1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 } 184 185 CodeGenModule::~CodeGenModule() {} 186 187 void CodeGenModule::createObjCRuntime() { 188 // This is just isGNUFamily(), but we want to force implementors of 189 // new ABIs to decide how best to do this. 190 switch (LangOpts.ObjCRuntime.getKind()) { 191 case ObjCRuntime::GNUstep: 192 case ObjCRuntime::GCC: 193 case ObjCRuntime::ObjFW: 194 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 195 return; 196 197 case ObjCRuntime::FragileMacOSX: 198 case ObjCRuntime::MacOSX: 199 case ObjCRuntime::iOS: 200 case ObjCRuntime::WatchOS: 201 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 202 return; 203 } 204 llvm_unreachable("bad runtime kind"); 205 } 206 207 void CodeGenModule::createOpenCLRuntime() { 208 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 209 } 210 211 void CodeGenModule::createOpenMPRuntime() { 212 // Select a specialized code generation class based on the target, if any. 213 // If it does not exist use the default implementation. 214 switch (getTriple().getArch()) { 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 assert(getLangOpts().OpenMPIsDevice && 218 "OpenMP NVPTX is only prepared to deal with device code."); 219 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 220 break; 221 case llvm::Triple::amdgcn: 222 assert(getLangOpts().OpenMPIsDevice && 223 "OpenMP AMDGCN is only prepared to deal with device code."); 224 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 225 break; 226 default: 227 if (LangOpts.OpenMPSimd) 228 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 229 else 230 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 231 break; 232 } 233 } 234 235 void CodeGenModule::createCUDARuntime() { 236 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 237 } 238 239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 240 Replacements[Name] = C; 241 } 242 243 void CodeGenModule::applyReplacements() { 244 for (auto &I : Replacements) { 245 StringRef MangledName = I.first(); 246 llvm::Constant *Replacement = I.second; 247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 248 if (!Entry) 249 continue; 250 auto *OldF = cast<llvm::Function>(Entry); 251 auto *NewF = dyn_cast<llvm::Function>(Replacement); 252 if (!NewF) { 253 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 254 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 255 } else { 256 auto *CE = cast<llvm::ConstantExpr>(Replacement); 257 assert(CE->getOpcode() == llvm::Instruction::BitCast || 258 CE->getOpcode() == llvm::Instruction::GetElementPtr); 259 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 260 } 261 } 262 263 // Replace old with new, but keep the old order. 264 OldF->replaceAllUsesWith(Replacement); 265 if (NewF) { 266 NewF->removeFromParent(); 267 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 268 NewF); 269 } 270 OldF->eraseFromParent(); 271 } 272 } 273 274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 275 GlobalValReplacements.push_back(std::make_pair(GV, C)); 276 } 277 278 void CodeGenModule::applyGlobalValReplacements() { 279 for (auto &I : GlobalValReplacements) { 280 llvm::GlobalValue *GV = I.first; 281 llvm::Constant *C = I.second; 282 283 GV->replaceAllUsesWith(C); 284 GV->eraseFromParent(); 285 } 286 } 287 288 // This is only used in aliases that we created and we know they have a 289 // linear structure. 290 static const llvm::GlobalObject *getAliasedGlobal( 291 const llvm::GlobalIndirectSymbol &GIS) { 292 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 293 const llvm::Constant *C = &GIS; 294 for (;;) { 295 C = C->stripPointerCasts(); 296 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 297 return GO; 298 // stripPointerCasts will not walk over weak aliases. 299 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 300 if (!GIS2) 301 return nullptr; 302 if (!Visited.insert(GIS2).second) 303 return nullptr; 304 C = GIS2->getIndirectSymbol(); 305 } 306 } 307 308 void CodeGenModule::checkAliases() { 309 // Check if the constructed aliases are well formed. It is really unfortunate 310 // that we have to do this in CodeGen, but we only construct mangled names 311 // and aliases during codegen. 312 bool Error = false; 313 DiagnosticsEngine &Diags = getDiags(); 314 for (const GlobalDecl &GD : Aliases) { 315 const auto *D = cast<ValueDecl>(GD.getDecl()); 316 SourceLocation Location; 317 bool IsIFunc = D->hasAttr<IFuncAttr>(); 318 if (const Attr *A = D->getDefiningAttr()) 319 Location = A->getLocation(); 320 else 321 llvm_unreachable("Not an alias or ifunc?"); 322 StringRef MangledName = getMangledName(GD); 323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 324 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 325 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 326 if (!GV) { 327 Error = true; 328 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 329 } else if (GV->isDeclaration()) { 330 Error = true; 331 Diags.Report(Location, diag::err_alias_to_undefined) 332 << IsIFunc << IsIFunc; 333 } else if (IsIFunc) { 334 // Check resolver function type. 335 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 336 GV->getType()->getPointerElementType()); 337 assert(FTy); 338 if (!FTy->getReturnType()->isPointerTy()) 339 Diags.Report(Location, diag::err_ifunc_resolver_return); 340 } 341 342 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 343 llvm::GlobalValue *AliaseeGV; 344 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 345 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 346 else 347 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 348 349 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 350 StringRef AliasSection = SA->getName(); 351 if (AliasSection != AliaseeGV->getSection()) 352 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 353 << AliasSection << IsIFunc << IsIFunc; 354 } 355 356 // We have to handle alias to weak aliases in here. LLVM itself disallows 357 // this since the object semantics would not match the IL one. For 358 // compatibility with gcc we implement it by just pointing the alias 359 // to its aliasee's aliasee. We also warn, since the user is probably 360 // expecting the link to be weak. 361 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 362 if (GA->isInterposable()) { 363 Diags.Report(Location, diag::warn_alias_to_weak_alias) 364 << GV->getName() << GA->getName() << IsIFunc; 365 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 366 GA->getIndirectSymbol(), Alias->getType()); 367 Alias->setIndirectSymbol(Aliasee); 368 } 369 } 370 } 371 if (!Error) 372 return; 373 374 for (const GlobalDecl &GD : Aliases) { 375 StringRef MangledName = getMangledName(GD); 376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 377 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 378 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 379 Alias->eraseFromParent(); 380 } 381 } 382 383 void CodeGenModule::clear() { 384 DeferredDeclsToEmit.clear(); 385 if (OpenMPRuntime) 386 OpenMPRuntime->clear(); 387 } 388 389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 390 StringRef MainFile) { 391 if (!hasDiagnostics()) 392 return; 393 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 394 if (MainFile.empty()) 395 MainFile = "<stdin>"; 396 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 397 } else { 398 if (Mismatched > 0) 399 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 400 401 if (Missing > 0) 402 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 403 } 404 } 405 406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 407 llvm::Module &M) { 408 if (!LO.VisibilityFromDLLStorageClass) 409 return; 410 411 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 413 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 416 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 417 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 418 CodeGenModule::GetLLVMVisibility( 419 LO.getExternDeclNoDLLStorageClassVisibility()); 420 421 for (llvm::GlobalValue &GV : M.global_values()) { 422 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 423 continue; 424 425 // Reset DSO locality before setting the visibility. This removes 426 // any effects that visibility options and annotations may have 427 // had on the DSO locality. Setting the visibility will implicitly set 428 // appropriate globals to DSO Local; however, this will be pessimistic 429 // w.r.t. to the normal compiler IRGen. 430 GV.setDSOLocal(false); 431 432 if (GV.isDeclarationForLinker()) { 433 GV.setVisibility(GV.getDLLStorageClass() == 434 llvm::GlobalValue::DLLImportStorageClass 435 ? ExternDeclDLLImportVisibility 436 : ExternDeclNoDLLStorageClassVisibility); 437 } else { 438 GV.setVisibility(GV.getDLLStorageClass() == 439 llvm::GlobalValue::DLLExportStorageClass 440 ? DLLExportVisibility 441 : NoDLLStorageClassVisibility); 442 } 443 444 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 445 } 446 } 447 448 void CodeGenModule::Release() { 449 EmitDeferred(); 450 EmitVTablesOpportunistically(); 451 applyGlobalValReplacements(); 452 applyReplacements(); 453 checkAliases(); 454 emitMultiVersionFunctions(); 455 EmitCXXGlobalInitFunc(); 456 EmitCXXGlobalCleanUpFunc(); 457 registerGlobalDtorsWithAtExit(); 458 EmitCXXThreadLocalInitFunc(); 459 if (ObjCRuntime) 460 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 461 AddGlobalCtor(ObjCInitFunction); 462 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 463 CUDARuntime) { 464 if (llvm::Function *CudaCtorFunction = 465 CUDARuntime->makeModuleCtorFunction()) 466 AddGlobalCtor(CudaCtorFunction); 467 } 468 if (OpenMPRuntime) { 469 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 470 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 471 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 472 } 473 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 474 OpenMPRuntime->clear(); 475 } 476 if (PGOReader) { 477 getModule().setProfileSummary( 478 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 479 llvm::ProfileSummary::PSK_Instr); 480 if (PGOStats.hasDiagnostics()) 481 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 482 } 483 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 484 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 485 EmitGlobalAnnotations(); 486 EmitStaticExternCAliases(); 487 EmitDeferredUnusedCoverageMappings(); 488 if (CoverageMapping) 489 CoverageMapping->emit(); 490 if (CodeGenOpts.SanitizeCfiCrossDso) { 491 CodeGenFunction(*this).EmitCfiCheckFail(); 492 CodeGenFunction(*this).EmitCfiCheckStub(); 493 } 494 emitAtAvailableLinkGuard(); 495 if (Context.getTargetInfo().getTriple().isWasm() && 496 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 497 EmitMainVoidAlias(); 498 } 499 emitLLVMUsed(); 500 if (SanStats) 501 SanStats->finish(); 502 503 if (CodeGenOpts.Autolink && 504 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 505 EmitModuleLinkOptions(); 506 } 507 508 // On ELF we pass the dependent library specifiers directly to the linker 509 // without manipulating them. This is in contrast to other platforms where 510 // they are mapped to a specific linker option by the compiler. This 511 // difference is a result of the greater variety of ELF linkers and the fact 512 // that ELF linkers tend to handle libraries in a more complicated fashion 513 // than on other platforms. This forces us to defer handling the dependent 514 // libs to the linker. 515 // 516 // CUDA/HIP device and host libraries are different. Currently there is no 517 // way to differentiate dependent libraries for host or device. Existing 518 // usage of #pragma comment(lib, *) is intended for host libraries on 519 // Windows. Therefore emit llvm.dependent-libraries only for host. 520 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 521 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 522 for (auto *MD : ELFDependentLibraries) 523 NMD->addOperand(MD); 524 } 525 526 // Record mregparm value now so it is visible through rest of codegen. 527 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 528 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 529 CodeGenOpts.NumRegisterParameters); 530 531 if (CodeGenOpts.DwarfVersion) { 532 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 533 CodeGenOpts.DwarfVersion); 534 } 535 536 if (Context.getLangOpts().SemanticInterposition) 537 // Require various optimization to respect semantic interposition. 538 getModule().setSemanticInterposition(1); 539 540 if (CodeGenOpts.EmitCodeView) { 541 // Indicate that we want CodeView in the metadata. 542 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 543 } 544 if (CodeGenOpts.CodeViewGHash) { 545 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 546 } 547 if (CodeGenOpts.ControlFlowGuard) { 548 // Function ID tables and checks for Control Flow Guard (cfguard=2). 549 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 550 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 551 // Function ID tables for Control Flow Guard (cfguard=1). 552 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 553 } 554 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 555 // We don't support LTO with 2 with different StrictVTablePointers 556 // FIXME: we could support it by stripping all the information introduced 557 // by StrictVTablePointers. 558 559 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 560 561 llvm::Metadata *Ops[2] = { 562 llvm::MDString::get(VMContext, "StrictVTablePointers"), 563 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 564 llvm::Type::getInt32Ty(VMContext), 1))}; 565 566 getModule().addModuleFlag(llvm::Module::Require, 567 "StrictVTablePointersRequirement", 568 llvm::MDNode::get(VMContext, Ops)); 569 } 570 if (getModuleDebugInfo()) 571 // We support a single version in the linked module. The LLVM 572 // parser will drop debug info with a different version number 573 // (and warn about it, too). 574 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 575 llvm::DEBUG_METADATA_VERSION); 576 577 // We need to record the widths of enums and wchar_t, so that we can generate 578 // the correct build attributes in the ARM backend. wchar_size is also used by 579 // TargetLibraryInfo. 580 uint64_t WCharWidth = 581 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 582 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 583 584 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 585 if ( Arch == llvm::Triple::arm 586 || Arch == llvm::Triple::armeb 587 || Arch == llvm::Triple::thumb 588 || Arch == llvm::Triple::thumbeb) { 589 // The minimum width of an enum in bytes 590 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 591 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 592 } 593 594 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 595 StringRef ABIStr = Target.getABI(); 596 llvm::LLVMContext &Ctx = TheModule.getContext(); 597 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 598 llvm::MDString::get(Ctx, ABIStr)); 599 } 600 601 if (CodeGenOpts.SanitizeCfiCrossDso) { 602 // Indicate that we want cross-DSO control flow integrity checks. 603 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 604 } 605 606 if (CodeGenOpts.WholeProgramVTables) { 607 // Indicate whether VFE was enabled for this module, so that the 608 // vcall_visibility metadata added under whole program vtables is handled 609 // appropriately in the optimizer. 610 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 611 CodeGenOpts.VirtualFunctionElimination); 612 } 613 614 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 615 getModule().addModuleFlag(llvm::Module::Override, 616 "CFI Canonical Jump Tables", 617 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 618 } 619 620 if (CodeGenOpts.CFProtectionReturn && 621 Target.checkCFProtectionReturnSupported(getDiags())) { 622 // Indicate that we want to instrument return control flow protection. 623 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 624 1); 625 } 626 627 if (CodeGenOpts.CFProtectionBranch && 628 Target.checkCFProtectionBranchSupported(getDiags())) { 629 // Indicate that we want to instrument branch control flow protection. 630 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 631 1); 632 } 633 634 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 635 Arch == llvm::Triple::aarch64_be) { 636 getModule().addModuleFlag(llvm::Module::Error, 637 "branch-target-enforcement", 638 LangOpts.BranchTargetEnforcement); 639 640 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 641 LangOpts.hasSignReturnAddress()); 642 643 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 644 LangOpts.isSignReturnAddressScopeAll()); 645 646 getModule().addModuleFlag(llvm::Module::Error, 647 "sign-return-address-with-bkey", 648 !LangOpts.isSignReturnAddressWithAKey()); 649 } 650 651 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 652 llvm::LLVMContext &Ctx = TheModule.getContext(); 653 getModule().addModuleFlag( 654 llvm::Module::Error, "MemProfProfileFilename", 655 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 656 } 657 658 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 659 // Indicate whether __nvvm_reflect should be configured to flush denormal 660 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 661 // property.) 662 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 663 CodeGenOpts.FP32DenormalMode.Output != 664 llvm::DenormalMode::IEEE); 665 } 666 667 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 668 if (LangOpts.OpenCL) { 669 EmitOpenCLMetadata(); 670 // Emit SPIR version. 671 if (getTriple().isSPIR()) { 672 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 673 // opencl.spir.version named metadata. 674 // C++ is backwards compatible with OpenCL v2.0. 675 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 676 llvm::Metadata *SPIRVerElts[] = { 677 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 678 Int32Ty, Version / 100)), 679 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 680 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 681 llvm::NamedMDNode *SPIRVerMD = 682 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 683 llvm::LLVMContext &Ctx = TheModule.getContext(); 684 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 685 } 686 } 687 688 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 689 assert(PLevel < 3 && "Invalid PIC Level"); 690 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 691 if (Context.getLangOpts().PIE) 692 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 693 } 694 695 if (getCodeGenOpts().CodeModel.size() > 0) { 696 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 697 .Case("tiny", llvm::CodeModel::Tiny) 698 .Case("small", llvm::CodeModel::Small) 699 .Case("kernel", llvm::CodeModel::Kernel) 700 .Case("medium", llvm::CodeModel::Medium) 701 .Case("large", llvm::CodeModel::Large) 702 .Default(~0u); 703 if (CM != ~0u) { 704 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 705 getModule().setCodeModel(codeModel); 706 } 707 } 708 709 if (CodeGenOpts.NoPLT) 710 getModule().setRtLibUseGOT(); 711 712 SimplifyPersonality(); 713 714 if (getCodeGenOpts().EmitDeclMetadata) 715 EmitDeclMetadata(); 716 717 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 718 EmitCoverageFile(); 719 720 if (CGDebugInfo *DI = getModuleDebugInfo()) 721 DI->finalize(); 722 723 if (getCodeGenOpts().EmitVersionIdentMetadata) 724 EmitVersionIdentMetadata(); 725 726 if (!getCodeGenOpts().RecordCommandLine.empty()) 727 EmitCommandLineMetadata(); 728 729 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 730 731 EmitBackendOptionsMetadata(getCodeGenOpts()); 732 733 // Set visibility from DLL storage class 734 // We do this at the end of LLVM IR generation; after any operation 735 // that might affect the DLL storage class or the visibility, and 736 // before anything that might act on these. 737 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 738 } 739 740 void CodeGenModule::EmitOpenCLMetadata() { 741 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 742 // opencl.ocl.version named metadata node. 743 // C++ is backwards compatible with OpenCL v2.0. 744 // FIXME: We might need to add CXX version at some point too? 745 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 746 llvm::Metadata *OCLVerElts[] = { 747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 748 Int32Ty, Version / 100)), 749 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 750 Int32Ty, (Version % 100) / 10))}; 751 llvm::NamedMDNode *OCLVerMD = 752 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 753 llvm::LLVMContext &Ctx = TheModule.getContext(); 754 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 755 } 756 757 void CodeGenModule::EmitBackendOptionsMetadata( 758 const CodeGenOptions CodeGenOpts) { 759 switch (getTriple().getArch()) { 760 default: 761 break; 762 case llvm::Triple::riscv32: 763 case llvm::Triple::riscv64: 764 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 765 CodeGenOpts.SmallDataLimit); 766 break; 767 } 768 } 769 770 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 771 // Make sure that this type is translated. 772 Types.UpdateCompletedType(TD); 773 } 774 775 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 776 // Make sure that this type is translated. 777 Types.RefreshTypeCacheForClass(RD); 778 } 779 780 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 781 if (!TBAA) 782 return nullptr; 783 return TBAA->getTypeInfo(QTy); 784 } 785 786 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 787 if (!TBAA) 788 return TBAAAccessInfo(); 789 if (getLangOpts().CUDAIsDevice) { 790 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 791 // access info. 792 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 793 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 794 nullptr) 795 return TBAAAccessInfo(); 796 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 797 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 798 nullptr) 799 return TBAAAccessInfo(); 800 } 801 } 802 return TBAA->getAccessInfo(AccessType); 803 } 804 805 TBAAAccessInfo 806 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 807 if (!TBAA) 808 return TBAAAccessInfo(); 809 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 810 } 811 812 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 813 if (!TBAA) 814 return nullptr; 815 return TBAA->getTBAAStructInfo(QTy); 816 } 817 818 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 819 if (!TBAA) 820 return nullptr; 821 return TBAA->getBaseTypeInfo(QTy); 822 } 823 824 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 825 if (!TBAA) 826 return nullptr; 827 return TBAA->getAccessTagInfo(Info); 828 } 829 830 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 831 TBAAAccessInfo TargetInfo) { 832 if (!TBAA) 833 return TBAAAccessInfo(); 834 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 835 } 836 837 TBAAAccessInfo 838 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 839 TBAAAccessInfo InfoB) { 840 if (!TBAA) 841 return TBAAAccessInfo(); 842 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 843 } 844 845 TBAAAccessInfo 846 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 847 TBAAAccessInfo SrcInfo) { 848 if (!TBAA) 849 return TBAAAccessInfo(); 850 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 851 } 852 853 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 854 TBAAAccessInfo TBAAInfo) { 855 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 856 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 857 } 858 859 void CodeGenModule::DecorateInstructionWithInvariantGroup( 860 llvm::Instruction *I, const CXXRecordDecl *RD) { 861 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 862 llvm::MDNode::get(getLLVMContext(), {})); 863 } 864 865 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 866 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 867 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 868 } 869 870 /// ErrorUnsupported - Print out an error that codegen doesn't support the 871 /// specified stmt yet. 872 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 873 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 874 "cannot compile this %0 yet"); 875 std::string Msg = Type; 876 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 877 << Msg << S->getSourceRange(); 878 } 879 880 /// ErrorUnsupported - Print out an error that codegen doesn't support the 881 /// specified decl yet. 882 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 883 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 884 "cannot compile this %0 yet"); 885 std::string Msg = Type; 886 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 887 } 888 889 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 890 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 891 } 892 893 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 894 const NamedDecl *D) const { 895 if (GV->hasDLLImportStorageClass()) 896 return; 897 // Internal definitions always have default visibility. 898 if (GV->hasLocalLinkage()) { 899 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 900 return; 901 } 902 if (!D) 903 return; 904 // Set visibility for definitions, and for declarations if requested globally 905 // or set explicitly. 906 LinkageInfo LV = D->getLinkageAndVisibility(); 907 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 908 !GV->isDeclarationForLinker()) 909 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 910 } 911 912 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 913 llvm::GlobalValue *GV) { 914 if (GV->hasLocalLinkage()) 915 return true; 916 917 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 918 return true; 919 920 // DLLImport explicitly marks the GV as external. 921 if (GV->hasDLLImportStorageClass()) 922 return false; 923 924 const llvm::Triple &TT = CGM.getTriple(); 925 if (TT.isWindowsGNUEnvironment()) { 926 // In MinGW, variables without DLLImport can still be automatically 927 // imported from a DLL by the linker; don't mark variables that 928 // potentially could come from another DLL as DSO local. 929 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 930 !GV->isThreadLocal()) 931 return false; 932 } 933 934 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 935 // remain unresolved in the link, they can be resolved to zero, which is 936 // outside the current DSO. 937 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 938 return false; 939 940 // Every other GV is local on COFF. 941 // Make an exception for windows OS in the triple: Some firmware builds use 942 // *-win32-macho triples. This (accidentally?) produced windows relocations 943 // without GOT tables in older clang versions; Keep this behaviour. 944 // FIXME: even thread local variables? 945 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 946 return true; 947 948 const auto &CGOpts = CGM.getCodeGenOpts(); 949 llvm::Reloc::Model RM = CGOpts.RelocationModel; 950 const auto &LOpts = CGM.getLangOpts(); 951 952 if (TT.isOSBinFormatMachO()) { 953 if (RM == llvm::Reloc::Static) 954 return true; 955 return GV->isStrongDefinitionForLinker(); 956 } 957 958 // Only handle COFF and ELF for now. 959 if (!TT.isOSBinFormatELF()) 960 return false; 961 962 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 963 // On ELF, if -fno-semantic-interposition is specified and the target 964 // supports local aliases, there will be neither CC1 965 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 966 // dso_local if using a local alias is preferable (can avoid GOT 967 // indirection). 968 if (!GV->canBenefitFromLocalAlias()) 969 return false; 970 return !(CGM.getLangOpts().SemanticInterposition || 971 CGM.getLangOpts().HalfNoSemanticInterposition); 972 } 973 974 // A definition cannot be preempted from an executable. 975 if (!GV->isDeclarationForLinker()) 976 return true; 977 978 // Most PIC code sequences that assume that a symbol is local cannot produce a 979 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 980 // depended, it seems worth it to handle it here. 981 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 982 return false; 983 984 // PowerPC64 prefers TOC indirection to avoid copy relocations. 