xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ec3bec0c7abd07bb9b372008e6870c44b1f5b318)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGCXXABI.h"
19 #include "CGObjCRuntime.h"
20 #include "Mangle.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/RecordLayout.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/Diagnostic.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "llvm/CallingConv.h"
35 #include "llvm/Module.h"
36 #include "llvm/Intrinsics.h"
37 #include "llvm/LLVMContext.h"
38 #include "llvm/ADT/Triple.h"
39 #include "llvm/Target/TargetData.h"
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
46   switch (CGM.getContext().Target.getCXXABI()) {
47   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
48   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
49   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
50   }
51 
52   llvm_unreachable("invalid C++ ABI kind");
53   return *CreateItaniumCXXABI(CGM);
54 }
55 
56 
57 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
58                              llvm::Module &M, const llvm::TargetData &TD,
59                              Diagnostic &diags)
60   : BlockModule(C, M, TD, Types, *this), Context(C),
61     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
62     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
63     ABI(createCXXABI(*this)),
64     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
65     VTables(*this), Runtime(0),
66     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
67     VMContext(M.getContext()),
68     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
69     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
70     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
71     BlockObjectAssign(0), BlockObjectDispose(0){
72 
73   if (!Features.ObjC1)
74     Runtime = 0;
75   else if (!Features.NeXTRuntime)
76     Runtime = CreateGNUObjCRuntime(*this);
77   else if (Features.ObjCNonFragileABI)
78     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
79   else
80     Runtime = CreateMacObjCRuntime(*this);
81 
82   // If debug info generation is enabled, create the CGDebugInfo object.
83   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
84 }
85 
86 CodeGenModule::~CodeGenModule() {
87   delete Runtime;
88   delete &ABI;
89   delete DebugInfo;
90 }
91 
92 void CodeGenModule::createObjCRuntime() {
93   if (!Features.NeXTRuntime)
94     Runtime = CreateGNUObjCRuntime(*this);
95   else if (Features.ObjCNonFragileABI)
96     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
97   else
98     Runtime = CreateMacObjCRuntime(*this);
99 }
100 
101 void CodeGenModule::Release() {
102   EmitDeferred();
103   EmitCXXGlobalInitFunc();
104   EmitCXXGlobalDtorFunc();
105   if (Runtime)
106     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
107       AddGlobalCtor(ObjCInitFunction);
108   EmitCtorList(GlobalCtors, "llvm.global_ctors");
109   EmitCtorList(GlobalDtors, "llvm.global_dtors");
110   EmitAnnotations();
111   EmitLLVMUsed();
112 
113   SimplifyPersonality();
114 
115   if (getCodeGenOpts().EmitDeclMetadata)
116     EmitDeclMetadata();
117 }
118 
119 bool CodeGenModule::isTargetDarwin() const {
120   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
121 }
122 
123 /// ErrorUnsupported - Print out an error that codegen doesn't support the
124 /// specified stmt yet.
125 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
126                                      bool OmitOnError) {
127   if (OmitOnError && getDiags().hasErrorOccurred())
128     return;
129   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
130                                                "cannot compile this %0 yet");
131   std::string Msg = Type;
132   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
133     << Msg << S->getSourceRange();
134 }
135 
136 /// ErrorUnsupported - Print out an error that codegen doesn't support the
137 /// specified decl yet.
138 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
139                                      bool OmitOnError) {
140   if (OmitOnError && getDiags().hasErrorOccurred())
141     return;
142   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
143                                                "cannot compile this %0 yet");
144   std::string Msg = Type;
145   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
146 }
147 
148 LangOptions::VisibilityMode
149 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
150   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
151     if (VD->getStorageClass() == SC_PrivateExtern)
152       return LangOptions::Hidden;
153 
154   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
155     switch (attr->getVisibility()) {
156     default: assert(0 && "Unknown visibility!");
157     case VisibilityAttr::Default:
158       return LangOptions::Default;
159     case VisibilityAttr::Hidden:
160       return LangOptions::Hidden;
161     case VisibilityAttr::Protected:
162       return LangOptions::Protected;
163     }
164   }
165 
166   if (getLangOptions().CPlusPlus) {
167     // Entities subject to an explicit instantiation declaration get default
168     // visibility.
169     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
170       if (Function->getTemplateSpecializationKind()
171                                         == TSK_ExplicitInstantiationDeclaration)
172         return LangOptions::Default;
173     } else if (const ClassTemplateSpecializationDecl *ClassSpec
174                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
175       if (ClassSpec->getSpecializationKind()
176                                         == TSK_ExplicitInstantiationDeclaration)
177         return LangOptions::Default;
178     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
179       if (Record->getTemplateSpecializationKind()
180                                         == TSK_ExplicitInstantiationDeclaration)
181         return LangOptions::Default;
182     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
183       if (Var->isStaticDataMember() &&
184           (Var->getTemplateSpecializationKind()
185                                       == TSK_ExplicitInstantiationDeclaration))
186         return LangOptions::Default;
187     }
188 
189     // If -fvisibility-inlines-hidden was provided, then inline C++ member
190     // functions get "hidden" visibility by default.
191     if (getLangOptions().InlineVisibilityHidden)
192       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
193         if (Method->isInlined())
194           return LangOptions::Hidden;
195   }
196 
197   // If this decl is contained in a class, it should have the same visibility
198   // as the parent class.
199   if (const DeclContext *DC = D->getDeclContext())
200     if (DC->isRecord())
201       return getDeclVisibilityMode(cast<Decl>(DC));
202 
203   return getLangOptions().getVisibilityMode();
204 }
205 
206 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
207                                         const Decl *D) const {
208   // Internal definitions always have default visibility.
209   if (GV->hasLocalLinkage()) {
210     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
211     return;
212   }
213 
214   switch (getDeclVisibilityMode(D)) {
215   default: assert(0 && "Unknown visibility!");
216   case LangOptions::Default:
217     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
218   case LangOptions::Hidden:
219     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
220   case LangOptions::Protected:
221     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
222   }
223 }
224 
225 /// Set the symbol visibility of type information (vtable and RTTI)
226 /// associated with the given type.
227 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
228                                       const CXXRecordDecl *RD,
229                                       bool IsForRTTI) const {
230   setGlobalVisibility(GV, RD);
231 
232   if (!CodeGenOpts.HiddenWeakVTables)
233     return;
234 
235   // We want to drop the visibility to hidden for weak type symbols.
236   // This isn't possible if there might be unresolved references
237   // elsewhere that rely on this symbol being visible.
238 
239   // This should be kept roughly in sync with setThunkVisibility
240   // in CGVTables.cpp.
241 
242   // Preconditions.
243   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
244       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
245     return;
246 
247   // Don't override an explicit visibility attribute.
248   if (RD->hasAttr<VisibilityAttr>())
249     return;
250 
251   switch (RD->getTemplateSpecializationKind()) {
252   // We have to disable the optimization if this is an EI definition
253   // because there might be EI declarations in other shared objects.
254   case TSK_ExplicitInstantiationDefinition:
255   case TSK_ExplicitInstantiationDeclaration:
256     return;
257 
258   // Every use of a non-template class's type information has to emit it.
259   case TSK_Undeclared:
260     break;
261 
262   // In theory, implicit instantiations can ignore the possibility of
263   // an explicit instantiation declaration because there necessarily
264   // must be an EI definition somewhere with default visibility.  In
265   // practice, it's possible to have an explicit instantiation for
266   // an arbitrary template class, and linkers aren't necessarily able
267   // to deal with mixed-visibility symbols.
268   case TSK_ExplicitSpecialization:
269   case TSK_ImplicitInstantiation:
270     if (!CodeGenOpts.HiddenWeakTemplateVTables)
271       return;
272     break;
273   }
274 
275   // If there's a key function, there may be translation units
276   // that don't have the key function's definition.  But ignore
277   // this if we're emitting RTTI under -fno-rtti.
278   if (!IsForRTTI || Features.RTTI)
279     if (Context.getKeyFunction(RD))
280       return;
281 
282   // Otherwise, drop the visibility to hidden.
283   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
284 }
285 
286 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
287   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
288 
289   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
290   if (!Str.empty())
291     return Str;
292 
293   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
294     IdentifierInfo *II = ND->getIdentifier();
295     assert(II && "Attempt to mangle unnamed decl.");
296 
297     Str = II->getName();
298     return Str;
299   }
300 
301   llvm::SmallString<256> Buffer;
302   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
303     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
304   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
305     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
306   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
307     getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
308   else
309     getCXXABI().getMangleContext().mangleName(ND, Buffer);
310 
311   // Allocate space for the mangled name.
