1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGCXXABI.h" 19 #include "CGObjCRuntime.h" 20 #include "Mangle.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/RecordLayout.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/Diagnostic.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "llvm/CallingConv.h" 35 #include "llvm/Module.h" 36 #include "llvm/Intrinsics.h" 37 #include "llvm/LLVMContext.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Target/TargetData.h" 40 #include "llvm/Support/CallSite.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 46 switch (CGM.getContext().Target.getCXXABI()) { 47 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 48 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 49 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 50 } 51 52 llvm_unreachable("invalid C++ ABI kind"); 53 return *CreateItaniumCXXABI(CGM); 54 } 55 56 57 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 58 llvm::Module &M, const llvm::TargetData &TD, 59 Diagnostic &diags) 60 : BlockModule(C, M, TD, Types, *this), Context(C), 61 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 62 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 63 ABI(createCXXABI(*this)), 64 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 65 VTables(*this), Runtime(0), 66 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 67 VMContext(M.getContext()), 68 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 69 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 70 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 71 BlockObjectAssign(0), BlockObjectDispose(0){ 72 73 if (!Features.ObjC1) 74 Runtime = 0; 75 else if (!Features.NeXTRuntime) 76 Runtime = CreateGNUObjCRuntime(*this); 77 else if (Features.ObjCNonFragileABI) 78 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 79 else 80 Runtime = CreateMacObjCRuntime(*this); 81 82 // If debug info generation is enabled, create the CGDebugInfo object. 83 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 84 } 85 86 CodeGenModule::~CodeGenModule() { 87 delete Runtime; 88 delete &ABI; 89 delete DebugInfo; 90 } 91 92 void CodeGenModule::createObjCRuntime() { 93 if (!Features.NeXTRuntime) 94 Runtime = CreateGNUObjCRuntime(*this); 95 else if (Features.ObjCNonFragileABI) 96 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 97 else 98 Runtime = CreateMacObjCRuntime(*this); 99 } 100 101 void CodeGenModule::Release() { 102 EmitDeferred(); 103 EmitCXXGlobalInitFunc(); 104 EmitCXXGlobalDtorFunc(); 105 if (Runtime) 106 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 107 AddGlobalCtor(ObjCInitFunction); 108 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 109 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 110 EmitAnnotations(); 111 EmitLLVMUsed(); 112 113 SimplifyPersonality(); 114 115 if (getCodeGenOpts().EmitDeclMetadata) 116 EmitDeclMetadata(); 117 } 118 119 bool CodeGenModule::isTargetDarwin() const { 120 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 121 } 122 123 /// ErrorUnsupported - Print out an error that codegen doesn't support the 124 /// specified stmt yet. 125 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 126 bool OmitOnError) { 127 if (OmitOnError && getDiags().hasErrorOccurred()) 128 return; 129 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 130 "cannot compile this %0 yet"); 131 std::string Msg = Type; 132 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 133 << Msg << S->getSourceRange(); 134 } 135 136 /// ErrorUnsupported - Print out an error that codegen doesn't support the 137 /// specified decl yet. 138 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 139 bool OmitOnError) { 140 if (OmitOnError && getDiags().hasErrorOccurred()) 141 return; 142 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 143 "cannot compile this %0 yet"); 144 std::string Msg = Type; 145 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 146 } 147 148 LangOptions::VisibilityMode 149 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 150 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 151 if (VD->getStorageClass() == SC_PrivateExtern) 152 return LangOptions::Hidden; 153 154 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 155 switch (attr->getVisibility()) { 156 default: assert(0 && "Unknown visibility!"); 157 case VisibilityAttr::Default: 158 return LangOptions::Default; 159 case VisibilityAttr::Hidden: 160 return LangOptions::Hidden; 161 case VisibilityAttr::Protected: 162 return LangOptions::Protected; 163 } 164 } 165 166 if (getLangOptions().CPlusPlus) { 167 // Entities subject to an explicit instantiation declaration get default 168 // visibility. 169 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 170 if (Function->getTemplateSpecializationKind() 171 == TSK_ExplicitInstantiationDeclaration) 172 return LangOptions::Default; 173 } else if (const ClassTemplateSpecializationDecl *ClassSpec 174 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 175 if (ClassSpec->getSpecializationKind() 176 == TSK_ExplicitInstantiationDeclaration) 177 return LangOptions::Default; 178 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 179 if (Record->getTemplateSpecializationKind() 180 == TSK_ExplicitInstantiationDeclaration) 181 return LangOptions::Default; 182 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 183 if (Var->isStaticDataMember() && 184 (Var->getTemplateSpecializationKind() 185 == TSK_ExplicitInstantiationDeclaration)) 186 return LangOptions::Default; 187 } 188 189 // If -fvisibility-inlines-hidden was provided, then inline C++ member 190 // functions get "hidden" visibility by default. 191 if (getLangOptions().InlineVisibilityHidden) 192 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 193 if (Method->isInlined()) 194 return LangOptions::Hidden; 195 } 196 197 // If this decl is contained in a class, it should have the same visibility 198 // as the parent class. 199 if (const DeclContext *DC = D->getDeclContext()) 200 if (DC->isRecord()) 201 return getDeclVisibilityMode(cast<Decl>(DC)); 202 203 return getLangOptions().getVisibilityMode(); 204 } 205 206 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 207 const Decl *D) const { 208 // Internal definitions always have default visibility. 209 if (GV->hasLocalLinkage()) { 210 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 211 return; 212 } 213 214 switch (getDeclVisibilityMode(D)) { 215 default: assert(0 && "Unknown visibility!"); 216 case LangOptions::Default: 217 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 218 case LangOptions::Hidden: 219 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 220 case LangOptions::Protected: 221 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 222 } 223 } 224 225 /// Set the symbol visibility of type information (vtable and RTTI) 226 /// associated with the given type. 227 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 228 const CXXRecordDecl *RD, 229 bool IsForRTTI) const { 230 setGlobalVisibility(GV, RD); 231 232 if (!CodeGenOpts.HiddenWeakVTables) 233 return; 234 235 // We want to drop the visibility to hidden for weak type symbols. 236 // This isn't possible if there might be unresolved references 237 // elsewhere that rely on this symbol being visible. 238 239 // This should be kept roughly in sync with setThunkVisibility 240 // in CGVTables.cpp. 241 242 // Preconditions. 243 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 244 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 245 return; 246 247 // Don't override an explicit visibility attribute. 248 if (RD->hasAttr<VisibilityAttr>()) 249 return; 250 251 switch (RD->getTemplateSpecializationKind()) { 252 // We have to disable the optimization if this is an EI definition 253 // because there might be EI declarations in other shared objects. 254 case TSK_ExplicitInstantiationDefinition: 255 case TSK_ExplicitInstantiationDeclaration: 256 return; 257 258 // Every use of a non-template class's type information has to emit it. 259 case TSK_Undeclared: 260 break; 261 262 // In theory, implicit instantiations can ignore the possibility of 263 // an explicit instantiation declaration because there necessarily 264 // must be an EI definition somewhere with default visibility. In 265 // practice, it's possible to have an explicit instantiation for 266 // an arbitrary template class, and linkers aren't necessarily able 267 // to deal with mixed-visibility symbols. 268 case TSK_ExplicitSpecialization: 269 case TSK_ImplicitInstantiation: 270 if (!CodeGenOpts.HiddenWeakTemplateVTables) 271 return; 272 break; 273 } 274 275 // If there's a key function, there may be translation units 276 // that don't have the key function's definition. But ignore 277 // this if we're emitting RTTI under -fno-rtti. 278 if (!IsForRTTI || Features.RTTI) 279 if (Context.getKeyFunction(RD)) 280 return; 281 282 // Otherwise, drop the visibility to hidden. 