1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. 106 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 107 TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(), 108 ABI.getMangleContext()); 109 110 // If debug info or coverage generation is enabled, create the CGDebugInfo 111 // object. 112 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 113 CodeGenOpts.EmitGcovNotes) 114 DebugInfo = new CGDebugInfo(*this); 115 116 Block.GlobalUniqueCount = 0; 117 118 if (C.getLangOpts().ObjCAutoRefCount) 119 ARCData = new ARCEntrypoints(); 120 RRData = new RREntrypoints(); 121 } 122 123 CodeGenModule::~CodeGenModule() { 124 delete ObjCRuntime; 125 delete OpenCLRuntime; 126 delete CUDARuntime; 127 delete TheTargetCodeGenInfo; 128 delete &ABI; 129 delete TBAA; 130 delete DebugInfo; 131 delete ARCData; 132 delete RRData; 133 } 134 135 void CodeGenModule::createObjCRuntime() { 136 if (!LangOpts.NeXTRuntime) 137 ObjCRuntime = CreateGNUObjCRuntime(*this); 138 else 139 ObjCRuntime = CreateMacObjCRuntime(*this); 140 } 141 142 void CodeGenModule::createOpenCLRuntime() { 143 OpenCLRuntime = new CGOpenCLRuntime(*this); 144 } 145 146 void CodeGenModule::createCUDARuntime() { 147 CUDARuntime = CreateNVCUDARuntime(*this); 148 } 149 150 void CodeGenModule::Release() { 151 EmitDeferred(); 152 EmitCXXGlobalInitFunc(); 153 EmitCXXGlobalDtorFunc(); 154 if (ObjCRuntime) 155 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 156 AddGlobalCtor(ObjCInitFunction); 157 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 158 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 159 EmitGlobalAnnotations(); 160 EmitLLVMUsed(); 161 162 SimplifyPersonality(); 163 164 if (getCodeGenOpts().EmitDeclMetadata) 165 EmitDeclMetadata(); 166 167 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 168 EmitCoverageFile(); 169 170 if (DebugInfo) 171 DebugInfo->finalize(); 172 } 173 174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 175 // Make sure that this type is translated. 176 Types.UpdateCompletedType(TD); 177 } 178 179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 180 if (!TBAA) 181 return 0; 182 return TBAA->getTBAAInfo(QTy); 183 } 184 185 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 186 llvm::MDNode *TBAAInfo) { 187 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 188 } 189 190 bool CodeGenModule::isTargetDarwin() const { 191 return getContext().getTargetInfo().getTriple().isOSDarwin(); 192 } 193 194 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 195 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 196 getDiags().Report(Context.getFullLoc(loc), diagID); 197 } 198 199 /// ErrorUnsupported - Print out an error that codegen doesn't support the 200 /// specified stmt yet. 201 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 202 bool OmitOnError) { 203 if (OmitOnError && getDiags().hasErrorOccurred()) 204 return; 205 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 206 "cannot compile this %0 yet"); 207 std::string Msg = Type; 208 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 209 << Msg << S->getSourceRange(); 210 } 211 212 /// ErrorUnsupported - Print out an error that codegen doesn't support the 213 /// specified decl yet. 214 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 215 bool OmitOnError) { 216 if (OmitOnError && getDiags().hasErrorOccurred()) 217 return; 218 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 219 "cannot compile this %0 yet"); 220 std::string Msg = Type; 221 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 222 } 223 224 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 225 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 226 } 227 228 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 229 const NamedDecl *D) const { 230 // Internal definitions always have default visibility. 231 if (GV->hasLocalLinkage()) { 232 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 233 return; 234 } 235 236 // Set visibility for definitions. 237 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 238 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 239 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 240 } 241 242 /// Set the symbol visibility of type information (vtable and RTTI) 243 /// associated with the given type. 244 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 245 const CXXRecordDecl *RD, 246 TypeVisibilityKind TVK) const { 247 setGlobalVisibility(GV, RD); 248 249 if (!CodeGenOpts.HiddenWeakVTables) 250 return; 251 252 // We never want to drop the visibility for RTTI names. 253 if (TVK == TVK_ForRTTIName) 254 return; 255 256 // We want to drop the visibility to hidden for weak type symbols. 257 // This isn't possible if there might be unresolved references 258 // elsewhere that rely on this symbol being visible. 259 260 // This should be kept roughly in sync with setThunkVisibility 261 // in CGVTables.cpp. 262 263 // Preconditions. 264 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 265 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 266 return; 267 268 // Don't override an explicit visibility attribute. 269 if (RD->getExplicitVisibility()) 270 return; 271 272 switch (RD->getTemplateSpecializationKind()) { 273 // We have to disable the optimization if this is an EI definition 274 // because there might be EI declarations in other shared objects. 275 case TSK_ExplicitInstantiationDefinition: 276 case TSK_ExplicitInstantiationDeclaration: 277 return; 278 279 // Every use of a non-template class's type information has to emit it. 280 case TSK_Undeclared: 281 break; 282 283 // In theory, implicit instantiations can ignore the possibility of 284 // an explicit instantiation declaration because there necessarily 285 // must be an EI definition somewhere with default visibility. In 286 // practice, it's possible to have an explicit instantiation for 287 // an arbitrary template class, and linkers aren't necessarily able 288 // to deal with mixed-visibility symbols. 