xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ec4747802ae99edea83b3199df52be5c1f43f048)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CoverageMappingGen.h"
25 #include "CodeGenTBAA.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericItanium:
68     return CreateItaniumCXXABI(CGM);
69   case TargetCXXABI::Microsoft:
70     return CreateMicrosoftCXXABI(CGM);
71   }
72 
73   llvm_unreachable("invalid C++ ABI kind");
74 }
75 
76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
77                              llvm::Module &M, const llvm::DataLayout &TD,
78                              DiagnosticsEngine &diags,
79                              CoverageSourceInfo *CoverageInfo)
80     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
81       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
82       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
83       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
84       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
85       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
86       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
87       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
88       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
89       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
90       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
91       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
92       LifetimeEndFn(nullptr), SanitizerBL(llvm::SpecialCaseList::createOrDie(
93                                   CGO.SanitizerBlacklistFile)),
94       SanitizerMD(new SanitizerMetadata(*this)) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 
152   // If coverage mapping generation is enabled, create the
153   // CoverageMappingModuleGen object.
154   if (CodeGenOpts.CoverageMapping)
155     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
156 }
157 
158 CodeGenModule::~CodeGenModule() {
159   delete ObjCRuntime;
160   delete OpenCLRuntime;
161   delete OpenMPRuntime;
162   delete CUDARuntime;
163   delete TheTargetCodeGenInfo;
164   delete TBAA;
165   delete DebugInfo;
166   delete ARCData;
167   delete RRData;
168 }
169 
170 void CodeGenModule::createObjCRuntime() {
171   // This is just isGNUFamily(), but we want to force implementors of
172   // new ABIs to decide how best to do this.
173   switch (LangOpts.ObjCRuntime.getKind()) {
174   case ObjCRuntime::GNUstep:
175   case ObjCRuntime::GCC:
176   case ObjCRuntime::ObjFW:
177     ObjCRuntime = CreateGNUObjCRuntime(*this);
178     return;
179 
180   case ObjCRuntime::FragileMacOSX:
181   case ObjCRuntime::MacOSX:
182   case ObjCRuntime::iOS:
183     ObjCRuntime = CreateMacObjCRuntime(*this);
184     return;
185   }
186   llvm_unreachable("bad runtime kind");
187 }
188 
189 void CodeGenModule::createOpenCLRuntime() {
190   OpenCLRuntime = new CGOpenCLRuntime(*this);
191 }
192 
193 void CodeGenModule::createOpenMPRuntime() {
194   OpenMPRuntime = new CGOpenMPRuntime(*this);
195 }
196 
197 void CodeGenModule::createCUDARuntime() {
198   CUDARuntime = CreateNVCUDARuntime(*this);
199 }
200 
201 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
202   Replacements[Name] = C;
203 }
204 
205 void CodeGenModule::applyReplacements() {
206   for (ReplacementsTy::iterator I = Replacements.begin(),
207                                 E = Replacements.end();
208        I != E; ++I) {
209     StringRef MangledName = I->first();
210     llvm::Constant *Replacement = I->second;
211     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
212     if (!Entry)
213       continue;
214     auto *OldF = cast<llvm::Function>(Entry);
215     auto *NewF = dyn_cast<llvm::Function>(Replacement);
216     if (!NewF) {
217       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
218         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
219       } else {
220         auto *CE = cast<llvm::ConstantExpr>(Replacement);
221         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
222                CE->getOpcode() == llvm::Instruction::GetElementPtr);
223         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
224       }
225     }
226 
227     // Replace old with new, but keep the old order.
228     OldF->replaceAllUsesWith(Replacement);
229     if (NewF) {
230       NewF->removeFromParent();
231       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
232     }
233     OldF->eraseFromParent();
234   }
235 }
236 
237 // This is only used in aliases that we created and we know they have a
238 // linear structure.
239 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
240   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
241   const llvm::Constant *C = &GA;
242   for (;;) {
243     C = C->stripPointerCasts();
244     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
245       return GO;
246     // stripPointerCasts will not walk over weak aliases.
247     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
248     if (!GA2)
249       return nullptr;
250     if (!Visited.insert(GA2))
251       return nullptr;
252     C = GA2->getAliasee();
253   }
254 }
255 
256 void CodeGenModule::checkAliases() {
257   // Check if the constructed aliases are well formed. It is really unfortunate
258   // that we have to do this in CodeGen, but we only construct mangled names
259   // and aliases during codegen.
260   bool Error = false;
261   DiagnosticsEngine &Diags = getDiags();
262   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
263          E = Aliases.end(); I != E; ++I) {
264     const GlobalDecl &GD = *I;
265     const auto *D = cast<ValueDecl>(GD.getDecl());
266     const AliasAttr *AA = D->getAttr<AliasAttr>();
267     StringRef MangledName = getMangledName(GD);
268     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
269     auto *Alias = cast<llvm::GlobalAlias>(Entry);
270     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
271     if (!GV) {
272       Error = true;
273       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
274     } else if (GV->isDeclaration()) {
275       Error = true;
276       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
277     }
278 
279     llvm::Constant *Aliasee = Alias->getAliasee();
280     llvm::GlobalValue *AliaseeGV;
281     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
282       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
283     else
284       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
285 
286     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
287       StringRef AliasSection = SA->getName();
288       if (AliasSection != AliaseeGV->getSection())
289         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
290             << AliasSection;
291     }
292 
293     // We have to handle alias to weak aliases in here. LLVM itself disallows
294     // this since the object semantics would not match the IL one. For
295     // compatibility with gcc we implement it by just pointing the alias
296     // to its aliasee's aliasee. We also warn, since the user is probably
297     // expecting the link to be weak.
298     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
299       if (GA->mayBeOverridden()) {
300         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
301             << GV->getName() << GA->getName();
302         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
303             GA->getAliasee(), Alias->getType());
304         Alias->setAliasee(Aliasee);
305       }
306     }
307   }
308   if (!Error)
309     return;
310 
311   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
312          E = Aliases.end(); I != E; ++I) {
313     const GlobalDecl &GD = *I;
314     StringRef MangledName = getMangledName(GD);
315     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
316     auto *Alias = cast<llvm::GlobalAlias>(Entry);
317     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
318     Alias->eraseFromParent();
319   }
320 }
321 
322 void CodeGenModule::clear() {
323   DeferredDeclsToEmit.clear();
324 }
325 
326 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
327                                        StringRef MainFile) {
328   if (!hasDiagnostics())
329     return;
330   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
331     if (MainFile.empty())
332       MainFile = "<stdin>";
333     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
334   } else
335     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
336                                                       << Mismatched;
337 }
338 
339 void CodeGenModule::Release() {
340   EmitDeferred();
341   applyReplacements();
342   checkAliases();
343   EmitCXXGlobalInitFunc();
344   EmitCXXGlobalDtorFunc();
345   EmitCXXThreadLocalInitFunc();
346   if (ObjCRuntime)
347     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
348       AddGlobalCtor(ObjCInitFunction);
349   if (getCodeGenOpts().ProfileInstrGenerate)
350     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
351       AddGlobalCtor(PGOInit, 0);
352   if (PGOReader && PGOStats.hasDiagnostics())
353     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
354   EmitCtorList(GlobalCtors, "llvm.global_ctors");
355   EmitCtorList(GlobalDtors, "llvm.global_dtors");
356   EmitGlobalAnnotations();
357   EmitStaticExternCAliases();
358   EmitDeferredUnusedCoverageMappings();
359   if (CoverageMapping)
360     CoverageMapping->emit();
361   emitLLVMUsed();
362 
363   if (CodeGenOpts.Autolink &&
364       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
365     EmitModuleLinkOptions();
366   }
367   if (CodeGenOpts.DwarfVersion)
368     // We actually want the latest version when there are conflicts.
369     // We can change from Warning to Latest if such mode is supported.
370     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
371                               CodeGenOpts.DwarfVersion);
372   if (DebugInfo)
373     // We support a single version in the linked module. The LLVM
374     // parser will drop debug info with a different version number
375     // (and warn about it, too).
376     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
377                               llvm::DEBUG_METADATA_VERSION);
378 
379   // We need to record the widths of enums and wchar_t, so that we can generate
380   // the correct build attributes in the ARM backend.
381   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
382   if (   Arch == llvm::Triple::arm
383       || Arch == llvm::Triple::armeb
384       || Arch == llvm::Triple::thumb
385       || Arch == llvm::Triple::thumbeb) {
386     // Width of wchar_t in bytes
387     uint64_t WCharWidth =
388         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
389     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
390 
391     // The minimum width of an enum in bytes
392     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
393     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
394   }
395 
396   SimplifyPersonality();
397 
398   if (getCodeGenOpts().EmitDeclMetadata)
399     EmitDeclMetadata();
400 
401   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
402     EmitCoverageFile();
403 
404   if (DebugInfo)
405     DebugInfo->finalize();
406 
407   EmitVersionIdentMetadata();
408 
409   EmitTargetMetadata();
410 }
411 
412 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
413   // Make sure that this type is translated.
414   Types.UpdateCompletedType(TD);
415 }
416 
417 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
418   if (!TBAA)
419     return nullptr;
420   return TBAA->getTBAAInfo(QTy);
421 }
422 
423 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
424   if (!TBAA)
425     return nullptr;
426   return TBAA->getTBAAInfoForVTablePtr();
427 }
428 
429 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
430   if (!TBAA)
431     return nullptr;
432   return TBAA->getTBAAStructInfo(QTy);
433 }
434 
435 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
436   if (!TBAA)
437     return nullptr;
438   return TBAA->getTBAAStructTypeInfo(QTy);
439 }
440 
441 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
442                                                   llvm::MDNode *AccessN,
443                                                   uint64_t O) {
444   if (!TBAA)
445     return nullptr;
446   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
447 }
448 
449 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
450 /// and struct-path aware TBAA, the tag has the same format:
451 /// base type, access type and offset.
452 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
453 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
454                                         llvm::MDNode *TBAAInfo,
455                                         bool ConvertTypeToTag) {
456   if (ConvertTypeToTag && TBAA)
457     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
458                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
459   else
460     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
461 }
462 
463 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
464   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
465   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
466 }
467 
468 /// ErrorUnsupported - Print out an error that codegen doesn't support the
469 /// specified stmt yet.
470 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
471   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
472                                                "cannot compile this %0 yet");
473   std::string Msg = Type;
474   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
475     << Msg << S->getSourceRange();
476 }
477 
478 /// ErrorUnsupported - Print out an error that codegen doesn't support the
479 /// specified decl yet.
480 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
481   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
482                                                "cannot compile this %0 yet");
483   std::string Msg = Type;
484   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
485 }
486 
487 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
488   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
489 }
490 
491 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
492                                         const NamedDecl *D) const {
493   // Internal definitions always have default visibility.
494   if (GV->hasLocalLinkage()) {
495     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
496     return;
497   }
498 
499   // Set visibility for definitions.
500   LinkageInfo LV = D->getLinkageAndVisibility();
501   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
502     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
503 }
504 
505 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
506   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
507       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
508       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
509       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
510       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
511 }
512 
513 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
514     CodeGenOptions::TLSModel M) {
515   switch (M) {
516   case CodeGenOptions::GeneralDynamicTLSModel:
517     return llvm::GlobalVariable::GeneralDynamicTLSModel;
518   case CodeGenOptions::LocalDynamicTLSModel:
519     return llvm::GlobalVariable::LocalDynamicTLSModel;
520   case CodeGenOptions::InitialExecTLSModel:
521     return llvm::GlobalVariable::InitialExecTLSModel;
522   case CodeGenOptions::LocalExecTLSModel:
523     return llvm::GlobalVariable::LocalExecTLSModel;
524   }
525   llvm_unreachable("Invalid TLS model!");
526 }
527 
528 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
529                                const VarDecl &D) const {
530   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
531 
532   llvm::GlobalVariable::ThreadLocalMode TLM;
533   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
534 
535   // Override the TLS model if it is explicitly specified.
536   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
537     TLM = GetLLVMTLSModel(Attr->getModel());
538   }
539 
540   GV->setThreadLocalMode(TLM);
541 }
542 
543 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
544   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
545   if (!FoundStr.empty())
546     return FoundStr;
547 
548   const auto *ND = cast<NamedDecl>(GD.getDecl());
549   SmallString<256> Buffer;
550   StringRef Str;
551   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
552     llvm::raw_svector_ostream Out(Buffer);
553     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
554       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
555     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
556       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
557     else
558       getCXXABI().getMangleContext().mangleName(ND, Out);
559     Str = Out.str();
560   } else {
561     IdentifierInfo *II = ND->getIdentifier();
562     assert(II && "Attempt to mangle unnamed decl.");
563     Str = II->getName();
564   }
565 
566   // Keep the first result in the case of a mangling collision.