283 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 284 } 285 286 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 287 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 288 289 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 290 if (!Str.empty()) 291 return Str; 292 293 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 294 IdentifierInfo *II = ND->getIdentifier(); 295 assert(II && "Attempt to mangle unnamed decl."); 296 297 Str = II->getName(); 298 return Str; 299 } 300 301 llvm::SmallString<256> Buffer; 302 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 303 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 304 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 305 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 306 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 307 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 308 else 309 getCXXABI().getMangleContext().mangleName(ND, Buffer); 310 311 // Allocate space for the mangled name. 312 size_t Length = Buffer.size(); 313 char *Name = MangledNamesAllocator.Allocate<char>(Length); 314 std::copy(Buffer.begin(), Buffer.end(), Name); 315 316 Str = llvm::StringRef(Name, Length); 317 318 return Str; 319 } 320 321 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 322 const BlockDecl *BD) { 323 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 324 } 325 326 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 327 return getModule().getNamedValue(Name); 328 } 329 330 /// AddGlobalCtor - Add a function to the list that will be called before 331 /// main() runs. 332 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 333 // FIXME: Type coercion of void()* types. 334 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 335 } 336 337 /// AddGlobalDtor - Add a function to the list that will be called 338 /// when the module is unloaded. 339 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 340 // FIXME: Type coercion of void()* types. 341 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 342 } 343 344 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 345 // Ctor function type is void()*. 346 llvm::FunctionType* CtorFTy = 347 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 348 std::vector<const llvm::Type*>(), 349 false); 350 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 351 352 // Get the type of a ctor entry, { i32, void ()* }. 353 llvm::StructType* CtorStructTy = 354 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 355 llvm::PointerType::getUnqual(CtorFTy), NULL); 356 357 // Construct the constructor and destructor arrays. 358 std::vector<llvm::Constant*> Ctors; 359 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 360 std::vector<llvm::Constant*> S; 361 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 362 I->second, false)); 363 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 364 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 365 } 366 367 if (!Ctors.empty()) { 368 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 369 new llvm::GlobalVariable(TheModule, AT, false, 370 llvm::GlobalValue::AppendingLinkage, 371 llvm::ConstantArray::get(AT, Ctors), 372 GlobalName); 373 } 374 } 375 376 void CodeGenModule::EmitAnnotations() { 377 if (Annotations.empty()) 378 return; 379 380 // Create a new global variable for the ConstantStruct in the Module. 381 llvm::Constant *Array = 382 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 383 Annotations.size()), 384 Annotations); 385 llvm::GlobalValue *gv = 386 new llvm::GlobalVariable(TheModule, Array->getType(), false, 387 llvm::GlobalValue::AppendingLinkage, Array, 388 "llvm.global.annotations"); 389 gv->setSection("llvm.metadata"); 390 } 391 392 llvm::GlobalValue::LinkageTypes 393 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 394 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 395 396 if (Linkage == GVA_Internal) 397 return llvm::Function::InternalLinkage; 398 399 if (D->hasAttr<DLLExportAttr>()) 400 return llvm::Function::DLLExportLinkage; 401 402 if (D->hasAttr<WeakAttr>()) 403 return llvm::Function::WeakAnyLinkage; 404 405 // In C99 mode, 'inline' functions are guaranteed to have a strong 406 // definition somewhere else, so we can use available_externally linkage. 407 if (Linkage == GVA_C99Inline) 408 return llvm::Function::AvailableExternallyLinkage; 409 410 // In C++, the compiler has to emit a definition in every translation unit 411 // that references the function. We should use linkonce_odr because 412 // a) if all references in this translation unit are optimized away, we 413 // don't need to codegen it. b) if the function persists, it needs to be 414 // merged with other definitions. c) C++ has the ODR, so we know the 415 // definition is dependable. 416 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 417 return llvm::Function::LinkOnceODRLinkage; 418 419 // An explicit instantiation of a template has weak linkage, since 420 // explicit instantiations can occur in multiple translation units 421 // and must all be equivalent. However, we are not allowed to 422 // throw away these explicit instantiations. 423 if (Linkage == GVA_ExplicitTemplateInstantiation) 424 return llvm::Function::WeakODRLinkage; 425 426 // Otherwise, we have strong external linkage. 427 assert(Linkage == GVA_StrongExternal); 428 return llvm::Function::ExternalLinkage; 429 } 430 431 432 /// SetFunctionDefinitionAttributes - Set attributes for a global. 433 /// 434 /// FIXME: This is currently only done for aliases and functions, but not for 435 /// variables (these details are set in EmitGlobalVarDefinition for variables). 436 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 437 llvm::GlobalValue *GV) { 438 SetCommonAttributes(D, GV); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 442 const CGFunctionInfo &Info, 443 llvm::Function *F) { 444 unsigned CallingConv; 445 AttributeListType AttributeList; 446 ConstructAttributeList(Info, D, AttributeList, CallingConv); 447 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 448 AttributeList.size())); 449 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 450 } 451 452 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 453 llvm::Function *F) { 454 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 455 F->addFnAttr(llvm::Attribute::NoUnwind); 456 457 if (D->hasAttr<AlwaysInlineAttr>()) 458 F->addFnAttr(llvm::Attribute::AlwaysInline); 459 460 if (D->hasAttr<NoInlineAttr>()) 461 F->addFnAttr(llvm::Attribute::NoInline); 462 463 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 464 F->addFnAttr(llvm::Attribute::StackProtect); 465 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 466 F->addFnAttr(llvm::Attribute::StackProtectReq); 467 468 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 469 if (alignment) 470 F->setAlignment(alignment); 471 472 // C++ ABI requires 2-byte alignment for member functions. 473 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 474 F->setAlignment(2); 475 } 476 477 void CodeGenModule::SetCommonAttributes(const Decl *D, 478 llvm::GlobalValue *GV) { 479 setGlobalVisibility(GV, D); 480 481 if (D->hasAttr<UsedAttr>()) 482 AddUsedGlobal(GV); 483 484 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 485 GV->setSection(SA->getName()); 486 487 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 488 } 489 490 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 491 llvm::Function *F, 492 const CGFunctionInfo &FI) { 493 SetLLVMFunctionAttributes(D, FI, F); 494 SetLLVMFunctionAttributesForDefinition(D, F); 495 496 F->setLinkage(llvm::Function::InternalLinkage); 497 498 SetCommonAttributes(D, F); 499 } 500 501 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 502 llvm::Function *F, 503 bool IsIncompleteFunction) { 504 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 505 506 if (!IsIncompleteFunction) 507 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 508 509 // Only a few attributes are set on declarations; these may later be 510 // overridden by a definition. 511 512 if (FD->hasAttr<DLLImportAttr>()) { 513 F->setLinkage(llvm::Function::DLLImportLinkage); 514 } else if (FD->hasAttr<WeakAttr>() || 515 FD->hasAttr<WeakImportAttr>()) { 516 // "extern_weak" is overloaded in LLVM; we probably should have 517 // separate linkage types for this. 518 F->setLinkage(llvm::Function::ExternalWeakLinkage); 519 } else { 520 F->setLinkage(llvm::Function::ExternalLinkage); 521 } 522 523 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 524 F->setSection(SA->getName()); 525 } 526 527 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 528 assert(!GV->isDeclaration() && 529 "Only globals with definition can force usage."); 530 LLVMUsed.push_back(GV); 531 } 532 533 void CodeGenModule::EmitLLVMUsed() { 534 // Don't create llvm.used if there is no need. 535 if (LLVMUsed.empty()) 536 return; 537 538 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 539 540 // Convert LLVMUsed to what ConstantArray needs. 541 std::vector<llvm::Constant*> UsedArray; 542 UsedArray.resize(LLVMUsed.size()); 543 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 544 UsedArray[i] = 545 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 546 i8PTy); 547 } 548 549 if (UsedArray.empty()) 550 return; 551 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 552 553 llvm::GlobalVariable *GV = 554 new llvm::GlobalVariable(getModule(), ATy, false, 555 llvm::GlobalValue::AppendingLinkage, 556 llvm::ConstantArray::get(ATy, UsedArray), 557 "llvm.used"); 558 559 GV->setSection("llvm.metadata"); 560 } 561 562 void CodeGenModule::EmitDeferred() { 563 // Emit code for any potentially referenced deferred decls. Since a 564 // previously unused static decl may become used during the generation of code 565 // for a static function, iterate until no changes are made. 566 567 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 568 if (!DeferredVTables.empty()) { 569 const CXXRecordDecl *RD = DeferredVTables.back(); 570 DeferredVTables.pop_back(); 571 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 572 continue; 573 } 574 575 GlobalDecl D = DeferredDeclsToEmit.back(); 576 DeferredDeclsToEmit.pop_back(); 577 578 // Check to see if we've already emitted this. This is necessary 579 // for a couple of reasons: first, decls can end up in the 580 // deferred-decls queue multiple times, and second, decls can end 581 // up with definitions in unusual ways (e.g. by an extern inline 582 // function acquiring a strong function redefinition). Just 583 // ignore these cases. 