289 case TSK_ExplicitSpecialization: 290 case TSK_ImplicitInstantiation: 291 if (!CodeGenOpts.HiddenWeakTemplateVTables) 292 return; 293 break; 294 } 295 296 // If there's a key function, there may be translation units 297 // that don't have the key function's definition. But ignore 298 // this if we're emitting RTTI under -fno-rtti. 299 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 300 if (Context.getKeyFunction(RD)) 301 return; 302 } 303 304 // Otherwise, drop the visibility to hidden. 305 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 306 GV->setUnnamedAddr(true); 307 } 308 309 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 310 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 311 312 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 313 if (!Str.empty()) 314 return Str; 315 316 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 317 IdentifierInfo *II = ND->getIdentifier(); 318 assert(II && "Attempt to mangle unnamed decl."); 319 320 Str = II->getName(); 321 return Str; 322 } 323 324 SmallString<256> Buffer; 325 llvm::raw_svector_ostream Out(Buffer); 326 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 327 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 328 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 329 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 330 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 331 getCXXABI().getMangleContext().mangleBlock(BD, Out); 332 else 333 getCXXABI().getMangleContext().mangleName(ND, Out); 334 335 // Allocate space for the mangled name. 336 Out.flush(); 337 size_t Length = Buffer.size(); 338 char *Name = MangledNamesAllocator.Allocate<char>(Length); 339 std::copy(Buffer.begin(), Buffer.end(), Name); 340 341 Str = StringRef(Name, Length); 342 343 return Str; 344 } 345 346 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 347 const BlockDecl *BD) { 348 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 349 const Decl *D = GD.getDecl(); 350 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 351 if (D == 0) 352 MangleCtx.mangleGlobalBlock(BD, Out); 353 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 354 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 355 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 356 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 357 else 358 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 359 } 360 361 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 362 return getModule().getNamedValue(Name); 363 } 364 365 /// AddGlobalCtor - Add a function to the list that will be called before 366 /// main() runs. 367 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 368 // FIXME: Type coercion of void()* types. 369 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 370 } 371 372 /// AddGlobalDtor - Add a function to the list that will be called 373 /// when the module is unloaded. 374 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 375 // FIXME: Type coercion of void()* types. 376 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 377 } 378 379 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 380 // Ctor function type is void()*. 381 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 382 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 383 384 // Get the type of a ctor entry, { i32, void ()* }. 385 llvm::StructType *CtorStructTy = 386 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 387 388 // Construct the constructor and destructor arrays. 389 SmallVector<llvm::Constant*, 8> Ctors; 390 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 391 llvm::Constant *S[] = { 392 llvm::ConstantInt::get(Int32Ty, I->second, false), 393 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 394 }; 395 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 396 } 397 398 if (!Ctors.empty()) { 399 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 400 new llvm::GlobalVariable(TheModule, AT, false, 401 llvm::GlobalValue::AppendingLinkage, 402 llvm::ConstantArray::get(AT, Ctors), 403 GlobalName); 404 } 405 } 406 407 llvm::GlobalValue::LinkageTypes 408 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 409 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 410 411 if (Linkage == GVA_Internal) 412 return llvm::Function::InternalLinkage; 413 414 if (D->hasAttr<DLLExportAttr>()) 415 return llvm::Function::DLLExportLinkage; 416 417 if (D->hasAttr<WeakAttr>()) 418 return llvm::Function::WeakAnyLinkage; 419 420 // In C99 mode, 'inline' functions are guaranteed to have a strong 421 // definition somewhere else, so we can use available_externally linkage. 422 if (Linkage == GVA_C99Inline) 423 return llvm::Function::AvailableExternallyLinkage; 424 425 // Note that Apple's kernel linker doesn't support symbol 426 // coalescing, so we need to avoid linkonce and weak linkages there. 427 // Normally, this means we just map to internal, but for explicit 428 // instantiations we'll map to external. 429 430 // In C++, the compiler has to emit a definition in every translation unit 431 // that references the function. We should use linkonce_odr because 432 // a) if all references in this translation unit are optimized away, we 433 // don't need to codegen it. b) if the function persists, it needs to be 434 // merged with other definitions. c) C++ has the ODR, so we know the 435 // definition is dependable. 