312   size_t Length = Buffer.size();
313   char *Name = MangledNamesAllocator.Allocate<char>(Length);
314   std::copy(Buffer.begin(), Buffer.end(), Name);
315 
316   Str = llvm::StringRef(Name, Length);
317 
318   return Str;
319 }
320 
321 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322                                    const BlockDecl *BD) {
323   getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
324 }
325 
326 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
327   return getModule().getNamedValue(Name);
328 }
329 
330 /// AddGlobalCtor - Add a function to the list that will be called before
331 /// main() runs.
332 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
333   // FIXME: Type coercion of void()* types.
334   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
335 }
336 
337 /// AddGlobalDtor - Add a function to the list that will be called
338 /// when the module is unloaded.
339 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
340   // FIXME: Type coercion of void()* types.
341   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
342 }
343 
344 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
345   // Ctor function type is void()*.
346   llvm::FunctionType* CtorFTy =
347     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
348                             std::vector<const llvm::Type*>(),
349                             false);
350   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
351 
352   // Get the type of a ctor entry, { i32, void ()* }.
353   llvm::StructType* CtorStructTy =
354     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
355                           llvm::PointerType::getUnqual(CtorFTy), NULL);
356 
357   // Construct the constructor and destructor arrays.
358   std::vector<llvm::Constant*> Ctors;
359   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
360     std::vector<llvm::Constant*> S;
361     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
362                 I->second, false));
363     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
364     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
365   }
366 
367   if (!Ctors.empty()) {
368     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
369     new llvm::GlobalVariable(TheModule, AT, false,
370                              llvm::GlobalValue::AppendingLinkage,
371                              llvm::ConstantArray::get(AT, Ctors),
372                              GlobalName);
373   }
374 }
375 
376 void CodeGenModule::EmitAnnotations() {
377   if (Annotations.empty())
378     return;
379 
380   // Create a new global variable for the ConstantStruct in the Module.
381   llvm::Constant *Array =
382   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
383                                                 Annotations.size()),
384                            Annotations);
385   llvm::GlobalValue *gv =
386   new llvm::GlobalVariable(TheModule, Array->getType(), false,
387                            llvm::GlobalValue::AppendingLinkage, Array,
388                            "llvm.global.annotations");
389   gv->setSection("llvm.metadata");
390 }
391 
392 llvm::GlobalValue::LinkageTypes
393 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
394   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
395 
396   if (Linkage == GVA_Internal)
397     return llvm::Function::InternalLinkage;
398 
399   if (D->hasAttr<DLLExportAttr>())
400     return llvm::Function::DLLExportLinkage;
401 
402   if (D->hasAttr<WeakAttr>())
403     return llvm::Function::WeakAnyLinkage;
404 
405   // In C99 mode, 'inline' functions are guaranteed to have a strong
406   // definition somewhere else, so we can use available_externally linkage.
407   if (Linkage == GVA_C99Inline)
408     return llvm::Function::AvailableExternallyLinkage;
409 
410   // In C++, the compiler has to emit a definition in every translation unit
411   // that references the function.  We should use linkonce_odr because
412   // a) if all references in this translation unit are optimized away, we
413   // don't need to codegen it.  b) if the function persists, it needs to be
414   // merged with other definitions. c) C++ has the ODR, so we know the
415   // definition is dependable.
416   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
417     return llvm::Function::LinkOnceODRLinkage;
418 
419   // An explicit instantiation of a template has weak linkage, since
420   // explicit instantiations can occur in multiple translation units
421   // and must all be equivalent. However, we are not allowed to
422   // throw away these explicit instantiations.
423   if (Linkage == GVA_ExplicitTemplateInstantiation)
424     return llvm::Function::WeakODRLinkage;
425 
426   // Otherwise, we have strong external linkage.
427   assert(Linkage == GVA_StrongExternal);
428   return llvm::Function::ExternalLinkage;
429 }
430 
431 
432 /// SetFunctionDefinitionAttributes - Set attributes for a global.
433 ///
434 /// FIXME: This is currently only done for aliases and functions, but not for
435 /// variables (these details are set in EmitGlobalVarDefinition for variables).
436 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
437                                                     llvm::GlobalValue *GV) {
438   SetCommonAttributes(D, GV);
439 }
440 
441 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
442                                               const CGFunctionInfo &Info,
443                                               llvm::Function *F) {
444   unsigned CallingConv;
445   AttributeListType AttributeList;
446   ConstructAttributeList(Info, D, AttributeList, CallingConv);
447   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
448                                           AttributeList.size()));
449   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
450 }
451 
452 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
453                                                            llvm::Function *F) {
454   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
455     F->addFnAttr(llvm::Attribute::NoUnwind);
456 
457   if (D->hasAttr<AlwaysInlineAttr>())
458     F->addFnAttr(llvm::Attribute::AlwaysInline);
459 
460   if (D->hasAttr<NoInlineAttr>())
461     F->addFnAttr(llvm::Attribute::NoInline);
462 
463   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
464     F->addFnAttr(llvm::Attribute::StackProtect);
465   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
466     F->addFnAttr(llvm::Attribute::StackProtectReq);
467 
468   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
469   if (alignment)
470     F->setAlignment(alignment);
471 
472   // C++ ABI requires 2-byte alignment for member functions.
473   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
474     F->setAlignment(2);
475 }
476 
477 void CodeGenModule::SetCommonAttributes(const Decl *D,
478                                         llvm::GlobalValue *GV) {
479   setGlobalVisibility(GV, D);
480 
481   if (D->hasAttr<UsedAttr>())
482     AddUsedGlobal(GV);
483 
484   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
485     GV->setSection(SA->getName());
486 
487   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
488 }
489 
490 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
491                                                   llvm::Function *F,
492                                                   const CGFunctionInfo &FI) {
493   SetLLVMFunctionAttributes(D, FI, F);
494   SetLLVMFunctionAttributesForDefinition(D, F);
495 
496   F->setLinkage(llvm::Function::InternalLinkage);
497 
498   SetCommonAttributes(D, F);
499 }
500 
501 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
502                                           llvm::Function *F,
503                                           bool IsIncompleteFunction) {
504   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
505 
506   if (!IsIncompleteFunction)
507     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
508 
509   // Only a few attributes are set on declarations; these may later be
510   // overridden by a definition.
511 
512   if (FD->hasAttr<DLLImportAttr>()) {
513     F->setLinkage(llvm::Function::DLLImportLinkage);
514   } else if (FD->hasAttr<WeakAttr>() ||
515              FD->hasAttr<WeakImportAttr>()) {
516     // "extern_weak" is overloaded in LLVM; we probably should have
517     // separate linkage types for this.
518     F->setLinkage(llvm::Function::ExternalWeakLinkage);
519   } else {
520     F->setLinkage(llvm::Function::ExternalLinkage);
521   }
522 
523   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
524     F->setSection(SA->getName());
525 }
526 
527 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
528   assert(!GV->isDeclaration() &&
529          "Only globals with definition can force usage.");
530   LLVMUsed.push_back(GV);
531 }
532 
533 void CodeGenModule::EmitLLVMUsed() {
534   // Don't create llvm.used if there is no need.
535   if (LLVMUsed.empty())
536     return;
537 
538   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
539 
540   // Convert LLVMUsed to what ConstantArray needs.
541   std::vector<llvm::Constant*> UsedArray;
542   UsedArray.resize(LLVMUsed.size());
543   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
544     UsedArray[i] =
545      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
546                                       i8PTy);
547   }
548 
549   if (UsedArray.empty())
550     return;
551   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
552 
553   llvm::GlobalVariable *GV =
554     new llvm::GlobalVariable(getModule(), ATy, false,
555                              llvm::GlobalValue::AppendingLinkage,
556                              llvm::ConstantArray::get(ATy, UsedArray),
557                              "llvm.used");
558 
559   GV->setSection("llvm.metadata");
560 }
561 
562 void CodeGenModule::EmitDeferred() {
563   // Emit code for any potentially referenced deferred decls.  Since a
564   // previously unused static decl may become used during the generation of code
565   // for a static function, iterate until no  changes are made.
