1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // Record mregparm value now so it is visible through rest of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 454 if (CodeGenOpts.DwarfVersion) { 455 // We actually want the latest version when there are conflicts. 456 // We can change from Warning to Latest if such mode is supported. 457 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 458 CodeGenOpts.DwarfVersion); 459 } 460 if (CodeGenOpts.EmitCodeView) { 461 // Indicate that we want CodeView in the metadata. 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 463 } 464 if (CodeGenOpts.CodeViewGHash) { 465 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 466 } 467 if (CodeGenOpts.ControlFlowGuard) { 468 // We want function ID tables for Control Flow Guard. 469 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 470 } 471 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 472 // We don't support LTO with 2 with different StrictVTablePointers 473 // FIXME: we could support it by stripping all the information introduced 474 // by StrictVTablePointers. 475 476 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 477 478 llvm::Metadata *Ops[2] = { 479 llvm::MDString::get(VMContext, "StrictVTablePointers"), 480 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 481 llvm::Type::getInt32Ty(VMContext), 1))}; 482 483 getModule().addModuleFlag(llvm::Module::Require, 484 "StrictVTablePointersRequirement", 485 llvm::MDNode::get(VMContext, Ops)); 486 } 487 if (DebugInfo) 488 // We support a single version in the linked module. The LLVM 489 // parser will drop debug info with a different version number 490 // (and warn about it, too). 491 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 492 llvm::DEBUG_METADATA_VERSION); 493 494 // We need to record the widths of enums and wchar_t, so that we can generate 495 // the correct build attributes in the ARM backend. wchar_size is also used by 496 // TargetLibraryInfo. 497 uint64_t WCharWidth = 498 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 499 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 500 501 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 502 if ( Arch == llvm::Triple::arm 503 || Arch == llvm::Triple::armeb 504 || Arch == llvm::Triple::thumb 505 || Arch == llvm::Triple::thumbeb) { 506 // The minimum width of an enum in bytes 507 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 508 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 509 } 510 511 if (CodeGenOpts.SanitizeCfiCrossDso) { 512 // Indicate that we want cross-DSO control flow integrity checks. 513 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 514 } 515 516 if (CodeGenOpts.CFProtectionReturn && 517 Target.checkCFProtectionReturnSupported(getDiags())) { 518 // Indicate that we want to instrument return control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 520 1); 521 } 522 523 if (CodeGenOpts.CFProtectionBranch && 524 Target.checkCFProtectionBranchSupported(getDiags())) { 525 // Indicate that we want to instrument branch control flow protection. 526 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 527 1); 528 } 529 530 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 531 // Indicate whether __nvvm_reflect should be configured to flush denormal 532 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 533 // property.) 534 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 535 CodeGenOpts.FlushDenorm ? 1 : 0); 536 } 537 538 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 539 if (LangOpts.OpenCL) { 540 EmitOpenCLMetadata(); 541 // Emit SPIR version. 542 if (getTriple().isSPIR()) { 543 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 544 // opencl.spir.version named metadata. 545 llvm::Metadata *SPIRVerElts[] = { 546 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 547 Int32Ty, LangOpts.OpenCLVersion / 100)), 548 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 549 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 550 llvm::NamedMDNode *SPIRVerMD = 551 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 552 llvm::LLVMContext &Ctx = TheModule.getContext(); 553 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 554 } 555 } 556 557 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 558 assert(PLevel < 3 && "Invalid PIC Level"); 559 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 560 if (Context.getLangOpts().PIE) 561 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 562 } 563 564 if (getCodeGenOpts().CodeModel.size() > 0) { 565 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 566 .Case("tiny", llvm::CodeModel::Tiny) 567 .Case("small", llvm::CodeModel::Small) 568 .Case("kernel", llvm::CodeModel::Kernel) 569 .Case("medium", llvm::CodeModel::Medium) 570 .Case("large", llvm::CodeModel::Large) 571 .Default(~0u); 572 if (CM != ~0u) { 573 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 574 getModule().setCodeModel(codeModel); 575 } 576 } 577 578 if (CodeGenOpts.NoPLT) 579 getModule().setRtLibUseGOT(); 580 581 SimplifyPersonality(); 582 583 if (getCodeGenOpts().EmitDeclMetadata) 584 EmitDeclMetadata(); 585 586 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 587 EmitCoverageFile(); 588 589 if (DebugInfo) 590 DebugInfo->finalize(); 591 592 if (getCodeGenOpts().EmitVersionIdentMetadata) 593 EmitVersionIdentMetadata(); 594 595 if (!getCodeGenOpts().RecordCommandLine.empty()) 596 EmitCommandLineMetadata(); 597 598 EmitTargetMetadata(); 599 } 600 601 void CodeGenModule::EmitOpenCLMetadata() { 602 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 603 // opencl.ocl.version named metadata node. 604 llvm::Metadata *OCLVerElts[] = { 605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 606 Int32Ty, LangOpts.OpenCLVersion / 100)), 607 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 608 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 609 llvm::NamedMDNode *OCLVerMD = 610 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 611 llvm::LLVMContext &Ctx = TheModule.getContext(); 612 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 613 } 614 615 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 616 // Make sure that this type is translated. 617 Types.UpdateCompletedType(TD); 618 } 619 620 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 621 // Make sure that this type is translated. 622 Types.RefreshTypeCacheForClass(RD); 623 } 624 625 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 626 if (!TBAA) 627 return nullptr; 628 return TBAA->getTypeInfo(QTy); 629 } 630 631 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 632 if (!TBAA) 633 return TBAAAccessInfo(); 634 return TBAA->getAccessInfo(AccessType); 635 } 636 637 TBAAAccessInfo 638 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 639 if (!TBAA) 640 return TBAAAccessInfo(); 641 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 642 } 643 644 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 645 if (!TBAA) 646 return nullptr; 647 return TBAA->getTBAAStructInfo(QTy); 648 } 649 650 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 651 if (!TBAA) 652 return nullptr; 653 return TBAA->getBaseTypeInfo(QTy); 654 } 655 656 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 657 if (!TBAA) 658 return nullptr; 659 return TBAA->getAccessTagInfo(Info); 660 } 661 662 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 663 TBAAAccessInfo TargetInfo) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 671 TBAAAccessInfo InfoB) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 675 } 676 677 TBAAAccessInfo 678 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 679 TBAAAccessInfo SrcInfo) { 680 if (!TBAA) 681 return TBAAAccessInfo(); 682 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 683 } 684 685 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 686 TBAAAccessInfo TBAAInfo) { 687 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 688 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 689 } 690 691 void CodeGenModule::DecorateInstructionWithInvariantGroup( 692 llvm::Instruction *I, const CXXRecordDecl *RD) { 693 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 694 llvm::MDNode::get(getLLVMContext(), {})); 695 } 696 697 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 698 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 699 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 700 } 701 702 /// ErrorUnsupported - Print out an error that codegen doesn't support the 703 /// specified stmt yet. 704 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 705 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 706 "cannot compile this %0 yet"); 707 std::string Msg = Type; 708 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 709 << Msg << S->getSourceRange(); 710 } 711 712 /// ErrorUnsupported - Print out an error that codegen doesn't support the 713 /// specified decl yet. 714 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 715 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 716 "cannot compile this %0 yet"); 717 std::string Msg = Type; 718 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 719 } 720 721 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 722 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 723 } 724 725 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 726 const NamedDecl *D) const { 727 if (GV->hasDLLImportStorageClass()) 728 return; 729 // Internal definitions always have default visibility. 730 if (GV->hasLocalLinkage()) { 731 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 732 return; 733 } 734 if (!D) 735 return; 736 // Set visibility for definitions, and for declarations if requested globally 737 // or set explicitly. 738 LinkageInfo LV = D->getLinkageAndVisibility(); 739 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 740 !GV->isDeclarationForLinker()) 741 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 742 } 743 744 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 745 llvm::GlobalValue *GV) { 746 if (GV->hasLocalLinkage()) 747 return true; 748 749 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 750 return true; 751 752 // DLLImport explicitly marks the GV as external. 753 if (GV->hasDLLImportStorageClass()) 754 return false; 755 756 const llvm::Triple &TT = CGM.getTriple(); 757 if (TT.isWindowsGNUEnvironment()) { 758 // In MinGW, variables without DLLImport can still be automatically 759 // imported from a DLL by the linker; don't mark variables that 760 // potentially could come from another DLL as DSO local. 761 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 762 !GV->isThreadLocal()) 763 return false; 764 } 765 766 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 767 // remain unresolved in the link, they can be resolved to zero, which is 768 // outside the current DSO. 769 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 770 return false; 771 772 // Every other GV is local on COFF. 773 // Make an exception for windows OS in the triple: Some firmware builds use 774 // *-win32-macho triples. This (accidentally?) produced windows relocations 775 // without GOT tables in older clang versions; Keep this behaviour. 776 // FIXME: even thread local variables? 777 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 778 return true; 779 780 // Only handle COFF and ELF for now. 781 if (!TT.isOSBinFormatELF()) 782 return false; 783 784 // If this is not an executable, don't assume anything is local. 785 const auto &CGOpts = CGM.getCodeGenOpts(); 786 llvm::Reloc::Model RM = CGOpts.RelocationModel; 787 const auto &LOpts = CGM.getLangOpts(); 788 if (RM != llvm::Reloc::Static && !LOpts.PIE) 789 return false; 790 791 // A definition cannot be preempted from an executable. 792 if (!GV->isDeclarationForLinker()) 793 return true; 794 795 // Most PIC code sequences that assume that a symbol is local cannot produce a 796 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 797 // depended, it seems worth it to handle it here. 798 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 799 return false; 800 801 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 802 llvm::Triple::ArchType Arch = TT.getArch(); 803 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 804 Arch == llvm::Triple::ppc64le) 805 return false; 806 807 // If we can use copy relocations we can assume it is local. 808 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 809 if (!Var->isThreadLocal() && 810 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 811 return true; 812 813 // If we can use a plt entry as the symbol address we can assume it 814 // is local. 815 // FIXME: This should work for PIE, but the gold linker doesn't support it. 816 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 817 return true; 818 819 // Otherwise don't assue it is local. 820 return false; 821 } 822 823 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 824 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 825 } 826 827 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 828 GlobalDecl GD) const { 829 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 830 // C++ destructors have a few C++ ABI specific special cases. 831 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 832 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 833 return; 834 } 835 setDLLImportDLLExport(GV, D); 836 } 837 838 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 839 const NamedDecl *D) const { 840 if (D && D->isExternallyVisible()) { 841 if (D->hasAttr<DLLImportAttr>()) 842 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 843 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 844 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 845 } 846 } 847 848 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 849 GlobalDecl GD) const { 850 setDLLImportDLLExport(GV, GD); 851 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 852 } 853 854 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 855 const NamedDecl *D) const { 856 setDLLImportDLLExport(GV, D); 857 setGlobalVisibilityAndLocal(GV, D); 858 } 859 860 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 861 const NamedDecl *D) const { 862 setGlobalVisibility(GV, D); 863 setDSOLocal(GV); 864 } 865 866 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 867 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 868 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 869 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 870 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 871 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 872 } 873 874 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 875 CodeGenOptions::TLSModel M) { 876 switch (M) { 877 case CodeGenOptions::GeneralDynamicTLSModel: 878 return llvm::GlobalVariable::GeneralDynamicTLSModel; 879 case CodeGenOptions::LocalDynamicTLSModel: 880 return llvm::GlobalVariable::LocalDynamicTLSModel; 881 case CodeGenOptions::InitialExecTLSModel: 882 return llvm::GlobalVariable::InitialExecTLSModel; 883 case CodeGenOptions::LocalExecTLSModel: 884 return llvm::GlobalVariable::LocalExecTLSModel; 885 } 886 llvm_unreachable("Invalid TLS model!"); 887 } 888 889 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 890 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 891 892 llvm::GlobalValue::ThreadLocalMode TLM; 893 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 894 895 // Override the TLS model if it is explicitly specified. 896 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 897 TLM = GetLLVMTLSModel(Attr->getModel()); 898 } 899 900 GV->setThreadLocalMode(TLM); 901 } 902 903 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 904 StringRef Name) { 905 const TargetInfo &Target = CGM.getTarget(); 906 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 907 } 908 909 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 910 const CPUSpecificAttr *Attr, 911 unsigned CPUIndex, 912 raw_ostream &Out) { 913 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 914 // supported. 915 if (Attr) 916 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 917 else if (CGM.getTarget().supportsIFunc()) 918 Out << ".resolver"; 919 } 920 921 static void AppendTargetMangling(const CodeGenModule &CGM, 922 const TargetAttr *Attr, raw_ostream &Out) { 923 if (Attr->isDefaultVersion()) 924 return; 925 926 Out << '.'; 927 const TargetInfo &Target = CGM.getTarget(); 928 TargetAttr::ParsedTargetAttr Info = 929 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 930 // Multiversioning doesn't allow "no-${feature}", so we can 931 // only have "+" prefixes here. 932 assert(LHS.startswith("+") && RHS.startswith("+") && 933 "Features should always have a prefix."); 934 return Target.multiVersionSortPriority(LHS.substr(1)) > 935 Target.multiVersionSortPriority(RHS.substr(1)); 936 }); 937 938 bool IsFirst = true; 939 940 if (!Info.Architecture.empty()) { 941 IsFirst = false; 942 Out << "arch_" << Info.Architecture; 943 } 944 945 for (StringRef Feat : Info.Features) { 946 if (!IsFirst) 947 Out << '_'; 948 IsFirst = false; 949 Out << Feat.substr(1); 950 } 951 } 952 953 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 954 const NamedDecl *ND, 955 bool OmitMultiVersionMangling = false) { 956 SmallString<256> Buffer; 957 llvm::raw_svector_ostream Out(Buffer); 958 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 959 if (MC.shouldMangleDeclName(ND)) { 960 llvm::raw_svector_ostream Out(Buffer); 961 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 962 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 963 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 964 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 965 else 966 MC.mangleName(ND, Out); 967 } else { 968 IdentifierInfo *II = ND->getIdentifier(); 969 assert(II && "Attempt to mangle unnamed decl."); 970 const auto *FD = dyn_cast<FunctionDecl>(ND); 971 972 if (FD && 973 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 974 llvm::raw_svector_ostream Out(Buffer); 975 Out << "__regcall3__" << II->getName(); 976 } else { 977 Out << II->getName(); 978 } 979 } 980 981 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 982 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 983 switch (FD->getMultiVersionKind()) { 984 case MultiVersionKind::CPUDispatch: 985 case MultiVersionKind::CPUSpecific: 986 AppendCPUSpecificCPUDispatchMangling(CGM, 987 FD->getAttr<CPUSpecificAttr>(), 988 GD.getMultiVersionIndex(), Out); 989 break; 990 case MultiVersionKind::Target: 991 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 992 break; 993 case MultiVersionKind::None: 994 llvm_unreachable("None multiversion type isn't valid here"); 995 } 996 } 997 998 return Out.str(); 999 } 1000 1001 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1002 const FunctionDecl *FD) { 1003 if (!FD->isMultiVersion()) 1004 return; 1005 1006 // Get the name of what this would be without the 'target' attribute. This 1007 // allows us to lookup the version that was emitted when this wasn't a 1008 // multiversion function. 1009 std::string NonTargetName = 1010 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1011 GlobalDecl OtherGD; 1012 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1013 assert(OtherGD.getCanonicalDecl() 1014 .getDecl() 1015 ->getAsFunction() 1016 ->isMultiVersion() && 1017 "Other GD should now be a multiversioned function"); 1018 // OtherFD is the version of this function that was mangled BEFORE 1019 // becoming a MultiVersion function. It potentially needs to be updated. 1020 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1021 .getDecl() 1022 ->getAsFunction() 1023 ->getMostRecentDecl(); 1024 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1025 // This is so that if the initial version was already the 'default' 1026 // version, we don't try to update it. 1027 if (OtherName != NonTargetName) { 1028 // Remove instead of erase, since others may have stored the StringRef 1029 // to this. 1030 const auto ExistingRecord = Manglings.find(NonTargetName); 1031 if (ExistingRecord != std::end(Manglings)) 1032 Manglings.remove(&(*ExistingRecord)); 1033 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1034 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1035 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1036 Entry->setName(OtherName); 1037 } 1038 } 1039 } 1040 1041 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1042 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1043 1044 // Some ABIs don't have constructor variants. Make sure that base and 1045 // complete constructors get mangled the same. 1046 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1047 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1048 CXXCtorType OrigCtorType = GD.getCtorType(); 1049 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1050 if (OrigCtorType == Ctor_Base) 1051 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1052 } 1053 } 1054 1055 auto FoundName = MangledDeclNames.find(CanonicalGD); 1056 if (FoundName != MangledDeclNames.end()) 1057 return FoundName->second; 1058 1059 // Keep the first result in the case of a mangling collision. 1060 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1061 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1062 1063 // Postfix kernel stub names with .stub to differentiate them from kernel 1064 // names in device binaries. This is to facilitate the debugger to find 1065 // the correct symbols for kernels in the device binary. 1066 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1067 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1068 FD->hasAttr<CUDAGlobalAttr>()) 1069 MangledName = MangledName + ".stub"; 1070 1071 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1072 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1073 } 1074 1075 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1076 const BlockDecl *BD) { 1077 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1078 const Decl *D = GD.getDecl(); 1079 1080 SmallString<256> Buffer; 1081 llvm::raw_svector_ostream Out(Buffer); 1082 if (!D) 1083 MangleCtx.mangleGlobalBlock(BD, 1084 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1085 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1086 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1087 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1088 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1089 else 1090 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1091 1092 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1093 return Result.first->first(); 1094 } 1095 1096 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1097 return getModule().getNamedValue(Name); 1098 } 1099 1100 /// AddGlobalCtor - Add a function to the list that will be called before 1101 /// main() runs. 1102 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1103 llvm::Constant *AssociatedData) { 1104 // FIXME: Type coercion of void()* types. 1105 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1106 } 1107 1108 /// AddGlobalDtor - Add a function to the list that will be called 1109 /// when the module is unloaded. 1110 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1111 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1112 DtorsUsingAtExit[Priority].push_back(Dtor); 1113 return; 1114 } 1115 1116 // FIXME: Type coercion of void()* types. 1117 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1118 } 1119 1120 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1121 if (Fns.empty()) return; 1122 1123 // Ctor function type is void()*. 