436 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 437 return !Context.getLangOpts().AppleKext 438 ? llvm::Function::LinkOnceODRLinkage 439 : llvm::Function::InternalLinkage; 440 441 // An explicit instantiation of a template has weak linkage, since 442 // explicit instantiations can occur in multiple translation units 443 // and must all be equivalent. However, we are not allowed to 444 // throw away these explicit instantiations. 445 if (Linkage == GVA_ExplicitTemplateInstantiation) 446 return !Context.getLangOpts().AppleKext 447 ? llvm::Function::WeakODRLinkage 448 : llvm::Function::ExternalLinkage; 449 450 // Otherwise, we have strong external linkage. 451 assert(Linkage == GVA_StrongExternal); 452 return llvm::Function::ExternalLinkage; 453 } 454 455 456 /// SetFunctionDefinitionAttributes - Set attributes for a global. 457 /// 458 /// FIXME: This is currently only done for aliases and functions, but not for 459 /// variables (these details are set in EmitGlobalVarDefinition for variables). 460 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 461 llvm::GlobalValue *GV) { 462 SetCommonAttributes(D, GV); 463 } 464 465 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 466 const CGFunctionInfo &Info, 467 llvm::Function *F) { 468 unsigned CallingConv; 469 AttributeListType AttributeList; 470 ConstructAttributeList(Info, D, AttributeList, CallingConv); 471 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 472 AttributeList.size())); 473 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 474 } 475 476 /// Determines whether the language options require us to model 477 /// unwind exceptions. We treat -fexceptions as mandating this 478 /// except under the fragile ObjC ABI with only ObjC exceptions 479 /// enabled. This means, for example, that C with -fexceptions 480 /// enables this. 481 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 482 // If exceptions are completely disabled, obviously this is false. 483 if (!LangOpts.Exceptions) return false; 484 485 // If C++ exceptions are enabled, this is true. 486 if (LangOpts.CXXExceptions) return true; 487 488 // If ObjC exceptions are enabled, this depends on the ABI. 489 if (LangOpts.ObjCExceptions) { 490 if (!LangOpts.ObjCNonFragileABI) return false; 491 } 492 493 return true; 494 } 495 496 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 497 llvm::Function *F) { 498 if (CodeGenOpts.UnwindTables) 499 F->setHasUWTable(); 500 501 if (!hasUnwindExceptions(LangOpts)) 502 F->addFnAttr(llvm::Attribute::NoUnwind); 503 504 if (D->hasAttr<NakedAttr>()) { 505 // Naked implies noinline: we should not be inlining such functions. 506 F->addFnAttr(llvm::Attribute::Naked); 507 F->addFnAttr(llvm::Attribute::NoInline); 508 } 509 510 if (D->hasAttr<NoInlineAttr>()) 511 F->addFnAttr(llvm::Attribute::NoInline); 512 513 // (noinline wins over always_inline, and we can't specify both in IR) 514 if (D->hasAttr<AlwaysInlineAttr>() && 515 !F->hasFnAttr(llvm::Attribute::NoInline)) 516 F->addFnAttr(llvm::Attribute::AlwaysInline); 517 518 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 519 F->setUnnamedAddr(true); 520 521 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 522 F->addFnAttr(llvm::Attribute::StackProtect); 523 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 524 F->addFnAttr(llvm::Attribute::StackProtectReq); 525 526 if (LangOpts.AddressSanitizer) { 527 // When AddressSanitizer is enabled, set AddressSafety attribute 528 // unless __attribute__((no_address_safety_analysis)) is used. 529 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 530 F->addFnAttr(llvm::Attribute::AddressSafety); 531 } 532 533 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 534 if (alignment) 535 F->setAlignment(alignment); 536 537 // C++ ABI requires 2-byte alignment for member functions. 538 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 539 F->setAlignment(2); 540 } 541 542 void CodeGenModule::SetCommonAttributes(const Decl *D, 543 llvm::GlobalValue *GV) { 544 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 545 setGlobalVisibility(GV, ND); 546 else 547 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 548 549 if (D->hasAttr<UsedAttr>()) 550 AddUsedGlobal(GV); 551 552 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 553 GV->setSection(SA->getName()); 554 555 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 556 } 557 558 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 559 llvm::Function *F, 560 const CGFunctionInfo &FI) { 561 SetLLVMFunctionAttributes(D, FI, F); 562 SetLLVMFunctionAttributesForDefinition(D, F); 563 564 F->setLinkage(llvm::Function::InternalLinkage); 565 566 SetCommonAttributes(D, F); 567 } 568 569 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 570 llvm::Function *F, 571 bool IsIncompleteFunction) { 572 if (unsigned IID = F->getIntrinsicID()) { 573 // If this is an intrinsic function, set the function's attributes 574 // to the intrinsic's attributes. 575 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 576 return; 577 } 578 579 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 580 581 if (!IsIncompleteFunction) 582 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 583 584 // Only a few attributes are set on declarations; these may later be 585 // overridden by a definition. 586 587 if (FD->hasAttr<DLLImportAttr>()) { 588 F->setLinkage(llvm::Function::DLLImportLinkage); 589 } else if (FD->hasAttr<WeakAttr>() || 590 FD->isWeakImported()) { 591 // "extern_weak" is overloaded in LLVM; we probably should have 592 // separate linkage types for this. 593 F->setLinkage(llvm::Function::ExternalWeakLinkage); 594 } else { 595 F->setLinkage(llvm::Function::ExternalLinkage); 596 597 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 598 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 599 F->setVisibility(GetLLVMVisibility(LV.visibility())); 600 } 601 } 602 603 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 604 F->setSection(SA->getName()); 605 } 606 607 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 608 assert(!GV->isDeclaration() && 609 "Only globals with definition can force usage."); 610 LLVMUsed.push_back(GV); 611 } 612 613 void CodeGenModule::EmitLLVMUsed() { 614 // Don't create llvm.used if there is no need. 615 if (LLVMUsed.empty()) 616 return; 617 618 // Convert LLVMUsed to what ConstantArray needs. 