566 
567   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
568     if (!DeferredVTables.empty()) {
569       const CXXRecordDecl *RD = DeferredVTables.back();
570       DeferredVTables.pop_back();
571       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
572       continue;
573     }
574 
575     GlobalDecl D = DeferredDeclsToEmit.back();
576     DeferredDeclsToEmit.pop_back();
577 
578     // Check to see if we've already emitted this.  This is necessary
579     // for a couple of reasons: first, decls can end up in the
580     // deferred-decls queue multiple times, and second, decls can end
581     // up with definitions in unusual ways (e.g. by an extern inline
582     // function acquiring a strong function redefinition).  Just
583     // ignore these cases.
584     //
585     // TODO: That said, looking this up multiple times is very wasteful.
586     llvm::StringRef Name = getMangledName(D);
587     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
588     assert(CGRef && "Deferred decl wasn't referenced?");
589 
590     if (!CGRef->isDeclaration())
591       continue;
592 
593     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
594     // purposes an alias counts as a definition.
595     if (isa<llvm::GlobalAlias>(CGRef))
596       continue;
597 
598     // Otherwise, emit the definition and move on to the next one.
599     EmitGlobalDefinition(D);
600   }
601 }
602 
603 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
604 /// annotation information for a given GlobalValue.  The annotation struct is
605 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
606 /// GlobalValue being annotated.  The second field is the constant string
607 /// created from the AnnotateAttr's annotation.  The third field is a constant
608 /// string containing the name of the translation unit.  The fourth field is
609 /// the line number in the file of the annotated value declaration.
610 ///
611 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
612 ///        appears to.
613 ///
614 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
615                                                 const AnnotateAttr *AA,
616                                                 unsigned LineNo) {
617   llvm::Module *M = &getModule();
618 
619   // get [N x i8] constants for the annotation string, and the filename string
620   // which are the 2nd and 3rd elements of the global annotation structure.
621   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
622   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
623                                                   AA->getAnnotation(), true);
624   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
625                                                   M->getModuleIdentifier(),
626                                                   true);
627 
628   // Get the two global values corresponding to the ConstantArrays we just
629   // created to hold the bytes of the strings.
630   llvm::GlobalValue *annoGV =
631     new llvm::GlobalVariable(*M, anno->getType(), false,
632                              llvm::GlobalValue::PrivateLinkage, anno,
633                              GV->getName());
634   // translation unit name string, emitted into the llvm.metadata section.
635   llvm::GlobalValue *unitGV =
636     new llvm::GlobalVariable(*M, unit->getType(), false,
637                              llvm::GlobalValue::PrivateLinkage, unit,
638                              ".str");
639 
640   // Create the ConstantStruct for the global annotation.
641   llvm::Constant *Fields[4] = {
642     llvm::ConstantExpr::getBitCast(GV, SBP),
643     llvm::ConstantExpr::getBitCast(annoGV, SBP),
644     llvm::ConstantExpr::getBitCast(unitGV, SBP),
645     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
646   };
647   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
648 }
649 
650 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
651   // Never defer when EmitAllDecls is specified.
652   if (Features.EmitAllDecls)
653     return false;
654 
655   return !getContext().DeclMustBeEmitted(Global);
656 }
657 
658 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
659   const AliasAttr *AA = VD->getAttr<AliasAttr>();
660   assert(AA && "No alias?");
661 
662   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
663 
664   // See if there is already something with the target's name in the module.
665   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
666 
667   llvm::Constant *Aliasee;
668   if (isa<llvm::FunctionType>(DeclTy))
669     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
670   else
671     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
672                                     llvm::PointerType::getUnqual(DeclTy), 0);
673   if (!Entry) {
674     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
675     F->setLinkage(llvm::Function::ExternalWeakLinkage);
676     WeakRefReferences.insert(F);
677   }
678 
679   return Aliasee;
680 }
681 
682 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
683   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
684 
685   // Weak references don't produce any output by themselves.
686   if (Global->hasAttr<WeakRefAttr>())
687     return;
688 
689   // If this is an alias definition (which otherwise looks like a declaration)
690   // emit it now.
691   if (Global->hasAttr<AliasAttr>())
692     return EmitAliasDefinition(GD);
693 
694   // Ignore declarations, they will be emitted on their first use.
695   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
696     if (FD->getIdentifier()) {
697       llvm::StringRef Name = FD->getName();
698       if (Name == "_Block_object_assign") {
699         BlockObjectAssignDecl = FD;
700       } else if (Name == "_Block_object_dispose") {
701         BlockObjectDisposeDecl = FD;
702       }
703     }
704 
705     // Forward declarations are emitted lazily on first use.
706     if (!FD->isThisDeclarationADefinition())
707       return;
708   } else {
709     const VarDecl *VD = cast<VarDecl>(Global);
710     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
711 
712     if (VD->getIdentifier()) {
713       llvm::StringRef Name = VD->getName();
714       if (Name == "_NSConcreteGlobalBlock") {
715         NSConcreteGlobalBlockDecl = VD;
716       } else if (Name == "_NSConcreteStackBlock") {
717         NSConcreteStackBlockDecl = VD;
718       }
719     }
720 
721 
722     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
723       return;
724   }
725 
726   // Defer code generation when possible if this is a static definition, inline
727   // function etc.  These we only want to emit if they are used.
728   if (!MayDeferGeneration(Global)) {
729     // Emit the definition if it can't be deferred.
730     EmitGlobalDefinition(GD);
731     return;
732   }
733 
734   // If we're deferring emission of a C++ variable with an
735   // initializer, remember the order in which it appeared in the file.
736   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
737       cast<VarDecl>(Global)->hasInit()) {
738     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
739     CXXGlobalInits.push_back(0);
740   }
741 
742   // If the value has already been used, add it directly to the
743   // DeferredDeclsToEmit list.
744   llvm::StringRef MangledName = getMangledName(GD);
745   if (GetGlobalValue(MangledName))
746     DeferredDeclsToEmit.push_back(GD);
747   else {
748     // Otherwise, remember that we saw a deferred decl with this name.  The
749     // first use of the mangled name will cause it to move into
750     // DeferredDeclsToEmit.
751     DeferredDecls[MangledName] = GD;
752   }
753 }
754 
755 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
756   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
757 
758   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
759                                  Context.getSourceManager(),
760                                  "Generating code for declaration");
761 
762   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
763     // At -O0, don't generate IR for functions with available_externally
764     // linkage.
765     if (CodeGenOpts.OptimizationLevel == 0 &&
766         !Function->hasAttr<AlwaysInlineAttr>() &&
767         getFunctionLinkage(Function)
768                                   == llvm::Function::AvailableExternallyLinkage)
769       return;
770 
771     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
772       if (Method->isVirtual())
773         getVTables().EmitThunks(GD);
774 
775       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
776         return EmitCXXConstructor(CD, GD.getCtorType());
777 
778       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
779         return EmitCXXDestructor(DD, GD.getDtorType());
780     }
781 
782     return EmitGlobalFunctionDefinition(GD);
783   }
784 
785   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
786     return EmitGlobalVarDefinition(VD);
787 
788   assert(0 && "Invalid argument to EmitGlobalDefinition()");
789 }
790 
791 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
792 /// module, create and return an llvm Function with the specified type. If there
793 /// is something in the module with the specified name, return it potentially
794 /// bitcasted to the right type.
795 ///
796 /// If D is non-null, it specifies a decl that correspond to this.  This is used
797 /// to set the attributes on the function when it is first created.
798 llvm::Constant *
799 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
800                                        const llvm::Type *Ty,
801                                        GlobalDecl D) {
802   // Lookup the entry, lazily creating it if necessary.
803   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
804   if (Entry) {
805     if (WeakRefReferences.count(Entry)) {
806       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
807       if (FD && !FD->hasAttr<WeakAttr>())
808         Entry->setLinkage(llvm::Function::ExternalLinkage);
809 
810       WeakRefReferences.erase(Entry);
811     }
812 
813     if (Entry->getType()->getElementType() == Ty)
814       return Entry;
815 
816     // Make sure the result is of the correct type.
817     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
818     return llvm::ConstantExpr::getBitCast(Entry, PTy);
819   }
820 
821   // This function doesn't have a complete type (for example, the return
822   // type is an incomplete struct). Use a fake type instead, and make
823   // sure not to try to set attributes.
