1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (Features.ObjC1) 76 createObjCRuntime(); 77 78 // Enable TBAA unless it's suppressed. 79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 81 ABI.getMangleContext()); 82 83 // If debug info generation is enabled, create the CGDebugInfo object. 84 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 85 86 Block.GlobalUniqueCount = 0; 87 88 // Initialize the type cache. 89 llvm::LLVMContext &LLVMContext = M.getContext(); 90 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 91 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 92 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 93 PointerWidthInBits = C.Target.getPointerWidth(0); 94 PointerAlignInBytes = 95 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 96 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 97 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 98 Int8PtrTy = Int8Ty->getPointerTo(0); 99 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 100 } 101 102 CodeGenModule::~CodeGenModule() { 103 delete Runtime; 104 delete &ABI; 105 delete TBAA; 106 delete DebugInfo; 107 } 108 109 void CodeGenModule::createObjCRuntime() { 110 if (!Features.NeXTRuntime) 111 Runtime = CreateGNUObjCRuntime(*this); 112 else 113 Runtime = CreateMacObjCRuntime(*this); 114 } 115 116 void CodeGenModule::Release() { 117 EmitDeferred(); 118 EmitCXXGlobalInitFunc(); 119 EmitCXXGlobalDtorFunc(); 120 if (Runtime) 121 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 122 AddGlobalCtor(ObjCInitFunction); 123 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 124 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 125 EmitAnnotations(); 126 EmitLLVMUsed(); 127 128 SimplifyPersonality(); 129 130 if (getCodeGenOpts().EmitDeclMetadata) 131 EmitDeclMetadata(); 132 } 133 134 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 135 // Make sure that this type is translated. 136 Types.UpdateCompletedType(TD); 137 if (DebugInfo) 138 DebugInfo->UpdateCompletedType(TD); 139 } 140 141 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 142 if (!TBAA) 143 return 0; 144 return TBAA->getTBAAInfo(QTy); 145 } 146 147 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 148 llvm::MDNode *TBAAInfo) { 149 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 150 } 151 152 bool CodeGenModule::isTargetDarwin() const { 153 return getContext().Target.getTriple().isOSDarwin(); 154 } 155 156 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) { 157 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 158 getDiags().Report(Context.getFullLoc(loc), diagID); 159 } 160 161 /// ErrorUnsupported - Print out an error that codegen doesn't support the 162 /// specified stmt yet. 163 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 164 bool OmitOnError) { 165 if (OmitOnError && getDiags().hasErrorOccurred()) 166 return; 167 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 168 "cannot compile this %0 yet"); 169 std::string Msg = Type; 170 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 171 << Msg << S->getSourceRange(); 172 } 173 174 /// ErrorUnsupported - Print out an error that codegen doesn't support the 175 /// specified decl yet. 176 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 177 bool OmitOnError) { 178 if (OmitOnError && getDiags().hasErrorOccurred()) 179 return; 180 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 181 "cannot compile this %0 yet"); 182 std::string Msg = Type; 183 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 184 } 185 186 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 187 const NamedDecl *D) const { 188 // Internal definitions always have default visibility. 189 if (GV->hasLocalLinkage()) { 190 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 191 return; 192 } 193 194 // Set visibility for definitions. 195 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 196 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 197 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 198 } 199 200 /// Set the symbol visibility of type information (vtable and RTTI) 201 /// associated with the given type. 202 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 203 const CXXRecordDecl *RD, 204 TypeVisibilityKind TVK) const { 205 setGlobalVisibility(GV, RD); 206 207 if (!CodeGenOpts.HiddenWeakVTables) 208 return; 209 210 // We never want to drop the visibility for RTTI names. 211 if (TVK == TVK_ForRTTIName) 212 return; 213 214 // We want to drop the visibility to hidden for weak type symbols. 215 // This isn't possible if there might be unresolved references 216 // elsewhere that rely on this symbol being visible. 217 218 // This should be kept roughly in sync with setThunkVisibility 219 // in CGVTables.cpp. 220 221 // Preconditions. 222 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 223 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 224 return; 225 226 // Don't override an explicit visibility attribute. 227 if (RD->getExplicitVisibility()) 228 return; 229 230 switch (RD->getTemplateSpecializationKind()) { 231 // We have to disable the optimization if this is an EI definition 232 // because there might be EI declarations in other shared objects. 233 case TSK_ExplicitInstantiationDefinition: 234 case TSK_ExplicitInstantiationDeclaration: 235 return; 236 237 // Every use of a non-template class's type information has to emit it. 238 case TSK_Undeclared: 239 break; 240 241 // In theory, implicit instantiations can ignore the possibility of 242 // an explicit instantiation declaration because there necessarily 243 // must be an EI definition somewhere with default visibility. In 244 // practice, it's possible to have an explicit instantiation for 245 // an arbitrary template class, and linkers aren't necessarily able 246 // to deal with mixed-visibility symbols. 247 case TSK_ExplicitSpecialization: 248 case TSK_ImplicitInstantiation: 249 if (!CodeGenOpts.HiddenWeakTemplateVTables) 250 return; 251 break; 252 } 253 254 // If there's a key function, there may be translation units 255 // that don't have the key function's definition. But ignore 256 // this if we're emitting RTTI under -fno-rtti. 257 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 258 if (Context.getKeyFunction(RD)) 259 return; 260 } 261 262 // Otherwise, drop the visibility to hidden. 263 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 264 GV->setUnnamedAddr(true); 265 } 266 267 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 268 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 269 270 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 271 if (!Str.empty()) 272 return Str; 273 274 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 275 IdentifierInfo *II = ND->getIdentifier(); 276 assert(II && "Attempt to mangle unnamed decl."); 277 278 Str = II->getName(); 279 return Str; 280 } 281 282 llvm::SmallString<256> Buffer; 283 llvm::raw_svector_ostream Out(Buffer); 284 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 285 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 286 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 287 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 288 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 289 getCXXABI().getMangleContext().mangleBlock(BD, Out); 290 else 291 getCXXABI().getMangleContext().mangleName(ND, Out); 292 293 // Allocate space for the mangled name. 294 Out.flush(); 295 size_t Length = Buffer.size(); 296 char *Name = MangledNamesAllocator.Allocate<char>(Length); 297 std::copy(Buffer.begin(), Buffer.end(), Name); 298 299 Str = llvm::StringRef(Name, Length); 300 301 return Str; 302 } 303 304 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 305 const BlockDecl *BD) { 306 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 307 const Decl *D = GD.getDecl(); 308 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 309 if (D == 0) 310 MangleCtx.mangleGlobalBlock(BD, Out); 311 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 312 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 313 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 314 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 315 else 316 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 317 } 318 319 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 320 return getModule().getNamedValue(Name); 321 } 322 323 /// AddGlobalCtor - Add a function to the list that will be called before 324 /// main() runs. 325 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 326 // FIXME: Type coercion of void()* types. 327 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 328 } 329 330 /// AddGlobalDtor - Add a function to the list that will be called 331 /// when the module is unloaded. 332 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 333 // FIXME: Type coercion of void()* types. 334 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 335 } 336 337 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 338 // Ctor function type is void()*. 339 llvm::FunctionType* CtorFTy = 340 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 341 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 342 343 // Get the type of a ctor entry, { i32, void ()* }. 344 llvm::StructType* CtorStructTy = 345 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 346 llvm::PointerType::getUnqual(CtorFTy), NULL); 347 348 // Construct the constructor and destructor arrays. 349 std::vector<llvm::Constant*> Ctors; 350 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 351 std::vector<llvm::Constant*> S; 352 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 353 I->second, false)); 354 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 355 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 356 } 357 358 if (!Ctors.empty()) { 359 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 360 new llvm::GlobalVariable(TheModule, AT, false, 361 llvm::GlobalValue::AppendingLinkage, 362 llvm::ConstantArray::get(AT, Ctors), 363 GlobalName); 364 } 365 } 366 367 void CodeGenModule::EmitAnnotations() { 368 if (Annotations.empty()) 369 return; 370 371 // Create a new global variable for the ConstantStruct in the Module. 