1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 } 108 109 bool CodeGenModule::isTargetDarwin() const { 110 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 111 } 112 113 /// ErrorUnsupported - Print out an error that codegen doesn't support the 114 /// specified stmt yet. 115 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 116 bool OmitOnError) { 117 if (OmitOnError && getDiags().hasErrorOccurred()) 118 return; 119 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 120 "cannot compile this %0 yet"); 121 std::string Msg = Type; 122 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 123 << Msg << S->getSourceRange(); 124 } 125 126 /// ErrorUnsupported - Print out an error that codegen doesn't support the 127 /// specified decl yet. 128 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 129 bool OmitOnError) { 130 if (OmitOnError && getDiags().hasErrorOccurred()) 131 return; 132 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 133 "cannot compile this %0 yet"); 134 std::string Msg = Type; 135 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 136 } 137 138 LangOptions::VisibilityMode 139 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 140 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 141 if (VD->getStorageClass() == VarDecl::PrivateExtern) 142 return LangOptions::Hidden; 143 144 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 145 switch (attr->getVisibility()) { 146 default: assert(0 && "Unknown visibility!"); 147 case VisibilityAttr::DefaultVisibility: 148 return LangOptions::Default; 149 case VisibilityAttr::HiddenVisibility: 150 return LangOptions::Hidden; 151 case VisibilityAttr::ProtectedVisibility: 152 return LangOptions::Protected; 153 } 154 } 155 156 if (getLangOptions().CPlusPlus) { 157 // Entities subject to an explicit instantiation declaration get default 158 // visibility. 159 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 160 if (Function->getTemplateSpecializationKind() 161 == TSK_ExplicitInstantiationDeclaration) 162 return LangOptions::Default; 163 } else if (const ClassTemplateSpecializationDecl *ClassSpec 164 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 165 if (ClassSpec->getSpecializationKind() 166 == TSK_ExplicitInstantiationDeclaration) 167 return LangOptions::Default; 168 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 169 if (Record->getTemplateSpecializationKind() 170 == TSK_ExplicitInstantiationDeclaration) 171 return LangOptions::Default; 172 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 173 if (Var->isStaticDataMember() && 174 (Var->getTemplateSpecializationKind() 175 == TSK_ExplicitInstantiationDeclaration)) 176 return LangOptions::Default; 177 } 178 179 // If -fvisibility-inlines-hidden was provided, then inline C++ member 180 // functions get "hidden" visibility by default. 181 if (getLangOptions().InlineVisibilityHidden) 182 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 183 if (Method->isInlined()) 184 return LangOptions::Hidden; 185 } 186 187 // This decl should have the same visibility as its parent. 188 if (const DeclContext *DC = D->getDeclContext()) 189 return getDeclVisibilityMode(cast<Decl>(DC)); 190 191 return getLangOptions().getVisibilityMode(); 192 } 193 194 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 195 const Decl *D) const { 196 // Internal definitions always have default visibility. 197 if (GV->hasLocalLinkage()) { 198 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 199 return; 200 } 201 202 switch (getDeclVisibilityMode(D)) { 203 default: assert(0 && "Unknown visibility!"); 204 case LangOptions::Default: 205 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 206 case LangOptions::Hidden: 207 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 208 case LangOptions::Protected: 209 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 210 } 211 } 212 213 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 214 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 215 216 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 217 if (!Str.empty()) 218 return Str; 219 220 if (!getMangleContext().shouldMangleDeclName(ND)) { 221 IdentifierInfo *II = ND->getIdentifier(); 222 assert(II && "Attempt to mangle unnamed decl."); 223 224 Str = II->getName(); 225 return Str; 226 } 227 228 llvm::SmallString<256> Buffer; 229 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 230 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 231 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 232 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 233 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 234 getMangleContext().mangleBlock(BD, Buffer); 235 else 236 getMangleContext().mangleName(ND, Buffer); 237 238 // Allocate space for the mangled name. 239 size_t Length = Buffer.size(); 240 char *Name = MangledNamesAllocator.Allocate<char>(Length); 241 std::copy(Buffer.begin(), Buffer.end(), Name); 242 243 Str = llvm::StringRef(Name, Length); 244 245 return Str; 246 } 247 248 void CodeGenModule::getMangledName(MangleBuffer &Buffer, const BlockDecl *BD) { 249 getMangleContext().mangleBlock(BD, Buffer.getBuffer()); 250 } 251 252 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 253 return getModule().getNamedValue(Name); 254 } 255 256 /// AddGlobalCtor - Add a function to the list that will be called before 257 /// main() runs. 258 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 259 // FIXME: Type coercion of void()* types. 260 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 261 } 262 263 /// AddGlobalDtor - Add a function to the list that will be called 264 /// when the module is unloaded. 265 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 266 // FIXME: Type coercion of void()* types. 267 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 268 } 269 270 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 271 // Ctor function type is void()*. 272 llvm::FunctionType* CtorFTy = 273 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 274 std::vector<const llvm::Type*>(), 275 false); 276 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 277 278 // Get the type of a ctor entry, { i32, void ()* }. 279 llvm::StructType* CtorStructTy = 280 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 281 llvm::PointerType::getUnqual(CtorFTy), NULL); 282 283 // Construct the constructor and destructor arrays. 284 std::vector<llvm::Constant*> Ctors; 285 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 286 std::vector<llvm::Constant*> S; 287 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 288 I->second, false)); 289 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 290 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 291 } 292 293 if (!Ctors.empty()) { 294 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 295 new llvm::GlobalVariable(TheModule, AT, false, 296 llvm::GlobalValue::AppendingLinkage, 297 llvm::ConstantArray::get(AT, Ctors), 298 GlobalName); 299 } 300 } 301 302 void CodeGenModule::EmitAnnotations() { 303 if (Annotations.empty()) 304 return; 305 306 // Create a new global variable for the ConstantStruct in the Module. 307 llvm::Constant *Array = 308 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 309 Annotations.size()), 310 Annotations); 311 llvm::GlobalValue *gv = 312 new llvm::GlobalVariable(TheModule, Array->getType(), false, 313 llvm::GlobalValue::AppendingLinkage, Array, 314 "llvm.global.annotations"); 315 gv->setSection("llvm.metadata"); 316 } 317 318 static CodeGenModule::GVALinkage 319 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 320 const LangOptions &Features) { 321 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 322 323 Linkage L = FD->getLinkage(); 324 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 325 FD->getType()->getLinkage() == UniqueExternalLinkage) 326 L = UniqueExternalLinkage; 327 328 switch (L) { 329 case NoLinkage: 330 case InternalLinkage: 331 case UniqueExternalLinkage: 332 return CodeGenModule::GVA_Internal; 333 334 case ExternalLinkage: 335 switch (FD->getTemplateSpecializationKind()) { 336 case TSK_Undeclared: 337 case TSK_ExplicitSpecialization: 338 External = CodeGenModule::GVA_StrongExternal; 339 break; 340 341 case TSK_ExplicitInstantiationDefinition: 342 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 343 344 case TSK_ExplicitInstantiationDeclaration: 345 case TSK_ImplicitInstantiation: 346 External = CodeGenModule::GVA_TemplateInstantiation; 347 break; 348 } 349 } 350 351 if (!FD->isInlined()) 352 return External; 353 354 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 355 // GNU or C99 inline semantics. Determine whether this symbol should be 356 // externally visible. 