SetVector<clang::Module *> LinkModules;
2095   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2096   SmallVector<clang::Module *, 16> Stack;
2097 
2098   // Seed the stack with imported modules.
2099   for (Module *M : ImportedModules) {
2100     // Do not add any link flags when an implementation TU of a module imports
2101     // a header of that same module.
2102     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2103         !getLangOpts().isCompilingModule())
2104       continue;
2105     if (Visited.insert(M).second)
2106       Stack.push_back(M);
2107   }
2108 
2109   // Find all of the modules to import, making a little effort to prune
2110   // non-leaf modules.
2111   while (!Stack.empty()) {
2112     clang::Module *Mod = Stack.pop_back_val();
2113 
2114     bool AnyChildren = false;
2115 
2116     // Visit the submodules of this module.
2117     for (const auto &SM : Mod->submodules()) {
2118       // Skip explicit children; they need to be explicitly imported to be
2119       // linked against.
2120       if (SM->IsExplicit)
2121         continue;
2122 
2123       if (Visited.insert(SM).second) {
2124         Stack.push_back(SM);
2125         AnyChildren = true;
2126       }
2127     }
2128 
2129     // We didn't find any children, so add this module to the list of
2130     // modules to link against.
2131     if (!AnyChildren) {
2132       LinkModules.insert(Mod);
2133     }
2134   }
2135 
2136   // Add link options for all of the imported modules in reverse topological
2137   // order.  We don't do anything to try to order import link flags with respect
2138   // to linker options inserted by things like #pragma comment().
2139   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2140   Visited.clear();
2141   for (Module *M : LinkModules)
2142     if (Visited.insert(M).second)
2143       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2144   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2145   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2146 
2147   // Add the linker options metadata flag.
2148   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2149   for (auto *MD : LinkerOptionsMetadata)
2150     NMD->addOperand(MD);
2151 }
2152 
2153 void CodeGenModule::EmitDeferred() {
2154   // Emit deferred declare target declarations.
2155   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2156     getOpenMPRuntime().emitDeferredTargetDecls();
2157 
2158   // Emit code for any potentially referenced deferred decls.  Since a
2159   // previously unused static decl may become used during the generation of code
2160   // for a static function, iterate until no changes are made.
2161 
2162   if (!DeferredVTables.empty()) {
2163     EmitDeferredVTables();
2164 
2165     // Emitting a vtable doesn't directly cause more vtables to
2166     // become deferred, although it can cause functions to be
2167     // emitted that then need those vtables.
2168     assert(DeferredVTables.empty());
2169   }
2170 
2171   // Stop if we're out of both deferred vtables and deferred declarations.
2172   if (DeferredDeclsToEmit.empty())
2173     return;
2174 
2175   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2176   // work, it will not interfere with this.
2177   std::vector<GlobalDecl> CurDeclsToEmit;
2178   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2179 
2180   for (GlobalDecl &D : CurDeclsToEmit) {
2181     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2182     // to get GlobalValue with exactly the type we need, not something that
2183     // might had been created for another decl with the same mangled name but
2184     // different type.
2185     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2186         GetAddrOfGlobal(D, ForDefinition));
2187 
2188     // In case of different address spaces, we may still get a cast, even with
2189     // IsForDefinition equal to true. Query mangled names table to get
2190     // GlobalValue.
2191     if (!GV)
2192       GV = GetGlobalValue(getMangledName(D));
2193 
2194     // Make sure GetGlobalValue returned non-null.
2195     assert(GV);
2196 
2197     // Check to see if we've already emitted this.  This is necessary
2198     // for a couple of reasons: first, decls can end up in the
2199     // deferred-decls queue multiple times, and second, decls can end
2200     // up with definitions in unusual ways (e.g. by an extern inline
2201     // function acquiring a strong function redefinition).  Just
2202     // ignore these cases.
2203     if (!GV->isDeclaration())
2204       continue;
2205 
2206     // If this is OpenMP, check if it is legal to emit this global normally.
2207     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2208       continue;
2209 
2210     // Otherwise, emit the definition and move on to the next one.
2211     EmitGlobalDefinition(D, GV);
2212 
2213     // If we found out that we need to emit more decls, do that recursively.
2214     // This has the advantage that the decls are emitted in a DFS and related
2215     // ones are close together, which is convenient for testing.
2216     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2217       EmitDeferred();
2218       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2219     }
2220   }
2221 }
2222 
2223 void CodeGenModule::EmitVTablesOpportunistically() {
2224   // Try to emit external vtables as available_externally if they have emitted
2225   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2226   // is not allowed to create new references to things that need to be emitted
2227   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2228 
2229   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2230          && "Only emit opportunistic vtables with optimizations");
2231 
2232   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2233     assert(getVTables().isVTableExternal(RD) &&
2234            "This queue should only contain external vtables");
2235     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2236       VTables.GenerateClassData(RD);
2237   }
2238   OpportunisticVTables.clear();
2239 }
2240 
2241 void CodeGenModule::EmitGlobalAnnotations() {
2242   if (Annotations.empty())
2243     return;
2244 
2245   // Create a new global variable for the ConstantStruct in the Module.
2246   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2247     Annotations[0]->getType(), Annotations.size()), Annotations);
2248   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2249                                       llvm::GlobalValue::AppendingLinkage,
2250                                       Array, "llvm.global.annotations");
2251   gv->setSection(AnnotationSection);
2252 }
2253 
2254 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2255   llvm::Constant *&AStr = AnnotationStrings[Str];
2256   if (AStr)
2257     return AStr;
2258 
2259   // Not found yet, create a new global.
2260   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2261   auto *gv =
2262       new llvm::GlobalVariable(getModule(), s->getType(), true,
2263                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2264   gv->setSection(AnnotationSection);
2265   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2266   AStr = gv;
2267   return gv;
2268 }
2269 
2270 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2271   SourceManager &SM = getContext().getSourceManager();
2272   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2273   if (PLoc.isValid())
2274     return EmitAnnotationString(PLoc.getFilename());
2275   return EmitAnnotationString(SM.getBufferName(Loc));
2276 }
2277 
2278 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2279   SourceManager &SM = getContext().getSourceManager();
2280   PresumedLoc PLoc = SM.getPresumedLoc(L);
2281   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2282     SM.getExpansionLineNumber(L);
2283   return llvm::ConstantInt::get(Int32Ty, LineNo);
2284 }
2285 
2286 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2287                                                 const AnnotateAttr *AA,
2288                                                 SourceLocation L) {
2289   // Get the globals for file name, annotation, and the line number.
2290   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2291                  *UnitGV = EmitAnnotationUnit(L),
2292                  *LineNoCst = EmitAnnotationLineNo(L);
2293 
2294   llvm::Constant *ASZeroGV = GV;
2295   if (GV->getAddressSpace() != 0) {
2296     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2297                    GV, GV->getValueType()->getPointerTo(0));
2298   }
2299 
2300   // Create the ConstantStruct for the global annotation.
2301   llvm::Constant *Fields[4] = {
2302     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2303     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2304     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2305     LineNoCst
2306   };
2307   return llvm::ConstantStruct::getAnon(Fields);
2308 }
2309 
2310 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2311                                          llvm::GlobalValue *GV) {
2312   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2313   // Get the struct elements for these annotations.
2314   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2315     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2316 }
2317 
2318 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2319                                            llvm::Function *Fn,
2320                                            SourceLocation Loc) const {
2321   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2322   // Blacklist by function name.
2323   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2324     return true;
2325   // Blacklist by location.
2326   if (Loc.isValid())
2327     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2328   // If location is unknown, this may be a compiler-generated function. Assume
2329   // it's located in the main file.
2330   auto &SM = Context.getSourceManager();
2331   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2332     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2333   }
2334   return false;
2335 }
2336 
2337 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2338                                            SourceLocation Loc, QualType Ty,
2339                                            StringRef Category) const {
2340   // For now globals can be blacklisted only in ASan and KASan.
2341   const SanitizerMask EnabledAsanMask =
2342       LangOpts.Sanitize.Mask &
2343       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2344        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2345        SanitizerKind::MemTag);
2346   if (!EnabledAsanMask)
2347     return false;
2348   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2349   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2350     return true;
2351   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2352     return true;
2353   // Check global type.
2354   if (!Ty.isNull()) {
2355     // Drill down the array types: if global variable of a fixed type is
2356     // blacklisted, we also don't instrument arrays of them.
2357     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2358       Ty = AT->getElementType();
2359     Ty = Ty.getCanonicalType().getUnqualifiedType();
2360     // We allow to blacklist only record types (classes, structs etc.)
2361     if (Ty->isRecordType()) {
2362       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2363       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2364         return true;
2365     }
2366   }
2367   return false;
2368 }
2369 
2370 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2371                                    StringRef Category) const {
2372   const auto &XRayFilter = getContext().getXRayFilter();
2373   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2374   auto Attr = ImbueAttr::NONE;
2375   if (Loc.isValid())
2376     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2377   if (Attr == ImbueAttr::NONE)
2378     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2379   switch (Attr) {
2380   case ImbueAttr::NONE:
2381     return false;
2382   case ImbueAttr::ALWAYS:
2383     Fn->addFnAttr("function-instrument", "xray-always");
2384     break;
2385   case ImbueAttr::ALWAYS_ARG1:
2386     Fn->addFnAttr("function-instrument", "xray-always");
2387     Fn->addFnAttr("xray-log-args", "1");
2388     break;
2389   case ImbueAttr::NEVER:
2390     Fn->addFnAttr("function-instrument", "xray-never");
2391     break;
2392   }
2393   return true;
2394 }
2395 
2396 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2397   // Never defer when EmitAllDecls is specified.
2398   if (LangOpts.EmitAllDecls)
2399     return true;
2400 
2401   if (CodeGenOpts.KeepStaticConsts) {
2402     const auto *VD = dyn_cast<VarDecl>(Global);
2403     if (VD && VD->getType().isConstQualified() &&
2404         VD->getStorageDuration() == SD_Static)
2405       return true;
2406   }
2407 
2408   return getContext().DeclMustBeEmitted(Global);
2409 }
2410 
2411 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2412   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2413     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2414       // Implicit template instantiations may change linkage if they are later
2415       // explicitly instantiated, so they should not be emitted eagerly.
2416       return false;
2417     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2418     // not emit them eagerly unless we sure that the function must be emitted on
2419     // the host.
2420     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2421         !LangOpts.OpenMPIsDevice &&
2422         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2423         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2424       return false;
2425   }
2426   if (const auto *VD = dyn_cast<VarDecl>(Global))
2427     if (Context.getInlineVariableDefinitionKind(VD) ==
2428         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2429       // A definition of an inline constexpr static data member may change
2430       // linkage later if it's redeclared outside the class.
2431       return false;
2432   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2433   // codegen for global variables, because they may be marked as threadprivate.
2434   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2435       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2436       !isTypeConstant(Global->getType(), false) &&
2437       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2438     return false;
2439 
2440   return true;
2441 }
2442 
2443 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2444   StringRef Name = getMangledName(GD);
2445 
2446   // The UUID descriptor should be pointer aligned.
2447   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2448 
2449   // Look for an existing global.
2450   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2451     return ConstantAddress(GV, Alignment);
2452 
2453   ConstantEmitter Emitter(*this);
2454   llvm::Constant *Init;
2455 
2456   APValue &V = GD->getAsAPValue();
2457   if (!V.isAbsent()) {
2458     // If possible, emit the APValue version of the initializer. In particular,
2459     // this gets the type of the constant right.
2460     Init = Emitter.emitForInitializer(
2461         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2462   } else {
2463     // As a fallback, directly construct the constant.
2464     // FIXME: This may get padding wrong under esoteric struct layout rules.
2465     // MSVC appears to create a complete type 'struct __s_GUID' that it
2466     // presumably uses to represent these constants.
2467     MSGuidDecl::Parts Parts = GD->getParts();
2468     llvm::Constant *Fields[4] = {
2469         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2470         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2471         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2472         llvm::ConstantDataArray::getRaw(
2473             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2474             Int8Ty)};
2475     Init = llvm::ConstantStruct::getAnon(Fields);
2476   }
2477 
2478   auto *GV = new llvm::GlobalVariable(
2479       getModule(), Init->getType(),
2480       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2481   if (supportsCOMDAT())
2482     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2483   setDSOLocal(GV);
2484 
2485   llvm::Constant *Addr = GV;
2486   if (!V.isAbsent()) {
2487     Emitter.finalize(GV);
2488   } else {
2489     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2490     Addr = llvm::ConstantExpr::getBitCast(
2491         GV, Ty->getPointerTo(GV->getAddressSpace()));
2492   }
2493   return ConstantAddress(Addr, Alignment);
2494 }
2495 
2496 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2497   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2498   assert(AA && "No alias?");
2499 
2500   CharUnits Alignment = getContext().getDeclAlign(VD);
2501   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2502 
2503   // See if there is already something with the target's name in the module.
2504   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2505   if (Entry) {
2506     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2507     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2508     return ConstantAddress(Ptr, Alignment);
2509   }
2510 
2511   llvm::Constant *Aliasee;
2512   if (isa<llvm::FunctionType>(DeclTy))
2513     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2514                                       GlobalDecl(cast<FunctionDecl>(VD)),
2515                                       /*ForVTable=*/false);
2516   else
2517     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2518                                     llvm::PointerType::getUnqual(DeclTy),
2519                                     nullptr);
2520 
2521   auto *F = cast<llvm::GlobalValue>(Aliasee);
2522   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2523   WeakRefReferences.insert(F);
2524 
2525   return ConstantAddress(Aliasee, Alignment);
2526 }
2527 
2528 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2529   const auto *Global = cast<ValueDecl>(GD.getDecl());
2530 
2531   // Weak references don't produce any output by themselves.
2532   if (Global->hasAttr<WeakRefAttr>())
2533     return;
2534 
2535   // If this is an alias definition (which otherwise looks like a declaration)
2536   // emit it now.
2537   if (Global->hasAttr<AliasAttr>())
2538     return EmitAliasDefinition(GD);
2539 
2540   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2541   if (Global->hasAttr<IFuncAttr>())
2542     return emitIFuncDefinition(GD);
2543 
2544   // If this is a cpu_dispatch multiversion function, emit the resolver.
2545   if (Global->hasAttr<CPUDispatchAttr>())
2546     return emitCPUDispatchDefinition(GD);
2547 
2548   // If this is CUDA, be selective about which declarations we emit.
2549   if (LangOpts.CUDA) {
2550     if (LangOpts.CUDAIsDevice) {
2551       if (!Global->hasAttr<CUDADeviceAttr>() &&
2552           !Global->hasAttr<CUDAGlobalAttr>() &&
2553           !Global->hasAttr<CUDAConstantAttr>() &&
2554           !Global->hasAttr<CUDASharedAttr>() &&
2555           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2556           !Global->getType()->isCUDADeviceBuiltinTextureType())
2557         return;
2558     } else {
2559       // We need to emit host-side 'shadows' for all global
2560       // device-side variables because the CUDA runtime needs their
2561       // size and host-side address in order to provide access to
2562       // their device-side incarnations.
2563 
2564       // So device-only functions are the only things we skip.
2565       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2566           Global->hasAttr<CUDADeviceAttr>())
2567         return;
2568 
2569       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2570              "Expected Variable or Function");
2571     }
2572   }
2573 
2574   if (LangOpts.OpenMP) {
2575     // If this is OpenMP, check if it is legal to emit this global normally.