824   bool IsIncompleteFunction = false;
825 
826   const llvm::FunctionType *FTy;
827   if (isa<llvm::FunctionType>(Ty)) {
828     FTy = cast<llvm::FunctionType>(Ty);
829   } else {
830     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
831                                   std::vector<const llvm::Type*>(), false);
832     IsIncompleteFunction = true;
833   }
834 
835   llvm::Function *F = llvm::Function::Create(FTy,
836                                              llvm::Function::ExternalLinkage,
837                                              MangledName, &getModule());
838   assert(F->getName() == MangledName && "name was uniqued!");
839   if (D.getDecl())
840     SetFunctionAttributes(D, F, IsIncompleteFunction);
841 
842   // This is the first use or definition of a mangled name.  If there is a
843   // deferred decl with this name, remember that we need to emit it at the end
844   // of the file.
845   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
846   if (DDI != DeferredDecls.end()) {
847     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
848     // list, and remove it from DeferredDecls (since we don't need it anymore).
849     DeferredDeclsToEmit.push_back(DDI->second);
850     DeferredDecls.erase(DDI);
851   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
852     // If this the first reference to a C++ inline function in a class, queue up
853     // the deferred function body for emission.  These are not seen as
854     // top-level declarations.
855     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
856       DeferredDeclsToEmit.push_back(D);
857     // A called constructor which has no definition or declaration need be
858     // synthesized.
859     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
860       if (CD->isImplicit()) {
861         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
862         DeferredDeclsToEmit.push_back(D);
863       }
864     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
865       if (DD->isImplicit()) {
866         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
867         DeferredDeclsToEmit.push_back(D);
868       }
869     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
870       if (MD->isImplicit() && MD->isCopyAssignmentOperator()) {
871         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
872         DeferredDeclsToEmit.push_back(D);
873       }
874     }
875   }
876 
877   // Make sure the result is of the requested type.
878   if (!IsIncompleteFunction) {
879     assert(F->getType()->getElementType() == Ty);
880     return F;
881   }
882 
883   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
884   return llvm::ConstantExpr::getBitCast(F, PTy);
885 }
886 
887 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
888 /// non-null, then this function will use the specified type if it has to
889 /// create it (this occurs when we see a definition of the function).
890 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
891                                                  const llvm::Type *Ty) {
892   // If there was no specific requested type, just convert it now.
893   if (!Ty)
894     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
895 
896   llvm::StringRef MangledName = getMangledName(GD);
897   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
898 }
899 
900 /// CreateRuntimeFunction - Create a new runtime function with the specified
901 /// type and name.
902 llvm::Constant *
903 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
904                                      llvm::StringRef Name) {
905   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
906 }
907 
908 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
909   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
910     return false;
911   if (Context.getLangOptions().CPlusPlus &&
912       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
913     // FIXME: We should do something fancier here!
914     return false;
915   }
916   return true;
917 }
918 
919 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
920 /// create and return an llvm GlobalVariable with the specified type.  If there
921 /// is something in the module with the specified name, return it potentially
922 /// bitcasted to the right type.
923 ///
924 /// If D is non-null, it specifies a decl that correspond to this.  This is used
925 /// to set the attributes on the global when it is first created.
926 llvm::Constant *
927 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
928                                      const llvm::PointerType *Ty,
929                                      const VarDecl *D) {
930   // Lookup the entry, lazily creating it if necessary.
931   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
932   if (Entry) {
933     if (WeakRefReferences.count(Entry)) {
934       if (D && !D->hasAttr<WeakAttr>())
935         Entry->setLinkage(llvm::Function::ExternalLinkage);
936 
937       WeakRefReferences.erase(Entry);
938     }
939 
940     if (Entry->getType() == Ty)
941       return Entry;
942 
943     // Make sure the result is of the correct type.
944     return llvm::ConstantExpr::getBitCast(Entry, Ty);
945   }
946 
947   // This is the first use or definition of a mangled name.  If there is a
948   // deferred decl with this name, remember that we need to emit it at the end
949   // of the file.
950   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
951   if (DDI != DeferredDecls.end()) {
952     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
953     // list, and remove it from DeferredDecls (since we don't need it anymore).
954     DeferredDeclsToEmit.push_back(DDI->second);
955     DeferredDecls.erase(DDI);
956   }
957 
958   llvm::GlobalVariable *GV =
959     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
960                              llvm::GlobalValue::ExternalLinkage,
961                              0, MangledName, 0,
962                              false, Ty->getAddressSpace());
963 
964   // Handle things which are present even on external declarations.
965   if (D) {
966     // FIXME: This code is overly simple and should be merged with other global
967     // handling.
968     GV->setConstant(DeclIsConstantGlobal(Context, D));
969 
970     // FIXME: Merge with other attribute handling code.
971     if (D->getStorageClass() == SC_PrivateExtern)
972       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
973 
974     if (D->hasAttr<WeakAttr>() ||
975         D->hasAttr<WeakImportAttr>())
976       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
977 
978     GV->setThreadLocal(D->isThreadSpecified());
979   }
980 
981   return GV;
982 }
983 
984 
985 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
986 /// given global variable.  If Ty is non-null and if the global doesn't exist,
987 /// then it will be greated with the specified type instead of whatever the
988 /// normal requested type would be.
989 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
990                                                   const llvm::Type *Ty) {
991   assert(D->hasGlobalStorage() && "Not a global variable");
992   QualType ASTTy = D->getType();
993   if (Ty == 0)
994     Ty = getTypes().ConvertTypeForMem(ASTTy);
995 
996   const llvm::PointerType *PTy =
997     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
998 
999   llvm::StringRef MangledName = getMangledName(D);
1000   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1001 }
1002 
1003 /// CreateRuntimeVariable - Create a new runtime global variable with the
1004 /// specified type and name.
1005 llvm::Constant *
1006 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1007                                      llvm::StringRef Name) {
1008   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1009 }
1010 
1011 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1012   assert(!D->getInit() && "Cannot emit definite definitions here!");
1013 
1014   if (MayDeferGeneration(D)) {
1015     // If we have not seen a reference to this variable yet, place it
1016     // into the deferred declarations table to be emitted if needed
1017     // later.
1018     llvm::StringRef MangledName = getMangledName(D);
1019     if (!GetGlobalValue(MangledName)) {
1020       DeferredDecls[MangledName] = D;
1021       return;
1022     }
1023   }
1024 
1025   // The tentative definition is the only definition.
1026   EmitGlobalVarDefinition(D);
1027 }
1028 
1029 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1030   if (DefinitionRequired)
1031     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1032 }
1033 
1034 llvm::GlobalVariable::LinkageTypes
1035 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1036   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1037     return llvm::GlobalVariable::InternalLinkage;
1038 
1039   if (const CXXMethodDecl *KeyFunction
1040                                     = RD->getASTContext().getKeyFunction(RD)) {
1041     // If this class has a key function, use that to determine the linkage of
1042     // the vtable.
1043     const FunctionDecl *Def = 0;
1044     if (KeyFunction->hasBody(Def))
1045       KeyFunction = cast<CXXMethodDecl>(Def);
1046 
1047     switch (KeyFunction->getTemplateSpecializationKind()) {
1048       case TSK_Undeclared:
1049       case TSK_ExplicitSpecialization:
1050         if (KeyFunction->isInlined())
1051           return llvm::GlobalVariable::WeakODRLinkage;
1052 
1053         return llvm::GlobalVariable::ExternalLinkage;
1054 
1055       case TSK_ImplicitInstantiation:
1056       case TSK_ExplicitInstantiationDefinition:
1057         return llvm::GlobalVariable::WeakODRLinkage;
1058 
1059       case TSK_ExplicitInstantiationDeclaration:
1060         // FIXME: Use available_externally linkage. However, this currently
1061         // breaks LLVM's build due to undefined symbols.
1062         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1063         return llvm::GlobalVariable::WeakODRLinkage;
1064     }
1065   }
1066 
1067   switch (RD->getTemplateSpecializationKind()) {
1068   case TSK_Undeclared:
1069   case TSK_ExplicitSpecialization:
1070   case TSK_ImplicitInstantiation:
1071   case TSK_ExplicitInstantiationDefinition:
1072     return llvm::GlobalVariable::WeakODRLinkage;
1073 
1074   case TSK_ExplicitInstantiationDeclaration:
1075     // FIXME: Use available_externally linkage. However, this currently
1076     // breaks LLVM's build due to undefined symbols.
1077     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1078     return llvm::GlobalVariable::WeakODRLinkage;
1079   }
1080 
1081   // Silence GCC warning.