584 // 585 // TODO: That said, looking this up multiple times is very wasteful. 586 llvm::StringRef Name = getMangledName(D); 587 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 588 assert(CGRef && "Deferred decl wasn't referenced?"); 589 590 if (!CGRef->isDeclaration()) 591 continue; 592 593 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 594 // purposes an alias counts as a definition. 595 if (isa<llvm::GlobalAlias>(CGRef)) 596 continue; 597 598 // Otherwise, emit the definition and move on to the next one. 599 EmitGlobalDefinition(D); 600 } 601 } 602 603 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 604 /// annotation information for a given GlobalValue. The annotation struct is 605 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 606 /// GlobalValue being annotated. The second field is the constant string 607 /// created from the AnnotateAttr's annotation. The third field is a constant 608 /// string containing the name of the translation unit. The fourth field is 609 /// the line number in the file of the annotated value declaration. 610 /// 611 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 612 /// appears to. 613 /// 614 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 615 const AnnotateAttr *AA, 616 unsigned LineNo) { 617 llvm::Module *M = &getModule(); 618 619 // get [N x i8] constants for the annotation string, and the filename string 620 // which are the 2nd and 3rd elements of the global annotation structure. 621 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 622 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 623 AA->getAnnotation(), true); 624 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 625 M->getModuleIdentifier(), 626 true); 627 628 // Get the two global values corresponding to the ConstantArrays we just 629 // created to hold the bytes of the strings. 630 llvm::GlobalValue *annoGV = 631 new llvm::GlobalVariable(*M, anno->getType(), false, 632 llvm::GlobalValue::PrivateLinkage, anno, 633 GV->getName()); 634 // translation unit name string, emitted into the llvm.metadata section. 635 llvm::GlobalValue *unitGV = 636 new llvm::GlobalVariable(*M, unit->getType(), false, 637 llvm::GlobalValue::PrivateLinkage, unit, 638 ".str"); 639 640 // Create the ConstantStruct for the global annotation. 641 llvm::Constant *Fields[4] = { 642 llvm::ConstantExpr::getBitCast(GV, SBP), 643 llvm::ConstantExpr::getBitCast(annoGV, SBP), 644 llvm::ConstantExpr::getBitCast(unitGV, SBP), 645 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 646 }; 647 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 648 } 649 650 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 651 // Never defer when EmitAllDecls is specified. 652 if (Features.EmitAllDecls) 653 return false; 654 655 return !getContext().DeclMustBeEmitted(Global); 656 } 657 658 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 659 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 660 assert(AA && "No alias?"); 661 662 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 663 664 // See if there is already something with the target's name in the module. 665 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 666 667 llvm::Constant *Aliasee; 668 if (isa<llvm::FunctionType>(DeclTy)) 669 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 670 else 671 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 672 llvm::PointerType::getUnqual(DeclTy), 0); 673 if (!Entry) { 674 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 675 F->setLinkage(llvm::Function::ExternalWeakLinkage); 676 WeakRefReferences.insert(F); 677 } 678 679 return Aliasee; 680 } 681 682 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 683 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 684 685 // Weak references don't produce any output by themselves. 686 if (Global->hasAttr<WeakRefAttr>()) 687 return; 688 689 // If this is an alias definition (which otherwise looks like a declaration) 690 // emit it now. 691 if (Global->hasAttr<AliasAttr>()) 692 return EmitAliasDefinition(GD); 693 694 // Ignore declarations, they will be emitted on their first use. 695 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 696 if (FD->getIdentifier()) { 697 llvm::StringRef Name = FD->getName(); 698 if (Name == "_Block_object_assign") { 699 BlockObjectAssignDecl = FD; 700 } else if (Name == "_Block_object_dispose") { 701 BlockObjectDisposeDecl = FD; 702 } 703 } 704 705 // Forward declarations are emitted lazily on first use. 706 if (!FD->isThisDeclarationADefinition()) 707 return; 708 } else { 709 const VarDecl *VD = cast<VarDecl>(Global); 710 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 711 712 if (VD->getIdentifier()) { 713 llvm::StringRef Name = VD->getName(); 714 if (Name == "_NSConcreteGlobalBlock") { 715 NSConcreteGlobalBlockDecl = VD; 716 } else if (Name == "_NSConcreteStackBlock") { 717 NSConcreteStackBlockDecl = VD; 718 } 719 } 720 721 722 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 723 return; 724 } 725 726 // Defer code generation when possible if this is a static definition, inline 727 // function etc. These we only want to emit if they are used. 728 if (!MayDeferGeneration(Global)) { 729 // Emit the definition if it can't be deferred. 730 EmitGlobalDefinition(GD); 731 return; 732 } 733 734 // If we're deferring emission of a C++ variable with an 735 // initializer, remember the order in which it appeared in the file. 736 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 737 cast<VarDecl>(Global)->hasInit()) { 738 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 739 CXXGlobalInits.push_back(0); 740 } 741 742 // If the value has already been used, add it directly to the 743 // DeferredDeclsToEmit list. 744 llvm::StringRef MangledName = getMangledName(GD); 745 if (GetGlobalValue(MangledName)) 746 DeferredDeclsToEmit.push_back(GD); 747 else { 748 // Otherwise, remember that we saw a deferred decl with this name. The 749 // first use of the mangled name will cause it to move into 750 // DeferredDeclsToEmit. 751 DeferredDecls[MangledName] = GD; 752 } 753 } 754 755 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 756 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 757 758 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 759 Context.getSourceManager(), 760 "Generating code for declaration"); 761 762 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 763 // At -O0, don't generate IR for functions with available_externally 764 // linkage. 765 if (CodeGenOpts.OptimizationLevel == 0 && 766 !Function->hasAttr<AlwaysInlineAttr>() && 767 getFunctionLinkage(Function) 768 == llvm::Function::AvailableExternallyLinkage) 769 return; 770 771 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 772 if (Method->isVirtual()) 773 getVTables().EmitThunks(GD); 774 775 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 776 return EmitCXXConstructor(CD, GD.getCtorType()); 777 778 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 779 return EmitCXXDestructor(DD, GD.getDtorType()); 780 } 781 782 return EmitGlobalFunctionDefinition(GD); 783 } 784 785 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 786 return EmitGlobalVarDefinition(VD); 787 788 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 789 } 790 791 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 792 /// module, create and return an llvm Function with the specified type. If there 793 /// is something in the module with the specified name, return it potentially 794 /// bitcasted to the right type. 795 /// 796 /// If D is non-null, it specifies a decl that correspond to this. This is used 797 /// to set the attributes on the function when it is first created. 798 llvm::Constant * 799 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 800 const llvm::Type *Ty, 801 GlobalDecl D) { 802 // Lookup the entry, lazily creating it if necessary. 803 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 804 if (Entry) { 805 if (WeakRefReferences.count(Entry)) { 806 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 807 if (FD && !FD->hasAttr<WeakAttr>()) 808 Entry->setLinkage(llvm::Function::ExternalLinkage); 809 810 WeakRefReferences.erase(Entry); 811 } 812 813 if (Entry->getType()->getElementType() == Ty) 814 return Entry; 815 816 // Make sure the result is of the correct type. 817 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 818 return llvm::ConstantExpr::getBitCast(Entry, PTy); 819 } 820 821 // This function doesn't have a complete type (for example, the return 822 // type is an incomplete struct). Use a fake type instead, and make 823 // sure not to try to set attributes. 