357 if (FD->isInlineDefinitionExternallyVisible()) 358 return External; 359 360 // C99 inline semantics, where the symbol is not externally visible. 361 return CodeGenModule::GVA_C99Inline; 362 } 363 364 // C++0x [temp.explicit]p9: 365 // [ Note: The intent is that an inline function that is the subject of 366 // an explicit instantiation declaration will still be implicitly 367 // instantiated when used so that the body can be considered for 368 // inlining, but that no out-of-line copy of the inline function would be 369 // generated in the translation unit. -- end note ] 370 if (FD->getTemplateSpecializationKind() 371 == TSK_ExplicitInstantiationDeclaration) 372 return CodeGenModule::GVA_C99Inline; 373 374 return CodeGenModule::GVA_CXXInline; 375 } 376 377 llvm::GlobalValue::LinkageTypes 378 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 379 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 380 381 if (Linkage == GVA_Internal) { 382 return llvm::Function::InternalLinkage; 383 } else if (D->hasAttr<DLLExportAttr>()) { 384 return llvm::Function::DLLExportLinkage; 385 } else if (D->hasAttr<WeakAttr>()) { 386 return llvm::Function::WeakAnyLinkage; 387 } else if (Linkage == GVA_C99Inline) { 388 // In C99 mode, 'inline' functions are guaranteed to have a strong 389 // definition somewhere else, so we can use available_externally linkage. 390 return llvm::Function::AvailableExternallyLinkage; 391 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 392 // In C++, the compiler has to emit a definition in every translation unit 393 // that references the function. We should use linkonce_odr because 394 // a) if all references in this translation unit are optimized away, we 395 // don't need to codegen it. b) if the function persists, it needs to be 396 // merged with other definitions. c) C++ has the ODR, so we know the 397 // definition is dependable. 398 return llvm::Function::LinkOnceODRLinkage; 399 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 400 // An explicit instantiation of a template has weak linkage, since 401 // explicit instantiations can occur in multiple translation units 402 // and must all be equivalent. However, we are not allowed to 403 // throw away these explicit instantiations. 404 return llvm::Function::WeakODRLinkage; 405 } else { 406 assert(Linkage == GVA_StrongExternal); 407 // Otherwise, we have strong external linkage. 408 return llvm::Function::ExternalLinkage; 409 } 410 } 411 412 413 /// SetFunctionDefinitionAttributes - Set attributes for a global. 414 /// 415 /// FIXME: This is currently only done for aliases and functions, but not for 416 /// variables (these details are set in EmitGlobalVarDefinition for variables). 417 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 418 llvm::GlobalValue *GV) { 419 SetCommonAttributes(D, GV); 420 } 421 422 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 423 const CGFunctionInfo &Info, 424 llvm::Function *F) { 425 unsigned CallingConv; 426 AttributeListType AttributeList; 427 ConstructAttributeList(Info, D, AttributeList, CallingConv); 428 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 429 AttributeList.size())); 430 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 431 } 432 433 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 434 llvm::Function *F) { 435 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 436 F->addFnAttr(llvm::Attribute::NoUnwind); 437 438 if (D->hasAttr<AlwaysInlineAttr>()) 439 F->addFnAttr(llvm::Attribute::AlwaysInline); 440 441 if (D->hasAttr<NoInlineAttr>()) 442 F->addFnAttr(llvm::Attribute::NoInline); 443 444 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 445 F->addFnAttr(llvm::Attribute::StackProtect); 446 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 447 F->addFnAttr(llvm::Attribute::StackProtectReq); 448 449 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 450 unsigned width = Context.Target.getCharWidth(); 451 F->setAlignment(AA->getAlignment() / width); 452 while ((AA = AA->getNext<AlignedAttr>())) 453 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 454 } 455 // C++ ABI requires 2-byte alignment for member functions. 456 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 457 F->setAlignment(2); 458 } 459 460 void CodeGenModule::SetCommonAttributes(const Decl *D, 461 llvm::GlobalValue *GV) { 462 setGlobalVisibility(GV, D); 463 464 if (D->hasAttr<UsedAttr>()) 465 AddUsedGlobal(GV); 466 467 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 468 GV->setSection(SA->getName()); 469 470 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 471 } 472 473 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 474 llvm::Function *F, 475 const CGFunctionInfo &FI) { 476 SetLLVMFunctionAttributes(D, FI, F); 477 SetLLVMFunctionAttributesForDefinition(D, F); 478 479 F->setLinkage(llvm::Function::InternalLinkage); 480 481 SetCommonAttributes(D, F); 482 } 483 484 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 485 llvm::Function *F, 486 bool IsIncompleteFunction) { 487 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 488 489 if (!IsIncompleteFunction) 490 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 491 492 // Only a few attributes are set on declarations; these may later be 493 // overridden by a definition. 494 495 if (FD->hasAttr<DLLImportAttr>()) { 496 F->setLinkage(llvm::Function::DLLImportLinkage); 497 } else if (FD->hasAttr<WeakAttr>() || 498 FD->hasAttr<WeakImportAttr>()) { 499 // "extern_weak" is overloaded in LLVM; we probably should have 500 // separate linkage types for this. 501 F->setLinkage(llvm::Function::ExternalWeakLinkage); 502 } else { 503 F->setLinkage(llvm::Function::ExternalLinkage); 504 } 505 506 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 507 F->setSection(SA->getName()); 508 } 509 510 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 511 assert(!GV->isDeclaration() && 512 "Only globals with definition can force usage."); 513 LLVMUsed.push_back(GV); 514 } 515 516 void CodeGenModule::EmitLLVMUsed() { 517 // Don't create llvm.used if there is no need. 518 if (LLVMUsed.empty()) 519 return; 520 521 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 522 523 // Convert LLVMUsed to what ConstantArray needs. 524 std::vector<llvm::Constant*> UsedArray; 525 UsedArray.resize(LLVMUsed.size()); 526 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 527 UsedArray[i] = 528 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 529 i8PTy); 530 } 531 532 if (UsedArray.empty()) 533 return; 534 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 535 536 llvm::GlobalVariable *GV = 537 new llvm::GlobalVariable(getModule(), ATy, false, 538 llvm::GlobalValue::AppendingLinkage, 539 llvm::ConstantArray::get(ATy, UsedArray), 540 "llvm.used"); 541 542 GV->setSection("llvm.metadata"); 543 } 544 545 void CodeGenModule::EmitDeferred() { 546 // Emit code for any potentially referenced deferred decls. Since a 547 // previously unused static decl may become used during the generation of code 548 // for a static function, iterate until no changes are made. 549 550 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 551 if (!DeferredVTables.empty()) { 552 const CXXRecordDecl *RD = DeferredVTables.back(); 553 DeferredVTables.pop_back(); 554 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 555 continue; 556 } 557 558 GlobalDecl D = DeferredDeclsToEmit.back(); 559 DeferredDeclsToEmit.pop_back(); 560 561 // Check to see if we've already emitted this. This is necessary 562 // for a couple of reasons: first, decls can end up in the 563 // deferred-decls queue multiple times, and second, decls can end 564 // up with definitions in unusual ways (e.g. by an extern inline 565 // function acquiring a strong function redefinition). Just 566 // ignore these cases. 567 // 568 // TODO: That said, looking this up multiple times is very wasteful. 569 llvm::StringRef Name = getMangledName(D); 570 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 571 assert(CGRef && "Deferred decl wasn't referenced?"); 572 573 if (!CGRef->isDeclaration()) 574 continue; 575 576 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 577 // purposes an alias counts as a definition. 578 if (isa<llvm::GlobalAlias>(CGRef)) 579 continue; 580 581 // Otherwise, emit the definition and move on to the next one. 582 EmitGlobalDefinition(D); 583 } 584 } 585 586 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 587 /// annotation information for a given GlobalValue. The annotation struct is 588 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 589 /// GlobalValue being annotated. The second field is the constant string 590 /// created from the AnnotateAttr's annotation. The third field is a constant 591 /// string containing the name of the translation unit. The fourth field is 592 /// the line number in the file of the annotated value declaration. 