567   auto Result = Manglings.insert(std::make_pair(Str, GD));
568   return FoundStr = Result.first->first();
569 }
570 
571 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
572                                              const BlockDecl *BD) {
573   MangleContext &MangleCtx = getCXXABI().getMangleContext();
574   const Decl *D = GD.getDecl();
575 
576   SmallString<256> Buffer;
577   llvm::raw_svector_ostream Out(Buffer);
578   if (!D)
579     MangleCtx.mangleGlobalBlock(BD,
580       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
581   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
582     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
583   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
584     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
585   else
586     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
587 
588   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
589   return Result.first->first();
590 }
591 
592 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
593   return getModule().getNamedValue(Name);
594 }
595 
596 /// AddGlobalCtor - Add a function to the list that will be called before
597 /// main() runs.
598 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
599                                   llvm::Constant *AssociatedData) {
600   // FIXME: Type coercion of void()* types.
601   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
602 }
603 
604 /// AddGlobalDtor - Add a function to the list that will be called
605 /// when the module is unloaded.
606 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
607   // FIXME: Type coercion of void()* types.
608   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
609 }
610 
611 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
612   // Ctor function type is void()*.
613   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
614   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
615 
616   // Get the type of a ctor entry, { i32, void ()*, i8* }.
617   llvm::StructType *CtorStructTy = llvm::StructType::get(
618       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
619 
620   // Construct the constructor and destructor arrays.
621   SmallVector<llvm::Constant*, 8> Ctors;
622   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
623     llvm::Constant *S[] = {
624       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
625       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
626       (I->AssociatedData
627            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
628            : llvm::Constant::getNullValue(VoidPtrTy))
629     };
630     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
631   }
632 
633   if (!Ctors.empty()) {
634     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
635     new llvm::GlobalVariable(TheModule, AT, false,
636                              llvm::GlobalValue::AppendingLinkage,
637                              llvm::ConstantArray::get(AT, Ctors),
638                              GlobalName);
639   }
640 }
641 
642 llvm::GlobalValue::LinkageTypes
643 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
644   const auto *D = cast<FunctionDecl>(GD.getDecl());
645 
646   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
647 
648   if (isa<CXXDestructorDecl>(D) &&
649       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
650                                          GD.getDtorType())) {
651     // Destructor variants in the Microsoft C++ ABI are always internal or
652     // linkonce_odr thunks emitted on an as-needed basis.
653     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
654                                    : llvm::GlobalValue::LinkOnceODRLinkage;
655   }
656 
657   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
658 }
659 
660 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
661                                                     llvm::Function *F) {
662   setNonAliasAttributes(D, F);
663 }
664 
665 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
666                                               const CGFunctionInfo &Info,
667                                               llvm::Function *F) {
668   unsigned CallingConv;
669   AttributeListType AttributeList;
670   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
671   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
672   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
673 }
674 
675 /// Determines whether the language options require us to model
676 /// unwind exceptions.  We treat -fexceptions as mandating this
677 /// except under the fragile ObjC ABI with only ObjC exceptions
678 /// enabled.  This means, for example, that C with -fexceptions
679 /// enables this.
680 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
681   // If exceptions are completely disabled, obviously this is false.
682   if (!LangOpts.Exceptions) return false;
683 
684   // If C++ exceptions are enabled, this is true.
685   if (LangOpts.CXXExceptions) return true;
686 
687   // If ObjC exceptions are enabled, this depends on the ABI.
688   if (LangOpts.ObjCExceptions) {
689     return LangOpts.ObjCRuntime.hasUnwindExceptions();
690   }
691 
692   return true;
693 }
694 
695 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
696                                                            llvm::Function *F) {
697   llvm::AttrBuilder B;
698 
699   if (CodeGenOpts.UnwindTables)
700     B.addAttribute(llvm::Attribute::UWTable);
701 
702   if (!hasUnwindExceptions(LangOpts))
703     B.addAttribute(llvm::Attribute::NoUnwind);
704 
705   if (D->hasAttr<NakedAttr>()) {
706     // Naked implies noinline: we should not be inlining such functions.
707     B.addAttribute(llvm::Attribute::Naked);
708     B.addAttribute(llvm::Attribute::NoInline);
709   } else if (D->hasAttr<OptimizeNoneAttr>()) {
710     // OptimizeNone implies noinline; we should not be inlining such functions.
711     B.addAttribute(llvm::Attribute::OptimizeNone);
712     B.addAttribute(llvm::Attribute::NoInline);
713   } else if (D->hasAttr<NoDuplicateAttr>()) {
714     B.addAttribute(llvm::Attribute::NoDuplicate);
715   } else if (D->hasAttr<NoInlineAttr>()) {
716     B.addAttribute(llvm::Attribute::NoInline);
717   } else if (D->hasAttr<AlwaysInlineAttr>() &&
718              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
719                                               llvm::Attribute::NoInline)) {
720     // (noinline wins over always_inline, and we can't specify both in IR)
721     B.addAttribute(llvm::Attribute::AlwaysInline);
722   }
723 
724   if (D->hasAttr<ColdAttr>()) {
725     B.addAttribute(llvm::Attribute::OptimizeForSize);
726     B.addAttribute(llvm::Attribute::Cold);
727   }
728 
729   if (D->hasAttr<MinSizeAttr>())
730     B.addAttribute(llvm::Attribute::MinSize);
731 
732   if (D->hasAttr<OptimizeNoneAttr>()) {
733     // OptimizeNone wins over OptimizeForSize and MinSize.
734     B.removeAttribute(llvm::Attribute::OptimizeForSize);
735     B.removeAttribute(llvm::Attribute::MinSize);
736   }
737 
738   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
739     B.addAttribute(llvm::Attribute::StackProtect);
740   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
741     B.addAttribute(llvm::Attribute::StackProtectStrong);
742   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
743     B.addAttribute(llvm::Attribute::StackProtectReq);
744 
745   // Add sanitizer attributes if function is not blacklisted.
746   if (!SanitizerBL.isIn(*F)) {
747     // When AddressSanitizer is enabled, set SanitizeAddress attribute
748     // unless __attribute__((no_sanitize_address)) is used.
749     if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>())
750       B.addAttribute(llvm::Attribute::SanitizeAddress);
751     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
752     if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>())
753       B.addAttribute(llvm::Attribute::SanitizeThread);
754     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
755     if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
756       B.addAttribute(llvm::Attribute::SanitizeMemory);
757   }
758 
759   F->addAttributes(llvm::AttributeSet::FunctionIndex,
760                    llvm::AttributeSet::get(
761                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
762 
763   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
764     F->setUnnamedAddr(true);
765   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
766     if (MD->isVirtual())
767       F->setUnnamedAddr(true);
768 
769   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
770   if (alignment)
771     F->setAlignment(alignment);
772 
773   // C++ ABI requires 2-byte alignment for member functions.
774   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
775     F->setAlignment(2);
776 }
777 
778 void CodeGenModule::SetCommonAttributes(const Decl *D,
779                                         llvm::GlobalValue *GV) {
780   if (const auto *ND = dyn_cast<NamedDecl>(D))
781     setGlobalVisibility(GV, ND);
782   else
783     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
784 
785   if (D->hasAttr<UsedAttr>())
786     addUsedGlobal(GV);
787 }
788 
789 void CodeGenModule::setAliasAttributes(const Decl *D,
790                                        llvm::GlobalValue *GV) {
791   SetCommonAttributes(D, GV);
792 
793   // Process the dllexport attribute based on whether the original definition
794   // (not necessarily the aliasee) was exported.
795   if (D->hasAttr<DLLExportAttr>())
796     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
797 }
798 
799 void CodeGenModule::setNonAliasAttributes(const Decl *D,
800                                           llvm::GlobalObject *GO) {
801   SetCommonAttributes(D, GO);
802 
803   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
804     GO->setSection(SA->getName());
805 
806   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
807 }
808 
809 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
810                                                   llvm::Function *F,
811                                                   const CGFunctionInfo &FI) {
812   SetLLVMFunctionAttributes(D, FI, F);
813   SetLLVMFunctionAttributesForDefinition(D, F);
814 
815   F->setLinkage(llvm::Function::InternalLinkage);
816 
817   setNonAliasAttributes(D, F);
818 }
819 
820 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
821                                          const NamedDecl *ND) {
822   // Set linkage and visibility in case we never see a definition.
823   LinkageInfo LV = ND->getLinkageAndVisibility();
824   if (LV.getLinkage() != ExternalLinkage) {
825     // Don't set internal linkage on declarations.
826   } else {
827     if (ND->hasAttr<DLLImportAttr>()) {
828       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
829       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
830     } else if (ND->hasAttr<DLLExportAttr>()) {
831       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
832       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
833     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
834       // "extern_weak" is overloaded in LLVM; we probably should have
835       // separate linkage types for this.
836       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
837     }
838 
839     // Set visibility on a declaration only if it's explicit.
840     if (LV.isVisibilityExplicit())
841       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
842   }
843 }
844 
845 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
846                                           llvm::Function *F,
847                                           bool IsIncompleteFunction) {
848   if (unsigned IID = F->getIntrinsicID()) {
849     // If this is an intrinsic function, set the function's attributes
850     // to the intrinsic's attributes.
851     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
852                                                     (llvm::Intrinsic::ID)IID));
853     return;
854   }
855 
856   const auto *FD = cast<FunctionDecl>(GD.getDecl());
857 
858   if (!IsIncompleteFunction)
859     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
860 
861   // Add the Returned attribute for "this", except for iOS 5 and earlier
862   // where substantial code, including the libstdc++ dylib, was compiled with
863   // GCC and does not actually return "this".
864   if (getCXXABI().HasThisReturn(GD) &&
865       !(getTarget().getTriple().isiOS() &&
866         getTarget().getTriple().isOSVersionLT(6))) {
867     assert(!F->arg_empty() &&
868            F->arg_begin()->getType()
869              ->canLosslesslyBitCastTo(F->getReturnType()) &&
870            "unexpected this return");
871     F->addAttribute(1, llvm::Attribute::Returned);
872   }
873 
874   // Only a few attributes are set on declarations; these may later be
875   // overridden by a definition.
876 
877   setLinkageAndVisibilityForGV(F, FD);
878 
879   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
880     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
881       // Don't dllexport/import destructor thunks.
882       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
883     }
884   }
885 
886   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
887     F->setSection(SA->getName());
888 
889   // A replaceable global allocation function does not act like a builtin by
890   // default, only if it is invoked by a new-expression or delete-expression.
891   if (FD->isReplaceableGlobalAllocationFunction())
892     F->addAttribute(llvm::AttributeSet::FunctionIndex,
893                     llvm::Attribute::NoBuiltin);
894 }
895 
896 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
897   assert(!GV->isDeclaration() &&
898          "Only globals with definition can force usage.");
899   LLVMUsed.push_back(GV);
900 }
901 
902 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
903   assert(!GV->isDeclaration() &&
904          "Only globals with definition can force usage.");
905   LLVMCompilerUsed.push_back(GV);
906 }
907 
908 static void emitUsed(CodeGenModule &CGM, StringRef Name,
909                      std::vector<llvm::WeakVH> &List) {
910   // Don't create llvm.used if there is no need.
911   if (List.empty())
912     return;
913 
914   // Convert List to what ConstantArray needs.
915   SmallVector<llvm::Constant*, 8> UsedArray;
916   UsedArray.resize(List.size());
917   for (unsigned i = 0, e = List.size(); i != e; ++i) {
918     UsedArray[i] =
919      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
920                                     CGM.Int8PtrTy);
921   }
922 
923   if (UsedArray.empty())
924     return;
925   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
926 
927   auto *GV = new llvm::GlobalVariable(
928       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
929       llvm::ConstantArray::get(ATy, UsedArray), Name);
930 
931   GV->setSection("llvm.metadata");
932 }
933 
934 void CodeGenModule::emitLLVMUsed() {
935   emitUsed(*this, "llvm.used", LLVMUsed);
936   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
937 }
938 
939 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
940   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
941   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
942 }
943 
944 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
945   llvm::SmallString<32> Opt;
946   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
947   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
948   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
949 }
950 
951 void CodeGenModule::AddDependentLib(StringRef Lib) {
952   llvm::SmallString<24> Opt;
953   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
954   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
955   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
956 }
957 
958 /// \brief Add link options implied by the given module, including modules
959 /// it depends on, using a postorder walk.
960 static void addLinkOptionsPostorder(CodeGenModule &CGM,
961                                     Module *Mod,
962                                     SmallVectorImpl<llvm::Value *> &Metadata,
963                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
964   // Import this module's parent.
965   if (Mod->Parent && Visited.insert(Mod->Parent)) {
966     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
967   }
968 
969   // Import this module's dependencies.
970   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
971     if (Visited.insert(Mod->Imports[I-1]))
972       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
973   }
974 
975   // Add linker options to link against the libraries/frameworks
976   // described by this module.
977   llvm::LLVMContext &Context = CGM.getLLVMContext();
978   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
979     // Link against a framework.  Frameworks are currently Darwin only, so we
980     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
981     if (Mod->LinkLibraries[I-1].IsFramework) {
982       llvm::Value *Args[2] = {
983         llvm::MDString::get(Context, "-framework"),
984         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
985       };
986 
987       Metadata.push_back(llvm::MDNode::get(Context, Args));
988       continue;
989     }
990 
991     // Link against a library.