619 SmallVector<llvm::Constant*, 8> UsedArray; 620 UsedArray.resize(LLVMUsed.size()); 621 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 622 UsedArray[i] = 623 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 624 Int8PtrTy); 625 } 626 627 if (UsedArray.empty()) 628 return; 629 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 630 631 llvm::GlobalVariable *GV = 632 new llvm::GlobalVariable(getModule(), ATy, false, 633 llvm::GlobalValue::AppendingLinkage, 634 llvm::ConstantArray::get(ATy, UsedArray), 635 "llvm.used"); 636 637 GV->setSection("llvm.metadata"); 638 } 639 640 void CodeGenModule::EmitDeferred() { 641 // Emit code for any potentially referenced deferred decls. Since a 642 // previously unused static decl may become used during the generation of code 643 // for a static function, iterate until no changes are made. 644 645 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 646 if (!DeferredVTables.empty()) { 647 const CXXRecordDecl *RD = DeferredVTables.back(); 648 DeferredVTables.pop_back(); 649 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 650 continue; 651 } 652 653 GlobalDecl D = DeferredDeclsToEmit.back(); 654 DeferredDeclsToEmit.pop_back(); 655 656 // Check to see if we've already emitted this. This is necessary 657 // for a couple of reasons: first, decls can end up in the 658 // deferred-decls queue multiple times, and second, decls can end 659 // up with definitions in unusual ways (e.g. by an extern inline 660 // function acquiring a strong function redefinition). Just 661 // ignore these cases. 662 // 663 // TODO: That said, looking this up multiple times is very wasteful. 664 StringRef Name = getMangledName(D); 665 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 666 assert(CGRef && "Deferred decl wasn't referenced?"); 667 668 if (!CGRef->isDeclaration()) 669 continue; 670 671 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 672 // purposes an alias counts as a definition. 673 if (isa<llvm::GlobalAlias>(CGRef)) 674 continue; 675 676 // Otherwise, emit the definition and move on to the next one. 677 EmitGlobalDefinition(D); 678 } 679 } 680 681 void CodeGenModule::EmitGlobalAnnotations() { 682 if (Annotations.empty()) 683 return; 684 685 // Create a new global variable for the ConstantStruct in the Module. 686 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 687 Annotations[0]->getType(), Annotations.size()), Annotations); 688 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 689 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 690 "llvm.global.annotations"); 691 gv->setSection(AnnotationSection); 692 } 693 694 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 695 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 696 if (i != AnnotationStrings.end()) 697 return i->second; 698 699 // Not found yet, create a new global. 700 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 701 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 702 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 703 gv->setSection(AnnotationSection); 704 gv->setUnnamedAddr(true); 705 AnnotationStrings[Str] = gv; 706 return gv; 707 } 708 709 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 710 SourceManager &SM = getContext().getSourceManager(); 711 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 712 if (PLoc.isValid()) 713 return EmitAnnotationString(PLoc.getFilename()); 714 return EmitAnnotationString(SM.getBufferName(Loc)); 715 } 716 717 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 718 SourceManager &SM = getContext().getSourceManager(); 719 PresumedLoc PLoc = SM.getPresumedLoc(L); 720 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 721 SM.getExpansionLineNumber(L); 722 return llvm::ConstantInt::get(Int32Ty, LineNo); 723 } 724 725 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 726 const AnnotateAttr *AA, 727 SourceLocation L) { 728 // Get the globals for file name, annotation, and the line number. 729 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 730 *UnitGV = EmitAnnotationUnit(L), 731 *LineNoCst = EmitAnnotationLineNo(L); 732 733 // Create the ConstantStruct for the global annotation. 734 llvm::Constant *Fields[4] = { 735 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 736 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 737 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 738 LineNoCst 739 }; 740 return llvm::ConstantStruct::getAnon(Fields); 741 } 742 743 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 744 llvm::GlobalValue *GV) { 745 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 746 // Get the struct elements for these annotations. 747 for (specific_attr_iterator<AnnotateAttr> 748 ai = D->specific_attr_begin<AnnotateAttr>(), 749 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 750 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 751 } 752 753 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 754 // Never defer when EmitAllDecls is specified. 755 if (LangOpts.EmitAllDecls) 756 return false; 757 758 return !getContext().DeclMustBeEmitted(Global); 759 } 760 761 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 762 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 763 assert(AA && "No alias?"); 764 765 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 766 767 // See if there is already something with the target's name in the module. 