2576     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2577       return;
2578     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2579       if (MustBeEmitted(Global))
2580         EmitOMPDeclareReduction(DRD);
2581       return;
2582     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2583       if (MustBeEmitted(Global))
2584         EmitOMPDeclareMapper(DMD);
2585       return;
2586     }
2587   }
2588 
2589   // Ignore declarations, they will be emitted on their first use.
2590   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2591     // Forward declarations are emitted lazily on first use.
2592     if (!FD->doesThisDeclarationHaveABody()) {
2593       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2594         return;
2595 
2596       StringRef MangledName = getMangledName(GD);
2597 
2598       // Compute the function info and LLVM type.
2599       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2600       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2601 
2602       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2603                               /*DontDefer=*/false);
2604       return;
2605     }
2606   } else {
2607     const auto *VD = cast<VarDecl>(Global);
2608     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2609     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2610         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2611       if (LangOpts.OpenMP) {
2612         // Emit declaration of the must-be-emitted declare target variable.
2613         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2614                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2615           bool UnifiedMemoryEnabled =
2616               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2617           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2618               !UnifiedMemoryEnabled) {
2619             (void)GetAddrOfGlobalVar(VD);
2620           } else {
2621             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2622                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2623                      UnifiedMemoryEnabled)) &&
2624                    "Link clause or to clause with unified memory expected.");
2625             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2626           }
2627 
2628           return;
2629         }
2630       }
2631       // If this declaration may have caused an inline variable definition to
2632       // change linkage, make sure that it's emitted.
2633       if (Context.getInlineVariableDefinitionKind(VD) ==
2634           ASTContext::InlineVariableDefinitionKind::Strong)
2635         GetAddrOfGlobalVar(VD);
2636       return;
2637     }
2638   }
2639 
2640   // Defer code generation to first use when possible, e.g. if this is an inline
2641   // function. If the global must always be emitted, do it eagerly if possible
2642   // to benefit from cache locality.
2643   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2644     // Emit the definition if it can't be deferred.
2645     EmitGlobalDefinition(GD);
2646     return;
2647   }
2648 
2649   // If we're deferring emission of a C++ variable with an
2650   // initializer, remember the order in which it appeared in the file.
2651   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2652       cast<VarDecl>(Global)->hasInit()) {
2653     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2654     CXXGlobalInits.push_back(nullptr);
2655   }
2656 
2657   StringRef MangledName = getMangledName(GD);
2658   if (GetGlobalValue(MangledName) != nullptr) {
2659     // The value has already been used and should therefore be emitted.
2660     addDeferredDeclToEmit(GD);
2661   } else if (MustBeEmitted(Global)) {
2662     // The value must be emitted, but cannot be emitted eagerly.
2663     assert(!MayBeEmittedEagerly(Global));
2664     addDeferredDeclToEmit(GD);
2665   } else {
2666     // Otherwise, remember that we saw a deferred decl with this name.  The
2667     // first use of the mangled name will cause it to move into
2668     // DeferredDeclsToEmit.
2669     DeferredDecls[MangledName] = GD;
2670   }
2671 }
2672 
2673 // Check if T is a class type with a destructor that's not dllimport.
2674 static bool HasNonDllImportDtor(QualType T) {
2675   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2676     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2677       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2678         return true;
2679 
2680   return false;
2681 }
2682 
2683 namespace {
2684   struct FunctionIsDirectlyRecursive
2685       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2686     const StringRef Name;
2687     const Builtin::Context &BI;
2688     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2689         : Name(N), BI(C) {}
2690 
2691     bool VisitCallExpr(const CallExpr *E) {
2692       const FunctionDecl *FD = E->getDirectCallee();
2693       if (!FD)
2694         return false;
2695       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2696       if (Attr && Name == Attr->getLabel())
2697         return true;
2698       unsigned BuiltinID = FD->getBuiltinID();
2699       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2700         return false;
2701       StringRef BuiltinName = BI.getName(BuiltinID);
2702       if (BuiltinName.startswith("__builtin_") &&
2703           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2704         return true;
2705       }
2706       return false;
2707     }
2708 
2709     bool VisitStmt(const Stmt *S) {
2710       for (const Stmt *Child : S->children())
2711         if (Child && this->Visit(Child))
2712           return true;
2713       return false;
2714     }
2715   };
2716 
2717   // Make sure we're not referencing non-imported vars or functions.
2718   struct DLLImportFunctionVisitor
2719       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2720     bool SafeToInline = true;
2721 
2722     bool shouldVisitImplicitCode() const { return true; }
2723 
2724     bool VisitVarDecl(VarDecl *VD) {
2725       if (VD->getTLSKind()) {
2726         // A thread-local variable cannot be imported.
2727         SafeToInline = false;
2728         return SafeToInline;
2729       }
2730 
2731       // A variable definition might imply a destructor call.
2732       if (VD->isThisDeclarationADefinition())
2733         SafeToInline = !HasNonDllImportDtor(VD->getType());
2734 
2735       return SafeToInline;
2736     }
2737 
2738     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2739       if (const auto *D = E->getTemporary()->getDestructor())
2740         SafeToInline = D->hasAttr<DLLImportAttr>();
2741       return SafeToInline;
2742     }
2743 
2744     bool VisitDeclRefExpr(DeclRefExpr *E) {
2745       ValueDecl *VD = E->getDecl();
2746       if (isa<FunctionDecl>(VD))
2747         SafeToInline = VD->hasAttr<DLLImportAttr>();
2748       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2749         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2750       return SafeToInline;
2751     }
2752 
2753     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2754       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2755       return SafeToInline;
2756     }
2757 
2758     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2759       CXXMethodDecl *M = E->getMethodDecl();
2760       if (!M) {
2761         // Call through a pointer to member function. This is safe to inline.
2762         SafeToInline = true;
2763       } else {
2764         SafeToInline = M->hasAttr<DLLImportAttr>();
2765       }
2766       return SafeToInline;
2767     }
2768 
2769     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2770       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2771       return SafeToInline;
2772     }
2773 
2774     bool VisitCXXNewExpr(CXXNewExpr *E) {
2775       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2776       return SafeToInline;
2777     }
2778   };
2779 }
2780 
2781 // isTriviallyRecursive - Check if this function calls another
2782 // decl that, because of the asm attribute or the other decl being a builtin,
2783 // ends up pointing to itself.
2784 bool
2785 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2786   StringRef Name;
2787   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2788     // asm labels are a special kind of mangling we have to support.
2789     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2790     if (!Attr)
2791       return false;
2792     Name = Attr->getLabel();
2793   } else {
2794     Name = FD->getName();
2795   }
2796 
2797   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2798   const Stmt *Body = FD->getBody();
2799   return Body ? Walker.Visit(Body) : false;
2800 }
2801 
2802 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2803   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2804     return true;
2805   const auto *F = cast<FunctionDecl>(GD.getDecl());
2806   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2807     return false;
2808 
2809   if (F->hasAttr<DLLImportAttr>()) {
2810     // Check whether it would be safe to inline this dllimport function.
2811     DLLImportFunctionVisitor Visitor;
2812     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2813     if (!Visitor.SafeToInline)
2814       return false;
2815 
2816     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2817       // Implicit destructor invocations aren't captured in the AST, so the
2818       // check above can't see them. Check for them manually here.
2819       for (const Decl *Member : Dtor->getParent()->decls())
2820         if (isa<FieldDecl>(Member))
2821           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2822             return false;
2823       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2824         if (HasNonDllImportDtor(B.getType()))
2825           return false;
2826     }
2827   }
2828 
2829   // PR9614. Avoid cases where the source code is lying to us. An available
2830   // externally function should have an equivalent function somewhere else,
2831   // but a function that calls itself through asm label/`__builtin_` trickery is
2832   // clearly not equivalent to the real implementation.
2833   // This happens in glibc's btowc and in some configure checks.
2834   return !isTriviallyRecursive(F);
2835 }
2836 
2837 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2838   return CodeGenOpts.OptimizationLevel > 0;
2839 }
2840 
2841 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2842                                                        llvm::GlobalValue *GV) {
2843   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2844 
2845   if (FD->isCPUSpecificMultiVersion()) {
2846     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2847     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2848       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2849     // Requires multiple emits.
2850   } else
2851     EmitGlobalFunctionDefinition(GD, GV);
2852 }
2853 
2854 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2855   const auto *D = cast<ValueDecl>(GD.getDecl());
2856 
2857   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2858                                  Context.getSourceManager(),
2859                                  "Generating code for declaration");
2860 
2861   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2862     // At -O0, don't generate IR for functions with available_externally
2863     // linkage.
2864     if (!shouldEmitFunction(GD))
2865       return;
2866 
2867     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2868       std::string Name;
2869       llvm::raw_string_ostream OS(Name);
2870       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2871                                /*Qualified=*/true);
2872       return Name;
2873     });
2874 
2875     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2876       // Make sure to emit the definition(s) before we emit the thunks.
2877       // This is necessary for the generation of certain thunks.
2878       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2879         ABI->emitCXXStructor(GD);
2880       else if (FD->isMultiVersion())
2881         EmitMultiVersionFunctionDefinition(GD, GV);
2882       else
2883         EmitGlobalFunctionDefinition(GD, GV);
2884 
2885       if (Method->isVirtual())
2886         getVTables().EmitThunks(GD);
2887 
2888       return;
2889     }
2890 
2891     if (FD->isMultiVersion())
2892       return EmitMultiVersionFunctionDefinition(GD, GV);
2893     return EmitGlobalFunctionDefinition(GD, GV);
2894   }
2895 
2896   if (const auto *VD = dyn_cast<VarDecl>(D))
2897     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2898 
2899   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2900 }
2901 
2902 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2903                                                       llvm::Function *NewFn);
2904 
2905 static unsigned
2906 TargetMVPriority(const TargetInfo &TI,
2907                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2908   unsigned Priority = 0;
2909   for (StringRef Feat : RO.Conditions.Features)
2910     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2911 
2912   if (!RO.Conditions.Architecture.empty())
2913     Priority = std::max(
2914         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2915   return Priority;
2916 }
2917 
2918 void CodeGenModule::emitMultiVersionFunctions() {
2919   for (GlobalDecl GD : MultiVersionFuncs) {
2920     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2921     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2922     getContext().forEachMultiversionedFunctionVersion(
2923         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2924           GlobalDecl CurGD{
2925               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2926           StringRef MangledName = getMangledName(CurGD);
2927           llvm::Constant *Func = GetGlobalValue(MangledName);
2928           if (!Func) {
2929             if (CurFD->isDefined()) {
2930               EmitGlobalFunctionDefinition(CurGD, nullptr);
2931               Func = GetGlobalValue(MangledName);
2932             } else {
2933               const CGFunctionInfo &FI =
2934                   getTypes().arrangeGlobalDeclaration(GD);
2935               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2936               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2937                                        /*DontDefer=*/false, ForDefinition);
2938             }
2939             assert(Func && "This should have just been created");
2940           }
2941 
2942           const auto *TA = CurFD->getAttr<TargetAttr>();
2943           llvm::SmallVector<StringRef, 8> Feats;
2944           TA->getAddedFeatures(Feats);
2945 
2946           Options.emplace_back(cast<llvm::Function>(Func),
2947                                TA->getArchitecture(), Feats);
2948         });
2949 
2950     llvm::Function *ResolverFunc;
2951     const TargetInfo &TI = getTarget();
2952 
2953     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2954       ResolverFunc = cast<llvm::Function>(
2955           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2956       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2957     } else {
2958       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2959     }
2960 
2961     if (supportsCOMDAT())
2962       ResolverFunc->setComdat(
2963           getModule().getOrInsertComdat(ResolverFunc->getName()));
2964 
2965     llvm::stable_sort(
2966         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2967                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2968           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2969         });
2970     CodeGenFunction CGF(*this);
2971     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2972   }
2973 }
2974 
2975 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2976   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2977   assert(FD && "Not a FunctionDecl?");
2978   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2979   assert(DD && "Not a cpu_dispatch Function?");
2980   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2981 
2982   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2983     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2984     DeclTy = getTypes().GetFunctionType(FInfo);
2985   }
2986 
2987   StringRef ResolverName = getMangledName(GD);
2988 
2989   llvm::Type *ResolverType;
2990   GlobalDecl ResolverGD;
2991   if (getTarget().supportsIFunc())
2992     ResolverType = llvm::FunctionType::get(
2993         llvm::PointerType::get(DeclTy,
2994                                Context.getTargetAddressSpace(FD->getType())),
2995         false);
2996   else {
2997     ResolverType = DeclTy;
2998     ResolverGD = GD;
2999   }
3000 
3001   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3002       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3003   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3004   if (supportsCOMDAT())
3005     ResolverFunc->setComdat(
3006         getModule().getOrInsertComdat(ResolverFunc->getName()));
3007 
3008   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3009   const TargetInfo &Target = getTarget();
3010   unsigned Index = 0;
3011   for (const IdentifierInfo *II : DD->cpus()) {
3012     // Get the name of the target function so we can look it up/create it.
3013     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3014                               getCPUSpecificMangling(*this, II->getName());
3015 
3016     llvm::Constant *Func = GetGlobalValue(MangledName);
3017 
3018     if (!Func) {
3019       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3020       if (ExistingDecl.getDecl() &&
3021           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3022         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3023         Func = GetGlobalValue(MangledName);
3024       } else {
3025         if (!ExistingDecl.getDecl())
3026           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3027 
3028       Func = GetOrCreateLLVMFunction(
3029           MangledName, DeclTy, ExistingDecl,
3030           /*ForVTable=*/false, /*DontDefer=*/true,
3031           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3032       }
3033     }
3034 
3035     llvm::SmallVector<StringRef, 32> Features;
3036     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3037     llvm::transform(Features, Features.begin(),
3038                     [](StringRef Str) { return Str.substr(1); });
3039     Features.erase(std::remove_if(
3040         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3041           return !Target.validateCpuSupports(Feat);
3042         }), Features.end());
3043     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3044     ++Index;
3045   }
3046 
3047   llvm::sort(
3048       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3049                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3050         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3051                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3052       });
3053 
3054   // If the list contains multiple 'default' versions, such as when it contains
3055   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3056   // always run on at least a 'pentium'). We do this by deleting the 'least
3057   // advanced' (read, lowest mangling letter).
3058   while (Options.size() > 1 &&
3059          CodeGenFunction::GetX86CpuSupportsMask(
3060              (Options.end() - 2)->Conditions.Features) == 0) {
3061     StringRef LHSName = (Options.end() - 2)->Function->getName();
3062     StringRef RHSName = (Options.end() - 1)->Function->getName();
3063     if (LHSName.compare(RHSName) < 0)
3064       Options.erase(Options.end() - 2);
3065     else
3066       Options.erase(Options.end() - 1);
3067   }
3068 
3069   CodeGenFunction CGF(*this);
3070   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3071 
3072   if (getTarget().supportsIFunc()) {
3073     std::string AliasName = getMangledNameImpl(
3074         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3075     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3076     if (!AliasFunc) {
3077       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3078           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3079           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3080       auto *GA = llvm::GlobalAlias::create(
3081          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3082       GA->setLinkage(llvm::Function::WeakODRLinkage);
3083       SetCommonAttributes(GD, GA);
3084     }
3085   }
3086 }
3087 
3088 /// If a dispatcher for the specified mangled name is not in the module, create
3089 /// and return an llvm Function with the specified type.
3090 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3091     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3092   std::string MangledName =
3093       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3094 
3095   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3096   // a separate resolver).
3097   std::string ResolverName = MangledName;
3098   if (getTarget().supportsIFunc())
3099     ResolverName += ".ifunc";
3100   else if (FD->isTargetMultiVersion())
3101     ResolverName += ".resolver";
3102 
3103   // If this already exists, just return that one.