992     llvm::SmallString<24> Opt;
993     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
994       Mod->LinkLibraries[I-1].Library, Opt);
995     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
996     Metadata.push_back(llvm::MDNode::get(Context, OptString));
997   }
998 }
999 
1000 void CodeGenModule::EmitModuleLinkOptions() {
1001   // Collect the set of all of the modules we want to visit to emit link
1002   // options, which is essentially the imported modules and all of their
1003   // non-explicit child modules.
1004   llvm::SetVector<clang::Module *> LinkModules;
1005   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1006   SmallVector<clang::Module *, 16> Stack;
1007 
1008   // Seed the stack with imported modules.
1009   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1010                                                MEnd = ImportedModules.end();
1011        M != MEnd; ++M) {
1012     if (Visited.insert(*M))
1013       Stack.push_back(*M);
1014   }
1015 
1016   // Find all of the modules to import, making a little effort to prune
1017   // non-leaf modules.
1018   while (!Stack.empty()) {
1019     clang::Module *Mod = Stack.pop_back_val();
1020 
1021     bool AnyChildren = false;
1022 
1023     // Visit the submodules of this module.
1024     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1025                                         SubEnd = Mod->submodule_end();
1026          Sub != SubEnd; ++Sub) {
1027       // Skip explicit children; they need to be explicitly imported to be
1028       // linked against.
1029       if ((*Sub)->IsExplicit)
1030         continue;
1031 
1032       if (Visited.insert(*Sub)) {
1033         Stack.push_back(*Sub);
1034         AnyChildren = true;
1035       }
1036     }
1037 
1038     // We didn't find any children, so add this module to the list of
1039     // modules to link against.
1040     if (!AnyChildren) {
1041       LinkModules.insert(Mod);
1042     }
1043   }
1044 
1045   // Add link options for all of the imported modules in reverse topological
1046   // order.  We don't do anything to try to order import link flags with respect
1047   // to linker options inserted by things like #pragma comment().
1048   SmallVector<llvm::Value *, 16> MetadataArgs;
1049   Visited.clear();
1050   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1051                                                MEnd = LinkModules.end();
1052        M != MEnd; ++M) {
1053     if (Visited.insert(*M))
1054       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1055   }
1056   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1057   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1058 
1059   // Add the linker options metadata flag.
1060   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1061                             llvm::MDNode::get(getLLVMContext(),
1062                                               LinkerOptionsMetadata));
1063 }
1064 
1065 void CodeGenModule::EmitDeferred() {
1066   // Emit code for any potentially referenced deferred decls.  Since a
1067   // previously unused static decl may become used during the generation of code
1068   // for a static function, iterate until no changes are made.
1069 
1070   while (true) {
1071     if (!DeferredVTables.empty()) {
1072       EmitDeferredVTables();
1073 
1074       // Emitting a v-table doesn't directly cause more v-tables to
1075       // become deferred, although it can cause functions to be
1076       // emitted that then need those v-tables.
1077       assert(DeferredVTables.empty());
1078     }
1079 
1080     // Stop if we're out of both deferred v-tables and deferred declarations.
1081     if (DeferredDeclsToEmit.empty()) break;
1082 
1083     DeferredGlobal &G = DeferredDeclsToEmit.back();
1084     GlobalDecl D = G.GD;
1085     llvm::GlobalValue *GV = G.GV;
1086     DeferredDeclsToEmit.pop_back();
1087 
1088     assert(GV == GetGlobalValue(getMangledName(D)));
1089     // Check to see if we've already emitted this.  This is necessary
1090     // for a couple of reasons: first, decls can end up in the
1091     // deferred-decls queue multiple times, and second, decls can end
1092     // up with definitions in unusual ways (e.g. by an extern inline
1093     // function acquiring a strong function redefinition).  Just
1094     // ignore these cases.
1095     if(!GV->isDeclaration())
1096       continue;
1097 
1098     // Otherwise, emit the definition and move on to the next one.
1099     EmitGlobalDefinition(D, GV);
1100   }
1101 }
1102 
1103 void CodeGenModule::EmitGlobalAnnotations() {
1104   if (Annotations.empty())
1105     return;
1106 
1107   // Create a new global variable for the ConstantStruct in the Module.
1108   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1109     Annotations[0]->getType(), Annotations.size()), Annotations);
1110   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1111                                       llvm::GlobalValue::AppendingLinkage,
1112                                       Array, "llvm.global.annotations");
1113   gv->setSection(AnnotationSection);
1114 }
1115 
1116 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1117   llvm::Constant *&AStr = AnnotationStrings[Str];
1118   if (AStr)
1119     return AStr;
1120 
1121   // Not found yet, create a new global.
1122   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1123   auto *gv =
1124       new llvm::GlobalVariable(getModule(), s->getType(), true,
1125                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1126   gv->setSection(AnnotationSection);
1127   gv->setUnnamedAddr(true);
1128   AStr = gv;
1129   return gv;
1130 }
1131 
1132 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1133   SourceManager &SM = getContext().getSourceManager();
1134   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1135   if (PLoc.isValid())
1136     return EmitAnnotationString(PLoc.getFilename());
1137   return EmitAnnotationString(SM.getBufferName(Loc));
1138 }
1139 
1140 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1141   SourceManager &SM = getContext().getSourceManager();
1142   PresumedLoc PLoc = SM.getPresumedLoc(L);
1143   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1144     SM.getExpansionLineNumber(L);
1145   return llvm::ConstantInt::get(Int32Ty, LineNo);
1146 }
1147 
1148 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1149                                                 const AnnotateAttr *AA,
1150                                                 SourceLocation L) {
1151   // Get the globals for file name, annotation, and the line number.
1152   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1153                  *UnitGV = EmitAnnotationUnit(L),
1154                  *LineNoCst = EmitAnnotationLineNo(L);
1155 
1156   // Create the ConstantStruct for the global annotation.
1157   llvm::Constant *Fields[4] = {
1158     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1159     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1160     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1161     LineNoCst
1162   };
1163   return llvm::ConstantStruct::getAnon(Fields);
1164 }
1165 
1166 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1167                                          llvm::GlobalValue *GV) {
1168   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1169   // Get the struct elements for these annotations.
1170   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1171     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1172 }
1173 
1174 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1175   // Never defer when EmitAllDecls is specified.
1176   if (LangOpts.EmitAllDecls)
1177     return false;
1178 
1179   return !getContext().DeclMustBeEmitted(Global);
1180 }
1181 
1182 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1183     const CXXUuidofExpr* E) {
1184   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1185   // well-formed.
1186   StringRef Uuid = E->getUuidAsStringRef(Context);
1187   std::string Name = "_GUID_" + Uuid.lower();
1188   std::replace(Name.begin(), Name.end(), '-', '_');
1189 
1190   // Look for an existing global.
1191   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1192     return GV;
1193 
1194   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1195   assert(Init && "failed to initialize as constant");
1196 
1197   auto *GV = new llvm::GlobalVariable(
1198       getModule(), Init->getType(),
1199       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1200   return GV;
1201 }
1202 
1203 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1204   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1205   assert(AA && "No alias?");
1206 
1207   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1208 
1209   // See if there is already something with the target's name in the module.
1210   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1211   if (Entry) {
1212     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1213     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1214   }
1215 
1216   llvm::Constant *Aliasee;
1217   if (isa<llvm::FunctionType>(DeclTy))
1218     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1219                                       GlobalDecl(cast<FunctionDecl>(VD)),
1220                                       /*ForVTable=*/false);
1221   else
1222     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1223                                     llvm::PointerType::getUnqual(DeclTy),
1224                                     nullptr);
1225 
1226   auto *F = cast<llvm::GlobalValue>(Aliasee);
1227   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1228   WeakRefReferences.insert(F);
1229 
1230   return Aliasee;
1231 }
1232 
1233 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1234   const auto *Global = cast<ValueDecl>(GD.getDecl());
1235 
1236   // Weak references don't produce any output by themselves.
1237   if (Global->hasAttr<WeakRefAttr>())
1238     return;
1239 
1240   // If this is an alias definition (which otherwise looks like a declaration)
1241   // emit it now.
1242   if (Global->hasAttr<AliasAttr>())
1243     return EmitAliasDefinition(GD);
1244 
1245   // If this is CUDA, be selective about which declarations we emit.
1246   if (LangOpts.CUDA) {
1247     if (CodeGenOpts.CUDAIsDevice) {
1248       if (!Global->hasAttr<CUDADeviceAttr>() &&
1249           !Global->hasAttr<CUDAGlobalAttr>() &&
1250           !Global->hasAttr<CUDAConstantAttr>() &&
1251           !Global->hasAttr<CUDASharedAttr>())
1252         return;
1253     } else {
1254       if (!Global->hasAttr<CUDAHostAttr>() && (
1255             Global->hasAttr<CUDADeviceAttr>() ||
1256             Global->hasAttr<CUDAConstantAttr>() ||
1257             Global->hasAttr<CUDASharedAttr>()))
1258         return;
1259     }
1260   }
1261 
1262   // Ignore declarations, they will be emitted on their first use.
1263   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1264     // Forward declarations are emitted lazily on first use.
1265     if (!FD->doesThisDeclarationHaveABody()) {
1266       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1267         return;
1268 
1269       StringRef MangledName = getMangledName(GD);
1270 
1271       // Compute the function info and LLVM type.
1272       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1273       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1274 
1275       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1276                               /*DontDefer=*/false);
1277       return;
1278     }
1279   } else {
1280     const auto *VD = cast<VarDecl>(Global);
1281     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1282 
1283     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1284         !Context.isMSStaticDataMemberInlineDefinition(VD))
1285       return;
1286   }
1287 
1288   // Defer code generation when possible if this is a static definition, inline
1289   // function etc.  These we only want to emit if they are used.
1290   if (!MayDeferGeneration(Global)) {
1291     // Emit the definition if it can't be deferred.
1292     EmitGlobalDefinition(GD);
1293     return;
1294   }
1295 
1296   // If we're deferring emission of a C++ variable with an
1297   // initializer, remember the order in which it appeared in the file.
1298   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1299       cast<VarDecl>(Global)->hasInit()) {
1300     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1301     CXXGlobalInits.push_back(nullptr);
1302   }
1303 
1304   // If the value has already been used, add it directly to the
1305   // DeferredDeclsToEmit list.
1306   StringRef MangledName = getMangledName(GD);
1307   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1308     addDeferredDeclToEmit(GV, GD);
1309   else {
1310     // Otherwise, remember that we saw a deferred decl with this name.  The
1311     // first use of the mangled name will cause it to move into
1312     // DeferredDeclsToEmit.
1313     DeferredDecls[MangledName] = GD;
1314   }
1315 }
1316 
1317 namespace {
1318   struct FunctionIsDirectlyRecursive :
1319     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1320     const StringRef Name;
1321     const Builtin::Context &BI;
1322     bool Result;
1323     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1324       Name(N), BI(C), Result(false) {
1325     }
1326     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1327 
1328     bool TraverseCallExpr(CallExpr *E) {
1329       const FunctionDecl *FD = E->getDirectCallee();
1330       if (!FD)
1331         return true;
1332       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1333       if (Attr && Name == Attr->getLabel()) {
1334         Result = true;
1335         return false;
1336       }
1337       unsigned BuiltinID = FD->getBuiltinID();
1338       if (!BuiltinID)
1339         return true;
1340       StringRef BuiltinName = BI.GetName(BuiltinID);
1341       if (BuiltinName.startswith("__builtin_") &&
1342           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1343         Result = true;
1344         return false;
1345       }
1346       return true;
1347     }
1348   };
1349 }
1350 
1351 // isTriviallyRecursive - Check if this function calls another
1352 // decl that, because of the asm attribute or the other decl being a builtin,
1353 // ends up pointing to itself.
1354 bool
1355 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1356   StringRef Name;
1357   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1358     // asm labels are a special kind of mangling we have to support.
1359     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1360     if (!Attr)
1361       return false;
1362     Name = Attr->getLabel();
1363   } else {
1364     Name = FD->getName();
1365   }
1366 
1367   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1368   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1369   return Walker.Result;
1370 }
1371 
1372 bool
1373 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1374   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1375     return true;
1376   const auto *F = cast<FunctionDecl>(GD.getDecl());
1377   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1378     return false;
1379   // PR9614. Avoid cases where the source code is lying to us. An available
1380   // externally function should have an equivalent function somewhere else,
1381   // but a function that calls itself is clearly not equivalent to the real
1382   // implementation.
1383   // This happens in glibc's btowc and in some configure checks.
1384   return !isTriviallyRecursive(F);
1385 }
1386 
1387 /// If the type for the method's class was generated by
1388 /// CGDebugInfo::createContextChain(), the cache contains only a
1389 /// limited DIType without any declarations. Since EmitFunctionStart()
1390 /// needs to find the canonical declaration for each method, we need
1391 /// to construct the complete type prior to emitting the method.