1124 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1125 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1126 TheModule.getDataLayout().getProgramAddressSpace()); 1127 1128 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1129 llvm::StructType *CtorStructTy = llvm::StructType::get( 1130 Int32Ty, CtorPFTy, VoidPtrTy); 1131 1132 // Construct the constructor and destructor arrays. 1133 ConstantInitBuilder builder(*this); 1134 auto ctors = builder.beginArray(CtorStructTy); 1135 for (const auto &I : Fns) { 1136 auto ctor = ctors.beginStruct(CtorStructTy); 1137 ctor.addInt(Int32Ty, I.Priority); 1138 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1139 if (I.AssociatedData) 1140 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1141 else 1142 ctor.addNullPointer(VoidPtrTy); 1143 ctor.finishAndAddTo(ctors); 1144 } 1145 1146 auto list = 1147 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1148 /*constant*/ false, 1149 llvm::GlobalValue::AppendingLinkage); 1150 1151 // The LTO linker doesn't seem to like it when we set an alignment 1152 // on appending variables. Take it off as a workaround. 1153 list->setAlignment(0); 1154 1155 Fns.clear(); 1156 } 1157 1158 llvm::GlobalValue::LinkageTypes 1159 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1160 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1161 1162 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1163 1164 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1165 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1166 1167 if (isa<CXXConstructorDecl>(D) && 1168 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1169 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1170 // Our approach to inheriting constructors is fundamentally different from 1171 // that used by the MS ABI, so keep our inheriting constructor thunks 1172 // internal rather than trying to pick an unambiguous mangling for them. 1173 return llvm::GlobalValue::InternalLinkage; 1174 } 1175 1176 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1177 } 1178 1179 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1180 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1181 if (!MDS) return nullptr; 1182 1183 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1184 } 1185 1186 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1187 const CGFunctionInfo &Info, 1188 llvm::Function *F) { 1189 unsigned CallingConv; 1190 llvm::AttributeList PAL; 1191 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1192 F->setAttributes(PAL); 1193 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1194 } 1195 1196 /// Determines whether the language options require us to model 1197 /// unwind exceptions. We treat -fexceptions as mandating this 1198 /// except under the fragile ObjC ABI with only ObjC exceptions 1199 /// enabled. This means, for example, that C with -fexceptions 1200 /// enables this. 1201 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1202 // If exceptions are completely disabled, obviously this is false. 1203 if (!LangOpts.Exceptions) return false; 1204 1205 // If C++ exceptions are enabled, this is true. 1206 if (LangOpts.CXXExceptions) return true; 1207 1208 // If ObjC exceptions are enabled, this depends on the ABI. 1209 if (LangOpts.ObjCExceptions) { 1210 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1211 } 1212 1213 return true; 1214 } 1215 1216 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1217 const CXXMethodDecl *MD) { 1218 // Check that the type metadata can ever actually be used by a call. 1219 if (!CGM.getCodeGenOpts().LTOUnit || 1220 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1221 return false; 1222 1223 // Only functions whose address can be taken with a member function pointer 1224 // need this sort of type metadata. 1225 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1226 !isa<CXXDestructorDecl>(MD); 1227 } 1228 1229 std::vector<const CXXRecordDecl *> 1230 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1231 llvm::SetVector<const CXXRecordDecl *> MostBases; 1232 1233 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1234 CollectMostBases = [&](const CXXRecordDecl *RD) { 1235 if (RD->getNumBases() == 0) 1236 MostBases.insert(RD); 1237 for (const CXXBaseSpecifier &B : RD->bases()) 1238 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1239 }; 1240 CollectMostBases(RD); 1241 return MostBases.takeVector(); 1242 } 1243 1244 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1245 llvm::Function *F) { 1246 llvm::AttrBuilder B; 1247 1248 if (CodeGenOpts.UnwindTables) 1249 B.addAttribute(llvm::Attribute::UWTable); 1250 1251 if (!hasUnwindExceptions(LangOpts)) 1252 B.addAttribute(llvm::Attribute::NoUnwind); 1253 1254 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1255 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1256 B.addAttribute(llvm::Attribute::StackProtect); 1257 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1258 B.addAttribute(llvm::Attribute::StackProtectStrong); 1259 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1260 B.addAttribute(llvm::Attribute::StackProtectReq); 1261 } 1262 1263 if (!D) { 1264 // If we don't have a declaration to control inlining, the function isn't 1265 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1266 // disabled, mark the function as noinline. 1267 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1268 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1269 B.addAttribute(llvm::Attribute::NoInline); 1270 1271 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1272 return; 1273 } 1274 1275 // Track whether we need to add the optnone LLVM attribute, 1276 // starting with the default for this optimization level. 1277 bool ShouldAddOptNone = 1278 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1279 // We can't add optnone in the following cases, it won't pass the verifier. 1280 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1281 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1282 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1283 1284 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1285 B.addAttribute(llvm::Attribute::OptimizeNone); 1286 1287 // OptimizeNone implies noinline; we should not be inlining such functions. 1288 B.addAttribute(llvm::Attribute::NoInline); 1289 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1290 "OptimizeNone and AlwaysInline on same function!"); 1291 1292 // We still need to handle naked functions even though optnone subsumes 1293 // much of their semantics. 1294 if (D->hasAttr<NakedAttr>()) 1295 B.addAttribute(llvm::Attribute::Naked); 1296 1297 // OptimizeNone wins over OptimizeForSize and MinSize. 1298 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1299 F->removeFnAttr(llvm::Attribute::MinSize); 1300 } else if (D->hasAttr<NakedAttr>()) { 1301 // Naked implies noinline: we should not be inlining such functions. 1302 B.addAttribute(llvm::Attribute::Naked); 1303 B.addAttribute(llvm::Attribute::NoInline); 1304 } else if (D->hasAttr<NoDuplicateAttr>()) { 1305 B.addAttribute(llvm::Attribute::NoDuplicate); 1306 } else if (D->hasAttr<NoInlineAttr>()) { 1307 B.addAttribute(llvm::Attribute::NoInline); 1308 } else if (D->hasAttr<AlwaysInlineAttr>() && 1309 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1310 // (noinline wins over always_inline, and we can't specify both in IR) 1311 B.addAttribute(llvm::Attribute::AlwaysInline); 1312 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1313 // If we're not inlining, then force everything that isn't always_inline to 1314 // carry an explicit noinline attribute. 1315 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1316 B.addAttribute(llvm::Attribute::NoInline); 1317 } else { 1318 // Otherwise, propagate the inline hint attribute and potentially use its 1319 // absence to mark things as noinline. 1320 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1321 // Search function and template pattern redeclarations for inline. 1322 auto CheckForInline = [](const FunctionDecl *FD) { 1323 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1324 return Redecl->isInlineSpecified(); 1325 }; 1326 if (any_of(FD->redecls(), CheckRedeclForInline)) 1327 return true; 1328 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1329 if (!Pattern) 1330 return false; 1331 return any_of(Pattern->redecls(), CheckRedeclForInline); 1332 }; 1333 if (CheckForInline(FD)) { 1334 B.addAttribute(llvm::Attribute::InlineHint); 1335 } else if (CodeGenOpts.getInlining() == 1336 CodeGenOptions::OnlyHintInlining && 1337 !FD->isInlined() && 1338 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1339 B.addAttribute(llvm::Attribute::NoInline); 1340 } 1341 } 1342 } 1343 1344 // Add other optimization related attributes if we are optimizing this 1345 // function. 1346 if (!D->hasAttr<OptimizeNoneAttr>()) { 1347 if (D->hasAttr<ColdAttr>()) { 1348 if (!ShouldAddOptNone) 1349 B.addAttribute(llvm::Attribute::OptimizeForSize); 1350 B.addAttribute(llvm::Attribute::Cold); 1351 } 1352 1353 if (D->hasAttr<MinSizeAttr>()) 1354 B.addAttribute(llvm::Attribute::MinSize); 1355 } 1356 1357 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1358 1359 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1360 if (alignment) 1361 F->setAlignment(alignment); 1362 1363 if (!D->hasAttr<AlignedAttr>()) 1364 if (LangOpts.FunctionAlignment) 1365 F->setAlignment(1 << LangOpts.FunctionAlignment); 1366 1367 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1368 // reserve a bit for differentiating between virtual and non-virtual member 1369 // functions. If the current target's C++ ABI requires this and this is a 1370 // member function, set its alignment accordingly. 1371 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1372 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1373 F->setAlignment(2); 1374 } 1375 1376 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1377 if (CodeGenOpts.SanitizeCfiCrossDso) 1378 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1379 CreateFunctionTypeMetadataForIcall(FD, F); 1380 1381 // Emit type metadata on member functions for member function pointer checks. 1382 // These are only ever necessary on definitions; we're guaranteed that the 1383 // definition will be present in the LTO unit as a result of LTO visibility. 1384 auto *MD = dyn_cast<CXXMethodDecl>(D); 1385 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1386 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1387 llvm::Metadata *Id = 1388 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1389 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1390 F->addTypeMetadata(0, Id); 1391 } 1392 } 1393 } 1394 1395 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1396 const Decl *D = GD.getDecl(); 1397 if (dyn_cast_or_null<NamedDecl>(D)) 1398 setGVProperties(GV, GD); 1399 else 1400 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1401 1402 if (D && D->hasAttr<UsedAttr>()) 1403 addUsedGlobal(GV); 1404 1405 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1406 const auto *VD = cast<VarDecl>(D); 1407 if (VD->getType().isConstQualified() && 1408 VD->getStorageDuration() == SD_Static) 1409 addUsedGlobal(GV); 1410 } 1411 } 1412 1413 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1414 llvm::AttrBuilder &Attrs) { 1415 // Add target-cpu and target-features attributes to functions. If 1416 // we have a decl for the function and it has a target attribute then 1417 // parse that and add it to the feature set. 1418 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1419 std::vector<std::string> Features; 1420 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1421 FD = FD ? FD->getMostRecentDecl() : FD; 1422 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1423 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1424 bool AddedAttr = false; 1425 if (TD || SD) { 1426 llvm::StringMap<bool> FeatureMap; 1427 getFunctionFeatureMap(FeatureMap, GD); 1428 1429 // Produce the canonical string for this set of features. 1430 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1431 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1432 1433 // Now add the target-cpu and target-features to the function. 1434 // While we populated the feature map above, we still need to 1435 // get and parse the target attribute so we can get the cpu for 1436 // the function. 1437 if (TD) { 1438 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1439 if (ParsedAttr.Architecture != "" && 1440 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1441 TargetCPU = ParsedAttr.Architecture; 1442 } 1443 } else { 1444 // Otherwise just add the existing target cpu and target features to the 1445 // function. 1446 Features = getTarget().getTargetOpts().Features; 1447 } 1448 1449 if (TargetCPU != "") { 1450 Attrs.addAttribute("target-cpu", TargetCPU); 1451 AddedAttr = true; 1452 } 1453 if (!Features.empty()) { 1454 llvm::sort(Features); 1455 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1456 AddedAttr = true; 1457 } 1458 1459 return AddedAttr; 1460 } 1461 1462 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1463 llvm::GlobalObject *GO) { 1464 const Decl *D = GD.getDecl(); 1465 SetCommonAttributes(GD, GO); 1466 1467 if (D) { 1468 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1469 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1470 GV->addAttribute("bss-section", SA->getName()); 1471 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1472 GV->addAttribute("data-section", SA->getName()); 1473 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1474 GV->addAttribute("rodata-section", SA->getName()); 1475 } 1476 1477 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1478 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1479 if (!D->getAttr<SectionAttr>()) 1480 F->addFnAttr("implicit-section-name", SA->getName()); 1481 1482 llvm::AttrBuilder Attrs; 1483 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1484 // We know that GetCPUAndFeaturesAttributes will always have the 1485 // newest set, since it has the newest possible FunctionDecl, so the 1486 // new ones should replace the old. 1487 F->removeFnAttr("target-cpu"); 1488 F->removeFnAttr("target-features"); 1489 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1490 } 1491 } 1492 1493 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1494 GO->setSection(CSA->getName()); 1495 else if (const auto *SA = D->getAttr<SectionAttr>()) 1496 GO->setSection(SA->getName()); 1497 } 1498 1499 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1500 } 1501 1502 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1503 llvm::Function *F, 1504 const CGFunctionInfo &FI) { 1505 const Decl *D = GD.getDecl(); 1506 SetLLVMFunctionAttributes(GD, FI, F); 1507 SetLLVMFunctionAttributesForDefinition(D, F); 1508 1509 F->setLinkage(llvm::Function::InternalLinkage); 1510 1511 setNonAliasAttributes(GD, F); 1512 } 1513 1514 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1515 // Set linkage and visibility in case we never see a definition. 1516 LinkageInfo LV = ND->getLinkageAndVisibility(); 1517 // Don't set internal linkage on declarations. 1518 // "extern_weak" is overloaded in LLVM; we probably should have 1519 // separate linkage types for this. 1520 if (isExternallyVisible(LV.getLinkage()) && 1521 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1522 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1523 } 1524 1525 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1526 llvm::Function *F) { 1527 // Only if we are checking indirect calls. 1528 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1529 return; 1530 1531 // Non-static class methods are handled via vtable or member function pointer 1532 // checks elsewhere. 1533 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1534 return; 1535 1536 // Additionally, if building with cross-DSO support... 1537 if (CodeGenOpts.SanitizeCfiCrossDso) { 1538 // Skip available_externally functions. They won't be codegen'ed in the 1539 // current module anyway. 1540 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1541 return; 1542 } 1543 1544 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1545 F->addTypeMetadata(0, MD); 1546 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1547 1548 // Emit a hash-based bit set entry for cross-DSO calls. 1549 if (CodeGenOpts.SanitizeCfiCrossDso) 1550 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1551 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1552 } 1553 1554 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1555 bool IsIncompleteFunction, 1556 bool IsThunk) { 1557 1558 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1559 // If this is an intrinsic function, set the function's attributes 1560 // to the intrinsic's attributes. 1561 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1562 return; 1563 } 1564 1565 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1566 1567 if (!IsIncompleteFunction) 1568 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1569 1570 // Add the Returned attribute for "this", except for iOS 5 and earlier 1571 // where substantial code, including the libstdc++ dylib, was compiled with 1572 // GCC and does not actually return "this". 1573 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1574 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1575 assert(!F->arg_empty() && 1576 F->arg_begin()->getType() 1577 ->canLosslesslyBitCastTo(F->getReturnType()) && 1578 "unexpected this return"); 1579 F->addAttribute(1, llvm::Attribute::Returned); 1580 } 1581 1582 // Only a few attributes are set on declarations; these may later be 1583 // overridden by a definition. 1584 1585 setLinkageForGV(F, FD); 1586 setGVProperties(F, FD); 1587 1588 // Setup target-specific attributes. 1589 if (!IsIncompleteFunction && F->isDeclaration()) 1590 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1591 1592 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1593 F->setSection(CSA->getName()); 1594 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1595 F->setSection(SA->getName()); 1596 1597 if (FD->isReplaceableGlobalAllocationFunction()) { 1598 // A replaceable global allocation function does not act like a builtin by 1599 // default, only if it is invoked by a new-expression or delete-expression. 1600 F->addAttribute(llvm::AttributeList::FunctionIndex, 1601 llvm::Attribute::NoBuiltin); 1602 1603 // A sane operator new returns a non-aliasing pointer. 1604 // FIXME: Also add NonNull attribute to the return value 1605 // for the non-nothrow forms? 1606 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1607 if (getCodeGenOpts().AssumeSaneOperatorNew && 1608 (Kind == OO_New || Kind == OO_Array_New)) 1609 F->addAttribute(llvm::AttributeList::ReturnIndex, 1610 llvm::Attribute::NoAlias); 1611 } 1612 1613 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1614 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1615 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1616 if (MD->isVirtual()) 1617 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1618 1619 // Don't emit entries for function declarations in the cross-DSO mode. This 1620 // is handled with better precision by the receiving DSO. 1621 if (!CodeGenOpts.SanitizeCfiCrossDso) 1622 CreateFunctionTypeMetadataForIcall(FD, F); 1623 1624 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1625 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1626 1627 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1628 // Annotate the callback behavior as metadata: 1629 // - The callback callee (as argument number). 1630 // - The callback payloads (as argument numbers). 1631 llvm::LLVMContext &Ctx = F->getContext(); 1632 llvm::MDBuilder MDB(Ctx); 1633 1634 // The payload indices are all but the first one in the encoding. The first 1635 // identifies the callback callee. 1636 int CalleeIdx = *CB->encoding_begin(); 1637 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1638 F->addMetadata(llvm::LLVMContext::MD_callback, 1639 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1640 CalleeIdx, PayloadIndices, 1641 /* VarArgsArePassed */ false)})); 1642 } 1643 } 1644 1645 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1646 assert(!GV->isDeclaration() && 1647 "Only globals with definition can force usage."); 1648 LLVMUsed.emplace_back(GV); 1649 } 1650 1651 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1652 assert(!GV->isDeclaration() && 1653 "Only globals with definition can force usage."); 1654 LLVMCompilerUsed.emplace_back(GV); 1655 } 1656 1657 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1658 std::vector<llvm::WeakTrackingVH> &List) { 1659 // Don't create llvm.used if there is no need. 1660 if (List.empty()) 1661 return; 1662 1663 // Convert List to what ConstantArray needs. 1664 SmallVector<llvm::Constant*, 8> UsedArray; 1665 UsedArray.resize(List.size()); 1666 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1667 UsedArray[i] = 1668 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1669 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1670 } 1671 1672 if (UsedArray.empty()) 1673 return; 1674 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1675 1676 auto *GV = new llvm::GlobalVariable( 1677 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1678 llvm::ConstantArray::get(ATy, UsedArray), Name); 1679 1680 GV->setSection("llvm.metadata"); 1681 } 1682 1683 void CodeGenModule::emitLLVMUsed() { 1684 emitUsed(*this, "llvm.used", LLVMUsed); 1685 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1686 } 1687 1688 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1689 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1690 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1691 } 1692 1693 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1694 llvm::SmallString<32> Opt; 1695 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1696 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1697 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1698 } 1699 1700 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1701 auto &C = getLLVMContext(); 1702 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1703 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1704 } 1705 1706 void CodeGenModule::AddDependentLib(StringRef Lib) { 1707 llvm::SmallString<24> Opt; 1708 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1709 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1710 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1711 } 1712 1713 /// Add link options implied by the given module, including modules 1714 /// it depends on, using a postorder walk. 1715 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1716 SmallVectorImpl<llvm::MDNode *> &Metadata, 1717 llvm::SmallPtrSet<Module *, 16> &Visited) { 1718 // Import this module's parent. 1719 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1720 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1721 } 1722 1723 // Import this module's dependencies. 1724 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1725 if (Visited.insert(Mod->Imports[I - 1]).second) 1726 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1727 } 1728 1729 // Add linker options to link against the libraries/frameworks 1730 // described by this module. 