985 if (TT.isPPC64()) 986 return false; 987 988 if (CGOpts.DirectAccessExternalData) { 989 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 990 // for non-thread-local variables. If the symbol is not defined in the 991 // executable, a copy relocation will be needed at link time. dso_local is 992 // excluded for thread-local variables because they generally don't support 993 // copy relocations. 994 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 995 if (!Var->isThreadLocal()) 996 return true; 997 998 // -fno-pic sets dso_local on a function declaration to allow direct 999 // accesses when taking its address (similar to a data symbol). If the 1000 // function is not defined in the executable, a canonical PLT entry will be 1001 // needed at link time. -fno-direct-access-external-data can avoid the 1002 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1003 // it could just cause trouble without providing perceptible benefits. 1004 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1005 return true; 1006 } 1007 1008 // If we can use copy relocations we can assume it is local. 1009 1010 // Otherwise don't assume it is local. 1011 return false; 1012 } 1013 1014 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1015 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1016 } 1017 1018 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1019 GlobalDecl GD) const { 1020 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1021 // C++ destructors have a few C++ ABI specific special cases. 1022 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1023 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1024 return; 1025 } 1026 setDLLImportDLLExport(GV, D); 1027 } 1028 1029 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1030 const NamedDecl *D) const { 1031 if (D && D->isExternallyVisible()) { 1032 if (D->hasAttr<DLLImportAttr>()) 1033 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1034 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1035 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1036 } 1037 } 1038 1039 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1040 GlobalDecl GD) const { 1041 setDLLImportDLLExport(GV, GD); 1042 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1043 } 1044 1045 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1046 const NamedDecl *D) const { 1047 setDLLImportDLLExport(GV, D); 1048 setGVPropertiesAux(GV, D); 1049 } 1050 1051 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1052 const NamedDecl *D) const { 1053 setGlobalVisibility(GV, D); 1054 setDSOLocal(GV); 1055 GV->setPartition(CodeGenOpts.SymbolPartition); 1056 } 1057 1058 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1059 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1060 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1061 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1062 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1063 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1064 } 1065 1066 llvm::GlobalVariable::ThreadLocalMode 1067 CodeGenModule::GetDefaultLLVMTLSModel() const { 1068 switch (CodeGenOpts.getDefaultTLSModel()) { 1069 case CodeGenOptions::GeneralDynamicTLSModel: 1070 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1071 case CodeGenOptions::LocalDynamicTLSModel: 1072 return llvm::GlobalVariable::LocalDynamicTLSModel; 1073 case CodeGenOptions::InitialExecTLSModel: 1074 return llvm::GlobalVariable::InitialExecTLSModel; 1075 case CodeGenOptions::LocalExecTLSModel: 1076 return llvm::GlobalVariable::LocalExecTLSModel; 1077 } 1078 llvm_unreachable("Invalid TLS model!"); 1079 } 1080 1081 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1082 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1083 1084 llvm::GlobalValue::ThreadLocalMode TLM; 1085 TLM = GetDefaultLLVMTLSModel(); 1086 1087 // Override the TLS model if it is explicitly specified. 1088 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1089 TLM = GetLLVMTLSModel(Attr->getModel()); 1090 } 1091 1092 GV->setThreadLocalMode(TLM); 1093 } 1094 1095 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1096 StringRef Name) { 1097 const TargetInfo &Target = CGM.getTarget(); 1098 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1099 } 1100 1101 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1102 const CPUSpecificAttr *Attr, 1103 unsigned CPUIndex, 1104 raw_ostream &Out) { 1105 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1106 // supported. 1107 if (Attr) 1108 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1109 else if (CGM.getTarget().supportsIFunc()) 1110 Out << ".resolver"; 1111 } 1112 1113 static void AppendTargetMangling(const CodeGenModule &CGM, 1114 const TargetAttr *Attr, raw_ostream &Out) { 1115 if (Attr->isDefaultVersion()) 1116 return; 1117 1118 Out << '.'; 1119 const TargetInfo &Target = CGM.getTarget(); 1120 ParsedTargetAttr Info = 1121 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1122 // Multiversioning doesn't allow "no-${feature}", so we can 1123 // only have "+" prefixes here. 1124 assert(LHS.startswith("+") && RHS.startswith("+") && 1125 "Features should always have a prefix."); 1126 return Target.multiVersionSortPriority(LHS.substr(1)) > 1127 Target.multiVersionSortPriority(RHS.substr(1)); 1128 }); 1129 1130 bool IsFirst = true; 1131 1132 if (!Info.Architecture.empty()) { 1133 IsFirst = false; 1134 Out << "arch_" << Info.Architecture; 1135 } 1136 1137 for (StringRef Feat : Info.Features) { 1138 if (!IsFirst) 1139 Out << '_'; 1140 IsFirst = false; 1141 Out << Feat.substr(1); 1142 } 1143 } 1144 1145 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1146 const NamedDecl *ND, 1147 bool OmitMultiVersionMangling = false) { 1148 SmallString<256> Buffer; 1149 llvm::raw_svector_ostream Out(Buffer); 1150 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1151 if (MC.shouldMangleDeclName(ND)) 1152 MC.mangleName(GD.getWithDecl(ND), Out); 1153 else { 1154 IdentifierInfo *II = ND->getIdentifier(); 1155 assert(II && "Attempt to mangle unnamed decl."); 1156 const auto *FD = dyn_cast<FunctionDecl>(ND); 1157 1158 if (FD && 1159 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1160 Out << "__regcall3__" << II->getName(); 1161 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1162 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1163 Out << "__device_stub__" << II->getName(); 1164 } else { 1165 Out << II->getName(); 1166 } 1167 } 1168 1169 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1170 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1171 switch (FD->getMultiVersionKind()) { 1172 case MultiVersionKind::CPUDispatch: 1173 case MultiVersionKind::CPUSpecific: 1174 AppendCPUSpecificCPUDispatchMangling(CGM, 1175 FD->getAttr<CPUSpecificAttr>(), 1176 GD.getMultiVersionIndex(), Out); 1177 break; 1178 case MultiVersionKind::Target: 1179 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1180 break; 1181 case MultiVersionKind::None: 1182 llvm_unreachable("None multiversion type isn't valid here"); 1183 } 1184 } 1185 1186 return std::string(Out.str()); 1187 } 1188 1189 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1190 const FunctionDecl *FD) { 1191 if (!FD->isMultiVersion()) 1192 return; 1193 1194 // Get the name of what this would be without the 'target' attribute. This 1195 // allows us to lookup the version that was emitted when this wasn't a 1196 // multiversion function. 1197 std::string NonTargetName = 1198 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1199 GlobalDecl OtherGD; 1200 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1201 assert(OtherGD.getCanonicalDecl() 1202 .getDecl() 1203 ->getAsFunction() 1204 ->isMultiVersion() && 1205 "Other GD should now be a multiversioned function"); 1206 // OtherFD is the version of this function that was mangled BEFORE 1207 // becoming a MultiVersion function. It potentially needs to be updated. 1208 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1209 .getDecl() 1210 ->getAsFunction() 1211 ->getMostRecentDecl(); 1212 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1213 // This is so that if the initial version was already the 'default' 1214 // version, we don't try to update it. 1215 if (OtherName != NonTargetName) { 1216 // Remove instead of erase, since others may have stored the StringRef 1217 // to this. 1218 const auto ExistingRecord = Manglings.find(NonTargetName); 1219 if (ExistingRecord != std::end(Manglings)) 1220 Manglings.remove(&(*ExistingRecord)); 1221 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1222 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1223 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1224 Entry->setName(OtherName); 1225 } 1226 } 1227 } 1228 1229 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1230 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1231 1232 // Some ABIs don't have constructor variants. Make sure that base and 1233 // complete constructors get mangled the same. 1234 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1235 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1236 CXXCtorType OrigCtorType = GD.getCtorType(); 1237 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1238 if (OrigCtorType == Ctor_Base) 1239 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1240 } 1241 } 1242 1243 auto FoundName = MangledDeclNames.find(CanonicalGD); 1244 if (FoundName != MangledDeclNames.end()) 1245 return FoundName->second; 1246 1247 // Keep the first result in the case of a mangling collision. 1248 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1249 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1250 1251 // Ensure either we have different ABIs between host and device compilations, 1252 // says host compilation following MSVC ABI but device compilation follows 1253 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1254 // mangling should be the same after name stubbing. The later checking is 1255 // very important as the device kernel name being mangled in host-compilation 1256 // is used to resolve the device binaries to be executed. Inconsistent naming 1257 // result in undefined behavior. Even though we cannot check that naming 1258 // directly between host- and device-compilations, the host- and 1259 // device-mangling in host compilation could help catching certain ones. 1260 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1261 getLangOpts().CUDAIsDevice || 1262 (getContext().getAuxTargetInfo() && 1263 (getContext().getAuxTargetInfo()->getCXXABI() != 1264 getContext().getTargetInfo().getCXXABI())) || 1265 getCUDARuntime().getDeviceSideName(ND) == 1266 getMangledNameImpl( 1267 *this, 1268 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1269 ND)); 1270 1271 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1272 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1273 } 1274 1275 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1276 const BlockDecl *BD) { 1277 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1278 const Decl *D = GD.getDecl(); 1279 1280 SmallString<256> Buffer; 1281 llvm::raw_svector_ostream Out(Buffer); 1282 if (!D) 1283 MangleCtx.mangleGlobalBlock(BD, 1284 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1285 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1286 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1287 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1288 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1289 else 1290 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1291 1292 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1293 return Result.first->first(); 1294 } 1295 1296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1297 return getModule().getNamedValue(Name); 1298 } 1299 1300 /// AddGlobalCtor - Add a function to the list that will be called before 1301 /// main() runs. 1302 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1303 llvm::Constant *AssociatedData) { 1304 // FIXME: Type coercion of void()* types. 1305 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1306 } 1307 1308 /// AddGlobalDtor - Add a function to the list that will be called 1309 /// when the module is unloaded. 1310 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1311 bool IsDtorAttrFunc) { 1312 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1313 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1314 DtorsUsingAtExit[Priority].push_back(Dtor); 1315 return; 1316 } 1317 1318 // FIXME: Type coercion of void()* types. 1319 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1320 } 1321 1322 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1323 if (Fns.empty()) return; 1324 1325 // Ctor function type is void()*. 1326 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1327 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1328 TheModule.getDataLayout().getProgramAddressSpace()); 1329 1330 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1331 llvm::StructType *CtorStructTy = llvm::StructType::get( 1332 Int32Ty, CtorPFTy, VoidPtrTy); 1333 1334 // Construct the constructor and destructor arrays. 1335 ConstantInitBuilder builder(*this); 1336 auto ctors = builder.beginArray(CtorStructTy); 1337 for (const auto &I : Fns) { 1338 auto ctor = ctors.beginStruct(CtorStructTy); 1339 ctor.addInt(Int32Ty, I.Priority); 1340 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1341 if (I.AssociatedData) 1342 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1343 else 1344 ctor.addNullPointer(VoidPtrTy); 1345 ctor.finishAndAddTo(ctors); 1346 } 1347 1348 auto list = 1349 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1350 /*constant*/ false, 1351 llvm::GlobalValue::AppendingLinkage); 1352 1353 // The LTO linker doesn't seem to like it when we set an alignment 1354 // on appending variables. Take it off as a workaround. 1355 list->setAlignment(llvm::None); 1356 1357 Fns.clear(); 1358 } 1359 1360 llvm::GlobalValue::LinkageTypes 1361 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1362 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1363 1364 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1365 1366 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1367 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1368 1369 if (isa<CXXConstructorDecl>(D) && 1370 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1371 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1372 // Our approach to inheriting constructors is fundamentally different from 1373 // that used by the MS ABI, so keep our inheriting constructor thunks 1374 // internal rather than trying to pick an unambiguous mangling for them. 1375 return llvm::GlobalValue::InternalLinkage; 1376 } 1377 1378 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1379 } 1380 1381 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1382 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1383 if (!MDS) return nullptr; 1384 1385 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1386 } 1387 1388 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1389 const CGFunctionInfo &Info, 1390 llvm::Function *F) { 1391 unsigned CallingConv; 1392 llvm::AttributeList PAL; 1393 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1394 F->setAttributes(PAL); 1395 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1396 } 1397 1398 static void removeImageAccessQualifier(std::string& TyName) { 1399 std::string ReadOnlyQual("__read_only"); 1400 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1401 if (ReadOnlyPos != std::string::npos) 1402 // "+ 1" for the space after access qualifier. 1403 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1404 else { 1405 std::string WriteOnlyQual("__write_only"); 1406 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1407 if (WriteOnlyPos != std::string::npos) 1408 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1409 else { 1410 std::string ReadWriteQual("__read_write"); 1411 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1412 if (ReadWritePos != std::string::npos) 1413 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1414 } 1415 } 1416 } 1417 1418 // Returns the address space id that should be produced to the 1419 // kernel_arg_addr_space metadata. This is always fixed to the ids 1420 // as specified in the SPIR 2.0 specification in order to differentiate 1421 // for example in clGetKernelArgInfo() implementation between the address 1422 // spaces with targets without unique mapping to the OpenCL address spaces 1423 // (basically all single AS CPUs). 1424 static unsigned ArgInfoAddressSpace(LangAS AS) { 1425 switch (AS) { 1426 case LangAS::opencl_global: 1427 return 1; 1428 case LangAS::opencl_constant: 1429 return 2; 1430 case LangAS::opencl_local: 1431 return 3; 1432 case LangAS::opencl_generic: 1433 return 4; // Not in SPIR 2.0 specs. 1434 case LangAS::opencl_global_device: 1435 return 5; 1436 case LangAS::opencl_global_host: 1437 return 6; 1438 default: 1439 return 0; // Assume private. 1440 } 1441 } 1442 1443 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1444 const FunctionDecl *FD, 1445 CodeGenFunction *CGF) { 1446 assert(((FD && CGF) || (!FD && !CGF)) && 1447 "Incorrect use - FD and CGF should either be both null or not!"); 1448 // Create MDNodes that represent the kernel arg metadata. 1449 // Each MDNode is a list in the form of "key", N number of values which is 1450 // the same number of values as their are kernel arguments. 1451 1452 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1453 1454 // MDNode for the kernel argument address space qualifiers. 1455 SmallVector<llvm::Metadata *, 8> addressQuals; 1456 1457 // MDNode for the kernel argument access qualifiers (images only). 1458 SmallVector<llvm::Metadata *, 8> accessQuals; 1459 1460 // MDNode for the kernel argument type names. 1461 SmallVector<llvm::Metadata *, 8> argTypeNames; 1462 1463 // MDNode for the kernel argument base type names. 1464 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1465 1466 // MDNode for the kernel argument type qualifiers. 1467 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1468 1469 // MDNode for the kernel argument names. 1470 SmallVector<llvm::Metadata *, 8> argNames; 1471 1472 if (FD && CGF) 1473 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1474 const ParmVarDecl *parm = FD->getParamDecl(i); 1475 QualType ty = parm->getType(); 1476 std::string typeQuals; 1477 1478 if (ty->isPointerType()) { 1479 QualType pointeeTy = ty->getPointeeType(); 1480 1481 // Get address qualifier. 1482 addressQuals.push_back( 1483 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1484 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1485 1486 // Get argument type name. 1487 std::string typeName = 1488 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1489 1490 // Turn "unsigned type" to "utype" 1491 std::string::size_type pos = typeName.find("unsigned"); 1492 if (pointeeTy.isCanonical() && pos != std::string::npos) 1493 typeName.erase(pos + 1, 8); 1494 1495 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1496 1497 std::string baseTypeName = 1498 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1499 Policy) + 1500 "*"; 1501 1502 // Turn "unsigned type" to "utype" 1503 pos = baseTypeName.find("unsigned"); 1504 if (pos != std::string::npos) 1505 baseTypeName.erase(pos + 1, 8); 1506 1507 argBaseTypeNames.push_back( 1508 llvm::MDString::get(VMContext, baseTypeName)); 1509 1510 // Get argument type qualifiers: 1511 if (ty.isRestrictQualified()) 1512 typeQuals = "restrict"; 1513 if (pointeeTy.isConstQualified() || 1514 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1515 typeQuals += typeQuals.empty() ? "const" : " const"; 1516 if (pointeeTy.isVolatileQualified()) 1517 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1518 } else { 1519 uint32_t AddrSpc = 0; 1520 bool isPipe = ty->isPipeType(); 1521 if (ty->isImageType() || isPipe) 1522 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1523 1524 addressQuals.push_back( 1525 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1526 1527 // Get argument type name. 1528 std::string typeName; 1529 if (isPipe) 1530 typeName = ty.getCanonicalType() 1531 ->castAs<PipeType>() 1532 ->getElementType() 1533 .getAsString(Policy); 1534 else 1535 typeName = ty.getUnqualifiedType().getAsString(Policy); 1536 1537 // Turn "unsigned type" to "utype" 1538 std::string::size_type pos = typeName.find("unsigned"); 1539 if (ty.isCanonical() && pos != std::string::npos) 1540 typeName.erase(pos + 1, 8); 1541 1542 std::string baseTypeName; 1543 if (isPipe) 1544 baseTypeName = ty.getCanonicalType() 1545 ->castAs<PipeType>() 1546 ->getElementType() 1547 .getCanonicalType() 1548 .getAsString(Policy); 1549 else 1550 baseTypeName = 1551 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1552 1553 // Remove access qualifiers on images 1554 // (as they are inseparable from type in clang implementation, 1555 // but OpenCL spec provides a special query to get access qualifier 1556 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1557 if (ty->isImageType()) { 1558 removeImageAccessQualifier(typeName); 1559 removeImageAccessQualifier(baseTypeName); 1560 } 1561 1562 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1563 1564 // Turn "unsigned type" to "utype" 1565 pos = baseTypeName.find("unsigned"); 1566 if (pos != std::string::npos) 1567 baseTypeName.erase(pos + 1, 8); 1568 1569 argBaseTypeNames.push_back( 1570 llvm::MDString::get(VMContext, baseTypeName)); 1571 1572 if (isPipe) 1573 typeQuals = "pipe"; 1574 } 1575 1576 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1577 1578 // Get image and pipe access qualifier: 1579 if (ty->isImageType() || ty->isPipeType()) { 1580 const Decl *PDecl = parm; 1581 if (auto *TD = dyn_cast<TypedefType>(ty)) 1582 PDecl = TD->getDecl(); 1583 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1584 if (A && A->isWriteOnly()) 1585 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1586 else if (A && A->isReadWrite()) 1587 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1588 else 1589 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1590 } else 1591 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1592 1593 // Get argument name. 1594 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1595 } 1596 1597 Fn->setMetadata("kernel_arg_addr_space", 1598 llvm::MDNode::get(VMContext, addressQuals)); 1599 Fn->setMetadata("kernel_arg_access_qual", 1600 llvm::MDNode::get(VMContext, accessQuals)); 1601 Fn->setMetadata("kernel_arg_type", 1602 llvm::MDNode::get(VMContext, argTypeNames)); 1603 Fn->setMetadata("kernel_arg_base_type", 1604 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1605 Fn->setMetadata("kernel_arg_type_qual", 1606 llvm::MDNode::get(VMContext, argTypeQuals)); 1607 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1608 Fn->setMetadata("kernel_arg_name", 1609 llvm::MDNode::get(VMContext, argNames)); 1610 } 1611 1612 /// Determines whether the language options require us to model 1613 /// unwind exceptions. We treat -fexceptions as mandating this 1614 /// except under the fragile ObjC ABI with only ObjC exceptions 1615 /// enabled. This means, for example, that C with -fexceptions 1616 /// enables this. 1617 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1618 // If exceptions are completely disabled, obviously this is false. 1619 if (!LangOpts.Exceptions) return false; 1620 1621 // If C++ exceptions are enabled, this is true. 1622 if (LangOpts.CXXExceptions) return true; 1623 1624 // If ObjC exceptions are enabled, this depends on the ABI. 1625 if (LangOpts.ObjCExceptions) { 1626 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1627 } 1628 1629 return true; 1630 } 1631 1632 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1633 const CXXMethodDecl *MD) { 1634 // Check that the type metadata can ever actually be used by a call. 1635 if (!CGM.getCodeGenOpts().LTOUnit || 1636 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1637 return false; 1638 1639 // Only functions whose address can be taken with a member function pointer 1640 // need this sort of type metadata. 1641 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1642 !isa<CXXDestructorDecl>(MD); 1643 } 1644 1645 std::vector<const CXXRecordDecl *> 1646 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1647 llvm::SetVector<const CXXRecordDecl *> MostBases; 1648 1649 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1650 CollectMostBases = [&](const CXXRecordDecl *RD) { 1651 if (RD->getNumBases() == 0) 1652 MostBases.insert(RD); 1653 for (const CXXBaseSpecifier &B : RD->bases()) 1654 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1655 }; 1656 CollectMostBases(RD); 1657 return MostBases.takeVector(); 1658 } 1659 1660 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1661 llvm::Function *F) { 1662 llvm::AttrBuilder B; 1663 1664 if (CodeGenOpts.UnwindTables) 1665 B.addAttribute(llvm::Attribute::UWTable); 1666 1667 if (CodeGenOpts.StackClashProtector) 1668 B.addAttribute("probe-stack", "inline-asm"); 1669 1670 if (!hasUnwindExceptions(LangOpts)) 1671 B.addAttribute(llvm::Attribute::NoUnwind); 1672 1673 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1674 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1675 B.addAttribute(llvm::Attribute::StackProtect); 1676 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1677 B.addAttribute(llvm::Attribute::StackProtectStrong); 1678 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1679 B.addAttribute(llvm::Attribute::StackProtectReq); 1680 } 1681 1682 if (!D) { 1683 // If we don't have a declaration to control inlining, the function isn't 1684 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1685 // disabled, mark the function as noinline. 1686 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1687 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1688 B.addAttribute(llvm::Attribute::NoInline); 1689 1690 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1691 return; 1692 } 1693 1694 // Track whether we need to add the optnone LLVM attribute, 1695 // starting with the default for this optimization level. 1696 bool ShouldAddOptNone = 1697 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1698 // We can't add optnone in the following cases, it won't pass the verifier. 1699 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1700 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1701 1702 // Add optnone, but do so only if the function isn't always_inline. 1703 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1704 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1705 B.addAttribute(llvm::Attribute::OptimizeNone); 1706 1707 // OptimizeNone implies noinline; we should not be inlining such functions. 1708 B.addAttribute(llvm::Attribute::NoInline); 1709 1710 // We still need to handle naked functions even though optnone subsumes 1711 // much of their semantics. 1712 if (D->hasAttr<NakedAttr>()) 1713 B.addAttribute(llvm::Attribute::Naked); 1714 1715 // OptimizeNone wins over OptimizeForSize and MinSize. 1716 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1717 F->removeFnAttr(llvm::Attribute::MinSize); 1718 } else if (D->hasAttr<NakedAttr>()) { 1719 // Naked implies noinline: we should not be inlining such functions. 1720 B.addAttribute(llvm::Attribute::Naked); 1721 B.addAttribute(llvm::Attribute::NoInline); 1722 } else if (D->hasAttr<NoDuplicateAttr>()) { 1723 B.addAttribute(llvm::Attribute::NoDuplicate); 1724 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1725 // Add noinline if the function isn't always_inline. 1726 B.addAttribute(llvm::Attribute::NoInline); 1727 } else if (D->hasAttr<AlwaysInlineAttr>() && 1728 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1729 // (noinline wins over always_inline, and we can't specify both in IR) 1730 B.addAttribute(llvm::Attribute::AlwaysInline); 1731 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1732 // If we're not inlining, then force everything that isn't always_inline to 1733 // carry an explicit noinline attribute. 