372 llvm::Constant *Array = 373 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 374 Annotations.size()), 375 Annotations); 376 llvm::GlobalValue *gv = 377 new llvm::GlobalVariable(TheModule, Array->getType(), false, 378 llvm::GlobalValue::AppendingLinkage, Array, 379 "llvm.global.annotations"); 380 gv->setSection("llvm.metadata"); 381 } 382 383 llvm::GlobalValue::LinkageTypes 384 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 385 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 386 387 if (Linkage == GVA_Internal) 388 return llvm::Function::InternalLinkage; 389 390 if (D->hasAttr<DLLExportAttr>()) 391 return llvm::Function::DLLExportLinkage; 392 393 if (D->hasAttr<WeakAttr>()) 394 return llvm::Function::WeakAnyLinkage; 395 396 // In C99 mode, 'inline' functions are guaranteed to have a strong 397 // definition somewhere else, so we can use available_externally linkage. 398 if (Linkage == GVA_C99Inline) 399 return llvm::Function::AvailableExternallyLinkage; 400 401 // In C++, the compiler has to emit a definition in every translation unit 402 // that references the function. We should use linkonce_odr because 403 // a) if all references in this translation unit are optimized away, we 404 // don't need to codegen it. b) if the function persists, it needs to be 405 // merged with other definitions. c) C++ has the ODR, so we know the 406 // definition is dependable. 407 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 408 return !Context.getLangOptions().AppleKext 409 ? llvm::Function::LinkOnceODRLinkage 410 : llvm::Function::InternalLinkage; 411 412 // An explicit instantiation of a template has weak linkage, since 413 // explicit instantiations can occur in multiple translation units 414 // and must all be equivalent. However, we are not allowed to 415 // throw away these explicit instantiations. 416 if (Linkage == GVA_ExplicitTemplateInstantiation) 417 return !Context.getLangOptions().AppleKext 418 ? llvm::Function::WeakODRLinkage 419 : llvm::Function::InternalLinkage; 420 421 // Otherwise, we have strong external linkage. 422 assert(Linkage == GVA_StrongExternal); 423 return llvm::Function::ExternalLinkage; 424 } 425 426 427 /// SetFunctionDefinitionAttributes - Set attributes for a global. 428 /// 429 /// FIXME: This is currently only done for aliases and functions, but not for 430 /// variables (these details are set in EmitGlobalVarDefinition for variables). 431 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 432 llvm::GlobalValue *GV) { 433 SetCommonAttributes(D, GV); 434 } 435 436 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 437 const CGFunctionInfo &Info, 438 llvm::Function *F) { 439 unsigned CallingConv; 440 AttributeListType AttributeList; 441 ConstructAttributeList(Info, D, AttributeList, CallingConv); 442 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 443 AttributeList.size())); 444 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 445 } 446 447 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 448 llvm::Function *F) { 449 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 450 F->addFnAttr(llvm::Attribute::NoUnwind); 451 452 if (D->hasAttr<AlwaysInlineAttr>()) 453 F->addFnAttr(llvm::Attribute::AlwaysInline); 454 455 if (D->hasAttr<NakedAttr>()) 456 F->addFnAttr(llvm::Attribute::Naked); 457 458 if (D->hasAttr<NoInlineAttr>()) 459 F->addFnAttr(llvm::Attribute::NoInline); 460 461 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 462 F->setUnnamedAddr(true); 463 464 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 465 F->addFnAttr(llvm::Attribute::StackProtect); 466 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 467 F->addFnAttr(llvm::Attribute::StackProtectReq); 468 469 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 470 if (alignment) 471 F->setAlignment(alignment); 472 473 // C++ ABI requires 2-byte alignment for member functions. 474 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 475 F->setAlignment(2); 476 } 477 478 void CodeGenModule::SetCommonAttributes(const Decl *D, 479 llvm::GlobalValue *GV) { 480 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 481 setGlobalVisibility(GV, ND); 482 else 483 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 484 485 if (D->hasAttr<UsedAttr>()) 486 AddUsedGlobal(GV); 487 488 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 489 GV->setSection(SA->getName()); 490 491 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 492 } 493 494 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 495 llvm::Function *F, 496 const CGFunctionInfo &FI) { 497 SetLLVMFunctionAttributes(D, FI, F); 498 SetLLVMFunctionAttributesForDefinition(D, F); 499 500 F->setLinkage(llvm::Function::InternalLinkage); 501 502 SetCommonAttributes(D, F); 503 } 504 505 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 506 llvm::Function *F, 507 bool IsIncompleteFunction) { 508 if (unsigned IID = F->getIntrinsicID()) { 509 // If this is an intrinsic function, set the function's attributes 510 // to the intrinsic's attributes. 511 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 512 return; 513 } 514 515 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 516 517 if (!IsIncompleteFunction) 518 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 519 520 // Only a few attributes are set on declarations; these may later be 521 // overridden by a definition. 522 523 if (FD->hasAttr<DLLImportAttr>()) { 524 F->setLinkage(llvm::Function::DLLImportLinkage); 525 } else if (FD->hasAttr<WeakAttr>() || 526 FD->isWeakImported()) { 527 // "extern_weak" is overloaded in LLVM; we probably should have 528 // separate linkage types for this. 529 F->setLinkage(llvm::Function::ExternalWeakLinkage); 530 } else { 531 F->setLinkage(llvm::Function::ExternalLinkage); 532 533 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 534 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 535 F->setVisibility(GetLLVMVisibility(LV.visibility())); 536 } 537 } 538 539 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 540 F->setSection(SA->getName()); 541 } 542 543 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 544 assert(!GV->isDeclaration() && 545 "Only globals with definition can force usage."); 546 LLVMUsed.push_back(GV); 547 } 548 549 void CodeGenModule::EmitLLVMUsed() { 550 // Don't create llvm.used if there is no need. 551 if (LLVMUsed.empty()) 552 return; 553 554 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 555 556 // Convert LLVMUsed to what ConstantArray needs. 557 std::vector<llvm::Constant*> UsedArray; 558 UsedArray.resize(LLVMUsed.size()); 559 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 560 UsedArray[i] = 561 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 562 i8PTy); 563 } 564 565 if (UsedArray.empty()) 566 return; 567 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 568 569 llvm::GlobalVariable *GV = 570 new llvm::GlobalVariable(getModule(), ATy, false, 571 llvm::GlobalValue::AppendingLinkage, 572 llvm::ConstantArray::get(ATy, UsedArray), 573 "llvm.used"); 574 575 GV->setSection("llvm.metadata"); 576 } 577 578 void CodeGenModule::EmitDeferred() { 579 // Emit code for any potentially referenced deferred decls. Since a 580 // previously unused static decl may become used during the generation of code 581 // for a static function, iterate until no changes are made. 582 583 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 584 if (!DeferredVTables.empty()) { 585 const CXXRecordDecl *RD = DeferredVTables.back(); 586 DeferredVTables.pop_back(); 587 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 588 continue; 589 } 590 591 GlobalDecl D = DeferredDeclsToEmit.back(); 592 DeferredDeclsToEmit.pop_back(); 593 594 // Check to see if we've already emitted this. This is necessary 595 // for a couple of reasons: first, decls can end up in the 596 // deferred-decls queue multiple times, and second, decls can end 597 // up with definitions in unusual ways (e.g. by an extern inline 598 // function acquiring a strong function redefinition). Just 599 // ignore these cases. 600 // 601 // TODO: That said, looking this up multiple times is very wasteful. 602 llvm::StringRef Name = getMangledName(D); 603 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 604 assert(CGRef && "Deferred decl wasn't referenced?"); 605 606 if (!CGRef->isDeclaration()) 607 continue; 608 609 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 610 // purposes an alias counts as a definition. 611 if (isa<llvm::GlobalAlias>(CGRef)) 612 continue; 613 614 // Otherwise, emit the definition and move on to the next one. 615 EmitGlobalDefinition(D); 616 } 617 } 618 619 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 620 /// annotation information for a given GlobalValue. The annotation struct is 621 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 622 /// GlobalValue being annotated. The second field is the constant string 623 /// created from the AnnotateAttr's annotation. The third field is a constant 624 /// string containing the name of the translation unit. The fourth field is 625 /// the line number in the file of the annotated value declaration. 626 /// 627 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 628 /// appears to. 629 /// 630 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 631 const AnnotateAttr *AA, 632 unsigned LineNo) { 633 llvm::Module *M = &getModule(); 634 635 // get [N x i8] constants for the annotation string, and the filename string 636 // which are the 2nd and 3rd elements of the global annotation structure. 