1731 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1732 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1733 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1734 1735 // For modules that use export_as for linking, use that module 1736 // name instead. 1737 if (Mod->UseExportAsModuleLinkName) 1738 return; 1739 1740 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1741 // Link against a framework. Frameworks are currently Darwin only, so we 1742 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1743 if (Mod->LinkLibraries[I-1].IsFramework) { 1744 llvm::Metadata *Args[2] = { 1745 llvm::MDString::get(Context, "-framework"), 1746 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1747 1748 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1749 continue; 1750 } 1751 1752 // Link against a library. 1753 if (IsELF && !IsPS4) { 1754 llvm::Metadata *Args[2] = { 1755 llvm::MDString::get(Context, "lib"), 1756 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1757 }; 1758 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1759 } else { 1760 llvm::SmallString<24> Opt; 1761 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1762 Mod->LinkLibraries[I - 1].Library, Opt); 1763 auto *OptString = llvm::MDString::get(Context, Opt); 1764 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1765 } 1766 } 1767 } 1768 1769 void CodeGenModule::EmitModuleLinkOptions() { 1770 // Collect the set of all of the modules we want to visit to emit link 1771 // options, which is essentially the imported modules and all of their 1772 // non-explicit child modules. 1773 llvm::SetVector<clang::Module *> LinkModules; 1774 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1775 SmallVector<clang::Module *, 16> Stack; 1776 1777 // Seed the stack with imported modules. 1778 for (Module *M : ImportedModules) { 1779 // Do not add any link flags when an implementation TU of a module imports 1780 // a header of that same module. 1781 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1782 !getLangOpts().isCompilingModule()) 1783 continue; 1784 if (Visited.insert(M).second) 1785 Stack.push_back(M); 1786 } 1787 1788 // Find all of the modules to import, making a little effort to prune 1789 // non-leaf modules. 1790 while (!Stack.empty()) { 1791 clang::Module *Mod = Stack.pop_back_val(); 1792 1793 bool AnyChildren = false; 1794 1795 // Visit the submodules of this module. 1796 for (const auto &SM : Mod->submodules()) { 1797 // Skip explicit children; they need to be explicitly imported to be 1798 // linked against. 1799 if (SM->IsExplicit) 1800 continue; 1801 1802 if (Visited.insert(SM).second) { 1803 Stack.push_back(SM); 1804 AnyChildren = true; 1805 } 1806 } 1807 1808 // We didn't find any children, so add this module to the list of 1809 // modules to link against. 1810 if (!AnyChildren) { 1811 LinkModules.insert(Mod); 1812 } 1813 } 1814 1815 // Add link options for all of the imported modules in reverse topological 1816 // order. We don't do anything to try to order import link flags with respect 1817 // to linker options inserted by things like #pragma comment(). 1818 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1819 Visited.clear(); 1820 for (Module *M : LinkModules) 1821 if (Visited.insert(M).second) 1822 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1823 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1824 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1825 1826 // Add the linker options metadata flag. 1827 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1828 for (auto *MD : LinkerOptionsMetadata) 1829 NMD->addOperand(MD); 1830 } 1831 1832 void CodeGenModule::EmitDeferred() { 1833 // Emit deferred declare target declarations. 1834 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1835 getOpenMPRuntime().emitDeferredTargetDecls(); 1836 1837 // Emit code for any potentially referenced deferred decls. Since a 1838 // previously unused static decl may become used during the generation of code 1839 // for a static function, iterate until no changes are made. 1840 1841 if (!DeferredVTables.empty()) { 1842 EmitDeferredVTables(); 1843 1844 // Emitting a vtable doesn't directly cause more vtables to 1845 // become deferred, although it can cause functions to be 1846 // emitted that then need those vtables. 1847 assert(DeferredVTables.empty()); 1848 } 1849 1850 // Stop if we're out of both deferred vtables and deferred declarations. 1851 if (DeferredDeclsToEmit.empty()) 1852 return; 1853 1854 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1855 // work, it will not interfere with this. 1856 std::vector<GlobalDecl> CurDeclsToEmit; 1857 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1858 1859 for (GlobalDecl &D : CurDeclsToEmit) { 1860 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1861 // to get GlobalValue with exactly the type we need, not something that 1862 // might had been created for another decl with the same mangled name but 1863 // different type. 1864 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1865 GetAddrOfGlobal(D, ForDefinition)); 1866 1867 // In case of different address spaces, we may still get a cast, even with 1868 // IsForDefinition equal to true. Query mangled names table to get 1869 // GlobalValue. 1870 if (!GV) 1871 GV = GetGlobalValue(getMangledName(D)); 1872 1873 // Make sure GetGlobalValue returned non-null. 1874 assert(GV); 1875 1876 // Check to see if we've already emitted this. This is necessary 1877 // for a couple of reasons: first, decls can end up in the 1878 // deferred-decls queue multiple times, and second, decls can end 1879 // up with definitions in unusual ways (e.g. by an extern inline 1880 // function acquiring a strong function redefinition). Just 1881 // ignore these cases. 1882 if (!GV->isDeclaration()) 1883 continue; 1884 1885 // Otherwise, emit the definition and move on to the next one. 1886 EmitGlobalDefinition(D, GV); 1887 1888 // If we found out that we need to emit more decls, do that recursively. 1889 // This has the advantage that the decls are emitted in a DFS and related 1890 // ones are close together, which is convenient for testing. 1891 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1892 EmitDeferred(); 1893 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1894 } 1895 } 1896 } 1897 1898 void CodeGenModule::EmitVTablesOpportunistically() { 1899 // Try to emit external vtables as available_externally if they have emitted 1900 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1901 // is not allowed to create new references to things that need to be emitted 1902 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1903 1904 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1905 && "Only emit opportunistic vtables with optimizations"); 1906 1907 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1908 assert(getVTables().isVTableExternal(RD) && 1909 "This queue should only contain external vtables"); 1910 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1911 VTables.GenerateClassData(RD); 1912 } 1913 OpportunisticVTables.clear(); 1914 } 1915 1916 void CodeGenModule::EmitGlobalAnnotations() { 1917 if (Annotations.empty()) 1918 return; 1919 1920 // Create a new global variable for the ConstantStruct in the Module. 1921 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1922 Annotations[0]->getType(), Annotations.size()), Annotations); 1923 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1924 llvm::GlobalValue::AppendingLinkage, 1925 Array, "llvm.global.annotations"); 1926 gv->setSection(AnnotationSection); 1927 } 1928 1929 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1930 llvm::Constant *&AStr = AnnotationStrings[Str]; 1931 if (AStr) 1932 return AStr; 1933 1934 // Not found yet, create a new global. 1935 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1936 auto *gv = 1937 new llvm::GlobalVariable(getModule(), s->getType(), true, 1938 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1939 gv->setSection(AnnotationSection); 1940 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1941 AStr = gv; 1942 return gv; 1943 } 1944 1945 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1946 SourceManager &SM = getContext().getSourceManager(); 1947 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1948 if (PLoc.isValid()) 1949 return EmitAnnotationString(PLoc.getFilename()); 1950 return EmitAnnotationString(SM.getBufferName(Loc)); 1951 } 1952 1953 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1954 SourceManager &SM = getContext().getSourceManager(); 1955 PresumedLoc PLoc = SM.getPresumedLoc(L); 1956 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1957 SM.getExpansionLineNumber(L); 1958 return llvm::ConstantInt::get(Int32Ty, LineNo); 1959 } 1960 1961 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1962 const AnnotateAttr *AA, 1963 SourceLocation L) { 1964 // Get the globals for file name, annotation, and the line number. 1965 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1966 *UnitGV = EmitAnnotationUnit(L), 1967 *LineNoCst = EmitAnnotationLineNo(L); 1968 1969 // Create the ConstantStruct for the global annotation. 1970 llvm::Constant *Fields[4] = { 1971 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1972 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1973 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1974 LineNoCst 1975 }; 1976 return llvm::ConstantStruct::getAnon(Fields); 1977 } 1978 1979 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1980 llvm::GlobalValue *GV) { 1981 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1982 // Get the struct elements for these annotations. 1983 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1984 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1985 } 1986 1987 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1988 llvm::Function *Fn, 1989 SourceLocation Loc) const { 1990 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1991 // Blacklist by function name. 1992 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1993 return true; 1994 // Blacklist by location. 1995 if (Loc.isValid()) 1996 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1997 // If location is unknown, this may be a compiler-generated function. Assume 1998 // it's located in the main file. 1999 auto &SM = Context.getSourceManager(); 2000 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2001 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2002 } 2003 return false; 2004 } 2005 2006 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2007 SourceLocation Loc, QualType Ty, 2008 StringRef Category) const { 2009 // For now globals can be blacklisted only in ASan and KASan. 2010 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2011 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2012 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2013 if (!EnabledAsanMask) 2014 return false; 2015 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2016 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2017 return true; 2018 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2019 return true; 2020 // Check global type. 2021 if (!Ty.isNull()) { 2022 // Drill down the array types: if global variable of a fixed type is 2023 // blacklisted, we also don't instrument arrays of them. 2024 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2025 Ty = AT->getElementType(); 2026 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2027 // We allow to blacklist only record types (classes, structs etc.) 2028 if (Ty->isRecordType()) { 2029 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2030 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2031 return true; 2032 } 2033 } 2034 return false; 2035 } 2036 2037 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2038 StringRef Category) const { 2039 const auto &XRayFilter = getContext().getXRayFilter(); 2040 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2041 auto Attr = ImbueAttr::NONE; 2042 if (Loc.isValid()) 2043 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2044 if (Attr == ImbueAttr::NONE) 2045 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2046 switch (Attr) { 2047 case ImbueAttr::NONE: 2048 return false; 2049 case ImbueAttr::ALWAYS: 2050 Fn->addFnAttr("function-instrument", "xray-always"); 2051 break; 2052 case ImbueAttr::ALWAYS_ARG1: 2053 Fn->addFnAttr("function-instrument", "xray-always"); 2054 Fn->addFnAttr("xray-log-args", "1"); 2055 break; 2056 case ImbueAttr::NEVER: 2057 Fn->addFnAttr("function-instrument", "xray-never"); 2058 break; 2059 } 2060 return true; 2061 } 2062 2063 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2064 // Never defer when EmitAllDecls is specified. 2065 if (LangOpts.EmitAllDecls) 2066 return true; 2067 2068 if (CodeGenOpts.KeepStaticConsts) { 2069 const auto *VD = dyn_cast<VarDecl>(Global); 2070 if (VD && VD->getType().isConstQualified() && 2071 VD->getStorageDuration() == SD_Static) 2072 return true; 2073 } 2074 2075 return getContext().DeclMustBeEmitted(Global); 2076 } 2077 2078 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2079 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2080 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2081 // Implicit template instantiations may change linkage if they are later 2082 // explicitly instantiated, so they should not be emitted eagerly. 2083 return false; 2084 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2085 if (Context.getInlineVariableDefinitionKind(VD) == 2086 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2087 // A definition of an inline constexpr static data member may change 2088 // linkage later if it's redeclared outside the class. 2089 return false; 2090 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2091 // codegen for global variables, because they may be marked as threadprivate. 2092 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2093 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2094 !isTypeConstant(Global->getType(), false) && 2095 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2096 return false; 2097 2098 return true; 2099 } 2100 2101 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2102 const CXXUuidofExpr* E) { 2103 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2104 // well-formed. 2105 StringRef Uuid = E->getUuidStr(); 2106 std::string Name = "_GUID_" + Uuid.lower(); 2107 std::replace(Name.begin(), Name.end(), '-', '_'); 2108 2109 // The UUID descriptor should be pointer aligned. 2110 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2111 2112 // Look for an existing global. 2113 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2114 return ConstantAddress(GV, Alignment); 2115 2116 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2117 assert(Init && "failed to initialize as constant"); 2118 2119 auto *GV = new llvm::GlobalVariable( 2120 getModule(), Init->getType(), 2121 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2122 if (supportsCOMDAT()) 2123 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2124 setDSOLocal(GV); 2125 return ConstantAddress(GV, Alignment); 2126 } 2127 2128 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2129 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2130 assert(AA && "No alias?"); 2131 2132 CharUnits Alignment = getContext().getDeclAlign(VD); 2133 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2134 2135 // See if there is already something with the target's name in the module. 2136 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2137 if (Entry) { 2138 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2139 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2140 return ConstantAddress(Ptr, Alignment); 2141 } 2142 2143 llvm::Constant *Aliasee; 2144 if (isa<llvm::FunctionType>(DeclTy)) 2145 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2146 GlobalDecl(cast<FunctionDecl>(VD)), 2147 /*ForVTable=*/false); 2148 else 2149 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2150 llvm::PointerType::getUnqual(DeclTy), 2151 nullptr); 2152 2153 auto *F = cast<llvm::GlobalValue>(Aliasee); 2154 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2155 WeakRefReferences.insert(F); 2156 2157 return ConstantAddress(Aliasee, Alignment); 2158 } 2159 2160 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2161 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2162 2163 // Weak references don't produce any output by themselves. 2164 if (Global->hasAttr<WeakRefAttr>()) 2165 return; 2166 2167 // If this is an alias definition (which otherwise looks like a declaration) 2168 // emit it now. 2169 if (Global->hasAttr<AliasAttr>()) 2170 return EmitAliasDefinition(GD); 2171 2172 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2173 if (Global->hasAttr<IFuncAttr>()) 2174 return emitIFuncDefinition(GD); 2175 2176 // If this is a cpu_dispatch multiversion function, emit the resolver. 2177 if (Global->hasAttr<CPUDispatchAttr>()) 2178 return emitCPUDispatchDefinition(GD); 2179 2180 // If this is CUDA, be selective about which declarations we emit. 2181 if (LangOpts.CUDA) { 2182 if (LangOpts.CUDAIsDevice) { 2183 if (!Global->hasAttr<CUDADeviceAttr>() && 2184 !Global->hasAttr<CUDAGlobalAttr>() && 2185 !Global->hasAttr<CUDAConstantAttr>() && 2186 !Global->hasAttr<CUDASharedAttr>()) 2187 return; 2188 } else { 2189 // We need to emit host-side 'shadows' for all global 2190 // device-side variables because the CUDA runtime needs their 2191 // size and host-side address in order to provide access to 2192 // their device-side incarnations. 2193 2194 // So device-only functions are the only things we skip. 2195 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2196 Global->hasAttr<CUDADeviceAttr>()) 2197 return; 2198 2199 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2200 "Expected Variable or Function"); 2201 } 2202 } 2203 2204 if (LangOpts.OpenMP) { 2205 // If this is OpenMP device, check if it is legal to emit this global 2206 // normally. 2207 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2208 return; 2209 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2210 if (MustBeEmitted(Global)) 2211 EmitOMPDeclareReduction(DRD); 2212 return; 2213 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2214 if (MustBeEmitted(Global)) 2215 EmitOMPDeclareMapper(DMD); 2216 return; 2217 } 2218 } 2219 2220 // Ignore declarations, they will be emitted on their first use. 2221 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2222 // Forward declarations are emitted lazily on first use. 2223 if (!FD->doesThisDeclarationHaveABody()) { 2224 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2225 return; 2226 2227 StringRef MangledName = getMangledName(GD); 2228 2229 // Compute the function info and LLVM type. 2230 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2231 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2232 2233 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2234 /*DontDefer=*/false); 2235 return; 2236 } 2237 } else { 2238 const auto *VD = cast<VarDecl>(Global); 2239 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2240 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2241 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2242 if (LangOpts.OpenMP) { 2243 // Emit declaration of the must-be-emitted declare target variable. 2244 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2245 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2246 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2247 (void)GetAddrOfGlobalVar(VD); 2248 } else { 2249 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2250 "link claue expected."); 2251 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2252 } 2253 return; 2254 } 2255 } 2256 // If this declaration may have caused an inline variable definition to 2257 // change linkage, make sure that it's emitted. 2258 if (Context.getInlineVariableDefinitionKind(VD) == 2259 ASTContext::InlineVariableDefinitionKind::Strong) 2260 GetAddrOfGlobalVar(VD); 2261 return; 2262 } 2263 } 2264 2265 // Defer code generation to first use when possible, e.g. if this is an inline 2266 // function. If the global must always be emitted, do it eagerly if possible 2267 // to benefit from cache locality. 2268 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2269 // Emit the definition if it can't be deferred. 2270 EmitGlobalDefinition(GD); 2271 return; 2272 } 2273 2274 // If we're deferring emission of a C++ variable with an 2275 // initializer, remember the order in which it appeared in the file. 2276 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2277 cast<VarDecl>(Global)->hasInit()) { 2278 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2279 CXXGlobalInits.push_back(nullptr); 2280 } 2281 2282 StringRef MangledName = getMangledName(GD); 2283 if (GetGlobalValue(MangledName) != nullptr) { 2284 // The value has already been used and should therefore be emitted. 2285 addDeferredDeclToEmit(GD); 2286 } else if (MustBeEmitted(Global)) { 2287 // The value must be emitted, but cannot be emitted eagerly. 2288 assert(!MayBeEmittedEagerly(Global)); 2289 addDeferredDeclToEmit(GD); 2290 } else { 2291 // Otherwise, remember that we saw a deferred decl with this name. The 2292 // first use of the mangled name will cause it to move into 2293 // DeferredDeclsToEmit. 2294 DeferredDecls[MangledName] = GD; 2295 } 2296 } 2297 2298 // Check if T is a class type with a destructor that's not dllimport. 2299 static bool HasNonDllImportDtor(QualType T) { 2300 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2301 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2302 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2303 return true; 2304 2305 return false; 2306 } 2307 2308 namespace { 2309 struct FunctionIsDirectlyRecursive 2310 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2311 const StringRef Name; 2312 const Builtin::Context &BI; 2313 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2314 : Name(N), BI(C) {} 2315 2316 bool VisitCallExpr(const CallExpr *E) { 2317 const FunctionDecl *FD = E->getDirectCallee(); 2318 if (!FD) 2319 return false; 2320 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2321 if (Attr && Name == Attr->getLabel()) 2322 return true; 2323 unsigned BuiltinID = FD->getBuiltinID(); 2324 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2325 return false; 2326 StringRef BuiltinName = BI.getName(BuiltinID); 2327 if (BuiltinName.startswith("__builtin_") && 2328 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2329 return true; 2330 } 2331 return false; 2332 } 2333 2334 bool VisitStmt(const Stmt *S) { 2335 for (const Stmt *Child : S->children()) 2336 if (Child && this->Visit(Child)) 2337 return true; 2338 return false; 2339 } 2340 }; 2341 2342 // Make sure we're not referencing non-imported vars or functions. 2343 struct DLLImportFunctionVisitor 2344 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2345 bool SafeToInline = true; 2346 2347 bool shouldVisitImplicitCode() const { return true; } 2348 2349 bool VisitVarDecl(VarDecl *VD) { 2350 if (VD->getTLSKind()) { 2351 // A thread-local variable cannot be imported. 