1734 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1735 B.addAttribute(llvm::Attribute::NoInline); 1736 } else { 1737 // Otherwise, propagate the inline hint attribute and potentially use its 1738 // absence to mark things as noinline. 1739 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1740 // Search function and template pattern redeclarations for inline. 1741 auto CheckForInline = [](const FunctionDecl *FD) { 1742 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1743 return Redecl->isInlineSpecified(); 1744 }; 1745 if (any_of(FD->redecls(), CheckRedeclForInline)) 1746 return true; 1747 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1748 if (!Pattern) 1749 return false; 1750 return any_of(Pattern->redecls(), CheckRedeclForInline); 1751 }; 1752 if (CheckForInline(FD)) { 1753 B.addAttribute(llvm::Attribute::InlineHint); 1754 } else if (CodeGenOpts.getInlining() == 1755 CodeGenOptions::OnlyHintInlining && 1756 !FD->isInlined() && 1757 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1758 B.addAttribute(llvm::Attribute::NoInline); 1759 } 1760 } 1761 } 1762 1763 // Add other optimization related attributes if we are optimizing this 1764 // function. 1765 if (!D->hasAttr<OptimizeNoneAttr>()) { 1766 if (D->hasAttr<ColdAttr>()) { 1767 if (!ShouldAddOptNone) 1768 B.addAttribute(llvm::Attribute::OptimizeForSize); 1769 B.addAttribute(llvm::Attribute::Cold); 1770 } 1771 if (D->hasAttr<HotAttr>()) 1772 B.addAttribute(llvm::Attribute::Hot); 1773 if (D->hasAttr<MinSizeAttr>()) 1774 B.addAttribute(llvm::Attribute::MinSize); 1775 } 1776 1777 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1778 1779 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1780 if (alignment) 1781 F->setAlignment(llvm::Align(alignment)); 1782 1783 if (!D->hasAttr<AlignedAttr>()) 1784 if (LangOpts.FunctionAlignment) 1785 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1786 1787 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1788 // reserve a bit for differentiating between virtual and non-virtual member 1789 // functions. If the current target's C++ ABI requires this and this is a 1790 // member function, set its alignment accordingly. 1791 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1792 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1793 F->setAlignment(llvm::Align(2)); 1794 } 1795 1796 // In the cross-dso CFI mode with canonical jump tables, we want !type 1797 // attributes on definitions only. 1798 if (CodeGenOpts.SanitizeCfiCrossDso && 1799 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1800 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1801 // Skip available_externally functions. They won't be codegen'ed in the 1802 // current module anyway. 1803 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1804 CreateFunctionTypeMetadataForIcall(FD, F); 1805 } 1806 } 1807 1808 // Emit type metadata on member functions for member function pointer checks. 1809 // These are only ever necessary on definitions; we're guaranteed that the 1810 // definition will be present in the LTO unit as a result of LTO visibility. 1811 auto *MD = dyn_cast<CXXMethodDecl>(D); 1812 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1813 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1814 llvm::Metadata *Id = 1815 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1816 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1817 F->addTypeMetadata(0, Id); 1818 } 1819 } 1820 } 1821 1822 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1823 llvm::Function *F) { 1824 if (D->hasAttr<StrictFPAttr>()) { 1825 llvm::AttrBuilder FuncAttrs; 1826 FuncAttrs.addAttribute("strictfp"); 1827 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1828 } 1829 } 1830 1831 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1832 const Decl *D = GD.getDecl(); 1833 if (dyn_cast_or_null<NamedDecl>(D)) 1834 setGVProperties(GV, GD); 1835 else 1836 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1837 1838 if (D && D->hasAttr<UsedAttr>()) 1839 addUsedGlobal(GV); 1840 1841 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1842 const auto *VD = cast<VarDecl>(D); 1843 if (VD->getType().isConstQualified() && 1844 VD->getStorageDuration() == SD_Static) 1845 addUsedGlobal(GV); 1846 } 1847 } 1848 1849 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1850 llvm::AttrBuilder &Attrs) { 1851 // Add target-cpu and target-features attributes to functions. If 1852 // we have a decl for the function and it has a target attribute then 1853 // parse that and add it to the feature set. 1854 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1855 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1856 std::vector<std::string> Features; 1857 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1858 FD = FD ? FD->getMostRecentDecl() : FD; 1859 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1860 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1861 bool AddedAttr = false; 1862 if (TD || SD) { 1863 llvm::StringMap<bool> FeatureMap; 1864 getContext().getFunctionFeatureMap(FeatureMap, GD); 1865 1866 // Produce the canonical string for this set of features. 1867 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1868 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1869 1870 // Now add the target-cpu and target-features to the function. 1871 // While we populated the feature map above, we still need to 1872 // get and parse the target attribute so we can get the cpu for 1873 // the function. 1874 if (TD) { 1875 ParsedTargetAttr ParsedAttr = TD->parse(); 1876 if (!ParsedAttr.Architecture.empty() && 1877 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1878 TargetCPU = ParsedAttr.Architecture; 1879 TuneCPU = ""; // Clear the tune CPU. 1880 } 1881 if (!ParsedAttr.Tune.empty() && 1882 getTarget().isValidCPUName(ParsedAttr.Tune)) 1883 TuneCPU = ParsedAttr.Tune; 1884 } 1885 } else { 1886 // Otherwise just add the existing target cpu and target features to the 1887 // function. 1888 Features = getTarget().getTargetOpts().Features; 1889 } 1890 1891 if (!TargetCPU.empty()) { 1892 Attrs.addAttribute("target-cpu", TargetCPU); 1893 AddedAttr = true; 1894 } 1895 if (!TuneCPU.empty()) { 1896 Attrs.addAttribute("tune-cpu", TuneCPU); 1897 AddedAttr = true; 1898 } 1899 if (!Features.empty()) { 1900 llvm::sort(Features); 1901 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1902 AddedAttr = true; 1903 } 1904 1905 return AddedAttr; 1906 } 1907 1908 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1909 llvm::GlobalObject *GO) { 1910 const Decl *D = GD.getDecl(); 1911 SetCommonAttributes(GD, GO); 1912 1913 if (D) { 1914 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1915 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1916 GV->addAttribute("bss-section", SA->getName()); 1917 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1918 GV->addAttribute("data-section", SA->getName()); 1919 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1920 GV->addAttribute("rodata-section", SA->getName()); 1921 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1922 GV->addAttribute("relro-section", SA->getName()); 1923 } 1924 1925 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1926 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1927 if (!D->getAttr<SectionAttr>()) 1928 F->addFnAttr("implicit-section-name", SA->getName()); 1929 1930 llvm::AttrBuilder Attrs; 1931 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1932 // We know that GetCPUAndFeaturesAttributes will always have the 1933 // newest set, since it has the newest possible FunctionDecl, so the 1934 // new ones should replace the old. 1935 llvm::AttrBuilder RemoveAttrs; 1936 RemoveAttrs.addAttribute("target-cpu"); 1937 RemoveAttrs.addAttribute("target-features"); 1938 RemoveAttrs.addAttribute("tune-cpu"); 1939 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1940 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1941 } 1942 } 1943 1944 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1945 GO->setSection(CSA->getName()); 1946 else if (const auto *SA = D->getAttr<SectionAttr>()) 1947 GO->setSection(SA->getName()); 1948 } 1949 1950 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1951 } 1952 1953 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1954 llvm::Function *F, 1955 const CGFunctionInfo &FI) { 1956 const Decl *D = GD.getDecl(); 1957 SetLLVMFunctionAttributes(GD, FI, F); 1958 SetLLVMFunctionAttributesForDefinition(D, F); 1959 1960 F->setLinkage(llvm::Function::InternalLinkage); 1961 1962 setNonAliasAttributes(GD, F); 1963 } 1964 1965 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1966 // Set linkage and visibility in case we never see a definition. 1967 LinkageInfo LV = ND->getLinkageAndVisibility(); 1968 // Don't set internal linkage on declarations. 1969 // "extern_weak" is overloaded in LLVM; we probably should have 1970 // separate linkage types for this. 1971 if (isExternallyVisible(LV.getLinkage()) && 1972 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1973 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1974 } 1975 1976 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1977 llvm::Function *F) { 1978 // Only if we are checking indirect calls. 1979 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1980 return; 1981 1982 // Non-static class methods are handled via vtable or member function pointer 1983 // checks elsewhere. 1984 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1985 return; 1986 1987 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1988 F->addTypeMetadata(0, MD); 1989 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1990 1991 // Emit a hash-based bit set entry for cross-DSO calls. 1992 if (CodeGenOpts.SanitizeCfiCrossDso) 1993 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1994 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1995 } 1996 1997 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1998 bool IsIncompleteFunction, 1999 bool IsThunk) { 2000 2001 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2002 // If this is an intrinsic function, set the function's attributes 2003 // to the intrinsic's attributes. 2004 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2005 return; 2006 } 2007 2008 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2009 2010 if (!IsIncompleteFunction) 2011 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2012 2013 // Add the Returned attribute for "this", except for iOS 5 and earlier 2014 // where substantial code, including the libstdc++ dylib, was compiled with 2015 // GCC and does not actually return "this". 2016 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2017 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2018 assert(!F->arg_empty() && 2019 F->arg_begin()->getType() 2020 ->canLosslesslyBitCastTo(F->getReturnType()) && 2021 "unexpected this return"); 2022 F->addAttribute(1, llvm::Attribute::Returned); 2023 } 2024 2025 // Only a few attributes are set on declarations; these may later be 2026 // overridden by a definition. 2027 2028 setLinkageForGV(F, FD); 2029 setGVProperties(F, FD); 2030 2031 // Setup target-specific attributes. 2032 if (!IsIncompleteFunction && F->isDeclaration()) 2033 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2034 2035 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2036 F->setSection(CSA->getName()); 2037 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2038 F->setSection(SA->getName()); 2039 2040 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2041 if (FD->isInlineBuiltinDeclaration()) { 2042 const FunctionDecl *FDBody; 2043 bool HasBody = FD->hasBody(FDBody); 2044 (void)HasBody; 2045 assert(HasBody && "Inline builtin declarations should always have an " 2046 "available body!"); 2047 if (shouldEmitFunction(FDBody)) 2048 F->addAttribute(llvm::AttributeList::FunctionIndex, 2049 llvm::Attribute::NoBuiltin); 2050 } 2051 2052 if (FD->isReplaceableGlobalAllocationFunction()) { 2053 // A replaceable global allocation function does not act like a builtin by 2054 // default, only if it is invoked by a new-expression or delete-expression. 2055 F->addAttribute(llvm::AttributeList::FunctionIndex, 2056 llvm::Attribute::NoBuiltin); 2057 } 2058 2059 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2060 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2061 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2062 if (MD->isVirtual()) 2063 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2064 2065 // Don't emit entries for function declarations in the cross-DSO mode. This 2066 // is handled with better precision by the receiving DSO. But if jump tables 2067 // are non-canonical then we need type metadata in order to produce the local 2068 // jump table. 2069 if (!CodeGenOpts.SanitizeCfiCrossDso || 2070 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2071 CreateFunctionTypeMetadataForIcall(FD, F); 2072 2073 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2074 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2075 2076 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2077 // Annotate the callback behavior as metadata: 2078 // - The callback callee (as argument number). 2079 // - The callback payloads (as argument numbers). 2080 llvm::LLVMContext &Ctx = F->getContext(); 2081 llvm::MDBuilder MDB(Ctx); 2082 2083 // The payload indices are all but the first one in the encoding. The first 2084 // identifies the callback callee. 2085 int CalleeIdx = *CB->encoding_begin(); 2086 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2087 F->addMetadata(llvm::LLVMContext::MD_callback, 2088 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2089 CalleeIdx, PayloadIndices, 2090 /* VarArgsArePassed */ false)})); 2091 } 2092 } 2093 2094 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2095 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2096 "Only globals with definition can force usage."); 2097 LLVMUsed.emplace_back(GV); 2098 } 2099 2100 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2101 assert(!GV->isDeclaration() && 2102 "Only globals with definition can force usage."); 2103 LLVMCompilerUsed.emplace_back(GV); 2104 } 2105 2106 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2107 std::vector<llvm::WeakTrackingVH> &List) { 2108 // Don't create llvm.used if there is no need. 2109 if (List.empty()) 2110 return; 2111 2112 // Convert List to what ConstantArray needs. 2113 SmallVector<llvm::Constant*, 8> UsedArray; 2114 UsedArray.resize(List.size()); 2115 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2116 UsedArray[i] = 2117 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2118 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2119 } 2120 2121 if (UsedArray.empty()) 2122 return; 2123 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2124 2125 auto *GV = new llvm::GlobalVariable( 2126 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2127 llvm::ConstantArray::get(ATy, UsedArray), Name); 2128 2129 GV->setSection("llvm.metadata"); 2130 } 2131 2132 void CodeGenModule::emitLLVMUsed() { 2133 emitUsed(*this, "llvm.used", LLVMUsed); 2134 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2135 } 2136 2137 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2138 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2139 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2140 } 2141 2142 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2143 llvm::SmallString<32> Opt; 2144 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2145 if (Opt.empty()) 2146 return; 2147 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2148 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2149 } 2150 2151 void CodeGenModule::AddDependentLib(StringRef Lib) { 2152 auto &C = getLLVMContext(); 2153 if (getTarget().getTriple().isOSBinFormatELF()) { 2154 ELFDependentLibraries.push_back( 2155 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2156 return; 2157 } 2158 2159 llvm::SmallString<24> Opt; 2160 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2161 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2162 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2163 } 2164 2165 /// Add link options implied by the given module, including modules 2166 /// it depends on, using a postorder walk. 2167 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2168 SmallVectorImpl<llvm::MDNode *> &Metadata, 2169 llvm::SmallPtrSet<Module *, 16> &Visited) { 2170 // Import this module's parent. 2171 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2172 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2173 } 2174 2175 // Import this module's dependencies. 2176 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2177 if (Visited.insert(Mod->Imports[I - 1]).second) 2178 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2179 } 2180 2181 // Add linker options to link against the libraries/frameworks 2182 // described by this module. 2183 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2184 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2185 2186 // For modules that use export_as for linking, use that module 2187 // name instead. 2188 if (Mod->UseExportAsModuleLinkName) 2189 return; 2190 2191 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2192 // Link against a framework. Frameworks are currently Darwin only, so we 2193 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2194 if (Mod->LinkLibraries[I-1].IsFramework) { 2195 llvm::Metadata *Args[2] = { 2196 llvm::MDString::get(Context, "-framework"), 2197 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2198 2199 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2200 continue; 2201 } 2202 2203 // Link against a library. 2204 if (IsELF) { 2205 llvm::Metadata *Args[2] = { 2206 llvm::MDString::get(Context, "lib"), 2207 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2208 }; 2209 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2210 } else { 2211 llvm::SmallString<24> Opt; 2212 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2213 Mod->LinkLibraries[I - 1].Library, Opt); 2214 auto *OptString = llvm::MDString::get(Context, Opt); 2215 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2216 } 2217 } 2218 } 2219 2220 void CodeGenModule::EmitModuleLinkOptions() { 2221 // Collect the set of all of the modules we want to visit to emit link 2222 // options, which is essentially the imported modules and all of their 2223 // non-explicit child modules. 2224 llvm::SetVector<clang::Module *> LinkModules; 2225 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2226 SmallVector<clang::Module *, 16> Stack; 2227 2228 // Seed the stack with imported modules. 2229 for (Module *M : ImportedModules) { 2230 // Do not add any link flags when an implementation TU of a module imports 2231 // a header of that same module. 2232 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2233 !getLangOpts().isCompilingModule()) 2234 continue; 2235 if (Visited.insert(M).second) 2236 Stack.push_back(M); 2237 } 2238 2239 // Find all of the modules to import, making a little effort to prune 2240 // non-leaf modules. 2241 while (!Stack.empty()) { 2242 clang::Module *Mod = Stack.pop_back_val(); 2243 2244 bool AnyChildren = false; 2245 2246 // Visit the submodules of this module. 2247 for (const auto &SM : Mod->submodules()) { 2248 // Skip explicit children; they need to be explicitly imported to be 2249 // linked against. 2250 if (SM->IsExplicit) 2251 continue; 2252 2253 if (Visited.insert(SM).second) { 2254 Stack.push_back(SM); 2255 AnyChildren = true; 2256 } 2257 } 2258 2259 // We didn't find any children, so add this module to the list of 2260 // modules to link against. 2261 if (!AnyChildren) { 2262 LinkModules.insert(Mod); 2263 } 2264 } 2265 2266 // Add link options for all of the imported modules in reverse topological 2267 // order. We don't do anything to try to order import link flags with respect 2268 // to linker options inserted by things like #pragma comment(). 2269 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2270 Visited.clear(); 2271 for (Module *M : LinkModules) 2272 if (Visited.insert(M).second) 2273 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2274 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2275 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2276 2277 // Add the linker options metadata flag. 2278 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2279 for (auto *MD : LinkerOptionsMetadata) 2280 NMD->addOperand(MD); 2281 } 2282 2283 void CodeGenModule::EmitDeferred() { 2284 // Emit deferred declare target declarations. 2285 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2286 getOpenMPRuntime().emitDeferredTargetDecls(); 2287 2288 // Emit code for any potentially referenced deferred decls. Since a 2289 // previously unused static decl may become used during the generation of code 2290 // for a static function, iterate until no changes are made. 2291 2292 if (!DeferredVTables.empty()) { 2293 EmitDeferredVTables(); 2294 2295 // Emitting a vtable doesn't directly cause more vtables to 2296 // become deferred, although it can cause functions to be 2297 // emitted that then need those vtables. 2298 assert(DeferredVTables.empty()); 2299 } 2300 2301 // Emit CUDA/HIP static device variables referenced by host code only. 2302 if (getLangOpts().CUDA) 2303 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2304 DeferredDeclsToEmit.push_back(V); 2305 2306 // Stop if we're out of both deferred vtables and deferred declarations. 2307 if (DeferredDeclsToEmit.empty()) 2308 return; 2309 2310 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2311 // work, it will not interfere with this. 2312 std::vector<GlobalDecl> CurDeclsToEmit; 2313 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2314 2315 for (GlobalDecl &D : CurDeclsToEmit) { 2316 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2317 // to get GlobalValue with exactly the type we need, not something that 2318 // might had been created for another decl with the same mangled name but 2319 // different type. 2320 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2321 GetAddrOfGlobal(D, ForDefinition)); 2322 2323 // In case of different address spaces, we may still get a cast, even with 2324 // IsForDefinition equal to true. Query mangled names table to get 2325 // GlobalValue. 2326 if (!GV) 2327 GV = GetGlobalValue(getMangledName(D)); 2328 2329 // Make sure GetGlobalValue returned non-null. 2330 assert(GV); 2331 2332 // Check to see if we've already emitted this. This is necessary 2333 // for a couple of reasons: first, decls can end up in the 2334 // deferred-decls queue multiple times, and second, decls can end 2335 // up with definitions in unusual ways (e.g. by an extern inline 2336 // function acquiring a strong function redefinition). Just 2337 // ignore these cases. 2338 if (!GV->isDeclaration()) 2339 continue; 2340 2341 // If this is OpenMP, check if it is legal to emit this global normally. 2342 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2343 continue; 2344 2345 // Otherwise, emit the definition and move on to the next one. 2346 EmitGlobalDefinition(D, GV); 2347 2348 // If we found out that we need to emit more decls, do that recursively. 2349 // This has the advantage that the decls are emitted in a DFS and related 2350 // ones are close together, which is convenient for testing. 2351 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2352 EmitDeferred(); 2353 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2354 } 2355 } 2356 } 2357 2358 void CodeGenModule::EmitVTablesOpportunistically() { 2359 // Try to emit external vtables as available_externally if they have emitted 2360 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2361 // is not allowed to create new references to things that need to be emitted 2362 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2363 2364 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2365 && "Only emit opportunistic vtables with optimizations"); 2366 2367 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2368 assert(getVTables().isVTableExternal(RD) && 2369 "This queue should only contain external vtables"); 2370 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2371 VTables.GenerateClassData(RD); 2372 } 2373 OpportunisticVTables.clear(); 2374 } 2375 2376 void CodeGenModule::EmitGlobalAnnotations() { 2377 if (Annotations.empty()) 2378 return; 2379 2380 // Create a new global variable for the ConstantStruct in the Module. 2381 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2382 Annotations[0]->getType(), Annotations.size()), Annotations); 2383 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2384 llvm::GlobalValue::AppendingLinkage, 2385 Array, "llvm.global.annotations"); 2386 gv->setSection(AnnotationSection); 2387 } 2388 2389 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2390 llvm::Constant *&AStr = AnnotationStrings[Str]; 2391 if (AStr) 2392 return AStr; 2393 2394 // Not found yet, create a new global. 2395 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2396 auto *gv = 2397 new llvm::GlobalVariable(getModule(), s->getType(), true, 2398 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2399 gv->setSection(AnnotationSection); 2400 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2401 AStr = gv; 2402 return gv; 2403 } 2404 2405 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2406 SourceManager &SM = getContext().getSourceManager(); 2407 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2408 if (PLoc.isValid()) 2409 return EmitAnnotationString(PLoc.getFilename()); 2410 return EmitAnnotationString(SM.getBufferName(Loc)); 2411 } 2412 2413 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2414 SourceManager &SM = getContext().getSourceManager(); 2415 PresumedLoc PLoc = SM.getPresumedLoc(L); 2416 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2417 SM.getExpansionLineNumber(L); 2418 return llvm::ConstantInt::get(Int32Ty, LineNo); 2419 } 2420 2421 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2422 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2423 if (Exprs.empty()) 2424 return llvm::ConstantPointerNull::get(Int8PtrTy); 2425 2426 llvm::FoldingSetNodeID ID; 2427 for (Expr *E : Exprs) { 2428 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2429 } 2430 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2431 if (Lookup) 2432 return Lookup; 2433 2434 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2435 LLVMArgs.reserve(Exprs.size()); 2436 ConstantEmitter ConstEmiter(*this); 2437 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2438 const auto *CE = cast<clang::ConstantExpr>(E); 2439 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2440 CE->getType()); 2441 }); 2442 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2443 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2444 llvm::GlobalValue::PrivateLinkage, Struct, 2445 ".args"); 2446 GV->setSection(AnnotationSection); 2447 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2448 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2449 2450 Lookup = Bitcasted; 2451 return Bitcasted; 2452 } 2453 2454 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2455 const AnnotateAttr *AA, 2456 SourceLocation L) { 2457 // Get the globals for file name, annotation, and the line number. 2458 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2459 *UnitGV = EmitAnnotationUnit(L), 2460 *LineNoCst = EmitAnnotationLineNo(L), 2461 *Args = EmitAnnotationArgs(AA); 2462 2463 llvm::Constant *ASZeroGV = GV; 2464 if (GV->getAddressSpace() != 0) { 2465 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2466 GV, GV->getValueType()->getPointerTo(0)); 2467 } 2468 2469 // Create the ConstantStruct for the global annotation. 