768 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 769 770 llvm::Constant *Aliasee; 771 if (isa<llvm::FunctionType>(DeclTy)) 772 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 773 /*ForVTable=*/false); 774 else 775 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 776 llvm::PointerType::getUnqual(DeclTy), 0); 777 if (!Entry) { 778 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 779 F->setLinkage(llvm::Function::ExternalWeakLinkage); 780 WeakRefReferences.insert(F); 781 } 782 783 return Aliasee; 784 } 785 786 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 787 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 788 789 // Weak references don't produce any output by themselves. 790 if (Global->hasAttr<WeakRefAttr>()) 791 return; 792 793 // If this is an alias definition (which otherwise looks like a declaration) 794 // emit it now. 795 if (Global->hasAttr<AliasAttr>()) 796 return EmitAliasDefinition(GD); 797 798 // If this is CUDA, be selective about which declarations we emit. 799 if (LangOpts.CUDA) { 800 if (CodeGenOpts.CUDAIsDevice) { 801 if (!Global->hasAttr<CUDADeviceAttr>() && 802 !Global->hasAttr<CUDAGlobalAttr>() && 803 !Global->hasAttr<CUDAConstantAttr>() && 804 !Global->hasAttr<CUDASharedAttr>()) 805 return; 806 } else { 807 if (!Global->hasAttr<CUDAHostAttr>() && ( 808 Global->hasAttr<CUDADeviceAttr>() || 809 Global->hasAttr<CUDAConstantAttr>() || 810 Global->hasAttr<CUDASharedAttr>())) 811 return; 812 } 813 } 814 815 // Ignore declarations, they will be emitted on their first use. 816 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 817 // Forward declarations are emitted lazily on first use. 818 if (!FD->doesThisDeclarationHaveABody()) { 819 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 820 return; 821 822 const FunctionDecl *InlineDefinition = 0; 823 FD->getBody(InlineDefinition); 824 825 StringRef MangledName = getMangledName(GD); 826 DeferredDecls.erase(MangledName); 827 EmitGlobalDefinition(InlineDefinition); 828 return; 829 } 830 } else { 831 const VarDecl *VD = cast<VarDecl>(Global); 832 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 833 834 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 835 return; 836 } 837 838 // Defer code generation when possible if this is a static definition, inline 839 // function etc. These we only want to emit if they are used. 840 if (!MayDeferGeneration(Global)) { 841 // Emit the definition if it can't be deferred. 842 EmitGlobalDefinition(GD); 843 return; 844 } 845 846 // If we're deferring emission of a C++ variable with an 847 // initializer, remember the order in which it appeared in the file. 848 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 849 cast<VarDecl>(Global)->hasInit()) { 850 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 851 CXXGlobalInits.push_back(0); 852 } 853 854 // If the value has already been used, add it directly to the 855 // DeferredDeclsToEmit list. 856 StringRef MangledName = getMangledName(GD); 857 if (GetGlobalValue(MangledName)) 858 DeferredDeclsToEmit.push_back(GD); 859 else { 860 // Otherwise, remember that we saw a deferred decl with this name. The 861 // first use of the mangled name will cause it to move into 862 // DeferredDeclsToEmit. 863 DeferredDecls[MangledName] = GD; 864 } 865 } 866 867 namespace { 868 struct FunctionIsDirectlyRecursive : 869 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 870 const StringRef Name; 871 const Builtin::Context &BI; 872 bool Result; 873 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 874 Name(N), BI(C), Result(false) { 875 } 876 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 877 878 bool TraverseCallExpr(CallExpr *E) { 879 const FunctionDecl *FD = E->getDirectCallee(); 880 if (!FD) 881 return true; 882 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 883 if (Attr && Name == Attr->getLabel()) { 884 Result = true; 885 return false; 886 } 887 unsigned BuiltinID = FD->getBuiltinID(); 888 if (!BuiltinID) 889 return true; 890 StringRef BuiltinName = BI.GetName(BuiltinID); 891 if (BuiltinName.startswith("__builtin_") && 892 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 893 Result = true; 894 return false; 895 } 896 return true; 897 } 898 }; 899 } 900 901 // isTriviallyRecursive - Check if this function calls another 902 // decl that, because of the asm attribute or the other decl being a builtin, 903 // ends up pointing to itself. 904 bool 905 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 906 StringRef Name; 907 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 908 // asm labels are a special kind of mangling we have to support. 909 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 910 if (!Attr) 911 return false; 912 Name = Attr->getLabel(); 913 } else { 914 Name = FD->getName(); 915 } 916 917 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 918 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 919 return Walker.Result; 920 } 921 922 bool 923 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 924 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 925 return true; 926 if (CodeGenOpts.OptimizationLevel == 0 && 927 !F->hasAttr<AlwaysInlineAttr>()) 928 return false; 929 // PR9614. Avoid cases where the source code is lying to us. An available 930 // externally function should have an equivalent function somewhere else, 931 // but a function that calls itself is clearly not equivalent to the real 932 // implementation. 933 // This happens in glibc's btowc and in some configure checks. 