824 bool IsIncompleteFunction = false; 825 826 const llvm::FunctionType *FTy; 827 if (isa<llvm::FunctionType>(Ty)) { 828 FTy = cast<llvm::FunctionType>(Ty); 829 } else { 830 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 831 std::vector<const llvm::Type*>(), false); 832 IsIncompleteFunction = true; 833 } 834 835 llvm::Function *F = llvm::Function::Create(FTy, 836 llvm::Function::ExternalLinkage, 837 MangledName, &getModule()); 838 assert(F->getName() == MangledName && "name was uniqued!"); 839 if (D.getDecl()) 840 SetFunctionAttributes(D, F, IsIncompleteFunction); 841 842 // This is the first use or definition of a mangled name. If there is a 843 // deferred decl with this name, remember that we need to emit it at the end 844 // of the file. 845 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 846 if (DDI != DeferredDecls.end()) { 847 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 848 // list, and remove it from DeferredDecls (since we don't need it anymore). 849 DeferredDeclsToEmit.push_back(DDI->second); 850 DeferredDecls.erase(DDI); 851 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 852 // If this the first reference to a C++ inline function in a class, queue up 853 // the deferred function body for emission. These are not seen as 854 // top-level declarations. 855 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 856 DeferredDeclsToEmit.push_back(D); 857 // A called constructor which has no definition or declaration need be 858 // synthesized. 859 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 860 if (CD->isImplicit()) { 861 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 862 DeferredDeclsToEmit.push_back(D); 863 } 864 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 865 if (DD->isImplicit()) { 866 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 867 DeferredDeclsToEmit.push_back(D); 868 } 869 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 870 if (MD->isImplicit() && MD->isCopyAssignmentOperator()) { 871 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 872 DeferredDeclsToEmit.push_back(D); 873 } 874 } 875 } 876 877 // Make sure the result is of the requested type. 878 if (!IsIncompleteFunction) { 879 assert(F->getType()->getElementType() == Ty); 880 return F; 881 } 882 883 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 884 return llvm::ConstantExpr::getBitCast(F, PTy); 885 } 886 887 /// GetAddrOfFunction - Return the address of the given function. If Ty is 888 /// non-null, then this function will use the specified type if it has to 889 /// create it (this occurs when we see a definition of the function). 890 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 891 const llvm::Type *Ty) { 892 // If there was no specific requested type, just convert it now. 893 if (!Ty) 894 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 895 896 llvm::StringRef MangledName = getMangledName(GD); 897 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 898 } 899 900 /// CreateRuntimeFunction - Create a new runtime function with the specified 901 /// type and name. 902 llvm::Constant * 903 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 904 llvm::StringRef Name) { 905 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 906 } 907 908 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 909 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 910 return false; 911 if (Context.getLangOptions().CPlusPlus && 912 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 913 // FIXME: We should do something fancier here! 914 return false; 915 } 916 return true; 917 } 918 919 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 920 /// create and return an llvm GlobalVariable with the specified type. If there 921 /// is something in the module with the specified name, return it potentially 922 /// bitcasted to the right type. 923 /// 924 /// If D is non-null, it specifies a decl that correspond to this. This is used 925 /// to set the attributes on the global when it is first created. 926 llvm::Constant * 927 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 928 const llvm::PointerType *Ty, 929 const VarDecl *D) { 930 // Lookup the entry, lazily creating it if necessary. 931 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 932 if (Entry) { 933 if (WeakRefReferences.count(Entry)) { 934 if (D && !D->hasAttr<WeakAttr>()) 935 Entry->setLinkage(llvm::Function::ExternalLinkage); 936 937 WeakRefReferences.erase(Entry); 938 } 939 940 if (Entry->getType() == Ty) 941 return Entry; 942 943 // Make sure the result is of the correct type. 944 return llvm::ConstantExpr::getBitCast(Entry, Ty); 945 } 946 947 // This is the first use or definition of a mangled name. If there is a 948 // deferred decl with this name, remember that we need to emit it at the end 949 // of the file. 950 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 951 if (DDI != DeferredDecls.end()) { 952 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 953 // list, and remove it from DeferredDecls (since we don't need it anymore). 954 DeferredDeclsToEmit.push_back(DDI->second); 955 DeferredDecls.erase(DDI); 956 } 957 958 llvm::GlobalVariable *GV = 959 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 960 llvm::GlobalValue::ExternalLinkage, 961 0, MangledName, 0, 962 false, Ty->getAddressSpace()); 963 964 // Handle things which are present even on external declarations. 965 if (D) { 966 // FIXME: This code is overly simple and should be merged with other global 967 // handling. 968 GV->setConstant(DeclIsConstantGlobal(Context, D)); 969 970 // FIXME: Merge with other attribute handling code. 971 if (D->getStorageClass() == SC_PrivateExtern) 972 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 973 974 if (D->hasAttr<WeakAttr>() || 975 D->hasAttr<WeakImportAttr>()) 976 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 977 978 GV->setThreadLocal(D->isThreadSpecified()); 979 } 980 981 return GV; 982 } 983 984 985 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 986 /// given global variable. If Ty is non-null and if the global doesn't exist, 987 /// then it will be greated with the specified type instead of whatever the 988 /// normal requested type would be. 989 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 990 const llvm::Type *Ty) { 991 assert(D->hasGlobalStorage() && "Not a global variable"); 992 QualType ASTTy = D->getType(); 993 if (Ty == 0) 994 Ty = getTypes().ConvertTypeForMem(ASTTy); 995 996 const llvm::PointerType *PTy = 997 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 998 999 llvm::StringRef MangledName = getMangledName(D); 1000 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1001 } 1002 1003 /// CreateRuntimeVariable - Create a new runtime global variable with the 1004 /// specified type and name. 1005 llvm::Constant * 1006 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1007 llvm::StringRef Name) { 1008 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1009 } 1010 1011 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1012 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1013 1014 if (MayDeferGeneration(D)) { 1015 // If we have not seen a reference to this variable yet, place it 1016 // into the deferred declarations table to be emitted if needed 1017 // later. 1018 llvm::StringRef MangledName = getMangledName(D); 1019 if (!GetGlobalValue(MangledName)) { 1020 DeferredDecls[MangledName] = D; 1021 return; 1022 } 1023 } 1024 1025 // The tentative definition is the only definition. 1026 EmitGlobalVarDefinition(D); 1027 } 1028 1029 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1030 if (DefinitionRequired) 1031 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1032 } 1033 1034 llvm::GlobalVariable::LinkageTypes 1035 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1036 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1037 return llvm::GlobalVariable::InternalLinkage; 1038 1039 if (const CXXMethodDecl *KeyFunction 1040 = RD->getASTContext().getKeyFunction(RD)) { 1041 // If this class has a key function, use that to determine the linkage of 1042 // the vtable. 1043 const FunctionDecl *Def = 0; 1044 if (KeyFunction->hasBody(Def)) 1045 KeyFunction = cast<CXXMethodDecl>(Def); 1046 1047 switch (KeyFunction->getTemplateSpecializationKind()) { 1048 case TSK_Undeclared: 1049 case TSK_ExplicitSpecialization: 1050 if (KeyFunction->isInlined()) 1051 return llvm::GlobalVariable::WeakODRLinkage; 1052 1053 return llvm::GlobalVariable::ExternalLinkage; 1054 1055 case TSK_ImplicitInstantiation: 1056 case TSK_ExplicitInstantiationDefinition: 1057 return llvm::GlobalVariable::WeakODRLinkage; 1058 1059 case TSK_ExplicitInstantiationDeclaration: 1060 // FIXME: Use available_externally linkage. However, this currently 1061 // breaks LLVM's build due to undefined symbols. 1062 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1063 return llvm::GlobalVariable::WeakODRLinkage; 1064 } 1065 } 1066 1067 switch (RD->getTemplateSpecializationKind()) { 1068 case TSK_Undeclared: 1069 case TSK_ExplicitSpecialization: 1070 case TSK_ImplicitInstantiation: 1071 case TSK_ExplicitInstantiationDefinition: 1072 return llvm::GlobalVariable::WeakODRLinkage; 1073 1074 case TSK_ExplicitInstantiationDeclaration: 1075 // FIXME: Use available_externally linkage. However, this currently 1076 // breaks LLVM's build due to undefined symbols. 1077 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1078 return llvm::GlobalVariable::WeakODRLinkage; 1079 } 1080 1081 // Silence GCC warning. 1082 return llvm::GlobalVariable::WeakODRLinkage; 1083 } 1084 1085 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1086 return CharUnits::fromQuantity( 1087 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1088 } 1089 1090 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1091 llvm::Constant *Init = 0; 1092 QualType ASTTy = D->getType(); 1093 bool NonConstInit = false; 1094 1095 const Expr *InitExpr = D->getAnyInitializer(); 1096 1097 if (!InitExpr) { 1098 // This is a tentative definition; tentative definitions are 1099 // implicitly initialized with { 0 }. 