3104   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3105     return ResolverGV;
3106 
3107   // Since this is the first time we've created this IFunc, make sure
3108   // that we put this multiversioned function into the list to be
3109   // replaced later if necessary (target multiversioning only).
3110   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3111     MultiVersionFuncs.push_back(GD);
3112 
3113   if (getTarget().supportsIFunc()) {
3114     llvm::Type *ResolverType = llvm::FunctionType::get(
3115         llvm::PointerType::get(
3116             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3117         false);
3118     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3119         MangledName + ".resolver", ResolverType, GlobalDecl{},
3120         /*ForVTable=*/false);
3121     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3122         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3123     GIF->setName(ResolverName);
3124     SetCommonAttributes(FD, GIF);
3125 
3126     return GIF;
3127   }
3128 
3129   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3130       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3131   assert(isa<llvm::GlobalValue>(Resolver) &&
3132          "Resolver should be created for the first time");
3133   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3134   return Resolver;
3135 }
3136 
3137 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3138 /// module, create and return an llvm Function with the specified type. If there
3139 /// is something in the module with the specified name, return it potentially
3140 /// bitcasted to the right type.
3141 ///
3142 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3143 /// to set the attributes on the function when it is first created.
3144 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3145     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3146     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3147     ForDefinition_t IsForDefinition) {
3148   const Decl *D = GD.getDecl();
3149 
3150   // Any attempts to use a MultiVersion function should result in retrieving
3151   // the iFunc instead. Name Mangling will handle the rest of the changes.
3152   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3153     // For the device mark the function as one that should be emitted.
3154     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3155         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3156         !DontDefer && !IsForDefinition) {
3157       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3158         GlobalDecl GDDef;
3159         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3160           GDDef = GlobalDecl(CD, GD.getCtorType());
3161         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3162           GDDef = GlobalDecl(DD, GD.getDtorType());
3163         else
3164           GDDef = GlobalDecl(FDDef);
3165         EmitGlobal(GDDef);
3166       }
3167     }
3168 
3169     if (FD->isMultiVersion()) {
3170       if (FD->hasAttr<TargetAttr>())
3171         UpdateMultiVersionNames(GD, FD);
3172       if (!IsForDefinition)
3173         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3174     }
3175   }
3176 
3177   // Lookup the entry, lazily creating it if necessary.
3178   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3179   if (Entry) {
3180     if (WeakRefReferences.erase(Entry)) {
3181       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3182       if (FD && !FD->hasAttr<WeakAttr>())
3183         Entry->setLinkage(llvm::Function::ExternalLinkage);
3184     }
3185 
3186     // Handle dropped DLL attributes.
3187     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3188       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3189       setDSOLocal(Entry);
3190     }
3191 
3192     // If there are two attempts to define the same mangled name, issue an
3193     // error.
3194     if (IsForDefinition && !Entry->isDeclaration()) {
3195       GlobalDecl OtherGD;
3196       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3197       // to make sure that we issue an error only once.
3198       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3199           (GD.getCanonicalDecl().getDecl() !=
3200            OtherGD.getCanonicalDecl().getDecl()) &&
3201           DiagnosedConflictingDefinitions.insert(GD).second) {
3202         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3203             << MangledName;
3204         getDiags().Report(OtherGD.getDecl()->getLocation(),
3205                           diag::note_previous_definition);
3206       }
3207     }
3208 
3209     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3210         (Entry->getValueType() == Ty)) {
3211       return Entry;
3212     }
3213 
3214     // Make sure the result is of the correct type.
3215     // (If function is requested for a definition, we always need to create a new
3216     // function, not just return a bitcast.)
3217     if (!IsForDefinition)
3218       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3219   }
3220 
3221   // This function doesn't have a complete type (for example, the return
3222   // type is an incomplete struct). Use a fake type instead, and make
3223   // sure not to try to set attributes.
3224   bool IsIncompleteFunction = false;
3225 
3226   llvm::FunctionType *FTy;
3227   if (isa<llvm::FunctionType>(Ty)) {
3228     FTy = cast<llvm::FunctionType>(Ty);
3229   } else {
3230     FTy = llvm::FunctionType::get(VoidTy, false);
3231     IsIncompleteFunction = true;
3232   }
3233 
3234   llvm::Function *F =
3235       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3236                              Entry ? StringRef() : MangledName, &getModule());
3237 
3238   // If we already created a function with the same mangled name (but different
3239   // type) before, take its name and add it to the list of functions to be
3240   // replaced with F at the end of CodeGen.
3241   //
3242   // This happens if there is a prototype for a function (e.g. "int f()") and
3243   // then a definition of a different type (e.g. "int f(int x)").
3244   if (Entry) {
3245     F->takeName(Entry);
3246 
3247     // This might be an implementation of a function without a prototype, in
3248     // which case, try to do special replacement of calls which match the new
3249     // prototype.  The really key thing here is that we also potentially drop
3250     // arguments from the call site so as to make a direct call, which makes the
3251     // inliner happier and suppresses a number of optimizer warnings (!) about
3252     // dropping arguments.
3253     if (!Entry->use_empty()) {
3254       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3255       Entry->removeDeadConstantUsers();
3256     }
3257 
3258     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3259         F, Entry->getValueType()->getPointerTo());
3260     addGlobalValReplacement(Entry, BC);
3261   }
3262 
3263   assert(F->getName() == MangledName && "name was uniqued!");
3264   if (D)
3265     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3266   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3267     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3268     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3269   }
3270 
3271   if (!DontDefer) {
3272     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3273     // each other bottoming out with the base dtor.  Therefore we emit non-base
3274     // dtors on usage, even if there is no dtor definition in the TU.
3275     if (D && isa<CXXDestructorDecl>(D) &&
3276         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3277                                            GD.getDtorType()))
3278       addDeferredDeclToEmit(GD);
3279 
3280     // This is the first use or definition of a mangled name.  If there is a
3281     // deferred decl with this name, remember that we need to emit it at the end
3282     // of the file.
3283     auto DDI = DeferredDecls.find(MangledName);
3284     if (DDI != DeferredDecls.end()) {
3285       // Move the potentially referenced deferred decl to the
3286       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3287       // don't need it anymore).
3288       addDeferredDeclToEmit(DDI->second);
3289       DeferredDecls.erase(DDI);
3290 
3291       // Otherwise, there are cases we have to worry about where we're
3292       // using a declaration for which we must emit a definition but where
3293       // we might not find a top-level definition:
3294       //   - member functions defined inline in their classes
3295       //   - friend functions defined inline in some class
3296       //   - special member functions with implicit definitions
3297       // If we ever change our AST traversal to walk into class methods,
3298       // this will be unnecessary.
3299       //
3300       // We also don't emit a definition for a function if it's going to be an
3301       // entry in a vtable, unless it's already marked as used.
3302     } else if (getLangOpts().CPlusPlus && D) {
3303       // Look for a declaration that's lexically in a record.
3304       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3305            FD = FD->getPreviousDecl()) {
3306         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3307           if (FD->doesThisDeclarationHaveABody()) {
3308             addDeferredDeclToEmit(GD.getWithDecl(FD));
3309             break;
3310           }
3311         }
3312       }
3313     }
3314   }
3315 
3316   // Make sure the result is of the requested type.
3317   if (!IsIncompleteFunction) {
3318     assert(F->getFunctionType() == Ty);
3319     return F;
3320   }
3321 
3322   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3323   return llvm::ConstantExpr::getBitCast(F, PTy);
3324 }
3325 
3326 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3327 /// non-null, then this function will use the specified type if it has to
3328 /// create it (this occurs when we see a definition of the function).
3329 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3330                                                  llvm::Type *Ty,
3331                                                  bool ForVTable,
3332                                                  bool DontDefer,
3333                                               ForDefinition_t IsForDefinition) {
3334   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3335          "consteval function should never be emitted");
3336   // If there was no specific requested type, just convert it now.
3337   if (!Ty) {
3338     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3339     Ty = getTypes().ConvertType(FD->getType());
3340   }
3341 
3342   // Devirtualized destructor calls may come through here instead of via
3343   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3344   // of the complete destructor when necessary.
3345   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3346     if (getTarget().getCXXABI().isMicrosoft() &&
3347         GD.getDtorType() == Dtor_Complete &&
3348         DD->getParent()->getNumVBases() == 0)
3349       GD = GlobalDecl(DD, Dtor_Base);
3350   }
3351 
3352   StringRef MangledName = getMangledName(GD);
3353   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3354                                  /*IsThunk=*/false, llvm::AttributeList(),
3355                                  IsForDefinition);
3356 }
3357 
3358 static const FunctionDecl *
3359 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3360   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3361   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3362 
3363   IdentifierInfo &CII = C.Idents.get(Name);
3364   for (const auto &Result : DC->lookup(&CII))
3365     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3366       return FD;
3367 
3368   if (!C.getLangOpts().CPlusPlus)
3369     return nullptr;
3370 
3371   // Demangle the premangled name from getTerminateFn()
3372   IdentifierInfo &CXXII =
3373       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3374           ? C.Idents.get("terminate")
3375           : C.Idents.get(Name);
3376 
3377   for (const auto &N : {"__cxxabiv1", "std"}) {
3378     IdentifierInfo &NS = C.Idents.get(N);
3379     for (const auto &Result : DC->lookup(&NS)) {
3380       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3381       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3382         for (const auto &Result : LSD->lookup(&NS))
3383           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3384             break;
3385 
3386       if (ND)
3387         for (const auto &Result : ND->lookup(&CXXII))
3388           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3389             return FD;
3390     }
3391   }
3392 
3393   return nullptr;
3394 }
3395 
3396 /// CreateRuntimeFunction - Create a new runtime function with the specified
3397 /// type and name.
3398 llvm::FunctionCallee
3399 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3400                                      llvm::AttributeList ExtraAttrs, bool Local,
3401                                      bool AssumeConvergent) {
3402   if (AssumeConvergent) {
3403     ExtraAttrs =
3404         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3405                                 llvm::Attribute::Convergent);
3406   }
3407 
3408   llvm::Constant *C =
3409       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3410                               /*DontDefer=*/false, /*IsThunk=*/false,
3411                               ExtraAttrs);
3412 
3413   if (auto *F = dyn_cast<llvm::Function>(C)) {
3414     if (F->empty()) {
3415       F->setCallingConv(getRuntimeCC());
3416 
3417       // In Windows Itanium environments, try to mark runtime functions
3418       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3419       // will link their standard library statically or dynamically. Marking
3420       // functions imported when they are not imported can cause linker errors
3421       // and warnings.
3422       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3423           !getCodeGenOpts().LTOVisibilityPublicStd) {
3424         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3425         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3426           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3427           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3428         }
3429       }
3430       setDSOLocal(F);
3431     }
3432   }
3433 
3434   return {FTy, C};
3435 }
3436 
3437 /// isTypeConstant - Determine whether an object of this type can be emitted
3438 /// as a constant.
3439 ///
3440 /// If ExcludeCtor is true, the duration when the object's constructor runs
3441 /// will not be considered. The caller will need to verify that the object is
3442 /// not written to during its construction.
3443 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3444   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3445     return false;
3446 
3447   if (Context.getLangOpts().CPlusPlus) {
3448     if (const CXXRecordDecl *Record
3449           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3450       return ExcludeCtor && !Record->hasMutableFields() &&
3451              Record->hasTrivialDestructor();
3452   }
3453 
3454   return true;
3455 }
3456 
3457 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3458 /// create and return an llvm GlobalVariable with the specified type.  If there
3459 /// is something in the module with the specified name, return it potentially
3460 /// bitcasted to the right type.
3461 ///
3462 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3463 /// to set the attributes on the global when it is first created.
3464 ///
3465 /// If IsForDefinition is true, it is guaranteed that an actual global with
3466 /// type Ty will be returned, not conversion of a variable with the same
3467 /// mangled name but some other type.
3468 llvm::Constant *
3469 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3470                                      llvm::PointerType *Ty,
3471                                      const VarDecl *D,
3472                                      ForDefinition_t IsForDefinition) {
3473   // Lookup the entry, lazily creating it if necessary.
3474   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3475   if (Entry) {
3476     if (WeakRefReferences.erase(Entry)) {
3477       if (D && !D->hasAttr<WeakAttr>())
3478         Entry->setLinkage(llvm::Function::ExternalLinkage);
3479     }
3480 
3481     // Handle dropped DLL attributes.
3482     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3483       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3484 
3485     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3486       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3487 
3488     if (Entry->getType() == Ty)
3489       return Entry;
3490 
3491     // If there are two attempts to define the same mangled name, issue an
3492     // error.
3493     if (IsForDefinition && !Entry->isDeclaration()) {
3494       GlobalDecl OtherGD;
3495       const VarDecl *OtherD;
3496 
3497       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3498       // to make sure that we issue an error only once.
3499       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3500           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3501           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3502           OtherD->hasInit() &&
3503           DiagnosedConflictingDefinitions.insert(D).second) {
3504         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3505             << MangledName;
3506         getDiags().Report(OtherGD.getDecl()->getLocation(),
3507                           diag::note_previous_definition);
3508       }
3509     }
3510 
3511     // Make sure the result is of the correct type.
3512     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3513       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3514 
3515     // (If global is requested for a definition, we always need to create a new
3516     // global, not just return a bitcast.)
3517     if (!IsForDefinition)
3518       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3519   }
3520 
3521   auto AddrSpace = GetGlobalVarAddressSpace(D);
3522   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3523 
3524   auto *GV = new llvm::GlobalVariable(
3525       getModule(), Ty->getElementType(), false,
3526       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3527       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3528 
3529   // If we already created a global with the same mangled name (but different
3530   // type) before, take its name and remove it from its parent.
3531   if (Entry) {
3532     GV->takeName(Entry);
3533 
3534     if (!Entry->use_empty()) {
3535       llvm::Constant *NewPtrForOldDecl =
3536           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3537       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3538     }
3539 
3540     Entry->eraseFromParent();
3541   }
3542 
3543   // This is the first use or definition of a mangled name.  If there is a
3544   // deferred decl with this name, remember that we need to emit it at the end
3545   // of the file.
3546   auto DDI = DeferredDecls.find(MangledName);
3547   if (DDI != DeferredDecls.end()) {
3548     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3549     // list, and remove it from DeferredDecls (since we don't need it anymore).
3550     addDeferredDeclToEmit(DDI->second);
3551     DeferredDecls.erase(DDI);
3552   }
3553 
3554   // Handle things which are present even on external declarations.
3555   if (D) {
3556     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3557       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3558 
3559     // FIXME: This code is overly simple and should be merged with other global
3560     // handling.
3561     GV->setConstant(isTypeConstant(D->getType(), false));
3562 
3563     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3564 
3565     setLinkageForGV(GV, D);
3566 
3567     if (D->getTLSKind()) {
3568       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3569         CXXThreadLocals.push_back(D);
3570       setTLSMode(GV, *D);
3571     }
3572 
3573     setGVProperties(GV, D);
3574 
3575     // If required by the ABI, treat declarations of static data members with
3576     // inline initializers as definitions.
3577     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3578       EmitGlobalVarDefinition(D);
3579     }
3580 
3581     // Emit section information for extern variables.
3582     if (D->hasExternalStorage()) {
3583       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3584         GV->setSection(SA->getName());
3585     }
3586 
3587     // Handle XCore specific ABI requirements.
3588     if (getTriple().getArch() == llvm::Triple::xcore &&
3589         D->getLanguageLinkage() == CLanguageLinkage &&
3590         D->getType().isConstant(Context) &&
3591         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3592       GV->setSection(".cp.rodata");
3593 
3594     // Check if we a have a const declaration with an initializer, we may be
3595     // able to emit it as available_externally to expose it's value to the
3596     // optimizer.