593 /// 594 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 595 /// appears to. 596 /// 597 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 598 const AnnotateAttr *AA, 599 unsigned LineNo) { 600 llvm::Module *M = &getModule(); 601 602 // get [N x i8] constants for the annotation string, and the filename string 603 // which are the 2nd and 3rd elements of the global annotation structure. 604 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 605 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 606 AA->getAnnotation(), true); 607 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 608 M->getModuleIdentifier(), 609 true); 610 611 // Get the two global values corresponding to the ConstantArrays we just 612 // created to hold the bytes of the strings. 613 llvm::GlobalValue *annoGV = 614 new llvm::GlobalVariable(*M, anno->getType(), false, 615 llvm::GlobalValue::PrivateLinkage, anno, 616 GV->getName()); 617 // translation unit name string, emitted into the llvm.metadata section. 618 llvm::GlobalValue *unitGV = 619 new llvm::GlobalVariable(*M, unit->getType(), false, 620 llvm::GlobalValue::PrivateLinkage, unit, 621 ".str"); 622 623 // Create the ConstantStruct for the global annotation. 624 llvm::Constant *Fields[4] = { 625 llvm::ConstantExpr::getBitCast(GV, SBP), 626 llvm::ConstantExpr::getBitCast(annoGV, SBP), 627 llvm::ConstantExpr::getBitCast(unitGV, SBP), 628 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 629 }; 630 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 631 } 632 633 static CodeGenModule::GVALinkage 634 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 635 // If this is a static data member, compute the kind of template 636 // specialization. Otherwise, this variable is not part of a 637 // template. 638 TemplateSpecializationKind TSK = TSK_Undeclared; 639 if (VD->isStaticDataMember()) 640 TSK = VD->getTemplateSpecializationKind(); 641 642 Linkage L = VD->getLinkage(); 643 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 644 VD->getType()->getLinkage() == UniqueExternalLinkage) 645 L = UniqueExternalLinkage; 646 647 switch (L) { 648 case NoLinkage: 649 case InternalLinkage: 650 case UniqueExternalLinkage: 651 return CodeGenModule::GVA_Internal; 652 653 case ExternalLinkage: 654 switch (TSK) { 655 case TSK_Undeclared: 656 case TSK_ExplicitSpecialization: 657 return CodeGenModule::GVA_StrongExternal; 658 659 case TSK_ExplicitInstantiationDeclaration: 660 llvm_unreachable("Variable should not be instantiated"); 661 // Fall through to treat this like any other instantiation. 662 663 case TSK_ExplicitInstantiationDefinition: 664 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 665 666 case TSK_ImplicitInstantiation: 667 return CodeGenModule::GVA_TemplateInstantiation; 668 } 669 } 670 671 return CodeGenModule::GVA_StrongExternal; 672 } 673 674 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 675 // Never defer when EmitAllDecls is specified or the decl has 676 // attribute used. 677 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 678 return false; 679 680 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 681 // Constructors and destructors should never be deferred. 682 if (FD->hasAttr<ConstructorAttr>() || 683 FD->hasAttr<DestructorAttr>()) 684 return false; 685 686 // The key function for a class must never be deferred. 687 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 688 const CXXRecordDecl *RD = MD->getParent(); 689 if (MD->isOutOfLine() && RD->isDynamicClass()) { 690 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 691 if (KeyFunction && 692 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 693 return false; 694 } 695 } 696 697 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 698 699 // static, static inline, always_inline, and extern inline functions can 700 // always be deferred. Normal inline functions can be deferred in C99/C++. 701 // Implicit template instantiations can also be deferred in C++. 702 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 703 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 704 return true; 705 return false; 706 } 707 708 const VarDecl *VD = cast<VarDecl>(Global); 709 assert(VD->isFileVarDecl() && "Invalid decl"); 710 711 // We never want to defer structs that have non-trivial constructors or 712 // destructors. 713 714 // FIXME: Handle references. 715 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 716 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 717 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 718 return false; 719 } 720 } 721 722 GVALinkage L = GetLinkageForVariable(getContext(), VD); 723 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 724 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 725 return true; 726 } 727 728 return false; 729 } 730 731 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 732 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 733 assert(AA && "No alias?"); 734 735 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 736 737 // See if there is already something with the target's name in the module. 738 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 739 740 llvm::Constant *Aliasee; 741 if (isa<llvm::FunctionType>(DeclTy)) 742 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 743 else 744 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 745 llvm::PointerType::getUnqual(DeclTy), 0); 746 if (!Entry) { 747 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 748 F->setLinkage(llvm::Function::ExternalWeakLinkage); 749 WeakRefReferences.insert(F); 750 } 751 752 return Aliasee; 753 } 754 755 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 756 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 757 758 // Weak references don't produce any output by themselves. 759 if (Global->hasAttr<WeakRefAttr>()) 760 return; 761 762 // If this is an alias definition (which otherwise looks like a declaration) 763 // emit it now. 764 if (Global->hasAttr<AliasAttr>()) 765 return EmitAliasDefinition(GD); 766 767 // Ignore declarations, they will be emitted on their first use. 768 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 769 // Forward declarations are emitted lazily on first use. 770 if (!FD->isThisDeclarationADefinition()) 771 return; 772 } else { 773 const VarDecl *VD = cast<VarDecl>(Global); 774 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 775 776 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 777 return; 778 } 779 780 // Defer code generation when possible if this is a static definition, inline 781 // function etc. These we only want to emit if they are used. 782 if (!MayDeferGeneration(Global)) { 783 // Emit the definition if it can't be deferred. 784 EmitGlobalDefinition(GD); 785 return; 786 } 787 788 // If the value has already been used, add it directly to the 789 // DeferredDeclsToEmit list. 790 llvm::StringRef MangledName = getMangledName(GD); 791 if (GetGlobalValue(MangledName)) 792 DeferredDeclsToEmit.push_back(GD); 793 else { 794 // Otherwise, remember that we saw a deferred decl with this name. The 795 // first use of the mangled name will cause it to move into 796 // DeferredDeclsToEmit. 797 DeferredDecls[MangledName] = GD; 798 } 799 } 800 801 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 802 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 803 804 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 805 Context.getSourceManager(), 806 "Generating code for declaration"); 807 808 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 809 if (Method->isVirtual()) 810 getVTables().EmitThunks(GD); 811 812 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 813 return EmitCXXConstructor(CD, GD.getCtorType()); 814 815 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 816 return EmitCXXDestructor(DD, GD.getDtorType()); 817 818 if (isa<FunctionDecl>(D)) 819 return EmitGlobalFunctionDefinition(GD); 820 821 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 822 return EmitGlobalVarDefinition(VD); 823 824 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 825 } 826 827 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 828 /// module, create and return an llvm Function with the specified type. If there 829 /// is something in the module with the specified name, return it potentially 830 /// bitcasted to the right type. 831 /// 832 /// If D is non-null, it specifies a decl that correspond to this. This is used 833 /// to set the attributes on the function when it is first created. 