934 return !isTriviallyRecursive(F); 935 } 936 937 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 938 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 939 940 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 941 Context.getSourceManager(), 942 "Generating code for declaration"); 943 944 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 945 // At -O0, don't generate IR for functions with available_externally 946 // linkage. 947 if (!shouldEmitFunction(Function)) 948 return; 949 950 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 951 // Make sure to emit the definition(s) before we emit the thunks. 952 // This is necessary for the generation of certain thunks. 953 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 954 EmitCXXConstructor(CD, GD.getCtorType()); 955 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 956 EmitCXXDestructor(DD, GD.getDtorType()); 957 else 958 EmitGlobalFunctionDefinition(GD); 959 960 if (Method->isVirtual()) 961 getVTables().EmitThunks(GD); 962 963 return; 964 } 965 966 return EmitGlobalFunctionDefinition(GD); 967 } 968 969 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 970 return EmitGlobalVarDefinition(VD); 971 972 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 973 } 974 975 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 976 /// module, create and return an llvm Function with the specified type. If there 977 /// is something in the module with the specified name, return it potentially 978 /// bitcasted to the right type. 979 /// 980 /// If D is non-null, it specifies a decl that correspond to this. This is used 981 /// to set the attributes on the function when it is first created. 982 llvm::Constant * 983 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 984 llvm::Type *Ty, 985 GlobalDecl D, bool ForVTable, 986 llvm::Attributes ExtraAttrs) { 987 // Lookup the entry, lazily creating it if necessary. 988 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 989 if (Entry) { 990 if (WeakRefReferences.count(Entry)) { 991 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 992 if (FD && !FD->hasAttr<WeakAttr>()) 993 Entry->setLinkage(llvm::Function::ExternalLinkage); 994 995 WeakRefReferences.erase(Entry); 996 } 997 998 if (Entry->getType()->getElementType() == Ty) 999 return Entry; 1000 1001 // Make sure the result is of the correct type. 1002 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1003 } 1004 1005 // This function doesn't have a complete type (for example, the return 1006 // type is an incomplete struct). Use a fake type instead, and make 1007 // sure not to try to set attributes. 1008 bool IsIncompleteFunction = false; 1009 1010 llvm::FunctionType *FTy; 1011 if (isa<llvm::FunctionType>(Ty)) { 1012 FTy = cast<llvm::FunctionType>(Ty); 1013 } else { 1014 FTy = llvm::FunctionType::get(VoidTy, false); 1015 IsIncompleteFunction = true; 1016 } 1017 1018 llvm::Function *F = llvm::Function::Create(FTy, 1019 llvm::Function::ExternalLinkage, 1020 MangledName, &getModule()); 1021 assert(F->getName() == MangledName && "name was uniqued!"); 1022 if (D.getDecl()) 1023 SetFunctionAttributes(D, F, IsIncompleteFunction); 1024 if (ExtraAttrs != llvm::Attribute::None) 1025 F->addFnAttr(ExtraAttrs); 1026 1027 // This is the first use or definition of a mangled name. If there is a 1028 // deferred decl with this name, remember that we need to emit it at the end 1029 // of the file. 1030 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1031 if (DDI != DeferredDecls.end()) { 1032 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1033 // list, and remove it from DeferredDecls (since we don't need it anymore). 1034 DeferredDeclsToEmit.push_back(DDI->second); 1035 DeferredDecls.erase(DDI); 1036 1037 // Otherwise, there are cases we have to worry about where we're 1038 // using a declaration for which we must emit a definition but where 1039 // we might not find a top-level definition: 1040 // - member functions defined inline in their classes 1041 // - friend functions defined inline in some class 1042 // - special member functions with implicit definitions 1043 // If we ever change our AST traversal to walk into class methods, 1044 // this will be unnecessary. 1045 // 1046 // We also don't emit a definition for a function if it's going to be an entry 1047 // in a vtable, unless it's already marked as used. 1048 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1049 // Look for a declaration that's lexically in a record. 1050 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1051 do { 1052 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1053 if (FD->isImplicit() && !ForVTable) { 1054 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1055 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1056 break; 1057 } else if (FD->doesThisDeclarationHaveABody()) { 1058 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1059 break; 1060 } 1061 } 1062 FD = FD->getPreviousDecl(); 1063 } while (FD); 1064 } 1065 1066 // Make sure the result is of the requested type. 1067 if (!IsIncompleteFunction) { 1068 assert(F->getType()->getElementType() == Ty); 1069 return F; 1070 } 1071 1072 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1073 return llvm::ConstantExpr::getBitCast(F, PTy); 1074 } 1075 1076 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1077 /// non-null, then this function will use the specified type if it has to 1078 /// create it (this occurs when we see a definition of the function). 