2352 SafeToInline = false; 2353 return SafeToInline; 2354 } 2355 2356 // A variable definition might imply a destructor call. 2357 if (VD->isThisDeclarationADefinition()) 2358 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2359 2360 return SafeToInline; 2361 } 2362 2363 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2364 if (const auto *D = E->getTemporary()->getDestructor()) 2365 SafeToInline = D->hasAttr<DLLImportAttr>(); 2366 return SafeToInline; 2367 } 2368 2369 bool VisitDeclRefExpr(DeclRefExpr *E) { 2370 ValueDecl *VD = E->getDecl(); 2371 if (isa<FunctionDecl>(VD)) 2372 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2373 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2374 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2375 return SafeToInline; 2376 } 2377 2378 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2379 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2380 return SafeToInline; 2381 } 2382 2383 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2384 CXXMethodDecl *M = E->getMethodDecl(); 2385 if (!M) { 2386 // Call through a pointer to member function. This is safe to inline. 2387 SafeToInline = true; 2388 } else { 2389 SafeToInline = M->hasAttr<DLLImportAttr>(); 2390 } 2391 return SafeToInline; 2392 } 2393 2394 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2395 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2396 return SafeToInline; 2397 } 2398 2399 bool VisitCXXNewExpr(CXXNewExpr *E) { 2400 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2401 return SafeToInline; 2402 } 2403 }; 2404 } 2405 2406 // isTriviallyRecursive - Check if this function calls another 2407 // decl that, because of the asm attribute or the other decl being a builtin, 2408 // ends up pointing to itself. 2409 bool 2410 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2411 StringRef Name; 2412 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2413 // asm labels are a special kind of mangling we have to support. 2414 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2415 if (!Attr) 2416 return false; 2417 Name = Attr->getLabel(); 2418 } else { 2419 Name = FD->getName(); 2420 } 2421 2422 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2423 const Stmt *Body = FD->getBody(); 2424 return Body ? Walker.Visit(Body) : false; 2425 } 2426 2427 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2428 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2429 return true; 2430 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2431 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2432 return false; 2433 2434 if (F->hasAttr<DLLImportAttr>()) { 2435 // Check whether it would be safe to inline this dllimport function. 2436 DLLImportFunctionVisitor Visitor; 2437 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2438 if (!Visitor.SafeToInline) 2439 return false; 2440 2441 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2442 // Implicit destructor invocations aren't captured in the AST, so the 2443 // check above can't see them. Check for them manually here. 2444 for (const Decl *Member : Dtor->getParent()->decls()) 2445 if (isa<FieldDecl>(Member)) 2446 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2447 return false; 2448 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2449 if (HasNonDllImportDtor(B.getType())) 2450 return false; 2451 } 2452 } 2453 2454 // PR9614. Avoid cases where the source code is lying to us. An available 2455 // externally function should have an equivalent function somewhere else, 2456 // but a function that calls itself is clearly not equivalent to the real 2457 // implementation. 2458 // This happens in glibc's btowc and in some configure checks. 2459 return !isTriviallyRecursive(F); 2460 } 2461 2462 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2463 return CodeGenOpts.OptimizationLevel > 0; 2464 } 2465 2466 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2467 llvm::GlobalValue *GV) { 2468 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2469 2470 if (FD->isCPUSpecificMultiVersion()) { 2471 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2472 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2473 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2474 // Requires multiple emits. 2475 } else 2476 EmitGlobalFunctionDefinition(GD, GV); 2477 } 2478 2479 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2480 const auto *D = cast<ValueDecl>(GD.getDecl()); 2481 2482 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2483 Context.getSourceManager(), 2484 "Generating code for declaration"); 2485 2486 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2487 // At -O0, don't generate IR for functions with available_externally 2488 // linkage. 2489 if (!shouldEmitFunction(GD)) 2490 return; 2491 2492 llvm::TimeTraceScope TimeScope( 2493 "CodeGen Function", [&]() { return FD->getQualifiedNameAsString(); }); 2494 2495 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2496 // Make sure to emit the definition(s) before we emit the thunks. 2497 // This is necessary for the generation of certain thunks. 2498 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2499 ABI->emitCXXStructor(GD); 2500 else if (FD->isMultiVersion()) 2501 EmitMultiVersionFunctionDefinition(GD, GV); 2502 else 2503 EmitGlobalFunctionDefinition(GD, GV); 2504 2505 if (Method->isVirtual()) 2506 getVTables().EmitThunks(GD); 2507 2508 return; 2509 } 2510 2511 if (FD->isMultiVersion()) 2512 return EmitMultiVersionFunctionDefinition(GD, GV); 2513 return EmitGlobalFunctionDefinition(GD, GV); 2514 } 2515 2516 if (const auto *VD = dyn_cast<VarDecl>(D)) 2517 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2518 2519 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2520 } 2521 2522 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2523 llvm::Function *NewFn); 2524 2525 static unsigned 2526 TargetMVPriority(const TargetInfo &TI, 2527 const CodeGenFunction::MultiVersionResolverOption &RO) { 2528 unsigned Priority = 0; 2529 for (StringRef Feat : RO.Conditions.Features) 2530 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2531 2532 if (!RO.Conditions.Architecture.empty()) 2533 Priority = std::max( 2534 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2535 return Priority; 2536 } 2537 2538 void CodeGenModule::emitMultiVersionFunctions() { 2539 for (GlobalDecl GD : MultiVersionFuncs) { 2540 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2541 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2542 getContext().forEachMultiversionedFunctionVersion( 2543 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2544 GlobalDecl CurGD{ 2545 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2546 StringRef MangledName = getMangledName(CurGD); 2547 llvm::Constant *Func = GetGlobalValue(MangledName); 2548 if (!Func) { 2549 if (CurFD->isDefined()) { 2550 EmitGlobalFunctionDefinition(CurGD, nullptr); 2551 Func = GetGlobalValue(MangledName); 2552 } else { 2553 const CGFunctionInfo &FI = 2554 getTypes().arrangeGlobalDeclaration(GD); 2555 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2556 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2557 /*DontDefer=*/false, ForDefinition); 2558 } 2559 assert(Func && "This should have just been created"); 2560 } 2561 2562 const auto *TA = CurFD->getAttr<TargetAttr>(); 2563 llvm::SmallVector<StringRef, 8> Feats; 2564 TA->getAddedFeatures(Feats); 2565 2566 Options.emplace_back(cast<llvm::Function>(Func), 2567 TA->getArchitecture(), Feats); 2568 }); 2569 2570 llvm::Function *ResolverFunc; 2571 const TargetInfo &TI = getTarget(); 2572 2573 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2574 ResolverFunc = cast<llvm::Function>( 2575 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2576 else 2577 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2578 2579 if (supportsCOMDAT()) 2580 ResolverFunc->setComdat( 2581 getModule().getOrInsertComdat(ResolverFunc->getName())); 2582 2583 llvm::stable_sort( 2584 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2585 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2586 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2587 }); 2588 CodeGenFunction CGF(*this); 2589 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2590 } 2591 } 2592 2593 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2594 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2595 assert(FD && "Not a FunctionDecl?"); 2596 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2597 assert(DD && "Not a cpu_dispatch Function?"); 2598 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2599 2600 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2601 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2602 DeclTy = getTypes().GetFunctionType(FInfo); 2603 } 2604 2605 StringRef ResolverName = getMangledName(GD); 2606 2607 llvm::Type *ResolverType; 2608 GlobalDecl ResolverGD; 2609 if (getTarget().supportsIFunc()) 2610 ResolverType = llvm::FunctionType::get( 2611 llvm::PointerType::get(DeclTy, 2612 Context.getTargetAddressSpace(FD->getType())), 2613 false); 2614 else { 2615 ResolverType = DeclTy; 2616 ResolverGD = GD; 2617 } 2618 2619 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2620 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2621 2622 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2623 const TargetInfo &Target = getTarget(); 2624 unsigned Index = 0; 2625 for (const IdentifierInfo *II : DD->cpus()) { 2626 // Get the name of the target function so we can look it up/create it. 2627 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2628 getCPUSpecificMangling(*this, II->getName()); 2629 2630 llvm::Constant *Func = GetGlobalValue(MangledName); 2631 2632 if (!Func) { 2633 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2634 if (ExistingDecl.getDecl() && 2635 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2636 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2637 Func = GetGlobalValue(MangledName); 2638 } else { 2639 if (!ExistingDecl.getDecl()) 2640 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2641 2642 Func = GetOrCreateLLVMFunction( 2643 MangledName, DeclTy, ExistingDecl, 2644 /*ForVTable=*/false, /*DontDefer=*/true, 2645 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2646 } 2647 } 2648 2649 llvm::SmallVector<StringRef, 32> Features; 2650 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2651 llvm::transform(Features, Features.begin(), 2652 [](StringRef Str) { return Str.substr(1); }); 2653 Features.erase(std::remove_if( 2654 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2655 return !Target.validateCpuSupports(Feat); 2656 }), Features.end()); 2657 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2658 ++Index; 2659 } 2660 2661 llvm::sort( 2662 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2663 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2664 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2665 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2666 }); 2667 2668 // If the list contains multiple 'default' versions, such as when it contains 2669 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2670 // always run on at least a 'pentium'). We do this by deleting the 'least 2671 // advanced' (read, lowest mangling letter). 2672 while (Options.size() > 1 && 2673 CodeGenFunction::GetX86CpuSupportsMask( 2674 (Options.end() - 2)->Conditions.Features) == 0) { 2675 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2676 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2677 if (LHSName.compare(RHSName) < 0) 2678 Options.erase(Options.end() - 2); 2679 else 2680 Options.erase(Options.end() - 1); 2681 } 2682 2683 CodeGenFunction CGF(*this); 2684 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2685 } 2686 2687 /// If a dispatcher for the specified mangled name is not in the module, create 2688 /// and return an llvm Function with the specified type. 2689 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2690 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2691 std::string MangledName = 2692 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2693 2694 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2695 // a separate resolver). 2696 std::string ResolverName = MangledName; 2697 if (getTarget().supportsIFunc()) 2698 ResolverName += ".ifunc"; 2699 else if (FD->isTargetMultiVersion()) 2700 ResolverName += ".resolver"; 2701 2702 // If this already exists, just return that one. 2703 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2704 return ResolverGV; 2705 2706 // Since this is the first time we've created this IFunc, make sure 2707 // that we put this multiversioned function into the list to be 2708 // replaced later if necessary (target multiversioning only). 2709 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2710 MultiVersionFuncs.push_back(GD); 2711 2712 if (getTarget().supportsIFunc()) { 2713 llvm::Type *ResolverType = llvm::FunctionType::get( 2714 llvm::PointerType::get( 2715 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2716 false); 2717 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2718 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2719 /*ForVTable=*/false); 2720 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2721 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2722 GIF->setName(ResolverName); 2723 SetCommonAttributes(FD, GIF); 2724 2725 return GIF; 2726 } 2727 2728 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2729 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2730 assert(isa<llvm::GlobalValue>(Resolver) && 2731 "Resolver should be created for the first time"); 2732 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2733 return Resolver; 2734 } 2735 2736 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2737 /// module, create and return an llvm Function with the specified type. If there 2738 /// is something in the module with the specified name, return it potentially 2739 /// bitcasted to the right type. 2740 /// 2741 /// If D is non-null, it specifies a decl that correspond to this. This is used 2742 /// to set the attributes on the function when it is first created. 2743 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2744 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2745 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2746 ForDefinition_t IsForDefinition) { 2747 const Decl *D = GD.getDecl(); 2748 2749 // Any attempts to use a MultiVersion function should result in retrieving 2750 // the iFunc instead. Name Mangling will handle the rest of the changes. 2751 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2752 // For the device mark the function as one that should be emitted. 2753 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2754 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2755 !DontDefer && !IsForDefinition) { 2756 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2757 GlobalDecl GDDef; 2758 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2759 GDDef = GlobalDecl(CD, GD.getCtorType()); 2760 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2761 GDDef = GlobalDecl(DD, GD.getDtorType()); 2762 else 2763 GDDef = GlobalDecl(FDDef); 2764 EmitGlobal(GDDef); 2765 } 2766 } 2767 2768 if (FD->isMultiVersion()) { 2769 const auto *TA = FD->getAttr<TargetAttr>(); 2770 if (TA && TA->isDefaultVersion()) 2771 UpdateMultiVersionNames(GD, FD); 2772 if (!IsForDefinition) 2773 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2774 } 2775 } 2776 2777 // Lookup the entry, lazily creating it if necessary. 2778 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2779 if (Entry) { 2780 if (WeakRefReferences.erase(Entry)) { 2781 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2782 if (FD && !FD->hasAttr<WeakAttr>()) 2783 Entry->setLinkage(llvm::Function::ExternalLinkage); 2784 } 2785 2786 // Handle dropped DLL attributes. 2787 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2788 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2789 setDSOLocal(Entry); 2790 } 2791 2792 // If there are two attempts to define the same mangled name, issue an 2793 // error. 2794 if (IsForDefinition && !Entry->isDeclaration()) { 2795 GlobalDecl OtherGD; 2796 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2797 // to make sure that we issue an error only once. 2798 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2799 (GD.getCanonicalDecl().getDecl() != 2800 OtherGD.getCanonicalDecl().getDecl()) && 2801 DiagnosedConflictingDefinitions.insert(GD).second) { 2802 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2803 << MangledName; 2804 getDiags().Report(OtherGD.getDecl()->getLocation(), 2805 diag::note_previous_definition); 2806 } 2807 } 2808 2809 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2810 (Entry->getType()->getElementType() == Ty)) { 2811 return Entry; 2812 } 2813 2814 // Make sure the result is of the correct type. 2815 // (If function is requested for a definition, we always need to create a new 2816 // function, not just return a bitcast.) 2817 if (!IsForDefinition) 2818 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2819 } 2820 2821 // This function doesn't have a complete type (for example, the return 2822 // type is an incomplete struct). Use a fake type instead, and make 2823 // sure not to try to set attributes. 2824 bool IsIncompleteFunction = false; 2825 2826 llvm::FunctionType *FTy; 2827 if (isa<llvm::FunctionType>(Ty)) { 2828 FTy = cast<llvm::FunctionType>(Ty); 2829 } else { 2830 FTy = llvm::FunctionType::get(VoidTy, false); 2831 IsIncompleteFunction = true; 2832 } 2833 2834 llvm::Function *F = 2835 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2836 Entry ? StringRef() : MangledName, &getModule()); 2837 2838 // If we already created a function with the same mangled name (but different 2839 // type) before, take its name and add it to the list of functions to be 2840 // replaced with F at the end of CodeGen. 2841 // 2842 // This happens if there is a prototype for a function (e.g. "int f()") and 2843 // then a definition of a different type (e.g. "int f(int x)"). 2844 if (Entry) { 2845 F->takeName(Entry); 2846 2847 // This might be an implementation of a function without a prototype, in 2848 // which case, try to do special replacement of calls which match the new 2849 // prototype. The really key thing here is that we also potentially drop 2850 // arguments from the call site so as to make a direct call, which makes the 2851 // inliner happier and suppresses a number of optimizer warnings (!) about 2852 // dropping arguments. 2853 if (!Entry->use_empty()) { 2854 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2855 Entry->removeDeadConstantUsers(); 2856 } 2857 2858 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2859 F, Entry->getType()->getElementType()->getPointerTo()); 2860 addGlobalValReplacement(Entry, BC); 2861 } 2862 2863 assert(F->getName() == MangledName && "name was uniqued!"); 2864 if (D) 2865 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2866 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2867 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2868 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2869 } 2870 2871 if (!DontDefer) { 2872 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2873 // each other bottoming out with the base dtor. Therefore we emit non-base 2874 // dtors on usage, even if there is no dtor definition in the TU. 2875 if (D && isa<CXXDestructorDecl>(D) && 2876 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2877 GD.getDtorType())) 2878 addDeferredDeclToEmit(GD); 2879 2880 // This is the first use or definition of a mangled name. If there is a 2881 // deferred decl with this name, remember that we need to emit it at the end 2882 // of the file. 2883 auto DDI = DeferredDecls.find(MangledName); 2884 if (DDI != DeferredDecls.end()) { 2885 // Move the potentially referenced deferred decl to the 2886 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2887 // don't need it anymore). 2888 addDeferredDeclToEmit(DDI->second); 2889 DeferredDecls.erase(DDI); 2890 2891 // Otherwise, there are cases we have to worry about where we're 2892 // using a declaration for which we must emit a definition but where 2893 // we might not find a top-level definition: 2894 // - member functions defined inline in their classes 2895 // - friend functions defined inline in some class 2896 // - special member functions with implicit definitions 2897 // If we ever change our AST traversal to walk into class methods, 2898 // this will be unnecessary. 2899 // 2900 // We also don't emit a definition for a function if it's going to be an 2901 // entry in a vtable, unless it's already marked as used. 2902 } else if (getLangOpts().CPlusPlus && D) { 2903 // Look for a declaration that's lexically in a record. 2904 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2905 FD = FD->getPreviousDecl()) { 2906 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2907 if (FD->doesThisDeclarationHaveABody()) { 2908 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2909 break; 2910 } 2911 } 2912 } 2913 } 2914 } 2915 2916 // Make sure the result is of the requested type. 2917 if (!IsIncompleteFunction) { 2918 assert(F->getType()->getElementType() == Ty); 2919 return F; 2920 } 2921 2922 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2923 return llvm::ConstantExpr::getBitCast(F, PTy); 2924 } 2925 2926 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2927 /// non-null, then this function will use the specified type if it has to 2928 /// create it (this occurs when we see a definition of the function). 2929 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2930 llvm::Type *Ty, 2931 bool ForVTable, 2932 bool DontDefer, 2933 ForDefinition_t IsForDefinition) { 2934 // If there was no specific requested type, just convert it now. 2935 if (!Ty) { 2936 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2937 Ty = getTypes().ConvertType(FD->getType()); 2938 } 2939 2940 // Devirtualized destructor calls may come through here instead of via 2941 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2942 // of the complete destructor when necessary. 2943 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2944 if (getTarget().getCXXABI().isMicrosoft() && 2945 GD.getDtorType() == Dtor_Complete && 2946 DD->getParent()->getNumVBases() == 0) 2947 GD = GlobalDecl(DD, Dtor_Base); 2948 } 2949 2950 StringRef MangledName = getMangledName(GD); 2951 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2952 /*IsThunk=*/false, llvm::AttributeList(), 2953 IsForDefinition); 2954 } 2955 2956 static const FunctionDecl * 2957 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2958 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2959 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2960 2961 IdentifierInfo &CII = C.Idents.get(Name); 2962 for (const auto &Result : DC->lookup(&CII)) 2963 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2964 return FD; 2965 2966 if (!C.getLangOpts().CPlusPlus) 2967 return nullptr; 2968 2969 // Demangle the premangled name from getTerminateFn() 2970 IdentifierInfo &CXXII = 2971 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2972 ? C.Idents.get("terminate") 2973 : C.Idents.get(Name); 2974 2975 for (const auto &N : {"__cxxabiv1", "std"}) { 2976 IdentifierInfo &NS = C.Idents.get(N); 2977 for (const auto &Result : DC->lookup(&NS)) { 2978 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2979 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2980 for (const auto &Result : LSD->lookup(&NS)) 2981 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2982 break; 2983 2984 if (ND) 2985 for (const auto &Result : ND->lookup(&CXXII)) 2986 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2987 return FD; 2988 } 2989 } 2990 2991 return nullptr; 2992 } 2993 2994 /// CreateRuntimeFunction - Create a new runtime function with the specified 2995 /// type and name. 2996 llvm::FunctionCallee 2997 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2998 llvm::AttributeList ExtraAttrs, 2999 bool Local) { 3000 llvm::Constant *C = 3001 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3002 /*DontDefer=*/false, /*IsThunk=*/false, 3003 ExtraAttrs); 3004 3005 if (auto *F = dyn_cast<llvm::Function>(C)) { 3006 if (F->empty()) { 3007 F->setCallingConv(getRuntimeCC()); 3008 3009 // In Windows Itanium environments, try to mark runtime functions 3010 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3011 // will link their standard library statically or dynamically. Marking 3012 // functions imported when they are not imported can cause linker errors 3013 // and warnings. 