834 llvm::Constant * 835 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 836 const llvm::Type *Ty, 837 GlobalDecl D) { 838 // Lookup the entry, lazily creating it if necessary. 839 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 840 if (Entry) { 841 if (WeakRefReferences.count(Entry)) { 842 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 843 if (FD && !FD->hasAttr<WeakAttr>()) 844 Entry->setLinkage(llvm::Function::ExternalLinkage); 845 846 WeakRefReferences.erase(Entry); 847 } 848 849 if (Entry->getType()->getElementType() == Ty) 850 return Entry; 851 852 // Make sure the result is of the correct type. 853 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 854 return llvm::ConstantExpr::getBitCast(Entry, PTy); 855 } 856 857 // This function doesn't have a complete type (for example, the return 858 // type is an incomplete struct). Use a fake type instead, and make 859 // sure not to try to set attributes. 860 bool IsIncompleteFunction = false; 861 862 const llvm::FunctionType *FTy; 863 if (isa<llvm::FunctionType>(Ty)) { 864 FTy = cast<llvm::FunctionType>(Ty); 865 } else { 866 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 867 std::vector<const llvm::Type*>(), false); 868 IsIncompleteFunction = true; 869 } 870 llvm::Function *F = llvm::Function::Create(FTy, 871 llvm::Function::ExternalLinkage, 872 MangledName, &getModule()); 873 assert(F->getName() == MangledName && "name was uniqued!"); 874 if (D.getDecl()) 875 SetFunctionAttributes(D, F, IsIncompleteFunction); 876 877 // This is the first use or definition of a mangled name. If there is a 878 // deferred decl with this name, remember that we need to emit it at the end 879 // of the file. 880 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 881 if (DDI != DeferredDecls.end()) { 882 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 883 // list, and remove it from DeferredDecls (since we don't need it anymore). 884 DeferredDeclsToEmit.push_back(DDI->second); 885 DeferredDecls.erase(DDI); 886 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 887 // If this the first reference to a C++ inline function in a class, queue up 888 // the deferred function body for emission. These are not seen as 889 // top-level declarations. 890 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 891 DeferredDeclsToEmit.push_back(D); 892 // A called constructor which has no definition or declaration need be 893 // synthesized. 894 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 895 if (CD->isImplicit()) { 896 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 897 DeferredDeclsToEmit.push_back(D); 898 } 899 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 900 if (DD->isImplicit()) { 901 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 902 DeferredDeclsToEmit.push_back(D); 903 } 904 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 905 if (MD->isCopyAssignment() && MD->isImplicit()) { 906 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 907 DeferredDeclsToEmit.push_back(D); 908 } 909 } 910 } 911 912 // Make sure the result is of the requested type. 913 if (!IsIncompleteFunction) { 914 assert(F->getType()->getElementType() == Ty); 915 return F; 916 } 917 918 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 919 return llvm::ConstantExpr::getBitCast(F, PTy); 920 } 921 922 /// GetAddrOfFunction - Return the address of the given function. If Ty is 923 /// non-null, then this function will use the specified type if it has to 924 /// create it (this occurs when we see a definition of the function). 925 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 926 const llvm::Type *Ty) { 927 // If there was no specific requested type, just convert it now. 928 if (!Ty) 929 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 930 llvm::StringRef MangledName = getMangledName(GD); 931 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 932 } 933 934 /// CreateRuntimeFunction - Create a new runtime function with the specified 935 /// type and name. 936 llvm::Constant * 937 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 938 llvm::StringRef Name) { 939 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 940 } 941 942 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 943 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 944 return false; 945 if (Context.getLangOptions().CPlusPlus && 946 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 947 // FIXME: We should do something fancier here! 948 return false; 949 } 950 return true; 951 } 952 953 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 954 /// create and return an llvm GlobalVariable with the specified type. If there 955 /// is something in the module with the specified name, return it potentially 956 /// bitcasted to the right type. 957 /// 958 /// If D is non-null, it specifies a decl that correspond to this. This is used 959 /// to set the attributes on the global when it is first created. 960 llvm::Constant * 961 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 962 const llvm::PointerType *Ty, 963 const VarDecl *D) { 964 // Lookup the entry, lazily creating it if necessary. 965 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 966 if (Entry) { 967 if (WeakRefReferences.count(Entry)) { 968 if (D && !D->hasAttr<WeakAttr>()) 969 Entry->setLinkage(llvm::Function::ExternalLinkage); 970 971 WeakRefReferences.erase(Entry); 972 } 973 974 if (Entry->getType() == Ty) 975 return Entry; 976 977 // Make sure the result is of the correct type. 978 return llvm::ConstantExpr::getBitCast(Entry, Ty); 979 } 980 981 // This is the first use or definition of a mangled name. If there is a 982 // deferred decl with this name, remember that we need to emit it at the end 983 // of the file. 984 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 985 if (DDI != DeferredDecls.end()) { 986 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 987 // list, and remove it from DeferredDecls (since we don't need it anymore). 988 DeferredDeclsToEmit.push_back(DDI->second); 989 DeferredDecls.erase(DDI); 990 } 991 992 llvm::GlobalVariable *GV = 993 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 994 llvm::GlobalValue::ExternalLinkage, 995 0, MangledName, 0, 996 false, Ty->getAddressSpace()); 997 998 // Handle things which are present even on external declarations. 999 if (D) { 1000 // FIXME: This code is overly simple and should be merged with other global 1001 // handling. 1002 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1003 1004 // FIXME: Merge with other attribute handling code. 1005 if (D->getStorageClass() == VarDecl::PrivateExtern) 1006 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1007 1008 if (D->hasAttr<WeakAttr>() || 1009 D->hasAttr<WeakImportAttr>()) 1010 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1011 1012 GV->setThreadLocal(D->isThreadSpecified()); 1013 } 1014 1015 return GV; 1016 } 1017 1018 1019 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1020 /// given global variable. If Ty is non-null and if the global doesn't exist, 1021 /// then it will be greated with the specified type instead of whatever the 1022 /// normal requested type would be. 1023 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1024 const llvm::Type *Ty) { 1025 assert(D->hasGlobalStorage() && "Not a global variable"); 1026 QualType ASTTy = D->getType(); 1027 if (Ty == 0) 1028 Ty = getTypes().ConvertTypeForMem(ASTTy); 1029 1030 const llvm::PointerType *PTy = 1031 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1032 1033 llvm::StringRef MangledName = getMangledName(D); 1034 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1035 } 1036 1037 /// CreateRuntimeVariable - Create a new runtime global variable with the 1038 /// specified type and name. 1039 llvm::Constant * 1040 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1041 llvm::StringRef Name) { 1042 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1043 } 1044 1045 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1046 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1047 1048 if (MayDeferGeneration(D)) { 1049 // If we have not seen a reference to this variable yet, place it 1050 // into the deferred declarations table to be emitted if needed 1051 // later. 1052 llvm::StringRef MangledName = getMangledName(D); 1053 if (!GetGlobalValue(MangledName)) { 1054 DeferredDecls[MangledName] = D; 1055 return; 1056 } 1057 } 1058 1059 // The tentative definition is the only definition. 