637 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 638 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 639 AA->getAnnotation(), true); 640 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 641 M->getModuleIdentifier(), 642 true); 643 644 // Get the two global values corresponding to the ConstantArrays we just 645 // created to hold the bytes of the strings. 646 llvm::GlobalValue *annoGV = 647 new llvm::GlobalVariable(*M, anno->getType(), false, 648 llvm::GlobalValue::PrivateLinkage, anno, 649 GV->getName()); 650 // translation unit name string, emitted into the llvm.metadata section. 651 llvm::GlobalValue *unitGV = 652 new llvm::GlobalVariable(*M, unit->getType(), false, 653 llvm::GlobalValue::PrivateLinkage, unit, 654 ".str"); 655 unitGV->setUnnamedAddr(true); 656 657 // Create the ConstantStruct for the global annotation. 658 llvm::Constant *Fields[4] = { 659 llvm::ConstantExpr::getBitCast(GV, SBP), 660 llvm::ConstantExpr::getBitCast(annoGV, SBP), 661 llvm::ConstantExpr::getBitCast(unitGV, SBP), 662 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 663 }; 664 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 665 } 666 667 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 668 // Never defer when EmitAllDecls is specified. 669 if (Features.EmitAllDecls) 670 return false; 671 672 return !getContext().DeclMustBeEmitted(Global); 673 } 674 675 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 676 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 677 assert(AA && "No alias?"); 678 679 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 680 681 // See if there is already something with the target's name in the module. 682 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 683 684 llvm::Constant *Aliasee; 685 if (isa<llvm::FunctionType>(DeclTy)) 686 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 687 /*ForVTable=*/false); 688 else 689 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 690 llvm::PointerType::getUnqual(DeclTy), 0); 691 if (!Entry) { 692 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 693 F->setLinkage(llvm::Function::ExternalWeakLinkage); 694 WeakRefReferences.insert(F); 695 } 696 697 return Aliasee; 698 } 699 700 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 701 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 702 703 // Weak references don't produce any output by themselves. 704 if (Global->hasAttr<WeakRefAttr>()) 705 return; 706 707 // If this is an alias definition (which otherwise looks like a declaration) 708 // emit it now. 709 if (Global->hasAttr<AliasAttr>()) 710 return EmitAliasDefinition(GD); 711 712 // Ignore declarations, they will be emitted on their first use. 713 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 714 if (FD->getIdentifier()) { 715 llvm::StringRef Name = FD->getName(); 716 if (Name == "_Block_object_assign") { 717 BlockObjectAssignDecl = FD; 718 } else if (Name == "_Block_object_dispose") { 719 BlockObjectDisposeDecl = FD; 720 } 721 } 722 723 // Forward declarations are emitted lazily on first use. 724 if (!FD->isThisDeclarationADefinition()) 725 return; 726 } else { 727 const VarDecl *VD = cast<VarDecl>(Global); 728 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 729 730 if (VD->getIdentifier()) { 731 llvm::StringRef Name = VD->getName(); 732 if (Name == "_NSConcreteGlobalBlock") { 733 NSConcreteGlobalBlockDecl = VD; 734 } else if (Name == "_NSConcreteStackBlock") { 735 NSConcreteStackBlockDecl = VD; 736 } 737 } 738 739 740 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 741 return; 742 } 743 744 // Defer code generation when possible if this is a static definition, inline 745 // function etc. These we only want to emit if they are used. 746 if (!MayDeferGeneration(Global)) { 747 // Emit the definition if it can't be deferred. 748 EmitGlobalDefinition(GD); 749 return; 750 } 751 752 // If we're deferring emission of a C++ variable with an 753 // initializer, remember the order in which it appeared in the file. 754 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 755 cast<VarDecl>(Global)->hasInit()) { 756 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 757 CXXGlobalInits.push_back(0); 758 } 759 760 // If the value has already been used, add it directly to the 761 // DeferredDeclsToEmit list. 762 llvm::StringRef MangledName = getMangledName(GD); 763 if (GetGlobalValue(MangledName)) 764 DeferredDeclsToEmit.push_back(GD); 765 else { 766 // Otherwise, remember that we saw a deferred decl with this name. The 767 // first use of the mangled name will cause it to move into 768 // DeferredDeclsToEmit. 769 DeferredDecls[MangledName] = GD; 770 } 771 } 772 773 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 774 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 775 776 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 777 Context.getSourceManager(), 778 "Generating code for declaration"); 779 780 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 781 // At -O0, don't generate IR for functions with available_externally 782 // linkage. 783 if (CodeGenOpts.OptimizationLevel == 0 && 784 !Function->hasAttr<AlwaysInlineAttr>() && 785 getFunctionLinkage(Function) 786 == llvm::Function::AvailableExternallyLinkage) 787 return; 788 789 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 790 if (Method->isVirtual()) 791 getVTables().EmitThunks(GD); 792 793 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 794 return EmitCXXConstructor(CD, GD.getCtorType()); 795 796 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 797 return EmitCXXDestructor(DD, GD.getDtorType()); 798 } 799 800 return EmitGlobalFunctionDefinition(GD); 801 } 802 803 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 804 return EmitGlobalVarDefinition(VD); 805 806 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 807 } 808 809 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 810 /// module, create and return an llvm Function with the specified type. If there 811 /// is something in the module with the specified name, return it potentially 812 /// bitcasted to the right type. 813 /// 814 /// If D is non-null, it specifies a decl that correspond to this. This is used 815 /// to set the attributes on the function when it is first created. 816 llvm::Constant * 817 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 818 const llvm::Type *Ty, 819 GlobalDecl D, bool ForVTable) { 820 // Lookup the entry, lazily creating it if necessary. 821 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 822 if (Entry) { 823 if (WeakRefReferences.count(Entry)) { 824 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 825 if (FD && !FD->hasAttr<WeakAttr>()) 826 Entry->setLinkage(llvm::Function::ExternalLinkage); 827 828 WeakRefReferences.erase(Entry); 829 } 830 831 if (Entry->getType()->getElementType() == Ty) 832 return Entry; 833 834 // Make sure the result is of the correct type. 835 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 836 return llvm::ConstantExpr::getBitCast(Entry, PTy); 837 } 838 839 // This function doesn't have a complete type (for example, the return 840 // type is an incomplete struct). Use a fake type instead, and make 841 // sure not to try to set attributes. 842 bool IsIncompleteFunction = false; 843 844 const llvm::FunctionType *FTy; 845 if (isa<llvm::FunctionType>(Ty)) { 846 FTy = cast<llvm::FunctionType>(Ty); 847 } else { 848 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 849 IsIncompleteFunction = true; 850 } 851 852 llvm::Function *F = llvm::Function::Create(FTy, 853 llvm::Function::ExternalLinkage, 854 MangledName, &getModule()); 855 assert(F->getName() == MangledName && "name was uniqued!"); 856 if (D.getDecl()) 857 SetFunctionAttributes(D, F, IsIncompleteFunction); 858 859 // This is the first use or definition of a mangled name. If there is a 860 // deferred decl with this name, remember that we need to emit it at the end 861 // of the file. 862 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 863 if (DDI != DeferredDecls.end()) { 864 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 865 // list, and remove it from DeferredDecls (since we don't need it anymore). 866 DeferredDeclsToEmit.push_back(DDI->second); 867 DeferredDecls.erase(DDI); 868 869 // Otherwise, there are cases we have to worry about where we're 870 // using a declaration for which we must emit a definition but where 871 // we might not find a top-level definition: 872 // - member functions defined inline in their classes 873 // - friend functions defined inline in some class 874 // - special member functions with implicit definitions 875 // If we ever change our AST traversal to walk into class methods, 876 // this will be unnecessary. 877 // 878 // We also don't emit a definition for a function if it's going to be an entry 879 // in a vtable, unless it's already marked as used. 880 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 881 // Look for a declaration that's lexically in a record. 882 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 883 do { 884 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 885 if (FD->isImplicit() && !ForVTable) { 886 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 887 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 888 break; 889 } else if (FD->isThisDeclarationADefinition()) { 890 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 891 break; 892 } 893 } 894 FD = FD->getPreviousDeclaration(); 895 } while (FD); 896 } 897 898 // Make sure the result is of the requested type. 899 if (!IsIncompleteFunction) { 900 assert(F->getType()->getElementType() == Ty); 901 return F; 902 } 903 904 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 905 return llvm::ConstantExpr::getBitCast(F, PTy); 906 } 907 908 /// GetAddrOfFunction - Return the address of the given function. If Ty is 909 /// non-null, then this function will use the specified type if it has to 910 /// create it (this occurs when we see a definition of the function). 