3597     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3598         D->getType().isConstQualified() && !GV->hasInitializer() &&
3599         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3600       const auto *Record =
3601           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3602       bool HasMutableFields = Record && Record->hasMutableFields();
3603       if (!HasMutableFields) {
3604         const VarDecl *InitDecl;
3605         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3606         if (InitExpr) {
3607           ConstantEmitter emitter(*this);
3608           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3609           if (Init) {
3610             auto *InitType = Init->getType();
3611             if (GV->getValueType() != InitType) {
3612               // The type of the initializer does not match the definition.
3613               // This happens when an initializer has a different type from
3614               // the type of the global (because of padding at the end of a
3615               // structure for instance).
3616               GV->setName(StringRef());
3617               // Make a new global with the correct type, this is now guaranteed
3618               // to work.
3619               auto *NewGV = cast<llvm::GlobalVariable>(
3620                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3621                       ->stripPointerCasts());
3622 
3623               // Erase the old global, since it is no longer used.
3624               GV->eraseFromParent();
3625               GV = NewGV;
3626             } else {
3627               GV->setInitializer(Init);
3628               GV->setConstant(true);
3629               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3630             }
3631             emitter.finalize(GV);
3632           }
3633         }
3634       }
3635     }
3636   }
3637 
3638   if (GV->isDeclaration())
3639     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3640 
3641   LangAS ExpectedAS =
3642       D ? D->getType().getAddressSpace()
3643         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3644   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3645          Ty->getPointerAddressSpace());
3646   if (AddrSpace != ExpectedAS)
3647     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3648                                                        ExpectedAS, Ty);
3649 
3650   return GV;
3651 }
3652 
3653 llvm::Constant *
3654 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3655   const Decl *D = GD.getDecl();
3656 
3657   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3658     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3659                                 /*DontDefer=*/false, IsForDefinition);
3660 
3661   if (isa<CXXMethodDecl>(D)) {
3662     auto FInfo =
3663         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3664     auto Ty = getTypes().GetFunctionType(*FInfo);
3665     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3666                              IsForDefinition);
3667   }
3668 
3669   if (isa<FunctionDecl>(D)) {
3670     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3671     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3672     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3673                              IsForDefinition);
3674   }
3675 
3676   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3677 }
3678 
3679 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3680     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3681     unsigned Alignment) {
3682   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3683   llvm::GlobalVariable *OldGV = nullptr;
3684 
3685   if (GV) {
3686     // Check if the variable has the right type.
3687     if (GV->getValueType() == Ty)
3688       return GV;
3689 
3690     // Because C++ name mangling, the only way we can end up with an already
3691     // existing global with the same name is if it has been declared extern "C".
3692     assert(GV->isDeclaration() && "Declaration has wrong type!");
3693     OldGV = GV;
3694   }
3695 
3696   // Create a new variable.
3697   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3698                                 Linkage, nullptr, Name);
3699 
3700   if (OldGV) {
3701     // Replace occurrences of the old variable if needed.
3702     GV->takeName(OldGV);
3703 
3704     if (!OldGV->use_empty()) {
3705       llvm::Constant *NewPtrForOldDecl =
3706       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3707       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3708     }
3709 
3710     OldGV->eraseFromParent();
3711   }
3712 
3713   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3714       !GV->hasAvailableExternallyLinkage())
3715     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3716 
3717   GV->setAlignment(llvm::MaybeAlign(Alignment));
3718 
3719   return GV;
3720 }
3721 
3722 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3723 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3724 /// then it will be created with the specified type instead of whatever the
3725 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3726 /// that an actual global with type Ty will be returned, not conversion of a
3727 /// variable with the same mangled name but some other type.
3728 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3729                                                   llvm::Type *Ty,
3730                                            ForDefinition_t IsForDefinition) {
3731   assert(D->hasGlobalStorage() && "Not a global variable");
3732   QualType ASTTy = D->getType();
3733   if (!Ty)
3734     Ty = getTypes().ConvertTypeForMem(ASTTy);
3735 
3736   llvm::PointerType *PTy =
3737     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3738 
3739   StringRef MangledName = getMangledName(D);
3740   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3741 }
3742 
3743 /// CreateRuntimeVariable - Create a new runtime global variable with the
3744 /// specified type and name.
3745 llvm::Constant *
3746 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3747                                      StringRef Name) {
3748   auto PtrTy =
3749       getContext().getLangOpts().OpenCL
3750           ? llvm::PointerType::get(
3751                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3752           : llvm::PointerType::getUnqual(Ty);
3753   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3754   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3755   return Ret;
3756 }
3757 
3758 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3759   assert(!D->getInit() && "Cannot emit definite definitions here!");
3760 
3761   StringRef MangledName = getMangledName(D);
3762   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3763 
3764   // We already have a definition, not declaration, with the same mangled name.
3765   // Emitting of declaration is not required (and actually overwrites emitted
3766   // definition).
3767   if (GV && !GV->isDeclaration())
3768     return;
3769 
3770   // If we have not seen a reference to this variable yet, place it into the
3771   // deferred declarations table to be emitted if needed later.
3772   if (!MustBeEmitted(D) && !GV) {
3773       DeferredDecls[MangledName] = D;
3774       return;
3775   }
3776 
3777   // The tentative definition is the only definition.
3778   EmitGlobalVarDefinition(D);
3779 }
3780 
3781 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3782   EmitExternalVarDeclaration(D);
3783 }
3784 
3785 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3786   return Context.toCharUnitsFromBits(
3787       getDataLayout().getTypeStoreSizeInBits(Ty));
3788 }
3789 
3790 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3791   LangAS AddrSpace = LangAS::Default;
3792   if (LangOpts.OpenCL) {
3793     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3794     assert(AddrSpace == LangAS::opencl_global ||
3795            AddrSpace == LangAS::opencl_constant ||
3796            AddrSpace == LangAS::opencl_local ||
3797            AddrSpace >= LangAS::FirstTargetAddressSpace);
3798     return AddrSpace;
3799   }
3800 
3801   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3802     if (D && D->hasAttr<CUDAConstantAttr>())
3803       return LangAS::cuda_constant;
3804     else if (D && D->hasAttr<CUDASharedAttr>())
3805       return LangAS::cuda_shared;
3806     else if (D && D->hasAttr<CUDADeviceAttr>())
3807       return LangAS::cuda_device;
3808     else if (D && D->getType().isConstQualified())
3809       return LangAS::cuda_constant;
3810     else
3811       return LangAS::cuda_device;
3812   }
3813 
3814   if (LangOpts.OpenMP) {
3815     LangAS AS;
3816     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3817       return AS;
3818   }
3819   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3820 }
3821 
3822 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3823   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3824   if (LangOpts.OpenCL)
3825     return LangAS::opencl_constant;
3826   if (auto AS = getTarget().getConstantAddressSpace())
3827     return AS.getValue();
3828   return LangAS::Default;
3829 }
3830 
3831 // In address space agnostic languages, string literals are in default address
3832 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3833 // emitted in constant address space in LLVM IR. To be consistent with other
3834 // parts of AST, string literal global variables in constant address space
3835 // need to be casted to default address space before being put into address
3836 // map and referenced by other part of CodeGen.
3837 // In OpenCL, string literals are in constant address space in AST, therefore
3838 // they should not be casted to default address space.
3839 static llvm::Constant *
3840 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3841                                        llvm::GlobalVariable *GV) {
3842   llvm::Constant *Cast = GV;
3843   if (!CGM.getLangOpts().OpenCL) {
3844     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3845       if (AS != LangAS::Default)
3846         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3847             CGM, GV, AS.getValue(), LangAS::Default,
3848             GV->getValueType()->getPointerTo(
3849                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3850     }
3851   }
3852   return Cast;
3853 }
3854 
3855 template<typename SomeDecl>
3856 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3857                                                llvm::GlobalValue *GV) {
3858   if (!getLangOpts().CPlusPlus)
3859     return;
3860 
3861   // Must have 'used' attribute, or else inline assembly can't rely on
3862   // the name existing.
3863   if (!D->template hasAttr<UsedAttr>())
3864     return;
3865 
3866   // Must have internal linkage and an ordinary name.
3867   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3868     return;
3869 
3870   // Must be in an extern "C" context. Entities declared directly within
3871   // a record are not extern "C" even if the record is in such a context.
3872   const SomeDecl *First = D->getFirstDecl();
3873   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3874     return;
3875 
3876   // OK, this is an internal linkage entity inside an extern "C" linkage
3877   // specification. Make a note of that so we can give it the "expected"
3878   // mangled name if nothing else is using that name.
3879   std::pair<StaticExternCMap::iterator, bool> R =
3880       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3881 
3882   // If we have multiple internal linkage entities with the same name
3883   // in extern "C" regions, none of them gets that name.
3884   if (!R.second)
3885     R.first->second = nullptr;
3886 }
3887 
3888 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3889   if (!CGM.supportsCOMDAT())
3890     return false;
3891 
3892   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3893   // them being "merged" by the COMDAT Folding linker optimization.
3894   if (D.hasAttr<CUDAGlobalAttr>())
3895     return false;
3896 
3897   if (D.hasAttr<SelectAnyAttr>())
3898     return true;
3899 
3900   GVALinkage Linkage;
3901   if (auto *VD = dyn_cast<VarDecl>(&D))
3902     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3903   else
3904     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3905 
3906   switch (Linkage) {
3907   case GVA_Internal:
3908   case GVA_AvailableExternally:
3909   case GVA_StrongExternal:
3910     return false;
3911   case GVA_DiscardableODR:
3912   case GVA_StrongODR:
3913     return true;
3914   }
3915   llvm_unreachable("No such linkage");
3916 }
3917 
3918 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3919                                           llvm::GlobalObject &GO) {
3920   if (!shouldBeInCOMDAT(*this, D))
3921     return;
3922   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3923 }
3924 
3925 /// Pass IsTentative as true if you want to create a tentative definition.
3926 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3927                                             bool IsTentative) {
3928   // OpenCL global variables of sampler type are translated to function calls,
3929   // therefore no need to be translated.
3930   QualType ASTTy = D->getType();
3931   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3932     return;
3933 
3934   // If this is OpenMP device, check if it is legal to emit this global
3935   // normally.
3936   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3937       OpenMPRuntime->emitTargetGlobalVariable(D))
3938     return;
3939 
3940   llvm::Constant *Init = nullptr;
3941   bool NeedsGlobalCtor = false;
3942   bool NeedsGlobalDtor =
3943       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3944 
3945   const VarDecl *InitDecl;
3946   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3947 
3948   Optional<ConstantEmitter> emitter;
3949 
3950   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3951   // as part of their declaration."  Sema has already checked for
3952   // error cases, so we just need to set Init to UndefValue.
3953   bool IsCUDASharedVar =
3954       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3955   // Shadows of initialized device-side global variables are also left
3956   // undefined.
3957   bool IsCUDAShadowVar =
3958       !getLangOpts().CUDAIsDevice &&
3959       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3960        D->hasAttr<CUDASharedAttr>());
3961   bool IsCUDADeviceShadowVar =
3962       getLangOpts().CUDAIsDevice &&
3963       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
3964        D->getType()->isCUDADeviceBuiltinTextureType());
3965   // HIP pinned shadow of initialized host-side global variables are also
3966   // left undefined.
3967   if (getLangOpts().CUDA &&
3968       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
3969     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3970   else if (D->hasAttr<LoaderUninitializedAttr>())
3971     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3972   else if (!InitExpr) {
3973     // This is a tentative definition; tentative definitions are
3974     // implicitly initialized with { 0 }.
3975     //
3976     // Note that tentative definitions are only emitted at the end of
3977     // a translation unit, so they should never have incomplete
3978     // type. In addition, EmitTentativeDefinition makes sure that we
3979     // never attempt to emit a tentative definition if a real one
3980     // exists. A use may still exists, however, so we still may need
3981     // to do a RAUW.
3982     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3983     Init = EmitNullConstant(D->getType());
3984   } else {
3985     initializedGlobalDecl = GlobalDecl(D);
3986     emitter.emplace(*this);
3987     Init = emitter->tryEmitForInitializer(*InitDecl);
3988 
3989     if (!Init) {
3990       QualType T = InitExpr->getType();
3991       if (D->getType()->isReferenceType())
3992         T = D->getType();
3993 
3994       if (getLangOpts().CPlusPlus) {
3995         Init = EmitNullConstant(T);
3996         NeedsGlobalCtor = true;
3997       } else {
3998         ErrorUnsupported(D, "static initializer");
3999         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4000       }
4001     } else {
4002       // We don't need an initializer, so remove the entry for the delayed
4003       // initializer position (just in case this entry was delayed) if we
4004       // also don't need to register a destructor.
4005       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4006         DelayedCXXInitPosition.erase(D);
4007     }
4008   }
4009 
4010   llvm::Type* InitType = Init->getType();
4011   llvm::Constant *Entry =
4012       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4013 
4014   // Strip off pointer casts if we got them.
4015   Entry = Entry->stripPointerCasts();
4016 
4017   // Entry is now either a Function or GlobalVariable.
4018   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4019 
4020   // We have a definition after a declaration with the wrong type.
4021   // We must make a new GlobalVariable* and update everything that used OldGV
4022   // (a declaration or tentative definition) with the new GlobalVariable*
4023   // (which will be a definition).
4024   //
4025   // This happens if there is a prototype for a global (e.g.
4026   // "extern int x[];") and then a definition of a different type (e.g.
4027   // "int x[10];"). This also happens when an initializer has a different type
4028   // from the type of the global (this happens with unions).
4029   if (!GV || GV->getValueType() != InitType ||
4030       GV->getType()->getAddressSpace() !=
4031           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4032 
4033     // Move the old entry aside so that we'll create a new one.
4034     Entry->setName(StringRef());
4035 
4036     // Make a new global with the correct type, this is now guaranteed to work.
4037     GV = cast<llvm::GlobalVariable>(
4038         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4039             ->stripPointerCasts());
4040 
4041     // Replace all uses of the old global with the new global
4042     llvm::Constant *NewPtrForOldDecl =
4043         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4044     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4045 
4046     // Erase the old global, since it is no longer used.
4047     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4048   }
4049 
4050   MaybeHandleStaticInExternC(D, GV);
4051 
4052   if (D->hasAttr<AnnotateAttr>())
4053     AddGlobalAnnotations(D, GV);
4054 
4055   // Set the llvm linkage type as appropriate.
4056   llvm::GlobalValue::LinkageTypes Linkage =
4057       getLLVMLinkageVarDefinition(D, GV->isConstant());
4058 
4059   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4060   // the device. [...]"
4061   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4062   // __device__, declares a variable that: [...]
4063   // Is accessible from all the threads within the grid and from the host
4064   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4065   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4066   if (GV && LangOpts.CUDA) {
4067     if (LangOpts.CUDAIsDevice) {
4068       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4069           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4070         GV->setExternallyInitialized(true);
4071     } else {
4072       // Host-side shadows of external declarations of device-side
4073       // global variables become internal definitions. These have to
4074       // be internal in order to prevent name conflicts with global
4075       // host variables with the same name in a different TUs.
4076       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4077         Linkage = llvm::GlobalValue::InternalLinkage;
4078         // Shadow variables and their properties must be registered with CUDA
4079         // runtime. Skip Extern global variables, which will be registered in
4080         // the TU where they are defined.