3014 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3015 !getCodeGenOpts().LTOVisibilityPublicStd) { 3016 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3017 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3018 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3019 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3020 } 3021 } 3022 setDSOLocal(F); 3023 } 3024 } 3025 3026 return {FTy, C}; 3027 } 3028 3029 /// isTypeConstant - Determine whether an object of this type can be emitted 3030 /// as a constant. 3031 /// 3032 /// If ExcludeCtor is true, the duration when the object's constructor runs 3033 /// will not be considered. The caller will need to verify that the object is 3034 /// not written to during its construction. 3035 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3036 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3037 return false; 3038 3039 if (Context.getLangOpts().CPlusPlus) { 3040 if (const CXXRecordDecl *Record 3041 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3042 return ExcludeCtor && !Record->hasMutableFields() && 3043 Record->hasTrivialDestructor(); 3044 } 3045 3046 return true; 3047 } 3048 3049 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3050 /// create and return an llvm GlobalVariable with the specified type. If there 3051 /// is something in the module with the specified name, return it potentially 3052 /// bitcasted to the right type. 3053 /// 3054 /// If D is non-null, it specifies a decl that correspond to this. This is used 3055 /// to set the attributes on the global when it is first created. 3056 /// 3057 /// If IsForDefinition is true, it is guaranteed that an actual global with 3058 /// type Ty will be returned, not conversion of a variable with the same 3059 /// mangled name but some other type. 3060 llvm::Constant * 3061 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3062 llvm::PointerType *Ty, 3063 const VarDecl *D, 3064 ForDefinition_t IsForDefinition) { 3065 // Lookup the entry, lazily creating it if necessary. 3066 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3067 if (Entry) { 3068 if (WeakRefReferences.erase(Entry)) { 3069 if (D && !D->hasAttr<WeakAttr>()) 3070 Entry->setLinkage(llvm::Function::ExternalLinkage); 3071 } 3072 3073 // Handle dropped DLL attributes. 3074 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3075 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3076 3077 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3078 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3079 3080 if (Entry->getType() == Ty) 3081 return Entry; 3082 3083 // If there are two attempts to define the same mangled name, issue an 3084 // error. 3085 if (IsForDefinition && !Entry->isDeclaration()) { 3086 GlobalDecl OtherGD; 3087 const VarDecl *OtherD; 3088 3089 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3090 // to make sure that we issue an error only once. 3091 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3092 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3093 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3094 OtherD->hasInit() && 3095 DiagnosedConflictingDefinitions.insert(D).second) { 3096 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3097 << MangledName; 3098 getDiags().Report(OtherGD.getDecl()->getLocation(), 3099 diag::note_previous_definition); 3100 } 3101 } 3102 3103 // Make sure the result is of the correct type. 3104 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3105 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3106 3107 // (If global is requested for a definition, we always need to create a new 3108 // global, not just return a bitcast.) 3109 if (!IsForDefinition) 3110 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3111 } 3112 3113 auto AddrSpace = GetGlobalVarAddressSpace(D); 3114 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3115 3116 auto *GV = new llvm::GlobalVariable( 3117 getModule(), Ty->getElementType(), false, 3118 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3119 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3120 3121 // If we already created a global with the same mangled name (but different 3122 // type) before, take its name and remove it from its parent. 3123 if (Entry) { 3124 GV->takeName(Entry); 3125 3126 if (!Entry->use_empty()) { 3127 llvm::Constant *NewPtrForOldDecl = 3128 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3129 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3130 } 3131 3132 Entry->eraseFromParent(); 3133 } 3134 3135 // This is the first use or definition of a mangled name. If there is a 3136 // deferred decl with this name, remember that we need to emit it at the end 3137 // of the file. 3138 auto DDI = DeferredDecls.find(MangledName); 3139 if (DDI != DeferredDecls.end()) { 3140 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3141 // list, and remove it from DeferredDecls (since we don't need it anymore). 3142 addDeferredDeclToEmit(DDI->second); 3143 DeferredDecls.erase(DDI); 3144 } 3145 3146 // Handle things which are present even on external declarations. 3147 if (D) { 3148 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3149 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3150 3151 // FIXME: This code is overly simple and should be merged with other global 3152 // handling. 3153 GV->setConstant(isTypeConstant(D->getType(), false)); 3154 3155 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3156 3157 setLinkageForGV(GV, D); 3158 3159 if (D->getTLSKind()) { 3160 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3161 CXXThreadLocals.push_back(D); 3162 setTLSMode(GV, *D); 3163 } 3164 3165 setGVProperties(GV, D); 3166 3167 // If required by the ABI, treat declarations of static data members with 3168 // inline initializers as definitions. 3169 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3170 EmitGlobalVarDefinition(D); 3171 } 3172 3173 // Emit section information for extern variables. 3174 if (D->hasExternalStorage()) { 3175 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3176 GV->setSection(SA->getName()); 3177 } 3178 3179 // Handle XCore specific ABI requirements. 3180 if (getTriple().getArch() == llvm::Triple::xcore && 3181 D->getLanguageLinkage() == CLanguageLinkage && 3182 D->getType().isConstant(Context) && 3183 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3184 GV->setSection(".cp.rodata"); 3185 3186 // Check if we a have a const declaration with an initializer, we may be 3187 // able to emit it as available_externally to expose it's value to the 3188 // optimizer. 3189 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3190 D->getType().isConstQualified() && !GV->hasInitializer() && 3191 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3192 const auto *Record = 3193 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3194 bool HasMutableFields = Record && Record->hasMutableFields(); 3195 if (!HasMutableFields) { 3196 const VarDecl *InitDecl; 3197 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3198 if (InitExpr) { 3199 ConstantEmitter emitter(*this); 3200 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3201 if (Init) { 3202 auto *InitType = Init->getType(); 3203 if (GV->getType()->getElementType() != InitType) { 3204 // The type of the initializer does not match the definition. 3205 // This happens when an initializer has a different type from 3206 // the type of the global (because of padding at the end of a 3207 // structure for instance). 3208 GV->setName(StringRef()); 3209 // Make a new global with the correct type, this is now guaranteed 3210 // to work. 3211 auto *NewGV = cast<llvm::GlobalVariable>( 3212 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3213 3214 // Erase the old global, since it is no longer used. 3215 GV->eraseFromParent(); 3216 GV = NewGV; 3217 } else { 3218 GV->setInitializer(Init); 3219 GV->setConstant(true); 3220 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3221 } 3222 emitter.finalize(GV); 3223 } 3224 } 3225 } 3226 } 3227 } 3228 3229 LangAS ExpectedAS = 3230 D ? D->getType().getAddressSpace() 3231 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3232 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3233 Ty->getPointerAddressSpace()); 3234 if (AddrSpace != ExpectedAS) 3235 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3236 ExpectedAS, Ty); 3237 3238 if (GV->isDeclaration()) 3239 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3240 3241 return GV; 3242 } 3243 3244 llvm::Constant * 3245 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3246 ForDefinition_t IsForDefinition) { 3247 const Decl *D = GD.getDecl(); 3248 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3249 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3250 /*DontDefer=*/false, IsForDefinition); 3251 else if (isa<CXXMethodDecl>(D)) { 3252 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3253 cast<CXXMethodDecl>(D)); 3254 auto Ty = getTypes().GetFunctionType(*FInfo); 3255 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3256 IsForDefinition); 3257 } else if (isa<FunctionDecl>(D)) { 3258 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3259 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3260 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3261 IsForDefinition); 3262 } else 3263 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3264 IsForDefinition); 3265 } 3266 3267 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3268 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3269 unsigned Alignment) { 3270 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3271 llvm::GlobalVariable *OldGV = nullptr; 3272 3273 if (GV) { 3274 // Check if the variable has the right type. 3275 if (GV->getType()->getElementType() == Ty) 3276 return GV; 3277 3278 // Because C++ name mangling, the only way we can end up with an already 3279 // existing global with the same name is if it has been declared extern "C". 3280 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3281 OldGV = GV; 3282 } 3283 3284 // Create a new variable. 3285 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3286 Linkage, nullptr, Name); 3287 3288 if (OldGV) { 3289 // Replace occurrences of the old variable if needed. 3290 GV->takeName(OldGV); 3291 3292 if (!OldGV->use_empty()) { 3293 llvm::Constant *NewPtrForOldDecl = 3294 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3295 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3296 } 3297 3298 OldGV->eraseFromParent(); 3299 } 3300 3301 if (supportsCOMDAT() && GV->isWeakForLinker() && 3302 !GV->hasAvailableExternallyLinkage()) 3303 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3304 3305 GV->setAlignment(Alignment); 3306 3307 return GV; 3308 } 3309 3310 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3311 /// given global variable. If Ty is non-null and if the global doesn't exist, 3312 /// then it will be created with the specified type instead of whatever the 3313 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3314 /// that an actual global with type Ty will be returned, not conversion of a 3315 /// variable with the same mangled name but some other type. 3316 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3317 llvm::Type *Ty, 3318 ForDefinition_t IsForDefinition) { 3319 assert(D->hasGlobalStorage() && "Not a global variable"); 3320 QualType ASTTy = D->getType(); 3321 if (!Ty) 3322 Ty = getTypes().ConvertTypeForMem(ASTTy); 3323 3324 llvm::PointerType *PTy = 3325 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3326 3327 StringRef MangledName = getMangledName(D); 3328 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3329 } 3330 3331 /// CreateRuntimeVariable - Create a new runtime global variable with the 3332 /// specified type and name. 3333 llvm::Constant * 3334 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3335 StringRef Name) { 3336 auto *Ret = 3337 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3338 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3339 return Ret; 3340 } 3341 3342 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3343 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3344 3345 StringRef MangledName = getMangledName(D); 3346 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3347 3348 // We already have a definition, not declaration, with the same mangled name. 3349 // Emitting of declaration is not required (and actually overwrites emitted 3350 // definition). 3351 if (GV && !GV->isDeclaration()) 3352 return; 3353 3354 // If we have not seen a reference to this variable yet, place it into the 3355 // deferred declarations table to be emitted if needed later. 3356 if (!MustBeEmitted(D) && !GV) { 3357 DeferredDecls[MangledName] = D; 3358 return; 3359 } 3360 3361 // The tentative definition is the only definition. 3362 EmitGlobalVarDefinition(D); 3363 } 3364 3365 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3366 return Context.toCharUnitsFromBits( 3367 getDataLayout().getTypeStoreSizeInBits(Ty)); 3368 } 3369 3370 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3371 LangAS AddrSpace = LangAS::Default; 3372 if (LangOpts.OpenCL) { 3373 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3374 assert(AddrSpace == LangAS::opencl_global || 3375 AddrSpace == LangAS::opencl_constant || 3376 AddrSpace == LangAS::opencl_local || 3377 AddrSpace >= LangAS::FirstTargetAddressSpace); 3378 return AddrSpace; 3379 } 3380 3381 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3382 if (D && D->hasAttr<CUDAConstantAttr>()) 3383 return LangAS::cuda_constant; 3384 else if (D && D->hasAttr<CUDASharedAttr>()) 3385 return LangAS::cuda_shared; 3386 else if (D && D->hasAttr<CUDADeviceAttr>()) 3387 return LangAS::cuda_device; 3388 else if (D && D->getType().isConstQualified()) 3389 return LangAS::cuda_constant; 3390 else 3391 return LangAS::cuda_device; 3392 } 3393 3394 if (LangOpts.OpenMP) { 3395 LangAS AS; 3396 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3397 return AS; 3398 } 3399 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3400 } 3401 3402 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3403 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3404 if (LangOpts.OpenCL) 3405 return LangAS::opencl_constant; 3406 if (auto AS = getTarget().getConstantAddressSpace()) 3407 return AS.getValue(); 3408 return LangAS::Default; 3409 } 3410 3411 // In address space agnostic languages, string literals are in default address 3412 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3413 // emitted in constant address space in LLVM IR. To be consistent with other 3414 // parts of AST, string literal global variables in constant address space 3415 // need to be casted to default address space before being put into address 3416 // map and referenced by other part of CodeGen. 3417 // In OpenCL, string literals are in constant address space in AST, therefore 3418 // they should not be casted to default address space. 3419 static llvm::Constant * 3420 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3421 llvm::GlobalVariable *GV) { 3422 llvm::Constant *Cast = GV; 3423 if (!CGM.getLangOpts().OpenCL) { 3424 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3425 if (AS != LangAS::Default) 3426 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3427 CGM, GV, AS.getValue(), LangAS::Default, 3428 GV->getValueType()->getPointerTo( 3429 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3430 } 3431 } 3432 return Cast; 3433 } 3434 3435 template<typename SomeDecl> 3436 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3437 llvm::GlobalValue *GV) { 3438 if (!getLangOpts().CPlusPlus) 3439 return; 3440 3441 // Must have 'used' attribute, or else inline assembly can't rely on 3442 // the name existing. 3443 if (!D->template hasAttr<UsedAttr>()) 3444 return; 3445 3446 // Must have internal linkage and an ordinary name. 3447 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3448 return; 3449 3450 // Must be in an extern "C" context. Entities declared directly within 3451 // a record are not extern "C" even if the record is in such a context. 3452 const SomeDecl *First = D->getFirstDecl(); 3453 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3454 return; 3455 3456 // OK, this is an internal linkage entity inside an extern "C" linkage 3457 // specification. Make a note of that so we can give it the "expected" 3458 // mangled name if nothing else is using that name. 3459 std::pair<StaticExternCMap::iterator, bool> R = 3460 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3461 3462 // If we have multiple internal linkage entities with the same name 3463 // in extern "C" regions, none of them gets that name. 3464 if (!R.second) 3465 R.first->second = nullptr; 3466 } 3467 3468 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3469 if (!CGM.supportsCOMDAT()) 3470 return false; 3471 3472 if (D.hasAttr<SelectAnyAttr>()) 3473 return true; 3474 3475 GVALinkage Linkage; 3476 if (auto *VD = dyn_cast<VarDecl>(&D)) 3477 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3478 else 3479 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3480 3481 switch (Linkage) { 3482 case GVA_Internal: 3483 case GVA_AvailableExternally: 3484 case GVA_StrongExternal: 3485 return false; 3486 case GVA_DiscardableODR: 3487 case GVA_StrongODR: 3488 return true; 3489 } 3490 llvm_unreachable("No such linkage"); 3491 } 3492 3493 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3494 llvm::GlobalObject &GO) { 3495 if (!shouldBeInCOMDAT(*this, D)) 3496 return; 3497 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3498 } 3499 3500 /// Pass IsTentative as true if you want to create a tentative definition. 3501 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3502 bool IsTentative) { 3503 // OpenCL global variables of sampler type are translated to function calls, 3504 // therefore no need to be translated. 3505 QualType ASTTy = D->getType(); 3506 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3507 return; 3508 3509 // If this is OpenMP device, check if it is legal to emit this global 3510 // normally. 3511 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3512 OpenMPRuntime->emitTargetGlobalVariable(D)) 3513 return; 3514 3515 llvm::Constant *Init = nullptr; 3516 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3517 bool NeedsGlobalCtor = false; 3518 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3519 3520 const VarDecl *InitDecl; 3521 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3522 3523 Optional<ConstantEmitter> emitter; 3524 3525 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3526 // as part of their declaration." Sema has already checked for 3527 // error cases, so we just need to set Init to UndefValue. 3528 bool IsCUDASharedVar = 3529 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3530 // Shadows of initialized device-side global variables are also left 3531 // undefined. 3532 bool IsCUDAShadowVar = 3533 !getLangOpts().CUDAIsDevice && 3534 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3535 D->hasAttr<CUDASharedAttr>()); 3536 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3537 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3538 else if (!InitExpr) { 3539 // This is a tentative definition; tentative definitions are 3540 // implicitly initialized with { 0 }. 3541 // 3542 // Note that tentative definitions are only emitted at the end of 3543 // a translation unit, so they should never have incomplete 3544 // type. In addition, EmitTentativeDefinition makes sure that we 3545 // never attempt to emit a tentative definition if a real one 3546 // exists. A use may still exists, however, so we still may need 3547 // to do a RAUW. 3548 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3549 Init = EmitNullConstant(D->getType()); 3550 } else { 3551 initializedGlobalDecl = GlobalDecl(D); 3552 emitter.emplace(*this); 3553 Init = emitter->tryEmitForInitializer(*InitDecl); 3554 3555 if (!Init) { 3556 QualType T = InitExpr->getType(); 3557 if (D->getType()->isReferenceType()) 3558 T = D->getType(); 3559 3560 if (getLangOpts().CPlusPlus) { 3561 Init = EmitNullConstant(T); 3562 NeedsGlobalCtor = true; 3563 } else { 3564 ErrorUnsupported(D, "static initializer"); 3565 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3566 } 3567 } else { 3568 // We don't need an initializer, so remove the entry for the delayed 3569 // initializer position (just in case this entry was delayed) if we 3570 // also don't need to register a destructor. 3571 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3572 DelayedCXXInitPosition.erase(D); 3573 } 3574 } 3575 3576 llvm::Type* InitType = Init->getType(); 3577 llvm::Constant *Entry = 3578 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3579 3580 // Strip off a bitcast if we got one back. 3581 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3582 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3583 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3584 // All zero index gep. 3585 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3586 Entry = CE->getOperand(0); 3587 } 3588 3589 // Entry is now either a Function or GlobalVariable. 3590 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3591 3592 // We have a definition after a declaration with the wrong type. 3593 // We must make a new GlobalVariable* and update everything that used OldGV 3594 // (a declaration or tentative definition) with the new GlobalVariable* 3595 // (which will be a definition). 3596 // 3597 // This happens if there is a prototype for a global (e.g. 3598 // "extern int x[];") and then a definition of a different type (e.g. 3599 // "int x[10];"). This also happens when an initializer has a different type 3600 // from the type of the global (this happens with unions). 3601 if (!GV || GV->getType()->getElementType() != InitType || 3602 GV->getType()->getAddressSpace() != 3603 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3604 3605 // Move the old entry aside so that we'll create a new one. 3606 Entry->setName(StringRef()); 3607 3608 // Make a new global with the correct type, this is now guaranteed to work. 3609 GV = cast<llvm::GlobalVariable>( 3610 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3611 3612 // Replace all uses of the old global with the new global 3613 llvm::Constant *NewPtrForOldDecl = 3614 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3615 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3616 3617 // Erase the old global, since it is no longer used. 3618 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3619 } 3620 3621 MaybeHandleStaticInExternC(D, GV); 3622 3623 if (D->hasAttr<AnnotateAttr>()) 3624 AddGlobalAnnotations(D, GV); 3625 3626 // Set the llvm linkage type as appropriate. 