1060 EmitGlobalVarDefinition(D); 1061 } 1062 1063 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1064 if (DefinitionRequired) 1065 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1066 } 1067 1068 llvm::GlobalVariable::LinkageTypes 1069 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1070 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1071 return llvm::GlobalVariable::InternalLinkage; 1072 1073 if (const CXXMethodDecl *KeyFunction 1074 = RD->getASTContext().getKeyFunction(RD)) { 1075 // If this class has a key function, use that to determine the linkage of 1076 // the vtable. 1077 const FunctionDecl *Def = 0; 1078 if (KeyFunction->getBody(Def)) 1079 KeyFunction = cast<CXXMethodDecl>(Def); 1080 1081 switch (KeyFunction->getTemplateSpecializationKind()) { 1082 case TSK_Undeclared: 1083 case TSK_ExplicitSpecialization: 1084 if (KeyFunction->isInlined()) 1085 return llvm::GlobalVariable::WeakODRLinkage; 1086 1087 return llvm::GlobalVariable::ExternalLinkage; 1088 1089 case TSK_ImplicitInstantiation: 1090 case TSK_ExplicitInstantiationDefinition: 1091 return llvm::GlobalVariable::WeakODRLinkage; 1092 1093 case TSK_ExplicitInstantiationDeclaration: 1094 // FIXME: Use available_externally linkage. However, this currently 1095 // breaks LLVM's build due to undefined symbols. 1096 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1097 return llvm::GlobalVariable::WeakODRLinkage; 1098 } 1099 } 1100 1101 switch (RD->getTemplateSpecializationKind()) { 1102 case TSK_Undeclared: 1103 case TSK_ExplicitSpecialization: 1104 case TSK_ImplicitInstantiation: 1105 case TSK_ExplicitInstantiationDefinition: 1106 return llvm::GlobalVariable::WeakODRLinkage; 1107 1108 case TSK_ExplicitInstantiationDeclaration: 1109 // FIXME: Use available_externally linkage. However, this currently 1110 // breaks LLVM's build due to undefined symbols. 1111 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1112 return llvm::GlobalVariable::WeakODRLinkage; 1113 } 1114 1115 // Silence GCC warning. 1116 return llvm::GlobalVariable::WeakODRLinkage; 1117 } 1118 1119 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1120 return CharUnits::fromQuantity( 1121 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1122 } 1123 1124 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1125 llvm::Constant *Init = 0; 1126 QualType ASTTy = D->getType(); 1127 bool NonConstInit = false; 1128 1129 const Expr *InitExpr = D->getAnyInitializer(); 1130 1131 if (!InitExpr) { 1132 // This is a tentative definition; tentative definitions are 1133 // implicitly initialized with { 0 }. 1134 // 1135 // Note that tentative definitions are only emitted at the end of 1136 // a translation unit, so they should never have incomplete 1137 // type. In addition, EmitTentativeDefinition makes sure that we 1138 // never attempt to emit a tentative definition if a real one 1139 // exists. A use may still exists, however, so we still may need 1140 // to do a RAUW. 1141 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1142 Init = EmitNullConstant(D->getType()); 1143 } else { 1144 Init = EmitConstantExpr(InitExpr, D->getType()); 1145 if (!Init) { 1146 QualType T = InitExpr->getType(); 1147 if (D->getType()->isReferenceType()) 1148 T = D->getType(); 1149 1150 if (getLangOptions().CPlusPlus) { 1151 EmitCXXGlobalVarDeclInitFunc(D); 1152 Init = EmitNullConstant(T); 1153 NonConstInit = true; 1154 } else { 1155 ErrorUnsupported(D, "static initializer"); 1156 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1157 } 1158 } 1159 } 1160 1161 const llvm::Type* InitType = Init->getType(); 1162 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1163 1164 // Strip off a bitcast if we got one back. 1165 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1166 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1167 // all zero index gep. 1168 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1169 Entry = CE->getOperand(0); 1170 } 1171 1172 // Entry is now either a Function or GlobalVariable. 1173 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1174 1175 // We have a definition after a declaration with the wrong type. 1176 // We must make a new GlobalVariable* and update everything that used OldGV 1177 // (a declaration or tentative definition) with the new GlobalVariable* 1178 // (which will be a definition). 1179 // 1180 // This happens if there is a prototype for a global (e.g. 1181 // "extern int x[];") and then a definition of a different type (e.g. 1182 // "int x[10];"). This also happens when an initializer has a different type 1183 // from the type of the global (this happens with unions). 1184 if (GV == 0 || 1185 GV->getType()->getElementType() != InitType || 1186 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1187 1188 // Move the old entry aside so that we'll create a new one. 1189 Entry->setName(llvm::StringRef()); 1190 1191 // Make a new global with the correct type, this is now guaranteed to work. 1192 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1193 1194 // Replace all uses of the old global with the new global 1195 llvm::Constant *NewPtrForOldDecl = 1196 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1197 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1198 1199 // Erase the old global, since it is no longer used. 1200 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1201 } 1202 1203 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1204 SourceManager &SM = Context.getSourceManager(); 1205 AddAnnotation(EmitAnnotateAttr(GV, AA, 1206 SM.getInstantiationLineNumber(D->getLocation()))); 1207 } 1208 1209 GV->setInitializer(Init); 1210 1211 // If it is safe to mark the global 'constant', do so now. 1212 GV->setConstant(false); 1213 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1214 GV->setConstant(true); 1215 1216 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1217 1218 // Set the llvm linkage type as appropriate. 1219 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1220 if (Linkage == GVA_Internal) 1221 GV->setLinkage(llvm::Function::InternalLinkage); 1222 else if (D->hasAttr<DLLImportAttr>()) 1223 GV->setLinkage(llvm::Function::DLLImportLinkage); 1224 else if (D->hasAttr<DLLExportAttr>()) 1225 GV->setLinkage(llvm::Function::DLLExportLinkage); 1226 else if (D->hasAttr<WeakAttr>()) { 1227 if (GV->isConstant()) 1228 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1229 else 1230 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1231 } else if (Linkage == GVA_TemplateInstantiation || 1232 Linkage == GVA_ExplicitTemplateInstantiation) 1233 // FIXME: It seems like we can provide more specific linkage here 1234 // (LinkOnceODR, WeakODR). 1235 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1236 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1237 !D->hasExternalStorage() && !D->getInit() && 1238 !D->getAttr<SectionAttr>()) { 1239 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1240 // common vars aren't constant even if declared const. 1241 GV->setConstant(false); 1242 } else 1243 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1244 1245 SetCommonAttributes(D, GV); 1246 1247 // Emit global variable debug information. 1248 if (CGDebugInfo *DI = getDebugInfo()) { 1249 DI->setLocation(D->getLocation()); 1250 DI->EmitGlobalVariable(GV, D); 1251 } 1252 } 1253 1254 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1255 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1256 /// existing call uses of the old function in the module, this adjusts them to 1257 /// call the new function directly. 1258 /// 1259 /// This is not just a cleanup: the always_inline pass requires direct calls to 1260 /// functions to be able to inline them. If there is a bitcast in the way, it 1261 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1262 /// run at -O0. 1263 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1264 llvm::Function *NewFn) { 1265 // If we're redefining a global as a function, don't transform it. 1266 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1267 if (OldFn == 0) return; 1268 1269 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1270 llvm::SmallVector<llvm::Value*, 4> ArgList; 1271 1272 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1273 UI != E; ) { 1274 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1275 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1276 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1277 llvm::CallSite CS(CI); 1278 if (!CI || !CS.isCallee(I)) continue; 1279 1280 // If the return types don't match exactly, and if the call isn't dead, then 1281 // we can't transform this call. 1282 if (CI->getType() != NewRetTy && !CI->use_empty()) 1283 continue; 1284 1285 // If the function was passed too few arguments, don't transform. If extra 1286 // arguments were passed, we silently drop them. If any of the types 1287 // mismatch, we don't transform. 