911 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 912 const llvm::Type *Ty, 913 bool ForVTable) { 914 // If there was no specific requested type, just convert it now. 915 if (!Ty) 916 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 917 918 llvm::StringRef MangledName = getMangledName(GD); 919 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 920 } 921 922 /// CreateRuntimeFunction - Create a new runtime function with the specified 923 /// type and name. 924 llvm::Constant * 925 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 926 llvm::StringRef Name) { 927 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 928 } 929 930 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 931 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 932 return false; 933 if (Context.getLangOptions().CPlusPlus && 934 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 935 // FIXME: We should do something fancier here! 936 return false; 937 } 938 return true; 939 } 940 941 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 942 /// create and return an llvm GlobalVariable with the specified type. If there 943 /// is something in the module with the specified name, return it potentially 944 /// bitcasted to the right type. 945 /// 946 /// If D is non-null, it specifies a decl that correspond to this. This is used 947 /// to set the attributes on the global when it is first created. 948 llvm::Constant * 949 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 950 const llvm::PointerType *Ty, 951 const VarDecl *D, 952 bool UnnamedAddr) { 953 // Lookup the entry, lazily creating it if necessary. 954 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 955 if (Entry) { 956 if (WeakRefReferences.count(Entry)) { 957 if (D && !D->hasAttr<WeakAttr>()) 958 Entry->setLinkage(llvm::Function::ExternalLinkage); 959 960 WeakRefReferences.erase(Entry); 961 } 962 963 if (UnnamedAddr) 964 Entry->setUnnamedAddr(true); 965 966 if (Entry->getType() == Ty) 967 return Entry; 968 969 // Make sure the result is of the correct type. 970 return llvm::ConstantExpr::getBitCast(Entry, Ty); 971 } 972 973 // This is the first use or definition of a mangled name. If there is a 974 // deferred decl with this name, remember that we need to emit it at the end 975 // of the file. 976 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 977 if (DDI != DeferredDecls.end()) { 978 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 979 // list, and remove it from DeferredDecls (since we don't need it anymore). 980 DeferredDeclsToEmit.push_back(DDI->second); 981 DeferredDecls.erase(DDI); 982 } 983 984 llvm::GlobalVariable *GV = 985 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 986 llvm::GlobalValue::ExternalLinkage, 987 0, MangledName, 0, 988 false, Ty->getAddressSpace()); 989 990 // Handle things which are present even on external declarations. 991 if (D) { 992 // FIXME: This code is overly simple and should be merged with other global 993 // handling. 994 GV->setConstant(DeclIsConstantGlobal(Context, D)); 995 996 // Set linkage and visibility in case we never see a definition. 997 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 998 if (LV.linkage() != ExternalLinkage) { 999 // Don't set internal linkage on declarations. 1000 } else { 1001 if (D->hasAttr<DLLImportAttr>()) 1002 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1003 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1004 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1005 1006 // Set visibility on a declaration only if it's explicit. 1007 if (LV.visibilityExplicit()) 1008 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1009 } 1010 1011 GV->setThreadLocal(D->isThreadSpecified()); 1012 } 1013 1014 return GV; 1015 } 1016 1017 1018 llvm::GlobalVariable * 1019 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1020 const llvm::Type *Ty, 1021 llvm::GlobalValue::LinkageTypes Linkage) { 1022 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1023 llvm::GlobalVariable *OldGV = 0; 1024 1025 1026 if (GV) { 1027 // Check if the variable has the right type. 1028 if (GV->getType()->getElementType() == Ty) 1029 return GV; 1030 1031 // Because C++ name mangling, the only way we can end up with an already 1032 // existing global with the same name is if it has been declared extern "C". 1033 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1034 OldGV = GV; 1035 } 1036 1037 // Create a new variable. 1038 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1039 Linkage, 0, Name); 1040 1041 if (OldGV) { 1042 // Replace occurrences of the old variable if needed. 1043 GV->takeName(OldGV); 1044 1045 if (!OldGV->use_empty()) { 1046 llvm::Constant *NewPtrForOldDecl = 1047 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1048 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1049 } 1050 1051 OldGV->eraseFromParent(); 1052 } 1053 1054 return GV; 1055 } 1056 1057 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1058 /// given global variable. If Ty is non-null and if the global doesn't exist, 1059 /// then it will be greated with the specified type instead of whatever the 1060 /// normal requested type would be. 1061 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1062 const llvm::Type *Ty) { 1063 assert(D->hasGlobalStorage() && "Not a global variable"); 1064 QualType ASTTy = D->getType(); 1065 if (Ty == 0) 1066 Ty = getTypes().ConvertTypeForMem(ASTTy); 1067 1068 const llvm::PointerType *PTy = 1069 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1070 1071 llvm::StringRef MangledName = getMangledName(D); 1072 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1073 } 1074 1075 /// CreateRuntimeVariable - Create a new runtime global variable with the 1076 /// specified type and name. 1077 llvm::Constant * 1078 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1079 llvm::StringRef Name) { 1080 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1081 true); 1082 } 1083 1084 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1085 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1086 1087 if (MayDeferGeneration(D)) { 1088 // If we have not seen a reference to this variable yet, place it 1089 // into the deferred declarations table to be emitted if needed 1090 // later. 1091 llvm::StringRef MangledName = getMangledName(D); 1092 if (!GetGlobalValue(MangledName)) { 1093 DeferredDecls[MangledName] = D; 1094 return; 1095 } 1096 } 1097 1098 // The tentative definition is the only definition. 1099 EmitGlobalVarDefinition(D); 1100 } 1101 1102 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1103 if (DefinitionRequired) 1104 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1105 } 1106 1107 llvm::GlobalVariable::LinkageTypes 1108 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1109 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1110 return llvm::GlobalVariable::InternalLinkage; 1111 1112 if (const CXXMethodDecl *KeyFunction 1113 = RD->getASTContext().getKeyFunction(RD)) { 1114 // If this class has a key function, use that to determine the linkage of 1115 // the vtable. 1116 const FunctionDecl *Def = 0; 1117 if (KeyFunction->hasBody(Def)) 1118 KeyFunction = cast<CXXMethodDecl>(Def); 1119 1120 switch (KeyFunction->getTemplateSpecializationKind()) { 1121 case TSK_Undeclared: 1122 case TSK_ExplicitSpecialization: 1123 // When compiling with optimizations turned on, we emit all vtables, 1124 // even if the key function is not defined in the current translation 1125 // unit. If this is the case, use available_externally linkage. 1126 if (!Def && CodeGenOpts.OptimizationLevel) 1127 return llvm::GlobalVariable::AvailableExternallyLinkage; 1128 1129 if (KeyFunction->isInlined()) 1130 return !Context.getLangOptions().AppleKext ? 1131 llvm::GlobalVariable::LinkOnceODRLinkage : 1132 llvm::Function::InternalLinkage; 1133 1134 return llvm::GlobalVariable::ExternalLinkage; 1135 1136 case TSK_ImplicitInstantiation: 1137 return !Context.getLangOptions().AppleKext ? 1138 llvm::GlobalVariable::LinkOnceODRLinkage : 1139 llvm::Function::InternalLinkage; 1140 1141 case TSK_ExplicitInstantiationDefinition: 1142 return !Context.getLangOptions().AppleKext ? 1143 llvm::GlobalVariable::WeakODRLinkage : 1144 llvm::Function::InternalLinkage; 1145 1146 case TSK_ExplicitInstantiationDeclaration: 1147 // FIXME: Use available_externally linkage. However, this currently 1148 // breaks LLVM's build due to undefined symbols. 1149 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1150 return !Context.getLangOptions().AppleKext ? 1151 llvm::GlobalVariable::LinkOnceODRLinkage : 1152 llvm::Function::InternalLinkage; 1153 } 1154 } 1155 1156 if (Context.getLangOptions().AppleKext) 1157 return llvm::Function::InternalLinkage; 1158 1159 switch (RD->getTemplateSpecializationKind()) { 1160 case TSK_Undeclared: 1161 case TSK_ExplicitSpecialization: 1162 case TSK_ImplicitInstantiation: 1163 // FIXME: Use available_externally linkage. However, this currently 1164 // breaks LLVM's build due to undefined symbols. 1165 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1166 case TSK_ExplicitInstantiationDeclaration: 1167 return llvm::GlobalVariable::LinkOnceODRLinkage; 1168 1169 case TSK_ExplicitInstantiationDefinition: 1170 return llvm::GlobalVariable::WeakODRLinkage; 1171 } 1172 1173 // Silence GCC warning. 1174 return llvm::GlobalVariable::LinkOnceODRLinkage; 1175 } 1176 1177 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1178 return Context.toCharUnitsFromBits( 1179 TheTargetData.getTypeStoreSizeInBits(Ty)); 1180 } 1181 1182 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1183 llvm::Constant *Init = 0; 1184 QualType ASTTy = D->getType(); 1185 bool NonConstInit = false; 1186 1187 const Expr *InitExpr = D->getAnyInitializer(); 1188 1189 if (!InitExpr) { 1190 // This is a tentative definition; tentative definitions are 1191 // implicitly initialized with { 0 }. 