4081         if (!D->hasExternalStorage())
4082           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4083                                              D->hasAttr<CUDAConstantAttr>());
4084       } else if (D->hasAttr<CUDASharedAttr>()) {
4085         // __shared__ variables are odd. Shadows do get created, but
4086         // they are not registered with the CUDA runtime, so they
4087         // can't really be used to access their device-side
4088         // counterparts. It's not clear yet whether it's nvcc's bug or
4089         // a feature, but we've got to do the same for compatibility.
4090         Linkage = llvm::GlobalValue::InternalLinkage;
4091       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4092                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4093         // Builtin surfaces and textures and their template arguments are
4094         // also registered with CUDA runtime.
4095         Linkage = llvm::GlobalValue::InternalLinkage;
4096         const ClassTemplateSpecializationDecl *TD =
4097             cast<ClassTemplateSpecializationDecl>(
4098                 D->getType()->getAs<RecordType>()->getDecl());
4099         const TemplateArgumentList &Args = TD->getTemplateArgs();
4100         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4101           assert(Args.size() == 2 &&
4102                  "Unexpected number of template arguments of CUDA device "
4103                  "builtin surface type.");
4104           auto SurfType = Args[1].getAsIntegral();
4105           if (!D->hasExternalStorage())
4106             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4107                                                 SurfType.getSExtValue());
4108         } else {
4109           assert(Args.size() == 3 &&
4110                  "Unexpected number of template arguments of CUDA device "
4111                  "builtin texture type.");
4112           auto TexType = Args[1].getAsIntegral();
4113           auto Normalized = Args[2].getAsIntegral();
4114           if (!D->hasExternalStorage())
4115             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4116                                                TexType.getSExtValue(),
4117                                                Normalized.getZExtValue());
4118         }
4119       }
4120     }
4121   }
4122 
4123   GV->setInitializer(Init);
4124   if (emitter)
4125     emitter->finalize(GV);
4126 
4127   // If it is safe to mark the global 'constant', do so now.
4128   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4129                   isTypeConstant(D->getType(), true));
4130 
4131   // If it is in a read-only section, mark it 'constant'.
4132   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4133     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4134     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4135       GV->setConstant(true);
4136   }
4137 
4138   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4139 
4140   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4141   // function is only defined alongside the variable, not also alongside
4142   // callers. Normally, all accesses to a thread_local go through the
4143   // thread-wrapper in order to ensure initialization has occurred, underlying
4144   // variable will never be used other than the thread-wrapper, so it can be
4145   // converted to internal linkage.
4146   //
4147   // However, if the variable has the 'constinit' attribute, it _can_ be
4148   // referenced directly, without calling the thread-wrapper, so the linkage
4149   // must not be changed.
4150   //
4151   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4152   // weak or linkonce, the de-duplication semantics are important to preserve,
4153   // so we don't change the linkage.
4154   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4155       Linkage == llvm::GlobalValue::ExternalLinkage &&
4156       Context.getTargetInfo().getTriple().isOSDarwin() &&
4157       !D->hasAttr<ConstInitAttr>())
4158     Linkage = llvm::GlobalValue::InternalLinkage;
4159 
4160   GV->setLinkage(Linkage);
4161   if (D->hasAttr<DLLImportAttr>())
4162     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4163   else if (D->hasAttr<DLLExportAttr>())
4164     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4165   else
4166     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4167 
4168   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4169     // common vars aren't constant even if declared const.
4170     GV->setConstant(false);
4171     // Tentative definition of global variables may be initialized with
4172     // non-zero null pointers. In this case they should have weak linkage
4173     // since common linkage must have zero initializer and must not have
4174     // explicit section therefore cannot have non-zero initial value.
4175     if (!GV->getInitializer()->isNullValue())
4176       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4177   }
4178 
4179   setNonAliasAttributes(D, GV);
4180 
4181   if (D->getTLSKind() && !GV->isThreadLocal()) {
4182     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4183       CXXThreadLocals.push_back(D);
4184     setTLSMode(GV, *D);
4185   }
4186 
4187   maybeSetTrivialComdat(*D, *GV);
4188 
4189   // Emit the initializer function if necessary.
4190   if (NeedsGlobalCtor || NeedsGlobalDtor)
4191     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4192 
4193   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4194 
4195   // Emit global variable debug information.
4196   if (CGDebugInfo *DI = getModuleDebugInfo())
4197     if (getCodeGenOpts().hasReducedDebugInfo())
4198       DI->EmitGlobalVariable(GV, D);
4199 }
4200 
4201 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4202   if (CGDebugInfo *DI = getModuleDebugInfo())
4203     if (getCodeGenOpts().hasReducedDebugInfo()) {
4204       QualType ASTTy = D->getType();
4205       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4206       llvm::PointerType *PTy =
4207           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4208       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4209       DI->EmitExternalVariable(
4210           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4211     }
4212 }
4213 
4214 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4215                                       CodeGenModule &CGM, const VarDecl *D,
4216                                       bool NoCommon) {
4217   // Don't give variables common linkage if -fno-common was specified unless it
4218   // was overridden by a NoCommon attribute.
4219   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4220     return true;
4221 
4222   // C11 6.9.2/2:
4223   //   A declaration of an identifier for an object that has file scope without
4224   //   an initializer, and without a storage-class specifier or with the
4225   //   storage-class specifier static, constitutes a tentative definition.
4226   if (D->getInit() || D->hasExternalStorage())
4227     return true;
4228 
4229   // A variable cannot be both common and exist in a section.
4230   if (D->hasAttr<SectionAttr>())
4231     return true;
4232 
4233   // A variable cannot be both common and exist in a section.
4234   // We don't try to determine which is the right section in the front-end.
4235   // If no specialized section name is applicable, it will resort to default.
4236   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4237       D->hasAttr<PragmaClangDataSectionAttr>() ||
4238       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4239       D->hasAttr<PragmaClangRodataSectionAttr>())
4240     return true;
4241 
4242   // Thread local vars aren't considered common linkage.
4243   if (D->getTLSKind())
4244     return true;
4245 
4246   // Tentative definitions marked with WeakImportAttr are true definitions.
4247   if (D->hasAttr<WeakImportAttr>())
4248     return true;
4249 
4250   // A variable cannot be both common and exist in a comdat.
4251   if (shouldBeInCOMDAT(CGM, *D))
4252     return true;
4253 
4254   // Declarations with a required alignment do not have common linkage in MSVC
4255   // mode.
4256   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4257     if (D->hasAttr<AlignedAttr>())
4258       return true;
4259     QualType VarType = D->getType();
4260     if (Context.isAlignmentRequired(VarType))
4261       return true;
4262 
4263     if (const auto *RT = VarType->getAs<RecordType>()) {
4264       const RecordDecl *RD = RT->getDecl();
4265       for (const FieldDecl *FD : RD->fields()) {
4266         if (FD->isBitField())
4267           continue;
4268         if (FD->hasAttr<AlignedAttr>())
4269           return true;
4270         if (Context.isAlignmentRequired(FD->getType()))
4271           return true;
4272       }
4273     }
4274   }
4275 
4276   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4277   // common symbols, so symbols with greater alignment requirements cannot be
4278   // common.
4279   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4280   // alignments for common symbols via the aligncomm directive, so this
4281   // restriction only applies to MSVC environments.
4282   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4283       Context.getTypeAlignIfKnown(D->getType()) >
4284           Context.toBits(CharUnits::fromQuantity(32)))
4285     return true;
4286 
4287   return false;
4288 }
4289 
4290 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4291     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4292   if (Linkage == GVA_Internal)
4293     return llvm::Function::InternalLinkage;
4294 
4295   if (D->hasAttr<WeakAttr>()) {
4296     if (IsConstantVariable)
4297       return llvm::GlobalVariable::WeakODRLinkage;
4298     else
4299       return llvm::GlobalVariable::WeakAnyLinkage;
4300   }
4301 
4302   if (const auto *FD = D->getAsFunction())
4303     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4304       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4305 
4306   // We are guaranteed to have a strong definition somewhere else,
4307   // so we can use available_externally linkage.
4308   if (Linkage == GVA_AvailableExternally)
4309     return llvm::GlobalValue::AvailableExternallyLinkage;
4310 
4311   // Note that Apple's kernel linker doesn't support symbol
4312   // coalescing, so we need to avoid linkonce and weak linkages there.
4313   // Normally, this means we just map to internal, but for explicit
4314   // instantiations we'll map to external.
4315 
4316   // In C++, the compiler has to emit a definition in every translation unit
4317   // that references the function.  We should use linkonce_odr because
4318   // a) if all references in this translation unit are optimized away, we
4319   // don't need to codegen it.  b) if the function persists, it needs to be
4320   // merged with other definitions. c) C++ has the ODR, so we know the
4321   // definition is dependable.
4322   if (Linkage == GVA_DiscardableODR)
4323     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4324                                             : llvm::Function::InternalLinkage;
4325 
4326   // An explicit instantiation of a template has weak linkage, since
4327   // explicit instantiations can occur in multiple translation units
4328   // and must all be equivalent. However, we are not allowed to
4329   // throw away these explicit instantiations.
4330   //
4331   // We don't currently support CUDA device code spread out across multiple TUs,
4332   // so say that CUDA templates are either external (for kernels) or internal.
4333   // This lets llvm perform aggressive inter-procedural optimizations.
4334   if (Linkage == GVA_StrongODR) {
4335     if (Context.getLangOpts().AppleKext)
4336       return llvm::Function::ExternalLinkage;
4337     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4338       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4339                                           : llvm::Function::InternalLinkage;
4340     return llvm::Function::WeakODRLinkage;
4341   }
4342 
4343   // C++ doesn't have tentative definitions and thus cannot have common
4344   // linkage.
4345   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4346       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4347                                  CodeGenOpts.NoCommon))
4348     return llvm::GlobalVariable::CommonLinkage;
4349 
4350   // selectany symbols are externally visible, so use weak instead of
4351   // linkonce.  MSVC optimizes away references to const selectany globals, so
4352   // all definitions should be the same and ODR linkage should be used.
4353   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4354   if (D->hasAttr<SelectAnyAttr>())
4355     return llvm::GlobalVariable::WeakODRLinkage;
4356 
4357   // Otherwise, we have strong external linkage.
4358   assert(Linkage == GVA_StrongExternal);
4359   return llvm::GlobalVariable::ExternalLinkage;
4360 }
4361 
4362 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4363     const VarDecl *VD, bool IsConstant) {
4364   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4365   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4366 }
4367 
4368 /// Replace the uses of a function that was declared with a non-proto type.
4369 /// We want to silently drop extra arguments from call sites
4370 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4371                                           llvm::Function *newFn) {
4372   // Fast path.
4373   if (old->use_empty()) return;
4374 
4375   llvm::Type *newRetTy = newFn->getReturnType();
4376   SmallVector<llvm::Value*, 4> newArgs;
4377   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4378 
4379   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4380          ui != ue; ) {
4381     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4382     llvm::User *user = use->getUser();
4383 
4384     // Recognize and replace uses of bitcasts.  Most calls to
4385     // unprototyped functions will use bitcasts.
4386     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4387       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4388         replaceUsesOfNonProtoConstant(bitcast, newFn);
4389       continue;
4390     }
4391 
4392     // Recognize calls to the function.
4393     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4394     if (!callSite) continue;
4395     if (!callSite->isCallee(&*use))
4396       continue;
4397 
4398     // If the return types don't match exactly, then we can't
4399     // transform this call unless it's dead.
4400     if (callSite->getType() != newRetTy && !callSite->use_empty())
4401       continue;
4402 
4403     // Get the call site's attribute list.
4404     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4405     llvm::AttributeList oldAttrs = callSite->getAttributes();
4406 
4407     // If the function was passed too few arguments, don't transform.
4408     unsigned newNumArgs = newFn->arg_size();
4409     if (callSite->arg_size() < newNumArgs)
4410       continue;
4411 
4412     // If extra arguments were passed, we silently drop them.
4413     // If any of the types mismatch, we don't transform.
4414     unsigned argNo = 0;
4415     bool dontTransform = false;
4416     for (llvm::Argument &A : newFn->args()) {
4417       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4418         dontTransform = true;
4419         break;
4420       }
4421 
4422       // Add any parameter attributes.
4423       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4424       argNo++;
4425     }
4426     if (dontTransform)
4427       continue;
4428 
4429     // Okay, we can transform this.  Create the new call instruction and copy
4430     // over the required information.
4431     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4432 
4433     // Copy over any operand bundles.
4434     callSite->getOperandBundlesAsDefs(newBundles);
4435 
4436     llvm::CallBase *newCall;
4437     if (dyn_cast<llvm::CallInst>(callSite)) {
4438       newCall =
4439           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4440     } else {
4441       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4442       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4443                                          oldInvoke->getUnwindDest(), newArgs,
4444                                          newBundles, "", callSite);
4445     }
4446     newArgs.clear(); // for the next iteration
4447 
4448     if (!newCall->getType()->isVoidTy())
4449       newCall->takeName(callSite);
4450     newCall->setAttributes(llvm::AttributeList::get(
4451         newFn->getContext(), oldAttrs.getFnAttributes(),
4452         oldAttrs.getRetAttributes(), newArgAttrs));
4453     newCall->setCallingConv(callSite->getCallingConv());
4454 
4455     // Finally, remove the old call, replacing any uses with the new one.
4456     if (!callSite->use_empty())
4457       callSite->replaceAllUsesWith(newCall);
4458 
4459     // Copy debug location attached to CI.
4460     if (callSite->getDebugLoc())
4461       newCall->setDebugLoc(callSite->getDebugLoc());
4462 
4463     callSite->eraseFromParent();
4464   }
4465 }
4466 
4467 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4468 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4469 /// existing call uses of the old function in the module, this adjusts them to
4470 /// call the new function directly.
4471 ///
4472 /// This is not just a cleanup: the always_inline pass requires direct calls to
4473 /// functions to be able to inline them.  If there is a bitcast in the way, it
4474 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4475 /// run at -O0.
4476 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4477                                                       llvm::Function *NewFn) {
4478   // If we're redefining a global as a function, don't transform it.
4479   if (!isa<llvm::Function>(Old)) return;
4480 
4481   replaceUsesOfNonProtoConstant(Old, NewFn);
4482 }
4483 
4484 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4485   auto DK = VD->isThisDeclarationADefinition();
4486   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4487     return;
4488 
4489   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4490   // If we have a definition, this might be a deferred decl. If the
4491   // instantiation is explicit, make sure we emit it at the end.
4492   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4493     GetAddrOfGlobalVar(VD);
4494 
4495   EmitTopLevelDecl(VD);
4496 }
4497 
4498 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4499                                                  llvm::GlobalValue *GV) {
4500   const auto *D = cast<FunctionDecl>(GD.getDecl());
4501 
4502   // Compute the function info and LLVM type.
4503   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4504   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4505 
4506   // Get or create the prototype for the function.
4507   if (!GV || (GV->getValueType() != Ty))
4508     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4509                                                    /*DontDefer=*/true,
4510                                                    ForDefinition));
4511 
4512   // Already emitted.
4513   if (!GV->isDeclaration())
4514     return;
4515 
4516   // We need to set linkage and visibility on the function before
4517   // generating code for it because various parts of IR generation
4518   // want to propagate this information down (e.g. to local static
4519   // declarations).