1288 unsigned ArgNo = 0; 1289 bool DontTransform = false; 1290 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1291 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1292 if (CS.arg_size() == ArgNo || 1293 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1294 DontTransform = true; 1295 break; 1296 } 1297 } 1298 if (DontTransform) 1299 continue; 1300 1301 // Okay, we can transform this. Create the new call instruction and copy 1302 // over the required information. 1303 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1304 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1305 ArgList.end(), "", CI); 1306 ArgList.clear(); 1307 if (!NewCall->getType()->isVoidTy()) 1308 NewCall->takeName(CI); 1309 NewCall->setAttributes(CI->getAttributes()); 1310 NewCall->setCallingConv(CI->getCallingConv()); 1311 1312 // Finally, remove the old call, replacing any uses with the new one. 1313 if (!CI->use_empty()) 1314 CI->replaceAllUsesWith(NewCall); 1315 1316 // Copy debug location attached to CI. 1317 if (!CI->getDebugLoc().isUnknown()) 1318 NewCall->setDebugLoc(CI->getDebugLoc()); 1319 CI->eraseFromParent(); 1320 } 1321 } 1322 1323 1324 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1325 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1326 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1327 getMangleContext().mangleInitDiscriminator(); 1328 // Get or create the prototype for the function. 1329 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1330 1331 // Strip off a bitcast if we got one back. 1332 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1333 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1334 Entry = CE->getOperand(0); 1335 } 1336 1337 1338 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1339 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1340 1341 // If the types mismatch then we have to rewrite the definition. 1342 assert(OldFn->isDeclaration() && 1343 "Shouldn't replace non-declaration"); 1344 1345 // F is the Function* for the one with the wrong type, we must make a new 1346 // Function* and update everything that used F (a declaration) with the new 1347 // Function* (which will be a definition). 1348 // 1349 // This happens if there is a prototype for a function 1350 // (e.g. "int f()") and then a definition of a different type 1351 // (e.g. "int f(int x)"). Move the old function aside so that it 1352 // doesn't interfere with GetAddrOfFunction. 1353 OldFn->setName(llvm::StringRef()); 1354 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1355 1356 // If this is an implementation of a function without a prototype, try to 1357 // replace any existing uses of the function (which may be calls) with uses 1358 // of the new function 1359 if (D->getType()->isFunctionNoProtoType()) { 1360 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1361 OldFn->removeDeadConstantUsers(); 1362 } 1363 1364 // Replace uses of F with the Function we will endow with a body. 1365 if (!Entry->use_empty()) { 1366 llvm::Constant *NewPtrForOldDecl = 1367 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1368 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1369 } 1370 1371 // Ok, delete the old function now, which is dead. 1372 OldFn->eraseFromParent(); 1373 1374 Entry = NewFn; 1375 } 1376 1377 llvm::Function *Fn = cast<llvm::Function>(Entry); 1378 setFunctionLinkage(D, Fn); 1379 1380 CodeGenFunction(*this).GenerateCode(D, Fn); 1381 1382 SetFunctionDefinitionAttributes(D, Fn); 1383 SetLLVMFunctionAttributesForDefinition(D, Fn); 1384 1385 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1386 AddGlobalCtor(Fn, CA->getPriority()); 1387 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1388 AddGlobalDtor(Fn, DA->getPriority()); 1389 } 1390 1391 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1392 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1393 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1394 assert(AA && "Not an alias?"); 1395 1396 llvm::StringRef MangledName = getMangledName(GD); 1397 1398 // If there is a definition in the module, then it wins over the alias. 1399 // This is dubious, but allow it to be safe. Just ignore the alias. 1400 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1401 if (Entry && !Entry->isDeclaration()) 1402 return; 1403 1404 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1405 1406 // Create a reference to the named value. This ensures that it is emitted 1407 // if a deferred decl. 1408 llvm::Constant *Aliasee; 1409 if (isa<llvm::FunctionType>(DeclTy)) 1410 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1411 else 1412 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1413 llvm::PointerType::getUnqual(DeclTy), 0); 1414 1415 // Create the new alias itself, but don't set a name yet. 1416 llvm::GlobalValue *GA = 1417 new llvm::GlobalAlias(Aliasee->getType(), 1418 llvm::Function::ExternalLinkage, 1419 "", Aliasee, &getModule()); 1420 1421 if (Entry) { 1422 assert(Entry->isDeclaration()); 1423 1424 // If there is a declaration in the module, then we had an extern followed 1425 // by the alias, as in: 1426 // extern int test6(); 1427 // ... 1428 // int test6() __attribute__((alias("test7"))); 1429 // 1430 // Remove it and replace uses of it with the alias. 1431 GA->takeName(Entry); 1432 1433 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1434 Entry->getType())); 1435 Entry->eraseFromParent(); 1436 } else { 1437 GA->setName(MangledName); 1438 } 1439 1440 // Set attributes which are particular to an alias; this is a 1441 // specialization of the attributes which may be set on a global 1442 // variable/function. 1443 if (D->hasAttr<DLLExportAttr>()) { 1444 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1445 // The dllexport attribute is ignored for undefined symbols. 1446 if (FD->getBody()) 1447 GA->setLinkage(llvm::Function::DLLExportLinkage); 1448 } else { 1449 GA->setLinkage(llvm::Function::DLLExportLinkage); 1450 } 1451 } else if (D->hasAttr<WeakAttr>() || 1452 D->hasAttr<WeakRefAttr>() || 1453 D->hasAttr<WeakImportAttr>()) { 1454 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1455 } 1456 1457 SetCommonAttributes(D, GA); 1458 } 1459 1460 /// getBuiltinLibFunction - Given a builtin id for a function like 1461 /// "__builtin_fabsf", return a Function* for "fabsf". 1462 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1463 unsigned BuiltinID) { 1464 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1465 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1466 "isn't a lib fn"); 1467 1468 // Get the name, skip over the __builtin_ prefix (if necessary). 1469 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1470 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1471 Name += 10; 1472 1473 const llvm::FunctionType *Ty = 1474 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1475 1476 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1477 } 1478 1479 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1480 unsigned NumTys) { 1481 return llvm::Intrinsic::getDeclaration(&getModule(), 1482 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1483 } 1484 1485 1486 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1487 const llvm::Type *SrcType, 1488 const llvm::Type *SizeType) { 1489 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1490 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1491 } 1492 1493 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1494 const llvm::Type *SrcType, 1495 const llvm::Type *SizeType) { 1496 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1497 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1498 } 1499 1500 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1501 const llvm::Type *SizeType) { 1502 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1503 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1504 } 1505 1506 static llvm::StringMapEntry<llvm::Constant*> & 1507 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1508 const StringLiteral *Literal, 1509 bool TargetIsLSB, 1510 bool &IsUTF16, 1511 unsigned &StringLength) { 1512 unsigned NumBytes = Literal->getByteLength(); 1513 1514 // Check for simple case. 1515 if (!Literal->containsNonAsciiOrNull()) { 1516 StringLength = NumBytes; 1517 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1518 StringLength)); 1519 } 1520 1521 // Otherwise, convert the UTF8 literals into a byte string. 