2470 llvm::Constant *Fields[] = { 2471 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2472 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2473 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2474 LineNoCst, 2475 Args, 2476 }; 2477 return llvm::ConstantStruct::getAnon(Fields); 2478 } 2479 2480 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2481 llvm::GlobalValue *GV) { 2482 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2483 // Get the struct elements for these annotations. 2484 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2485 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2486 } 2487 2488 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2489 llvm::Function *Fn, 2490 SourceLocation Loc) const { 2491 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2492 // Blacklist by function name. 2493 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2494 return true; 2495 // Blacklist by location. 2496 if (Loc.isValid()) 2497 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2498 // If location is unknown, this may be a compiler-generated function. Assume 2499 // it's located in the main file. 2500 auto &SM = Context.getSourceManager(); 2501 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2502 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2503 } 2504 return false; 2505 } 2506 2507 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2508 SourceLocation Loc, QualType Ty, 2509 StringRef Category) const { 2510 // For now globals can be blacklisted only in ASan and KASan. 2511 const SanitizerMask EnabledAsanMask = 2512 LangOpts.Sanitize.Mask & 2513 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2514 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2515 SanitizerKind::MemTag); 2516 if (!EnabledAsanMask) 2517 return false; 2518 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2519 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2520 return true; 2521 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2522 return true; 2523 // Check global type. 2524 if (!Ty.isNull()) { 2525 // Drill down the array types: if global variable of a fixed type is 2526 // blacklisted, we also don't instrument arrays of them. 2527 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2528 Ty = AT->getElementType(); 2529 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2530 // We allow to blacklist only record types (classes, structs etc.) 2531 if (Ty->isRecordType()) { 2532 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2533 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2534 return true; 2535 } 2536 } 2537 return false; 2538 } 2539 2540 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2541 StringRef Category) const { 2542 const auto &XRayFilter = getContext().getXRayFilter(); 2543 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2544 auto Attr = ImbueAttr::NONE; 2545 if (Loc.isValid()) 2546 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2547 if (Attr == ImbueAttr::NONE) 2548 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2549 switch (Attr) { 2550 case ImbueAttr::NONE: 2551 return false; 2552 case ImbueAttr::ALWAYS: 2553 Fn->addFnAttr("function-instrument", "xray-always"); 2554 break; 2555 case ImbueAttr::ALWAYS_ARG1: 2556 Fn->addFnAttr("function-instrument", "xray-always"); 2557 Fn->addFnAttr("xray-log-args", "1"); 2558 break; 2559 case ImbueAttr::NEVER: 2560 Fn->addFnAttr("function-instrument", "xray-never"); 2561 break; 2562 } 2563 return true; 2564 } 2565 2566 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2567 // Never defer when EmitAllDecls is specified. 2568 if (LangOpts.EmitAllDecls) 2569 return true; 2570 2571 if (CodeGenOpts.KeepStaticConsts) { 2572 const auto *VD = dyn_cast<VarDecl>(Global); 2573 if (VD && VD->getType().isConstQualified() && 2574 VD->getStorageDuration() == SD_Static) 2575 return true; 2576 } 2577 2578 return getContext().DeclMustBeEmitted(Global); 2579 } 2580 2581 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2582 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2583 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2584 // Implicit template instantiations may change linkage if they are later 2585 // explicitly instantiated, so they should not be emitted eagerly. 2586 return false; 2587 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2588 // not emit them eagerly unless we sure that the function must be emitted on 2589 // the host. 2590 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2591 !LangOpts.OpenMPIsDevice && 2592 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2593 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2594 return false; 2595 } 2596 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2597 if (Context.getInlineVariableDefinitionKind(VD) == 2598 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2599 // A definition of an inline constexpr static data member may change 2600 // linkage later if it's redeclared outside the class. 2601 return false; 2602 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2603 // codegen for global variables, because they may be marked as threadprivate. 2604 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2605 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2606 !isTypeConstant(Global->getType(), false) && 2607 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2608 return false; 2609 2610 return true; 2611 } 2612 2613 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2614 StringRef Name = getMangledName(GD); 2615 2616 // The UUID descriptor should be pointer aligned. 2617 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2618 2619 // Look for an existing global. 2620 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2621 return ConstantAddress(GV, Alignment); 2622 2623 ConstantEmitter Emitter(*this); 2624 llvm::Constant *Init; 2625 2626 APValue &V = GD->getAsAPValue(); 2627 if (!V.isAbsent()) { 2628 // If possible, emit the APValue version of the initializer. In particular, 2629 // this gets the type of the constant right. 2630 Init = Emitter.emitForInitializer( 2631 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2632 } else { 2633 // As a fallback, directly construct the constant. 2634 // FIXME: This may get padding wrong under esoteric struct layout rules. 2635 // MSVC appears to create a complete type 'struct __s_GUID' that it 2636 // presumably uses to represent these constants. 2637 MSGuidDecl::Parts Parts = GD->getParts(); 2638 llvm::Constant *Fields[4] = { 2639 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2640 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2641 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2642 llvm::ConstantDataArray::getRaw( 2643 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2644 Int8Ty)}; 2645 Init = llvm::ConstantStruct::getAnon(Fields); 2646 } 2647 2648 auto *GV = new llvm::GlobalVariable( 2649 getModule(), Init->getType(), 2650 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2651 if (supportsCOMDAT()) 2652 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2653 setDSOLocal(GV); 2654 2655 llvm::Constant *Addr = GV; 2656 if (!V.isAbsent()) { 2657 Emitter.finalize(GV); 2658 } else { 2659 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2660 Addr = llvm::ConstantExpr::getBitCast( 2661 GV, Ty->getPointerTo(GV->getAddressSpace())); 2662 } 2663 return ConstantAddress(Addr, Alignment); 2664 } 2665 2666 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2667 const TemplateParamObjectDecl *TPO) { 2668 StringRef Name = getMangledName(TPO); 2669 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2670 2671 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2672 return ConstantAddress(GV, Alignment); 2673 2674 ConstantEmitter Emitter(*this); 2675 llvm::Constant *Init = Emitter.emitForInitializer( 2676 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2677 2678 if (!Init) { 2679 ErrorUnsupported(TPO, "template parameter object"); 2680 return ConstantAddress::invalid(); 2681 } 2682 2683 auto *GV = new llvm::GlobalVariable( 2684 getModule(), Init->getType(), 2685 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2686 if (supportsCOMDAT()) 2687 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2688 Emitter.finalize(GV); 2689 2690 return ConstantAddress(GV, Alignment); 2691 } 2692 2693 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2694 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2695 assert(AA && "No alias?"); 2696 2697 CharUnits Alignment = getContext().getDeclAlign(VD); 2698 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2699 2700 // See if there is already something with the target's name in the module. 2701 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2702 if (Entry) { 2703 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2704 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2705 return ConstantAddress(Ptr, Alignment); 2706 } 2707 2708 llvm::Constant *Aliasee; 2709 if (isa<llvm::FunctionType>(DeclTy)) 2710 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2711 GlobalDecl(cast<FunctionDecl>(VD)), 2712 /*ForVTable=*/false); 2713 else 2714 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2715 llvm::PointerType::getUnqual(DeclTy), 2716 nullptr); 2717 2718 auto *F = cast<llvm::GlobalValue>(Aliasee); 2719 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2720 WeakRefReferences.insert(F); 2721 2722 return ConstantAddress(Aliasee, Alignment); 2723 } 2724 2725 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2726 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2727 2728 // Weak references don't produce any output by themselves. 2729 if (Global->hasAttr<WeakRefAttr>()) 2730 return; 2731 2732 // If this is an alias definition (which otherwise looks like a declaration) 2733 // emit it now. 2734 if (Global->hasAttr<AliasAttr>()) 2735 return EmitAliasDefinition(GD); 2736 2737 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2738 if (Global->hasAttr<IFuncAttr>()) 2739 return emitIFuncDefinition(GD); 2740 2741 // If this is a cpu_dispatch multiversion function, emit the resolver. 2742 if (Global->hasAttr<CPUDispatchAttr>()) 2743 return emitCPUDispatchDefinition(GD); 2744 2745 // If this is CUDA, be selective about which declarations we emit. 2746 if (LangOpts.CUDA) { 2747 if (LangOpts.CUDAIsDevice) { 2748 if (!Global->hasAttr<CUDADeviceAttr>() && 2749 !Global->hasAttr<CUDAGlobalAttr>() && 2750 !Global->hasAttr<CUDAConstantAttr>() && 2751 !Global->hasAttr<CUDASharedAttr>() && 2752 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2753 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2754 return; 2755 } else { 2756 // We need to emit host-side 'shadows' for all global 2757 // device-side variables because the CUDA runtime needs their 2758 // size and host-side address in order to provide access to 2759 // their device-side incarnations. 2760 2761 // So device-only functions are the only things we skip. 2762 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2763 Global->hasAttr<CUDADeviceAttr>()) 2764 return; 2765 2766 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2767 "Expected Variable or Function"); 2768 } 2769 } 2770 2771 if (LangOpts.OpenMP) { 2772 // If this is OpenMP, check if it is legal to emit this global normally. 2773 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2774 return; 2775 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2776 if (MustBeEmitted(Global)) 2777 EmitOMPDeclareReduction(DRD); 2778 return; 2779 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2780 if (MustBeEmitted(Global)) 2781 EmitOMPDeclareMapper(DMD); 2782 return; 2783 } 2784 } 2785 2786 // Ignore declarations, they will be emitted on their first use. 2787 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2788 // Forward declarations are emitted lazily on first use. 2789 if (!FD->doesThisDeclarationHaveABody()) { 2790 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2791 return; 2792 2793 StringRef MangledName = getMangledName(GD); 2794 2795 // Compute the function info and LLVM type. 2796 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2797 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2798 2799 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2800 /*DontDefer=*/false); 2801 return; 2802 } 2803 } else { 2804 const auto *VD = cast<VarDecl>(Global); 2805 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2806 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2807 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2808 if (LangOpts.OpenMP) { 2809 // Emit declaration of the must-be-emitted declare target variable. 2810 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2811 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2812 bool UnifiedMemoryEnabled = 2813 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2814 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2815 !UnifiedMemoryEnabled) { 2816 (void)GetAddrOfGlobalVar(VD); 2817 } else { 2818 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2819 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2820 UnifiedMemoryEnabled)) && 2821 "Link clause or to clause with unified memory expected."); 2822 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2823 } 2824 2825 return; 2826 } 2827 } 2828 // If this declaration may have caused an inline variable definition to 2829 // change linkage, make sure that it's emitted. 2830 if (Context.getInlineVariableDefinitionKind(VD) == 2831 ASTContext::InlineVariableDefinitionKind::Strong) 2832 GetAddrOfGlobalVar(VD); 2833 return; 2834 } 2835 } 2836 2837 // Defer code generation to first use when possible, e.g. if this is an inline 2838 // function. If the global must always be emitted, do it eagerly if possible 2839 // to benefit from cache locality. 2840 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2841 // Emit the definition if it can't be deferred. 2842 EmitGlobalDefinition(GD); 2843 return; 2844 } 2845 2846 // If we're deferring emission of a C++ variable with an 2847 // initializer, remember the order in which it appeared in the file. 2848 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2849 cast<VarDecl>(Global)->hasInit()) { 2850 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2851 CXXGlobalInits.push_back(nullptr); 2852 } 2853 2854 StringRef MangledName = getMangledName(GD); 2855 if (GetGlobalValue(MangledName) != nullptr) { 2856 // The value has already been used and should therefore be emitted. 2857 addDeferredDeclToEmit(GD); 2858 } else if (MustBeEmitted(Global)) { 2859 // The value must be emitted, but cannot be emitted eagerly. 2860 assert(!MayBeEmittedEagerly(Global)); 2861 addDeferredDeclToEmit(GD); 2862 } else { 2863 // Otherwise, remember that we saw a deferred decl with this name. The 2864 // first use of the mangled name will cause it to move into 2865 // DeferredDeclsToEmit. 2866 DeferredDecls[MangledName] = GD; 2867 } 2868 } 2869 2870 // Check if T is a class type with a destructor that's not dllimport. 2871 static bool HasNonDllImportDtor(QualType T) { 2872 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2873 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2874 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2875 return true; 2876 2877 return false; 2878 } 2879 2880 namespace { 2881 struct FunctionIsDirectlyRecursive 2882 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2883 const StringRef Name; 2884 const Builtin::Context &BI; 2885 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2886 : Name(N), BI(C) {} 2887 2888 bool VisitCallExpr(const CallExpr *E) { 2889 const FunctionDecl *FD = E->getDirectCallee(); 2890 if (!FD) 2891 return false; 2892 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2893 if (Attr && Name == Attr->getLabel()) 2894 return true; 2895 unsigned BuiltinID = FD->getBuiltinID(); 2896 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2897 return false; 2898 StringRef BuiltinName = BI.getName(BuiltinID); 2899 if (BuiltinName.startswith("__builtin_") && 2900 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2901 return true; 2902 } 2903 return false; 2904 } 2905 2906 bool VisitStmt(const Stmt *S) { 2907 for (const Stmt *Child : S->children()) 2908 if (Child && this->Visit(Child)) 2909 return true; 2910 return false; 2911 } 2912 }; 2913 2914 // Make sure we're not referencing non-imported vars or functions. 2915 struct DLLImportFunctionVisitor 2916 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2917 bool SafeToInline = true; 2918 2919 bool shouldVisitImplicitCode() const { return true; } 2920 2921 bool VisitVarDecl(VarDecl *VD) { 2922 if (VD->getTLSKind()) { 2923 // A thread-local variable cannot be imported. 2924 SafeToInline = false; 2925 return SafeToInline; 2926 } 2927 2928 // A variable definition might imply a destructor call. 2929 if (VD->isThisDeclarationADefinition()) 2930 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2931 2932 return SafeToInline; 2933 } 2934 2935 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2936 if (const auto *D = E->getTemporary()->getDestructor()) 2937 SafeToInline = D->hasAttr<DLLImportAttr>(); 2938 return SafeToInline; 2939 } 2940 2941 bool VisitDeclRefExpr(DeclRefExpr *E) { 2942 ValueDecl *VD = E->getDecl(); 2943 if (isa<FunctionDecl>(VD)) 2944 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2945 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2946 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2947 return SafeToInline; 2948 } 2949 2950 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2951 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2952 return SafeToInline; 2953 } 2954 2955 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2956 CXXMethodDecl *M = E->getMethodDecl(); 2957 if (!M) { 2958 // Call through a pointer to member function. This is safe to inline. 2959 SafeToInline = true; 2960 } else { 2961 SafeToInline = M->hasAttr<DLLImportAttr>(); 2962 } 2963 return SafeToInline; 2964 } 2965 2966 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2967 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2968 return SafeToInline; 2969 } 2970 2971 bool VisitCXXNewExpr(CXXNewExpr *E) { 2972 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2973 return SafeToInline; 2974 } 2975 }; 2976 } 2977 2978 // isTriviallyRecursive - Check if this function calls another 2979 // decl that, because of the asm attribute or the other decl being a builtin, 2980 // ends up pointing to itself. 2981 bool 2982 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2983 StringRef Name; 2984 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2985 // asm labels are a special kind of mangling we have to support. 2986 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2987 if (!Attr) 2988 return false; 2989 Name = Attr->getLabel(); 2990 } else { 2991 Name = FD->getName(); 2992 } 2993 2994 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2995 const Stmt *Body = FD->getBody(); 2996 return Body ? Walker.Visit(Body) : false; 2997 } 2998 2999 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3000 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3001 return true; 3002 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3003 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3004 return false; 3005 3006 if (F->hasAttr<DLLImportAttr>()) { 3007 // Check whether it would be safe to inline this dllimport function. 3008 DLLImportFunctionVisitor Visitor; 3009 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3010 if (!Visitor.SafeToInline) 3011 return false; 3012 3013 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3014 // Implicit destructor invocations aren't captured in the AST, so the 3015 // check above can't see them. Check for them manually here. 3016 for (const Decl *Member : Dtor->getParent()->decls()) 3017 if (isa<FieldDecl>(Member)) 3018 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3019 return false; 3020 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3021 if (HasNonDllImportDtor(B.getType())) 3022 return false; 3023 } 3024 } 3025 3026 // PR9614. Avoid cases where the source code is lying to us. An available 3027 // externally function should have an equivalent function somewhere else, 3028 // but a function that calls itself through asm label/`__builtin_` trickery is 3029 // clearly not equivalent to the real implementation. 3030 // This happens in glibc's btowc and in some configure checks. 3031 return !isTriviallyRecursive(F); 3032 } 3033 3034 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3035 return CodeGenOpts.OptimizationLevel > 0; 3036 } 3037 3038 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3039 llvm::GlobalValue *GV) { 3040 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3041 3042 if (FD->isCPUSpecificMultiVersion()) { 3043 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3044 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3045 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3046 // Requires multiple emits. 3047 } else 3048 EmitGlobalFunctionDefinition(GD, GV); 3049 } 3050 3051 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3052 const auto *D = cast<ValueDecl>(GD.getDecl()); 3053 3054 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3055 Context.getSourceManager(), 3056 "Generating code for declaration"); 3057 3058 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3059 // At -O0, don't generate IR for functions with available_externally 3060 // linkage. 3061 if (!shouldEmitFunction(GD)) 3062 return; 3063 3064 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3065 std::string Name; 3066 llvm::raw_string_ostream OS(Name); 3067 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3068 /*Qualified=*/true); 3069 return Name; 3070 }); 3071 3072 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3073 // Make sure to emit the definition(s) before we emit the thunks. 3074 // This is necessary for the generation of certain thunks. 3075 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3076 ABI->emitCXXStructor(GD); 3077 else if (FD->isMultiVersion()) 3078 EmitMultiVersionFunctionDefinition(GD, GV); 3079 else 3080 EmitGlobalFunctionDefinition(GD, GV); 3081 3082 if (Method->isVirtual()) 3083 getVTables().EmitThunks(GD); 3084 3085 return; 3086 } 3087 3088 if (FD->isMultiVersion()) 3089 return EmitMultiVersionFunctionDefinition(GD, GV); 3090 return EmitGlobalFunctionDefinition(GD, GV); 3091 } 3092 3093 if (const auto *VD = dyn_cast<VarDecl>(D)) 3094 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3095 3096 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3097 } 3098 3099 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3100 llvm::Function *NewFn); 3101 3102 static unsigned 3103 TargetMVPriority(const TargetInfo &TI, 3104 const CodeGenFunction::MultiVersionResolverOption &RO) { 3105 unsigned Priority = 0; 3106 for (StringRef Feat : RO.Conditions.Features) 3107 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3108 3109 if (!RO.Conditions.Architecture.empty()) 3110 Priority = std::max( 3111 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3112 return Priority; 3113 } 3114 3115 void CodeGenModule::emitMultiVersionFunctions() { 3116 for (GlobalDecl GD : MultiVersionFuncs) { 3117 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3118 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3119 getContext().forEachMultiversionedFunctionVersion( 3120 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3121 GlobalDecl CurGD{ 3122 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3123 StringRef MangledName = getMangledName(CurGD); 3124 llvm::Constant *Func = GetGlobalValue(MangledName); 3125 if (!Func) { 3126 if (CurFD->isDefined()) { 3127 EmitGlobalFunctionDefinition(CurGD, nullptr); 3128 Func = GetGlobalValue(MangledName); 3129 } else { 3130 const CGFunctionInfo &FI = 3131 getTypes().arrangeGlobalDeclaration(GD); 3132 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3133 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3134 /*DontDefer=*/false, ForDefinition); 3135 } 3136 assert(Func && "This should have just been created"); 3137 } 3138 3139 const auto *TA = CurFD->getAttr<TargetAttr>(); 3140 llvm::SmallVector<StringRef, 8> Feats; 3141 TA->getAddedFeatures(Feats); 3142 3143 Options.emplace_back(cast<llvm::Function>(Func), 3144 TA->getArchitecture(), Feats); 3145 }); 3146 3147 llvm::Function *ResolverFunc; 3148 const TargetInfo &TI = getTarget(); 3149 3150 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3151 ResolverFunc = cast<llvm::Function>( 3152 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3153 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3154 } else { 3155 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3156 } 3157 3158 if (supportsCOMDAT()) 3159 ResolverFunc->setComdat( 3160 getModule().getOrInsertComdat(ResolverFunc->getName())); 3161 3162 llvm::stable_sort( 3163 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3164 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3165 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3166 }); 3167 CodeGenFunction CGF(*this); 3168 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3169 } 3170 } 3171 3172 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3173 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3174 assert(FD && "Not a FunctionDecl?"); 3175 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3176 assert(DD && "Not a cpu_dispatch Function?"); 3177 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3178 3179 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3180 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3181 DeclTy = getTypes().GetFunctionType(FInfo); 3182 } 3183 3184 StringRef ResolverName = getMangledName(GD); 3185 3186 llvm::Type *ResolverType; 3187 GlobalDecl ResolverGD; 3188 if (getTarget().supportsIFunc()) 3189 ResolverType = llvm::FunctionType::get( 3190 llvm::PointerType::get(DeclTy, 3191 Context.getTargetAddressSpace(FD->getType())), 3192 false); 3193 else { 3194 ResolverType = DeclTy; 3195 ResolverGD = GD; 3196 } 3197 3198 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3199 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3200 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3201 if (supportsCOMDAT()) 3202 ResolverFunc->setComdat( 3203 getModule().getOrInsertComdat(ResolverFunc->getName())); 3204 3205 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3206 const TargetInfo &Target = getTarget(); 3207 unsigned Index = 0; 3208 for (const IdentifierInfo *II : DD->cpus()) { 3209 // Get the name of the target function so we can look it up/create it. 3210 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3211 getCPUSpecificMangling(*this, II->getName()); 3212 3213 llvm::Constant *Func = GetGlobalValue(MangledName); 3214 3215 if (!Func) { 3216 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3217 if (ExistingDecl.getDecl() && 3218 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3219 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3220 Func = GetGlobalValue(MangledName); 3221 } else { 3222 if (!ExistingDecl.getDecl()) 3223 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3224 3225 Func = GetOrCreateLLVMFunction( 3226 MangledName, DeclTy, ExistingDecl, 3227 /*ForVTable=*/false, /*DontDefer=*/true, 3228 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3229 } 3230 } 3231 3232 llvm::SmallVector<StringRef, 32> Features; 3233 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3234 llvm::transform(Features, Features.begin(), 3235 [](StringRef Str) { return Str.substr(1); }); 3236 Features.erase(std::remove_if( 3237 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3238 return !Target.validateCpuSupports(Feat); 3239 }), Features.end()); 3240 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3241 ++Index; 3242 } 3243 3244 llvm::sort( 3245 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3246 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3247 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3248 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3249 }); 3250 3251 // If the list contains multiple 'default' versions, such as when it contains 3252 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3253 // always run on at least a 'pentium'). We do this by deleting the 'least 3254 // advanced' (read, lowest mangling letter). 