3627 llvm::GlobalValue::LinkageTypes Linkage = 3628 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3629 3630 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3631 // the device. [...]" 3632 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3633 // __device__, declares a variable that: [...] 3634 // Is accessible from all the threads within the grid and from the host 3635 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3636 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3637 if (GV && LangOpts.CUDA) { 3638 if (LangOpts.CUDAIsDevice) { 3639 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3640 GV->setExternallyInitialized(true); 3641 } else { 3642 // Host-side shadows of external declarations of device-side 3643 // global variables become internal definitions. These have to 3644 // be internal in order to prevent name conflicts with global 3645 // host variables with the same name in a different TUs. 3646 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3647 Linkage = llvm::GlobalValue::InternalLinkage; 3648 3649 // Shadow variables and their properties must be registered 3650 // with CUDA runtime. 3651 unsigned Flags = 0; 3652 if (!D->hasDefinition()) 3653 Flags |= CGCUDARuntime::ExternDeviceVar; 3654 if (D->hasAttr<CUDAConstantAttr>()) 3655 Flags |= CGCUDARuntime::ConstantDeviceVar; 3656 // Extern global variables will be registered in the TU where they are 3657 // defined. 3658 if (!D->hasExternalStorage()) 3659 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3660 } else if (D->hasAttr<CUDASharedAttr>()) 3661 // __shared__ variables are odd. Shadows do get created, but 3662 // they are not registered with the CUDA runtime, so they 3663 // can't really be used to access their device-side 3664 // counterparts. It's not clear yet whether it's nvcc's bug or 3665 // a feature, but we've got to do the same for compatibility. 3666 Linkage = llvm::GlobalValue::InternalLinkage; 3667 } 3668 } 3669 3670 GV->setInitializer(Init); 3671 if (emitter) emitter->finalize(GV); 3672 3673 // If it is safe to mark the global 'constant', do so now. 3674 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3675 isTypeConstant(D->getType(), true)); 3676 3677 // If it is in a read-only section, mark it 'constant'. 3678 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3679 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3680 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3681 GV->setConstant(true); 3682 } 3683 3684 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3685 3686 3687 // On Darwin, if the normal linkage of a C++ thread_local variable is 3688 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3689 // copies within a linkage unit; otherwise, the backing variable has 3690 // internal linkage and all accesses should just be calls to the 3691 // Itanium-specified entry point, which has the normal linkage of the 3692 // variable. This is to preserve the ability to change the implementation 3693 // behind the scenes. 3694 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3695 Context.getTargetInfo().getTriple().isOSDarwin() && 3696 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3697 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3698 Linkage = llvm::GlobalValue::InternalLinkage; 3699 3700 GV->setLinkage(Linkage); 3701 if (D->hasAttr<DLLImportAttr>()) 3702 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3703 else if (D->hasAttr<DLLExportAttr>()) 3704 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3705 else 3706 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3707 3708 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3709 // common vars aren't constant even if declared const. 3710 GV->setConstant(false); 3711 // Tentative definition of global variables may be initialized with 3712 // non-zero null pointers. In this case they should have weak linkage 3713 // since common linkage must have zero initializer and must not have 3714 // explicit section therefore cannot have non-zero initial value. 3715 if (!GV->getInitializer()->isNullValue()) 3716 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3717 } 3718 3719 setNonAliasAttributes(D, GV); 3720 3721 if (D->getTLSKind() && !GV->isThreadLocal()) { 3722 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3723 CXXThreadLocals.push_back(D); 3724 setTLSMode(GV, *D); 3725 } 3726 3727 maybeSetTrivialComdat(*D, *GV); 3728 3729 // Emit the initializer function if necessary. 3730 if (NeedsGlobalCtor || NeedsGlobalDtor) 3731 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3732 3733 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3734 3735 // Emit global variable debug information. 3736 if (CGDebugInfo *DI = getModuleDebugInfo()) 3737 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3738 DI->EmitGlobalVariable(GV, D); 3739 } 3740 3741 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3742 CodeGenModule &CGM, const VarDecl *D, 3743 bool NoCommon) { 3744 // Don't give variables common linkage if -fno-common was specified unless it 3745 // was overridden by a NoCommon attribute. 3746 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3747 return true; 3748 3749 // C11 6.9.2/2: 3750 // A declaration of an identifier for an object that has file scope without 3751 // an initializer, and without a storage-class specifier or with the 3752 // storage-class specifier static, constitutes a tentative definition. 3753 if (D->getInit() || D->hasExternalStorage()) 3754 return true; 3755 3756 // A variable cannot be both common and exist in a section. 3757 if (D->hasAttr<SectionAttr>()) 3758 return true; 3759 3760 // A variable cannot be both common and exist in a section. 3761 // We don't try to determine which is the right section in the front-end. 3762 // If no specialized section name is applicable, it will resort to default. 3763 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3764 D->hasAttr<PragmaClangDataSectionAttr>() || 3765 D->hasAttr<PragmaClangRodataSectionAttr>()) 3766 return true; 3767 3768 // Thread local vars aren't considered common linkage. 3769 if (D->getTLSKind()) 3770 return true; 3771 3772 // Tentative definitions marked with WeakImportAttr are true definitions. 3773 if (D->hasAttr<WeakImportAttr>()) 3774 return true; 3775 3776 // A variable cannot be both common and exist in a comdat. 3777 if (shouldBeInCOMDAT(CGM, *D)) 3778 return true; 3779 3780 // Declarations with a required alignment do not have common linkage in MSVC 3781 // mode. 3782 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3783 if (D->hasAttr<AlignedAttr>()) 3784 return true; 3785 QualType VarType = D->getType(); 3786 if (Context.isAlignmentRequired(VarType)) 3787 return true; 3788 3789 if (const auto *RT = VarType->getAs<RecordType>()) { 3790 const RecordDecl *RD = RT->getDecl(); 3791 for (const FieldDecl *FD : RD->fields()) { 3792 if (FD->isBitField()) 3793 continue; 3794 if (FD->hasAttr<AlignedAttr>()) 3795 return true; 3796 if (Context.isAlignmentRequired(FD->getType())) 3797 return true; 3798 } 3799 } 3800 } 3801 3802 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 3803 // common symbols, so symbols with greater alignment requirements cannot be 3804 // common. 3805 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 3806 // alignments for common symbols via the aligncomm directive, so this 3807 // restriction only applies to MSVC environments. 3808 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 3809 Context.getTypeAlignIfKnown(D->getType()) > 3810 Context.toBits(CharUnits::fromQuantity(32))) 3811 return true; 3812 3813 return false; 3814 } 3815 3816 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3817 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3818 if (Linkage == GVA_Internal) 3819 return llvm::Function::InternalLinkage; 3820 3821 if (D->hasAttr<WeakAttr>()) { 3822 if (IsConstantVariable) 3823 return llvm::GlobalVariable::WeakODRLinkage; 3824 else 3825 return llvm::GlobalVariable::WeakAnyLinkage; 3826 } 3827 3828 if (const auto *FD = D->getAsFunction()) 3829 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3830 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3831 3832 // We are guaranteed to have a strong definition somewhere else, 3833 // so we can use available_externally linkage. 3834 if (Linkage == GVA_AvailableExternally) 3835 return llvm::GlobalValue::AvailableExternallyLinkage; 3836 3837 // Note that Apple's kernel linker doesn't support symbol 3838 // coalescing, so we need to avoid linkonce and weak linkages there. 3839 // Normally, this means we just map to internal, but for explicit 3840 // instantiations we'll map to external. 3841 3842 // In C++, the compiler has to emit a definition in every translation unit 3843 // that references the function. We should use linkonce_odr because 3844 // a) if all references in this translation unit are optimized away, we 3845 // don't need to codegen it. b) if the function persists, it needs to be 3846 // merged with other definitions. c) C++ has the ODR, so we know the 3847 // definition is dependable. 3848 if (Linkage == GVA_DiscardableODR) 3849 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3850 : llvm::Function::InternalLinkage; 3851 3852 // An explicit instantiation of a template has weak linkage, since 3853 // explicit instantiations can occur in multiple translation units 3854 // and must all be equivalent. However, we are not allowed to 3855 // throw away these explicit instantiations. 3856 // 3857 // We don't currently support CUDA device code spread out across multiple TUs, 3858 // so say that CUDA templates are either external (for kernels) or internal. 3859 // This lets llvm perform aggressive inter-procedural optimizations. 3860 if (Linkage == GVA_StrongODR) { 3861 if (Context.getLangOpts().AppleKext) 3862 return llvm::Function::ExternalLinkage; 3863 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3864 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3865 : llvm::Function::InternalLinkage; 3866 return llvm::Function::WeakODRLinkage; 3867 } 3868 3869 // C++ doesn't have tentative definitions and thus cannot have common 3870 // linkage. 3871 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3872 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3873 CodeGenOpts.NoCommon)) 3874 return llvm::GlobalVariable::CommonLinkage; 3875 3876 // selectany symbols are externally visible, so use weak instead of 3877 // linkonce. MSVC optimizes away references to const selectany globals, so 3878 // all definitions should be the same and ODR linkage should be used. 3879 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3880 if (D->hasAttr<SelectAnyAttr>()) 3881 return llvm::GlobalVariable::WeakODRLinkage; 3882 3883 // Otherwise, we have strong external linkage. 3884 assert(Linkage == GVA_StrongExternal); 3885 return llvm::GlobalVariable::ExternalLinkage; 3886 } 3887 3888 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3889 const VarDecl *VD, bool IsConstant) { 3890 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3891 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3892 } 3893 3894 /// Replace the uses of a function that was declared with a non-proto type. 3895 /// We want to silently drop extra arguments from call sites 3896 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3897 llvm::Function *newFn) { 3898 // Fast path. 3899 if (old->use_empty()) return; 3900 3901 llvm::Type *newRetTy = newFn->getReturnType(); 3902 SmallVector<llvm::Value*, 4> newArgs; 3903 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3904 3905 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3906 ui != ue; ) { 3907 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3908 llvm::User *user = use->getUser(); 3909 3910 // Recognize and replace uses of bitcasts. Most calls to 3911 // unprototyped functions will use bitcasts. 3912 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3913 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3914 replaceUsesOfNonProtoConstant(bitcast, newFn); 3915 continue; 3916 } 3917 3918 // Recognize calls to the function. 3919 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 3920 if (!callSite) continue; 3921 if (!callSite->isCallee(&*use)) 3922 continue; 3923 3924 // If the return types don't match exactly, then we can't 3925 // transform this call unless it's dead. 3926 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3927 continue; 3928 3929 // Get the call site's attribute list. 3930 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3931 llvm::AttributeList oldAttrs = callSite->getAttributes(); 3932 3933 // If the function was passed too few arguments, don't transform. 3934 unsigned newNumArgs = newFn->arg_size(); 3935 if (callSite->arg_size() < newNumArgs) 3936 continue; 3937 3938 // If extra arguments were passed, we silently drop them. 3939 // If any of the types mismatch, we don't transform. 3940 unsigned argNo = 0; 3941 bool dontTransform = false; 3942 for (llvm::Argument &A : newFn->args()) { 3943 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 3944 dontTransform = true; 3945 break; 3946 } 3947 3948 // Add any parameter attributes. 3949 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3950 argNo++; 3951 } 3952 if (dontTransform) 3953 continue; 3954 3955 // Okay, we can transform this. Create the new call instruction and copy 3956 // over the required information. 3957 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 3958 3959 // Copy over any operand bundles. 3960 callSite->getOperandBundlesAsDefs(newBundles); 3961 3962 llvm::CallBase *newCall; 3963 if (dyn_cast<llvm::CallInst>(callSite)) { 3964 newCall = 3965 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 3966 } else { 3967 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 3968 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 3969 oldInvoke->getUnwindDest(), newArgs, 3970 newBundles, "", callSite); 3971 } 3972 newArgs.clear(); // for the next iteration 3973 3974 if (!newCall->getType()->isVoidTy()) 3975 newCall->takeName(callSite); 3976 newCall->setAttributes(llvm::AttributeList::get( 3977 newFn->getContext(), oldAttrs.getFnAttributes(), 3978 oldAttrs.getRetAttributes(), newArgAttrs)); 3979 newCall->setCallingConv(callSite->getCallingConv()); 3980 3981 // Finally, remove the old call, replacing any uses with the new one. 3982 if (!callSite->use_empty()) 3983 callSite->replaceAllUsesWith(newCall); 3984 3985 // Copy debug location attached to CI. 3986 if (callSite->getDebugLoc()) 3987 newCall->setDebugLoc(callSite->getDebugLoc()); 3988 3989 callSite->eraseFromParent(); 3990 } 3991 } 3992 3993 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3994 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3995 /// existing call uses of the old function in the module, this adjusts them to 3996 /// call the new function directly. 3997 /// 3998 /// This is not just a cleanup: the always_inline pass requires direct calls to 3999 /// functions to be able to inline them. If there is a bitcast in the way, it 4000 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4001 /// run at -O0. 4002 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4003 llvm::Function *NewFn) { 4004 // If we're redefining a global as a function, don't transform it. 4005 if (!isa<llvm::Function>(Old)) return; 4006 4007 replaceUsesOfNonProtoConstant(Old, NewFn); 4008 } 4009 4010 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4011 auto DK = VD->isThisDeclarationADefinition(); 4012 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4013 return; 4014 4015 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4016 // If we have a definition, this might be a deferred decl. If the 4017 // instantiation is explicit, make sure we emit it at the end. 4018 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4019 GetAddrOfGlobalVar(VD); 4020 4021 EmitTopLevelDecl(VD); 4022 } 4023 4024 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4025 llvm::GlobalValue *GV) { 4026 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4027 4028 // Compute the function info and LLVM type. 4029 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4030 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4031 4032 // Get or create the prototype for the function. 4033 if (!GV || (GV->getType()->getElementType() != Ty)) 4034 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4035 /*DontDefer=*/true, 4036 ForDefinition)); 4037 4038 // Already emitted. 4039 if (!GV->isDeclaration()) 4040 return; 4041 4042 // We need to set linkage and visibility on the function before 4043 // generating code for it because various parts of IR generation 4044 // want to propagate this information down (e.g. to local static 4045 // declarations). 4046 auto *Fn = cast<llvm::Function>(GV); 4047 setFunctionLinkage(GD, Fn); 4048 4049 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4050 setGVProperties(Fn, GD); 4051 4052 MaybeHandleStaticInExternC(D, Fn); 4053 4054 4055 maybeSetTrivialComdat(*D, *Fn); 4056 4057 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4058 4059 setNonAliasAttributes(GD, Fn); 4060 SetLLVMFunctionAttributesForDefinition(D, Fn); 4061 4062 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4063 AddGlobalCtor(Fn, CA->getPriority()); 4064 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4065 AddGlobalDtor(Fn, DA->getPriority()); 4066 if (D->hasAttr<AnnotateAttr>()) 4067 AddGlobalAnnotations(D, Fn); 4068 } 4069 4070 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4071 const auto *D = cast<ValueDecl>(GD.getDecl()); 4072 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4073 assert(AA && "Not an alias?"); 4074 4075 StringRef MangledName = getMangledName(GD); 4076 4077 if (AA->getAliasee() == MangledName) { 4078 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4079 return; 4080 } 4081 4082 // If there is a definition in the module, then it wins over the alias. 4083 // This is dubious, but allow it to be safe. Just ignore the alias. 4084 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4085 if (Entry && !Entry->isDeclaration()) 4086 return; 4087 4088 Aliases.push_back(GD); 4089 4090 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4091 4092 // Create a reference to the named value. This ensures that it is emitted 4093 // if a deferred decl. 4094 llvm::Constant *Aliasee; 4095 if (isa<llvm::FunctionType>(DeclTy)) 4096 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4097 /*ForVTable=*/false); 4098 else 4099 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4100 llvm::PointerType::getUnqual(DeclTy), 4101 /*D=*/nullptr); 4102 4103 // Create the new alias itself, but don't set a name yet. 4104 auto *GA = llvm::GlobalAlias::create( 4105 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4106 4107 if (Entry) { 4108 if (GA->getAliasee() == Entry) { 4109 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4110 return; 4111 } 4112 4113 assert(Entry->isDeclaration()); 4114 4115 // If there is a declaration in the module, then we had an extern followed 4116 // by the alias, as in: 4117 // extern int test6(); 4118 // ... 4119 // int test6() __attribute__((alias("test7"))); 4120 // 4121 // Remove it and replace uses of it with the alias. 4122 GA->takeName(Entry); 4123 4124 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4125 Entry->getType())); 4126 Entry->eraseFromParent(); 4127 } else { 4128 GA->setName(MangledName); 4129 } 4130 4131 // Set attributes which are particular to an alias; this is a 4132 // specialization of the attributes which may be set on a global 4133 // variable/function. 4134 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4135 D->isWeakImported()) { 4136 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4137 } 4138 4139 if (const auto *VD = dyn_cast<VarDecl>(D)) 4140 if (VD->getTLSKind()) 4141 setTLSMode(GA, *VD); 4142 4143 SetCommonAttributes(GD, GA); 4144 } 4145 4146 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4147 const auto *D = cast<ValueDecl>(GD.getDecl()); 4148 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4149 assert(IFA && "Not an ifunc?"); 4150 4151 StringRef MangledName = getMangledName(GD); 4152 4153 if (IFA->getResolver() == MangledName) { 4154 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4155 return; 4156 } 4157 4158 // Report an error if some definition overrides ifunc. 4159 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4160 if (Entry && !Entry->isDeclaration()) { 4161 GlobalDecl OtherGD; 4162 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4163 DiagnosedConflictingDefinitions.insert(GD).second) { 4164 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4165 << MangledName; 4166 Diags.Report(OtherGD.getDecl()->getLocation(), 4167 diag::note_previous_definition); 4168 } 4169 return; 4170 } 4171 4172 Aliases.push_back(GD); 4173 4174 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4175 llvm::Constant *Resolver = 4176 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4177 /*ForVTable=*/false); 4178 llvm::GlobalIFunc *GIF = 4179 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4180 "", Resolver, &getModule()); 4181 if (Entry) { 4182 if (GIF->getResolver() == Entry) { 4183 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4184 return; 4185 } 4186 assert(Entry->isDeclaration()); 4187 4188 // If there is a declaration in the module, then we had an extern followed 4189 // by the ifunc, as in: 4190 // extern int test(); 4191 // ... 4192 // int test() __attribute__((ifunc("resolver"))); 4193 // 4194 // Remove it and replace uses of it with the ifunc. 4195 GIF->takeName(Entry); 4196 4197 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4198 Entry->getType())); 4199 Entry->eraseFromParent(); 4200 } else 4201 GIF->setName(MangledName); 4202 4203 SetCommonAttributes(GD, GIF); 4204 } 4205 4206 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4207 ArrayRef<llvm::Type*> Tys) { 4208 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4209 Tys); 4210 } 4211 4212 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4213 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4214 const StringLiteral *Literal, bool TargetIsLSB, 4215 bool &IsUTF16, unsigned &StringLength) { 4216 StringRef String = Literal->getString(); 4217 unsigned NumBytes = String.size(); 4218 4219 // Check for simple case. 4220 if (!Literal->containsNonAsciiOrNull()) { 4221 StringLength = NumBytes; 4222 return *Map.insert(std::make_pair(String, nullptr)).first; 4223 } 4224 4225 // Otherwise, convert the UTF8 literals into a string of shorts. 4226 IsUTF16 = true; 4227 4228 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4229 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4230 llvm::UTF16 *ToPtr = &ToBuf[0]; 4231 4232 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4233 ToPtr + NumBytes, llvm::strictConversion); 4234 4235 // ConvertUTF8toUTF16 returns the length in ToPtr. 