1082   return llvm::GlobalVariable::WeakODRLinkage;
1083 }
1084 
1085 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1086     return CharUnits::fromQuantity(
1087       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1088 }
1089 
1090 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1091   llvm::Constant *Init = 0;
1092   QualType ASTTy = D->getType();
1093   bool NonConstInit = false;
1094 
1095   const Expr *InitExpr = D->getAnyInitializer();
1096 
1097   if (!InitExpr) {
1098     // This is a tentative definition; tentative definitions are
1099     // implicitly initialized with { 0 }.
1100     //
1101     // Note that tentative definitions are only emitted at the end of
1102     // a translation unit, so they should never have incomplete
1103     // type. In addition, EmitTentativeDefinition makes sure that we
1104     // never attempt to emit a tentative definition if a real one
1105     // exists. A use may still exists, however, so we still may need
1106     // to do a RAUW.
1107     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1108     Init = EmitNullConstant(D->getType());
1109   } else {
1110     Init = EmitConstantExpr(InitExpr, D->getType());
1111     if (!Init) {
1112       QualType T = InitExpr->getType();
1113       if (D->getType()->isReferenceType())
1114         T = D->getType();
1115 
1116       if (getLangOptions().CPlusPlus) {
1117         EmitCXXGlobalVarDeclInitFunc(D);
1118         Init = EmitNullConstant(T);
1119         NonConstInit = true;
1120       } else {
1121         ErrorUnsupported(D, "static initializer");
1122         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1123       }
1124     } else {
1125       // We don't need an initializer, so remove the entry for the delayed
1126       // initializer position (just in case this entry was delayed).
1127       if (getLangOptions().CPlusPlus)
1128         DelayedCXXInitPosition.erase(D);
1129     }
1130   }
1131 
1132   const llvm::Type* InitType = Init->getType();
1133   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1134 
1135   // Strip off a bitcast if we got one back.
1136   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1137     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1138            // all zero index gep.
1139            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1140     Entry = CE->getOperand(0);
1141   }
1142 
1143   // Entry is now either a Function or GlobalVariable.
1144   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1145 
1146   // We have a definition after a declaration with the wrong type.
1147   // We must make a new GlobalVariable* and update everything that used OldGV
1148   // (a declaration or tentative definition) with the new GlobalVariable*
1149   // (which will be a definition).
1150   //
1151   // This happens if there is a prototype for a global (e.g.
1152   // "extern int x[];") and then a definition of a different type (e.g.
1153   // "int x[10];"). This also happens when an initializer has a different type
1154   // from the type of the global (this happens with unions).
1155   if (GV == 0 ||
1156       GV->getType()->getElementType() != InitType ||
1157       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1158 
1159     // Move the old entry aside so that we'll create a new one.
1160     Entry->setName(llvm::StringRef());
1161 
1162     // Make a new global with the correct type, this is now guaranteed to work.
1163     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1164 
1165     // Replace all uses of the old global with the new global
1166     llvm::Constant *NewPtrForOldDecl =
1167         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1168     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1169 
1170     // Erase the old global, since it is no longer used.
1171     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1172   }
1173 
1174   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1175     SourceManager &SM = Context.getSourceManager();
1176     AddAnnotation(EmitAnnotateAttr(GV, AA,
1177                               SM.getInstantiationLineNumber(D->getLocation())));
1178   }
1179 
1180   GV->setInitializer(Init);
1181 
1182   // If it is safe to mark the global 'constant', do so now.
1183   GV->setConstant(false);
1184   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1185     GV->setConstant(true);
1186 
1187   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1188 
1189   // Set the llvm linkage type as appropriate.
1190   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1191   if (Linkage == GVA_Internal)
1192     GV->setLinkage(llvm::Function::InternalLinkage);
1193   else if (D->hasAttr<DLLImportAttr>())
1194     GV->setLinkage(llvm::Function::DLLImportLinkage);
1195   else if (D->hasAttr<DLLExportAttr>())
1196     GV->setLinkage(llvm::Function::DLLExportLinkage);
1197   else if (D->hasAttr<WeakAttr>()) {
1198     if (GV->isConstant())
1199       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1200     else
1201       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1202   } else if (Linkage == GVA_TemplateInstantiation ||
1203              Linkage == GVA_ExplicitTemplateInstantiation)
1204     // FIXME: It seems like we can provide more specific linkage here
1205     // (LinkOnceODR, WeakODR).
1206     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1207   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1208            !D->hasExternalStorage() && !D->getInit() &&
1209            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1210     // Thread local vars aren't considered common linkage.
1211     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1212     // common vars aren't constant even if declared const.
1213     GV->setConstant(false);
1214   } else
1215     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1216 
1217   SetCommonAttributes(D, GV);
1218 
1219   // Emit global variable debug information.
1220   if (CGDebugInfo *DI = getDebugInfo()) {
1221     DI->setLocation(D->getLocation());
1222     DI->EmitGlobalVariable(GV, D);
1223   }
1224 }
1225 
1226 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1227 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1228 /// existing call uses of the old function in the module, this adjusts them to
1229 /// call the new function directly.
1230 ///
1231 /// This is not just a cleanup: the always_inline pass requires direct calls to
1232 /// functions to be able to inline them.  If there is a bitcast in the way, it
1233 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1234 /// run at -O0.
1235 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1236                                                       llvm::Function *NewFn) {
1237   // If we're redefining a global as a function, don't transform it.
1238   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1239   if (OldFn == 0) return;
1240 
1241   const llvm::Type *NewRetTy = NewFn->getReturnType();
1242   llvm::SmallVector<llvm::Value*, 4> ArgList;
1243 
1244   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1245        UI != E; ) {
1246     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1247     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1248     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1249     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1250     llvm::CallSite CS(CI);
1251     if (!CI || !CS.isCallee(I)) continue;
1252 
1253     // If the return types don't match exactly, and if the call isn't dead, then
1254     // we can't transform this call.
1255     if (CI->getType() != NewRetTy && !CI->use_empty())
1256       continue;
1257 
1258     // If the function was passed too few arguments, don't transform.  If extra
1259     // arguments were passed, we silently drop them.  If any of the types
1260     // mismatch, we don't transform.
1261     unsigned ArgNo = 0;
1262     bool DontTransform = false;
1263     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1264          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1265       if (CS.arg_size() == ArgNo ||
1266           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1267         DontTransform = true;
1268         break;
1269       }
1270     }
1271     if (DontTransform)
1272       continue;
1273 
1274     // Okay, we can transform this.  Create the new call instruction and copy
1275     // over the required information.
1276     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1277     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1278                                                      ArgList.end(), "", CI);
1279     ArgList.clear();
1280     if (!NewCall->getType()->isVoidTy())
1281       NewCall->takeName(CI);
1282     NewCall->setAttributes(CI->getAttributes());
1283     NewCall->setCallingConv(CI->getCallingConv());
1284 
1285     // Finally, remove the old call, replacing any uses with the new one.
1286     if (!CI->use_empty())
1287       CI->replaceAllUsesWith(NewCall);
1288 
1289     // Copy debug location attached to CI.
1290     if (!CI->getDebugLoc().isUnknown())
1291       NewCall->setDebugLoc(CI->getDebugLoc());
1292     CI->eraseFromParent();
1293   }
1294 }
1295 
1296 
1297 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1298   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1299   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1300   getCXXABI().getMangleContext().mangleInitDiscriminator();
1301   // Get or create the prototype for the function.
1302   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1303 
1304   // Strip off a bitcast if we got one back.
1305   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1306     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1307     Entry = CE->getOperand(0);
1308   }
1309 
1310 
1311   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1312     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1313 
1314     // If the types mismatch then we have to rewrite the definition.
1315     assert(OldFn->isDeclaration() &&
1316            "Shouldn't replace non-declaration");
1317 
1318     // F is the Function* for the one with the wrong type, we must make a new
1319     // Function* and update everything that used F (a declaration) with the new
1320     // Function* (which will be a definition).
1321     //
1322     // This happens if there is a prototype for a function
1323     // (e.g. "int f()") and then a definition of a different type
1324     // (e.g. "int f(int x)").  Move the old function aside so that it
1325     // doesn't interfere with GetAddrOfFunction.
1326     OldFn->setName(llvm::StringRef());
1327     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1328 
1329     // If this is an implementation of a function without a prototype, try to
1330     // replace any existing uses of the function (which may be calls) with uses
1331     // of the new function
1332     if (D->getType()->isFunctionNoProtoType()) {
1333       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1334       OldFn->removeDeadConstantUsers();
1335     }
1336 
1337     // Replace uses of F with the Function we will endow with a body.