4520   auto *Fn = cast<llvm::Function>(GV);
4521   setFunctionLinkage(GD, Fn);
4522 
4523   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4524   setGVProperties(Fn, GD);
4525 
4526   MaybeHandleStaticInExternC(D, Fn);
4527 
4528 
4529   maybeSetTrivialComdat(*D, *Fn);
4530 
4531   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4532 
4533   setNonAliasAttributes(GD, Fn);
4534   SetLLVMFunctionAttributesForDefinition(D, Fn);
4535 
4536   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4537     AddGlobalCtor(Fn, CA->getPriority());
4538   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4539     AddGlobalDtor(Fn, DA->getPriority());
4540   if (D->hasAttr<AnnotateAttr>())
4541     AddGlobalAnnotations(D, Fn);
4542 }
4543 
4544 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4545   const auto *D = cast<ValueDecl>(GD.getDecl());
4546   const AliasAttr *AA = D->getAttr<AliasAttr>();
4547   assert(AA && "Not an alias?");
4548 
4549   StringRef MangledName = getMangledName(GD);
4550 
4551   if (AA->getAliasee() == MangledName) {
4552     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4553     return;
4554   }
4555 
4556   // If there is a definition in the module, then it wins over the alias.
4557   // This is dubious, but allow it to be safe.  Just ignore the alias.
4558   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4559   if (Entry && !Entry->isDeclaration())
4560     return;
4561 
4562   Aliases.push_back(GD);
4563 
4564   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4565 
4566   // Create a reference to the named value.  This ensures that it is emitted
4567   // if a deferred decl.
4568   llvm::Constant *Aliasee;
4569   llvm::GlobalValue::LinkageTypes LT;
4570   if (isa<llvm::FunctionType>(DeclTy)) {
4571     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4572                                       /*ForVTable=*/false);
4573     LT = getFunctionLinkage(GD);
4574   } else {
4575     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4576                                     llvm::PointerType::getUnqual(DeclTy),
4577                                     /*D=*/nullptr);
4578     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4579                                      D->getType().isConstQualified());
4580   }
4581 
4582   // Create the new alias itself, but don't set a name yet.
4583   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4584   auto *GA =
4585       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4586 
4587   if (Entry) {
4588     if (GA->getAliasee() == Entry) {
4589       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4590       return;
4591     }
4592 
4593     assert(Entry->isDeclaration());
4594 
4595     // If there is a declaration in the module, then we had an extern followed
4596     // by the alias, as in:
4597     //   extern int test6();
4598     //   ...
4599     //   int test6() __attribute__((alias("test7")));
4600     //
4601     // Remove it and replace uses of it with the alias.
4602     GA->takeName(Entry);
4603 
4604     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4605                                                           Entry->getType()));
4606     Entry->eraseFromParent();
4607   } else {
4608     GA->setName(MangledName);
4609   }
4610 
4611   // Set attributes which are particular to an alias; this is a
4612   // specialization of the attributes which may be set on a global
4613   // variable/function.
4614   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4615       D->isWeakImported()) {
4616     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4617   }
4618 
4619   if (const auto *VD = dyn_cast<VarDecl>(D))
4620     if (VD->getTLSKind())
4621       setTLSMode(GA, *VD);
4622 
4623   SetCommonAttributes(GD, GA);
4624 }
4625 
4626 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4627   const auto *D = cast<ValueDecl>(GD.getDecl());
4628   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4629   assert(IFA && "Not an ifunc?");
4630 
4631   StringRef MangledName = getMangledName(GD);
4632 
4633   if (IFA->getResolver() == MangledName) {
4634     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4635     return;
4636   }
4637 
4638   // Report an error if some definition overrides ifunc.
4639   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4640   if (Entry && !Entry->isDeclaration()) {
4641     GlobalDecl OtherGD;
4642     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4643         DiagnosedConflictingDefinitions.insert(GD).second) {
4644       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4645           << MangledName;
4646       Diags.Report(OtherGD.getDecl()->getLocation(),
4647                    diag::note_previous_definition);
4648     }
4649     return;
4650   }
4651 
4652   Aliases.push_back(GD);
4653 
4654   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4655   llvm::Constant *Resolver =
4656       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4657                               /*ForVTable=*/false);
4658   llvm::GlobalIFunc *GIF =
4659       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4660                                 "", Resolver, &getModule());
4661   if (Entry) {
4662     if (GIF->getResolver() == Entry) {
4663       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4664       return;
4665     }
4666     assert(Entry->isDeclaration());
4667 
4668     // If there is a declaration in the module, then we had an extern followed
4669     // by the ifunc, as in:
4670     //   extern int test();
4671     //   ...
4672     //   int test() __attribute__((ifunc("resolver")));
4673     //
4674     // Remove it and replace uses of it with the ifunc.
4675     GIF->takeName(Entry);
4676 
4677     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4678                                                           Entry->getType()));
4679     Entry->eraseFromParent();
4680   } else
4681     GIF->setName(MangledName);
4682 
4683   SetCommonAttributes(GD, GIF);
4684 }
4685 
4686 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4687                                             ArrayRef<llvm::Type*> Tys) {
4688   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4689                                          Tys);
4690 }
4691 
4692 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4693 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4694                          const StringLiteral *Literal, bool TargetIsLSB,
4695                          bool &IsUTF16, unsigned &StringLength) {
4696   StringRef String = Literal->getString();
4697   unsigned NumBytes = String.size();
4698 
4699   // Check for simple case.
4700   if (!Literal->containsNonAsciiOrNull()) {
4701     StringLength = NumBytes;
4702     return *Map.insert(std::make_pair(String, nullptr)).first;
4703   }
4704 
4705   // Otherwise, convert the UTF8 literals into a string of shorts.
4706   IsUTF16 = true;
4707 
4708   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4709   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4710   llvm::UTF16 *ToPtr = &ToBuf[0];
4711 
4712   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4713                                  ToPtr + NumBytes, llvm::strictConversion);
4714 
4715   // ConvertUTF8toUTF16 returns the length in ToPtr.
4716   StringLength = ToPtr - &ToBuf[0];
4717 
4718   // Add an explicit null.
4719   *ToPtr = 0;
4720   return *Map.insert(std::make_pair(
4721                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4722                                    (StringLength + 1) * 2),
4723                          nullptr)).first;
4724 }
4725 
4726 ConstantAddress
4727 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4728   unsigned StringLength = 0;
4729   bool isUTF16 = false;
4730   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4731       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4732                                getDataLayout().isLittleEndian(), isUTF16,
4733                                StringLength);
4734 
4735   if (auto *C = Entry.second)
4736     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4737 
4738   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4739   llvm::Constant *Zeros[] = { Zero, Zero };
4740 
4741   const ASTContext &Context = getContext();
4742   const llvm::Triple &Triple = getTriple();
4743 
4744   const auto CFRuntime = getLangOpts().CFRuntime;
4745   const bool IsSwiftABI =
4746       static_cast<unsigned>(CFRuntime) >=
4747       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4748   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4749 
4750   // If we don't already have it, get __CFConstantStringClassReference.
4751   if (!CFConstantStringClassRef) {
4752     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4753     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4754     Ty = llvm::ArrayType::get(Ty, 0);
4755 
4756     switch (CFRuntime) {
4757     default: break;
4758     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4759     case LangOptions::CoreFoundationABI::Swift5_0:
4760       CFConstantStringClassName =
4761           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4762                               : "$s10Foundation19_NSCFConstantStringCN";
4763       Ty = IntPtrTy;
4764       break;
4765     case LangOptions::CoreFoundationABI::Swift4_2:
4766       CFConstantStringClassName =
4767           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4768                               : "$S10Foundation19_NSCFConstantStringCN";
4769       Ty = IntPtrTy;
4770       break;
4771     case LangOptions::CoreFoundationABI::Swift4_1:
4772       CFConstantStringClassName =
4773           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4774                               : "__T010Foundation19_NSCFConstantStringCN";
4775       Ty = IntPtrTy;
4776       break;
4777     }
4778 
4779     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4780 
4781     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4782       llvm::GlobalValue *GV = nullptr;
4783 
4784       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4785         IdentifierInfo &II = Context.Idents.get(GV->getName());
4786         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4787         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4788 
4789         const VarDecl *VD = nullptr;
4790         for (const auto &Result : DC->lookup(&II))
4791           if ((VD = dyn_cast<VarDecl>(Result)))
4792             break;
4793 
4794         if (Triple.isOSBinFormatELF()) {
4795           if (!VD)
4796             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4797         } else {
4798           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4799           if (!VD || !VD->hasAttr<DLLExportAttr>())
4800             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4801           else
4802             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4803         }
4804 
4805         setDSOLocal(GV);
4806       }
4807     }
4808 
4809     // Decay array -> ptr
4810     CFConstantStringClassRef =
4811         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4812                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4813   }
4814 
4815   QualType CFTy = Context.getCFConstantStringType();
4816 
4817   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4818 
4819   ConstantInitBuilder Builder(*this);
4820   auto Fields = Builder.beginStruct(STy);
4821 
4822   // Class pointer.
4823   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4824 
4825   // Flags.
4826   if (IsSwiftABI) {
4827     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4828     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4829   } else {
4830     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4831   }
4832 
4833   // String pointer.
4834   llvm::Constant *C = nullptr;
4835   if (isUTF16) {
4836     auto Arr = llvm::makeArrayRef(
4837         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4838         Entry.first().size() / 2);
4839     C = llvm::ConstantDataArray::get(VMContext, Arr);
4840   } else {
4841     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4842   }
4843 
4844   // Note: -fwritable-strings doesn't make the backing store strings of
4845   // CFStrings writable. (See <rdar://problem/10657500>)
4846   auto *GV =
4847       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4848                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4849   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4850   // Don't enforce the target's minimum global alignment, since the only use
4851   // of the string is via this class initializer.
4852   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4853                             : Context.getTypeAlignInChars(Context.CharTy);
4854   GV->setAlignment(Align.getAsAlign());
4855 
4856   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4857   // Without it LLVM can merge the string with a non unnamed_addr one during
4858   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4859   if (Triple.isOSBinFormatMachO())
4860     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4861                            : "__TEXT,__cstring,cstring_literals");
4862   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4863   // the static linker to adjust permissions to read-only later on.
4864   else if (Triple.isOSBinFormatELF())
4865     GV->setSection(".rodata");
4866 
4867   // String.
4868   llvm::Constant *Str =
4869       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4870 
4871   if (isUTF16)
4872     // Cast the UTF16 string to the correct type.
4873     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4874   Fields.add(Str);
4875 
4876   // String length.
4877   llvm::IntegerType *LengthTy =
4878       llvm::IntegerType::get(getModule().getContext(),
4879                              Context.getTargetInfo().getLongWidth());
4880   if (IsSwiftABI) {
4881     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4882         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4883       LengthTy = Int32Ty;
4884     else
4885       LengthTy = IntPtrTy;
4886   }
4887   Fields.addInt(LengthTy, StringLength);
4888 
4889   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4890   // properly aligned on 32-bit platforms.
4891   CharUnits Alignment =
4892       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4893 
4894   // The struct.
4895   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4896                                     /*isConstant=*/false,
4897                                     llvm::GlobalVariable::PrivateLinkage);
4898   GV->addAttribute("objc_arc_inert");
4899   switch (Triple.getObjectFormat()) {
4900   case llvm::Triple::UnknownObjectFormat:
4901     llvm_unreachable("unknown file format");
4902   case llvm::Triple::XCOFF:
4903     llvm_unreachable("XCOFF is not yet implemented");
4904   case llvm::Triple::COFF:
4905   case llvm::Triple::ELF:
4906   case llvm::Triple::Wasm:
4907     GV->setSection("cfstring");
4908     break;
4909   case llvm::Triple::MachO:
4910     GV->setSection("__DATA,__cfstring");
4911     break;
4912   }
4913   Entry.second = GV;
4914 
4915   return ConstantAddress(GV, Alignment);
4916 }
4917 
4918 bool CodeGenModule::getExpressionLocationsEnabled() const {
4919   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4920 }
4921 
4922 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4923   if (ObjCFastEnumerationStateType.isNull()) {
4924     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4925     D->startDefinition();
4926 
4927     QualType FieldTypes[] = {
4928       Context.UnsignedLongTy,
4929       Context.getPointerType(Context.getObjCIdType()),
4930       Context.getPointerType(Context.UnsignedLongTy),
4931       Context.getConstantArrayType(Context.UnsignedLongTy,
4932                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4933     };
4934 
4935     for (size_t i = 0; i < 4; ++i) {
4936       FieldDecl *Field = FieldDecl::Create(Context,
4937                                            D,
4938                                            SourceLocation(),
4939                                            SourceLocation(), nullptr,
4940                                            FieldTypes[i], /*TInfo=*/nullptr,
4941                                            /*BitWidth=*/nullptr,
4942                                            /*Mutable=*/false,
4943                                            ICIS_NoInit);
4944       Field->setAccess(AS_public);
4945       D->addDecl(Field);
4946     }
4947 
4948     D->completeDefinition();
4949     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4950   }
4951 
4952   return ObjCFastEnumerationStateType;
4953 }
4954 
4955 llvm::Constant *
4956 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4957   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4958 
4959   // Don't emit it as the address of the string, emit the string data itself
4960   // as an inline array.
4961   if (E->getCharByteWidth() == 1) {
4962     SmallString<64> Str(E->getString());
4963 
4964     // Resize the string to the right size, which is indicated by its type.
4965     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4966     Str.resize(CAT->getSize().getZExtValue());
4967     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4968   }
4969 
4970   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4971   llvm::Type *ElemTy = AType->getElementType();
4972   unsigned NumElements = AType->getNumElements();
4973 
4974   // Wide strings have either 2-byte or 4-byte elements.
4975   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4976     SmallVector<uint16_t, 32> Elements;
4977     Elements.reserve(NumElements);
4978 
4979     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4980       Elements.push_back(E->getCodeUnit(i));
4981     Elements.resize(NumElements);
4982     return llvm::ConstantDataArray::get(VMContext, Elements);
4983   }
4984 
4985   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4986   SmallVector<uint32_t, 32> Elements;
4987   Elements.reserve(NumElements);
4988 
4989   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4990     Elements.push_back(E->getCodeUnit(i));
4991   Elements.resize(NumElements);
4992   return llvm::ConstantDataArray::get(VMContext, Elements);
4993 }
4994 
4995 static llvm::GlobalVariable *
4996 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4997                       CodeGenModule &CGM, StringRef GlobalName,
4998                       CharUnits Alignment) {
4999   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5000       CGM.getStringLiteralAddressSpace());
5001 
5002   llvm::Module &M = CGM.getModule();
5003   // Create a global variable for this string
5004   auto *GV = new llvm::GlobalVariable(
5005       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5006       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5007   GV->setAlignment(Alignment.getAsAlign());
5008   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5009   if (GV->isWeakForLinker()) {
5010     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5011     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5012   }
5013   CGM.setDSOLocal(GV);
5014 
5015   return GV;
5016 }
5017 
5018 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5019 /// constant array for the given string literal.
5020 ConstantAddress
5021 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5022                                                   StringRef Name) {
5023   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5024 
5025   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5026   llvm::GlobalVariable **Entry = nullptr;
5027   if (!LangOpts.WritableStrings) {
5028     Entry = &ConstantStringMap[C];
5029     if (auto GV = *Entry) {
5030       if (Alignment.getQuantity() > GV->getAlignment())
5031         GV->setAlignment(Alignment.getAsAlign());
5032       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5033                              Alignment);
5034     }
5035   }
5036 
5037   SmallString<256> MangledNameBuffer;
5038   StringRef GlobalVariableName;
5039   llvm::GlobalValue::LinkageTypes LT;
5040 
5041   // Mangle the string literal if that's how the ABI merges duplicate strings.
5042   // Don't do it if they are writable, since we don't want writes in one TU to
5043   // affect strings in another.