1100 // 1101 // Note that tentative definitions are only emitted at the end of 1102 // a translation unit, so they should never have incomplete 1103 // type. In addition, EmitTentativeDefinition makes sure that we 1104 // never attempt to emit a tentative definition if a real one 1105 // exists. A use may still exists, however, so we still may need 1106 // to do a RAUW. 1107 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1108 Init = EmitNullConstant(D->getType()); 1109 } else { 1110 Init = EmitConstantExpr(InitExpr, D->getType()); 1111 if (!Init) { 1112 QualType T = InitExpr->getType(); 1113 if (D->getType()->isReferenceType()) 1114 T = D->getType(); 1115 1116 if (getLangOptions().CPlusPlus) { 1117 EmitCXXGlobalVarDeclInitFunc(D); 1118 Init = EmitNullConstant(T); 1119 NonConstInit = true; 1120 } else { 1121 ErrorUnsupported(D, "static initializer"); 1122 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1123 } 1124 } else { 1125 // We don't need an initializer, so remove the entry for the delayed 1126 // initializer position (just in case this entry was delayed). 1127 if (getLangOptions().CPlusPlus) 1128 DelayedCXXInitPosition.erase(D); 1129 } 1130 } 1131 1132 const llvm::Type* InitType = Init->getType(); 1133 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1134 1135 // Strip off a bitcast if we got one back. 1136 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1137 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1138 // all zero index gep. 1139 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1140 Entry = CE->getOperand(0); 1141 } 1142 1143 // Entry is now either a Function or GlobalVariable. 1144 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1145 1146 // We have a definition after a declaration with the wrong type. 1147 // We must make a new GlobalVariable* and update everything that used OldGV 1148 // (a declaration or tentative definition) with the new GlobalVariable* 1149 // (which will be a definition). 1150 // 1151 // This happens if there is a prototype for a global (e.g. 1152 // "extern int x[];") and then a definition of a different type (e.g. 1153 // "int x[10];"). This also happens when an initializer has a different type 1154 // from the type of the global (this happens with unions). 1155 if (GV == 0 || 1156 GV->getType()->getElementType() != InitType || 1157 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1158 1159 // Move the old entry aside so that we'll create a new one. 1160 Entry->setName(llvm::StringRef()); 1161 1162 // Make a new global with the correct type, this is now guaranteed to work. 1163 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1164 1165 // Replace all uses of the old global with the new global 1166 llvm::Constant *NewPtrForOldDecl = 1167 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1168 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1169 1170 // Erase the old global, since it is no longer used. 1171 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1172 } 1173 1174 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1175 SourceManager &SM = Context.getSourceManager(); 1176 AddAnnotation(EmitAnnotateAttr(GV, AA, 1177 SM.getInstantiationLineNumber(D->getLocation()))); 1178 } 1179 1180 GV->setInitializer(Init); 1181 1182 // If it is safe to mark the global 'constant', do so now. 1183 GV->setConstant(false); 1184 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1185 GV->setConstant(true); 1186 1187 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1188 1189 // Set the llvm linkage type as appropriate. 1190 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1191 if (Linkage == GVA_Internal) 1192 GV->setLinkage(llvm::Function::InternalLinkage); 1193 else if (D->hasAttr<DLLImportAttr>()) 1194 GV->setLinkage(llvm::Function::DLLImportLinkage); 1195 else if (D->hasAttr<DLLExportAttr>()) 1196 GV->setLinkage(llvm::Function::DLLExportLinkage); 1197 else if (D->hasAttr<WeakAttr>()) { 1198 if (GV->isConstant()) 1199 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1200 else 1201 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1202 } else if (Linkage == GVA_TemplateInstantiation || 1203 Linkage == GVA_ExplicitTemplateInstantiation) 1204 // FIXME: It seems like we can provide more specific linkage here 1205 // (LinkOnceODR, WeakODR). 1206 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1207 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1208 !D->hasExternalStorage() && !D->getInit() && 1209 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1210 // Thread local vars aren't considered common linkage. 1211 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1212 // common vars aren't constant even if declared const. 1213 GV->setConstant(false); 1214 } else 1215 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1216 1217 SetCommonAttributes(D, GV); 1218 1219 // Emit global variable debug information. 1220 if (CGDebugInfo *DI = getDebugInfo()) { 1221 DI->setLocation(D->getLocation()); 1222 DI->EmitGlobalVariable(GV, D); 1223 } 1224 } 1225 1226 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1227 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1228 /// existing call uses of the old function in the module, this adjusts them to 1229 /// call the new function directly. 1230 /// 1231 /// This is not just a cleanup: the always_inline pass requires direct calls to 1232 /// functions to be able to inline them. If there is a bitcast in the way, it 1233 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1234 /// run at -O0. 1235 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1236 llvm::Function *NewFn) { 1237 // If we're redefining a global as a function, don't transform it. 1238 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1239 if (OldFn == 0) return; 1240 1241 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1242 llvm::SmallVector<llvm::Value*, 4> ArgList; 1243 1244 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1245 UI != E; ) { 1246 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1247 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1248 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1249 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1250 llvm::CallSite CS(CI); 1251 if (!CI || !CS.isCallee(I)) continue; 1252 1253 // If the return types don't match exactly, and if the call isn't dead, then 1254 // we can't transform this call. 1255 if (CI->getType() != NewRetTy && !CI->use_empty()) 1256 continue; 1257 1258 // If the function was passed too few arguments, don't transform. If extra 1259 // arguments were passed, we silently drop them. If any of the types 1260 // mismatch, we don't transform. 1261 unsigned ArgNo = 0; 1262 bool DontTransform = false; 1263 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1264 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1265 if (CS.arg_size() == ArgNo || 1266 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1267 DontTransform = true; 1268 break; 1269 } 1270 } 1271 if (DontTransform) 1272 continue; 1273 1274 // Okay, we can transform this. Create the new call instruction and copy 1275 // over the required information. 1276 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1277 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1278 ArgList.end(), "", CI); 1279 ArgList.clear(); 1280 if (!NewCall->getType()->isVoidTy()) 1281 NewCall->takeName(CI); 1282 NewCall->setAttributes(CI->getAttributes()); 1283 NewCall->setCallingConv(CI->getCallingConv()); 1284 1285 // Finally, remove the old call, replacing any uses with the new one. 1286 if (!CI->use_empty()) 1287 CI->replaceAllUsesWith(NewCall); 1288 1289 // Copy debug location attached to CI. 1290 if (!CI->getDebugLoc().isUnknown()) 1291 NewCall->setDebugLoc(CI->getDebugLoc()); 1292 CI->eraseFromParent(); 1293 } 1294 } 1295 1296 1297 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1298 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1299 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1300 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1301 // Get or create the prototype for the function. 1302 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1303 1304 // Strip off a bitcast if we got one back. 1305 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1306 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1307 Entry = CE->getOperand(0); 1308 } 1309 1310 1311 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1312 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1313 1314 // If the types mismatch then we have to rewrite the definition. 1315 assert(OldFn->isDeclaration() && 1316 "Shouldn't replace non-declaration"); 1317 1318 // F is the Function* for the one with the wrong type, we must make a new 1319 // Function* and update everything that used F (a declaration) with the new 1320 // Function* (which will be a definition). 1321 // 1322 // This happens if there is a prototype for a function 1323 // (e.g. "int f()") and then a definition of a different type 1324 // (e.g. "int f(int x)"). Move the old function aside so that it 1325 // doesn't interfere with GetAddrOfFunction. 