1392 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1393   if (!D->isInstance())
1394     return;
1395 
1396   if (CGDebugInfo *DI = getModuleDebugInfo())
1397     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1398       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1399       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1400     }
1401 }
1402 
1403 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1404   const auto *D = cast<ValueDecl>(GD.getDecl());
1405 
1406   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1407                                  Context.getSourceManager(),
1408                                  "Generating code for declaration");
1409 
1410   if (isa<FunctionDecl>(D)) {
1411     // At -O0, don't generate IR for functions with available_externally
1412     // linkage.
1413     if (!shouldEmitFunction(GD))
1414       return;
1415 
1416     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1417       CompleteDIClassType(Method);
1418       // Make sure to emit the definition(s) before we emit the thunks.
1419       // This is necessary for the generation of certain thunks.
1420       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1421         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1422       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1423         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1424       else
1425         EmitGlobalFunctionDefinition(GD, GV);
1426 
1427       if (Method->isVirtual())
1428         getVTables().EmitThunks(GD);
1429 
1430       return;
1431     }
1432 
1433     return EmitGlobalFunctionDefinition(GD, GV);
1434   }
1435 
1436   if (const auto *VD = dyn_cast<VarDecl>(D))
1437     return EmitGlobalVarDefinition(VD);
1438 
1439   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1440 }
1441 
1442 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1443 /// module, create and return an llvm Function with the specified type. If there
1444 /// is something in the module with the specified name, return it potentially
1445 /// bitcasted to the right type.
1446 ///
1447 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1448 /// to set the attributes on the function when it is first created.
1449 llvm::Constant *
1450 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1451                                        llvm::Type *Ty,
1452                                        GlobalDecl GD, bool ForVTable,
1453                                        bool DontDefer,
1454                                        llvm::AttributeSet ExtraAttrs) {
1455   const Decl *D = GD.getDecl();
1456 
1457   // Lookup the entry, lazily creating it if necessary.
1458   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1459   if (Entry) {
1460     if (WeakRefReferences.erase(Entry)) {
1461       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1462       if (FD && !FD->hasAttr<WeakAttr>())
1463         Entry->setLinkage(llvm::Function::ExternalLinkage);
1464     }
1465 
1466     // Handle dropped DLL attributes.
1467     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1468       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1469 
1470     if (Entry->getType()->getElementType() == Ty)
1471       return Entry;
1472 
1473     // Make sure the result is of the correct type.
1474     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1475   }
1476 
1477   // This function doesn't have a complete type (for example, the return
1478   // type is an incomplete struct). Use a fake type instead, and make
1479   // sure not to try to set attributes.
1480   bool IsIncompleteFunction = false;
1481 
1482   llvm::FunctionType *FTy;
1483   if (isa<llvm::FunctionType>(Ty)) {
1484     FTy = cast<llvm::FunctionType>(Ty);
1485   } else {
1486     FTy = llvm::FunctionType::get(VoidTy, false);
1487     IsIncompleteFunction = true;
1488   }
1489 
1490   llvm::Function *F = llvm::Function::Create(FTy,
1491                                              llvm::Function::ExternalLinkage,
1492                                              MangledName, &getModule());
1493   assert(F->getName() == MangledName && "name was uniqued!");
1494   if (D)
1495     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1496   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1497     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1498     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1499                      llvm::AttributeSet::get(VMContext,
1500                                              llvm::AttributeSet::FunctionIndex,
1501                                              B));
1502   }
1503 
1504   if (!DontDefer) {
1505     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1506     // each other bottoming out with the base dtor.  Therefore we emit non-base
1507     // dtors on usage, even if there is no dtor definition in the TU.
1508     if (D && isa<CXXDestructorDecl>(D) &&
1509         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1510                                            GD.getDtorType()))
1511       addDeferredDeclToEmit(F, GD);
1512 
1513     // This is the first use or definition of a mangled name.  If there is a
1514     // deferred decl with this name, remember that we need to emit it at the end
1515     // of the file.
1516     auto DDI = DeferredDecls.find(MangledName);
1517     if (DDI != DeferredDecls.end()) {
1518       // Move the potentially referenced deferred decl to the
1519       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1520       // don't need it anymore).
1521       addDeferredDeclToEmit(F, DDI->second);
1522       DeferredDecls.erase(DDI);
1523 
1524       // Otherwise, if this is a sized deallocation function, emit a weak
1525       // definition
1526       // for it at the end of the translation unit.
1527     } else if (D && cast<FunctionDecl>(D)
1528                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1529       addDeferredDeclToEmit(F, GD);
1530 
1531       // Otherwise, there are cases we have to worry about where we're
1532       // using a declaration for which we must emit a definition but where
1533       // we might not find a top-level definition:
1534       //   - member functions defined inline in their classes
1535       //   - friend functions defined inline in some class
1536       //   - special member functions with implicit definitions
1537       // If we ever change our AST traversal to walk into class methods,
1538       // this will be unnecessary.
1539       //
1540       // We also don't emit a definition for a function if it's going to be an
1541       // entry in a vtable, unless it's already marked as used.
1542     } else if (getLangOpts().CPlusPlus && D) {
1543       // Look for a declaration that's lexically in a record.
1544       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1545            FD = FD->getPreviousDecl()) {
1546         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1547           if (FD->doesThisDeclarationHaveABody()) {
1548             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1549             break;
1550           }
1551         }
1552       }
1553     }
1554   }
1555 
1556   // Make sure the result is of the requested type.
1557   if (!IsIncompleteFunction) {
1558     assert(F->getType()->getElementType() == Ty);
1559     return F;
1560   }
1561 
1562   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1563   return llvm::ConstantExpr::getBitCast(F, PTy);
1564 }
1565 
1566 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1567 /// non-null, then this function will use the specified type if it has to
1568 /// create it (this occurs when we see a definition of the function).
1569 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1570                                                  llvm::Type *Ty,
1571                                                  bool ForVTable,
1572                                                  bool DontDefer) {
1573   // If there was no specific requested type, just convert it now.
1574   if (!Ty)
1575     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1576 
1577   StringRef MangledName = getMangledName(GD);
1578   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1579 }
1580 
1581 /// CreateRuntimeFunction - Create a new runtime function with the specified
1582 /// type and name.
1583 llvm::Constant *
1584 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1585                                      StringRef Name,
1586                                      llvm::AttributeSet ExtraAttrs) {
1587   llvm::Constant *C =
1588       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1589                               /*DontDefer=*/false, ExtraAttrs);
1590   if (auto *F = dyn_cast<llvm::Function>(C))
1591     if (F->empty())
1592       F->setCallingConv(getRuntimeCC());
1593   return C;
1594 }
1595 
1596 /// isTypeConstant - Determine whether an object of this type can be emitted
1597 /// as a constant.
1598 ///
1599 /// If ExcludeCtor is true, the duration when the object's constructor runs
1600 /// will not be considered. The caller will need to verify that the object is
1601 /// not written to during its construction.
1602 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1603   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1604     return false;
1605 
1606   if (Context.getLangOpts().CPlusPlus) {
1607     if (const CXXRecordDecl *Record
1608           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1609       return ExcludeCtor && !Record->hasMutableFields() &&
1610              Record->hasTrivialDestructor();
1611   }
1612 
1613   return true;
1614 }
1615 
1616 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1617 /// create and return an llvm GlobalVariable with the specified type.  If there
1618 /// is something in the module with the specified name, return it potentially
1619 /// bitcasted to the right type.
1620 ///
1621 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1622 /// to set the attributes on the global when it is first created.
1623 llvm::Constant *
1624 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1625                                      llvm::PointerType *Ty,
1626                                      const VarDecl *D) {
1627   // Lookup the entry, lazily creating it if necessary.
1628   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1629   if (Entry) {
1630     if (WeakRefReferences.erase(Entry)) {
1631       if (D && !D->hasAttr<WeakAttr>())
1632         Entry->setLinkage(llvm::Function::ExternalLinkage);
1633     }
1634 
1635     // Handle dropped DLL attributes.
1636     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1637       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1638 
1639     if (Entry->getType() == Ty)
1640       return Entry;
1641 
1642     // Make sure the result is of the correct type.
1643     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1644       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1645 
1646     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1647   }
1648 
1649   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1650   auto *GV = new llvm::GlobalVariable(
1651       getModule(), Ty->getElementType(), false,
1652       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1653       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1654 
1655   // This is the first use or definition of a mangled name.  If there is a
1656   // deferred decl with this name, remember that we need to emit it at the end
1657   // of the file.
1658   auto DDI = DeferredDecls.find(MangledName);
1659   if (DDI != DeferredDecls.end()) {
1660     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1661     // list, and remove it from DeferredDecls (since we don't need it anymore).
1662     addDeferredDeclToEmit(GV, DDI->second);
1663     DeferredDecls.erase(DDI);
1664   }
1665 
1666   // Handle things which are present even on external declarations.
1667   if (D) {
1668     // FIXME: This code is overly simple and should be merged with other global
1669     // handling.
1670     GV->setConstant(isTypeConstant(D->getType(), false));
1671 
1672     setLinkageAndVisibilityForGV(GV, D);
1673 
1674     if (D->getTLSKind()) {
1675       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1676         CXXThreadLocals.push_back(std::make_pair(D, GV));
1677       setTLSMode(GV, *D);
1678     }
1679 
1680     // If required by the ABI, treat declarations of static data members with
1681     // inline initializers as definitions.
1682     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1683       EmitGlobalVarDefinition(D);
1684     }
1685 
1686     // Handle XCore specific ABI requirements.
1687     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1688         D->getLanguageLinkage() == CLanguageLinkage &&
1689         D->getType().isConstant(Context) &&
1690         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1691       GV->setSection(".cp.rodata");
1692   }
1693 
1694   if (AddrSpace != Ty->getAddressSpace())
1695     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1696 
1697   return GV;
1698 }
1699 
1700 
1701 llvm::GlobalVariable *
1702 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1703                                       llvm::Type *Ty,
1704                                       llvm::GlobalValue::LinkageTypes Linkage) {
1705   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1706   llvm::GlobalVariable *OldGV = nullptr;
1707 
1708   if (GV) {
1709     // Check if the variable has the right type.
1710     if (GV->getType()->getElementType() == Ty)
1711       return GV;
1712 
1713     // Because C++ name mangling, the only way we can end up with an already
1714     // existing global with the same name is if it has been declared extern "C".
1715     assert(GV->isDeclaration() && "Declaration has wrong type!");
1716     OldGV = GV;
1717   }
1718 
1719   // Create a new variable.
1720   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1721                                 Linkage, nullptr, Name);
1722 
1723   if (OldGV) {
1724     // Replace occurrences of the old variable if needed.
1725     GV->takeName(OldGV);
1726 
1727     if (!OldGV->use_empty()) {
1728       llvm::Constant *NewPtrForOldDecl =
1729       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1730       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1731     }
1732 
1733     OldGV->eraseFromParent();
1734   }
1735 
1736   return GV;
1737 }
1738 
1739 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1740 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1741 /// then it will be created with the specified type instead of whatever the
1742 /// normal requested type would be.
1743 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1744                                                   llvm::Type *Ty) {
1745   assert(D->hasGlobalStorage() && "Not a global variable");
1746   QualType ASTTy = D->getType();
1747   if (!Ty)
1748     Ty = getTypes().ConvertTypeForMem(ASTTy);
1749 
1750   llvm::PointerType *PTy =
1751     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1752 
1753   StringRef MangledName = getMangledName(D);
1754   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1755 }
1756 
1757 /// CreateRuntimeVariable - Create a new runtime global variable with the
1758 /// specified type and name.
1759 llvm::Constant *
1760 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1761                                      StringRef Name) {
1762   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1763 }
1764 
1765 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1766   assert(!D->getInit() && "Cannot emit definite definitions here!");
1767 
1768   if (MayDeferGeneration(D)) {
1769     // If we have not seen a reference to this variable yet, place it
1770     // into the deferred declarations table to be emitted if needed
1771     // later.
1772     StringRef MangledName = getMangledName(D);
1773     if (!GetGlobalValue(MangledName)) {
1774       DeferredDecls[MangledName] = D;
1775       return;
1776     }
1777   }
1778 
1779   // The tentative definition is the only definition.
1780   EmitGlobalVarDefinition(D);
1781 }
1782 
1783 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1784     return Context.toCharUnitsFromBits(
1785       TheDataLayout.getTypeStoreSizeInBits(Ty));
1786 }
1787 
1788 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1789                                                  unsigned AddrSpace) {
1790   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1791     if (D->hasAttr<CUDAConstantAttr>())
1792       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1793     else if (D->hasAttr<CUDASharedAttr>())
1794       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1795     else
1796       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1797   }
1798 
1799   return AddrSpace;
1800 }
1801 
1802 template<typename SomeDecl>
1803 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1804                                                llvm::GlobalValue *GV) {
1805   if (!getLangOpts().CPlusPlus)
1806     return;
1807 
1808   // Must have 'used' attribute, or else inline assembly can't rely on
1809   // the name existing.
1810   if (!D->template hasAttr<UsedAttr>())
1811     return;
1812 
1813   // Must have internal linkage and an ordinary name.
1814   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1815     return;
1816 
1817   // Must be in an extern "C" context. Entities declared directly within
1818   // a record are not extern "C" even if the record is in such a context.