5044   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5045       !LangOpts.WritableStrings) {
5046     llvm::raw_svector_ostream Out(MangledNameBuffer);
5047     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5048     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5049     GlobalVariableName = MangledNameBuffer;
5050   } else {
5051     LT = llvm::GlobalValue::PrivateLinkage;
5052     GlobalVariableName = Name;
5053   }
5054 
5055   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5056   if (Entry)
5057     *Entry = GV;
5058 
5059   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5060                                   QualType());
5061 
5062   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5063                          Alignment);
5064 }
5065 
5066 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5067 /// array for the given ObjCEncodeExpr node.
5068 ConstantAddress
5069 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5070   std::string Str;
5071   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5072 
5073   return GetAddrOfConstantCString(Str);
5074 }
5075 
5076 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5077 /// the literal and a terminating '\0' character.
5078 /// The result has pointer to array type.
5079 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5080     const std::string &Str, const char *GlobalName) {
5081   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5082   CharUnits Alignment =
5083     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5084 
5085   llvm::Constant *C =
5086       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5087 
5088   // Don't share any string literals if strings aren't constant.
5089   llvm::GlobalVariable **Entry = nullptr;
5090   if (!LangOpts.WritableStrings) {
5091     Entry = &ConstantStringMap[C];
5092     if (auto GV = *Entry) {
5093       if (Alignment.getQuantity() > GV->getAlignment())
5094         GV->setAlignment(Alignment.getAsAlign());
5095       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5096                              Alignment);
5097     }
5098   }
5099 
5100   // Get the default prefix if a name wasn't specified.
5101   if (!GlobalName)
5102     GlobalName = ".str";
5103   // Create a global variable for this.
5104   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5105                                   GlobalName, Alignment);
5106   if (Entry)
5107     *Entry = GV;
5108 
5109   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5110                          Alignment);
5111 }
5112 
5113 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5114     const MaterializeTemporaryExpr *E, const Expr *Init) {
5115   assert((E->getStorageDuration() == SD_Static ||
5116           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5117   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5118 
5119   // If we're not materializing a subobject of the temporary, keep the
5120   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5121   QualType MaterializedType = Init->getType();
5122   if (Init == E->getSubExpr())
5123     MaterializedType = E->getType();
5124 
5125   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5126 
5127   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5128     return ConstantAddress(Slot, Align);
5129 
5130   // FIXME: If an externally-visible declaration extends multiple temporaries,
5131   // we need to give each temporary the same name in every translation unit (and
5132   // we also need to make the temporaries externally-visible).
5133   SmallString<256> Name;
5134   llvm::raw_svector_ostream Out(Name);
5135   getCXXABI().getMangleContext().mangleReferenceTemporary(
5136       VD, E->getManglingNumber(), Out);
5137 
5138   APValue *Value = nullptr;
5139   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5140     // If the initializer of the extending declaration is a constant
5141     // initializer, we should have a cached constant initializer for this
5142     // temporary. Note that this might have a different value from the value
5143     // computed by evaluating the initializer if the surrounding constant
5144     // expression modifies the temporary.
5145     Value = E->getOrCreateValue(false);
5146   }
5147 
5148   // Try evaluating it now, it might have a constant initializer.
5149   Expr::EvalResult EvalResult;
5150   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5151       !EvalResult.hasSideEffects())
5152     Value = &EvalResult.Val;
5153 
5154   LangAS AddrSpace =
5155       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5156 
5157   Optional<ConstantEmitter> emitter;
5158   llvm::Constant *InitialValue = nullptr;
5159   bool Constant = false;
5160   llvm::Type *Type;
5161   if (Value) {
5162     // The temporary has a constant initializer, use it.
5163     emitter.emplace(*this);
5164     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5165                                                MaterializedType);
5166     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5167     Type = InitialValue->getType();
5168   } else {
5169     // No initializer, the initialization will be provided when we
5170     // initialize the declaration which performed lifetime extension.
5171     Type = getTypes().ConvertTypeForMem(MaterializedType);
5172   }
5173 
5174   // Create a global variable for this lifetime-extended temporary.
5175   llvm::GlobalValue::LinkageTypes Linkage =
5176       getLLVMLinkageVarDefinition(VD, Constant);
5177   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5178     const VarDecl *InitVD;
5179     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5180         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5181       // Temporaries defined inside a class get linkonce_odr linkage because the
5182       // class can be defined in multiple translation units.
5183       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5184     } else {
5185       // There is no need for this temporary to have external linkage if the
5186       // VarDecl has external linkage.
5187       Linkage = llvm::GlobalVariable::InternalLinkage;
5188     }
5189   }
5190   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5191   auto *GV = new llvm::GlobalVariable(
5192       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5193       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5194   if (emitter) emitter->finalize(GV);
5195   setGVProperties(GV, VD);
5196   GV->setAlignment(Align.getAsAlign());
5197   if (supportsCOMDAT() && GV->isWeakForLinker())
5198     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5199   if (VD->getTLSKind())
5200     setTLSMode(GV, *VD);
5201   llvm::Constant *CV = GV;
5202   if (AddrSpace != LangAS::Default)
5203     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5204         *this, GV, AddrSpace, LangAS::Default,
5205         Type->getPointerTo(
5206             getContext().getTargetAddressSpace(LangAS::Default)));
5207   MaterializedGlobalTemporaryMap[E] = CV;
5208   return ConstantAddress(CV, Align);
5209 }
5210 
5211 /// EmitObjCPropertyImplementations - Emit information for synthesized
5212 /// properties for an implementation.
5213 void CodeGenModule::EmitObjCPropertyImplementations(const
5214                                                     ObjCImplementationDecl *D) {
5215   for (const auto *PID : D->property_impls()) {
5216     // Dynamic is just for type-checking.
5217     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5218       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5219 
5220       // Determine which methods need to be implemented, some may have
5221       // been overridden. Note that ::isPropertyAccessor is not the method
5222       // we want, that just indicates if the decl came from a
5223       // property. What we want to know is if the method is defined in
5224       // this implementation.
5225       auto *Getter = PID->getGetterMethodDecl();
5226       if (!Getter || Getter->isSynthesizedAccessorStub())
5227         CodeGenFunction(*this).GenerateObjCGetter(
5228             const_cast<ObjCImplementationDecl *>(D), PID);
5229       auto *Setter = PID->getSetterMethodDecl();
5230       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5231         CodeGenFunction(*this).GenerateObjCSetter(
5232                                  const_cast<ObjCImplementationDecl *>(D), PID);
5233     }
5234   }
5235 }
5236 
5237 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5238   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5239   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5240        ivar; ivar = ivar->getNextIvar())
5241     if (ivar->getType().isDestructedType())
5242       return true;
5243 
5244   return false;
5245 }
5246 
5247 static bool AllTrivialInitializers(CodeGenModule &CGM,
5248                                    ObjCImplementationDecl *D) {
5249   CodeGenFunction CGF(CGM);
5250   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5251        E = D->init_end(); B != E; ++B) {
5252     CXXCtorInitializer *CtorInitExp = *B;
5253     Expr *Init = CtorInitExp->getInit();
5254     if (!CGF.isTrivialInitializer(Init))
5255       return false;
5256   }
5257   return true;
5258 }
5259 
5260 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5261 /// for an implementation.
5262 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5263   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5264   if (needsDestructMethod(D)) {
5265     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5266     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5267     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5268         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5269         getContext().VoidTy, nullptr, D,
5270         /*isInstance=*/true, /*isVariadic=*/false,
5271         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5272         /*isImplicitlyDeclared=*/true,
5273         /*isDefined=*/false, ObjCMethodDecl::Required);
5274     D->addInstanceMethod(DTORMethod);
5275     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5276     D->setHasDestructors(true);
5277   }
5278 
5279   // If the implementation doesn't have any ivar initializers, we don't need
5280   // a .cxx_construct.
5281   if (D->getNumIvarInitializers() == 0 ||
5282       AllTrivialInitializers(*this, D))
5283     return;
5284 
5285   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5286   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5287   // The constructor returns 'self'.
5288   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5289       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5290       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5291       /*isVariadic=*/false,
5292       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5293       /*isImplicitlyDeclared=*/true,
5294       /*isDefined=*/false, ObjCMethodDecl::Required);
5295   D->addInstanceMethod(CTORMethod);
5296   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5297   D->setHasNonZeroConstructors(true);
5298 }
5299 
5300 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5301 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5302   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5303       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5304     ErrorUnsupported(LSD, "linkage spec");
5305     return;
5306   }
5307 
5308   EmitDeclContext(LSD);
5309 }
5310 
5311 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5312   for (auto *I : DC->decls()) {
5313     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5314     // are themselves considered "top-level", so EmitTopLevelDecl on an
5315     // ObjCImplDecl does not recursively visit them. We need to do that in
5316     // case they're nested inside another construct (LinkageSpecDecl /
5317     // ExportDecl) that does stop them from being considered "top-level".
5318     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5319       for (auto *M : OID->methods())
5320         EmitTopLevelDecl(M);
5321     }
5322 
5323     EmitTopLevelDecl(I);
5324   }
5325 }
5326 
5327 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5328 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5329   // Ignore dependent declarations.
5330   if (D->isTemplated())
5331     return;
5332 
5333   // Consteval function shouldn't be emitted.
5334   if (auto *FD = dyn_cast<FunctionDecl>(D))
5335     if (FD->isConsteval())
5336       return;
5337 
5338   switch (D->getKind()) {
5339   case Decl::CXXConversion:
5340   case Decl::CXXMethod:
5341   case Decl::Function:
5342     EmitGlobal(cast<FunctionDecl>(D));
5343     // Always provide some coverage mapping
5344     // even for the functions that aren't emitted.
5345     AddDeferredUnusedCoverageMapping(D);
5346     break;
5347 
5348   case Decl::CXXDeductionGuide:
5349     // Function-like, but does not result in code emission.
5350     break;
5351 
5352   case Decl::Var:
5353   case Decl::Decomposition:
5354   case Decl::VarTemplateSpecialization:
5355     EmitGlobal(cast<VarDecl>(D));
5356     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5357       for (auto *B : DD->bindings())
5358         if (auto *HD = B->getHoldingVar())
5359           EmitGlobal(HD);
5360     break;
5361 
5362   // Indirect fields from global anonymous structs and unions can be
5363   // ignored; only the actual variable requires IR gen support.
5364   case Decl::IndirectField:
5365     break;
5366 
5367   // C++ Decls
5368   case Decl::Namespace:
5369     EmitDeclContext(cast<NamespaceDecl>(D));
5370     break;
5371   case Decl::ClassTemplateSpecialization: {
5372     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5373     if (CGDebugInfo *DI = getModuleDebugInfo())
5374       if (Spec->getSpecializationKind() ==
5375               TSK_ExplicitInstantiationDefinition &&
5376           Spec->hasDefinition())
5377         DI->completeTemplateDefinition(*Spec);
5378   } LLVM_FALLTHROUGH;
5379   case Decl::CXXRecord:
5380     if (CGDebugInfo *DI = getModuleDebugInfo())
5381       if (auto *ES = D->getASTContext().getExternalSource())
5382         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5383           DI->completeUnusedClass(cast<CXXRecordDecl>(*D));
5384     // Emit any static data members, they may be definitions.
5385     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5386       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5387         EmitTopLevelDecl(I);
5388     break;
5389     // No code generation needed.
5390   case Decl::UsingShadow:
5391   case Decl::ClassTemplate:
5392   case Decl::VarTemplate:
5393   case Decl::Concept:
5394   case Decl::VarTemplatePartialSpecialization:
5395   case Decl::FunctionTemplate:
5396   case Decl::TypeAliasTemplate:
5397   case Decl::Block:
5398   case Decl::Empty:
5399   case Decl::Binding:
5400     break;
5401   case Decl::Using:          // using X; [C++]
5402     if (CGDebugInfo *DI = getModuleDebugInfo())
5403         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5404     break;
5405   case Decl::NamespaceAlias:
5406     if (CGDebugInfo *DI = getModuleDebugInfo())
5407         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5408     break;
5409   case Decl::UsingDirective: // using namespace X; [C++]
5410     if (CGDebugInfo *DI = getModuleDebugInfo())
5411       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5412     break;
5413   case Decl::CXXConstructor:
5414     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5415     break;
5416   case Decl::CXXDestructor:
5417     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5418     break;
5419 
5420   case Decl::StaticAssert:
5421     // Nothing to do.
5422     break;
5423 
5424   // Objective-C Decls
5425 
5426   // Forward declarations, no (immediate) code generation.
5427   case Decl::ObjCInterface:
5428   case Decl::ObjCCategory:
5429     break;
5430 
5431   case Decl::ObjCProtocol: {
5432     auto *Proto = cast<ObjCProtocolDecl>(D);
5433     if (Proto->isThisDeclarationADefinition())
5434       ObjCRuntime->GenerateProtocol(Proto);
5435     break;
5436   }
5437 
5438   case Decl::ObjCCategoryImpl:
5439     // Categories have properties but don't support synthesize so we
5440     // can ignore them here.
5441     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5442     break;
5443 
5444   case Decl::ObjCImplementation: {
5445     auto *OMD = cast<ObjCImplementationDecl>(D);
5446     EmitObjCPropertyImplementations(OMD);
5447     EmitObjCIvarInitializations(OMD);
5448     ObjCRuntime->GenerateClass(OMD);
5449     // Emit global variable debug information.
5450     if (CGDebugInfo *DI = getModuleDebugInfo())
5451       if (getCodeGenOpts().hasReducedDebugInfo())
5452         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5453             OMD->getClassInterface()), OMD->getLocation());
5454     break;
5455   }
5456   case Decl::ObjCMethod: {
5457     auto *OMD = cast<ObjCMethodDecl>(D);
5458     // If this is not a prototype, emit the body.
5459     if (OMD->getBody())
5460       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5461     break;
5462   }
5463   case Decl::ObjCCompatibleAlias:
5464     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5465     break;
5466 
5467   case Decl::PragmaComment: {
5468     const auto *PCD = cast<PragmaCommentDecl>(D);
5469     switch (PCD->getCommentKind()) {
5470     case PCK_Unknown:
5471       llvm_unreachable("unexpected pragma comment kind");
5472     case PCK_Linker:
5473       AppendLinkerOptions(PCD->getArg());
5474       break;
5475     case PCK_Lib:
5476         AddDependentLib(PCD->getArg());
5477       break;
5478     case PCK_Compiler:
5479     case PCK_ExeStr:
5480     case PCK_User:
5481       break; // We ignore all of these.
5482     }
5483     break;
5484   }
5485 
5486   case Decl::PragmaDetectMismatch: {
5487     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5488     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5489     break;
5490   }
5491 
5492   case Decl::LinkageSpec:
5493     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5494     break;
5495 
5496   case Decl::FileScopeAsm: {
5497     // File-scope asm is ignored during device-side CUDA compilation.
5498     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5499       break;
5500     // File-scope asm is ignored during device-side OpenMP compilation.
5501     if (LangOpts.OpenMPIsDevice)
5502       break;
5503     auto *AD = cast<FileScopeAsmDecl>(D);
5504     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5505     break;
5506   }
5507 
5508   case Decl::Import: {
5509     auto *Import = cast<ImportDecl>(D);
5510 
5511     // If we've already imported this module, we're done.
5512     if (!ImportedModules.insert(Import->getImportedModule()))
5513       break;
5514 
5515     // Emit debug information for direct imports.
5516     if (!Import->getImportedOwningModule()) {
5517       if (CGDebugInfo *DI = getModuleDebugInfo())
5518         DI->EmitImportDecl(*Import);
5519     }
5520 
5521     // Find all of the submodules and emit the module initializers.