1326 OldFn->setName(llvm::StringRef()); 1327 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1328 1329 // If this is an implementation of a function without a prototype, try to 1330 // replace any existing uses of the function (which may be calls) with uses 1331 // of the new function 1332 if (D->getType()->isFunctionNoProtoType()) { 1333 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1334 OldFn->removeDeadConstantUsers(); 1335 } 1336 1337 // Replace uses of F with the Function we will endow with a body. 1338 if (!Entry->use_empty()) { 1339 llvm::Constant *NewPtrForOldDecl = 1340 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1341 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1342 } 1343 1344 // Ok, delete the old function now, which is dead. 1345 OldFn->eraseFromParent(); 1346 1347 Entry = NewFn; 1348 } 1349 1350 llvm::Function *Fn = cast<llvm::Function>(Entry); 1351 setFunctionLinkage(D, Fn); 1352 1353 CodeGenFunction(*this).GenerateCode(D, Fn); 1354 1355 SetFunctionDefinitionAttributes(D, Fn); 1356 SetLLVMFunctionAttributesForDefinition(D, Fn); 1357 1358 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1359 AddGlobalCtor(Fn, CA->getPriority()); 1360 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1361 AddGlobalDtor(Fn, DA->getPriority()); 1362 } 1363 1364 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1365 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1366 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1367 assert(AA && "Not an alias?"); 1368 1369 llvm::StringRef MangledName = getMangledName(GD); 1370 1371 // If there is a definition in the module, then it wins over the alias. 1372 // This is dubious, but allow it to be safe. Just ignore the alias. 1373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1374 if (Entry && !Entry->isDeclaration()) 1375 return; 1376 1377 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1378 1379 // Create a reference to the named value. This ensures that it is emitted 1380 // if a deferred decl. 1381 llvm::Constant *Aliasee; 1382 if (isa<llvm::FunctionType>(DeclTy)) 1383 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1384 else 1385 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1386 llvm::PointerType::getUnqual(DeclTy), 0); 1387 1388 // Create the new alias itself, but don't set a name yet. 1389 llvm::GlobalValue *GA = 1390 new llvm::GlobalAlias(Aliasee->getType(), 1391 llvm::Function::ExternalLinkage, 1392 "", Aliasee, &getModule()); 1393 1394 if (Entry) { 1395 assert(Entry->isDeclaration()); 1396 1397 // If there is a declaration in the module, then we had an extern followed 1398 // by the alias, as in: 1399 // extern int test6(); 1400 // ... 1401 // int test6() __attribute__((alias("test7"))); 1402 // 1403 // Remove it and replace uses of it with the alias. 1404 GA->takeName(Entry); 1405 1406 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1407 Entry->getType())); 1408 Entry->eraseFromParent(); 1409 } else { 1410 GA->setName(MangledName); 1411 } 1412 1413 // Set attributes which are particular to an alias; this is a 1414 // specialization of the attributes which may be set on a global 1415 // variable/function. 1416 if (D->hasAttr<DLLExportAttr>()) { 1417 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1418 // The dllexport attribute is ignored for undefined symbols. 1419 if (FD->hasBody()) 1420 GA->setLinkage(llvm::Function::DLLExportLinkage); 1421 } else { 1422 GA->setLinkage(llvm::Function::DLLExportLinkage); 1423 } 1424 } else if (D->hasAttr<WeakAttr>() || 1425 D->hasAttr<WeakRefAttr>() || 1426 D->hasAttr<WeakImportAttr>()) { 1427 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1428 } 1429 1430 SetCommonAttributes(D, GA); 1431 } 1432 1433 /// getBuiltinLibFunction - Given a builtin id for a function like 1434 /// "__builtin_fabsf", return a Function* for "fabsf". 1435 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1436 unsigned BuiltinID) { 1437 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1438 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1439 "isn't a lib fn"); 1440 1441 // Get the name, skip over the __builtin_ prefix (if necessary). 1442 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1443 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1444 Name += 10; 1445 1446 const llvm::FunctionType *Ty = 1447 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1448 1449 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1450 } 1451 1452 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1453 unsigned NumTys) { 1454 return llvm::Intrinsic::getDeclaration(&getModule(), 1455 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1456 } 1457 1458 1459 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1460 const llvm::Type *SrcType, 1461 const llvm::Type *SizeType) { 1462 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1463 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1464 } 1465 1466 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1467 const llvm::Type *SrcType, 1468 const llvm::Type *SizeType) { 1469 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1470 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1471 } 1472 1473 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1474 const llvm::Type *SizeType) { 1475 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1476 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1477 } 1478 1479 static llvm::StringMapEntry<llvm::Constant*> & 1480 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1481 const StringLiteral *Literal, 1482 bool TargetIsLSB, 1483 bool &IsUTF16, 1484 unsigned &StringLength) { 1485 llvm::StringRef String = Literal->getString(); 1486 unsigned NumBytes = String.size(); 1487 1488 // Check for simple case. 1489 if (!Literal->containsNonAsciiOrNull()) { 1490 StringLength = NumBytes; 1491 return Map.GetOrCreateValue(String); 1492 } 1493 1494 // Otherwise, convert the UTF8 literals into a byte string. 1495 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1496 const UTF8 *FromPtr = (UTF8 *)String.data(); 1497 UTF16 *ToPtr = &ToBuf[0]; 1498 1499 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1500 &ToPtr, ToPtr + NumBytes, 1501 strictConversion); 1502 1503 // ConvertUTF8toUTF16 returns the length in ToPtr. 1504 StringLength = ToPtr - &ToBuf[0]; 1505 1506 // Render the UTF-16 string into a byte array and convert to the target byte 1507 // order. 1508 // 1509 // FIXME: This isn't something we should need to do here. 1510 llvm::SmallString<128> AsBytes; 1511 AsBytes.reserve(StringLength * 2); 1512 for (unsigned i = 0; i != StringLength; ++i) { 1513 unsigned short Val = ToBuf[i]; 1514 if (TargetIsLSB) { 1515 AsBytes.push_back(Val & 0xFF); 1516 AsBytes.push_back(Val >> 8); 1517 } else { 1518 AsBytes.push_back(Val >> 8); 1519 AsBytes.push_back(Val & 0xFF); 1520 } 1521 } 1522 // Append one extra null character, the second is automatically added by our 1523 // caller. 1524 AsBytes.push_back(0); 1525 1526 IsUTF16 = true; 1527 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1528 } 1529 1530 llvm::Constant * 1531 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1532 unsigned StringLength = 0; 1533 bool isUTF16 = false; 1534 llvm::StringMapEntry<llvm::Constant*> &Entry = 1535 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1536 getTargetData().isLittleEndian(), 1537 isUTF16, StringLength); 1538 1539 if (llvm::Constant *C = Entry.getValue()) 1540 return C; 1541 1542 llvm::Constant *Zero = 1543 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1544 llvm::Constant *Zeros[] = { Zero, Zero }; 1545 1546 // If we don't already have it, get __CFConstantStringClassReference. 1547 if (!CFConstantStringClassRef) { 1548 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1549 Ty = llvm::ArrayType::get(Ty, 0); 1550 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1551 "__CFConstantStringClassReference"); 1552 // Decay array -> ptr 1553 CFConstantStringClassRef = 1554 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1555 } 1556 1557 QualType CFTy = getContext().getCFConstantStringType(); 1558 1559 const llvm::StructType *STy = 1560 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1561 1562 std::vector<llvm::Constant*> Fields(4); 1563 1564 // Class pointer. 1565 Fields[0] = CFConstantStringClassRef; 1566 1567 // Flags. 1568 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1569 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1570 llvm::ConstantInt::get(Ty, 0x07C8); 1571 1572 // String pointer. 1573 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1574 1575 llvm::GlobalValue::LinkageTypes Linkage; 1576 bool isConstant; 1577 if (isUTF16) { 1578 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1579 Linkage = llvm::GlobalValue::InternalLinkage; 1580 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1581 // does make plain ascii ones writable. 1582 isConstant = true; 1583 } else { 1584 Linkage = llvm::GlobalValue::PrivateLinkage; 1585 isConstant = !Features.WritableStrings; 1586 } 1587 1588 llvm::GlobalVariable *GV = 1589 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1590 ".str"); 1591 if (isUTF16) { 1592 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1593 GV->setAlignment(Align.getQuantity()); 1594 } 1595 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1596 1597 // String length. 1598 Ty = getTypes().ConvertType(getContext().LongTy); 1599 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1600 1601 // The struct. 