3255 while (Options.size() > 1 && 3256 CodeGenFunction::GetX86CpuSupportsMask( 3257 (Options.end() - 2)->Conditions.Features) == 0) { 3258 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3259 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3260 if (LHSName.compare(RHSName) < 0) 3261 Options.erase(Options.end() - 2); 3262 else 3263 Options.erase(Options.end() - 1); 3264 } 3265 3266 CodeGenFunction CGF(*this); 3267 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3268 3269 if (getTarget().supportsIFunc()) { 3270 std::string AliasName = getMangledNameImpl( 3271 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3272 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3273 if (!AliasFunc) { 3274 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3275 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3276 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3277 auto *GA = llvm::GlobalAlias::create( 3278 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3279 GA->setLinkage(llvm::Function::WeakODRLinkage); 3280 SetCommonAttributes(GD, GA); 3281 } 3282 } 3283 } 3284 3285 /// If a dispatcher for the specified mangled name is not in the module, create 3286 /// and return an llvm Function with the specified type. 3287 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3288 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3289 std::string MangledName = 3290 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3291 3292 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3293 // a separate resolver). 3294 std::string ResolverName = MangledName; 3295 if (getTarget().supportsIFunc()) 3296 ResolverName += ".ifunc"; 3297 else if (FD->isTargetMultiVersion()) 3298 ResolverName += ".resolver"; 3299 3300 // If this already exists, just return that one. 3301 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3302 return ResolverGV; 3303 3304 // Since this is the first time we've created this IFunc, make sure 3305 // that we put this multiversioned function into the list to be 3306 // replaced later if necessary (target multiversioning only). 3307 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3308 MultiVersionFuncs.push_back(GD); 3309 3310 if (getTarget().supportsIFunc()) { 3311 llvm::Type *ResolverType = llvm::FunctionType::get( 3312 llvm::PointerType::get( 3313 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3314 false); 3315 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3316 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3317 /*ForVTable=*/false); 3318 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3319 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3320 GIF->setName(ResolverName); 3321 SetCommonAttributes(FD, GIF); 3322 3323 return GIF; 3324 } 3325 3326 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3327 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3328 assert(isa<llvm::GlobalValue>(Resolver) && 3329 "Resolver should be created for the first time"); 3330 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3331 return Resolver; 3332 } 3333 3334 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3335 /// module, create and return an llvm Function with the specified type. If there 3336 /// is something in the module with the specified name, return it potentially 3337 /// bitcasted to the right type. 3338 /// 3339 /// If D is non-null, it specifies a decl that correspond to this. This is used 3340 /// to set the attributes on the function when it is first created. 3341 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3342 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3343 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3344 ForDefinition_t IsForDefinition) { 3345 const Decl *D = GD.getDecl(); 3346 3347 // Any attempts to use a MultiVersion function should result in retrieving 3348 // the iFunc instead. Name Mangling will handle the rest of the changes. 3349 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3350 // For the device mark the function as one that should be emitted. 3351 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3352 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3353 !DontDefer && !IsForDefinition) { 3354 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3355 GlobalDecl GDDef; 3356 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3357 GDDef = GlobalDecl(CD, GD.getCtorType()); 3358 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3359 GDDef = GlobalDecl(DD, GD.getDtorType()); 3360 else 3361 GDDef = GlobalDecl(FDDef); 3362 EmitGlobal(GDDef); 3363 } 3364 } 3365 3366 if (FD->isMultiVersion()) { 3367 if (FD->hasAttr<TargetAttr>()) 3368 UpdateMultiVersionNames(GD, FD); 3369 if (!IsForDefinition) 3370 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3371 } 3372 } 3373 3374 // Lookup the entry, lazily creating it if necessary. 3375 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3376 if (Entry) { 3377 if (WeakRefReferences.erase(Entry)) { 3378 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3379 if (FD && !FD->hasAttr<WeakAttr>()) 3380 Entry->setLinkage(llvm::Function::ExternalLinkage); 3381 } 3382 3383 // Handle dropped DLL attributes. 3384 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3385 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3386 setDSOLocal(Entry); 3387 } 3388 3389 // If there are two attempts to define the same mangled name, issue an 3390 // error. 3391 if (IsForDefinition && !Entry->isDeclaration()) { 3392 GlobalDecl OtherGD; 3393 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3394 // to make sure that we issue an error only once. 3395 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3396 (GD.getCanonicalDecl().getDecl() != 3397 OtherGD.getCanonicalDecl().getDecl()) && 3398 DiagnosedConflictingDefinitions.insert(GD).second) { 3399 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3400 << MangledName; 3401 getDiags().Report(OtherGD.getDecl()->getLocation(), 3402 diag::note_previous_definition); 3403 } 3404 } 3405 3406 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3407 (Entry->getValueType() == Ty)) { 3408 return Entry; 3409 } 3410 3411 // Make sure the result is of the correct type. 3412 // (If function is requested for a definition, we always need to create a new 3413 // function, not just return a bitcast.) 3414 if (!IsForDefinition) 3415 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3416 } 3417 3418 // This function doesn't have a complete type (for example, the return 3419 // type is an incomplete struct). Use a fake type instead, and make 3420 // sure not to try to set attributes. 3421 bool IsIncompleteFunction = false; 3422 3423 llvm::FunctionType *FTy; 3424 if (isa<llvm::FunctionType>(Ty)) { 3425 FTy = cast<llvm::FunctionType>(Ty); 3426 } else { 3427 FTy = llvm::FunctionType::get(VoidTy, false); 3428 IsIncompleteFunction = true; 3429 } 3430 3431 llvm::Function *F = 3432 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3433 Entry ? StringRef() : MangledName, &getModule()); 3434 3435 // If we already created a function with the same mangled name (but different 3436 // type) before, take its name and add it to the list of functions to be 3437 // replaced with F at the end of CodeGen. 3438 // 3439 // This happens if there is a prototype for a function (e.g. "int f()") and 3440 // then a definition of a different type (e.g. "int f(int x)"). 3441 if (Entry) { 3442 F->takeName(Entry); 3443 3444 // This might be an implementation of a function without a prototype, in 3445 // which case, try to do special replacement of calls which match the new 3446 // prototype. The really key thing here is that we also potentially drop 3447 // arguments from the call site so as to make a direct call, which makes the 3448 // inliner happier and suppresses a number of optimizer warnings (!) about 3449 // dropping arguments. 3450 if (!Entry->use_empty()) { 3451 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3452 Entry->removeDeadConstantUsers(); 3453 } 3454 3455 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3456 F, Entry->getValueType()->getPointerTo()); 3457 addGlobalValReplacement(Entry, BC); 3458 } 3459 3460 assert(F->getName() == MangledName && "name was uniqued!"); 3461 if (D) 3462 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3463 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3464 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3465 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3466 } 3467 3468 if (!DontDefer) { 3469 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3470 // each other bottoming out with the base dtor. Therefore we emit non-base 3471 // dtors on usage, even if there is no dtor definition in the TU. 3472 if (D && isa<CXXDestructorDecl>(D) && 3473 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3474 GD.getDtorType())) 3475 addDeferredDeclToEmit(GD); 3476 3477 // This is the first use or definition of a mangled name. If there is a 3478 // deferred decl with this name, remember that we need to emit it at the end 3479 // of the file. 3480 auto DDI = DeferredDecls.find(MangledName); 3481 if (DDI != DeferredDecls.end()) { 3482 // Move the potentially referenced deferred decl to the 3483 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3484 // don't need it anymore). 3485 addDeferredDeclToEmit(DDI->second); 3486 DeferredDecls.erase(DDI); 3487 3488 // Otherwise, there are cases we have to worry about where we're 3489 // using a declaration for which we must emit a definition but where 3490 // we might not find a top-level definition: 3491 // - member functions defined inline in their classes 3492 // - friend functions defined inline in some class 3493 // - special member functions with implicit definitions 3494 // If we ever change our AST traversal to walk into class methods, 3495 // this will be unnecessary. 3496 // 3497 // We also don't emit a definition for a function if it's going to be an 3498 // entry in a vtable, unless it's already marked as used. 3499 } else if (getLangOpts().CPlusPlus && D) { 3500 // Look for a declaration that's lexically in a record. 3501 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3502 FD = FD->getPreviousDecl()) { 3503 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3504 if (FD->doesThisDeclarationHaveABody()) { 3505 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3506 break; 3507 } 3508 } 3509 } 3510 } 3511 } 3512 3513 // Make sure the result is of the requested type. 3514 if (!IsIncompleteFunction) { 3515 assert(F->getFunctionType() == Ty); 3516 return F; 3517 } 3518 3519 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3520 return llvm::ConstantExpr::getBitCast(F, PTy); 3521 } 3522 3523 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3524 /// non-null, then this function will use the specified type if it has to 3525 /// create it (this occurs when we see a definition of the function). 3526 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3527 llvm::Type *Ty, 3528 bool ForVTable, 3529 bool DontDefer, 3530 ForDefinition_t IsForDefinition) { 3531 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3532 "consteval function should never be emitted"); 3533 // If there was no specific requested type, just convert it now. 3534 if (!Ty) { 3535 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3536 Ty = getTypes().ConvertType(FD->getType()); 3537 } 3538 3539 // Devirtualized destructor calls may come through here instead of via 3540 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3541 // of the complete destructor when necessary. 3542 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3543 if (getTarget().getCXXABI().isMicrosoft() && 3544 GD.getDtorType() == Dtor_Complete && 3545 DD->getParent()->getNumVBases() == 0) 3546 GD = GlobalDecl(DD, Dtor_Base); 3547 } 3548 3549 StringRef MangledName = getMangledName(GD); 3550 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3551 /*IsThunk=*/false, llvm::AttributeList(), 3552 IsForDefinition); 3553 } 3554 3555 static const FunctionDecl * 3556 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3557 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3558 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3559 3560 IdentifierInfo &CII = C.Idents.get(Name); 3561 for (const auto &Result : DC->lookup(&CII)) 3562 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3563 return FD; 3564 3565 if (!C.getLangOpts().CPlusPlus) 3566 return nullptr; 3567 3568 // Demangle the premangled name from getTerminateFn() 3569 IdentifierInfo &CXXII = 3570 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3571 ? C.Idents.get("terminate") 3572 : C.Idents.get(Name); 3573 3574 for (const auto &N : {"__cxxabiv1", "std"}) { 3575 IdentifierInfo &NS = C.Idents.get(N); 3576 for (const auto &Result : DC->lookup(&NS)) { 3577 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3578 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3579 for (const auto &Result : LSD->lookup(&NS)) 3580 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3581 break; 3582 3583 if (ND) 3584 for (const auto &Result : ND->lookup(&CXXII)) 3585 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3586 return FD; 3587 } 3588 } 3589 3590 return nullptr; 3591 } 3592 3593 /// CreateRuntimeFunction - Create a new runtime function with the specified 3594 /// type and name. 3595 llvm::FunctionCallee 3596 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3597 llvm::AttributeList ExtraAttrs, bool Local, 3598 bool AssumeConvergent) { 3599 if (AssumeConvergent) { 3600 ExtraAttrs = 3601 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3602 llvm::Attribute::Convergent); 3603 } 3604 3605 llvm::Constant *C = 3606 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3607 /*DontDefer=*/false, /*IsThunk=*/false, 3608 ExtraAttrs); 3609 3610 if (auto *F = dyn_cast<llvm::Function>(C)) { 3611 if (F->empty()) { 3612 F->setCallingConv(getRuntimeCC()); 3613 3614 // In Windows Itanium environments, try to mark runtime functions 3615 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3616 // will link their standard library statically or dynamically. Marking 3617 // functions imported when they are not imported can cause linker errors 3618 // and warnings. 3619 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3620 !getCodeGenOpts().LTOVisibilityPublicStd) { 3621 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3622 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3623 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3624 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3625 } 3626 } 3627 setDSOLocal(F); 3628 } 3629 } 3630 3631 return {FTy, C}; 3632 } 3633 3634 /// isTypeConstant - Determine whether an object of this type can be emitted 3635 /// as a constant. 3636 /// 3637 /// If ExcludeCtor is true, the duration when the object's constructor runs 3638 /// will not be considered. The caller will need to verify that the object is 3639 /// not written to during its construction. 3640 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3641 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3642 return false; 3643 3644 if (Context.getLangOpts().CPlusPlus) { 3645 if (const CXXRecordDecl *Record 3646 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3647 return ExcludeCtor && !Record->hasMutableFields() && 3648 Record->hasTrivialDestructor(); 3649 } 3650 3651 return true; 3652 } 3653 3654 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3655 /// create and return an llvm GlobalVariable with the specified type. If there 3656 /// is something in the module with the specified name, return it potentially 3657 /// bitcasted to the right type. 3658 /// 3659 /// If D is non-null, it specifies a decl that correspond to this. This is used 3660 /// to set the attributes on the global when it is first created. 3661 /// 3662 /// If IsForDefinition is true, it is guaranteed that an actual global with 3663 /// type Ty will be returned, not conversion of a variable with the same 3664 /// mangled name but some other type. 3665 llvm::Constant * 3666 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3667 llvm::PointerType *Ty, 3668 const VarDecl *D, 3669 ForDefinition_t IsForDefinition) { 3670 // Lookup the entry, lazily creating it if necessary. 3671 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3672 if (Entry) { 3673 if (WeakRefReferences.erase(Entry)) { 3674 if (D && !D->hasAttr<WeakAttr>()) 3675 Entry->setLinkage(llvm::Function::ExternalLinkage); 3676 } 3677 3678 // Handle dropped DLL attributes. 3679 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3680 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3681 3682 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3683 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3684 3685 if (Entry->getType() == Ty) 3686 return Entry; 3687 3688 // If there are two attempts to define the same mangled name, issue an 3689 // error. 3690 if (IsForDefinition && !Entry->isDeclaration()) { 3691 GlobalDecl OtherGD; 3692 const VarDecl *OtherD; 3693 3694 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3695 // to make sure that we issue an error only once. 3696 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3697 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3698 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3699 OtherD->hasInit() && 3700 DiagnosedConflictingDefinitions.insert(D).second) { 3701 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3702 << MangledName; 3703 getDiags().Report(OtherGD.getDecl()->getLocation(), 3704 diag::note_previous_definition); 3705 } 3706 } 3707 3708 // Make sure the result is of the correct type. 3709 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3710 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3711 3712 // (If global is requested for a definition, we always need to create a new 3713 // global, not just return a bitcast.) 3714 if (!IsForDefinition) 3715 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3716 } 3717 3718 auto AddrSpace = GetGlobalVarAddressSpace(D); 3719 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3720 3721 auto *GV = new llvm::GlobalVariable( 3722 getModule(), Ty->getElementType(), false, 3723 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3724 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3725 3726 // If we already created a global with the same mangled name (but different 3727 // type) before, take its name and remove it from its parent. 3728 if (Entry) { 3729 GV->takeName(Entry); 3730 3731 if (!Entry->use_empty()) { 3732 llvm::Constant *NewPtrForOldDecl = 3733 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3734 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3735 } 3736 3737 Entry->eraseFromParent(); 3738 } 3739 3740 // This is the first use or definition of a mangled name. If there is a 3741 // deferred decl with this name, remember that we need to emit it at the end 3742 // of the file. 3743 auto DDI = DeferredDecls.find(MangledName); 3744 if (DDI != DeferredDecls.end()) { 3745 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3746 // list, and remove it from DeferredDecls (since we don't need it anymore). 3747 addDeferredDeclToEmit(DDI->second); 3748 DeferredDecls.erase(DDI); 3749 } 3750 3751 // Handle things which are present even on external declarations. 3752 if (D) { 3753 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3754 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3755 3756 // FIXME: This code is overly simple and should be merged with other global 3757 // handling. 3758 GV->setConstant(isTypeConstant(D->getType(), false)); 3759 3760 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3761 3762 setLinkageForGV(GV, D); 3763 3764 if (D->getTLSKind()) { 3765 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3766 CXXThreadLocals.push_back(D); 3767 setTLSMode(GV, *D); 3768 } 3769 3770 setGVProperties(GV, D); 3771 3772 // If required by the ABI, treat declarations of static data members with 3773 // inline initializers as definitions. 3774 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3775 EmitGlobalVarDefinition(D); 3776 } 3777 3778 // Emit section information for extern variables. 3779 if (D->hasExternalStorage()) { 3780 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3781 GV->setSection(SA->getName()); 3782 } 3783 3784 // Handle XCore specific ABI requirements. 3785 if (getTriple().getArch() == llvm::Triple::xcore && 3786 D->getLanguageLinkage() == CLanguageLinkage && 3787 D->getType().isConstant(Context) && 3788 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3789 GV->setSection(".cp.rodata"); 3790 3791 // Check if we a have a const declaration with an initializer, we may be 3792 // able to emit it as available_externally to expose it's value to the 3793 // optimizer. 3794 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3795 D->getType().isConstQualified() && !GV->hasInitializer() && 3796 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3797 const auto *Record = 3798 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3799 bool HasMutableFields = Record && Record->hasMutableFields(); 3800 if (!HasMutableFields) { 3801 const VarDecl *InitDecl; 3802 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3803 if (InitExpr) { 3804 ConstantEmitter emitter(*this); 3805 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3806 if (Init) { 3807 auto *InitType = Init->getType(); 3808 if (GV->getValueType() != InitType) { 3809 // The type of the initializer does not match the definition. 3810 // This happens when an initializer has a different type from 3811 // the type of the global (because of padding at the end of a 3812 // structure for instance). 3813 GV->setName(StringRef()); 3814 // Make a new global with the correct type, this is now guaranteed 3815 // to work. 3816 auto *NewGV = cast<llvm::GlobalVariable>( 3817 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3818 ->stripPointerCasts()); 3819 3820 // Erase the old global, since it is no longer used. 3821 GV->eraseFromParent(); 3822 GV = NewGV; 3823 } else { 3824 GV->setInitializer(Init); 3825 GV->setConstant(true); 3826 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3827 } 3828 emitter.finalize(GV); 3829 } 3830 } 3831 } 3832 } 3833 } 3834 3835 if (GV->isDeclaration()) 3836 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3837 3838 LangAS ExpectedAS = 3839 D ? D->getType().getAddressSpace() 3840 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3841 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3842 Ty->getPointerAddressSpace()); 3843 if (AddrSpace != ExpectedAS) 3844 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3845 ExpectedAS, Ty); 3846 3847 return GV; 3848 } 3849 3850 llvm::Constant * 3851 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3852 const Decl *D = GD.getDecl(); 3853 3854 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3855 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3856 /*DontDefer=*/false, IsForDefinition); 3857 3858 if (isa<CXXMethodDecl>(D)) { 3859 auto FInfo = 3860 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3861 auto Ty = getTypes().GetFunctionType(*FInfo); 3862 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3863 IsForDefinition); 3864 } 3865 3866 if (isa<FunctionDecl>(D)) { 3867 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3868 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3869 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3870 IsForDefinition); 3871 } 3872 3873 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3874 } 3875 3876 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3877 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3878 unsigned Alignment) { 3879 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3880 llvm::GlobalVariable *OldGV = nullptr; 3881 3882 if (GV) { 3883 // Check if the variable has the right type. 3884 if (GV->getValueType() == Ty) 3885 return GV; 3886 3887 // Because C++ name mangling, the only way we can end up with an already 3888 // existing global with the same name is if it has been declared extern "C". 3889 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3890 OldGV = GV; 3891 } 3892 3893 // Create a new variable. 3894 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3895 Linkage, nullptr, Name); 3896 3897 if (OldGV) { 3898 // Replace occurrences of the old variable if needed. 3899 GV->takeName(OldGV); 3900 3901 if (!OldGV->use_empty()) { 3902 llvm::Constant *NewPtrForOldDecl = 3903 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3904 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3905 } 3906 3907 OldGV->eraseFromParent(); 3908 } 3909 3910 if (supportsCOMDAT() && GV->isWeakForLinker() && 3911 !GV->hasAvailableExternallyLinkage()) 3912 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3913 3914 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3915 3916 return GV; 3917 } 3918 3919 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3920 /// given global variable. If Ty is non-null and if the global doesn't exist, 3921 /// then it will be created with the specified type instead of whatever the 3922 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3923 /// that an actual global with type Ty will be returned, not conversion of a 3924 /// variable with the same mangled name but some other type. 3925 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3926 llvm::Type *Ty, 3927 ForDefinition_t IsForDefinition) { 3928 assert(D->hasGlobalStorage() && "Not a global variable"); 3929 QualType ASTTy = D->getType(); 3930 if (!Ty) 3931 Ty = getTypes().ConvertTypeForMem(ASTTy); 3932 3933 llvm::PointerType *PTy = 3934 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3935 3936 StringRef MangledName = getMangledName(D); 3937 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3938 } 3939 3940 /// CreateRuntimeVariable - Create a new runtime global variable with the 3941 /// specified type and name. 3942 llvm::Constant * 3943 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3944 StringRef Name) { 3945 auto PtrTy = 3946 getContext().getLangOpts().OpenCL 3947 ? llvm::PointerType::get( 3948 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3949 : llvm::PointerType::getUnqual(Ty); 3950 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3951 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3952 return Ret; 3953 } 3954 3955 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3956 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3957 3958 StringRef MangledName = getMangledName(D); 3959 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3960 3961 // We already have a definition, not declaration, with the same mangled name. 3962 // Emitting of declaration is not required (and actually overwrites emitted 3963 // definition). 3964 if (GV && !GV->isDeclaration()) 3965 return; 3966 3967 // If we have not seen a reference to this variable yet, place it into the 3968 // deferred declarations table to be emitted if needed later. 3969 if (!MustBeEmitted(D) && !GV) { 3970 DeferredDecls[MangledName] = D; 3971 return; 3972 } 3973 3974 // The tentative definition is the only definition. 