1338     if (!Entry->use_empty()) {
1339       llvm::Constant *NewPtrForOldDecl =
1340         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1341       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1342     }
1343 
1344     // Ok, delete the old function now, which is dead.
1345     OldFn->eraseFromParent();
1346 
1347     Entry = NewFn;
1348   }
1349 
1350   llvm::Function *Fn = cast<llvm::Function>(Entry);
1351   setFunctionLinkage(D, Fn);
1352 
1353   CodeGenFunction(*this).GenerateCode(D, Fn);
1354 
1355   SetFunctionDefinitionAttributes(D, Fn);
1356   SetLLVMFunctionAttributesForDefinition(D, Fn);
1357 
1358   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1359     AddGlobalCtor(Fn, CA->getPriority());
1360   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1361     AddGlobalDtor(Fn, DA->getPriority());
1362 }
1363 
1364 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1365   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1366   const AliasAttr *AA = D->getAttr<AliasAttr>();
1367   assert(AA && "Not an alias?");
1368 
1369   llvm::StringRef MangledName = getMangledName(GD);
1370 
1371   // If there is a definition in the module, then it wins over the alias.
1372   // This is dubious, but allow it to be safe.  Just ignore the alias.
1373   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1374   if (Entry && !Entry->isDeclaration())
1375     return;
1376 
1377   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1378 
1379   // Create a reference to the named value.  This ensures that it is emitted
1380   // if a deferred decl.
1381   llvm::Constant *Aliasee;
1382   if (isa<llvm::FunctionType>(DeclTy))
1383     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1384   else
1385     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1386                                     llvm::PointerType::getUnqual(DeclTy), 0);
1387 
1388   // Create the new alias itself, but don't set a name yet.
1389   llvm::GlobalValue *GA =
1390     new llvm::GlobalAlias(Aliasee->getType(),
1391                           llvm::Function::ExternalLinkage,
1392                           "", Aliasee, &getModule());
1393 
1394   if (Entry) {
1395     assert(Entry->isDeclaration());
1396 
1397     // If there is a declaration in the module, then we had an extern followed
1398     // by the alias, as in:
1399     //   extern int test6();
1400     //   ...
1401     //   int test6() __attribute__((alias("test7")));
1402     //
1403     // Remove it and replace uses of it with the alias.
1404     GA->takeName(Entry);
1405 
1406     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1407                                                           Entry->getType()));
1408     Entry->eraseFromParent();
1409   } else {
1410     GA->setName(MangledName);
1411   }
1412 
1413   // Set attributes which are particular to an alias; this is a
1414   // specialization of the attributes which may be set on a global
1415   // variable/function.
1416   if (D->hasAttr<DLLExportAttr>()) {
1417     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1418       // The dllexport attribute is ignored for undefined symbols.
1419       if (FD->hasBody())
1420         GA->setLinkage(llvm::Function::DLLExportLinkage);
1421     } else {
1422       GA->setLinkage(llvm::Function::DLLExportLinkage);
1423     }
1424   } else if (D->hasAttr<WeakAttr>() ||
1425              D->hasAttr<WeakRefAttr>() ||
1426              D->hasAttr<WeakImportAttr>()) {
1427     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1428   }
1429 
1430   SetCommonAttributes(D, GA);
1431 }
1432 
1433 /// getBuiltinLibFunction - Given a builtin id for a function like
1434 /// "__builtin_fabsf", return a Function* for "fabsf".
1435 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1436                                                   unsigned BuiltinID) {
1437   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1438           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1439          "isn't a lib fn");
1440 
1441   // Get the name, skip over the __builtin_ prefix (if necessary).
1442   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1443   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1444     Name += 10;
1445 
1446   const llvm::FunctionType *Ty =
1447     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1448 
1449   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1450 }
1451 
1452 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1453                                             unsigned NumTys) {
1454   return llvm::Intrinsic::getDeclaration(&getModule(),
1455                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1456 }
1457 
1458 
1459 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1460                                            const llvm::Type *SrcType,
1461                                            const llvm::Type *SizeType) {
1462   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1463   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1464 }
1465 
1466 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1467                                             const llvm::Type *SrcType,
1468                                             const llvm::Type *SizeType) {
1469   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1470   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1471 }
1472 
1473 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1474                                            const llvm::Type *SizeType) {
1475   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1476   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1477 }
1478 
1479 static llvm::StringMapEntry<llvm::Constant*> &
1480 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1481                          const StringLiteral *Literal,
1482                          bool TargetIsLSB,
1483                          bool &IsUTF16,
1484                          unsigned &StringLength) {
1485   llvm::StringRef String = Literal->getString();
1486   unsigned NumBytes = String.size();
1487 
1488   // Check for simple case.
1489   if (!Literal->containsNonAsciiOrNull()) {
1490     StringLength = NumBytes;
1491     return Map.GetOrCreateValue(String);
1492   }
1493 
1494   // Otherwise, convert the UTF8 literals into a byte string.
1495   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1496   const UTF8 *FromPtr = (UTF8 *)String.data();
1497   UTF16 *ToPtr = &ToBuf[0];
1498 
1499   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1500                            &ToPtr, ToPtr + NumBytes,
1501                            strictConversion);
1502 
1503   // ConvertUTF8toUTF16 returns the length in ToPtr.
1504   StringLength = ToPtr - &ToBuf[0];
1505 
1506   // Render the UTF-16 string into a byte array and convert to the target byte
1507   // order.
1508   //
1509   // FIXME: This isn't something we should need to do here.
1510   llvm::SmallString<128> AsBytes;
1511   AsBytes.reserve(StringLength * 2);
1512   for (unsigned i = 0; i != StringLength; ++i) {
1513     unsigned short Val = ToBuf[i];
1514     if (TargetIsLSB) {
1515       AsBytes.push_back(Val & 0xFF);
1516       AsBytes.push_back(Val >> 8);
1517     } else {
1518       AsBytes.push_back(Val >> 8);
1519       AsBytes.push_back(Val & 0xFF);
1520     }
1521   }
1522   // Append one extra null character, the second is automatically added by our
1523   // caller.
1524   AsBytes.push_back(0);
1525 
1526   IsUTF16 = true;
1527   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1528 }
1529 
1530 llvm::Constant *
1531 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1532   unsigned StringLength = 0;
1533   bool isUTF16 = false;
1534   llvm::StringMapEntry<llvm::Constant*> &Entry =
1535     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1536                              getTargetData().isLittleEndian(),
1537                              isUTF16, StringLength);
1538 
1539   if (llvm::Constant *C = Entry.getValue())
1540     return C;
1541 
1542   llvm::Constant *Zero =
1543       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1544   llvm::Constant *Zeros[] = { Zero, Zero };
1545 
1546   // If we don't already have it, get __CFConstantStringClassReference.
1547   if (!CFConstantStringClassRef) {
1548     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1549     Ty = llvm::ArrayType::get(Ty, 0);
1550     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1551                                            "__CFConstantStringClassReference");
1552     // Decay array -> ptr
1553     CFConstantStringClassRef =
1554       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1555   }
1556 
1557   QualType CFTy = getContext().getCFConstantStringType();
1558 
1559   const llvm::StructType *STy =
1560     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1561 
1562   std::vector<llvm::Constant*> Fields(4);
1563 
1564   // Class pointer.
1565   Fields[0] = CFConstantStringClassRef;
1566 
1567   // Flags.
1568   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1569   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1570     llvm::ConstantInt::get(Ty, 0x07C8);
1571 
1572   // String pointer.
1573   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1574 
1575   llvm::GlobalValue::LinkageTypes Linkage;
1576   bool isConstant;
1577   if (isUTF16) {
1578     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1579     Linkage = llvm::GlobalValue::InternalLinkage;
1580     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1581     // does make plain ascii ones writable.
1582     isConstant = true;
1583   } else {
1584     Linkage = llvm::GlobalValue::PrivateLinkage;
1585     isConstant = !Features.WritableStrings;
1586   }
1587 
1588   llvm::GlobalVariable *GV =
1589     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1590                              ".str");
1591   if (isUTF16) {
1592     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1593     GV->setAlignment(Align.getQuantity());
1594   }
1595   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1596 
1597   // String length.