1819   const SomeDecl *First = D->getFirstDecl();
1820   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1821     return;
1822 
1823   // OK, this is an internal linkage entity inside an extern "C" linkage
1824   // specification. Make a note of that so we can give it the "expected"
1825   // mangled name if nothing else is using that name.
1826   std::pair<StaticExternCMap::iterator, bool> R =
1827       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1828 
1829   // If we have multiple internal linkage entities with the same name
1830   // in extern "C" regions, none of them gets that name.
1831   if (!R.second)
1832     R.first->second = nullptr;
1833 }
1834 
1835 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1836   llvm::Constant *Init = nullptr;
1837   QualType ASTTy = D->getType();
1838   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1839   bool NeedsGlobalCtor = false;
1840   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1841 
1842   const VarDecl *InitDecl;
1843   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1844 
1845   if (!InitExpr) {
1846     // This is a tentative definition; tentative definitions are
1847     // implicitly initialized with { 0 }.
1848     //
1849     // Note that tentative definitions are only emitted at the end of
1850     // a translation unit, so they should never have incomplete
1851     // type. In addition, EmitTentativeDefinition makes sure that we
1852     // never attempt to emit a tentative definition if a real one
1853     // exists. A use may still exists, however, so we still may need
1854     // to do a RAUW.
1855     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1856     Init = EmitNullConstant(D->getType());
1857   } else {
1858     initializedGlobalDecl = GlobalDecl(D);
1859     Init = EmitConstantInit(*InitDecl);
1860 
1861     if (!Init) {
1862       QualType T = InitExpr->getType();
1863       if (D->getType()->isReferenceType())
1864         T = D->getType();
1865 
1866       if (getLangOpts().CPlusPlus) {
1867         Init = EmitNullConstant(T);
1868         NeedsGlobalCtor = true;
1869       } else {
1870         ErrorUnsupported(D, "static initializer");
1871         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1872       }
1873     } else {
1874       // We don't need an initializer, so remove the entry for the delayed
1875       // initializer position (just in case this entry was delayed) if we
1876       // also don't need to register a destructor.
1877       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1878         DelayedCXXInitPosition.erase(D);
1879     }
1880   }
1881 
1882   llvm::Type* InitType = Init->getType();
1883   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1884 
1885   // Strip off a bitcast if we got one back.
1886   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1887     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1888            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1889            // All zero index gep.
1890            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1891     Entry = CE->getOperand(0);
1892   }
1893 
1894   // Entry is now either a Function or GlobalVariable.
1895   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1896 
1897   // We have a definition after a declaration with the wrong type.
1898   // We must make a new GlobalVariable* and update everything that used OldGV
1899   // (a declaration or tentative definition) with the new GlobalVariable*
1900   // (which will be a definition).
1901   //
1902   // This happens if there is a prototype for a global (e.g.
1903   // "extern int x[];") and then a definition of a different type (e.g.
1904   // "int x[10];"). This also happens when an initializer has a different type
1905   // from the type of the global (this happens with unions).
1906   if (!GV ||
1907       GV->getType()->getElementType() != InitType ||
1908       GV->getType()->getAddressSpace() !=
1909        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1910 
1911     // Move the old entry aside so that we'll create a new one.
1912     Entry->setName(StringRef());
1913 
1914     // Make a new global with the correct type, this is now guaranteed to work.
1915     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1916 
1917     // Replace all uses of the old global with the new global
1918     llvm::Constant *NewPtrForOldDecl =
1919         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1920     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1921 
1922     // Erase the old global, since it is no longer used.
1923     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1924   }
1925 
1926   MaybeHandleStaticInExternC(D, GV);
1927 
1928   if (D->hasAttr<AnnotateAttr>())
1929     AddGlobalAnnotations(D, GV);
1930 
1931   GV->setInitializer(Init);
1932 
1933   // If it is safe to mark the global 'constant', do so now.
1934   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1935                   isTypeConstant(D->getType(), true));
1936 
1937   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1938 
1939   // Set the llvm linkage type as appropriate.
1940   llvm::GlobalValue::LinkageTypes Linkage =
1941       getLLVMLinkageVarDefinition(D, GV->isConstant());
1942 
1943   // On Darwin, the backing variable for a C++11 thread_local variable always
1944   // has internal linkage; all accesses should just be calls to the
1945   // Itanium-specified entry point, which has the normal linkage of the
1946   // variable.
1947   if (const auto *VD = dyn_cast<VarDecl>(D))
1948     if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1949         Context.getTargetInfo().getTriple().isMacOSX())
1950       Linkage = llvm::GlobalValue::InternalLinkage;
1951 
1952   GV->setLinkage(Linkage);
1953   if (D->hasAttr<DLLImportAttr>())
1954     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1955   else if (D->hasAttr<DLLExportAttr>())
1956     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1957 
1958   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1959     // common vars aren't constant even if declared const.
1960     GV->setConstant(false);
1961 
1962   setNonAliasAttributes(D, GV);
1963 
1964   // Emit the initializer function if necessary.
1965   if (NeedsGlobalCtor || NeedsGlobalDtor)
1966     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1967 
1968   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
1969 
1970   // Emit global variable debug information.
1971   if (CGDebugInfo *DI = getModuleDebugInfo())
1972     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1973       DI->EmitGlobalVariable(GV, D);
1974 }
1975 
1976 static bool isVarDeclStrongDefinition(const ASTContext &Context,
1977                                       const VarDecl *D, bool NoCommon) {
1978   // Don't give variables common linkage if -fno-common was specified unless it
1979   // was overridden by a NoCommon attribute.
1980   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1981     return true;
1982 
1983   // C11 6.9.2/2:
1984   //   A declaration of an identifier for an object that has file scope without
1985   //   an initializer, and without a storage-class specifier or with the
1986   //   storage-class specifier static, constitutes a tentative definition.
1987   if (D->getInit() || D->hasExternalStorage())
1988     return true;
1989 
1990   // A variable cannot be both common and exist in a section.
1991   if (D->hasAttr<SectionAttr>())
1992     return true;
1993 
1994   // Thread local vars aren't considered common linkage.
1995   if (D->getTLSKind())
1996     return true;
1997 
1998   // Tentative definitions marked with WeakImportAttr are true definitions.
1999   if (D->hasAttr<WeakImportAttr>())
2000     return true;
2001 
2002   // Declarations with a required alignment do not have common linakge in MSVC
2003   // mode.
2004   if (Context.getLangOpts().MSVCCompat &&
2005       (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>()))
2006     return true;
2007 
2008   return false;
2009 }
2010 
2011 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2012     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2013   if (Linkage == GVA_Internal)
2014     return llvm::Function::InternalLinkage;
2015 
2016   if (D->hasAttr<WeakAttr>()) {
2017     if (IsConstantVariable)
2018       return llvm::GlobalVariable::WeakODRLinkage;
2019     else
2020       return llvm::GlobalVariable::WeakAnyLinkage;
2021   }
2022 
2023   // We are guaranteed to have a strong definition somewhere else,
2024   // so we can use available_externally linkage.
2025   if (Linkage == GVA_AvailableExternally)
2026     return llvm::Function::AvailableExternallyLinkage;
2027 
2028   // Note that Apple's kernel linker doesn't support symbol
2029   // coalescing, so we need to avoid linkonce and weak linkages there.
2030   // Normally, this means we just map to internal, but for explicit
2031   // instantiations we'll map to external.
2032 
2033   // In C++, the compiler has to emit a definition in every translation unit
2034   // that references the function.  We should use linkonce_odr because
2035   // a) if all references in this translation unit are optimized away, we
2036   // don't need to codegen it.  b) if the function persists, it needs to be
2037   // merged with other definitions. c) C++ has the ODR, so we know the
2038   // definition is dependable.
2039   if (Linkage == GVA_DiscardableODR)
2040     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2041                                             : llvm::Function::InternalLinkage;
2042 
2043   // An explicit instantiation of a template has weak linkage, since
2044   // explicit instantiations can occur in multiple translation units
2045   // and must all be equivalent. However, we are not allowed to
2046   // throw away these explicit instantiations.
2047   if (Linkage == GVA_StrongODR)
2048     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2049                                             : llvm::Function::ExternalLinkage;
2050 
2051   // C++ doesn't have tentative definitions and thus cannot have common
2052   // linkage.
2053   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2054       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2055                                  CodeGenOpts.NoCommon))
2056     return llvm::GlobalVariable::CommonLinkage;
2057 
2058   // selectany symbols are externally visible, so use weak instead of
2059   // linkonce.  MSVC optimizes away references to const selectany globals, so
2060   // all definitions should be the same and ODR linkage should be used.
2061   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2062   if (D->hasAttr<SelectAnyAttr>())
2063     return llvm::GlobalVariable::WeakODRLinkage;
2064 
2065   // Otherwise, we have strong external linkage.
2066   assert(Linkage == GVA_StrongExternal);
2067   return llvm::GlobalVariable::ExternalLinkage;
2068 }
2069 
2070 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2071     const VarDecl *VD, bool IsConstant) {
2072   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2073   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2074 }
2075 
2076 /// Replace the uses of a function that was declared with a non-proto type.
2077 /// We want to silently drop extra arguments from call sites
2078 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2079                                           llvm::Function *newFn) {
2080   // Fast path.
2081   if (old->use_empty()) return;
2082 
2083   llvm::Type *newRetTy = newFn->getReturnType();
2084   SmallVector<llvm::Value*, 4> newArgs;
2085 
2086   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2087          ui != ue; ) {
2088     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2089     llvm::User *user = use->getUser();
2090 
2091     // Recognize and replace uses of bitcasts.  Most calls to
2092     // unprototyped functions will use bitcasts.
2093     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2094       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2095         replaceUsesOfNonProtoConstant(bitcast, newFn);
2096       continue;
2097     }
2098 
2099     // Recognize calls to the function.
2100     llvm::CallSite callSite(user);
2101     if (!callSite) continue;
2102     if (!callSite.isCallee(&*use)) continue;
2103 
2104     // If the return types don't match exactly, then we can't
2105     // transform this call unless it's dead.
2106     if (callSite->getType() != newRetTy && !callSite->use_empty())
2107       continue;
2108 
2109     // Get the call site's attribute list.
2110     SmallVector<llvm::AttributeSet, 8> newAttrs;
2111     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2112 
2113     // Collect any return attributes from the call.
2114     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2115       newAttrs.push_back(
2116         llvm::AttributeSet::get(newFn->getContext(),
2117                                 oldAttrs.getRetAttributes()));
2118 
2119     // If the function was passed too few arguments, don't transform.
2120     unsigned newNumArgs = newFn->arg_size();
2121     if (callSite.arg_size() < newNumArgs) continue;
2122 
2123     // If extra arguments were passed, we silently drop them.
2124     // If any of the types mismatch, we don't transform.
2125     unsigned argNo = 0;
2126     bool dontTransform = false;
2127     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2128            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2129       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2130         dontTransform = true;
2131         break;
2132       }
2133 
2134       // Add any parameter attributes.
2135       if (oldAttrs.hasAttributes(argNo + 1))
2136         newAttrs.
2137           push_back(llvm::
2138                     AttributeSet::get(newFn->getContext(),
2139                                       oldAttrs.getParamAttributes(argNo + 1)));
2140     }
2141     if (dontTransform)
2142       continue;
2143 
2144     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2145       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2146                                                  oldAttrs.getFnAttributes()));
2147 
2148     // Okay, we can transform this.  Create the new call instruction and copy
2149     // over the required information.
2150     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2151 
2152     llvm::CallSite newCall;
2153     if (callSite.isCall()) {
2154       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2155                                        callSite.getInstruction());
2156     } else {
2157       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2158       newCall = llvm::InvokeInst::Create(newFn,
2159                                          oldInvoke->getNormalDest(),
2160                                          oldInvoke->getUnwindDest(),
2161                                          newArgs, "",
2162                                          callSite.getInstruction());
2163     }
2164     newArgs.clear(); // for the next iteration
2165 
2166     if (!newCall->getType()->isVoidTy())
2167       newCall->takeName(callSite.getInstruction());
2168     newCall.setAttributes(
2169                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2170     newCall.setCallingConv(callSite.getCallingConv());
2171 
2172     // Finally, remove the old call, replacing any uses with the new one.
2173     if (!callSite->use_empty())
2174       callSite->replaceAllUsesWith(newCall.getInstruction());
2175 
2176     // Copy debug location attached to CI.
2177     if (!callSite->getDebugLoc().isUnknown())
2178       newCall->setDebugLoc(callSite->getDebugLoc());
2179     callSite->eraseFromParent();
2180   }
2181 }
2182 
2183 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2184 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2185 /// existing call uses of the old function in the module, this adjusts them to
2186 /// call the new function directly.
2187 ///
2188 /// This is not just a cleanup: the always_inline pass requires direct calls to
2189 /// functions to be able to inline them.  If there is a bitcast in the way, it
2190 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2191 /// run at -O0.
2192 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2193                                                       llvm::Function *NewFn) {
2194   // If we're redefining a global as a function, don't transform it.