3975 EmitGlobalVarDefinition(D); 3976 } 3977 3978 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3979 EmitExternalVarDeclaration(D); 3980 } 3981 3982 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3983 return Context.toCharUnitsFromBits( 3984 getDataLayout().getTypeStoreSizeInBits(Ty)); 3985 } 3986 3987 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3988 LangAS AddrSpace = LangAS::Default; 3989 if (LangOpts.OpenCL) { 3990 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3991 assert(AddrSpace == LangAS::opencl_global || 3992 AddrSpace == LangAS::opencl_global_device || 3993 AddrSpace == LangAS::opencl_global_host || 3994 AddrSpace == LangAS::opencl_constant || 3995 AddrSpace == LangAS::opencl_local || 3996 AddrSpace >= LangAS::FirstTargetAddressSpace); 3997 return AddrSpace; 3998 } 3999 4000 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4001 if (D && D->hasAttr<CUDAConstantAttr>()) 4002 return LangAS::cuda_constant; 4003 else if (D && D->hasAttr<CUDASharedAttr>()) 4004 return LangAS::cuda_shared; 4005 else if (D && D->hasAttr<CUDADeviceAttr>()) 4006 return LangAS::cuda_device; 4007 else if (D && D->getType().isConstQualified()) 4008 return LangAS::cuda_constant; 4009 else 4010 return LangAS::cuda_device; 4011 } 4012 4013 if (LangOpts.OpenMP) { 4014 LangAS AS; 4015 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4016 return AS; 4017 } 4018 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4019 } 4020 4021 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4022 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4023 if (LangOpts.OpenCL) 4024 return LangAS::opencl_constant; 4025 if (auto AS = getTarget().getConstantAddressSpace()) 4026 return AS.getValue(); 4027 return LangAS::Default; 4028 } 4029 4030 // In address space agnostic languages, string literals are in default address 4031 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4032 // emitted in constant address space in LLVM IR. To be consistent with other 4033 // parts of AST, string literal global variables in constant address space 4034 // need to be casted to default address space before being put into address 4035 // map and referenced by other part of CodeGen. 4036 // In OpenCL, string literals are in constant address space in AST, therefore 4037 // they should not be casted to default address space. 4038 static llvm::Constant * 4039 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4040 llvm::GlobalVariable *GV) { 4041 llvm::Constant *Cast = GV; 4042 if (!CGM.getLangOpts().OpenCL) { 4043 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4044 if (AS != LangAS::Default) 4045 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4046 CGM, GV, AS.getValue(), LangAS::Default, 4047 GV->getValueType()->getPointerTo( 4048 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4049 } 4050 } 4051 return Cast; 4052 } 4053 4054 template<typename SomeDecl> 4055 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4056 llvm::GlobalValue *GV) { 4057 if (!getLangOpts().CPlusPlus) 4058 return; 4059 4060 // Must have 'used' attribute, or else inline assembly can't rely on 4061 // the name existing. 4062 if (!D->template hasAttr<UsedAttr>()) 4063 return; 4064 4065 // Must have internal linkage and an ordinary name. 4066 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4067 return; 4068 4069 // Must be in an extern "C" context. Entities declared directly within 4070 // a record are not extern "C" even if the record is in such a context. 4071 const SomeDecl *First = D->getFirstDecl(); 4072 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4073 return; 4074 4075 // OK, this is an internal linkage entity inside an extern "C" linkage 4076 // specification. Make a note of that so we can give it the "expected" 4077 // mangled name if nothing else is using that name. 4078 std::pair<StaticExternCMap::iterator, bool> R = 4079 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4080 4081 // If we have multiple internal linkage entities with the same name 4082 // in extern "C" regions, none of them gets that name. 4083 if (!R.second) 4084 R.first->second = nullptr; 4085 } 4086 4087 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4088 if (!CGM.supportsCOMDAT()) 4089 return false; 4090 4091 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4092 // them being "merged" by the COMDAT Folding linker optimization. 4093 if (D.hasAttr<CUDAGlobalAttr>()) 4094 return false; 4095 4096 if (D.hasAttr<SelectAnyAttr>()) 4097 return true; 4098 4099 GVALinkage Linkage; 4100 if (auto *VD = dyn_cast<VarDecl>(&D)) 4101 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4102 else 4103 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4104 4105 switch (Linkage) { 4106 case GVA_Internal: 4107 case GVA_AvailableExternally: 4108 case GVA_StrongExternal: 4109 return false; 4110 case GVA_DiscardableODR: 4111 case GVA_StrongODR: 4112 return true; 4113 } 4114 llvm_unreachable("No such linkage"); 4115 } 4116 4117 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4118 llvm::GlobalObject &GO) { 4119 if (!shouldBeInCOMDAT(*this, D)) 4120 return; 4121 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4122 } 4123 4124 /// Pass IsTentative as true if you want to create a tentative definition. 4125 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4126 bool IsTentative) { 4127 // OpenCL global variables of sampler type are translated to function calls, 4128 // therefore no need to be translated. 4129 QualType ASTTy = D->getType(); 4130 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4131 return; 4132 4133 // If this is OpenMP device, check if it is legal to emit this global 4134 // normally. 4135 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4136 OpenMPRuntime->emitTargetGlobalVariable(D)) 4137 return; 4138 4139 llvm::Constant *Init = nullptr; 4140 bool NeedsGlobalCtor = false; 4141 bool NeedsGlobalDtor = 4142 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4143 4144 const VarDecl *InitDecl; 4145 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4146 4147 Optional<ConstantEmitter> emitter; 4148 4149 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4150 // as part of their declaration." Sema has already checked for 4151 // error cases, so we just need to set Init to UndefValue. 4152 bool IsCUDASharedVar = 4153 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4154 // Shadows of initialized device-side global variables are also left 4155 // undefined. 4156 bool IsCUDAShadowVar = 4157 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4158 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4159 D->hasAttr<CUDASharedAttr>()); 4160 bool IsCUDADeviceShadowVar = 4161 getLangOpts().CUDAIsDevice && 4162 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4163 D->getType()->isCUDADeviceBuiltinTextureType() || 4164 D->hasAttr<HIPManagedAttr>()); 4165 // HIP pinned shadow of initialized host-side global variables are also 4166 // left undefined. 4167 if (getLangOpts().CUDA && 4168 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4169 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4170 else if (D->hasAttr<LoaderUninitializedAttr>()) 4171 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4172 else if (!InitExpr) { 4173 // This is a tentative definition; tentative definitions are 4174 // implicitly initialized with { 0 }. 4175 // 4176 // Note that tentative definitions are only emitted at the end of 4177 // a translation unit, so they should never have incomplete 4178 // type. In addition, EmitTentativeDefinition makes sure that we 4179 // never attempt to emit a tentative definition if a real one 4180 // exists. A use may still exists, however, so we still may need 4181 // to do a RAUW. 4182 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4183 Init = EmitNullConstant(D->getType()); 4184 } else { 4185 initializedGlobalDecl = GlobalDecl(D); 4186 emitter.emplace(*this); 4187 Init = emitter->tryEmitForInitializer(*InitDecl); 4188 4189 if (!Init) { 4190 QualType T = InitExpr->getType(); 4191 if (D->getType()->isReferenceType()) 4192 T = D->getType(); 4193 4194 if (getLangOpts().CPlusPlus) { 4195 Init = EmitNullConstant(T); 4196 NeedsGlobalCtor = true; 4197 } else { 4198 ErrorUnsupported(D, "static initializer"); 4199 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4200 } 4201 } else { 4202 // We don't need an initializer, so remove the entry for the delayed 4203 // initializer position (just in case this entry was delayed) if we 4204 // also don't need to register a destructor. 4205 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4206 DelayedCXXInitPosition.erase(D); 4207 } 4208 } 4209 4210 llvm::Type* InitType = Init->getType(); 4211 llvm::Constant *Entry = 4212 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4213 4214 // Strip off pointer casts if we got them. 4215 Entry = Entry->stripPointerCasts(); 4216 4217 // Entry is now either a Function or GlobalVariable. 4218 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4219 4220 // We have a definition after a declaration with the wrong type. 4221 // We must make a new GlobalVariable* and update everything that used OldGV 4222 // (a declaration or tentative definition) with the new GlobalVariable* 4223 // (which will be a definition). 4224 // 4225 // This happens if there is a prototype for a global (e.g. 4226 // "extern int x[];") and then a definition of a different type (e.g. 4227 // "int x[10];"). This also happens when an initializer has a different type 4228 // from the type of the global (this happens with unions). 4229 if (!GV || GV->getValueType() != InitType || 4230 GV->getType()->getAddressSpace() != 4231 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4232 4233 // Move the old entry aside so that we'll create a new one. 4234 Entry->setName(StringRef()); 4235 4236 // Make a new global with the correct type, this is now guaranteed to work. 4237 GV = cast<llvm::GlobalVariable>( 4238 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4239 ->stripPointerCasts()); 4240 4241 // Replace all uses of the old global with the new global 4242 llvm::Constant *NewPtrForOldDecl = 4243 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4244 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4245 4246 // Erase the old global, since it is no longer used. 4247 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4248 } 4249 4250 MaybeHandleStaticInExternC(D, GV); 4251 4252 if (D->hasAttr<AnnotateAttr>()) 4253 AddGlobalAnnotations(D, GV); 4254 4255 // Set the llvm linkage type as appropriate. 4256 llvm::GlobalValue::LinkageTypes Linkage = 4257 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4258 4259 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4260 // the device. [...]" 4261 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4262 // __device__, declares a variable that: [...] 4263 // Is accessible from all the threads within the grid and from the host 4264 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4265 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4266 if (GV && LangOpts.CUDA) { 4267 if (LangOpts.CUDAIsDevice) { 4268 if (Linkage != llvm::GlobalValue::InternalLinkage && 4269 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4270 GV->setExternallyInitialized(true); 4271 } else { 4272 // Host-side shadows of external declarations of device-side 4273 // global variables become internal definitions. These have to 4274 // be internal in order to prevent name conflicts with global 4275 // host variables with the same name in a different TUs. 4276 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4277 Linkage = llvm::GlobalValue::InternalLinkage; 4278 // Shadow variables and their properties must be registered with CUDA 4279 // runtime. Skip Extern global variables, which will be registered in 4280 // the TU where they are defined. 4281 // 4282 // Don't register a C++17 inline variable. The local symbol can be 4283 // discarded and referencing a discarded local symbol from outside the 4284 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4285 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4286 if (!D->hasExternalStorage() && !D->isInline()) 4287 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4288 D->hasAttr<CUDAConstantAttr>()); 4289 } else if (D->hasAttr<CUDASharedAttr>()) { 4290 // __shared__ variables are odd. Shadows do get created, but 4291 // they are not registered with the CUDA runtime, so they 4292 // can't really be used to access their device-side 4293 // counterparts. It's not clear yet whether it's nvcc's bug or 4294 // a feature, but we've got to do the same for compatibility. 4295 Linkage = llvm::GlobalValue::InternalLinkage; 4296 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4297 D->getType()->isCUDADeviceBuiltinTextureType()) { 4298 // Builtin surfaces and textures and their template arguments are 4299 // also registered with CUDA runtime. 4300 Linkage = llvm::GlobalValue::InternalLinkage; 4301 const ClassTemplateSpecializationDecl *TD = 4302 cast<ClassTemplateSpecializationDecl>( 4303 D->getType()->getAs<RecordType>()->getDecl()); 4304 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4305 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4306 assert(Args.size() == 2 && 4307 "Unexpected number of template arguments of CUDA device " 4308 "builtin surface type."); 4309 auto SurfType = Args[1].getAsIntegral(); 4310 if (!D->hasExternalStorage()) 4311 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4312 SurfType.getSExtValue()); 4313 } else { 4314 assert(Args.size() == 3 && 4315 "Unexpected number of template arguments of CUDA device " 4316 "builtin texture type."); 4317 auto TexType = Args[1].getAsIntegral(); 4318 auto Normalized = Args[2].getAsIntegral(); 4319 if (!D->hasExternalStorage()) 4320 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4321 TexType.getSExtValue(), 4322 Normalized.getZExtValue()); 4323 } 4324 } 4325 } 4326 } 4327 4328 GV->setInitializer(Init); 4329 if (emitter) 4330 emitter->finalize(GV); 4331 4332 // If it is safe to mark the global 'constant', do so now. 4333 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4334 isTypeConstant(D->getType(), true)); 4335 4336 // If it is in a read-only section, mark it 'constant'. 4337 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4338 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4339 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4340 GV->setConstant(true); 4341 } 4342 4343 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4344 4345 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4346 // function is only defined alongside the variable, not also alongside 4347 // callers. Normally, all accesses to a thread_local go through the 4348 // thread-wrapper in order to ensure initialization has occurred, underlying 4349 // variable will never be used other than the thread-wrapper, so it can be 4350 // converted to internal linkage. 4351 // 4352 // However, if the variable has the 'constinit' attribute, it _can_ be 4353 // referenced directly, without calling the thread-wrapper, so the linkage 4354 // must not be changed. 4355 // 4356 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4357 // weak or linkonce, the de-duplication semantics are important to preserve, 4358 // so we don't change the linkage. 4359 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4360 Linkage == llvm::GlobalValue::ExternalLinkage && 4361 Context.getTargetInfo().getTriple().isOSDarwin() && 4362 !D->hasAttr<ConstInitAttr>()) 4363 Linkage = llvm::GlobalValue::InternalLinkage; 4364 4365 GV->setLinkage(Linkage); 4366 if (D->hasAttr<DLLImportAttr>()) 4367 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4368 else if (D->hasAttr<DLLExportAttr>()) 4369 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4370 else 4371 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4372 4373 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4374 // common vars aren't constant even if declared const. 4375 GV->setConstant(false); 4376 // Tentative definition of global variables may be initialized with 4377 // non-zero null pointers. In this case they should have weak linkage 4378 // since common linkage must have zero initializer and must not have 4379 // explicit section therefore cannot have non-zero initial value. 4380 if (!GV->getInitializer()->isNullValue()) 4381 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4382 } 4383 4384 setNonAliasAttributes(D, GV); 4385 4386 if (D->getTLSKind() && !GV->isThreadLocal()) { 4387 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4388 CXXThreadLocals.push_back(D); 4389 setTLSMode(GV, *D); 4390 } 4391 4392 maybeSetTrivialComdat(*D, *GV); 4393 4394 // Emit the initializer function if necessary. 4395 if (NeedsGlobalCtor || NeedsGlobalDtor) 4396 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4397 4398 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4399 4400 // Emit global variable debug information. 4401 if (CGDebugInfo *DI = getModuleDebugInfo()) 4402 if (getCodeGenOpts().hasReducedDebugInfo()) 4403 DI->EmitGlobalVariable(GV, D); 4404 } 4405 4406 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4407 if (CGDebugInfo *DI = getModuleDebugInfo()) 4408 if (getCodeGenOpts().hasReducedDebugInfo()) { 4409 QualType ASTTy = D->getType(); 4410 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4411 llvm::PointerType *PTy = 4412 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4413 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4414 DI->EmitExternalVariable( 4415 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4416 } 4417 } 4418 4419 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4420 CodeGenModule &CGM, const VarDecl *D, 4421 bool NoCommon) { 4422 // Don't give variables common linkage if -fno-common was specified unless it 4423 // was overridden by a NoCommon attribute. 4424 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4425 return true; 4426 4427 // C11 6.9.2/2: 4428 // A declaration of an identifier for an object that has file scope without 4429 // an initializer, and without a storage-class specifier or with the 4430 // storage-class specifier static, constitutes a tentative definition. 4431 if (D->getInit() || D->hasExternalStorage()) 4432 return true; 4433 4434 // A variable cannot be both common and exist in a section. 4435 if (D->hasAttr<SectionAttr>()) 4436 return true; 4437 4438 // A variable cannot be both common and exist in a section. 4439 // We don't try to determine which is the right section in the front-end. 4440 // If no specialized section name is applicable, it will resort to default. 4441 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4442 D->hasAttr<PragmaClangDataSectionAttr>() || 4443 D->hasAttr<PragmaClangRelroSectionAttr>() || 4444 D->hasAttr<PragmaClangRodataSectionAttr>()) 4445 return true; 4446 4447 // Thread local vars aren't considered common linkage. 4448 if (D->getTLSKind()) 4449 return true; 4450 4451 // Tentative definitions marked with WeakImportAttr are true definitions. 4452 if (D->hasAttr<WeakImportAttr>()) 4453 return true; 4454 4455 // A variable cannot be both common and exist in a comdat. 4456 if (shouldBeInCOMDAT(CGM, *D)) 4457 return true; 4458 4459 // Declarations with a required alignment do not have common linkage in MSVC 4460 // mode. 4461 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4462 if (D->hasAttr<AlignedAttr>()) 4463 return true; 4464 QualType VarType = D->getType(); 4465 if (Context.isAlignmentRequired(VarType)) 4466 return true; 4467 4468 if (const auto *RT = VarType->getAs<RecordType>()) { 4469 const RecordDecl *RD = RT->getDecl(); 4470 for (const FieldDecl *FD : RD->fields()) { 4471 if (FD->isBitField()) 4472 continue; 4473 if (FD->hasAttr<AlignedAttr>()) 4474 return true; 4475 if (Context.isAlignmentRequired(FD->getType())) 4476 return true; 4477 } 4478 } 4479 } 4480 4481 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4482 // common symbols, so symbols with greater alignment requirements cannot be 4483 // common. 4484 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4485 // alignments for common symbols via the aligncomm directive, so this 4486 // restriction only applies to MSVC environments. 4487 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4488 Context.getTypeAlignIfKnown(D->getType()) > 4489 Context.toBits(CharUnits::fromQuantity(32))) 4490 return true; 4491 4492 return false; 4493 } 4494 4495 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4496 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4497 if (Linkage == GVA_Internal) 4498 return llvm::Function::InternalLinkage; 4499 4500 if (D->hasAttr<WeakAttr>()) { 4501 if (IsConstantVariable) 4502 return llvm::GlobalVariable::WeakODRLinkage; 4503 else 4504 return llvm::GlobalVariable::WeakAnyLinkage; 4505 } 4506 4507 if (const auto *FD = D->getAsFunction()) 4508 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4509 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4510 4511 // We are guaranteed to have a strong definition somewhere else, 4512 // so we can use available_externally linkage. 4513 if (Linkage == GVA_AvailableExternally) 4514 return llvm::GlobalValue::AvailableExternallyLinkage; 4515 4516 // Note that Apple's kernel linker doesn't support symbol 4517 // coalescing, so we need to avoid linkonce and weak linkages there. 4518 // Normally, this means we just map to internal, but for explicit 4519 // instantiations we'll map to external. 4520 4521 // In C++, the compiler has to emit a definition in every translation unit 4522 // that references the function. We should use linkonce_odr because 4523 // a) if all references in this translation unit are optimized away, we 4524 // don't need to codegen it. b) if the function persists, it needs to be 4525 // merged with other definitions. c) C++ has the ODR, so we know the 4526 // definition is dependable. 4527 if (Linkage == GVA_DiscardableODR) 4528 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4529 : llvm::Function::InternalLinkage; 4530 4531 // An explicit instantiation of a template has weak linkage, since 4532 // explicit instantiations can occur in multiple translation units 4533 // and must all be equivalent. However, we are not allowed to 4534 // throw away these explicit instantiations. 4535 // 4536 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4537 // so say that CUDA templates are either external (for kernels) or internal. 4538 // This lets llvm perform aggressive inter-procedural optimizations. For 4539 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4540 // therefore we need to follow the normal linkage paradigm. 4541 if (Linkage == GVA_StrongODR) { 4542 if (getLangOpts().AppleKext) 4543 return llvm::Function::ExternalLinkage; 4544 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4545 !getLangOpts().GPURelocatableDeviceCode) 4546 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4547 : llvm::Function::InternalLinkage; 4548 return llvm::Function::WeakODRLinkage; 4549 } 4550 4551 // C++ doesn't have tentative definitions and thus cannot have common 4552 // linkage. 4553 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4554 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4555 CodeGenOpts.NoCommon)) 4556 return llvm::GlobalVariable::CommonLinkage; 4557 4558 // selectany symbols are externally visible, so use weak instead of 4559 // linkonce. MSVC optimizes away references to const selectany globals, so 4560 // all definitions should be the same and ODR linkage should be used. 4561 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4562 if (D->hasAttr<SelectAnyAttr>()) 4563 return llvm::GlobalVariable::WeakODRLinkage; 4564 4565 // Otherwise, we have strong external linkage. 4566 assert(Linkage == GVA_StrongExternal); 4567 return llvm::GlobalVariable::ExternalLinkage; 4568 } 4569 4570 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4571 const VarDecl *VD, bool IsConstant) { 4572 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4573 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4574 } 4575 4576 /// Replace the uses of a function that was declared with a non-proto type. 4577 /// We want to silently drop extra arguments from call sites 4578 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4579 llvm::Function *newFn) { 4580 // Fast path. 4581 if (old->use_empty()) return; 4582 4583 llvm::Type *newRetTy = newFn->getReturnType(); 4584 SmallVector<llvm::Value*, 4> newArgs; 4585 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4586 4587 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4588 ui != ue; ) { 4589 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4590 llvm::User *user = use->getUser(); 4591 4592 // Recognize and replace uses of bitcasts. Most calls to 4593 // unprototyped functions will use bitcasts. 4594 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4595 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4596 replaceUsesOfNonProtoConstant(bitcast, newFn); 4597 continue; 4598 } 4599 4600 // Recognize calls to the function. 4601 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4602 if (!callSite) continue; 4603 if (!callSite->isCallee(&*use)) 4604 continue; 4605 4606 // If the return types don't match exactly, then we can't 4607 // transform this call unless it's dead. 4608 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4609 continue; 4610 4611 // Get the call site's attribute list. 4612 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4613 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4614 4615 // If the function was passed too few arguments, don't transform. 4616 unsigned newNumArgs = newFn->arg_size(); 4617 if (callSite->arg_size() < newNumArgs) 4618 continue; 4619 4620 // If extra arguments were passed, we silently drop them. 4621 // If any of the types mismatch, we don't transform. 4622 unsigned argNo = 0; 4623 bool dontTransform = false; 4624 for (llvm::Argument &A : newFn->args()) { 4625 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4626 dontTransform = true; 4627 break; 4628 } 4629 4630 // Add any parameter attributes. 4631 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4632 argNo++; 4633 } 4634 if (dontTransform) 4635 continue; 4636 4637 // Okay, we can transform this. Create the new call instruction and copy 4638 // over the required information. 4639 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4640 4641 // Copy over any operand bundles. 4642 callSite->getOperandBundlesAsDefs(newBundles); 4643 4644 llvm::CallBase *newCall; 4645 if (dyn_cast<llvm::CallInst>(callSite)) { 4646 newCall = 4647 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4648 } else { 4649 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4650 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4651 oldInvoke->getUnwindDest(), newArgs, 4652 newBundles, "", callSite); 4653 } 4654 newArgs.clear(); // for the next iteration 4655 4656 if (!newCall->getType()->isVoidTy()) 4657 newCall->takeName(callSite); 4658 newCall->setAttributes(llvm::AttributeList::get( 4659 newFn->getContext(), oldAttrs.getFnAttributes(), 4660 oldAttrs.getRetAttributes(), newArgAttrs)); 4661 newCall->setCallingConv(callSite->getCallingConv()); 4662 4663 // Finally, remove the old call, replacing any uses with the new one. 4664 if (!callSite->use_empty()) 4665 callSite->replaceAllUsesWith(newCall); 4666 4667 // Copy debug location attached to CI. 4668 if (callSite->getDebugLoc()) 4669 newCall->setDebugLoc(callSite->getDebugLoc()); 4670 4671 callSite->eraseFromParent(); 4672 } 4673 } 4674 4675 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4676 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4677 /// existing call uses of the old function in the module, this adjusts them to 4678 /// call the new function directly. 4679 /// 4680 /// This is not just a cleanup: the always_inline pass requires direct calls to 4681 /// functions to be able to inline them. If there is a bitcast in the way, it 4682 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4683 /// run at -O0. 4684 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4685 llvm::Function *NewFn) { 4686 // If we're redefining a global as a function, don't transform it. 4687 if (!isa<llvm::Function>(Old)) return; 4688 4689 replaceUsesOfNonProtoConstant(Old, NewFn); 4690 } 4691 4692 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4693 auto DK = VD->isThisDeclarationADefinition(); 4694 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4695 return; 4696 4697 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4698 // If we have a definition, this might be a deferred decl. If the 4699 // instantiation is explicit, make sure we emit it at the end. 4700 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4701 GetAddrOfGlobalVar(VD); 4702 4703 EmitTopLevelDecl(VD); 4704 } 4705 4706 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4707 llvm::GlobalValue *GV) { 4708 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4709 4710 // Compute the function info and LLVM type. 4711 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4712 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4713 4714 // Get or create the prototype for the function. 