1192 // 1193 // Note that tentative definitions are only emitted at the end of 1194 // a translation unit, so they should never have incomplete 1195 // type. In addition, EmitTentativeDefinition makes sure that we 1196 // never attempt to emit a tentative definition if a real one 1197 // exists. A use may still exists, however, so we still may need 1198 // to do a RAUW. 1199 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1200 Init = EmitNullConstant(D->getType()); 1201 } else { 1202 Init = EmitConstantExpr(InitExpr, D->getType()); 1203 if (!Init) { 1204 QualType T = InitExpr->getType(); 1205 if (D->getType()->isReferenceType()) 1206 T = D->getType(); 1207 1208 if (getLangOptions().CPlusPlus) { 1209 Init = EmitNullConstant(T); 1210 NonConstInit = true; 1211 } else { 1212 ErrorUnsupported(D, "static initializer"); 1213 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1214 } 1215 } else { 1216 // We don't need an initializer, so remove the entry for the delayed 1217 // initializer position (just in case this entry was delayed). 1218 if (getLangOptions().CPlusPlus) 1219 DelayedCXXInitPosition.erase(D); 1220 } 1221 } 1222 1223 const llvm::Type* InitType = Init->getType(); 1224 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1225 1226 // Strip off a bitcast if we got one back. 1227 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1229 // all zero index gep. 1230 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1231 Entry = CE->getOperand(0); 1232 } 1233 1234 // Entry is now either a Function or GlobalVariable. 1235 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1236 1237 // We have a definition after a declaration with the wrong type. 1238 // We must make a new GlobalVariable* and update everything that used OldGV 1239 // (a declaration or tentative definition) with the new GlobalVariable* 1240 // (which will be a definition). 1241 // 1242 // This happens if there is a prototype for a global (e.g. 1243 // "extern int x[];") and then a definition of a different type (e.g. 1244 // "int x[10];"). This also happens when an initializer has a different type 1245 // from the type of the global (this happens with unions). 1246 if (GV == 0 || 1247 GV->getType()->getElementType() != InitType || 1248 GV->getType()->getAddressSpace() != 1249 getContext().getTargetAddressSpace(ASTTy)) { 1250 1251 // Move the old entry aside so that we'll create a new one. 1252 Entry->setName(llvm::StringRef()); 1253 1254 // Make a new global with the correct type, this is now guaranteed to work. 1255 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1256 1257 // Replace all uses of the old global with the new global 1258 llvm::Constant *NewPtrForOldDecl = 1259 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1260 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1261 1262 // Erase the old global, since it is no longer used. 1263 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1264 } 1265 1266 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1267 SourceManager &SM = Context.getSourceManager(); 1268 AddAnnotation(EmitAnnotateAttr(GV, AA, 1269 SM.getInstantiationLineNumber(D->getLocation()))); 1270 } 1271 1272 GV->setInitializer(Init); 1273 1274 // If it is safe to mark the global 'constant', do so now. 1275 GV->setConstant(false); 1276 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1277 GV->setConstant(true); 1278 1279 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1280 1281 // Set the llvm linkage type as appropriate. 1282 llvm::GlobalValue::LinkageTypes Linkage = 1283 GetLLVMLinkageVarDefinition(D, GV); 1284 GV->setLinkage(Linkage); 1285 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1286 // common vars aren't constant even if declared const. 1287 GV->setConstant(false); 1288 1289 SetCommonAttributes(D, GV); 1290 1291 // Emit the initializer function if necessary. 1292 if (NonConstInit) 1293 EmitCXXGlobalVarDeclInitFunc(D, GV); 1294 1295 // Emit global variable debug information. 1296 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1297 DI->setLocation(D->getLocation()); 1298 DI->EmitGlobalVariable(GV, D); 1299 } 1300 } 1301 1302 llvm::GlobalValue::LinkageTypes 1303 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1304 llvm::GlobalVariable *GV) { 1305 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1306 if (Linkage == GVA_Internal) 1307 return llvm::Function::InternalLinkage; 1308 else if (D->hasAttr<DLLImportAttr>()) 1309 return llvm::Function::DLLImportLinkage; 1310 else if (D->hasAttr<DLLExportAttr>()) 1311 return llvm::Function::DLLExportLinkage; 1312 else if (D->hasAttr<WeakAttr>()) { 1313 if (GV->isConstant()) 1314 return llvm::GlobalVariable::WeakODRLinkage; 1315 else 1316 return llvm::GlobalVariable::WeakAnyLinkage; 1317 } else if (Linkage == GVA_TemplateInstantiation || 1318 Linkage == GVA_ExplicitTemplateInstantiation) 1319 return llvm::GlobalVariable::WeakODRLinkage; 1320 else if (!getLangOptions().CPlusPlus && 1321 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1322 D->getAttr<CommonAttr>()) && 1323 !D->hasExternalStorage() && !D->getInit() && 1324 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1325 // Thread local vars aren't considered common linkage. 1326 return llvm::GlobalVariable::CommonLinkage; 1327 } 1328 return llvm::GlobalVariable::ExternalLinkage; 1329 } 1330 1331 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1332 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1333 /// existing call uses of the old function in the module, this adjusts them to 1334 /// call the new function directly. 1335 /// 1336 /// This is not just a cleanup: the always_inline pass requires direct calls to 1337 /// functions to be able to inline them. If there is a bitcast in the way, it 1338 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1339 /// run at -O0. 1340 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1341 llvm::Function *NewFn) { 1342 // If we're redefining a global as a function, don't transform it. 1343 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1344 if (OldFn == 0) return; 1345 1346 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1347 llvm::SmallVector<llvm::Value*, 4> ArgList; 1348 1349 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1350 UI != E; ) { 1351 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1352 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1353 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1354 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1355 llvm::CallSite CS(CI); 1356 if (!CI || !CS.isCallee(I)) continue; 1357 1358 // If the return types don't match exactly, and if the call isn't dead, then 1359 // we can't transform this call. 1360 if (CI->getType() != NewRetTy && !CI->use_empty()) 1361 continue; 1362 1363 // If the function was passed too few arguments, don't transform. If extra 1364 // arguments were passed, we silently drop them. If any of the types 1365 // mismatch, we don't transform. 1366 unsigned ArgNo = 0; 1367 bool DontTransform = false; 1368 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1369 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1370 if (CS.arg_size() == ArgNo || 1371 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1372 DontTransform = true; 1373 break; 1374 } 1375 } 1376 if (DontTransform) 1377 continue; 1378 1379 // Okay, we can transform this. Create the new call instruction and copy 1380 // over the required information. 1381 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1382 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1383 ArgList.end(), "", CI); 1384 ArgList.clear(); 1385 if (!NewCall->getType()->isVoidTy()) 1386 NewCall->takeName(CI); 1387 NewCall->setAttributes(CI->getAttributes()); 1388 NewCall->setCallingConv(CI->getCallingConv()); 1389 1390 // Finally, remove the old call, replacing any uses with the new one. 1391 if (!CI->use_empty()) 1392 CI->replaceAllUsesWith(NewCall); 1393 1394 // Copy debug location attached to CI. 1395 if (!CI->getDebugLoc().isUnknown()) 1396 NewCall->setDebugLoc(CI->getDebugLoc()); 1397 CI->eraseFromParent(); 1398 } 1399 } 1400 1401 1402 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1403 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1404 1405 // Compute the function info and LLVM type. 1406 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1407 bool variadic = false; 1408 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1409 variadic = fpt->isVariadic(); 1410 const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false); 1411 1412 // Get or create the prototype for the function. 1413 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1414 1415 // Strip off a bitcast if we got one back. 1416 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1417 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1418 Entry = CE->getOperand(0); 1419 } 1420 1421 1422 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1423 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1424 1425 // If the types mismatch then we have to rewrite the definition. 1426 assert(OldFn->isDeclaration() && 1427 "Shouldn't replace non-declaration"); 1428 1429 // F is the Function* for the one with the wrong type, we must make a new 1430 // Function* and update everything that used F (a declaration) with the new 1431 // Function* (which will be a definition). 1432 // 1433 // This happens if there is a prototype for a function 1434 // (e.g. "int f()") and then a definition of a different type 1435 // (e.g. "int f(int x)"). Move the old function aside so that it 1436 // doesn't interfere with GetAddrOfFunction. 