1079 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1080 llvm::Type *Ty, 1081 bool ForVTable) { 1082 // If there was no specific requested type, just convert it now. 1083 if (!Ty) 1084 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1085 1086 StringRef MangledName = getMangledName(GD); 1087 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1088 } 1089 1090 /// CreateRuntimeFunction - Create a new runtime function with the specified 1091 /// type and name. 1092 llvm::Constant * 1093 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1094 StringRef Name, 1095 llvm::Attributes ExtraAttrs) { 1096 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1097 ExtraAttrs); 1098 } 1099 1100 /// isTypeConstant - Determine whether an object of this type can be emitted 1101 /// as a constant. 1102 /// 1103 /// If ExcludeCtor is true, the duration when the object's constructor runs 1104 /// will not be considered. The caller will need to verify that the object is 1105 /// not written to during its construction. 1106 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1107 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1108 return false; 1109 1110 if (Context.getLangOpts().CPlusPlus) { 1111 if (const CXXRecordDecl *Record 1112 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1113 return ExcludeCtor && !Record->hasMutableFields() && 1114 Record->hasTrivialDestructor(); 1115 } 1116 1117 return true; 1118 } 1119 1120 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1121 /// create and return an llvm GlobalVariable with the specified type. If there 1122 /// is something in the module with the specified name, return it potentially 1123 /// bitcasted to the right type. 1124 /// 1125 /// If D is non-null, it specifies a decl that correspond to this. This is used 1126 /// to set the attributes on the global when it is first created. 1127 llvm::Constant * 1128 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1129 llvm::PointerType *Ty, 1130 const VarDecl *D, 1131 bool UnnamedAddr) { 1132 // Lookup the entry, lazily creating it if necessary. 1133 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1134 if (Entry) { 1135 if (WeakRefReferences.count(Entry)) { 1136 if (D && !D->hasAttr<WeakAttr>()) 1137 Entry->setLinkage(llvm::Function::ExternalLinkage); 1138 1139 WeakRefReferences.erase(Entry); 1140 } 1141 1142 if (UnnamedAddr) 1143 Entry->setUnnamedAddr(true); 1144 1145 if (Entry->getType() == Ty) 1146 return Entry; 1147 1148 // Make sure the result is of the correct type. 1149 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1150 } 1151 1152 // This is the first use or definition of a mangled name. If there is a 1153 // deferred decl with this name, remember that we need to emit it at the end 1154 // of the file. 1155 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1156 if (DDI != DeferredDecls.end()) { 1157 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1158 // list, and remove it from DeferredDecls (since we don't need it anymore). 1159 DeferredDeclsToEmit.push_back(DDI->second); 1160 DeferredDecls.erase(DDI); 1161 } 1162 1163 llvm::GlobalVariable *GV = 1164 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1165 llvm::GlobalValue::ExternalLinkage, 1166 0, MangledName, 0, 1167 false, Ty->getAddressSpace()); 1168 1169 // Handle things which are present even on external declarations. 1170 if (D) { 1171 // FIXME: This code is overly simple and should be merged with other global 1172 // handling. 1173 GV->setConstant(isTypeConstant(D->getType(), false)); 1174 1175 // Set linkage and visibility in case we never see a definition. 1176 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1177 if (LV.linkage() != ExternalLinkage) { 1178 // Don't set internal linkage on declarations. 1179 } else { 1180 if (D->hasAttr<DLLImportAttr>()) 1181 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1182 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1183 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1184 1185 // Set visibility on a declaration only if it's explicit. 1186 if (LV.visibilityExplicit()) 1187 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1188 } 1189 1190 GV->setThreadLocal(D->isThreadSpecified()); 1191 } 1192 1193 return GV; 1194 } 1195 1196 1197 llvm::GlobalVariable * 1198 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1199 llvm::Type *Ty, 1200 llvm::GlobalValue::LinkageTypes Linkage) { 1201 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1202 llvm::GlobalVariable *OldGV = 0; 1203 1204 1205 if (GV) { 1206 // Check if the variable has the right type. 1207 if (GV->getType()->getElementType() == Ty) 1208 return GV; 1209 1210 // Because C++ name mangling, the only way we can end up with an already 1211 // existing global with the same name is if it has been declared extern "C". 1212 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1213 OldGV = GV; 1214 } 1215 1216 // Create a new variable. 1217 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1218 Linkage, 0, Name); 1219 1220 if (OldGV) { 1221 // Replace occurrences of the old variable if needed. 1222 GV->takeName(OldGV); 1223 1224 if (!OldGV->use_empty()) { 1225 llvm::Constant *NewPtrForOldDecl = 1226 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1227 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1228 } 1229 1230 OldGV->eraseFromParent(); 1231 } 1232 1233 return GV; 1234 } 1235 1236 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1237 /// given global variable. If Ty is non-null and if the global doesn't exist, 1238 /// then it will be greated with the specified type instead of whatever the 1239 /// normal requested type would be. 1240 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1241 llvm::Type *Ty) { 1242 assert(D->hasGlobalStorage() && "Not a global variable"); 1243 QualType ASTTy = D->getType(); 1244 if (Ty == 0) 1245 Ty = getTypes().ConvertTypeForMem(ASTTy); 1246 1247 llvm::PointerType *PTy = 1248 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1249 1250 StringRef MangledName = getMangledName(D); 1251 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1252 } 1253 1254 /// CreateRuntimeVariable - Create a new runtime global variable with the 1255 /// specified type and name. 1256 llvm::Constant * 1257 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1258 StringRef Name) { 1259 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1260 true); 1261 } 1262 1263 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1264 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1265 1266 if (MayDeferGeneration(D)) { 1267 // If we have not seen a reference to this variable yet, place it 1268 // into the deferred declarations table to be emitted if needed 1269 // later. 