1522 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1523 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1524 UTF16 *ToPtr = &ToBuf[0]; 1525 1526 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1527 &ToPtr, ToPtr + NumBytes, 1528 strictConversion); 1529 1530 // Check for conversion failure. 1531 if (Result != conversionOK) { 1532 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1533 // this duplicate code. 1534 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1535 StringLength = NumBytes; 1536 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1537 StringLength)); 1538 } 1539 1540 // ConvertUTF8toUTF16 returns the length in ToPtr. 1541 StringLength = ToPtr - &ToBuf[0]; 1542 1543 // Render the UTF-16 string into a byte array and convert to the target byte 1544 // order. 1545 // 1546 // FIXME: This isn't something we should need to do here. 1547 llvm::SmallString<128> AsBytes; 1548 AsBytes.reserve(StringLength * 2); 1549 for (unsigned i = 0; i != StringLength; ++i) { 1550 unsigned short Val = ToBuf[i]; 1551 if (TargetIsLSB) { 1552 AsBytes.push_back(Val & 0xFF); 1553 AsBytes.push_back(Val >> 8); 1554 } else { 1555 AsBytes.push_back(Val >> 8); 1556 AsBytes.push_back(Val & 0xFF); 1557 } 1558 } 1559 // Append one extra null character, the second is automatically added by our 1560 // caller. 1561 AsBytes.push_back(0); 1562 1563 IsUTF16 = true; 1564 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1565 } 1566 1567 llvm::Constant * 1568 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1569 unsigned StringLength = 0; 1570 bool isUTF16 = false; 1571 llvm::StringMapEntry<llvm::Constant*> &Entry = 1572 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1573 getTargetData().isLittleEndian(), 1574 isUTF16, StringLength); 1575 1576 if (llvm::Constant *C = Entry.getValue()) 1577 return C; 1578 1579 llvm::Constant *Zero = 1580 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1581 llvm::Constant *Zeros[] = { Zero, Zero }; 1582 1583 // If we don't already have it, get __CFConstantStringClassReference. 1584 if (!CFConstantStringClassRef) { 1585 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1586 Ty = llvm::ArrayType::get(Ty, 0); 1587 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1588 "__CFConstantStringClassReference"); 1589 // Decay array -> ptr 1590 CFConstantStringClassRef = 1591 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1592 } 1593 1594 QualType CFTy = getContext().getCFConstantStringType(); 1595 1596 const llvm::StructType *STy = 1597 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1598 1599 std::vector<llvm::Constant*> Fields(4); 1600 1601 // Class pointer. 1602 Fields[0] = CFConstantStringClassRef; 1603 1604 // Flags. 1605 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1606 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1607 llvm::ConstantInt::get(Ty, 0x07C8); 1608 1609 // String pointer. 1610 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1611 1612 llvm::GlobalValue::LinkageTypes Linkage; 1613 bool isConstant; 1614 if (isUTF16) { 1615 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1616 Linkage = llvm::GlobalValue::InternalLinkage; 1617 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1618 // does make plain ascii ones writable. 1619 isConstant = true; 1620 } else { 1621 Linkage = llvm::GlobalValue::PrivateLinkage; 1622 isConstant = !Features.WritableStrings; 1623 } 1624 1625 llvm::GlobalVariable *GV = 1626 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1627 ".str"); 1628 if (isUTF16) { 1629 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1630 GV->setAlignment(Align.getQuantity()); 1631 } 1632 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1633 1634 // String length. 1635 Ty = getTypes().ConvertType(getContext().LongTy); 1636 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1637 1638 // The struct. 1639 C = llvm::ConstantStruct::get(STy, Fields); 1640 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1641 llvm::GlobalVariable::PrivateLinkage, C, 1642 "_unnamed_cfstring_"); 1643 if (const char *Sect = getContext().Target.getCFStringSection()) 1644 GV->setSection(Sect); 1645 Entry.setValue(GV); 1646 1647 return GV; 1648 } 1649 1650 llvm::Constant * 1651 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1652 unsigned StringLength = 0; 1653 bool isUTF16 = false; 1654 llvm::StringMapEntry<llvm::Constant*> &Entry = 1655 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1656 getTargetData().isLittleEndian(), 1657 isUTF16, StringLength); 1658 1659 if (llvm::Constant *C = Entry.getValue()) 1660 return C; 1661 1662 llvm::Constant *Zero = 1663 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1664 llvm::Constant *Zeros[] = { Zero, Zero }; 1665 1666 // If we don't already have it, get _NSConstantStringClassReference. 1667 if (!NSConstantStringClassRef) { 1668 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1669 Ty = llvm::ArrayType::get(Ty, 0); 1670 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1671 Features.ObjCNonFragileABI ? 1672 "OBJC_CLASS_$_NSConstantString" : 1673 "_NSConstantStringClassReference"); 1674 // Decay array -> ptr 1675 NSConstantStringClassRef = 1676 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1677 } 1678 1679 QualType NSTy = getContext().getNSConstantStringType(); 1680 1681 const llvm::StructType *STy = 1682 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1683 1684 std::vector<llvm::Constant*> Fields(3); 1685 1686 // Class pointer. 1687 Fields[0] = NSConstantStringClassRef; 1688 1689 // String pointer. 1690 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1691 1692 llvm::GlobalValue::LinkageTypes Linkage; 1693 bool isConstant; 1694 if (isUTF16) { 1695 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1696 Linkage = llvm::GlobalValue::InternalLinkage; 1697 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1698 // does make plain ascii ones writable. 1699 isConstant = true; 1700 } else { 1701 Linkage = llvm::GlobalValue::PrivateLinkage; 1702 isConstant = !Features.WritableStrings; 1703 } 1704 1705 llvm::GlobalVariable *GV = 1706 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1707 ".str"); 1708 if (isUTF16) { 1709 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1710 GV->setAlignment(Align.getQuantity()); 1711 } 1712 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1713 1714 // String length. 1715 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1716 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1717 1718 // The struct. 1719 C = llvm::ConstantStruct::get(STy, Fields); 1720 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1721 llvm::GlobalVariable::PrivateLinkage, C, 1722 "_unnamed_nsstring_"); 1723 // FIXME. Fix section. 1724 if (const char *Sect = 1725 Features.ObjCNonFragileABI 1726 ? getContext().Target.getNSStringNonFragileABISection() 1727 : getContext().Target.getNSStringSection()) 1728 GV->setSection(Sect); 1729 Entry.setValue(GV); 1730 1731 return GV; 1732 } 1733 1734 /// GetStringForStringLiteral - Return the appropriate bytes for a 1735 /// string literal, properly padded to match the literal type. 1736 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1737 const char *StrData = E->getStrData(); 1738 unsigned Len = E->getByteLength(); 1739 1740 const ConstantArrayType *CAT = 1741 getContext().getAsConstantArrayType(E->getType()); 1742 assert(CAT && "String isn't pointer or array!"); 1743 1744 // Resize the string to the right size. 1745 std::string Str(StrData, StrData+Len); 1746 uint64_t RealLen = CAT->getSize().getZExtValue(); 1747 1748 if (E->isWide()) 1749 RealLen *= getContext().Target.getWCharWidth()/8; 1750 1751 Str.resize(RealLen, '\0'); 1752 1753 return Str; 1754 } 1755 1756 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1757 /// constant array for the given string literal. 1758 llvm::Constant * 1759 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1760 // FIXME: This can be more efficient. 1761 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1762 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1763 if (S->isWide()) { 1764 llvm::Type *DestTy = 1765 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1766 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1767 } 1768 return C; 1769 } 1770 1771 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1772 /// array for the given ObjCEncodeExpr node. 1773 llvm::Constant * 1774 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1775 std::string Str; 1776 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1777 1778 return GetAddrOfConstantCString(Str); 1779 } 1780 1781 1782 /// GenerateWritableString -- Creates storage for a string literal. 