1437 OldFn->setName(llvm::StringRef()); 1438 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1439 1440 // If this is an implementation of a function without a prototype, try to 1441 // replace any existing uses of the function (which may be calls) with uses 1442 // of the new function 1443 if (D->getType()->isFunctionNoProtoType()) { 1444 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1445 OldFn->removeDeadConstantUsers(); 1446 } 1447 1448 // Replace uses of F with the Function we will endow with a body. 1449 if (!Entry->use_empty()) { 1450 llvm::Constant *NewPtrForOldDecl = 1451 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1452 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1453 } 1454 1455 // Ok, delete the old function now, which is dead. 1456 OldFn->eraseFromParent(); 1457 1458 Entry = NewFn; 1459 } 1460 1461 // We need to set linkage and visibility on the function before 1462 // generating code for it because various parts of IR generation 1463 // want to propagate this information down (e.g. to local static 1464 // declarations). 1465 llvm::Function *Fn = cast<llvm::Function>(Entry); 1466 setFunctionLinkage(D, Fn); 1467 1468 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1469 setGlobalVisibility(Fn, D); 1470 1471 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1472 1473 SetFunctionDefinitionAttributes(D, Fn); 1474 SetLLVMFunctionAttributesForDefinition(D, Fn); 1475 1476 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1477 AddGlobalCtor(Fn, CA->getPriority()); 1478 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1479 AddGlobalDtor(Fn, DA->getPriority()); 1480 } 1481 1482 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1483 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1484 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1485 assert(AA && "Not an alias?"); 1486 1487 llvm::StringRef MangledName = getMangledName(GD); 1488 1489 // If there is a definition in the module, then it wins over the alias. 1490 // This is dubious, but allow it to be safe. Just ignore the alias. 1491 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1492 if (Entry && !Entry->isDeclaration()) 1493 return; 1494 1495 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1496 1497 // Create a reference to the named value. This ensures that it is emitted 1498 // if a deferred decl. 1499 llvm::Constant *Aliasee; 1500 if (isa<llvm::FunctionType>(DeclTy)) 1501 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1502 /*ForVTable=*/false); 1503 else 1504 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1505 llvm::PointerType::getUnqual(DeclTy), 0); 1506 1507 // Create the new alias itself, but don't set a name yet. 1508 llvm::GlobalValue *GA = 1509 new llvm::GlobalAlias(Aliasee->getType(), 1510 llvm::Function::ExternalLinkage, 1511 "", Aliasee, &getModule()); 1512 1513 if (Entry) { 1514 assert(Entry->isDeclaration()); 1515 1516 // If there is a declaration in the module, then we had an extern followed 1517 // by the alias, as in: 1518 // extern int test6(); 1519 // ... 1520 // int test6() __attribute__((alias("test7"))); 1521 // 1522 // Remove it and replace uses of it with the alias. 1523 GA->takeName(Entry); 1524 1525 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1526 Entry->getType())); 1527 Entry->eraseFromParent(); 1528 } else { 1529 GA->setName(MangledName); 1530 } 1531 1532 // Set attributes which are particular to an alias; this is a 1533 // specialization of the attributes which may be set on a global 1534 // variable/function. 1535 if (D->hasAttr<DLLExportAttr>()) { 1536 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1537 // The dllexport attribute is ignored for undefined symbols. 1538 if (FD->hasBody()) 1539 GA->setLinkage(llvm::Function::DLLExportLinkage); 1540 } else { 1541 GA->setLinkage(llvm::Function::DLLExportLinkage); 1542 } 1543 } else if (D->hasAttr<WeakAttr>() || 1544 D->hasAttr<WeakRefAttr>() || 1545 D->isWeakImported()) { 1546 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1547 } 1548 1549 SetCommonAttributes(D, GA); 1550 } 1551 1552 /// getBuiltinLibFunction - Given a builtin id for a function like 1553 /// "__builtin_fabsf", return a Function* for "fabsf". 1554 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1555 unsigned BuiltinID) { 1556 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1557 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1558 "isn't a lib fn"); 1559 1560 // Get the name, skip over the __builtin_ prefix (if necessary). 1561 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1562 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1563 Name += 10; 1564 1565 const llvm::FunctionType *Ty = 1566 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1567 1568 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1569 } 1570 1571 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1572 unsigned NumTys) { 1573 return llvm::Intrinsic::getDeclaration(&getModule(), 1574 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1575 } 1576 1577 static llvm::StringMapEntry<llvm::Constant*> & 1578 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1579 const StringLiteral *Literal, 1580 bool TargetIsLSB, 1581 bool &IsUTF16, 1582 unsigned &StringLength) { 1583 llvm::StringRef String = Literal->getString(); 1584 unsigned NumBytes = String.size(); 1585 1586 // Check for simple case. 1587 if (!Literal->containsNonAsciiOrNull()) { 1588 StringLength = NumBytes; 1589 return Map.GetOrCreateValue(String); 1590 } 1591 1592 // Otherwise, convert the UTF8 literals into a byte string. 1593 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1594 const UTF8 *FromPtr = (UTF8 *)String.data(); 1595 UTF16 *ToPtr = &ToBuf[0]; 1596 1597 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1598 &ToPtr, ToPtr + NumBytes, 1599 strictConversion); 1600 1601 // ConvertUTF8toUTF16 returns the length in ToPtr. 1602 StringLength = ToPtr - &ToBuf[0]; 1603 1604 // Render the UTF-16 string into a byte array and convert to the target byte 1605 // order. 1606 // 1607 // FIXME: This isn't something we should need to do here. 1608 llvm::SmallString<128> AsBytes; 1609 AsBytes.reserve(StringLength * 2); 1610 for (unsigned i = 0; i != StringLength; ++i) { 1611 unsigned short Val = ToBuf[i]; 1612 if (TargetIsLSB) { 1613 AsBytes.push_back(Val & 0xFF); 1614 AsBytes.push_back(Val >> 8); 1615 } else { 1616 AsBytes.push_back(Val >> 8); 1617 AsBytes.push_back(Val & 0xFF); 1618 } 1619 } 1620 // Append one extra null character, the second is automatically added by our 1621 // caller. 1622 AsBytes.push_back(0); 1623 1624 IsUTF16 = true; 1625 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1626 } 1627 1628 llvm::Constant * 1629 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1630 unsigned StringLength = 0; 1631 bool isUTF16 = false; 1632 llvm::StringMapEntry<llvm::Constant*> &Entry = 1633 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1634 getTargetData().isLittleEndian(), 1635 isUTF16, StringLength); 1636 1637 if (llvm::Constant *C = Entry.getValue()) 1638 return C; 1639 1640 llvm::Constant *Zero = 1641 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1642 llvm::Constant *Zeros[] = { Zero, Zero }; 1643 1644 // If we don't already have it, get __CFConstantStringClassReference. 1645 if (!CFConstantStringClassRef) { 1646 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1647 Ty = llvm::ArrayType::get(Ty, 0); 1648 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1649 "__CFConstantStringClassReference"); 1650 // Decay array -> ptr 1651 CFConstantStringClassRef = 1652 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1653 } 1654 1655 QualType CFTy = getContext().getCFConstantStringType(); 1656 1657 const llvm::StructType *STy = 1658 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1659 1660 std::vector<llvm::Constant*> Fields(4); 1661 1662 // Class pointer. 1663 Fields[0] = CFConstantStringClassRef; 1664 1665 // Flags. 1666 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1667 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1668 llvm::ConstantInt::get(Ty, 0x07C8); 1669 1670 // String pointer. 1671 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1672 1673 llvm::GlobalValue::LinkageTypes Linkage; 1674 bool isConstant; 1675 if (isUTF16) { 1676 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1677 Linkage = llvm::GlobalValue::InternalLinkage; 1678 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1679 // does make plain ascii ones writable. 1680 isConstant = true; 1681 } else { 1682 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1683 // when using private linkage. It is not clear if this is a bug in ld 1684 // or a reasonable new restriction. 1685 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1686 isConstant = !Features.WritableStrings; 1687 } 1688 1689 llvm::GlobalVariable *GV = 1690 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1691 ".str"); 1692 GV->setUnnamedAddr(true); 1693 if (isUTF16) { 1694 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1695 GV->setAlignment(Align.getQuantity()); 1696 } else { 1697 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1698 GV->setAlignment(Align.getQuantity()); 1699 } 1700 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1701 1702 // String length. 1703 Ty = getTypes().ConvertType(getContext().LongTy); 1704 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1705 1706 // The struct. 1707 C = llvm::ConstantStruct::get(STy, Fields); 1708 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1709 llvm::GlobalVariable::PrivateLinkage, C, 1710 "_unnamed_cfstring_"); 1711 if (const char *Sect = getContext().Target.getCFStringSection()) 1712 GV->setSection(Sect); 1713 Entry.setValue(GV); 1714 1715 return GV; 1716 } 1717 1718 llvm::Constant * 1719 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1720 unsigned StringLength = 0; 1721 bool isUTF16 = false; 1722 llvm::StringMapEntry<llvm::Constant*> &Entry = 1723 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1724 getTargetData().isLittleEndian(), 1725 isUTF16, StringLength); 1726 1727 if (llvm::Constant *C = Entry.getValue()) 1728 return C; 1729 1730 llvm::Constant *Zero = 1731 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1732 llvm::Constant *Zeros[] = { Zero, Zero }; 1733 1734 // If we don't already have it, get _NSConstantStringClassReference. 