2195   if (!isa<llvm::Function>(Old)) return;
2196 
2197   replaceUsesOfNonProtoConstant(Old, NewFn);
2198 }
2199 
2200 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2201   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2202   // If we have a definition, this might be a deferred decl. If the
2203   // instantiation is explicit, make sure we emit it at the end.
2204   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2205     GetAddrOfGlobalVar(VD);
2206 
2207   EmitTopLevelDecl(VD);
2208 }
2209 
2210 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2211                                                  llvm::GlobalValue *GV) {
2212   const auto *D = cast<FunctionDecl>(GD.getDecl());
2213 
2214   // Compute the function info and LLVM type.
2215   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2216   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2217 
2218   // Get or create the prototype for the function.
2219   if (!GV) {
2220     llvm::Constant *C =
2221         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2222 
2223     // Strip off a bitcast if we got one back.
2224     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2225       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2226       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2227     } else {
2228       GV = cast<llvm::GlobalValue>(C);
2229     }
2230   }
2231 
2232   if (!GV->isDeclaration()) {
2233     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2234     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2235     if (auto *Prev = OldGD.getDecl())
2236       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2237     return;
2238   }
2239 
2240   if (GV->getType()->getElementType() != Ty) {
2241     // If the types mismatch then we have to rewrite the definition.
2242     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2243 
2244     // F is the Function* for the one with the wrong type, we must make a new
2245     // Function* and update everything that used F (a declaration) with the new
2246     // Function* (which will be a definition).
2247     //
2248     // This happens if there is a prototype for a function
2249     // (e.g. "int f()") and then a definition of a different type
2250     // (e.g. "int f(int x)").  Move the old function aside so that it
2251     // doesn't interfere with GetAddrOfFunction.
2252     GV->setName(StringRef());
2253     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2254 
2255     // This might be an implementation of a function without a
2256     // prototype, in which case, try to do special replacement of
2257     // calls which match the new prototype.  The really key thing here
2258     // is that we also potentially drop arguments from the call site
2259     // so as to make a direct call, which makes the inliner happier
2260     // and suppresses a number of optimizer warnings (!) about
2261     // dropping arguments.
2262     if (!GV->use_empty()) {
2263       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2264       GV->removeDeadConstantUsers();
2265     }
2266 
2267     // Replace uses of F with the Function we will endow with a body.
2268     if (!GV->use_empty()) {
2269       llvm::Constant *NewPtrForOldDecl =
2270           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2271       GV->replaceAllUsesWith(NewPtrForOldDecl);
2272     }
2273 
2274     // Ok, delete the old function now, which is dead.
2275     GV->eraseFromParent();
2276 
2277     GV = NewFn;
2278   }
2279 
2280   // We need to set linkage and visibility on the function before
2281   // generating code for it because various parts of IR generation
2282   // want to propagate this information down (e.g. to local static
2283   // declarations).
2284   auto *Fn = cast<llvm::Function>(GV);
2285   setFunctionLinkage(GD, Fn);
2286 
2287   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2288   setGlobalVisibility(Fn, D);
2289 
2290   MaybeHandleStaticInExternC(D, Fn);
2291 
2292   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2293 
2294   setFunctionDefinitionAttributes(D, Fn);
2295   SetLLVMFunctionAttributesForDefinition(D, Fn);
2296 
2297   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2298     AddGlobalCtor(Fn, CA->getPriority());
2299   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2300     AddGlobalDtor(Fn, DA->getPriority());
2301   if (D->hasAttr<AnnotateAttr>())
2302     AddGlobalAnnotations(D, Fn);
2303 }
2304 
2305 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2306   const auto *D = cast<ValueDecl>(GD.getDecl());
2307   const AliasAttr *AA = D->getAttr<AliasAttr>();
2308   assert(AA && "Not an alias?");
2309 
2310   StringRef MangledName = getMangledName(GD);
2311 
2312   // If there is a definition in the module, then it wins over the alias.
2313   // This is dubious, but allow it to be safe.  Just ignore the alias.
2314   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2315   if (Entry && !Entry->isDeclaration())
2316     return;
2317 
2318   Aliases.push_back(GD);
2319 
2320   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2321 
2322   // Create a reference to the named value.  This ensures that it is emitted
2323   // if a deferred decl.
2324   llvm::Constant *Aliasee;
2325   if (isa<llvm::FunctionType>(DeclTy))
2326     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2327                                       /*ForVTable=*/false);
2328   else
2329     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2330                                     llvm::PointerType::getUnqual(DeclTy),
2331                                     nullptr);
2332 
2333   // Create the new alias itself, but don't set a name yet.
2334   auto *GA = llvm::GlobalAlias::create(
2335       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2336       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2337 
2338   if (Entry) {
2339     if (GA->getAliasee() == Entry) {
2340       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2341       return;
2342     }
2343 
2344     assert(Entry->isDeclaration());
2345 
2346     // If there is a declaration in the module, then we had an extern followed
2347     // by the alias, as in:
2348     //   extern int test6();
2349     //   ...
2350     //   int test6() __attribute__((alias("test7")));
2351     //
2352     // Remove it and replace uses of it with the alias.
2353     GA->takeName(Entry);
2354 
2355     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2356                                                           Entry->getType()));
2357     Entry->eraseFromParent();
2358   } else {
2359     GA->setName(MangledName);
2360   }
2361 
2362   // Set attributes which are particular to an alias; this is a
2363   // specialization of the attributes which may be set on a global
2364   // variable/function.
2365   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2366       D->isWeakImported()) {
2367     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2368   }
2369 
2370   setAliasAttributes(D, GA);
2371 }
2372 
2373 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2374                                             ArrayRef<llvm::Type*> Tys) {
2375   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2376                                          Tys);
2377 }
2378 
2379 static llvm::StringMapEntry<llvm::Constant*> &
2380 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2381                          const StringLiteral *Literal,
2382                          bool TargetIsLSB,
2383                          bool &IsUTF16,
2384                          unsigned &StringLength) {
2385   StringRef String = Literal->getString();
2386   unsigned NumBytes = String.size();
2387 
2388   // Check for simple case.
2389   if (!Literal->containsNonAsciiOrNull()) {
2390     StringLength = NumBytes;
2391     return Map.GetOrCreateValue(String);
2392   }
2393 
2394   // Otherwise, convert the UTF8 literals into a string of shorts.
2395   IsUTF16 = true;
2396 
2397   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2398   const UTF8 *FromPtr = (const UTF8 *)String.data();
2399   UTF16 *ToPtr = &ToBuf[0];
2400 
2401   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2402                            &ToPtr, ToPtr + NumBytes,
2403                            strictConversion);
2404 
2405   // ConvertUTF8toUTF16 returns the length in ToPtr.
2406   StringLength = ToPtr - &ToBuf[0];
2407 
2408   // Add an explicit null.
2409   *ToPtr = 0;
2410   return Map.
2411     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2412                                (StringLength + 1) * 2));
2413 }
2414 
2415 static llvm::StringMapEntry<llvm::Constant*> &
2416 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2417                        const StringLiteral *Literal,
2418                        unsigned &StringLength) {
2419   StringRef String = Literal->getString();
2420   StringLength = String.size();
2421   return Map.GetOrCreateValue(String);
2422 }
2423 
2424 llvm::Constant *
2425 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2426   unsigned StringLength = 0;
2427   bool isUTF16 = false;
2428   llvm::StringMapEntry<llvm::Constant*> &Entry =
2429     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2430                              getDataLayout().isLittleEndian(),
2431                              isUTF16, StringLength);
2432 
2433   if (llvm::Constant *C = Entry.getValue())
2434     return C;
2435 
2436   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2437   llvm::Constant *Zeros[] = { Zero, Zero };
2438   llvm::Value *V;
2439 
2440   // If we don't already have it, get __CFConstantStringClassReference.
2441   if (!CFConstantStringClassRef) {
2442     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2443     Ty = llvm::ArrayType::get(Ty, 0);
2444     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2445                                            "__CFConstantStringClassReference");
2446     // Decay array -> ptr
2447     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2448     CFConstantStringClassRef = V;
2449   }
2450   else
2451     V = CFConstantStringClassRef;
2452 
2453   QualType CFTy = getContext().getCFConstantStringType();
2454 
2455   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2456 
2457   llvm::Constant *Fields[4];
2458 
2459   // Class pointer.
2460   Fields[0] = cast<llvm::ConstantExpr>(V);
2461 
2462   // Flags.
2463   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2464   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2465     llvm::ConstantInt::get(Ty, 0x07C8);
2466 
2467   // String pointer.
2468   llvm::Constant *C = nullptr;
2469   if (isUTF16) {
2470     ArrayRef<uint16_t> Arr =
2471       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2472                                      const_cast<char *>(Entry.getKey().data())),
2473                                    Entry.getKey().size() / 2);
2474     C = llvm::ConstantDataArray::get(VMContext, Arr);
2475   } else {
2476     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2477   }
2478 
2479   // Note: -fwritable-strings doesn't make the backing store strings of
2480   // CFStrings writable. (See <rdar://problem/10657500>)
2481   auto *GV =
2482       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2483                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2484   GV->setUnnamedAddr(true);
2485   // Don't enforce the target's minimum global alignment, since the only use
2486   // of the string is via this class initializer.
2487   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2488   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2489   // that changes the section it ends in, which surprises ld64.
2490   if (isUTF16) {
2491     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2492     GV->setAlignment(Align.getQuantity());
2493     GV->setSection("__TEXT,__ustring");
2494   } else {
2495     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2496     GV->setAlignment(Align.getQuantity());
2497     GV->setSection("__TEXT,__cstring,cstring_literals");
2498   }
2499 
2500   // String.
2501   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2502 
2503   if (isUTF16)
2504     // Cast the UTF16 string to the correct type.
2505     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2506 
2507   // String length.
2508   Ty = getTypes().ConvertType(getContext().LongTy);
2509   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2510 
2511   // The struct.
2512   C = llvm::ConstantStruct::get(STy, Fields);
2513   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2514                                 llvm::GlobalVariable::PrivateLinkage, C,
2515                                 "_unnamed_cfstring_");
2516   GV->setSection("__DATA,__cfstring");
2517   Entry.setValue(GV);
2518 
2519   return GV;
2520 }
2521 
2522 llvm::Constant *
2523 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2524   unsigned StringLength = 0;
2525   llvm::StringMapEntry<llvm::Constant*> &Entry =
2526     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2527 
2528   if (llvm::Constant *C = Entry.getValue())
2529     return C;
2530 
2531   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2532   llvm::Constant *Zeros[] = { Zero, Zero };
2533   llvm::Value *V;
2534   // If we don't already have it, get _NSConstantStringClassReference.
2535   if (!ConstantStringClassRef) {
2536     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2537     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2538     llvm::Constant *GV;
2539     if (LangOpts.ObjCRuntime.isNonFragile()) {
2540       std::string str =
2541         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2542                             : "OBJC_CLASS_$_" + StringClass;
2543       GV = getObjCRuntime().GetClassGlobal(str);
2544       // Make sure the result is of the correct type.
2545       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2546       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2547       ConstantStringClassRef = V;
2548     } else {
2549       std::string str =
2550         StringClass.empty() ? "_NSConstantStringClassReference"
2551                             : "_" + StringClass + "ClassReference";
2552       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2553       GV = CreateRuntimeVariable(PTy, str);
2554       // Decay array -> ptr
2555       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2556       ConstantStringClassRef = V;
2557     }
2558   }
2559   else
2560     V = ConstantStringClassRef;
2561 
2562   if (!NSConstantStringType) {
2563     // Construct the type for a constant NSString.
2564     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2565     D->startDefinition();
2566 
2567     QualType FieldTypes[3];
2568 
2569     // const int *isa;
2570     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2571     // const char *str;
2572     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2573     // unsigned int length;
2574     FieldTypes[2] = Context.UnsignedIntTy;
2575 
2576     // Create fields
2577     for (unsigned i = 0; i < 3; ++i) {
2578       FieldDecl *Field = FieldDecl::Create(Context, D,
2579                                            SourceLocation(),
2580                                            SourceLocation(), nullptr,
2581                                            FieldTypes[i], /*TInfo=*/nullptr,
2582                                            /*BitWidth=*/nullptr,
2583                                            /*Mutable=*/false,
2584                                            ICIS_NoInit);
2585       Field->setAccess(AS_public);
2586       D->addDecl(Field);
2587     }
2588 
2589     D->completeDefinition();
2590     QualType NSTy = Context.getTagDeclType(D);
2591     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2592   }
2593 
2594   llvm::Constant *Fields[3];
2595 
2596   // Class pointer.
2597   Fields[0] = cast<llvm::ConstantExpr>(V);
2598 
2599   // String pointer.
2600   llvm::Constant *C =
2601     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2602 
2603   llvm::GlobalValue::LinkageTypes Linkage;
2604   bool isConstant;
2605   Linkage = llvm::GlobalValue::PrivateLinkage;
2606   isConstant = !LangOpts.WritableStrings;
2607 
2608   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2609                                       Linkage, C, ".str");
2610   GV->setUnnamedAddr(true);
2611   // Don't enforce the target's minimum global alignment, since the only use
2612   // of the string is via this class initializer.