1602 C = llvm::ConstantStruct::get(STy, Fields); 1603 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1604 llvm::GlobalVariable::PrivateLinkage, C, 1605 "_unnamed_cfstring_"); 1606 if (const char *Sect = getContext().Target.getCFStringSection()) 1607 GV->setSection(Sect); 1608 Entry.setValue(GV); 1609 1610 return GV; 1611 } 1612 1613 llvm::Constant * 1614 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1615 unsigned StringLength = 0; 1616 bool isUTF16 = false; 1617 llvm::StringMapEntry<llvm::Constant*> &Entry = 1618 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1619 getTargetData().isLittleEndian(), 1620 isUTF16, StringLength); 1621 1622 if (llvm::Constant *C = Entry.getValue()) 1623 return C; 1624 1625 llvm::Constant *Zero = 1626 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1627 llvm::Constant *Zeros[] = { Zero, Zero }; 1628 1629 // If we don't already have it, get _NSConstantStringClassReference. 1630 if (!NSConstantStringClassRef) { 1631 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1632 Ty = llvm::ArrayType::get(Ty, 0); 1633 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1634 Features.ObjCNonFragileABI ? 1635 "OBJC_CLASS_$_NSConstantString" : 1636 "_NSConstantStringClassReference"); 1637 // Decay array -> ptr 1638 NSConstantStringClassRef = 1639 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1640 } 1641 1642 QualType NSTy = getContext().getNSConstantStringType(); 1643 1644 const llvm::StructType *STy = 1645 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1646 1647 std::vector<llvm::Constant*> Fields(3); 1648 1649 // Class pointer. 1650 Fields[0] = NSConstantStringClassRef; 1651 1652 // String pointer. 1653 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1654 1655 llvm::GlobalValue::LinkageTypes Linkage; 1656 bool isConstant; 1657 if (isUTF16) { 1658 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1659 Linkage = llvm::GlobalValue::InternalLinkage; 1660 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1661 // does make plain ascii ones writable. 1662 isConstant = true; 1663 } else { 1664 Linkage = llvm::GlobalValue::PrivateLinkage; 1665 isConstant = !Features.WritableStrings; 1666 } 1667 1668 llvm::GlobalVariable *GV = 1669 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1670 ".str"); 1671 if (isUTF16) { 1672 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1673 GV->setAlignment(Align.getQuantity()); 1674 } 1675 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1676 1677 // String length. 1678 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1679 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1680 1681 // The struct. 1682 C = llvm::ConstantStruct::get(STy, Fields); 1683 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1684 llvm::GlobalVariable::PrivateLinkage, C, 1685 "_unnamed_nsstring_"); 1686 // FIXME. Fix section. 1687 if (const char *Sect = 1688 Features.ObjCNonFragileABI 1689 ? getContext().Target.getNSStringNonFragileABISection() 1690 : getContext().Target.getNSStringSection()) 1691 GV->setSection(Sect); 1692 Entry.setValue(GV); 1693 1694 return GV; 1695 } 1696 1697 /// GetStringForStringLiteral - Return the appropriate bytes for a 1698 /// string literal, properly padded to match the literal type. 1699 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1700 const ConstantArrayType *CAT = 1701 getContext().getAsConstantArrayType(E->getType()); 1702 assert(CAT && "String isn't pointer or array!"); 1703 1704 // Resize the string to the right size. 1705 uint64_t RealLen = CAT->getSize().getZExtValue(); 1706 1707 if (E->isWide()) 1708 RealLen *= getContext().Target.getWCharWidth()/8; 1709 1710 std::string Str = E->getString().str(); 1711 Str.resize(RealLen, '\0'); 1712 1713 return Str; 1714 } 1715 1716 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1717 /// constant array for the given string literal. 1718 llvm::Constant * 1719 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1720 // FIXME: This can be more efficient. 1721 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1722 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1723 if (S->isWide()) { 1724 llvm::Type *DestTy = 1725 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1726 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1727 } 1728 return C; 1729 } 1730 1731 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1732 /// array for the given ObjCEncodeExpr node. 1733 llvm::Constant * 1734 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1735 std::string Str; 1736 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1737 1738 return GetAddrOfConstantCString(Str); 1739 } 1740 1741 1742 /// GenerateWritableString -- Creates storage for a string literal. 1743 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1744 bool constant, 1745 CodeGenModule &CGM, 1746 const char *GlobalName) { 1747 // Create Constant for this string literal. Don't add a '\0'. 1748 llvm::Constant *C = 1749 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1750 1751 // Create a global variable for this string 1752 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1753 llvm::GlobalValue::PrivateLinkage, 1754 C, GlobalName); 1755 } 1756 1757 /// GetAddrOfConstantString - Returns a pointer to a character array 1758 /// containing the literal. This contents are exactly that of the 1759 /// given string, i.e. it will not be null terminated automatically; 1760 /// see GetAddrOfConstantCString. Note that whether the result is 1761 /// actually a pointer to an LLVM constant depends on 1762 /// Feature.WriteableStrings. 1763 /// 1764 /// The result has pointer to array type. 1765 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1766 const char *GlobalName) { 1767 bool IsConstant = !Features.WritableStrings; 1768 1769 // Get the default prefix if a name wasn't specified. 1770 if (!GlobalName) 1771 GlobalName = ".str"; 1772 1773 // Don't share any string literals if strings aren't constant. 1774 if (!IsConstant) 1775 return GenerateStringLiteral(str, false, *this, GlobalName); 1776 1777 llvm::StringMapEntry<llvm::Constant *> &Entry = 1778 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1779 1780 if (Entry.getValue()) 1781 return Entry.getValue(); 1782 1783 // Create a global variable for this. 1784 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1785 Entry.setValue(C); 1786 return C; 1787 } 1788 1789 /// GetAddrOfConstantCString - Returns a pointer to a character 1790 /// array containing the literal and a terminating '\-' 1791 /// character. The result has pointer to array type. 1792 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1793 const char *GlobalName){ 1794 return GetAddrOfConstantString(str + '\0', GlobalName); 1795 } 1796 1797 /// EmitObjCPropertyImplementations - Emit information for synthesized 1798 /// properties for an implementation. 1799 void CodeGenModule::EmitObjCPropertyImplementations(const 1800 ObjCImplementationDecl *D) { 1801 for (ObjCImplementationDecl::propimpl_iterator 1802 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1803 ObjCPropertyImplDecl *PID = *i; 1804 1805 // Dynamic is just for type-checking. 1806 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1807 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1808 1809 // Determine which methods need to be implemented, some may have 1810 // been overridden. Note that ::isSynthesized is not the method 1811 // we want, that just indicates if the decl came from a 1812 // property. What we want to know is if the method is defined in 1813 // this implementation. 1814 if (!D->getInstanceMethod(PD->getGetterName())) 1815 CodeGenFunction(*this).GenerateObjCGetter( 1816 const_cast<ObjCImplementationDecl *>(D), PID); 1817 if (!PD->isReadOnly() && 1818 !D->getInstanceMethod(PD->getSetterName())) 1819 CodeGenFunction(*this).GenerateObjCSetter( 1820 const_cast<ObjCImplementationDecl *>(D), PID); 1821 } 1822 } 1823 } 1824 1825 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1826 /// for an implementation. 1827 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1828 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1829 return; 1830 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1831 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1832 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1833 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1834 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1835 D->getLocation(), 1836 D->getLocation(), cxxSelector, 1837 getContext().VoidTy, 0, 1838 DC, true, false, true, false, 1839 ObjCMethodDecl::Required); 1840 D->addInstanceMethod(DTORMethod); 1841 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1842 1843 II = &getContext().Idents.get(".cxx_construct"); 1844 cxxSelector = getContext().Selectors.getSelector(0, &II); 1845 // The constructor returns 'self'. 1846 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1847 D->getLocation(), 1848 D->getLocation(), cxxSelector, 1849 getContext().getObjCIdType(), 0, 1850 DC, true, false, true, false, 1851 ObjCMethodDecl::Required); 1852 D->addInstanceMethod(CTORMethod); 1853 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1854 1855 1856 } 1857 1858 /// EmitNamespace - Emit all declarations in a namespace. 