4236 StringLength = ToPtr - &ToBuf[0]; 4237 4238 // Add an explicit null. 4239 *ToPtr = 0; 4240 return *Map.insert(std::make_pair( 4241 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4242 (StringLength + 1) * 2), 4243 nullptr)).first; 4244 } 4245 4246 ConstantAddress 4247 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4248 unsigned StringLength = 0; 4249 bool isUTF16 = false; 4250 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4251 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4252 getDataLayout().isLittleEndian(), isUTF16, 4253 StringLength); 4254 4255 if (auto *C = Entry.second) 4256 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4257 4258 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4259 llvm::Constant *Zeros[] = { Zero, Zero }; 4260 4261 const ASTContext &Context = getContext(); 4262 const llvm::Triple &Triple = getTriple(); 4263 4264 const auto CFRuntime = getLangOpts().CFRuntime; 4265 const bool IsSwiftABI = 4266 static_cast<unsigned>(CFRuntime) >= 4267 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4268 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4269 4270 // If we don't already have it, get __CFConstantStringClassReference. 4271 if (!CFConstantStringClassRef) { 4272 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4273 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4274 Ty = llvm::ArrayType::get(Ty, 0); 4275 4276 switch (CFRuntime) { 4277 default: break; 4278 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4279 case LangOptions::CoreFoundationABI::Swift5_0: 4280 CFConstantStringClassName = 4281 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4282 : "$s10Foundation19_NSCFConstantStringCN"; 4283 Ty = IntPtrTy; 4284 break; 4285 case LangOptions::CoreFoundationABI::Swift4_2: 4286 CFConstantStringClassName = 4287 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4288 : "$S10Foundation19_NSCFConstantStringCN"; 4289 Ty = IntPtrTy; 4290 break; 4291 case LangOptions::CoreFoundationABI::Swift4_1: 4292 CFConstantStringClassName = 4293 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4294 : "__T010Foundation19_NSCFConstantStringCN"; 4295 Ty = IntPtrTy; 4296 break; 4297 } 4298 4299 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4300 4301 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4302 llvm::GlobalValue *GV = nullptr; 4303 4304 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4305 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4306 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4307 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4308 4309 const VarDecl *VD = nullptr; 4310 for (const auto &Result : DC->lookup(&II)) 4311 if ((VD = dyn_cast<VarDecl>(Result))) 4312 break; 4313 4314 if (Triple.isOSBinFormatELF()) { 4315 if (!VD) 4316 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4317 } else { 4318 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4319 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4320 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4321 else 4322 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4323 } 4324 4325 setDSOLocal(GV); 4326 } 4327 } 4328 4329 // Decay array -> ptr 4330 CFConstantStringClassRef = 4331 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4332 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4333 } 4334 4335 QualType CFTy = Context.getCFConstantStringType(); 4336 4337 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4338 4339 ConstantInitBuilder Builder(*this); 4340 auto Fields = Builder.beginStruct(STy); 4341 4342 // Class pointer. 4343 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4344 4345 // Flags. 4346 if (IsSwiftABI) { 4347 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4348 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4349 } else { 4350 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4351 } 4352 4353 // String pointer. 4354 llvm::Constant *C = nullptr; 4355 if (isUTF16) { 4356 auto Arr = llvm::makeArrayRef( 4357 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4358 Entry.first().size() / 2); 4359 C = llvm::ConstantDataArray::get(VMContext, Arr); 4360 } else { 4361 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4362 } 4363 4364 // Note: -fwritable-strings doesn't make the backing store strings of 4365 // CFStrings writable. (See <rdar://problem/10657500>) 4366 auto *GV = 4367 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4368 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4369 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4370 // Don't enforce the target's minimum global alignment, since the only use 4371 // of the string is via this class initializer. 4372 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4373 : Context.getTypeAlignInChars(Context.CharTy); 4374 GV->setAlignment(Align.getQuantity()); 4375 4376 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4377 // Without it LLVM can merge the string with a non unnamed_addr one during 4378 // LTO. Doing that changes the section it ends in, which surprises ld64. 4379 if (Triple.isOSBinFormatMachO()) 4380 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4381 : "__TEXT,__cstring,cstring_literals"); 4382 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4383 // the static linker to adjust permissions to read-only later on. 4384 else if (Triple.isOSBinFormatELF()) 4385 GV->setSection(".rodata"); 4386 4387 // String. 4388 llvm::Constant *Str = 4389 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4390 4391 if (isUTF16) 4392 // Cast the UTF16 string to the correct type. 4393 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4394 Fields.add(Str); 4395 4396 // String length. 4397 llvm::IntegerType *LengthTy = 4398 llvm::IntegerType::get(getModule().getContext(), 4399 Context.getTargetInfo().getLongWidth()); 4400 if (IsSwiftABI) { 4401 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4402 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4403 LengthTy = Int32Ty; 4404 else 4405 LengthTy = IntPtrTy; 4406 } 4407 Fields.addInt(LengthTy, StringLength); 4408 4409 CharUnits Alignment = getPointerAlign(); 4410 4411 // The struct. 4412 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4413 /*isConstant=*/false, 4414 llvm::GlobalVariable::PrivateLinkage); 4415 switch (Triple.getObjectFormat()) { 4416 case llvm::Triple::UnknownObjectFormat: 4417 llvm_unreachable("unknown file format"); 4418 case llvm::Triple::XCOFF: 4419 llvm_unreachable("XCOFF is not yet implemented"); 4420 case llvm::Triple::COFF: 4421 case llvm::Triple::ELF: 4422 case llvm::Triple::Wasm: 4423 GV->setSection("cfstring"); 4424 break; 4425 case llvm::Triple::MachO: 4426 GV->setSection("__DATA,__cfstring"); 4427 break; 4428 } 4429 Entry.second = GV; 4430 4431 return ConstantAddress(GV, Alignment); 4432 } 4433 4434 bool CodeGenModule::getExpressionLocationsEnabled() const { 4435 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4436 } 4437 4438 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4439 if (ObjCFastEnumerationStateType.isNull()) { 4440 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4441 D->startDefinition(); 4442 4443 QualType FieldTypes[] = { 4444 Context.UnsignedLongTy, 4445 Context.getPointerType(Context.getObjCIdType()), 4446 Context.getPointerType(Context.UnsignedLongTy), 4447 Context.getConstantArrayType(Context.UnsignedLongTy, 4448 llvm::APInt(32, 5), ArrayType::Normal, 0) 4449 }; 4450 4451 for (size_t i = 0; i < 4; ++i) { 4452 FieldDecl *Field = FieldDecl::Create(Context, 4453 D, 4454 SourceLocation(), 4455 SourceLocation(), nullptr, 4456 FieldTypes[i], /*TInfo=*/nullptr, 4457 /*BitWidth=*/nullptr, 4458 /*Mutable=*/false, 4459 ICIS_NoInit); 4460 Field->setAccess(AS_public); 4461 D->addDecl(Field); 4462 } 4463 4464 D->completeDefinition(); 4465 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4466 } 4467 4468 return ObjCFastEnumerationStateType; 4469 } 4470 4471 llvm::Constant * 4472 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4473 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4474 4475 // Don't emit it as the address of the string, emit the string data itself 4476 // as an inline array. 4477 if (E->getCharByteWidth() == 1) { 4478 SmallString<64> Str(E->getString()); 4479 4480 // Resize the string to the right size, which is indicated by its type. 4481 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4482 Str.resize(CAT->getSize().getZExtValue()); 4483 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4484 } 4485 4486 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4487 llvm::Type *ElemTy = AType->getElementType(); 4488 unsigned NumElements = AType->getNumElements(); 4489 4490 // Wide strings have either 2-byte or 4-byte elements. 4491 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4492 SmallVector<uint16_t, 32> Elements; 4493 Elements.reserve(NumElements); 4494 4495 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4496 Elements.push_back(E->getCodeUnit(i)); 4497 Elements.resize(NumElements); 4498 return llvm::ConstantDataArray::get(VMContext, Elements); 4499 } 4500 4501 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4502 SmallVector<uint32_t, 32> Elements; 4503 Elements.reserve(NumElements); 4504 4505 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4506 Elements.push_back(E->getCodeUnit(i)); 4507 Elements.resize(NumElements); 4508 return llvm::ConstantDataArray::get(VMContext, Elements); 4509 } 4510 4511 static llvm::GlobalVariable * 4512 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4513 CodeGenModule &CGM, StringRef GlobalName, 4514 CharUnits Alignment) { 4515 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4516 CGM.getStringLiteralAddressSpace()); 4517 4518 llvm::Module &M = CGM.getModule(); 4519 // Create a global variable for this string 4520 auto *GV = new llvm::GlobalVariable( 4521 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4522 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4523 GV->setAlignment(Alignment.getQuantity()); 4524 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4525 if (GV->isWeakForLinker()) { 4526 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4527 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4528 } 4529 CGM.setDSOLocal(GV); 4530 4531 return GV; 4532 } 4533 4534 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4535 /// constant array for the given string literal. 4536 ConstantAddress 4537 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4538 StringRef Name) { 4539 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4540 4541 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4542 llvm::GlobalVariable **Entry = nullptr; 4543 if (!LangOpts.WritableStrings) { 4544 Entry = &ConstantStringMap[C]; 4545 if (auto GV = *Entry) { 4546 if (Alignment.getQuantity() > GV->getAlignment()) 4547 GV->setAlignment(Alignment.getQuantity()); 4548 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4549 Alignment); 4550 } 4551 } 4552 4553 SmallString<256> MangledNameBuffer; 4554 StringRef GlobalVariableName; 4555 llvm::GlobalValue::LinkageTypes LT; 4556 4557 // Mangle the string literal if that's how the ABI merges duplicate strings. 4558 // Don't do it if they are writable, since we don't want writes in one TU to 4559 // affect strings in another. 4560 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4561 !LangOpts.WritableStrings) { 4562 llvm::raw_svector_ostream Out(MangledNameBuffer); 4563 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4564 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4565 GlobalVariableName = MangledNameBuffer; 4566 } else { 4567 LT = llvm::GlobalValue::PrivateLinkage; 4568 GlobalVariableName = Name; 4569 } 4570 4571 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4572 if (Entry) 4573 *Entry = GV; 4574 4575 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4576 QualType()); 4577 4578 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4579 Alignment); 4580 } 4581 4582 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4583 /// array for the given ObjCEncodeExpr node. 4584 ConstantAddress 4585 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4586 std::string Str; 4587 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4588 4589 return GetAddrOfConstantCString(Str); 4590 } 4591 4592 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4593 /// the literal and a terminating '\0' character. 4594 /// The result has pointer to array type. 4595 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4596 const std::string &Str, const char *GlobalName) { 4597 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4598 CharUnits Alignment = 4599 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4600 4601 llvm::Constant *C = 4602 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4603 4604 // Don't share any string literals if strings aren't constant. 4605 llvm::GlobalVariable **Entry = nullptr; 4606 if (!LangOpts.WritableStrings) { 4607 Entry = &ConstantStringMap[C]; 4608 if (auto GV = *Entry) { 4609 if (Alignment.getQuantity() > GV->getAlignment()) 4610 GV->setAlignment(Alignment.getQuantity()); 4611 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4612 Alignment); 4613 } 4614 } 4615 4616 // Get the default prefix if a name wasn't specified. 4617 if (!GlobalName) 4618 GlobalName = ".str"; 4619 // Create a global variable for this. 4620 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4621 GlobalName, Alignment); 4622 if (Entry) 4623 *Entry = GV; 4624 4625 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4626 Alignment); 4627 } 4628 4629 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4630 const MaterializeTemporaryExpr *E, const Expr *Init) { 4631 assert((E->getStorageDuration() == SD_Static || 4632 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4633 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4634 4635 // If we're not materializing a subobject of the temporary, keep the 4636 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4637 QualType MaterializedType = Init->getType(); 4638 if (Init == E->GetTemporaryExpr()) 4639 MaterializedType = E->getType(); 4640 4641 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4642 4643 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4644 return ConstantAddress(Slot, Align); 4645 4646 // FIXME: If an externally-visible declaration extends multiple temporaries, 4647 // we need to give each temporary the same name in every translation unit (and 4648 // we also need to make the temporaries externally-visible). 4649 SmallString<256> Name; 4650 llvm::raw_svector_ostream Out(Name); 4651 getCXXABI().getMangleContext().mangleReferenceTemporary( 4652 VD, E->getManglingNumber(), Out); 4653 4654 APValue *Value = nullptr; 4655 if (E->getStorageDuration() == SD_Static) { 4656 // We might have a cached constant initializer for this temporary. Note 4657 // that this might have a different value from the value computed by 4658 // evaluating the initializer if the surrounding constant expression 4659 // modifies the temporary. 4660 Value = getContext().getMaterializedTemporaryValue(E, false); 4661 if (Value && Value->isUninit()) 4662 Value = nullptr; 4663 } 4664 4665 // Try evaluating it now, it might have a constant initializer. 4666 Expr::EvalResult EvalResult; 4667 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4668 !EvalResult.hasSideEffects()) 4669 Value = &EvalResult.Val; 4670 4671 LangAS AddrSpace = 4672 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4673 4674 Optional<ConstantEmitter> emitter; 4675 llvm::Constant *InitialValue = nullptr; 4676 bool Constant = false; 4677 llvm::Type *Type; 4678 if (Value) { 4679 // The temporary has a constant initializer, use it. 4680 emitter.emplace(*this); 4681 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4682 MaterializedType); 4683 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4684 Type = InitialValue->getType(); 4685 } else { 4686 // No initializer, the initialization will be provided when we 4687 // initialize the declaration which performed lifetime extension. 4688 Type = getTypes().ConvertTypeForMem(MaterializedType); 4689 } 4690 4691 // Create a global variable for this lifetime-extended temporary. 4692 llvm::GlobalValue::LinkageTypes Linkage = 4693 getLLVMLinkageVarDefinition(VD, Constant); 4694 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4695 const VarDecl *InitVD; 4696 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4697 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4698 // Temporaries defined inside a class get linkonce_odr linkage because the 4699 // class can be defined in multiple translation units. 4700 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4701 } else { 4702 // There is no need for this temporary to have external linkage if the 4703 // VarDecl has external linkage. 4704 Linkage = llvm::GlobalVariable::InternalLinkage; 4705 } 4706 } 4707 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4708 auto *GV = new llvm::GlobalVariable( 4709 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4710 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4711 if (emitter) emitter->finalize(GV); 4712 setGVProperties(GV, VD); 4713 GV->setAlignment(Align.getQuantity()); 4714 if (supportsCOMDAT() && GV->isWeakForLinker()) 4715 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4716 if (VD->getTLSKind()) 4717 setTLSMode(GV, *VD); 4718 llvm::Constant *CV = GV; 4719 if (AddrSpace != LangAS::Default) 4720 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4721 *this, GV, AddrSpace, LangAS::Default, 4722 Type->getPointerTo( 4723 getContext().getTargetAddressSpace(LangAS::Default))); 4724 MaterializedGlobalTemporaryMap[E] = CV; 4725 return ConstantAddress(CV, Align); 4726 } 4727 4728 /// EmitObjCPropertyImplementations - Emit information for synthesized 4729 /// properties for an implementation. 4730 void CodeGenModule::EmitObjCPropertyImplementations(const 4731 ObjCImplementationDecl *D) { 4732 for (const auto *PID : D->property_impls()) { 4733 // Dynamic is just for type-checking. 4734 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4735 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4736 4737 // Determine which methods need to be implemented, some may have 4738 // been overridden. Note that ::isPropertyAccessor is not the method 4739 // we want, that just indicates if the decl came from a 4740 // property. What we want to know is if the method is defined in 4741 // this implementation. 4742 if (!D->getInstanceMethod(PD->getGetterName())) 4743 CodeGenFunction(*this).GenerateObjCGetter( 4744 const_cast<ObjCImplementationDecl *>(D), PID); 4745 if (!PD->isReadOnly() && 4746 !D->getInstanceMethod(PD->getSetterName())) 4747 CodeGenFunction(*this).GenerateObjCSetter( 4748 const_cast<ObjCImplementationDecl *>(D), PID); 4749 } 4750 } 4751 } 4752 4753 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4754 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4755 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4756 ivar; ivar = ivar->getNextIvar()) 4757 if (ivar->getType().isDestructedType()) 4758 return true; 4759 4760 return false; 4761 } 4762 4763 static bool AllTrivialInitializers(CodeGenModule &CGM, 4764 ObjCImplementationDecl *D) { 4765 CodeGenFunction CGF(CGM); 4766 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4767 E = D->init_end(); B != E; ++B) { 4768 CXXCtorInitializer *CtorInitExp = *B; 4769 Expr *Init = CtorInitExp->getInit(); 4770 if (!CGF.isTrivialInitializer(Init)) 4771 return false; 4772 } 4773 return true; 4774 } 4775 4776 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4777 /// for an implementation. 4778 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4779 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4780 if (needsDestructMethod(D)) { 4781 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4782 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4783 ObjCMethodDecl *DTORMethod = 4784 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4785 cxxSelector, getContext().VoidTy, nullptr, D, 4786 /*isInstance=*/true, /*isVariadic=*/false, 4787 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4788 /*isDefined=*/false, ObjCMethodDecl::Required); 4789 D->addInstanceMethod(DTORMethod); 4790 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4791 D->setHasDestructors(true); 4792 } 4793 4794 // If the implementation doesn't have any ivar initializers, we don't need 4795 // a .cxx_construct. 4796 if (D->getNumIvarInitializers() == 0 || 4797 AllTrivialInitializers(*this, D)) 4798 return; 4799 4800 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4801 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4802 // The constructor returns 'self'. 4803 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4804 D->getLocation(), 4805 D->getLocation(), 4806 cxxSelector, 4807 getContext().getObjCIdType(), 4808 nullptr, D, /*isInstance=*/true, 4809 /*isVariadic=*/false, 4810 /*isPropertyAccessor=*/true, 4811 /*isImplicitlyDeclared=*/true, 4812 /*isDefined=*/false, 4813 ObjCMethodDecl::Required); 4814 D->addInstanceMethod(CTORMethod); 4815 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4816 D->setHasNonZeroConstructors(true); 4817 } 4818 4819 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4820 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4821 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4822 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4823 ErrorUnsupported(LSD, "linkage spec"); 4824 return; 4825 } 4826 4827 EmitDeclContext(LSD); 4828 } 4829 4830 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4831 for (auto *I : DC->decls()) { 4832 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4833 // are themselves considered "top-level", so EmitTopLevelDecl on an 4834 // ObjCImplDecl does not recursively visit them. We need to do that in 4835 // case they're nested inside another construct (LinkageSpecDecl / 4836 // ExportDecl) that does stop them from being considered "top-level". 4837 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4838 for (auto *M : OID->methods()) 4839 EmitTopLevelDecl(M); 4840 } 4841 4842 EmitTopLevelDecl(I); 4843 } 4844 } 4845 4846 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4847 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4848 // Ignore dependent declarations. 4849 if (D->isTemplated()) 4850 return; 4851 4852 switch (D->getKind()) { 4853 case Decl::CXXConversion: 4854 case Decl::CXXMethod: 4855 case Decl::Function: 4856 EmitGlobal(cast<FunctionDecl>(D)); 4857 // Always provide some coverage mapping 4858 // even for the functions that aren't emitted. 4859 AddDeferredUnusedCoverageMapping(D); 4860 break; 4861 4862 case Decl::CXXDeductionGuide: 4863 // Function-like, but does not result in code emission. 4864 break; 4865 4866 case Decl::Var: 4867 case Decl::Decomposition: 4868 case Decl::VarTemplateSpecialization: 4869 EmitGlobal(cast<VarDecl>(D)); 4870 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4871 for (auto *B : DD->bindings()) 4872 if (auto *HD = B->getHoldingVar()) 4873 EmitGlobal(HD); 4874 break; 4875 4876 // Indirect fields from global anonymous structs and unions can be 4877 // ignored; only the actual variable requires IR gen support. 4878 case Decl::IndirectField: 4879 break; 4880 4881 // C++ Decls 4882 case Decl::Namespace: 4883 EmitDeclContext(cast<NamespaceDecl>(D)); 4884 break; 4885 case Decl::ClassTemplateSpecialization: { 4886 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4887 if (DebugInfo && 4888 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4889 Spec->hasDefinition()) 4890 DebugInfo->completeTemplateDefinition(*Spec); 4891 } LLVM_FALLTHROUGH; 4892 case Decl::CXXRecord: 4893 if (DebugInfo) { 4894 if (auto *ES = D->getASTContext().getExternalSource()) 4895 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4896 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4897 } 4898 // Emit any static data members, they may be definitions. 