1735 if (!ConstantStringClassRef) { 1736 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1737 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1738 Ty = llvm::ArrayType::get(Ty, 0); 1739 llvm::Constant *GV; 1740 if (StringClass.empty()) 1741 GV = CreateRuntimeVariable(Ty, 1742 Features.ObjCNonFragileABI ? 1743 "OBJC_CLASS_$_NSConstantString" : 1744 "_NSConstantStringClassReference"); 1745 else { 1746 std::string str; 1747 if (Features.ObjCNonFragileABI) 1748 str = "OBJC_CLASS_$_" + StringClass; 1749 else 1750 str = "_" + StringClass + "ClassReference"; 1751 GV = CreateRuntimeVariable(Ty, str); 1752 } 1753 // Decay array -> ptr 1754 ConstantStringClassRef = 1755 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1756 } 1757 1758 QualType NSTy = getContext().getNSConstantStringType(); 1759 1760 const llvm::StructType *STy = 1761 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1762 1763 std::vector<llvm::Constant*> Fields(3); 1764 1765 // Class pointer. 1766 Fields[0] = ConstantStringClassRef; 1767 1768 // String pointer. 1769 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1770 1771 llvm::GlobalValue::LinkageTypes Linkage; 1772 bool isConstant; 1773 if (isUTF16) { 1774 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1775 Linkage = llvm::GlobalValue::InternalLinkage; 1776 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1777 // does make plain ascii ones writable. 1778 isConstant = true; 1779 } else { 1780 Linkage = llvm::GlobalValue::PrivateLinkage; 1781 isConstant = !Features.WritableStrings; 1782 } 1783 1784 llvm::GlobalVariable *GV = 1785 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1786 ".str"); 1787 GV->setUnnamedAddr(true); 1788 if (isUTF16) { 1789 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1790 GV->setAlignment(Align.getQuantity()); 1791 } else { 1792 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1793 GV->setAlignment(Align.getQuantity()); 1794 } 1795 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1796 1797 // String length. 1798 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1799 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1800 1801 // The struct. 1802 C = llvm::ConstantStruct::get(STy, Fields); 1803 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1804 llvm::GlobalVariable::PrivateLinkage, C, 1805 "_unnamed_nsstring_"); 1806 // FIXME. Fix section. 1807 if (const char *Sect = 1808 Features.ObjCNonFragileABI 1809 ? getContext().Target.getNSStringNonFragileABISection() 1810 : getContext().Target.getNSStringSection()) 1811 GV->setSection(Sect); 1812 Entry.setValue(GV); 1813 1814 return GV; 1815 } 1816 1817 /// GetStringForStringLiteral - Return the appropriate bytes for a 1818 /// string literal, properly padded to match the literal type. 1819 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1820 const ASTContext &Context = getContext(); 1821 const ConstantArrayType *CAT = 1822 Context.getAsConstantArrayType(E->getType()); 1823 assert(CAT && "String isn't pointer or array!"); 1824 1825 // Resize the string to the right size. 1826 uint64_t RealLen = CAT->getSize().getZExtValue(); 1827 1828 if (E->isWide()) 1829 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1830 1831 std::string Str = E->getString().str(); 1832 Str.resize(RealLen, '\0'); 1833 1834 return Str; 1835 } 1836 1837 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1838 /// constant array for the given string literal. 1839 llvm::Constant * 1840 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1841 // FIXME: This can be more efficient. 1842 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1843 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1844 if (S->isWide()) { 1845 llvm::Type *DestTy = 1846 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1847 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1848 } 1849 return C; 1850 } 1851 1852 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1853 /// array for the given ObjCEncodeExpr node. 1854 llvm::Constant * 1855 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1856 std::string Str; 1857 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1858 1859 return GetAddrOfConstantCString(Str); 1860 } 1861 1862 1863 /// GenerateWritableString -- Creates storage for a string literal. 1864 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str, 1865 bool constant, 1866 CodeGenModule &CGM, 1867 const char *GlobalName) { 1868 // Create Constant for this string literal. Don't add a '\0'. 1869 llvm::Constant *C = 1870 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1871 1872 // Create a global variable for this string 1873 llvm::GlobalVariable *GV = 1874 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1875 llvm::GlobalValue::PrivateLinkage, 1876 C, GlobalName); 1877 GV->setUnnamedAddr(true); 1878 return GV; 1879 } 1880 1881 /// GetAddrOfConstantString - Returns a pointer to a character array 1882 /// containing the literal. This contents are exactly that of the 1883 /// given string, i.e. it will not be null terminated automatically; 1884 /// see GetAddrOfConstantCString. Note that whether the result is 1885 /// actually a pointer to an LLVM constant depends on 1886 /// Feature.WriteableStrings. 1887 /// 1888 /// The result has pointer to array type. 1889 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str, 1890 const char *GlobalName) { 1891 bool IsConstant = !Features.WritableStrings; 1892 1893 // Get the default prefix if a name wasn't specified. 1894 if (!GlobalName) 1895 GlobalName = ".str"; 1896 1897 // Don't share any string literals if strings aren't constant. 1898 if (!IsConstant) 1899 return GenerateStringLiteral(Str, false, *this, GlobalName); 1900 1901 llvm::StringMapEntry<llvm::Constant *> &Entry = 1902 ConstantStringMap.GetOrCreateValue(Str); 1903 1904 if (Entry.getValue()) 1905 return Entry.getValue(); 1906 1907 // Create a global variable for this. 1908 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName); 1909 Entry.setValue(C); 1910 return C; 1911 } 1912 1913 /// GetAddrOfConstantCString - Returns a pointer to a character 1914 /// array containing the literal and a terminating '\0' 1915 /// character. The result has pointer to array type. 1916 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 1917 const char *GlobalName){ 1918 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1); 1919 return GetAddrOfConstantString(StrWithNull, GlobalName); 1920 } 1921 1922 /// EmitObjCPropertyImplementations - Emit information for synthesized 1923 /// properties for an implementation. 1924 void CodeGenModule::EmitObjCPropertyImplementations(const 1925 ObjCImplementationDecl *D) { 1926 for (ObjCImplementationDecl::propimpl_iterator 1927 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1928 ObjCPropertyImplDecl *PID = *i; 1929 1930 // Dynamic is just for type-checking. 1931 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1932 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1933 1934 // Determine which methods need to be implemented, some may have 1935 // been overridden. Note that ::isSynthesized is not the method 1936 // we want, that just indicates if the decl came from a 1937 // property. What we want to know is if the method is defined in 1938 // this implementation. 1939 if (!D->getInstanceMethod(PD->getGetterName())) 1940 CodeGenFunction(*this).GenerateObjCGetter( 1941 const_cast<ObjCImplementationDecl *>(D), PID); 1942 if (!PD->isReadOnly() && 1943 !D->getInstanceMethod(PD->getSetterName())) 1944 CodeGenFunction(*this).GenerateObjCSetter( 1945 const_cast<ObjCImplementationDecl *>(D), PID); 1946 } 1947 } 1948 } 1949 1950 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 1951 ObjCInterfaceDecl *iface 1952 = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface()); 1953 for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1954 ivar; ivar = ivar->getNextIvar()) 1955 if (ivar->getType().isDestructedType()) 1956 return true; 1957 1958 return false; 1959 } 1960 1961 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1962 /// for an implementation. 1963 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1964 // We might need a .cxx_destruct even if we don't have any ivar initializers. 1965 if (needsDestructMethod(D)) { 1966 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1967 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1968 ObjCMethodDecl *DTORMethod = 1969 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 1970 cxxSelector, getContext().VoidTy, 0, D, true, 1971 false, true, false, ObjCMethodDecl::Required); 1972 D->addInstanceMethod(DTORMethod); 1973 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1974 } 1975 1976 // If the implementation doesn't have any ivar initializers, we don't need 1977 // a .cxx_construct. 1978 if (D->getNumIvarInitializers() == 0) 1979 return; 1980 1981 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 1982 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1983 // The constructor returns 'self'. 1984 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1985 D->getLocation(), 1986 D->getLocation(), cxxSelector, 1987 getContext().getObjCIdType(), 0, 1988 D, true, false, true, false, 1989 ObjCMethodDecl::Required); 1990 D->addInstanceMethod(CTORMethod); 1991 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1992 } 1993 1994 /// EmitNamespace - Emit all declarations in a namespace. 