5522     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5523     SmallVector<clang::Module *, 16> Stack;
5524     Visited.insert(Import->getImportedModule());
5525     Stack.push_back(Import->getImportedModule());
5526 
5527     while (!Stack.empty()) {
5528       clang::Module *Mod = Stack.pop_back_val();
5529       if (!EmittedModuleInitializers.insert(Mod).second)
5530         continue;
5531 
5532       for (auto *D : Context.getModuleInitializers(Mod))
5533         EmitTopLevelDecl(D);
5534 
5535       // Visit the submodules of this module.
5536       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5537                                              SubEnd = Mod->submodule_end();
5538            Sub != SubEnd; ++Sub) {
5539         // Skip explicit children; they need to be explicitly imported to emit
5540         // the initializers.
5541         if ((*Sub)->IsExplicit)
5542           continue;
5543 
5544         if (Visited.insert(*Sub).second)
5545           Stack.push_back(*Sub);
5546       }
5547     }
5548     break;
5549   }
5550 
5551   case Decl::Export:
5552     EmitDeclContext(cast<ExportDecl>(D));
5553     break;
5554 
5555   case Decl::OMPThreadPrivate:
5556     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5557     break;
5558 
5559   case Decl::OMPAllocate:
5560     break;
5561 
5562   case Decl::OMPDeclareReduction:
5563     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5564     break;
5565 
5566   case Decl::OMPDeclareMapper:
5567     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5568     break;
5569 
5570   case Decl::OMPRequires:
5571     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5572     break;
5573 
5574   default:
5575     // Make sure we handled everything we should, every other kind is a
5576     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5577     // function. Need to recode Decl::Kind to do that easily.
5578     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5579     break;
5580   }
5581 }
5582 
5583 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5584   // Do we need to generate coverage mapping?
5585   if (!CodeGenOpts.CoverageMapping)
5586     return;
5587   switch (D->getKind()) {
5588   case Decl::CXXConversion:
5589   case Decl::CXXMethod:
5590   case Decl::Function:
5591   case Decl::ObjCMethod:
5592   case Decl::CXXConstructor:
5593   case Decl::CXXDestructor: {
5594     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5595       break;
5596     SourceManager &SM = getContext().getSourceManager();
5597     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5598       break;
5599     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5600     if (I == DeferredEmptyCoverageMappingDecls.end())
5601       DeferredEmptyCoverageMappingDecls[D] = true;
5602     break;
5603   }
5604   default:
5605     break;
5606   };
5607 }
5608 
5609 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5610   // Do we need to generate coverage mapping?
5611   if (!CodeGenOpts.CoverageMapping)
5612     return;
5613   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5614     if (Fn->isTemplateInstantiation())
5615       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5616   }
5617   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5618   if (I == DeferredEmptyCoverageMappingDecls.end())
5619     DeferredEmptyCoverageMappingDecls[D] = false;
5620   else
5621     I->second = false;
5622 }
5623 
5624 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5625   // We call takeVector() here to avoid use-after-free.
5626   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5627   // we deserialize function bodies to emit coverage info for them, and that
5628   // deserializes more declarations. How should we handle that case?
5629   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5630     if (!Entry.second)
5631       continue;
5632     const Decl *D = Entry.first;
5633     switch (D->getKind()) {
5634     case Decl::CXXConversion:
5635     case Decl::CXXMethod:
5636     case Decl::Function:
5637     case Decl::ObjCMethod: {
5638       CodeGenPGO PGO(*this);
5639       GlobalDecl GD(cast<FunctionDecl>(D));
5640       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5641                                   getFunctionLinkage(GD));
5642       break;
5643     }
5644     case Decl::CXXConstructor: {
5645       CodeGenPGO PGO(*this);
5646       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5647       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5648                                   getFunctionLinkage(GD));
5649       break;
5650     }
5651     case Decl::CXXDestructor: {
5652       CodeGenPGO PGO(*this);
5653       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5654       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5655                                   getFunctionLinkage(GD));
5656       break;
5657     }
5658     default:
5659       break;
5660     };
5661   }
5662 }
5663 
5664 void CodeGenModule::EmitMainVoidAlias() {
5665   // In order to transition away from "__original_main" gracefully, emit an
5666   // alias for "main" in the no-argument case so that libc can detect when
5667   // new-style no-argument main is in used.
5668   if (llvm::Function *F = getModule().getFunction("main")) {
5669     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5670         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5671       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5672   }
5673 }
5674 
5675 /// Turns the given pointer into a constant.
5676 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5677                                           const void *Ptr) {
5678   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5679   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5680   return llvm::ConstantInt::get(i64, PtrInt);
5681 }
5682 
5683 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5684                                    llvm::NamedMDNode *&GlobalMetadata,
5685                                    GlobalDecl D,
5686                                    llvm::GlobalValue *Addr) {
5687   if (!GlobalMetadata)
5688     GlobalMetadata =
5689       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5690 
5691   // TODO: should we report variant information for ctors/dtors?
5692   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5693                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5694                                CGM.getLLVMContext(), D.getDecl()))};
5695   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5696 }
5697 
5698 /// For each function which is declared within an extern "C" region and marked
5699 /// as 'used', but has internal linkage, create an alias from the unmangled
5700 /// name to the mangled name if possible. People expect to be able to refer
5701 /// to such functions with an unmangled name from inline assembly within the
5702 /// same translation unit.
5703 void CodeGenModule::EmitStaticExternCAliases() {
5704   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5705     return;
5706   for (auto &I : StaticExternCValues) {
5707     IdentifierInfo *Name = I.first;
5708     llvm::GlobalValue *Val = I.second;
5709     if (Val && !getModule().getNamedValue(Name->getName()))
5710       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5711   }
5712 }
5713 
5714 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5715                                              GlobalDecl &Result) const {
5716   auto Res = Manglings.find(MangledName);
5717   if (Res == Manglings.end())
5718     return false;
5719   Result = Res->getValue();
5720   return true;
5721 }
5722 
5723 /// Emits metadata nodes associating all the global values in the
5724 /// current module with the Decls they came from.  This is useful for
5725 /// projects using IR gen as a subroutine.
5726 ///
5727 /// Since there's currently no way to associate an MDNode directly
5728 /// with an llvm::GlobalValue, we create a global named metadata
5729 /// with the name 'clang.global.decl.ptrs'.
5730 void CodeGenModule::EmitDeclMetadata() {
5731   llvm::NamedMDNode *GlobalMetadata = nullptr;
5732 
5733   for (auto &I : MangledDeclNames) {
5734     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5735     // Some mangled names don't necessarily have an associated GlobalValue
5736     // in this module, e.g. if we mangled it for DebugInfo.
5737     if (Addr)
5738       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5739   }
5740 }
5741 
5742 /// Emits metadata nodes for all the local variables in the current
5743 /// function.
5744 void CodeGenFunction::EmitDeclMetadata() {
5745   if (LocalDeclMap.empty()) return;
5746 
5747   llvm::LLVMContext &Context = getLLVMContext();
5748 
5749   // Find the unique metadata ID for this name.
5750   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5751 
5752   llvm::NamedMDNode *GlobalMetadata = nullptr;
5753 
5754   for (auto &I : LocalDeclMap) {
5755     const Decl *D = I.first;
5756     llvm::Value *Addr = I.second.getPointer();
5757     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5758       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5759       Alloca->setMetadata(
5760           DeclPtrKind, llvm::MDNode::get(
5761                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5762     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5763       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5764       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5765     }
5766   }
5767 }
5768 
5769 void CodeGenModule::EmitVersionIdentMetadata() {
5770   llvm::NamedMDNode *IdentMetadata =
5771     TheModule.getOrInsertNamedMetadata("llvm.ident");
5772   std::string Version = getClangFullVersion();
5773   llvm::LLVMContext &Ctx = TheModule.getContext();
5774 
5775   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5776   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5777 }
5778 
5779 void CodeGenModule::EmitCommandLineMetadata() {
5780   llvm::NamedMDNode *CommandLineMetadata =
5781     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5782   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5783   llvm::LLVMContext &Ctx = TheModule.getContext();
5784 
5785   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5786   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5787 }
5788 
5789 void CodeGenModule::EmitCoverageFile() {
5790   if (getCodeGenOpts().CoverageDataFile.empty() &&
5791       getCodeGenOpts().CoverageNotesFile.empty())
5792     return;
5793 
5794   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5795   if (!CUNode)
5796     return;
5797 
5798   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5799   llvm::LLVMContext &Ctx = TheModule.getContext();
5800   auto *CoverageDataFile =
5801       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5802   auto *CoverageNotesFile =
5803       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5804   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5805     llvm::MDNode *CU = CUNode->getOperand(i);
5806     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5807     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5808   }
5809 }
5810 
5811 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5812                                                        bool ForEH) {
5813   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5814   // FIXME: should we even be calling this method if RTTI is disabled
5815   // and it's not for EH?
5816   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5817       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5818        getTriple().isNVPTX()))
5819     return llvm::Constant::getNullValue(Int8PtrTy);
5820 
5821   if (ForEH && Ty->isObjCObjectPointerType() &&
5822       LangOpts.ObjCRuntime.isGNUFamily())
5823     return ObjCRuntime->GetEHType(Ty);
5824 
5825   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5826 }
5827 
5828 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5829   // Do not emit threadprivates in simd-only mode.
5830   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5831     return;
5832   for (auto RefExpr : D->varlists()) {
5833     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5834     bool PerformInit =
5835         VD->getAnyInitializer() &&
5836         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5837                                                         /*ForRef=*/false);
5838 
5839     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5840     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5841             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5842       CXXGlobalInits.push_back(InitFunction);
5843   }
5844 }
5845 
5846 llvm::Metadata *
5847 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5848                                             StringRef Suffix) {
5849   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5850   if (InternalId)
5851     return InternalId;
5852 
5853   if (isExternallyVisible(T->getLinkage())) {
5854     std::string OutName;
5855     llvm::raw_string_ostream Out(OutName);
5856     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5857     Out << Suffix;
5858 
5859     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5860   } else {
5861     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5862                                            llvm::ArrayRef<llvm::Metadata *>());
5863   }
5864 
5865   return InternalId;
5866 }
5867 
5868 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5869   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5870 }
5871 
5872 llvm::Metadata *
5873 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5874   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5875 }
5876 
5877 // Generalize pointer types to a void pointer with the qualifiers of the
5878 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5879 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5880 // 'void *'.
5881 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5882   if (!Ty->isPointerType())
5883     return Ty;
5884 
5885   return Ctx.getPointerType(
5886       QualType(Ctx.VoidTy).withCVRQualifiers(
5887           Ty->getPointeeType().getCVRQualifiers()));
5888 }
5889 
5890 // Apply type generalization to a FunctionType's return and argument types
5891 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5892   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5893     SmallVector<QualType, 8> GeneralizedParams;
5894     for (auto &Param : FnType->param_types())
5895       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5896 
5897     return Ctx.getFunctionType(
5898         GeneralizeType(Ctx, FnType->getReturnType()),
5899         GeneralizedParams, FnType->getExtProtoInfo());
5900   }
5901 
5902   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5903     return Ctx.getFunctionNoProtoType(
5904         GeneralizeType(Ctx, FnType->getReturnType()));
5905 
5906   llvm_unreachable("Encountered unknown FunctionType");
5907 }
5908 
5909 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5910   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5911                                       GeneralizedMetadataIdMap, ".generalized");
5912 }
5913 
5914 /// Returns whether this module needs the "all-vtables" type identifier.
5915 bool CodeGenModule::NeedAllVtablesTypeId() const {
5916   // Returns true if at least one of vtable-based CFI checkers is enabled and
5917   // is not in the trapping mode.
5918   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5919            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5920           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5921            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5922           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5923            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5924           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5925            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5926 }
5927 
5928 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5929                                           CharUnits Offset,
5930                                           const CXXRecordDecl *RD) {
5931   llvm::Metadata *MD =
5932       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5933   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5934 
5935   if (CodeGenOpts.SanitizeCfiCrossDso)
5936     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5937       VTable->addTypeMetadata(Offset.getQuantity(),
5938                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5939 
5940   if (NeedAllVtablesTypeId()) {
5941     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5942     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5943   }
5944 }
5945 
5946 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5947   if (!SanStats)
5948     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5949 
5950   return *SanStats;
5951 }
5952 llvm::Value *
5953 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5954                                                   CodeGenFunction &CGF) {
5955   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5956   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5957   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5958   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5959                                 "__translate_sampler_initializer"),
5960                                 {C});
5961 }
5962 
5963 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
5964     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
5965   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
5966                                  /* forPointeeType= */ true);
5967 }
5968 
5969 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
5970                                                  LValueBaseInfo *BaseInfo,
5971                                                  TBAAAccessInfo *TBAAInfo,
5972                                                  bool forPointeeType) {
5973   if (TBAAInfo)
5974     *TBAAInfo = getTBAAAccessInfo(T);
5975 
5976   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
5977   // that doesn't return the information we need to compute BaseInfo.
5978 
5979   // Honor alignment typedef attributes even on incomplete types.
5980   // We also honor them straight for C++ class types, even as pointees;
5981   // there's an expressivity gap here.
5982   if (auto TT = T->getAs<TypedefType>()) {
5983     if (auto Align = TT->getDecl()->getMaxAlignment()) {
5984       if (BaseInfo)
5985         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
5986       return getContext().toCharUnitsFromBits(Align);
5987     }
5988   }
5989 
5990   bool AlignForArray = T->isArrayType();
5991 
5992   // Analyze the base element type, so we don't get confused by incomplete
5993   // array types.
5994   T = getContext().getBaseElementType(T);
5995 
5996   if (T->isIncompleteType()) {
5997     // We could try to replicate the logic from
5998     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
5999     // type is incomplete, so it's impossible to test. We could try to reuse
6000     // getTypeAlignIfKnown, but that doesn't return the information we need
6001     // to set BaseInfo.  So just ignore the possibility that the alignment is
6002     // greater than one.
6003     if (BaseInfo)
6004       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6005     return CharUnits::One();
6006   }
6007 
6008   if (BaseInfo)
6009     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6010 
6011   CharUnits Alignment;
6012   // For C++ class pointees, we don't know whether we're pointing at a
6013   // base or a complete object, so we generally need to use the
6014   // non-virtual alignment.
6015   const CXXRecordDecl *RD;
6016   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6017     Alignment = getClassPointerAlignment(RD);
6018   } else {
6019     Alignment = getContext().getTypeAlignInChars(T);
6020     if (T.getQualifiers().hasUnaligned())
6021       Alignment = CharUnits::One();
6022   }
6023 
6024   // Cap to the global maximum type alignment unless the alignment
6025   // was somehow explicit on the type.
6026   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6027     if (Alignment.getQuantity() > MaxAlign &&
6028         !getContext().isAlignmentRequired(T))
6029       Alignment = CharUnits::fromQuantity(MaxAlign);
6030   }
6031   return Alignment;
6032 }
6033 
6034 bool CodeGenModule::stopAutoInit() {
6035   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6036   if (StopAfter) {
6037     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6038     // used
6039     if (NumAutoVarInit >= StopAfter) {
6040       return true;
6041     }
6042     if (!NumAutoVarInit) {
6043       unsigned DiagID = getDiags().getCustomDiagID(
6044           DiagnosticsEngine::Warning,
6045           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6046           "number of times ftrivial-auto-var-init=%1 gets applied.");
6047       getDiags().Report(DiagID)
6048           << StopAfter
6049           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6050                       LangOptions::TrivialAutoVarInitKind::Zero
6051                   ? "zero"
6052                   : "pattern");
6053     }
6054     ++NumAutoVarInit;
6055   }
6056   return false;
6057 }
6058