4899 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4900 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4901 EmitTopLevelDecl(I); 4902 break; 4903 // No code generation needed. 4904 case Decl::UsingShadow: 4905 case Decl::ClassTemplate: 4906 case Decl::VarTemplate: 4907 case Decl::VarTemplatePartialSpecialization: 4908 case Decl::FunctionTemplate: 4909 case Decl::TypeAliasTemplate: 4910 case Decl::Block: 4911 case Decl::Empty: 4912 case Decl::Binding: 4913 break; 4914 case Decl::Using: // using X; [C++] 4915 if (CGDebugInfo *DI = getModuleDebugInfo()) 4916 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4917 return; 4918 case Decl::NamespaceAlias: 4919 if (CGDebugInfo *DI = getModuleDebugInfo()) 4920 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4921 return; 4922 case Decl::UsingDirective: // using namespace X; [C++] 4923 if (CGDebugInfo *DI = getModuleDebugInfo()) 4924 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4925 return; 4926 case Decl::CXXConstructor: 4927 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4928 break; 4929 case Decl::CXXDestructor: 4930 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4931 break; 4932 4933 case Decl::StaticAssert: 4934 // Nothing to do. 4935 break; 4936 4937 // Objective-C Decls 4938 4939 // Forward declarations, no (immediate) code generation. 4940 case Decl::ObjCInterface: 4941 case Decl::ObjCCategory: 4942 break; 4943 4944 case Decl::ObjCProtocol: { 4945 auto *Proto = cast<ObjCProtocolDecl>(D); 4946 if (Proto->isThisDeclarationADefinition()) 4947 ObjCRuntime->GenerateProtocol(Proto); 4948 break; 4949 } 4950 4951 case Decl::ObjCCategoryImpl: 4952 // Categories have properties but don't support synthesize so we 4953 // can ignore them here. 4954 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4955 break; 4956 4957 case Decl::ObjCImplementation: { 4958 auto *OMD = cast<ObjCImplementationDecl>(D); 4959 EmitObjCPropertyImplementations(OMD); 4960 EmitObjCIvarInitializations(OMD); 4961 ObjCRuntime->GenerateClass(OMD); 4962 // Emit global variable debug information. 4963 if (CGDebugInfo *DI = getModuleDebugInfo()) 4964 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4965 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4966 OMD->getClassInterface()), OMD->getLocation()); 4967 break; 4968 } 4969 case Decl::ObjCMethod: { 4970 auto *OMD = cast<ObjCMethodDecl>(D); 4971 // If this is not a prototype, emit the body. 4972 if (OMD->getBody()) 4973 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4974 break; 4975 } 4976 case Decl::ObjCCompatibleAlias: 4977 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4978 break; 4979 4980 case Decl::PragmaComment: { 4981 const auto *PCD = cast<PragmaCommentDecl>(D); 4982 switch (PCD->getCommentKind()) { 4983 case PCK_Unknown: 4984 llvm_unreachable("unexpected pragma comment kind"); 4985 case PCK_Linker: 4986 AppendLinkerOptions(PCD->getArg()); 4987 break; 4988 case PCK_Lib: 4989 if (getTarget().getTriple().isOSBinFormatELF() && 4990 !getTarget().getTriple().isPS4()) 4991 AddELFLibDirective(PCD->getArg()); 4992 else 4993 AddDependentLib(PCD->getArg()); 4994 break; 4995 case PCK_Compiler: 4996 case PCK_ExeStr: 4997 case PCK_User: 4998 break; // We ignore all of these. 4999 } 5000 break; 5001 } 5002 5003 case Decl::PragmaDetectMismatch: { 5004 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5005 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5006 break; 5007 } 5008 5009 case Decl::LinkageSpec: 5010 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5011 break; 5012 5013 case Decl::FileScopeAsm: { 5014 // File-scope asm is ignored during device-side CUDA compilation. 5015 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5016 break; 5017 // File-scope asm is ignored during device-side OpenMP compilation. 5018 if (LangOpts.OpenMPIsDevice) 5019 break; 5020 auto *AD = cast<FileScopeAsmDecl>(D); 5021 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5022 break; 5023 } 5024 5025 case Decl::Import: { 5026 auto *Import = cast<ImportDecl>(D); 5027 5028 // If we've already imported this module, we're done. 5029 if (!ImportedModules.insert(Import->getImportedModule())) 5030 break; 5031 5032 // Emit debug information for direct imports. 5033 if (!Import->getImportedOwningModule()) { 5034 if (CGDebugInfo *DI = getModuleDebugInfo()) 5035 DI->EmitImportDecl(*Import); 5036 } 5037 5038 // Find all of the submodules and emit the module initializers. 5039 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5040 SmallVector<clang::Module *, 16> Stack; 5041 Visited.insert(Import->getImportedModule()); 5042 Stack.push_back(Import->getImportedModule()); 5043 5044 while (!Stack.empty()) { 5045 clang::Module *Mod = Stack.pop_back_val(); 5046 if (!EmittedModuleInitializers.insert(Mod).second) 5047 continue; 5048 5049 for (auto *D : Context.getModuleInitializers(Mod)) 5050 EmitTopLevelDecl(D); 5051 5052 // Visit the submodules of this module. 5053 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5054 SubEnd = Mod->submodule_end(); 5055 Sub != SubEnd; ++Sub) { 5056 // Skip explicit children; they need to be explicitly imported to emit 5057 // the initializers. 5058 if ((*Sub)->IsExplicit) 5059 continue; 5060 5061 if (Visited.insert(*Sub).second) 5062 Stack.push_back(*Sub); 5063 } 5064 } 5065 break; 5066 } 5067 5068 case Decl::Export: 5069 EmitDeclContext(cast<ExportDecl>(D)); 5070 break; 5071 5072 case Decl::OMPThreadPrivate: 5073 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5074 break; 5075 5076 case Decl::OMPAllocate: 5077 break; 5078 5079 case Decl::OMPDeclareReduction: 5080 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5081 break; 5082 5083 case Decl::OMPDeclareMapper: 5084 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5085 break; 5086 5087 case Decl::OMPRequires: 5088 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5089 break; 5090 5091 default: 5092 // Make sure we handled everything we should, every other kind is a 5093 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5094 // function. Need to recode Decl::Kind to do that easily. 5095 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5096 break; 5097 } 5098 } 5099 5100 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5101 // Do we need to generate coverage mapping? 5102 if (!CodeGenOpts.CoverageMapping) 5103 return; 5104 switch (D->getKind()) { 5105 case Decl::CXXConversion: 5106 case Decl::CXXMethod: 5107 case Decl::Function: 5108 case Decl::ObjCMethod: 5109 case Decl::CXXConstructor: 5110 case Decl::CXXDestructor: { 5111 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5112 return; 5113 SourceManager &SM = getContext().getSourceManager(); 5114 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5115 return; 5116 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5117 if (I == DeferredEmptyCoverageMappingDecls.end()) 5118 DeferredEmptyCoverageMappingDecls[D] = true; 5119 break; 5120 } 5121 default: 5122 break; 5123 }; 5124 } 5125 5126 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5127 // Do we need to generate coverage mapping? 5128 if (!CodeGenOpts.CoverageMapping) 5129 return; 5130 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5131 if (Fn->isTemplateInstantiation()) 5132 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5133 } 5134 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5135 if (I == DeferredEmptyCoverageMappingDecls.end()) 5136 DeferredEmptyCoverageMappingDecls[D] = false; 5137 else 5138 I->second = false; 5139 } 5140 5141 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5142 // We call takeVector() here to avoid use-after-free. 5143 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5144 // we deserialize function bodies to emit coverage info for them, and that 5145 // deserializes more declarations. How should we handle that case? 5146 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5147 if (!Entry.second) 5148 continue; 5149 const Decl *D = Entry.first; 5150 switch (D->getKind()) { 5151 case Decl::CXXConversion: 5152 case Decl::CXXMethod: 5153 case Decl::Function: 5154 case Decl::ObjCMethod: { 5155 CodeGenPGO PGO(*this); 5156 GlobalDecl GD(cast<FunctionDecl>(D)); 5157 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5158 getFunctionLinkage(GD)); 5159 break; 5160 } 5161 case Decl::CXXConstructor: { 5162 CodeGenPGO PGO(*this); 5163 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5164 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5165 getFunctionLinkage(GD)); 5166 break; 5167 } 5168 case Decl::CXXDestructor: { 5169 CodeGenPGO PGO(*this); 5170 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5171 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5172 getFunctionLinkage(GD)); 5173 break; 5174 } 5175 default: 5176 break; 5177 }; 5178 } 5179 } 5180 5181 /// Turns the given pointer into a constant. 5182 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5183 const void *Ptr) { 5184 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5185 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5186 return llvm::ConstantInt::get(i64, PtrInt); 5187 } 5188 5189 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5190 llvm::NamedMDNode *&GlobalMetadata, 5191 GlobalDecl D, 5192 llvm::GlobalValue *Addr) { 5193 if (!GlobalMetadata) 5194 GlobalMetadata = 5195 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5196 5197 // TODO: should we report variant information for ctors/dtors? 5198 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5199 llvm::ConstantAsMetadata::get(GetPointerConstant( 5200 CGM.getLLVMContext(), D.getDecl()))}; 5201 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5202 } 5203 5204 /// For each function which is declared within an extern "C" region and marked 5205 /// as 'used', but has internal linkage, create an alias from the unmangled 5206 /// name to the mangled name if possible. People expect to be able to refer 5207 /// to such functions with an unmangled name from inline assembly within the 5208 /// same translation unit. 5209 void CodeGenModule::EmitStaticExternCAliases() { 5210 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5211 return; 5212 for (auto &I : StaticExternCValues) { 5213 IdentifierInfo *Name = I.first; 5214 llvm::GlobalValue *Val = I.second; 5215 if (Val && !getModule().getNamedValue(Name->getName())) 5216 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5217 } 5218 } 5219 5220 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5221 GlobalDecl &Result) const { 5222 auto Res = Manglings.find(MangledName); 5223 if (Res == Manglings.end()) 5224 return false; 5225 Result = Res->getValue(); 5226 return true; 5227 } 5228 5229 /// Emits metadata nodes associating all the global values in the 5230 /// current module with the Decls they came from. This is useful for 5231 /// projects using IR gen as a subroutine. 5232 /// 5233 /// Since there's currently no way to associate an MDNode directly 5234 /// with an llvm::GlobalValue, we create a global named metadata 5235 /// with the name 'clang.global.decl.ptrs'. 5236 void CodeGenModule::EmitDeclMetadata() { 5237 llvm::NamedMDNode *GlobalMetadata = nullptr; 5238 5239 for (auto &I : MangledDeclNames) { 5240 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5241 // Some mangled names don't necessarily have an associated GlobalValue 5242 // in this module, e.g. if we mangled it for DebugInfo. 5243 if (Addr) 5244 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5245 } 5246 } 5247 5248 /// Emits metadata nodes for all the local variables in the current 5249 /// function. 5250 void CodeGenFunction::EmitDeclMetadata() { 5251 if (LocalDeclMap.empty()) return; 5252 5253 llvm::LLVMContext &Context = getLLVMContext(); 5254 5255 // Find the unique metadata ID for this name. 5256 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5257 5258 llvm::NamedMDNode *GlobalMetadata = nullptr; 5259 5260 for (auto &I : LocalDeclMap) { 5261 const Decl *D = I.first; 5262 llvm::Value *Addr = I.second.getPointer(); 5263 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5264 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5265 Alloca->setMetadata( 5266 DeclPtrKind, llvm::MDNode::get( 5267 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5268 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5269 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5270 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5271 } 5272 } 5273 } 5274 5275 void CodeGenModule::EmitVersionIdentMetadata() { 5276 llvm::NamedMDNode *IdentMetadata = 5277 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5278 std::string Version = getClangFullVersion(); 5279 llvm::LLVMContext &Ctx = TheModule.getContext(); 5280 5281 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5282 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5283 } 5284 5285 void CodeGenModule::EmitCommandLineMetadata() { 5286 llvm::NamedMDNode *CommandLineMetadata = 5287 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5288 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5289 llvm::LLVMContext &Ctx = TheModule.getContext(); 5290 5291 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5292 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5293 } 5294 5295 void CodeGenModule::EmitTargetMetadata() { 5296 // Warning, new MangledDeclNames may be appended within this loop. 5297 // We rely on MapVector insertions adding new elements to the end 5298 // of the container. 5299 // FIXME: Move this loop into the one target that needs it, and only 5300 // loop over those declarations for which we couldn't emit the target 5301 // metadata when we emitted the declaration. 5302 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5303 auto Val = *(MangledDeclNames.begin() + I); 5304 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5305 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5306 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5307 } 5308 } 5309 5310 void CodeGenModule::EmitCoverageFile() { 5311 if (getCodeGenOpts().CoverageDataFile.empty() && 5312 getCodeGenOpts().CoverageNotesFile.empty()) 5313 return; 5314 5315 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5316 if (!CUNode) 5317 return; 5318 5319 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5320 llvm::LLVMContext &Ctx = TheModule.getContext(); 5321 auto *CoverageDataFile = 5322 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5323 auto *CoverageNotesFile = 5324 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5325 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5326 llvm::MDNode *CU = CUNode->getOperand(i); 5327 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5328 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5329 } 5330 } 5331 5332 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5333 // Sema has checked that all uuid strings are of the form 5334 // "12345678-1234-1234-1234-1234567890ab". 5335 assert(Uuid.size() == 36); 5336 for (unsigned i = 0; i < 36; ++i) { 5337 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5338 else assert(isHexDigit(Uuid[i])); 5339 } 5340 5341 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5342 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5343 5344 llvm::Constant *Field3[8]; 5345 for (unsigned Idx = 0; Idx < 8; ++Idx) 5346 Field3[Idx] = llvm::ConstantInt::get( 5347 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5348 5349 llvm::Constant *Fields[4] = { 5350 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5351 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5352 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5353 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5354 }; 5355 5356 return llvm::ConstantStruct::getAnon(Fields); 5357 } 5358 5359 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5360 bool ForEH) { 5361 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5362 // FIXME: should we even be calling this method if RTTI is disabled 5363 // and it's not for EH? 5364 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5365 return llvm::Constant::getNullValue(Int8PtrTy); 5366 5367 if (ForEH && Ty->isObjCObjectPointerType() && 5368 LangOpts.ObjCRuntime.isGNUFamily()) 5369 return ObjCRuntime->GetEHType(Ty); 5370 5371 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5372 } 5373 5374 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5375 // Do not emit threadprivates in simd-only mode. 5376 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5377 return; 5378 for (auto RefExpr : D->varlists()) { 5379 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5380 bool PerformInit = 5381 VD->getAnyInitializer() && 5382 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5383 /*ForRef=*/false); 5384 5385 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5386 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5387 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5388 CXXGlobalInits.push_back(InitFunction); 5389 } 5390 } 5391 5392 llvm::Metadata * 5393 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5394 StringRef Suffix) { 5395 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5396 if (InternalId) 5397 return InternalId; 5398 5399 if (isExternallyVisible(T->getLinkage())) { 5400 std::string OutName; 5401 llvm::raw_string_ostream Out(OutName); 5402 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5403 Out << Suffix; 5404 5405 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5406 } else { 5407 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5408 llvm::ArrayRef<llvm::Metadata *>()); 5409 } 5410 5411 return InternalId; 5412 } 5413 5414 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5415 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5416 } 5417 5418 llvm::Metadata * 5419 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5420 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5421 } 5422 5423 // Generalize pointer types to a void pointer with the qualifiers of the 5424 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5425 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5426 // 'void *'. 5427 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5428 if (!Ty->isPointerType()) 5429 return Ty; 5430 5431 return Ctx.getPointerType( 5432 QualType(Ctx.VoidTy).withCVRQualifiers( 5433 Ty->getPointeeType().getCVRQualifiers())); 5434 } 5435 5436 // Apply type generalization to a FunctionType's return and argument types 5437 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5438 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5439 SmallVector<QualType, 8> GeneralizedParams; 5440 for (auto &Param : FnType->param_types()) 5441 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5442 5443 return Ctx.getFunctionType( 5444 GeneralizeType(Ctx, FnType->getReturnType()), 5445 GeneralizedParams, FnType->getExtProtoInfo()); 5446 } 5447 5448 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5449 return Ctx.getFunctionNoProtoType( 5450 GeneralizeType(Ctx, FnType->getReturnType())); 5451 5452 llvm_unreachable("Encountered unknown FunctionType"); 5453 } 5454 5455 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5456 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5457 GeneralizedMetadataIdMap, ".generalized"); 5458 } 5459 5460 /// Returns whether this module needs the "all-vtables" type identifier. 5461 bool CodeGenModule::NeedAllVtablesTypeId() const { 5462 // Returns true if at least one of vtable-based CFI checkers is enabled and 5463 // is not in the trapping mode. 5464 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5465 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5466 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5467 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5468 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5469 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5470 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5471 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5472 } 5473 5474 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5475 CharUnits Offset, 5476 const CXXRecordDecl *RD) { 5477 llvm::Metadata *MD = 5478 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5479 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5480 5481 if (CodeGenOpts.SanitizeCfiCrossDso) 5482 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5483 VTable->addTypeMetadata(Offset.getQuantity(), 5484 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5485 5486 if (NeedAllVtablesTypeId()) { 5487 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5488 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5489 } 5490 } 5491 5492 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5493 assert(TD != nullptr); 5494 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5495 5496 ParsedAttr.Features.erase( 5497 llvm::remove_if(ParsedAttr.Features, 5498 [&](const std::string &Feat) { 5499 return !Target.isValidFeatureName( 5500 StringRef{Feat}.substr(1)); 5501 }), 5502 ParsedAttr.Features.end()); 5503 return ParsedAttr; 5504 } 5505 5506 5507 // Fills in the supplied string map with the set of target features for the 5508 // passed in function. 5509 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5510 GlobalDecl GD) { 5511 StringRef TargetCPU = Target.getTargetOpts().CPU; 5512 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5513 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5514 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5515 5516 // Make a copy of the features as passed on the command line into the 5517 // beginning of the additional features from the function to override. 5518 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5519 Target.getTargetOpts().FeaturesAsWritten.begin(), 5520 Target.getTargetOpts().FeaturesAsWritten.end()); 5521 5522 if (ParsedAttr.Architecture != "" && 5523 Target.isValidCPUName(ParsedAttr.Architecture)) 5524 TargetCPU = ParsedAttr.Architecture; 5525 5526 // Now populate the feature map, first with the TargetCPU which is either 5527 // the default or a new one from the target attribute string. Then we'll use 5528 // the passed in features (FeaturesAsWritten) along with the new ones from 5529 // the attribute. 5530 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5531 ParsedAttr.Features); 5532 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5533 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5534 Target.getCPUSpecificCPUDispatchFeatures( 5535 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5536 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5537 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5538 } else { 5539 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5540 Target.getTargetOpts().Features); 5541 } 5542 } 5543 5544 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5545 if (!SanStats) 5546 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5547 5548 return *SanStats; 5549 } 5550 llvm::Value * 5551 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5552 CodeGenFunction &CGF) { 5553 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5554 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5555 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5556 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5557 "__translate_sampler_initializer"), 5558 {C}); 5559 } 5560