2613   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2614   GV->setAlignment(Align.getQuantity());
2615   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2616 
2617   // String length.
2618   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2619   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2620 
2621   // The struct.
2622   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2623   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2624                                 llvm::GlobalVariable::PrivateLinkage, C,
2625                                 "_unnamed_nsstring_");
2626   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2627   const char *NSStringNonFragileABISection =
2628       "__DATA,__objc_stringobj,regular,no_dead_strip";
2629   // FIXME. Fix section.
2630   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2631                      ? NSStringNonFragileABISection
2632                      : NSStringSection);
2633   Entry.setValue(GV);
2634 
2635   return GV;
2636 }
2637 
2638 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2639   if (ObjCFastEnumerationStateType.isNull()) {
2640     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2641     D->startDefinition();
2642 
2643     QualType FieldTypes[] = {
2644       Context.UnsignedLongTy,
2645       Context.getPointerType(Context.getObjCIdType()),
2646       Context.getPointerType(Context.UnsignedLongTy),
2647       Context.getConstantArrayType(Context.UnsignedLongTy,
2648                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2649     };
2650 
2651     for (size_t i = 0; i < 4; ++i) {
2652       FieldDecl *Field = FieldDecl::Create(Context,
2653                                            D,
2654                                            SourceLocation(),
2655                                            SourceLocation(), nullptr,
2656                                            FieldTypes[i], /*TInfo=*/nullptr,
2657                                            /*BitWidth=*/nullptr,
2658                                            /*Mutable=*/false,
2659                                            ICIS_NoInit);
2660       Field->setAccess(AS_public);
2661       D->addDecl(Field);
2662     }
2663 
2664     D->completeDefinition();
2665     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2666   }
2667 
2668   return ObjCFastEnumerationStateType;
2669 }
2670 
2671 llvm::Constant *
2672 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2673   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2674 
2675   // Don't emit it as the address of the string, emit the string data itself
2676   // as an inline array.
2677   if (E->getCharByteWidth() == 1) {
2678     SmallString<64> Str(E->getString());
2679 
2680     // Resize the string to the right size, which is indicated by its type.
2681     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2682     Str.resize(CAT->getSize().getZExtValue());
2683     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2684   }
2685 
2686   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2687   llvm::Type *ElemTy = AType->getElementType();
2688   unsigned NumElements = AType->getNumElements();
2689 
2690   // Wide strings have either 2-byte or 4-byte elements.
2691   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2692     SmallVector<uint16_t, 32> Elements;
2693     Elements.reserve(NumElements);
2694 
2695     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2696       Elements.push_back(E->getCodeUnit(i));
2697     Elements.resize(NumElements);
2698     return llvm::ConstantDataArray::get(VMContext, Elements);
2699   }
2700 
2701   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2702   SmallVector<uint32_t, 32> Elements;
2703   Elements.reserve(NumElements);
2704 
2705   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2706     Elements.push_back(E->getCodeUnit(i));
2707   Elements.resize(NumElements);
2708   return llvm::ConstantDataArray::get(VMContext, Elements);
2709 }
2710 
2711 static llvm::GlobalVariable *
2712 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2713                       CodeGenModule &CGM, StringRef GlobalName,
2714                       unsigned Alignment) {
2715   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2716   unsigned AddrSpace = 0;
2717   if (CGM.getLangOpts().OpenCL)
2718     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2719 
2720   // Create a global variable for this string
2721   auto *GV = new llvm::GlobalVariable(
2722       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2723       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2724   GV->setAlignment(Alignment);
2725   GV->setUnnamedAddr(true);
2726   return GV;
2727 }
2728 
2729 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2730 /// constant array for the given string literal.
2731 llvm::GlobalVariable *
2732 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2733                                                   StringRef Name) {
2734   auto Alignment =
2735       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2736 
2737   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2738   llvm::GlobalVariable **Entry = nullptr;
2739   if (!LangOpts.WritableStrings) {
2740     Entry = &ConstantStringMap[C];
2741     if (auto GV = *Entry) {
2742       if (Alignment > GV->getAlignment())
2743         GV->setAlignment(Alignment);
2744       return GV;
2745     }
2746   }
2747 
2748   SmallString<256> MangledNameBuffer;
2749   StringRef GlobalVariableName;
2750   llvm::GlobalValue::LinkageTypes LT;
2751 
2752   // Mangle the string literal if the ABI allows for it.  However, we cannot
2753   // do this if  we are compiling with ASan or -fwritable-strings because they
2754   // rely on strings having normal linkage.
2755   if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address &&
2756       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2757     llvm::raw_svector_ostream Out(MangledNameBuffer);
2758     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2759     Out.flush();
2760 
2761     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2762     GlobalVariableName = MangledNameBuffer;
2763   } else {
2764     LT = llvm::GlobalValue::PrivateLinkage;
2765     GlobalVariableName = Name;
2766   }
2767 
2768   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2769   if (Entry)
2770     *Entry = GV;
2771 
2772   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>");
2773   return GV;
2774 }
2775 
2776 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2777 /// array for the given ObjCEncodeExpr node.
2778 llvm::GlobalVariable *
2779 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2780   std::string Str;
2781   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2782 
2783   return GetAddrOfConstantCString(Str);
2784 }
2785 
2786 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2787 /// the literal and a terminating '\0' character.
2788 /// The result has pointer to array type.
2789 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2790     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2791   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2792   if (Alignment == 0) {
2793     Alignment = getContext()
2794                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2795                     .getQuantity();
2796   }
2797 
2798   llvm::Constant *C =
2799       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2800 
2801   // Don't share any string literals if strings aren't constant.
2802   llvm::GlobalVariable **Entry = nullptr;
2803   if (!LangOpts.WritableStrings) {
2804     Entry = &ConstantStringMap[C];
2805     if (auto GV = *Entry) {
2806       if (Alignment > GV->getAlignment())
2807         GV->setAlignment(Alignment);
2808       return GV;
2809     }
2810   }
2811 
2812   // Get the default prefix if a name wasn't specified.
2813   if (!GlobalName)
2814     GlobalName = ".str";
2815   // Create a global variable for this.
2816   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2817                                   GlobalName, Alignment);
2818   if (Entry)
2819     *Entry = GV;
2820   return GV;
2821 }
2822 
2823 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2824     const MaterializeTemporaryExpr *E, const Expr *Init) {
2825   assert((E->getStorageDuration() == SD_Static ||
2826           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2827   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2828 
2829   // If we're not materializing a subobject of the temporary, keep the
2830   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2831   QualType MaterializedType = Init->getType();
2832   if (Init == E->GetTemporaryExpr())
2833     MaterializedType = E->getType();
2834 
2835   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2836   if (Slot)
2837     return Slot;
2838 
2839   // FIXME: If an externally-visible declaration extends multiple temporaries,
2840   // we need to give each temporary the same name in every translation unit (and
2841   // we also need to make the temporaries externally-visible).
2842   SmallString<256> Name;
2843   llvm::raw_svector_ostream Out(Name);
2844   getCXXABI().getMangleContext().mangleReferenceTemporary(
2845       VD, E->getManglingNumber(), Out);
2846   Out.flush();
2847 
2848   APValue *Value = nullptr;
2849   if (E->getStorageDuration() == SD_Static) {
2850     // We might have a cached constant initializer for this temporary. Note
2851     // that this might have a different value from the value computed by
2852     // evaluating the initializer if the surrounding constant expression
2853     // modifies the temporary.
2854     Value = getContext().getMaterializedTemporaryValue(E, false);
2855     if (Value && Value->isUninit())
2856       Value = nullptr;
2857   }
2858 
2859   // Try evaluating it now, it might have a constant initializer.
2860   Expr::EvalResult EvalResult;
2861   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2862       !EvalResult.hasSideEffects())
2863     Value = &EvalResult.Val;
2864 
2865   llvm::Constant *InitialValue = nullptr;
2866   bool Constant = false;
2867   llvm::Type *Type;
2868   if (Value) {
2869     // The temporary has a constant initializer, use it.
2870     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2871     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2872     Type = InitialValue->getType();
2873   } else {
2874     // No initializer, the initialization will be provided when we
2875     // initialize the declaration which performed lifetime extension.
2876     Type = getTypes().ConvertTypeForMem(MaterializedType);
2877   }
2878 
2879   // Create a global variable for this lifetime-extended temporary.
2880   llvm::GlobalValue::LinkageTypes Linkage =
2881       getLLVMLinkageVarDefinition(VD, Constant);
2882   // There is no need for this temporary to have global linkage if the global
2883   // variable has external linkage.
2884   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2885     Linkage = llvm::GlobalVariable::PrivateLinkage;
2886   unsigned AddrSpace = GetGlobalVarAddressSpace(
2887       VD, getContext().getTargetAddressSpace(MaterializedType));
2888   auto *GV = new llvm::GlobalVariable(
2889       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2890       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2891       AddrSpace);
2892   setGlobalVisibility(GV, VD);
2893   GV->setAlignment(
2894       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2895   if (VD->getTLSKind())
2896     setTLSMode(GV, *VD);
2897   Slot = GV;
2898   return GV;
2899 }
2900 
2901 /// EmitObjCPropertyImplementations - Emit information for synthesized
2902 /// properties for an implementation.
2903 void CodeGenModule::EmitObjCPropertyImplementations(const
2904                                                     ObjCImplementationDecl *D) {
2905   for (const auto *PID : D->property_impls()) {
2906     // Dynamic is just for type-checking.
2907     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2908       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2909 
2910       // Determine which methods need to be implemented, some may have
2911       // been overridden. Note that ::isPropertyAccessor is not the method
2912       // we want, that just indicates if the decl came from a
2913       // property. What we want to know is if the method is defined in
2914       // this implementation.
2915       if (!D->getInstanceMethod(PD->getGetterName()))
2916         CodeGenFunction(*this).GenerateObjCGetter(
2917                                  const_cast<ObjCImplementationDecl *>(D), PID);
2918       if (!PD->isReadOnly() &&
2919           !D->getInstanceMethod(PD->getSetterName()))
2920         CodeGenFunction(*this).GenerateObjCSetter(
2921                                  const_cast<ObjCImplementationDecl *>(D), PID);
2922     }
2923   }
2924 }
2925 
2926 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2927   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2928   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2929        ivar; ivar = ivar->getNextIvar())
2930     if (ivar->getType().isDestructedType())
2931       return true;
2932 
2933   return false;
2934 }
2935 
2936 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2937 /// for an implementation.
2938 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2939   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2940   if (needsDestructMethod(D)) {
2941     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2942     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2943     ObjCMethodDecl *DTORMethod =
2944       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2945                              cxxSelector, getContext().VoidTy, nullptr, D,
2946                              /*isInstance=*/true, /*isVariadic=*/false,
2947                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2948                              /*isDefined=*/false, ObjCMethodDecl::Required);
2949     D->addInstanceMethod(DTORMethod);
2950     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2951     D->setHasDestructors(true);
2952   }
2953 
2954   // If the implementation doesn't have any ivar initializers, we don't need
2955   // a .cxx_construct.
2956   if (D->getNumIvarInitializers() == 0)
2957     return;
2958 
2959   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2960   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2961   // The constructor returns 'self'.
2962   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2963                                                 D->getLocation(),
2964                                                 D->getLocation(),
2965                                                 cxxSelector,
2966                                                 getContext().getObjCIdType(),
2967                                                 nullptr, D, /*isInstance=*/true,
2968                                                 /*isVariadic=*/false,
2969                                                 /*isPropertyAccessor=*/true,
2970                                                 /*isImplicitlyDeclared=*/true,
2971                                                 /*isDefined=*/false,
2972                                                 ObjCMethodDecl::Required);
2973   D->addInstanceMethod(CTORMethod);
2974   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2975   D->setHasNonZeroConstructors(true);
2976 }
2977 
2978 /// EmitNamespace - Emit all declarations in a namespace.
2979 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2980   for (auto *I : ND->decls()) {
2981     if (const auto *VD = dyn_cast<VarDecl>(I))
2982       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2983           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2984         continue;
2985     EmitTopLevelDecl(I);
2986   }
2987 }
2988 
2989 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2990 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2991   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2992       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2993     ErrorUnsupported(LSD, "linkage spec");
2994     return;
2995   }
2996 
2997   for (auto *I : LSD->decls()) {
2998     // Meta-data for ObjC class includes references to implemented methods.
2999     // Generate class's method definitions first.
3000     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3001       for (auto *M : OID->methods())
3002         EmitTopLevelDecl(M);
3003     }
3004     EmitTopLevelDecl(I);
3005   }
3006 }
3007 
3008 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3009 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3010   // Ignore dependent declarations.
3011   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3012     return;
3013 
3014   switch (D->getKind()) {
3015   case Decl::CXXConversion:
3016   case Decl::CXXMethod:
3017   case Decl::Function:
3018     // Skip function templates
3019     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3020         cast<FunctionDecl>(D)->isLateTemplateParsed())
3021       return;
3022 
3023     EmitGlobal(cast<FunctionDecl>(D));
3024     // Always provide some coverage mapping
3025     // even for the functions that aren't emitted.