1995 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1996 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1997 I != E; ++I) 1998 EmitTopLevelDecl(*I); 1999 } 2000 2001 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2002 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2003 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2004 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2005 ErrorUnsupported(LSD, "linkage spec"); 2006 return; 2007 } 2008 2009 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2010 I != E; ++I) 2011 EmitTopLevelDecl(*I); 2012 } 2013 2014 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2015 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2016 // If an error has occurred, stop code generation, but continue 2017 // parsing and semantic analysis (to ensure all warnings and errors 2018 // are emitted). 2019 if (Diags.hasErrorOccurred()) 2020 return; 2021 2022 // Ignore dependent declarations. 2023 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2024 return; 2025 2026 switch (D->getKind()) { 2027 case Decl::CXXConversion: 2028 case Decl::CXXMethod: 2029 case Decl::Function: 2030 // Skip function templates 2031 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2032 return; 2033 2034 EmitGlobal(cast<FunctionDecl>(D)); 2035 break; 2036 2037 case Decl::Var: 2038 EmitGlobal(cast<VarDecl>(D)); 2039 break; 2040 2041 // Indirect fields from global anonymous structs and unions can be 2042 // ignored; only the actual variable requires IR gen support. 2043 case Decl::IndirectField: 2044 break; 2045 2046 // C++ Decls 2047 case Decl::Namespace: 2048 EmitNamespace(cast<NamespaceDecl>(D)); 2049 break; 2050 // No code generation needed. 2051 case Decl::UsingShadow: 2052 case Decl::Using: 2053 case Decl::UsingDirective: 2054 case Decl::ClassTemplate: 2055 case Decl::FunctionTemplate: 2056 case Decl::NamespaceAlias: 2057 break; 2058 case Decl::CXXConstructor: 2059 // Skip function templates 2060 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2061 return; 2062 2063 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2064 break; 2065 case Decl::CXXDestructor: 2066 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2067 break; 2068 2069 case Decl::StaticAssert: 2070 // Nothing to do. 2071 break; 2072 2073 // Objective-C Decls 2074 2075 // Forward declarations, no (immediate) code generation. 2076 case Decl::ObjCClass: 2077 case Decl::ObjCForwardProtocol: 2078 case Decl::ObjCInterface: 2079 break; 2080 2081 case Decl::ObjCCategory: { 2082 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2083 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2084 Context.ResetObjCLayout(CD->getClassInterface()); 2085 break; 2086 } 2087 2088 case Decl::ObjCProtocol: 2089 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2090 break; 2091 2092 case Decl::ObjCCategoryImpl: 2093 // Categories have properties but don't support synthesize so we 2094 // can ignore them here. 2095 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2096 break; 2097 2098 case Decl::ObjCImplementation: { 2099 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2100 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2101 Context.ResetObjCLayout(OMD->getClassInterface()); 2102 EmitObjCPropertyImplementations(OMD); 2103 EmitObjCIvarInitializations(OMD); 2104 Runtime->GenerateClass(OMD); 2105 break; 2106 } 2107 case Decl::ObjCMethod: { 2108 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2109 // If this is not a prototype, emit the body. 2110 if (OMD->getBody()) 2111 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2112 break; 2113 } 2114 case Decl::ObjCCompatibleAlias: 2115 // compatibility-alias is a directive and has no code gen. 2116 break; 2117 2118 case Decl::LinkageSpec: 2119 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2120 break; 2121 2122 case Decl::FileScopeAsm: { 2123 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2124 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2125 2126 const std::string &S = getModule().getModuleInlineAsm(); 2127 if (S.empty()) 2128 getModule().setModuleInlineAsm(AsmString); 2129 else 2130 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2131 break; 2132 } 2133 2134 default: 2135 // Make sure we handled everything we should, every other kind is a 2136 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2137 // function. Need to recode Decl::Kind to do that easily. 2138 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2139 } 2140 } 2141 2142 /// Turns the given pointer into a constant. 2143 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2144 const void *Ptr) { 2145 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2146 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2147 return llvm::ConstantInt::get(i64, PtrInt); 2148 } 2149 2150 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2151 llvm::NamedMDNode *&GlobalMetadata, 2152 GlobalDecl D, 2153 llvm::GlobalValue *Addr) { 2154 if (!GlobalMetadata) 2155 GlobalMetadata = 2156 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2157 2158 // TODO: should we report variant information for ctors/dtors? 2159 llvm::Value *Ops[] = { 2160 Addr, 2161 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2162 }; 2163 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2164 } 2165 2166 /// Emits metadata nodes associating all the global values in the 2167 /// current module with the Decls they came from. This is useful for 2168 /// projects using IR gen as a subroutine. 2169 /// 2170 /// Since there's currently no way to associate an MDNode directly 2171 /// with an llvm::GlobalValue, we create a global named metadata 2172 /// with the name 'clang.global.decl.ptrs'. 2173 void CodeGenModule::EmitDeclMetadata() { 2174 llvm::NamedMDNode *GlobalMetadata = 0; 2175 2176 // StaticLocalDeclMap 2177 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2178 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2179 I != E; ++I) { 2180 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2181 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2182 } 2183 } 2184 2185 /// Emits metadata nodes for all the local variables in the current 2186 /// function. 2187 void CodeGenFunction::EmitDeclMetadata() { 2188 if (LocalDeclMap.empty()) return; 2189 2190 llvm::LLVMContext &Context = getLLVMContext(); 2191 2192 // Find the unique metadata ID for this name. 2193 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2194 2195 llvm::NamedMDNode *GlobalMetadata = 0; 2196 2197 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2198 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2199 const Decl *D = I->first; 2200 llvm::Value *Addr = I->second; 2201 2202 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2203 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2204 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2205 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2206 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2207 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2208 } 2209 } 2210 } 2211 2212 ///@name Custom Runtime Function Interfaces 2213 ///@{ 2214 // 2215 // FIXME: These can be eliminated once we can have clients just get the required 2216 // AST nodes from the builtin tables. 2217 2218 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2219 if (BlockObjectDispose) 2220 return BlockObjectDispose; 2221 2222 // If we saw an explicit decl, use that. 2223 if (BlockObjectDisposeDecl) { 2224 return BlockObjectDispose = GetAddrOfFunction( 2225 BlockObjectDisposeDecl, 2226 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2227 } 2228 2229 // Otherwise construct the function by hand. 2230 const llvm::FunctionType *FTy; 2231 std::vector<const llvm::Type*> ArgTys; 2232 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2233 ArgTys.push_back(Int8PtrTy); 2234 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2235 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2236 return BlockObjectDispose = 2237 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2238 } 2239 2240 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2241 if (BlockObjectAssign) 2242 return BlockObjectAssign; 2243 2244 // If we saw an explicit decl, use that. 2245 if (BlockObjectAssignDecl) { 2246 return BlockObjectAssign = GetAddrOfFunction( 2247 BlockObjectAssignDecl, 2248 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2249 } 2250 2251 // Otherwise construct the function by hand. 2252 const llvm::FunctionType *FTy; 2253 std::vector<const llvm::Type*> ArgTys; 2254 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2255 ArgTys.push_back(Int8PtrTy); 2256 ArgTys.push_back(Int8PtrTy); 2257 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2258 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2259 return BlockObjectAssign = 2260 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2261 } 2262 2263 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2264 if (NSConcreteGlobalBlock) 2265 return NSConcreteGlobalBlock; 2266 2267 // If we saw an explicit decl, use that. 2268 if (NSConcreteGlobalBlockDecl) { 2269 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2270 NSConcreteGlobalBlockDecl, 2271 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2272 } 2273 2274 // Otherwise construct the variable by hand. 2275 return NSConcreteGlobalBlock = 2276 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2277 } 2278 2279 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2280 if (NSConcreteStackBlock) 2281 return NSConcreteStackBlock; 2282 2283 // If we saw an explicit decl, use that. 2284 if (NSConcreteStackBlockDecl) { 2285 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2286 NSConcreteStackBlockDecl, 2287 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2288 } 2289 2290 // Otherwise construct the variable by hand. 2291 return NSConcreteStackBlock = 2292 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2293 } 2294 2295 ///@} 2296