1598   Ty = getTypes().ConvertType(getContext().LongTy);
1599   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1600 
1601   // The struct.
1602   C = llvm::ConstantStruct::get(STy, Fields);
1603   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1604                                 llvm::GlobalVariable::PrivateLinkage, C,
1605                                 "_unnamed_cfstring_");
1606   if (const char *Sect = getContext().Target.getCFStringSection())
1607     GV->setSection(Sect);
1608   Entry.setValue(GV);
1609 
1610   return GV;
1611 }
1612 
1613 llvm::Constant *
1614 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1615   unsigned StringLength = 0;
1616   bool isUTF16 = false;
1617   llvm::StringMapEntry<llvm::Constant*> &Entry =
1618     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1619                              getTargetData().isLittleEndian(),
1620                              isUTF16, StringLength);
1621 
1622   if (llvm::Constant *C = Entry.getValue())
1623     return C;
1624 
1625   llvm::Constant *Zero =
1626   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1627   llvm::Constant *Zeros[] = { Zero, Zero };
1628 
1629   // If we don't already have it, get _NSConstantStringClassReference.
1630   if (!NSConstantStringClassRef) {
1631     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1632     Ty = llvm::ArrayType::get(Ty, 0);
1633     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1634                                         Features.ObjCNonFragileABI ?
1635                                         "OBJC_CLASS_$_NSConstantString" :
1636                                         "_NSConstantStringClassReference");
1637     // Decay array -> ptr
1638     NSConstantStringClassRef =
1639       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1640   }
1641 
1642   QualType NSTy = getContext().getNSConstantStringType();
1643 
1644   const llvm::StructType *STy =
1645   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1646 
1647   std::vector<llvm::Constant*> Fields(3);
1648 
1649   // Class pointer.
1650   Fields[0] = NSConstantStringClassRef;
1651 
1652   // String pointer.
1653   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1654 
1655   llvm::GlobalValue::LinkageTypes Linkage;
1656   bool isConstant;
1657   if (isUTF16) {
1658     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1659     Linkage = llvm::GlobalValue::InternalLinkage;
1660     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1661     // does make plain ascii ones writable.
1662     isConstant = true;
1663   } else {
1664     Linkage = llvm::GlobalValue::PrivateLinkage;
1665     isConstant = !Features.WritableStrings;
1666   }
1667 
1668   llvm::GlobalVariable *GV =
1669   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1670                            ".str");
1671   if (isUTF16) {
1672     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1673     GV->setAlignment(Align.getQuantity());
1674   }
1675   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1676 
1677   // String length.
1678   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1679   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1680 
1681   // The struct.
1682   C = llvm::ConstantStruct::get(STy, Fields);
1683   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1684                                 llvm::GlobalVariable::PrivateLinkage, C,
1685                                 "_unnamed_nsstring_");
1686   // FIXME. Fix section.
1687   if (const char *Sect =
1688         Features.ObjCNonFragileABI
1689           ? getContext().Target.getNSStringNonFragileABISection()
1690           : getContext().Target.getNSStringSection())
1691     GV->setSection(Sect);
1692   Entry.setValue(GV);
1693 
1694   return GV;
1695 }
1696 
1697 /// GetStringForStringLiteral - Return the appropriate bytes for a
1698 /// string literal, properly padded to match the literal type.
1699 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1700   const ConstantArrayType *CAT =
1701     getContext().getAsConstantArrayType(E->getType());
1702   assert(CAT && "String isn't pointer or array!");
1703 
1704   // Resize the string to the right size.
1705   uint64_t RealLen = CAT->getSize().getZExtValue();
1706 
1707   if (E->isWide())
1708     RealLen *= getContext().Target.getWCharWidth()/8;
1709 
1710   std::string Str = E->getString().str();
1711   Str.resize(RealLen, '\0');
1712 
1713   return Str;
1714 }
1715 
1716 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1717 /// constant array for the given string literal.
1718 llvm::Constant *
1719 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1720   // FIXME: This can be more efficient.
1721   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1722   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1723   if (S->isWide()) {
1724     llvm::Type *DestTy =
1725         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1726     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1727   }
1728   return C;
1729 }
1730 
1731 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1732 /// array for the given ObjCEncodeExpr node.
1733 llvm::Constant *
1734 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1735   std::string Str;
1736   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1737 
1738   return GetAddrOfConstantCString(Str);
1739 }
1740 
1741 
1742 /// GenerateWritableString -- Creates storage for a string literal.
1743 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1744                                              bool constant,
1745                                              CodeGenModule &CGM,
1746                                              const char *GlobalName) {
1747   // Create Constant for this string literal. Don't add a '\0'.
1748   llvm::Constant *C =
1749       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1750 
1751   // Create a global variable for this string
1752   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1753                                   llvm::GlobalValue::PrivateLinkage,
1754                                   C, GlobalName);
1755 }
1756 
1757 /// GetAddrOfConstantString - Returns a pointer to a character array
1758 /// containing the literal. This contents are exactly that of the
1759 /// given string, i.e. it will not be null terminated automatically;
1760 /// see GetAddrOfConstantCString. Note that whether the result is
1761 /// actually a pointer to an LLVM constant depends on
1762 /// Feature.WriteableStrings.
1763 ///
1764 /// The result has pointer to array type.
1765 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1766                                                        const char *GlobalName) {
1767   bool IsConstant = !Features.WritableStrings;
1768 
1769   // Get the default prefix if a name wasn't specified.
1770   if (!GlobalName)
1771     GlobalName = ".str";
1772 
1773   // Don't share any string literals if strings aren't constant.
1774   if (!IsConstant)
1775     return GenerateStringLiteral(str, false, *this, GlobalName);
1776 
1777   llvm::StringMapEntry<llvm::Constant *> &Entry =
1778     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1779 
1780   if (Entry.getValue())
1781     return Entry.getValue();
1782 
1783   // Create a global variable for this.
1784   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1785   Entry.setValue(C);
1786   return C;
1787 }
1788 
1789 /// GetAddrOfConstantCString - Returns a pointer to a character
1790 /// array containing the literal and a terminating '\-'
1791 /// character. The result has pointer to array type.
1792 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1793                                                         const char *GlobalName){
1794   return GetAddrOfConstantString(str + '\0', GlobalName);
1795 }
1796 
1797 /// EmitObjCPropertyImplementations - Emit information for synthesized
1798 /// properties for an implementation.
1799 void CodeGenModule::EmitObjCPropertyImplementations(const
1800                                                     ObjCImplementationDecl *D) {
1801   for (ObjCImplementationDecl::propimpl_iterator
1802          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1803     ObjCPropertyImplDecl *PID = *i;
1804 
1805     // Dynamic is just for type-checking.
1806     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1807       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1808 
1809       // Determine which methods need to be implemented, some may have
1810       // been overridden. Note that ::isSynthesized is not the method
1811       // we want, that just indicates if the decl came from a
1812       // property. What we want to know is if the method is defined in
1813       // this implementation.
1814       if (!D->getInstanceMethod(PD->getGetterName()))
1815         CodeGenFunction(*this).GenerateObjCGetter(
1816                                  const_cast<ObjCImplementationDecl *>(D), PID);
1817       if (!PD->isReadOnly() &&
1818           !D->getInstanceMethod(PD->getSetterName()))
1819         CodeGenFunction(*this).GenerateObjCSetter(
1820                                  const_cast<ObjCImplementationDecl *>(D), PID);
1821     }
1822   }
1823 }
1824 
1825 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1826 /// for an implementation.
1827 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1828   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1829     return;
1830   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1831   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1832   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1833   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1834   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1835                                                   D->getLocation(),
1836                                                   D->getLocation(), cxxSelector,
1837                                                   getContext().VoidTy, 0,
1838                                                   DC, true, false, true, false,
1839                                                   ObjCMethodDecl::Required);
1840   D->addInstanceMethod(DTORMethod);
1841   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1842 
1843   II = &getContext().Idents.get(".cxx_construct");
1844   cxxSelector = getContext().Selectors.getSelector(0, &II);
1845   // The constructor returns 'self'.
1846   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1847                                                 D->getLocation(),
1848                                                 D->getLocation(), cxxSelector,
1849                                                 getContext().getObjCIdType(), 0,
1850                                                 DC, true, false, true, false,
1851                                                 ObjCMethodDecl::Required);
1852   D->addInstanceMethod(CTORMethod);
1853   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1854 
1855 
1856 }
1857 
1858 /// EmitNamespace - Emit all declarations in a namespace.