3026     AddDeferredUnusedCoverageMapping(D);
3027     break;
3028 
3029   case Decl::Var:
3030     // Skip variable templates
3031     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3032       return;
3033   case Decl::VarTemplateSpecialization:
3034     EmitGlobal(cast<VarDecl>(D));
3035     break;
3036 
3037   // Indirect fields from global anonymous structs and unions can be
3038   // ignored; only the actual variable requires IR gen support.
3039   case Decl::IndirectField:
3040     break;
3041 
3042   // C++ Decls
3043   case Decl::Namespace:
3044     EmitNamespace(cast<NamespaceDecl>(D));
3045     break;
3046     // No code generation needed.
3047   case Decl::UsingShadow:
3048   case Decl::ClassTemplate:
3049   case Decl::VarTemplate:
3050   case Decl::VarTemplatePartialSpecialization:
3051   case Decl::FunctionTemplate:
3052   case Decl::TypeAliasTemplate:
3053   case Decl::Block:
3054   case Decl::Empty:
3055     break;
3056   case Decl::Using:          // using X; [C++]
3057     if (CGDebugInfo *DI = getModuleDebugInfo())
3058         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3059     return;
3060   case Decl::NamespaceAlias:
3061     if (CGDebugInfo *DI = getModuleDebugInfo())
3062         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3063     return;
3064   case Decl::UsingDirective: // using namespace X; [C++]
3065     if (CGDebugInfo *DI = getModuleDebugInfo())
3066       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3067     return;
3068   case Decl::CXXConstructor:
3069     // Skip function templates
3070     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3071         cast<FunctionDecl>(D)->isLateTemplateParsed())
3072       return;
3073 
3074     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3075     break;
3076   case Decl::CXXDestructor:
3077     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3078       return;
3079     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3080     break;
3081 
3082   case Decl::StaticAssert:
3083     // Nothing to do.
3084     break;
3085 
3086   // Objective-C Decls
3087 
3088   // Forward declarations, no (immediate) code generation.
3089   case Decl::ObjCInterface:
3090   case Decl::ObjCCategory:
3091     break;
3092 
3093   case Decl::ObjCProtocol: {
3094     auto *Proto = cast<ObjCProtocolDecl>(D);
3095     if (Proto->isThisDeclarationADefinition())
3096       ObjCRuntime->GenerateProtocol(Proto);
3097     break;
3098   }
3099 
3100   case Decl::ObjCCategoryImpl:
3101     // Categories have properties but don't support synthesize so we
3102     // can ignore them here.
3103     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3104     break;
3105 
3106   case Decl::ObjCImplementation: {
3107     auto *OMD = cast<ObjCImplementationDecl>(D);
3108     EmitObjCPropertyImplementations(OMD);
3109     EmitObjCIvarInitializations(OMD);
3110     ObjCRuntime->GenerateClass(OMD);
3111     // Emit global variable debug information.
3112     if (CGDebugInfo *DI = getModuleDebugInfo())
3113       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3114         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3115             OMD->getClassInterface()), OMD->getLocation());
3116     break;
3117   }
3118   case Decl::ObjCMethod: {
3119     auto *OMD = cast<ObjCMethodDecl>(D);
3120     // If this is not a prototype, emit the body.
3121     if (OMD->getBody())
3122       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3123     break;
3124   }
3125   case Decl::ObjCCompatibleAlias:
3126     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3127     break;
3128 
3129   case Decl::LinkageSpec:
3130     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3131     break;
3132 
3133   case Decl::FileScopeAsm: {
3134     auto *AD = cast<FileScopeAsmDecl>(D);
3135     StringRef AsmString = AD->getAsmString()->getString();
3136 
3137     const std::string &S = getModule().getModuleInlineAsm();
3138     if (S.empty())
3139       getModule().setModuleInlineAsm(AsmString);
3140     else if (S.end()[-1] == '\n')
3141       getModule().setModuleInlineAsm(S + AsmString.str());
3142     else
3143       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3144     break;
3145   }
3146 
3147   case Decl::Import: {
3148     auto *Import = cast<ImportDecl>(D);
3149 
3150     // Ignore import declarations that come from imported modules.
3151     if (clang::Module *Owner = Import->getOwningModule()) {
3152       if (getLangOpts().CurrentModule.empty() ||
3153           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3154         break;
3155     }
3156 
3157     ImportedModules.insert(Import->getImportedModule());
3158     break;
3159   }
3160 
3161   case Decl::ClassTemplateSpecialization: {
3162     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3163     if (DebugInfo &&
3164         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3165       DebugInfo->completeTemplateDefinition(*Spec);
3166   }
3167 
3168   default:
3169     // Make sure we handled everything we should, every other kind is a
3170     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3171     // function. Need to recode Decl::Kind to do that easily.
3172     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3173   }
3174 }
3175 
3176 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3177   // Do we need to generate coverage mapping?
3178   if (!CodeGenOpts.CoverageMapping)
3179     return;
3180   switch (D->getKind()) {
3181   case Decl::CXXConversion:
3182   case Decl::CXXMethod:
3183   case Decl::Function:
3184   case Decl::ObjCMethod:
3185   case Decl::CXXConstructor:
3186   case Decl::CXXDestructor: {
3187     if (!cast<FunctionDecl>(D)->hasBody())
3188       return;
3189     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3190     if (I == DeferredEmptyCoverageMappingDecls.end())
3191       DeferredEmptyCoverageMappingDecls[D] = true;
3192     break;
3193   }
3194   default:
3195     break;
3196   };
3197 }
3198 
3199 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3200   // Do we need to generate coverage mapping?
3201   if (!CodeGenOpts.CoverageMapping)
3202     return;
3203   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3204     if (Fn->isTemplateInstantiation())
3205       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3206   }
3207   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3208   if (I == DeferredEmptyCoverageMappingDecls.end())
3209     DeferredEmptyCoverageMappingDecls[D] = false;
3210   else
3211     I->second = false;
3212 }
3213 
3214 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3215   std::vector<const Decl *> DeferredDecls;
3216   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3217     if (!I.second)
3218       continue;
3219     DeferredDecls.push_back(I.first);
3220   }
3221   // Sort the declarations by their location to make sure that the tests get a
3222   // predictable order for the coverage mapping for the unused declarations.
3223   if (CodeGenOpts.DumpCoverageMapping)
3224     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3225               [] (const Decl *LHS, const Decl *RHS) {
3226       return LHS->getLocStart() < RHS->getLocStart();
3227     });
3228   for (const auto *D : DeferredDecls) {
3229     switch (D->getKind()) {
3230     case Decl::CXXConversion:
3231     case Decl::CXXMethod:
3232     case Decl::Function:
3233     case Decl::ObjCMethod: {
3234       CodeGenPGO PGO(*this);
3235       GlobalDecl GD(cast<FunctionDecl>(D));
3236       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3237                                   getFunctionLinkage(GD));
3238       break;
3239     }
3240     case Decl::CXXConstructor: {
3241       CodeGenPGO PGO(*this);
3242       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3243       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3244                                   getFunctionLinkage(GD));
3245       break;
3246     }
3247     case Decl::CXXDestructor: {
3248       CodeGenPGO PGO(*this);
3249       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3250       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3251                                   getFunctionLinkage(GD));
3252       break;
3253     }
3254     default:
3255       break;
3256     };
3257   }
3258 }
3259 
3260 /// Turns the given pointer into a constant.
3261 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3262                                           const void *Ptr) {
3263   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3264   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3265   return llvm::ConstantInt::get(i64, PtrInt);
3266 }
3267 
3268 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3269                                    llvm::NamedMDNode *&GlobalMetadata,
3270                                    GlobalDecl D,
3271                                    llvm::GlobalValue *Addr) {
3272   if (!GlobalMetadata)
3273     GlobalMetadata =
3274       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3275 
3276   // TODO: should we report variant information for ctors/dtors?
3277   llvm::Value *Ops[] = {
3278     Addr,
3279     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3280   };
3281   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3282 }
3283 
3284 /// For each function which is declared within an extern "C" region and marked
3285 /// as 'used', but has internal linkage, create an alias from the unmangled
3286 /// name to the mangled name if possible. People expect to be able to refer
3287 /// to such functions with an unmangled name from inline assembly within the
3288 /// same translation unit.
3289 void CodeGenModule::EmitStaticExternCAliases() {
3290   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3291                                   E = StaticExternCValues.end();
3292        I != E; ++I) {
3293     IdentifierInfo *Name = I->first;
3294     llvm::GlobalValue *Val = I->second;
3295     if (Val && !getModule().getNamedValue(Name->getName()))
3296       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3297   }
3298 }
3299 
3300 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3301                                              GlobalDecl &Result) const {
3302   auto Res = Manglings.find(MangledName);
3303   if (Res == Manglings.end())
3304     return false;
3305   Result = Res->getValue();
3306   return true;
3307 }
3308 
3309 /// Emits metadata nodes associating all the global values in the
3310 /// current module with the Decls they came from.  This is useful for
3311 /// projects using IR gen as a subroutine.
3312 ///
3313 /// Since there's currently no way to associate an MDNode directly
3314 /// with an llvm::GlobalValue, we create a global named metadata
3315 /// with the name 'clang.global.decl.ptrs'.
3316 void CodeGenModule::EmitDeclMetadata() {
3317   llvm::NamedMDNode *GlobalMetadata = nullptr;
3318 
3319   // StaticLocalDeclMap
3320   for (auto &I : MangledDeclNames) {
3321     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3322     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3323   }
3324 }
3325 
3326 /// Emits metadata nodes for all the local variables in the current
3327 /// function.
3328 void CodeGenFunction::EmitDeclMetadata() {
3329   if (LocalDeclMap.empty()) return;
3330 
3331   llvm::LLVMContext &Context = getLLVMContext();
3332 
3333   // Find the unique metadata ID for this name.
3334   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3335 
3336   llvm::NamedMDNode *GlobalMetadata = nullptr;
3337 
3338   for (auto &I : LocalDeclMap) {
3339     const Decl *D = I.first;
3340     llvm::Value *Addr = I.second;
3341     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3342       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3343       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3344     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3345       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3346       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3347     }
3348   }
3349 }
3350 
3351 void CodeGenModule::EmitVersionIdentMetadata() {
3352   llvm::NamedMDNode *IdentMetadata =
3353     TheModule.getOrInsertNamedMetadata("llvm.ident");
3354   std::string Version = getClangFullVersion();
3355   llvm::LLVMContext &Ctx = TheModule.getContext();
3356 
3357   llvm::Value *IdentNode[] = {
3358     llvm::MDString::get(Ctx, Version)
3359   };
3360   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3361 }
3362 
3363 void CodeGenModule::EmitTargetMetadata() {
3364   // Warning, new MangledDeclNames may be appended within this loop.
3365   // We rely on MapVector insertions adding new elements to the end
3366   // of the container.
3367   // FIXME: Move this loop into the one target that needs it, and only
3368   // loop over those declarations for which we couldn't emit the target
3369   // metadata when we emitted the declaration.
3370   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3371     auto Val = *(MangledDeclNames.begin() + I);
3372     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3373     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3374     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3375   }
3376 }
3377 
3378 void CodeGenModule::EmitCoverageFile() {
3379   if (!getCodeGenOpts().CoverageFile.empty()) {
3380     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3381       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3382       llvm::LLVMContext &Ctx = TheModule.getContext();
3383       llvm::MDString *CoverageFile =
3384           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3385       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3386         llvm::MDNode *CU = CUNode->getOperand(i);
3387         llvm::Value *node[] = { CoverageFile, CU };
3388         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3389         GCov->addOperand(N);
3390       }
3391     }
3392   }
3393 }
3394 
3395 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3396   // Sema has checked that all uuid strings are of the form
3397   // "12345678-1234-1234-1234-1234567890ab".
3398   assert(Uuid.size() == 36);
3399   for (unsigned i = 0; i < 36; ++i) {
3400     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3401     else                                         assert(isHexDigit(Uuid[i]));
3402   }
3403 
3404   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3405   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3406 
3407   llvm::Constant *Field3[8];
3408   for (unsigned Idx = 0; Idx < 8; ++Idx)
3409     Field3[Idx] = llvm::ConstantInt::get(
3410         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3411 
3412   llvm::Constant *Fields[4] = {
3413     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3414     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3415     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3416     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3417   };
3418 
3419   return llvm::ConstantStruct::getAnon(Fields);
3420 }
3421 
3422 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3423                                                        bool ForEH) {
3424   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3425   // FIXME: should we even be calling this method if RTTI is disabled
3426   // and it's not for EH?
3427   if (!ForEH && !getLangOpts().RTTI)
3428     return llvm::Constant::getNullValue(Int8PtrTy);
3429 
3430   if (ForEH && Ty->isObjCObjectPointerType() &&
3431       LangOpts.ObjCRuntime.isGNUFamily())
3432     return ObjCRuntime->GetEHType(Ty);
3433 
3434   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3435 }
3436 
3437