4715 if (!GV || (GV->getValueType() != Ty)) 4716 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4717 /*DontDefer=*/true, 4718 ForDefinition)); 4719 4720 // Already emitted. 4721 if (!GV->isDeclaration()) 4722 return; 4723 4724 // We need to set linkage and visibility on the function before 4725 // generating code for it because various parts of IR generation 4726 // want to propagate this information down (e.g. to local static 4727 // declarations). 4728 auto *Fn = cast<llvm::Function>(GV); 4729 setFunctionLinkage(GD, Fn); 4730 4731 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4732 setGVProperties(Fn, GD); 4733 4734 MaybeHandleStaticInExternC(D, Fn); 4735 4736 maybeSetTrivialComdat(*D, *Fn); 4737 4738 // Set CodeGen attributes that represent floating point environment. 4739 setLLVMFunctionFEnvAttributes(D, Fn); 4740 4741 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4742 4743 setNonAliasAttributes(GD, Fn); 4744 SetLLVMFunctionAttributesForDefinition(D, Fn); 4745 4746 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4747 AddGlobalCtor(Fn, CA->getPriority()); 4748 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4749 AddGlobalDtor(Fn, DA->getPriority(), true); 4750 if (D->hasAttr<AnnotateAttr>()) 4751 AddGlobalAnnotations(D, Fn); 4752 } 4753 4754 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4755 const auto *D = cast<ValueDecl>(GD.getDecl()); 4756 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4757 assert(AA && "Not an alias?"); 4758 4759 StringRef MangledName = getMangledName(GD); 4760 4761 if (AA->getAliasee() == MangledName) { 4762 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4763 return; 4764 } 4765 4766 // If there is a definition in the module, then it wins over the alias. 4767 // This is dubious, but allow it to be safe. Just ignore the alias. 4768 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4769 if (Entry && !Entry->isDeclaration()) 4770 return; 4771 4772 Aliases.push_back(GD); 4773 4774 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4775 4776 // Create a reference to the named value. This ensures that it is emitted 4777 // if a deferred decl. 4778 llvm::Constant *Aliasee; 4779 llvm::GlobalValue::LinkageTypes LT; 4780 if (isa<llvm::FunctionType>(DeclTy)) { 4781 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4782 /*ForVTable=*/false); 4783 LT = getFunctionLinkage(GD); 4784 } else { 4785 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4786 llvm::PointerType::getUnqual(DeclTy), 4787 /*D=*/nullptr); 4788 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4789 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4790 else 4791 LT = getFunctionLinkage(GD); 4792 } 4793 4794 // Create the new alias itself, but don't set a name yet. 4795 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4796 auto *GA = 4797 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4798 4799 if (Entry) { 4800 if (GA->getAliasee() == Entry) { 4801 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4802 return; 4803 } 4804 4805 assert(Entry->isDeclaration()); 4806 4807 // If there is a declaration in the module, then we had an extern followed 4808 // by the alias, as in: 4809 // extern int test6(); 4810 // ... 4811 // int test6() __attribute__((alias("test7"))); 4812 // 4813 // Remove it and replace uses of it with the alias. 4814 GA->takeName(Entry); 4815 4816 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4817 Entry->getType())); 4818 Entry->eraseFromParent(); 4819 } else { 4820 GA->setName(MangledName); 4821 } 4822 4823 // Set attributes which are particular to an alias; this is a 4824 // specialization of the attributes which may be set on a global 4825 // variable/function. 4826 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4827 D->isWeakImported()) { 4828 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4829 } 4830 4831 if (const auto *VD = dyn_cast<VarDecl>(D)) 4832 if (VD->getTLSKind()) 4833 setTLSMode(GA, *VD); 4834 4835 SetCommonAttributes(GD, GA); 4836 } 4837 4838 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4839 const auto *D = cast<ValueDecl>(GD.getDecl()); 4840 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4841 assert(IFA && "Not an ifunc?"); 4842 4843 StringRef MangledName = getMangledName(GD); 4844 4845 if (IFA->getResolver() == MangledName) { 4846 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4847 return; 4848 } 4849 4850 // Report an error if some definition overrides ifunc. 4851 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4852 if (Entry && !Entry->isDeclaration()) { 4853 GlobalDecl OtherGD; 4854 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4855 DiagnosedConflictingDefinitions.insert(GD).second) { 4856 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4857 << MangledName; 4858 Diags.Report(OtherGD.getDecl()->getLocation(), 4859 diag::note_previous_definition); 4860 } 4861 return; 4862 } 4863 4864 Aliases.push_back(GD); 4865 4866 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4867 llvm::Constant *Resolver = 4868 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4869 /*ForVTable=*/false); 4870 llvm::GlobalIFunc *GIF = 4871 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4872 "", Resolver, &getModule()); 4873 if (Entry) { 4874 if (GIF->getResolver() == Entry) { 4875 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4876 return; 4877 } 4878 assert(Entry->isDeclaration()); 4879 4880 // If there is a declaration in the module, then we had an extern followed 4881 // by the ifunc, as in: 4882 // extern int test(); 4883 // ... 4884 // int test() __attribute__((ifunc("resolver"))); 4885 // 4886 // Remove it and replace uses of it with the ifunc. 4887 GIF->takeName(Entry); 4888 4889 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4890 Entry->getType())); 4891 Entry->eraseFromParent(); 4892 } else 4893 GIF->setName(MangledName); 4894 4895 SetCommonAttributes(GD, GIF); 4896 } 4897 4898 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4899 ArrayRef<llvm::Type*> Tys) { 4900 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4901 Tys); 4902 } 4903 4904 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4905 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4906 const StringLiteral *Literal, bool TargetIsLSB, 4907 bool &IsUTF16, unsigned &StringLength) { 4908 StringRef String = Literal->getString(); 4909 unsigned NumBytes = String.size(); 4910 4911 // Check for simple case. 4912 if (!Literal->containsNonAsciiOrNull()) { 4913 StringLength = NumBytes; 4914 return *Map.insert(std::make_pair(String, nullptr)).first; 4915 } 4916 4917 // Otherwise, convert the UTF8 literals into a string of shorts. 4918 IsUTF16 = true; 4919 4920 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4921 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4922 llvm::UTF16 *ToPtr = &ToBuf[0]; 4923 4924 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4925 ToPtr + NumBytes, llvm::strictConversion); 4926 4927 // ConvertUTF8toUTF16 returns the length in ToPtr. 4928 StringLength = ToPtr - &ToBuf[0]; 4929 4930 // Add an explicit null. 4931 *ToPtr = 0; 4932 return *Map.insert(std::make_pair( 4933 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4934 (StringLength + 1) * 2), 4935 nullptr)).first; 4936 } 4937 4938 ConstantAddress 4939 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4940 unsigned StringLength = 0; 4941 bool isUTF16 = false; 4942 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4943 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4944 getDataLayout().isLittleEndian(), isUTF16, 4945 StringLength); 4946 4947 if (auto *C = Entry.second) 4948 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4949 4950 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4951 llvm::Constant *Zeros[] = { Zero, Zero }; 4952 4953 const ASTContext &Context = getContext(); 4954 const llvm::Triple &Triple = getTriple(); 4955 4956 const auto CFRuntime = getLangOpts().CFRuntime; 4957 const bool IsSwiftABI = 4958 static_cast<unsigned>(CFRuntime) >= 4959 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4960 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4961 4962 // If we don't already have it, get __CFConstantStringClassReference. 4963 if (!CFConstantStringClassRef) { 4964 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4965 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4966 Ty = llvm::ArrayType::get(Ty, 0); 4967 4968 switch (CFRuntime) { 4969 default: break; 4970 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4971 case LangOptions::CoreFoundationABI::Swift5_0: 4972 CFConstantStringClassName = 4973 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4974 : "$s10Foundation19_NSCFConstantStringCN"; 4975 Ty = IntPtrTy; 4976 break; 4977 case LangOptions::CoreFoundationABI::Swift4_2: 4978 CFConstantStringClassName = 4979 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4980 : "$S10Foundation19_NSCFConstantStringCN"; 4981 Ty = IntPtrTy; 4982 break; 4983 case LangOptions::CoreFoundationABI::Swift4_1: 4984 CFConstantStringClassName = 4985 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4986 : "__T010Foundation19_NSCFConstantStringCN"; 4987 Ty = IntPtrTy; 4988 break; 4989 } 4990 4991 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4992 4993 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4994 llvm::GlobalValue *GV = nullptr; 4995 4996 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4997 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4998 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4999 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5000 5001 const VarDecl *VD = nullptr; 5002 for (const auto &Result : DC->lookup(&II)) 5003 if ((VD = dyn_cast<VarDecl>(Result))) 5004 break; 5005 5006 if (Triple.isOSBinFormatELF()) { 5007 if (!VD) 5008 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5009 } else { 5010 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5011 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5012 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5013 else 5014 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5015 } 5016 5017 setDSOLocal(GV); 5018 } 5019 } 5020 5021 // Decay array -> ptr 5022 CFConstantStringClassRef = 5023 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5024 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5025 } 5026 5027 QualType CFTy = Context.getCFConstantStringType(); 5028 5029 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5030 5031 ConstantInitBuilder Builder(*this); 5032 auto Fields = Builder.beginStruct(STy); 5033 5034 // Class pointer. 5035 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5036 5037 // Flags. 5038 if (IsSwiftABI) { 5039 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5040 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5041 } else { 5042 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5043 } 5044 5045 // String pointer. 5046 llvm::Constant *C = nullptr; 5047 if (isUTF16) { 5048 auto Arr = llvm::makeArrayRef( 5049 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5050 Entry.first().size() / 2); 5051 C = llvm::ConstantDataArray::get(VMContext, Arr); 5052 } else { 5053 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5054 } 5055 5056 // Note: -fwritable-strings doesn't make the backing store strings of 5057 // CFStrings writable. (See <rdar://problem/10657500>) 5058 auto *GV = 5059 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5060 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5061 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5062 // Don't enforce the target's minimum global alignment, since the only use 5063 // of the string is via this class initializer. 5064 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5065 : Context.getTypeAlignInChars(Context.CharTy); 5066 GV->setAlignment(Align.getAsAlign()); 5067 5068 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5069 // Without it LLVM can merge the string with a non unnamed_addr one during 5070 // LTO. Doing that changes the section it ends in, which surprises ld64. 5071 if (Triple.isOSBinFormatMachO()) 5072 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5073 : "__TEXT,__cstring,cstring_literals"); 5074 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5075 // the static linker to adjust permissions to read-only later on. 5076 else if (Triple.isOSBinFormatELF()) 5077 GV->setSection(".rodata"); 5078 5079 // String. 5080 llvm::Constant *Str = 5081 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5082 5083 if (isUTF16) 5084 // Cast the UTF16 string to the correct type. 5085 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5086 Fields.add(Str); 5087 5088 // String length. 5089 llvm::IntegerType *LengthTy = 5090 llvm::IntegerType::get(getModule().getContext(), 5091 Context.getTargetInfo().getLongWidth()); 5092 if (IsSwiftABI) { 5093 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5094 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5095 LengthTy = Int32Ty; 5096 else 5097 LengthTy = IntPtrTy; 5098 } 5099 Fields.addInt(LengthTy, StringLength); 5100 5101 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5102 // properly aligned on 32-bit platforms. 5103 CharUnits Alignment = 5104 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5105 5106 // The struct. 5107 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5108 /*isConstant=*/false, 5109 llvm::GlobalVariable::PrivateLinkage); 5110 GV->addAttribute("objc_arc_inert"); 5111 switch (Triple.getObjectFormat()) { 5112 case llvm::Triple::UnknownObjectFormat: 5113 llvm_unreachable("unknown file format"); 5114 case llvm::Triple::GOFF: 5115 llvm_unreachable("GOFF is not yet implemented"); 5116 case llvm::Triple::XCOFF: 5117 llvm_unreachable("XCOFF is not yet implemented"); 5118 case llvm::Triple::COFF: 5119 case llvm::Triple::ELF: 5120 case llvm::Triple::Wasm: 5121 GV->setSection("cfstring"); 5122 break; 5123 case llvm::Triple::MachO: 5124 GV->setSection("__DATA,__cfstring"); 5125 break; 5126 } 5127 Entry.second = GV; 5128 5129 return ConstantAddress(GV, Alignment); 5130 } 5131 5132 bool CodeGenModule::getExpressionLocationsEnabled() const { 5133 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5134 } 5135 5136 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5137 if (ObjCFastEnumerationStateType.isNull()) { 5138 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5139 D->startDefinition(); 5140 5141 QualType FieldTypes[] = { 5142 Context.UnsignedLongTy, 5143 Context.getPointerType(Context.getObjCIdType()), 5144 Context.getPointerType(Context.UnsignedLongTy), 5145 Context.getConstantArrayType(Context.UnsignedLongTy, 5146 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5147 }; 5148 5149 for (size_t i = 0; i < 4; ++i) { 5150 FieldDecl *Field = FieldDecl::Create(Context, 5151 D, 5152 SourceLocation(), 5153 SourceLocation(), nullptr, 5154 FieldTypes[i], /*TInfo=*/nullptr, 5155 /*BitWidth=*/nullptr, 5156 /*Mutable=*/false, 5157 ICIS_NoInit); 5158 Field->setAccess(AS_public); 5159 D->addDecl(Field); 5160 } 5161 5162 D->completeDefinition(); 5163 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5164 } 5165 5166 return ObjCFastEnumerationStateType; 5167 } 5168 5169 llvm::Constant * 5170 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5171 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5172 5173 // Don't emit it as the address of the string, emit the string data itself 5174 // as an inline array. 5175 if (E->getCharByteWidth() == 1) { 5176 SmallString<64> Str(E->getString()); 5177 5178 // Resize the string to the right size, which is indicated by its type. 5179 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5180 Str.resize(CAT->getSize().getZExtValue()); 5181 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5182 } 5183 5184 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5185 llvm::Type *ElemTy = AType->getElementType(); 5186 unsigned NumElements = AType->getNumElements(); 5187 5188 // Wide strings have either 2-byte or 4-byte elements. 5189 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5190 SmallVector<uint16_t, 32> Elements; 5191 Elements.reserve(NumElements); 5192 5193 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5194 Elements.push_back(E->getCodeUnit(i)); 5195 Elements.resize(NumElements); 5196 return llvm::ConstantDataArray::get(VMContext, Elements); 5197 } 5198 5199 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5200 SmallVector<uint32_t, 32> Elements; 5201 Elements.reserve(NumElements); 5202 5203 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5204 Elements.push_back(E->getCodeUnit(i)); 5205 Elements.resize(NumElements); 5206 return llvm::ConstantDataArray::get(VMContext, Elements); 5207 } 5208 5209 static llvm::GlobalVariable * 5210 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5211 CodeGenModule &CGM, StringRef GlobalName, 5212 CharUnits Alignment) { 5213 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5214 CGM.getStringLiteralAddressSpace()); 5215 5216 llvm::Module &M = CGM.getModule(); 5217 // Create a global variable for this string 5218 auto *GV = new llvm::GlobalVariable( 5219 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5220 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5221 GV->setAlignment(Alignment.getAsAlign()); 5222 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5223 if (GV->isWeakForLinker()) { 5224 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5225 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5226 } 5227 CGM.setDSOLocal(GV); 5228 5229 return GV; 5230 } 5231 5232 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5233 /// constant array for the given string literal. 5234 ConstantAddress 5235 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5236 StringRef Name) { 5237 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5238 5239 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5240 llvm::GlobalVariable **Entry = nullptr; 5241 if (!LangOpts.WritableStrings) { 5242 Entry = &ConstantStringMap[C]; 5243 if (auto GV = *Entry) { 5244 if (Alignment.getQuantity() > GV->getAlignment()) 5245 GV->setAlignment(Alignment.getAsAlign()); 5246 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5247 Alignment); 5248 } 5249 } 5250 5251 SmallString<256> MangledNameBuffer; 5252 StringRef GlobalVariableName; 5253 llvm::GlobalValue::LinkageTypes LT; 5254 5255 // Mangle the string literal if that's how the ABI merges duplicate strings. 5256 // Don't do it if they are writable, since we don't want writes in one TU to 5257 // affect strings in another. 5258 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5259 !LangOpts.WritableStrings) { 5260 llvm::raw_svector_ostream Out(MangledNameBuffer); 5261 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5262 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5263 GlobalVariableName = MangledNameBuffer; 5264 } else { 5265 LT = llvm::GlobalValue::PrivateLinkage; 5266 GlobalVariableName = Name; 5267 } 5268 5269 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5270 if (Entry) 5271 *Entry = GV; 5272 5273 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5274 QualType()); 5275 5276 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5277 Alignment); 5278 } 5279 5280 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5281 /// array for the given ObjCEncodeExpr node. 5282 ConstantAddress 5283 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5284 std::string Str; 5285 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5286 5287 return GetAddrOfConstantCString(Str); 5288 } 5289 5290 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5291 /// the literal and a terminating '\0' character. 5292 /// The result has pointer to array type. 5293 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5294 const std::string &Str, const char *GlobalName) { 5295 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5296 CharUnits Alignment = 5297 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5298 5299 llvm::Constant *C = 5300 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5301 5302 // Don't share any string literals if strings aren't constant. 5303 llvm::GlobalVariable **Entry = nullptr; 5304 if (!LangOpts.WritableStrings) { 5305 Entry = &ConstantStringMap[C]; 5306 if (auto GV = *Entry) { 5307 if (Alignment.getQuantity() > GV->getAlignment()) 5308 GV->setAlignment(Alignment.getAsAlign()); 5309 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5310 Alignment); 5311 } 5312 } 5313 5314 // Get the default prefix if a name wasn't specified. 5315 if (!GlobalName) 5316 GlobalName = ".str"; 5317 // Create a global variable for this. 5318 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5319 GlobalName, Alignment); 5320 if (Entry) 5321 *Entry = GV; 5322 5323 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5324 Alignment); 5325 } 5326 5327 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5328 const MaterializeTemporaryExpr *E, const Expr *Init) { 5329 assert((E->getStorageDuration() == SD_Static || 5330 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5331 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5332 5333 // If we're not materializing a subobject of the temporary, keep the 5334 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5335 QualType MaterializedType = Init->getType(); 5336 if (Init == E->getSubExpr()) 5337 MaterializedType = E->getType(); 5338 5339 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5340 5341 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5342 return ConstantAddress(Slot, Align); 5343 5344 // FIXME: If an externally-visible declaration extends multiple temporaries, 5345 // we need to give each temporary the same name in every translation unit (and 5346 // we also need to make the temporaries externally-visible). 5347 SmallString<256> Name; 5348 llvm::raw_svector_ostream Out(Name); 5349 getCXXABI().getMangleContext().mangleReferenceTemporary( 5350 VD, E->getManglingNumber(), Out); 5351 5352 APValue *Value = nullptr; 5353 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5354 // If the initializer of the extending declaration is a constant 5355 // initializer, we should have a cached constant initializer for this 5356 // temporary. Note that this might have a different value from the value 5357 // computed by evaluating the initializer if the surrounding constant 5358 // expression modifies the temporary. 5359 Value = E->getOrCreateValue(false); 5360 } 5361 5362 // Try evaluating it now, it might have a constant initializer. 5363 Expr::EvalResult EvalResult; 5364 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5365 !EvalResult.hasSideEffects()) 5366 Value = &EvalResult.Val; 5367 5368 LangAS AddrSpace = 5369 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5370 5371 Optional<ConstantEmitter> emitter; 5372 llvm::Constant *InitialValue = nullptr; 5373 bool Constant = false; 5374 llvm::Type *Type; 5375 if (Value) { 5376 // The temporary has a constant initializer, use it. 5377 emitter.emplace(*this); 5378 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5379 MaterializedType); 5380 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5381 Type = InitialValue->getType(); 5382 } else { 5383 // No initializer, the initialization will be provided when we 5384 // initialize the declaration which performed lifetime extension. 5385 Type = getTypes().ConvertTypeForMem(MaterializedType); 5386 } 5387 5388 // Create a global variable for this lifetime-extended temporary. 5389 llvm::GlobalValue::LinkageTypes Linkage = 5390 getLLVMLinkageVarDefinition(VD, Constant); 5391 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5392 const VarDecl *InitVD; 5393 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5394 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5395 // Temporaries defined inside a class get linkonce_odr linkage because the 5396 // class can be defined in multiple translation units. 5397 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5398 } else { 5399 // There is no need for this temporary to have external linkage if the 5400 // VarDecl has external linkage. 5401 Linkage = llvm::GlobalVariable::InternalLinkage; 5402 } 5403 } 5404 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5405 auto *GV = new llvm::GlobalVariable( 5406 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5407 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5408 if (emitter) emitter->finalize(GV); 5409 setGVProperties(GV, VD); 5410 GV->setAlignment(Align.getAsAlign()); 5411 if (supportsCOMDAT() && GV->isWeakForLinker()) 5412 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5413 if (VD->getTLSKind()) 5414 setTLSMode(GV, *VD); 5415 llvm::Constant *CV = GV; 5416 if (AddrSpace != LangAS::Default) 5417 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5418 *this, GV, AddrSpace, LangAS::Default, 5419 Type->getPointerTo( 5420 getContext().getTargetAddressSpace(LangAS::Default))); 5421 MaterializedGlobalTemporaryMap[E] = CV; 5422 return ConstantAddress(CV, Align); 5423 } 5424 5425 /// EmitObjCPropertyImplementations - Emit information for synthesized 5426 /// properties for an implementation. 5427 void CodeGenModule::EmitObjCPropertyImplementations(const 5428 ObjCImplementationDecl *D) { 5429 for (const auto *PID : D->property_impls()) { 5430 // Dynamic is just for type-checking. 5431 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5432 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5433 5434 // Determine which methods need to be implemented, some may have 5435 // been overridden. Note that ::isPropertyAccessor is not the method 5436 // we want, that just indicates if the decl came from a 5437 // property. What we want to know is if the method is defined in 5438 // this implementation. 5439 auto *Getter = PID->getGetterMethodDecl(); 5440 if (!Getter || Getter->isSynthesizedAccessorStub()) 5441 CodeGenFunction(*this).GenerateObjCGetter( 5442 const_cast<ObjCImplementationDecl *>(D), PID); 5443 auto *Setter = PID->getSetterMethodDecl(); 5444 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5445 CodeGenFunction(*this).GenerateObjCSetter( 5446 const_cast<ObjCImplementationDecl *>(D), PID); 5447 } 5448 } 5449 } 5450 5451 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5452 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5453 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5454 ivar; ivar = ivar->getNextIvar()) 5455 if (ivar->getType().isDestructedType()) 5456 return true; 5457 5458 return false; 5459 } 5460 5461 static bool AllTrivialInitializers(CodeGenModule &CGM, 5462 ObjCImplementationDecl *D) { 5463 CodeGenFunction CGF(CGM); 5464 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5465 E = D->init_end(); B != E; ++B) { 5466 CXXCtorInitializer *CtorInitExp = *B; 5467 Expr *Init = CtorInitExp->getInit(); 5468 if (!CGF.isTrivialInitializer(Init)) 5469 return false; 5470 } 5471 return true; 5472 } 5473 5474 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5475 /// for an implementation. 5476 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5477 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5478 if (needsDestructMethod(D)) { 5479 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5480 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5481 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5482 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5483 getContext().VoidTy, nullptr, D, 5484 /*isInstance=*/true, /*isVariadic=*/false, 5485 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5486 /*isImplicitlyDeclared=*/true, 5487 /*isDefined=*/false, ObjCMethodDecl::Required); 5488 D->addInstanceMethod(DTORMethod); 5489 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5490 D->setHasDestructors(true); 5491 } 5492 5493 // If the implementation doesn't have any ivar initializers, we don't need 5494 // a .cxx_construct. 