1859 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1860 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1861 I != E; ++I) 1862 EmitTopLevelDecl(*I); 1863 } 1864 1865 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1866 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1867 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1868 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1869 ErrorUnsupported(LSD, "linkage spec"); 1870 return; 1871 } 1872 1873 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1874 I != E; ++I) 1875 EmitTopLevelDecl(*I); 1876 } 1877 1878 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1879 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1880 // If an error has occurred, stop code generation, but continue 1881 // parsing and semantic analysis (to ensure all warnings and errors 1882 // are emitted). 1883 if (Diags.hasErrorOccurred()) 1884 return; 1885 1886 // Ignore dependent declarations. 1887 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1888 return; 1889 1890 switch (D->getKind()) { 1891 case Decl::CXXConversion: 1892 case Decl::CXXMethod: 1893 case Decl::Function: 1894 // Skip function templates 1895 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1896 return; 1897 1898 EmitGlobal(cast<FunctionDecl>(D)); 1899 break; 1900 1901 case Decl::Var: 1902 EmitGlobal(cast<VarDecl>(D)); 1903 break; 1904 1905 // C++ Decls 1906 case Decl::Namespace: 1907 EmitNamespace(cast<NamespaceDecl>(D)); 1908 break; 1909 // No code generation needed. 1910 case Decl::UsingShadow: 1911 case Decl::Using: 1912 case Decl::UsingDirective: 1913 case Decl::ClassTemplate: 1914 case Decl::FunctionTemplate: 1915 case Decl::NamespaceAlias: 1916 break; 1917 case Decl::CXXConstructor: 1918 // Skip function templates 1919 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1920 return; 1921 1922 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1923 break; 1924 case Decl::CXXDestructor: 1925 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1926 break; 1927 1928 case Decl::StaticAssert: 1929 // Nothing to do. 1930 break; 1931 1932 // Objective-C Decls 1933 1934 // Forward declarations, no (immediate) code generation. 1935 case Decl::ObjCClass: 1936 case Decl::ObjCForwardProtocol: 1937 case Decl::ObjCInterface: 1938 break; 1939 1940 case Decl::ObjCCategory: { 1941 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1942 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1943 Context.ResetObjCLayout(CD->getClassInterface()); 1944 break; 1945 } 1946 1947 1948 case Decl::ObjCProtocol: 1949 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1950 break; 1951 1952 case Decl::ObjCCategoryImpl: 1953 // Categories have properties but don't support synthesize so we 1954 // can ignore them here. 1955 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1956 break; 1957 1958 case Decl::ObjCImplementation: { 1959 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1960 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1961 Context.ResetObjCLayout(OMD->getClassInterface()); 1962 EmitObjCPropertyImplementations(OMD); 1963 EmitObjCIvarInitializations(OMD); 1964 Runtime->GenerateClass(OMD); 1965 break; 1966 } 1967 case Decl::ObjCMethod: { 1968 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1969 // If this is not a prototype, emit the body. 1970 if (OMD->getBody()) 1971 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1972 break; 1973 } 1974 case Decl::ObjCCompatibleAlias: 1975 // compatibility-alias is a directive and has no code gen. 1976 break; 1977 1978 case Decl::LinkageSpec: 1979 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1980 break; 1981 1982 case Decl::FileScopeAsm: { 1983 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1984 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1985 1986 const std::string &S = getModule().getModuleInlineAsm(); 1987 if (S.empty()) 1988 getModule().setModuleInlineAsm(AsmString); 1989 else 1990 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1991 break; 1992 } 1993 1994 default: 1995 // Make sure we handled everything we should, every other kind is a 1996 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1997 // function. Need to recode Decl::Kind to do that easily. 1998 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1999 } 2000 } 2001 2002 /// Turns the given pointer into a constant. 2003 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2004 const void *Ptr) { 2005 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2006 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2007 return llvm::ConstantInt::get(i64, PtrInt); 2008 } 2009 2010 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2011 llvm::NamedMDNode *&GlobalMetadata, 2012 GlobalDecl D, 2013 llvm::GlobalValue *Addr) { 2014 if (!GlobalMetadata) 2015 GlobalMetadata = 2016 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2017 2018 // TODO: should we report variant information for ctors/dtors? 2019 llvm::Value *Ops[] = { 2020 Addr, 2021 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2022 }; 2023 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2024 } 2025 2026 /// Emits metadata nodes associating all the global values in the 2027 /// current module with the Decls they came from. This is useful for 2028 /// projects using IR gen as a subroutine. 2029 /// 2030 /// Since there's currently no way to associate an MDNode directly 2031 /// with an llvm::GlobalValue, we create a global named metadata 2032 /// with the name 'clang.global.decl.ptrs'. 2033 void CodeGenModule::EmitDeclMetadata() { 2034 llvm::NamedMDNode *GlobalMetadata = 0; 2035 2036 // StaticLocalDeclMap 2037 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2038 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2039 I != E; ++I) { 2040 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2041 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2042 } 2043 } 2044 2045 /// Emits metadata nodes for all the local variables in the current 2046 /// function. 2047 void CodeGenFunction::EmitDeclMetadata() { 2048 if (LocalDeclMap.empty()) return; 2049 2050 llvm::LLVMContext &Context = getLLVMContext(); 2051 2052 // Find the unique metadata ID for this name. 2053 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2054 2055 llvm::NamedMDNode *GlobalMetadata = 0; 2056 2057 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2058 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2059 const Decl *D = I->first; 2060 llvm::Value *Addr = I->second; 2061 2062 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2063 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2064 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2065 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2066 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2067 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2068 } 2069 } 2070 } 2071 2072 ///@name Custom Runtime Function Interfaces 2073 ///@{ 2074 // 2075 // FIXME: These can be eliminated once we can have clients just get the required 2076 // AST nodes from the builtin tables. 2077 2078 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2079 if (BlockObjectDispose) 2080 return BlockObjectDispose; 2081 2082 // If we saw an explicit decl, use that. 2083 if (BlockObjectDisposeDecl) { 2084 return BlockObjectDispose = GetAddrOfFunction( 2085 BlockObjectDisposeDecl, 2086 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2087 } 2088 2089 // Otherwise construct the function by hand. 2090 const llvm::FunctionType *FTy; 2091 std::vector<const llvm::Type*> ArgTys; 2092 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2093 ArgTys.push_back(PtrToInt8Ty); 2094 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2095 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2096 return BlockObjectDispose = 2097 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2098 } 2099 2100 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2101 if (BlockObjectAssign) 2102 return BlockObjectAssign; 2103 2104 // If we saw an explicit decl, use that. 2105 if (BlockObjectAssignDecl) { 2106 return BlockObjectAssign = GetAddrOfFunction( 2107 BlockObjectAssignDecl, 2108 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2109 } 2110 2111 // Otherwise construct the function by hand. 2112 const llvm::FunctionType *FTy; 2113 std::vector<const llvm::Type*> ArgTys; 2114 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2115 ArgTys.push_back(PtrToInt8Ty); 2116 ArgTys.push_back(PtrToInt8Ty); 2117 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2118 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2119 return BlockObjectAssign = 2120 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2121 } 2122 2123 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2124 if (NSConcreteGlobalBlock) 2125 return NSConcreteGlobalBlock; 2126 2127 // If we saw an explicit decl, use that. 2128 if (NSConcreteGlobalBlockDecl) { 2129 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2130 NSConcreteGlobalBlockDecl, 2131 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2132 } 2133 2134 // Otherwise construct the variable by hand. 2135 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2136 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2137 } 2138 2139 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2140 if (NSConcreteStackBlock) 2141 return NSConcreteStackBlock; 2142 2143 // If we saw an explicit decl, use that. 2144 if (NSConcreteStackBlockDecl) { 2145 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2146 NSConcreteStackBlockDecl, 2147 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2148 } 2149 2150 // Otherwise construct the variable by hand. 2151 return NSConcreteStackBlock = CreateRuntimeVariable( 2152 PtrToInt8Ty, "_NSConcreteStackBlock"); 2153 } 2154 2155 ///@} 2156