1783 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1784 bool constant, 1785 CodeGenModule &CGM, 1786 const char *GlobalName) { 1787 // Create Constant for this string literal. Don't add a '\0'. 1788 llvm::Constant *C = 1789 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1790 1791 // Create a global variable for this string 1792 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1793 llvm::GlobalValue::PrivateLinkage, 1794 C, GlobalName); 1795 } 1796 1797 /// GetAddrOfConstantString - Returns a pointer to a character array 1798 /// containing the literal. This contents are exactly that of the 1799 /// given string, i.e. it will not be null terminated automatically; 1800 /// see GetAddrOfConstantCString. Note that whether the result is 1801 /// actually a pointer to an LLVM constant depends on 1802 /// Feature.WriteableStrings. 1803 /// 1804 /// The result has pointer to array type. 1805 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1806 const char *GlobalName) { 1807 bool IsConstant = !Features.WritableStrings; 1808 1809 // Get the default prefix if a name wasn't specified. 1810 if (!GlobalName) 1811 GlobalName = ".str"; 1812 1813 // Don't share any string literals if strings aren't constant. 1814 if (!IsConstant) 1815 return GenerateStringLiteral(str, false, *this, GlobalName); 1816 1817 llvm::StringMapEntry<llvm::Constant *> &Entry = 1818 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1819 1820 if (Entry.getValue()) 1821 return Entry.getValue(); 1822 1823 // Create a global variable for this. 1824 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1825 Entry.setValue(C); 1826 return C; 1827 } 1828 1829 /// GetAddrOfConstantCString - Returns a pointer to a character 1830 /// array containing the literal and a terminating '\-' 1831 /// character. The result has pointer to array type. 1832 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1833 const char *GlobalName){ 1834 return GetAddrOfConstantString(str + '\0', GlobalName); 1835 } 1836 1837 /// EmitObjCPropertyImplementations - Emit information for synthesized 1838 /// properties for an implementation. 1839 void CodeGenModule::EmitObjCPropertyImplementations(const 1840 ObjCImplementationDecl *D) { 1841 for (ObjCImplementationDecl::propimpl_iterator 1842 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1843 ObjCPropertyImplDecl *PID = *i; 1844 1845 // Dynamic is just for type-checking. 1846 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1847 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1848 1849 // Determine which methods need to be implemented, some may have 1850 // been overridden. Note that ::isSynthesized is not the method 1851 // we want, that just indicates if the decl came from a 1852 // property. What we want to know is if the method is defined in 1853 // this implementation. 1854 if (!D->getInstanceMethod(PD->getGetterName())) 1855 CodeGenFunction(*this).GenerateObjCGetter( 1856 const_cast<ObjCImplementationDecl *>(D), PID); 1857 if (!PD->isReadOnly() && 1858 !D->getInstanceMethod(PD->getSetterName())) 1859 CodeGenFunction(*this).GenerateObjCSetter( 1860 const_cast<ObjCImplementationDecl *>(D), PID); 1861 } 1862 } 1863 } 1864 1865 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1866 /// for an implementation. 1867 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1868 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1869 return; 1870 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1871 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1872 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1873 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1874 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1875 D->getLocation(), 1876 D->getLocation(), cxxSelector, 1877 getContext().VoidTy, 0, 1878 DC, true, false, true, 1879 ObjCMethodDecl::Required); 1880 D->addInstanceMethod(DTORMethod); 1881 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1882 1883 II = &getContext().Idents.get(".cxx_construct"); 1884 cxxSelector = getContext().Selectors.getSelector(0, &II); 1885 // The constructor returns 'self'. 1886 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1887 D->getLocation(), 1888 D->getLocation(), cxxSelector, 1889 getContext().getObjCIdType(), 0, 1890 DC, true, false, true, 1891 ObjCMethodDecl::Required); 1892 D->addInstanceMethod(CTORMethod); 1893 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1894 1895 1896 } 1897 1898 /// EmitNamespace - Emit all declarations in a namespace. 1899 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1900 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1901 I != E; ++I) 1902 EmitTopLevelDecl(*I); 1903 } 1904 1905 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1906 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1907 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1908 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1909 ErrorUnsupported(LSD, "linkage spec"); 1910 return; 1911 } 1912 1913 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1914 I != E; ++I) 1915 EmitTopLevelDecl(*I); 1916 } 1917 1918 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1919 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1920 // If an error has occurred, stop code generation, but continue 1921 // parsing and semantic analysis (to ensure all warnings and errors 1922 // are emitted). 1923 if (Diags.hasErrorOccurred()) 1924 return; 1925 1926 // Ignore dependent declarations. 1927 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1928 return; 1929 1930 switch (D->getKind()) { 1931 case Decl::CXXConversion: 1932 case Decl::CXXMethod: 1933 case Decl::Function: 1934 // Skip function templates 1935 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1936 return; 1937 1938 EmitGlobal(cast<FunctionDecl>(D)); 1939 break; 1940 1941 case Decl::Var: 1942 EmitGlobal(cast<VarDecl>(D)); 1943 break; 1944 1945 // C++ Decls 1946 case Decl::Namespace: 1947 EmitNamespace(cast<NamespaceDecl>(D)); 1948 break; 1949 // No code generation needed. 1950 case Decl::UsingShadow: 1951 case Decl::Using: 1952 case Decl::UsingDirective: 1953 case Decl::ClassTemplate: 1954 case Decl::FunctionTemplate: 1955 case Decl::NamespaceAlias: 1956 break; 1957 case Decl::CXXConstructor: 1958 // Skip function templates 1959 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1960 return; 1961 1962 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1963 break; 1964 case Decl::CXXDestructor: 1965 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1966 break; 1967 1968 case Decl::StaticAssert: 1969 // Nothing to do. 1970 break; 1971 1972 // Objective-C Decls 1973 1974 // Forward declarations, no (immediate) code generation. 1975 case Decl::ObjCClass: 1976 case Decl::ObjCForwardProtocol: 1977 case Decl::ObjCCategory: 1978 case Decl::ObjCInterface: 1979 break; 1980 1981 case Decl::ObjCProtocol: 1982 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1983 break; 1984 1985 case Decl::ObjCCategoryImpl: 1986 // Categories have properties but don't support synthesize so we 1987 // can ignore them here. 1988 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1989 break; 1990 1991 case Decl::ObjCImplementation: { 1992 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1993 EmitObjCPropertyImplementations(OMD); 1994 EmitObjCIvarInitializations(OMD); 1995 Runtime->GenerateClass(OMD); 1996 break; 1997 } 1998 case Decl::ObjCMethod: { 1999 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2000 // If this is not a prototype, emit the body. 2001 if (OMD->getBody()) 2002 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2003 break; 2004 } 2005 case Decl::ObjCCompatibleAlias: 2006 // compatibility-alias is a directive and has no code gen. 2007 break; 2008 2009 case Decl::LinkageSpec: 2010 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2011 break; 2012 2013 case Decl::FileScopeAsm: { 2014 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2015 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2016 2017 const std::string &S = getModule().getModuleInlineAsm(); 2018 if (S.empty()) 2019 getModule().setModuleInlineAsm(AsmString); 2020 else 2021 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2022 break; 2023 } 2024 2025 default: 2026 // Make sure we handled everything we should, every other kind is a 2027 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2028 // function. Need to recode Decl::Kind to do that easily. 2029 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2030 } 2031 } 2032