5495 if (D->getNumIvarInitializers() == 0 || 5496 AllTrivialInitializers(*this, D)) 5497 return; 5498 5499 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5500 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5501 // The constructor returns 'self'. 5502 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5503 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5504 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5505 /*isVariadic=*/false, 5506 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5507 /*isImplicitlyDeclared=*/true, 5508 /*isDefined=*/false, ObjCMethodDecl::Required); 5509 D->addInstanceMethod(CTORMethod); 5510 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5511 D->setHasNonZeroConstructors(true); 5512 } 5513 5514 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5515 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5516 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5517 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5518 ErrorUnsupported(LSD, "linkage spec"); 5519 return; 5520 } 5521 5522 EmitDeclContext(LSD); 5523 } 5524 5525 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5526 for (auto *I : DC->decls()) { 5527 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5528 // are themselves considered "top-level", so EmitTopLevelDecl on an 5529 // ObjCImplDecl does not recursively visit them. We need to do that in 5530 // case they're nested inside another construct (LinkageSpecDecl / 5531 // ExportDecl) that does stop them from being considered "top-level". 5532 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5533 for (auto *M : OID->methods()) 5534 EmitTopLevelDecl(M); 5535 } 5536 5537 EmitTopLevelDecl(I); 5538 } 5539 } 5540 5541 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5542 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5543 // Ignore dependent declarations. 5544 if (D->isTemplated()) 5545 return; 5546 5547 // Consteval function shouldn't be emitted. 5548 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5549 if (FD->isConsteval()) 5550 return; 5551 5552 switch (D->getKind()) { 5553 case Decl::CXXConversion: 5554 case Decl::CXXMethod: 5555 case Decl::Function: 5556 EmitGlobal(cast<FunctionDecl>(D)); 5557 // Always provide some coverage mapping 5558 // even for the functions that aren't emitted. 5559 AddDeferredUnusedCoverageMapping(D); 5560 break; 5561 5562 case Decl::CXXDeductionGuide: 5563 // Function-like, but does not result in code emission. 5564 break; 5565 5566 case Decl::Var: 5567 case Decl::Decomposition: 5568 case Decl::VarTemplateSpecialization: 5569 EmitGlobal(cast<VarDecl>(D)); 5570 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5571 for (auto *B : DD->bindings()) 5572 if (auto *HD = B->getHoldingVar()) 5573 EmitGlobal(HD); 5574 break; 5575 5576 // Indirect fields from global anonymous structs and unions can be 5577 // ignored; only the actual variable requires IR gen support. 5578 case Decl::IndirectField: 5579 break; 5580 5581 // C++ Decls 5582 case Decl::Namespace: 5583 EmitDeclContext(cast<NamespaceDecl>(D)); 5584 break; 5585 case Decl::ClassTemplateSpecialization: { 5586 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5587 if (CGDebugInfo *DI = getModuleDebugInfo()) 5588 if (Spec->getSpecializationKind() == 5589 TSK_ExplicitInstantiationDefinition && 5590 Spec->hasDefinition()) 5591 DI->completeTemplateDefinition(*Spec); 5592 } LLVM_FALLTHROUGH; 5593 case Decl::CXXRecord: { 5594 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5595 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5596 if (CRD->hasDefinition()) 5597 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5598 if (auto *ES = D->getASTContext().getExternalSource()) 5599 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5600 DI->completeUnusedClass(*CRD); 5601 } 5602 // Emit any static data members, they may be definitions. 5603 for (auto *I : CRD->decls()) 5604 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5605 EmitTopLevelDecl(I); 5606 break; 5607 } 5608 // No code generation needed. 5609 case Decl::UsingShadow: 5610 case Decl::ClassTemplate: 5611 case Decl::VarTemplate: 5612 case Decl::Concept: 5613 case Decl::VarTemplatePartialSpecialization: 5614 case Decl::FunctionTemplate: 5615 case Decl::TypeAliasTemplate: 5616 case Decl::Block: 5617 case Decl::Empty: 5618 case Decl::Binding: 5619 break; 5620 case Decl::Using: // using X; [C++] 5621 if (CGDebugInfo *DI = getModuleDebugInfo()) 5622 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5623 break; 5624 case Decl::NamespaceAlias: 5625 if (CGDebugInfo *DI = getModuleDebugInfo()) 5626 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5627 break; 5628 case Decl::UsingDirective: // using namespace X; [C++] 5629 if (CGDebugInfo *DI = getModuleDebugInfo()) 5630 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5631 break; 5632 case Decl::CXXConstructor: 5633 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5634 break; 5635 case Decl::CXXDestructor: 5636 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5637 break; 5638 5639 case Decl::StaticAssert: 5640 // Nothing to do. 5641 break; 5642 5643 // Objective-C Decls 5644 5645 // Forward declarations, no (immediate) code generation. 5646 case Decl::ObjCInterface: 5647 case Decl::ObjCCategory: 5648 break; 5649 5650 case Decl::ObjCProtocol: { 5651 auto *Proto = cast<ObjCProtocolDecl>(D); 5652 if (Proto->isThisDeclarationADefinition()) 5653 ObjCRuntime->GenerateProtocol(Proto); 5654 break; 5655 } 5656 5657 case Decl::ObjCCategoryImpl: 5658 // Categories have properties but don't support synthesize so we 5659 // can ignore them here. 5660 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5661 break; 5662 5663 case Decl::ObjCImplementation: { 5664 auto *OMD = cast<ObjCImplementationDecl>(D); 5665 EmitObjCPropertyImplementations(OMD); 5666 EmitObjCIvarInitializations(OMD); 5667 ObjCRuntime->GenerateClass(OMD); 5668 // Emit global variable debug information. 5669 if (CGDebugInfo *DI = getModuleDebugInfo()) 5670 if (getCodeGenOpts().hasReducedDebugInfo()) 5671 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5672 OMD->getClassInterface()), OMD->getLocation()); 5673 break; 5674 } 5675 case Decl::ObjCMethod: { 5676 auto *OMD = cast<ObjCMethodDecl>(D); 5677 // If this is not a prototype, emit the body. 5678 if (OMD->getBody()) 5679 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5680 break; 5681 } 5682 case Decl::ObjCCompatibleAlias: 5683 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5684 break; 5685 5686 case Decl::PragmaComment: { 5687 const auto *PCD = cast<PragmaCommentDecl>(D); 5688 switch (PCD->getCommentKind()) { 5689 case PCK_Unknown: 5690 llvm_unreachable("unexpected pragma comment kind"); 5691 case PCK_Linker: 5692 AppendLinkerOptions(PCD->getArg()); 5693 break; 5694 case PCK_Lib: 5695 AddDependentLib(PCD->getArg()); 5696 break; 5697 case PCK_Compiler: 5698 case PCK_ExeStr: 5699 case PCK_User: 5700 break; // We ignore all of these. 5701 } 5702 break; 5703 } 5704 5705 case Decl::PragmaDetectMismatch: { 5706 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5707 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5708 break; 5709 } 5710 5711 case Decl::LinkageSpec: 5712 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5713 break; 5714 5715 case Decl::FileScopeAsm: { 5716 // File-scope asm is ignored during device-side CUDA compilation. 5717 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5718 break; 5719 // File-scope asm is ignored during device-side OpenMP compilation. 5720 if (LangOpts.OpenMPIsDevice) 5721 break; 5722 auto *AD = cast<FileScopeAsmDecl>(D); 5723 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5724 break; 5725 } 5726 5727 case Decl::Import: { 5728 auto *Import = cast<ImportDecl>(D); 5729 5730 // If we've already imported this module, we're done. 5731 if (!ImportedModules.insert(Import->getImportedModule())) 5732 break; 5733 5734 // Emit debug information for direct imports. 5735 if (!Import->getImportedOwningModule()) { 5736 if (CGDebugInfo *DI = getModuleDebugInfo()) 5737 DI->EmitImportDecl(*Import); 5738 } 5739 5740 // Find all of the submodules and emit the module initializers. 5741 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5742 SmallVector<clang::Module *, 16> Stack; 5743 Visited.insert(Import->getImportedModule()); 5744 Stack.push_back(Import->getImportedModule()); 5745 5746 while (!Stack.empty()) { 5747 clang::Module *Mod = Stack.pop_back_val(); 5748 if (!EmittedModuleInitializers.insert(Mod).second) 5749 continue; 5750 5751 for (auto *D : Context.getModuleInitializers(Mod)) 5752 EmitTopLevelDecl(D); 5753 5754 // Visit the submodules of this module. 5755 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5756 SubEnd = Mod->submodule_end(); 5757 Sub != SubEnd; ++Sub) { 5758 // Skip explicit children; they need to be explicitly imported to emit 5759 // the initializers. 5760 if ((*Sub)->IsExplicit) 5761 continue; 5762 5763 if (Visited.insert(*Sub).second) 5764 Stack.push_back(*Sub); 5765 } 5766 } 5767 break; 5768 } 5769 5770 case Decl::Export: 5771 EmitDeclContext(cast<ExportDecl>(D)); 5772 break; 5773 5774 case Decl::OMPThreadPrivate: 5775 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5776 break; 5777 5778 case Decl::OMPAllocate: 5779 break; 5780 5781 case Decl::OMPDeclareReduction: 5782 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5783 break; 5784 5785 case Decl::OMPDeclareMapper: 5786 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5787 break; 5788 5789 case Decl::OMPRequires: 5790 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5791 break; 5792 5793 case Decl::Typedef: 5794 case Decl::TypeAlias: // using foo = bar; [C++11] 5795 if (CGDebugInfo *DI = getModuleDebugInfo()) 5796 DI->EmitAndRetainType( 5797 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5798 break; 5799 5800 case Decl::Record: 5801 if (CGDebugInfo *DI = getModuleDebugInfo()) 5802 if (cast<RecordDecl>(D)->getDefinition()) 5803 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5804 break; 5805 5806 case Decl::Enum: 5807 if (CGDebugInfo *DI = getModuleDebugInfo()) 5808 if (cast<EnumDecl>(D)->getDefinition()) 5809 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5810 break; 5811 5812 default: 5813 // Make sure we handled everything we should, every other kind is a 5814 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5815 // function. Need to recode Decl::Kind to do that easily. 5816 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5817 break; 5818 } 5819 } 5820 5821 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5822 // Do we need to generate coverage mapping? 5823 if (!CodeGenOpts.CoverageMapping) 5824 return; 5825 switch (D->getKind()) { 5826 case Decl::CXXConversion: 5827 case Decl::CXXMethod: 5828 case Decl::Function: 5829 case Decl::ObjCMethod: 5830 case Decl::CXXConstructor: 5831 case Decl::CXXDestructor: { 5832 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5833 break; 5834 SourceManager &SM = getContext().getSourceManager(); 5835 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5836 break; 5837 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5838 if (I == DeferredEmptyCoverageMappingDecls.end()) 5839 DeferredEmptyCoverageMappingDecls[D] = true; 5840 break; 5841 } 5842 default: 5843 break; 5844 }; 5845 } 5846 5847 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5848 // Do we need to generate coverage mapping? 5849 if (!CodeGenOpts.CoverageMapping) 5850 return; 5851 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5852 if (Fn->isTemplateInstantiation()) 5853 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5854 } 5855 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5856 if (I == DeferredEmptyCoverageMappingDecls.end()) 5857 DeferredEmptyCoverageMappingDecls[D] = false; 5858 else 5859 I->second = false; 5860 } 5861 5862 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5863 // We call takeVector() here to avoid use-after-free. 5864 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5865 // we deserialize function bodies to emit coverage info for them, and that 5866 // deserializes more declarations. How should we handle that case? 5867 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5868 if (!Entry.second) 5869 continue; 5870 const Decl *D = Entry.first; 5871 switch (D->getKind()) { 5872 case Decl::CXXConversion: 5873 case Decl::CXXMethod: 5874 case Decl::Function: 5875 case Decl::ObjCMethod: { 5876 CodeGenPGO PGO(*this); 5877 GlobalDecl GD(cast<FunctionDecl>(D)); 5878 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5879 getFunctionLinkage(GD)); 5880 break; 5881 } 5882 case Decl::CXXConstructor: { 5883 CodeGenPGO PGO(*this); 5884 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5885 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5886 getFunctionLinkage(GD)); 5887 break; 5888 } 5889 case Decl::CXXDestructor: { 5890 CodeGenPGO PGO(*this); 5891 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5892 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5893 getFunctionLinkage(GD)); 5894 break; 5895 } 5896 default: 5897 break; 5898 }; 5899 } 5900 } 5901 5902 void CodeGenModule::EmitMainVoidAlias() { 5903 // In order to transition away from "__original_main" gracefully, emit an 5904 // alias for "main" in the no-argument case so that libc can detect when 5905 // new-style no-argument main is in used. 5906 if (llvm::Function *F = getModule().getFunction("main")) { 5907 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5908 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5909 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5910 } 5911 } 5912 5913 /// Turns the given pointer into a constant. 5914 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5915 const void *Ptr) { 5916 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5917 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5918 return llvm::ConstantInt::get(i64, PtrInt); 5919 } 5920 5921 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5922 llvm::NamedMDNode *&GlobalMetadata, 5923 GlobalDecl D, 5924 llvm::GlobalValue *Addr) { 5925 if (!GlobalMetadata) 5926 GlobalMetadata = 5927 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5928 5929 // TODO: should we report variant information for ctors/dtors? 5930 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5931 llvm::ConstantAsMetadata::get(GetPointerConstant( 5932 CGM.getLLVMContext(), D.getDecl()))}; 5933 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5934 } 5935 5936 /// For each function which is declared within an extern "C" region and marked 5937 /// as 'used', but has internal linkage, create an alias from the unmangled 5938 /// name to the mangled name if possible. People expect to be able to refer 5939 /// to such functions with an unmangled name from inline assembly within the 5940 /// same translation unit. 5941 void CodeGenModule::EmitStaticExternCAliases() { 5942 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5943 return; 5944 for (auto &I : StaticExternCValues) { 5945 IdentifierInfo *Name = I.first; 5946 llvm::GlobalValue *Val = I.second; 5947 if (Val && !getModule().getNamedValue(Name->getName())) 5948 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5949 } 5950 } 5951 5952 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5953 GlobalDecl &Result) const { 5954 auto Res = Manglings.find(MangledName); 5955 if (Res == Manglings.end()) 5956 return false; 5957 Result = Res->getValue(); 5958 return true; 5959 } 5960 5961 /// Emits metadata nodes associating all the global values in the 5962 /// current module with the Decls they came from. This is useful for 5963 /// projects using IR gen as a subroutine. 5964 /// 5965 /// Since there's currently no way to associate an MDNode directly 5966 /// with an llvm::GlobalValue, we create a global named metadata 5967 /// with the name 'clang.global.decl.ptrs'. 5968 void CodeGenModule::EmitDeclMetadata() { 5969 llvm::NamedMDNode *GlobalMetadata = nullptr; 5970 5971 for (auto &I : MangledDeclNames) { 5972 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5973 // Some mangled names don't necessarily have an associated GlobalValue 5974 // in this module, e.g. if we mangled it for DebugInfo. 5975 if (Addr) 5976 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5977 } 5978 } 5979 5980 /// Emits metadata nodes for all the local variables in the current 5981 /// function. 5982 void CodeGenFunction::EmitDeclMetadata() { 5983 if (LocalDeclMap.empty()) return; 5984 5985 llvm::LLVMContext &Context = getLLVMContext(); 5986 5987 // Find the unique metadata ID for this name. 5988 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5989 5990 llvm::NamedMDNode *GlobalMetadata = nullptr; 5991 5992 for (auto &I : LocalDeclMap) { 5993 const Decl *D = I.first; 5994 llvm::Value *Addr = I.second.getPointer(); 5995 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5996 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5997 Alloca->setMetadata( 5998 DeclPtrKind, llvm::MDNode::get( 5999 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6000 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6001 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6002 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6003 } 6004 } 6005 } 6006 6007 void CodeGenModule::EmitVersionIdentMetadata() { 6008 llvm::NamedMDNode *IdentMetadata = 6009 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6010 std::string Version = getClangFullVersion(); 6011 llvm::LLVMContext &Ctx = TheModule.getContext(); 6012 6013 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6014 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6015 } 6016 6017 void CodeGenModule::EmitCommandLineMetadata() { 6018 llvm::NamedMDNode *CommandLineMetadata = 6019 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6020 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6021 llvm::LLVMContext &Ctx = TheModule.getContext(); 6022 6023 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6024 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6025 } 6026 6027 void CodeGenModule::EmitCoverageFile() { 6028 if (getCodeGenOpts().CoverageDataFile.empty() && 6029 getCodeGenOpts().CoverageNotesFile.empty()) 6030 return; 6031 6032 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6033 if (!CUNode) 6034 return; 6035 6036 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6037 llvm::LLVMContext &Ctx = TheModule.getContext(); 6038 auto *CoverageDataFile = 6039 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6040 auto *CoverageNotesFile = 6041 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6042 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6043 llvm::MDNode *CU = CUNode->getOperand(i); 6044 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6045 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6046 } 6047 } 6048 6049 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6050 bool ForEH) { 6051 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6052 // FIXME: should we even be calling this method if RTTI is disabled 6053 // and it's not for EH? 6054 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6055 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6056 getTriple().isNVPTX())) 6057 return llvm::Constant::getNullValue(Int8PtrTy); 6058 6059 if (ForEH && Ty->isObjCObjectPointerType() && 6060 LangOpts.ObjCRuntime.isGNUFamily()) 6061 return ObjCRuntime->GetEHType(Ty); 6062 6063 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6064 } 6065 6066 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6067 // Do not emit threadprivates in simd-only mode. 6068 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6069 return; 6070 for (auto RefExpr : D->varlists()) { 6071 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6072 bool PerformInit = 6073 VD->getAnyInitializer() && 6074 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6075 /*ForRef=*/false); 6076 6077 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6078 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6079 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6080 CXXGlobalInits.push_back(InitFunction); 6081 } 6082 } 6083 6084 llvm::Metadata * 6085 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6086 StringRef Suffix) { 6087 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6088 if (InternalId) 6089 return InternalId; 6090 6091 if (isExternallyVisible(T->getLinkage())) { 6092 std::string OutName; 6093 llvm::raw_string_ostream Out(OutName); 6094 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6095 Out << Suffix; 6096 6097 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6098 } else { 6099 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6100 llvm::ArrayRef<llvm::Metadata *>()); 6101 } 6102 6103 return InternalId; 6104 } 6105 6106 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6107 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6108 } 6109 6110 llvm::Metadata * 6111 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6112 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6113 } 6114 6115 // Generalize pointer types to a void pointer with the qualifiers of the 6116 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6117 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6118 // 'void *'. 6119 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6120 if (!Ty->isPointerType()) 6121 return Ty; 6122 6123 return Ctx.getPointerType( 6124 QualType(Ctx.VoidTy).withCVRQualifiers( 6125 Ty->getPointeeType().getCVRQualifiers())); 6126 } 6127 6128 // Apply type generalization to a FunctionType's return and argument types 6129 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6130 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6131 SmallVector<QualType, 8> GeneralizedParams; 6132 for (auto &Param : FnType->param_types()) 6133 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6134 6135 return Ctx.getFunctionType( 6136 GeneralizeType(Ctx, FnType->getReturnType()), 6137 GeneralizedParams, FnType->getExtProtoInfo()); 6138 } 6139 6140 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6141 return Ctx.getFunctionNoProtoType( 6142 GeneralizeType(Ctx, FnType->getReturnType())); 6143 6144 llvm_unreachable("Encountered unknown FunctionType"); 6145 } 6146 6147 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6148 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6149 GeneralizedMetadataIdMap, ".generalized"); 6150 } 6151 6152 /// Returns whether this module needs the "all-vtables" type identifier. 6153 bool CodeGenModule::NeedAllVtablesTypeId() const { 6154 // Returns true if at least one of vtable-based CFI checkers is enabled and 6155 // is not in the trapping mode. 6156 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6157 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6158 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6159 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6160 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6161 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6162 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6163 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6164 } 6165 6166 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6167 CharUnits Offset, 6168 const CXXRecordDecl *RD) { 6169 llvm::Metadata *MD = 6170 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6171 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6172 6173 if (CodeGenOpts.SanitizeCfiCrossDso) 6174 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6175 VTable->addTypeMetadata(Offset.getQuantity(), 6176 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6177 6178 if (NeedAllVtablesTypeId()) { 6179 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6180 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6181 } 6182 } 6183 6184 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6185 if (!SanStats) 6186 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6187 6188 return *SanStats; 6189 } 6190 llvm::Value * 6191 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6192 CodeGenFunction &CGF) { 6193 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6194 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6195 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6196 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6197 "__translate_sampler_initializer"), 6198 {C}); 6199 } 6200 6201 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6202 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6203 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6204 /* forPointeeType= */ true); 6205 } 6206 6207 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6208 LValueBaseInfo *BaseInfo, 6209 TBAAAccessInfo *TBAAInfo, 6210 bool forPointeeType) { 6211 if (TBAAInfo) 6212 *TBAAInfo = getTBAAAccessInfo(T); 6213 6214 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6215 // that doesn't return the information we need to compute BaseInfo. 6216 6217 // Honor alignment typedef attributes even on incomplete types. 6218 // We also honor them straight for C++ class types, even as pointees; 6219 // there's an expressivity gap here. 6220 if (auto TT = T->getAs<TypedefType>()) { 6221 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6222 if (BaseInfo) 6223 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6224 return getContext().toCharUnitsFromBits(Align); 6225 } 6226 } 6227 6228 bool AlignForArray = T->isArrayType(); 6229 6230 // Analyze the base element type, so we don't get confused by incomplete 6231 // array types. 6232 T = getContext().getBaseElementType(T); 6233 6234 if (T->isIncompleteType()) { 6235 // We could try to replicate the logic from 6236 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6237 // type is incomplete, so it's impossible to test. We could try to reuse 6238 // getTypeAlignIfKnown, but that doesn't return the information we need 6239 // to set BaseInfo. So just ignore the possibility that the alignment is 6240 // greater than one. 6241 if (BaseInfo) 6242 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6243 return CharUnits::One(); 6244 } 6245 6246 if (BaseInfo) 6247 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6248 6249 CharUnits Alignment; 6250 const CXXRecordDecl *RD; 6251 if (T.getQualifiers().hasUnaligned()) { 6252 Alignment = CharUnits::One(); 6253 } else if (forPointeeType && !AlignForArray && 6254 (RD = T->getAsCXXRecordDecl())) { 6255 // For C++ class pointees, we don't know whether we're pointing at a 6256 // base or a complete object, so we generally need to use the 6257 // non-virtual alignment. 6258 Alignment = getClassPointerAlignment(RD); 6259 } else { 6260 Alignment = getContext().getTypeAlignInChars(T); 6261 } 6262 6263 // Cap to the global maximum type alignment unless the alignment 6264 // was somehow explicit on the type. 6265 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6266 if (Alignment.getQuantity() > MaxAlign && 6267 !getContext().isAlignmentRequired(T)) 6268 Alignment = CharUnits::fromQuantity(MaxAlign); 6269 } 6270 return Alignment; 6271 } 6272 6273 bool CodeGenModule::stopAutoInit() { 6274 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6275 if (StopAfter) { 6276 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6277 // used 6278 if (NumAutoVarInit >= StopAfter) { 6279 return true; 6280 } 6281 if (!NumAutoVarInit) { 6282 unsigned DiagID = getDiags().getCustomDiagID( 6283 DiagnosticsEngine::Warning, 6284 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6285 "number of times ftrivial-auto-var-init=%1 gets applied."); 6286 getDiags().Report(DiagID) 6287 << StopAfter 6288 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6289 LangOptions::TrivialAutoVarInitKind::Zero 6290 ? "zero" 6291 : "pattern"); 6292 } 6293 ++NumAutoVarInit; 6294 } 6295 return false; 6296 } 6297