1859 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1860   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1861        I != E; ++I)
1862     EmitTopLevelDecl(*I);
1863 }
1864 
1865 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1866 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1867   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1868       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1869     ErrorUnsupported(LSD, "linkage spec");
1870     return;
1871   }
1872 
1873   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1874        I != E; ++I)
1875     EmitTopLevelDecl(*I);
1876 }
1877 
1878 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1879 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1880   // If an error has occurred, stop code generation, but continue
1881   // parsing and semantic analysis (to ensure all warnings and errors
1882   // are emitted).
1883   if (Diags.hasErrorOccurred())
1884     return;
1885 
1886   // Ignore dependent declarations.
1887   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1888     return;
1889 
1890   switch (D->getKind()) {
1891   case Decl::CXXConversion:
1892   case Decl::CXXMethod:
1893   case Decl::Function:
1894     // Skip function templates
1895     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1896       return;
1897 
1898     EmitGlobal(cast<FunctionDecl>(D));
1899     break;
1900 
1901   case Decl::Var:
1902     EmitGlobal(cast<VarDecl>(D));
1903     break;
1904 
1905   // C++ Decls
1906   case Decl::Namespace:
1907     EmitNamespace(cast<NamespaceDecl>(D));
1908     break;
1909     // No code generation needed.
1910   case Decl::UsingShadow:
1911   case Decl::Using:
1912   case Decl::UsingDirective:
1913   case Decl::ClassTemplate:
1914   case Decl::FunctionTemplate:
1915   case Decl::NamespaceAlias:
1916     break;
1917   case Decl::CXXConstructor:
1918     // Skip function templates
1919     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1920       return;
1921 
1922     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1923     break;
1924   case Decl::CXXDestructor:
1925     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1926     break;
1927 
1928   case Decl::StaticAssert:
1929     // Nothing to do.
1930     break;
1931 
1932   // Objective-C Decls
1933 
1934   // Forward declarations, no (immediate) code generation.
1935   case Decl::ObjCClass:
1936   case Decl::ObjCForwardProtocol:
1937   case Decl::ObjCInterface:
1938     break;
1939 
1940     case Decl::ObjCCategory: {
1941       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1942       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1943         Context.ResetObjCLayout(CD->getClassInterface());
1944       break;
1945     }
1946 
1947 
1948   case Decl::ObjCProtocol:
1949     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1950     break;
1951 
1952   case Decl::ObjCCategoryImpl:
1953     // Categories have properties but don't support synthesize so we
1954     // can ignore them here.
1955     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1956     break;
1957 
1958   case Decl::ObjCImplementation: {
1959     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1960     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1961       Context.ResetObjCLayout(OMD->getClassInterface());
1962     EmitObjCPropertyImplementations(OMD);
1963     EmitObjCIvarInitializations(OMD);
1964     Runtime->GenerateClass(OMD);
1965     break;
1966   }
1967   case Decl::ObjCMethod: {
1968     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1969     // If this is not a prototype, emit the body.
1970     if (OMD->getBody())
1971       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1972     break;
1973   }
1974   case Decl::ObjCCompatibleAlias:
1975     // compatibility-alias is a directive and has no code gen.
1976     break;
1977 
1978   case Decl::LinkageSpec:
1979     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1980     break;
1981 
1982   case Decl::FileScopeAsm: {
1983     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1984     llvm::StringRef AsmString = AD->getAsmString()->getString();
1985 
1986     const std::string &S = getModule().getModuleInlineAsm();
1987     if (S.empty())
1988       getModule().setModuleInlineAsm(AsmString);
1989     else
1990       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1991     break;
1992   }
1993 
1994   default:
1995     // Make sure we handled everything we should, every other kind is a
1996     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1997     // function. Need to recode Decl::Kind to do that easily.
1998     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1999   }
2000 }
2001 
2002 /// Turns the given pointer into a constant.
2003 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2004                                           const void *Ptr) {
2005   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2006   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2007   return llvm::ConstantInt::get(i64, PtrInt);
2008 }
2009 
2010 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2011                                    llvm::NamedMDNode *&GlobalMetadata,
2012                                    GlobalDecl D,
2013                                    llvm::GlobalValue *Addr) {
2014   if (!GlobalMetadata)
2015     GlobalMetadata =
2016       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2017 
2018   // TODO: should we report variant information for ctors/dtors?
2019   llvm::Value *Ops[] = {
2020     Addr,
2021     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2022   };
2023   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2024 }
2025 
2026 /// Emits metadata nodes associating all the global values in the
2027 /// current module with the Decls they came from.  This is useful for
2028 /// projects using IR gen as a subroutine.
2029 ///
2030 /// Since there's currently no way to associate an MDNode directly
2031 /// with an llvm::GlobalValue, we create a global named metadata
2032 /// with the name 'clang.global.decl.ptrs'.
2033 void CodeGenModule::EmitDeclMetadata() {
2034   llvm::NamedMDNode *GlobalMetadata = 0;
2035 
2036   // StaticLocalDeclMap
2037   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2038          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2039        I != E; ++I) {
2040     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2041     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2042   }
2043 }
2044 
2045 /// Emits metadata nodes for all the local variables in the current
2046 /// function.
2047 void CodeGenFunction::EmitDeclMetadata() {
2048   if (LocalDeclMap.empty()) return;
2049 
2050   llvm::LLVMContext &Context = getLLVMContext();
2051 
2052   // Find the unique metadata ID for this name.
2053   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2054 
2055   llvm::NamedMDNode *GlobalMetadata = 0;
2056 
2057   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2058          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2059     const Decl *D = I->first;
2060     llvm::Value *Addr = I->second;
2061 
2062     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2063       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2064       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2065     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2066       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2067       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2068     }
2069   }
2070 }
2071 
2072 ///@name Custom Runtime Function Interfaces
2073 ///@{
2074 //
2075 // FIXME: These can be eliminated once we can have clients just get the required
2076 // AST nodes from the builtin tables.
2077 
2078 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2079   if (BlockObjectDispose)
2080     return BlockObjectDispose;
2081 
2082   // If we saw an explicit decl, use that.
2083   if (BlockObjectDisposeDecl) {
2084     return BlockObjectDispose = GetAddrOfFunction(
2085       BlockObjectDisposeDecl,
2086       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2087   }
2088 
2089   // Otherwise construct the function by hand.
2090   const llvm::FunctionType *FTy;
2091   std::vector<const llvm::Type*> ArgTys;
2092   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2093   ArgTys.push_back(PtrToInt8Ty);
2094   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2095   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2096   return BlockObjectDispose =
2097     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2098 }
2099 
2100 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2101   if (BlockObjectAssign)
2102     return BlockObjectAssign;
2103 
2104   // If we saw an explicit decl, use that.
2105   if (BlockObjectAssignDecl) {
2106     return BlockObjectAssign = GetAddrOfFunction(
2107       BlockObjectAssignDecl,
2108       getTypes().GetFunctionType(BlockObjectAssignDecl));
2109   }
2110 
2111   // Otherwise construct the function by hand.
2112   const llvm::FunctionType *FTy;
2113   std::vector<const llvm::Type*> ArgTys;
2114   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2115   ArgTys.push_back(PtrToInt8Ty);
2116   ArgTys.push_back(PtrToInt8Ty);
2117   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2118   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2119   return BlockObjectAssign =
2120     CreateRuntimeFunction(FTy, "_Block_object_assign");
2121 }
2122 
2123 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2124   if (NSConcreteGlobalBlock)
2125     return NSConcreteGlobalBlock;
2126 
2127   // If we saw an explicit decl, use that.
2128   if (NSConcreteGlobalBlockDecl) {
2129     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2130       NSConcreteGlobalBlockDecl,
2131       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2132   }
2133 
2134   // Otherwise construct the variable by hand.
2135   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2136     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2137 }
2138 
2139 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2140   if (NSConcreteStackBlock)
2141     return NSConcreteStackBlock;
2142 
2143   // If we saw an explicit decl, use that.
2144   if (NSConcreteStackBlockDecl) {
2145     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2146       NSConcreteStackBlockDecl,
2147       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2148   }
2149 
2150   // Otherwise construct the variable by hand.
2151   return NSConcreteStackBlock = CreateRuntimeVariable(
2152     PtrToInt8Ty, "_NSConcreteStackBlock");
2153 }
2154 
2155 ///@}
2156