1270 StringRef MangledName = getMangledName(D); 1271 if (!GetGlobalValue(MangledName)) { 1272 DeferredDecls[MangledName] = D; 1273 return; 1274 } 1275 } 1276 1277 // The tentative definition is the only definition. 1278 EmitGlobalVarDefinition(D); 1279 } 1280 1281 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1282 if (DefinitionRequired) 1283 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1284 } 1285 1286 llvm::GlobalVariable::LinkageTypes 1287 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1288 if (RD->getLinkage() != ExternalLinkage) 1289 return llvm::GlobalVariable::InternalLinkage; 1290 1291 if (const CXXMethodDecl *KeyFunction 1292 = RD->getASTContext().getKeyFunction(RD)) { 1293 // If this class has a key function, use that to determine the linkage of 1294 // the vtable. 1295 const FunctionDecl *Def = 0; 1296 if (KeyFunction->hasBody(Def)) 1297 KeyFunction = cast<CXXMethodDecl>(Def); 1298 1299 switch (KeyFunction->getTemplateSpecializationKind()) { 1300 case TSK_Undeclared: 1301 case TSK_ExplicitSpecialization: 1302 // When compiling with optimizations turned on, we emit all vtables, 1303 // even if the key function is not defined in the current translation 1304 // unit. If this is the case, use available_externally linkage. 1305 if (!Def && CodeGenOpts.OptimizationLevel) 1306 return llvm::GlobalVariable::AvailableExternallyLinkage; 1307 1308 if (KeyFunction->isInlined()) 1309 return !Context.getLangOpts().AppleKext ? 1310 llvm::GlobalVariable::LinkOnceODRLinkage : 1311 llvm::Function::InternalLinkage; 1312 1313 return llvm::GlobalVariable::ExternalLinkage; 1314 1315 case TSK_ImplicitInstantiation: 1316 return !Context.getLangOpts().AppleKext ? 1317 llvm::GlobalVariable::LinkOnceODRLinkage : 1318 llvm::Function::InternalLinkage; 1319 1320 case TSK_ExplicitInstantiationDefinition: 1321 return !Context.getLangOpts().AppleKext ? 1322 llvm::GlobalVariable::WeakODRLinkage : 1323 llvm::Function::InternalLinkage; 1324 1325 case TSK_ExplicitInstantiationDeclaration: 1326 // FIXME: Use available_externally linkage. However, this currently 1327 // breaks LLVM's build due to undefined symbols. 1328 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1329 return !Context.getLangOpts().AppleKext ? 1330 llvm::GlobalVariable::LinkOnceODRLinkage : 1331 llvm::Function::InternalLinkage; 1332 } 1333 } 1334 1335 if (Context.getLangOpts().AppleKext) 1336 return llvm::Function::InternalLinkage; 1337 1338 switch (RD->getTemplateSpecializationKind()) { 1339 case TSK_Undeclared: 1340 case TSK_ExplicitSpecialization: 1341 case TSK_ImplicitInstantiation: 1342 // FIXME: Use available_externally linkage. However, this currently 1343 // breaks LLVM's build due to undefined symbols. 1344 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1345 case TSK_ExplicitInstantiationDeclaration: 1346 return llvm::GlobalVariable::LinkOnceODRLinkage; 1347 1348 case TSK_ExplicitInstantiationDefinition: 1349 return llvm::GlobalVariable::WeakODRLinkage; 1350 } 1351 1352 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1353 } 1354 1355 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1356 return Context.toCharUnitsFromBits( 1357 TheTargetData.getTypeStoreSizeInBits(Ty)); 1358 } 1359 1360 llvm::Constant * 1361 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1362 const Expr *rawInit) { 1363 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1364 if (const ExprWithCleanups *withCleanups = 1365 dyn_cast<ExprWithCleanups>(rawInit)) { 1366 cleanups = withCleanups->getObjects(); 1367 rawInit = withCleanups->getSubExpr(); 1368 } 1369 1370 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1371 if (!init || !init->initializesStdInitializerList() || 1372 init->getNumInits() == 0) 1373 return 0; 1374 1375 ASTContext &ctx = getContext(); 1376 unsigned numInits = init->getNumInits(); 1377 // FIXME: This check is here because we would otherwise silently miscompile 1378 // nested global std::initializer_lists. Better would be to have a real 1379 // implementation. 1380 for (unsigned i = 0; i < numInits; ++i) { 1381 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1382 if (inner && inner->initializesStdInitializerList()) { 1383 ErrorUnsupported(inner, "nested global std::initializer_list"); 1384 return 0; 1385 } 1386 } 1387 1388 // Synthesize a fake VarDecl for the array and initialize that. 1389 QualType elementType = init->getInit(0)->getType(); 1390 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1391 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1392 ArrayType::Normal, 0); 1393 1394 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1395 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1396 arrayType, D->getLocation()); 1397 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1398 D->getDeclContext()), 1399 D->getLocStart(), D->getLocation(), 1400 name, arrayType, sourceInfo, 1401 SC_Static, SC_Static); 1402 1403 // Now clone the InitListExpr to initialize the array instead. 1404 // Incredible hack: we want to use the existing InitListExpr here, so we need 1405 // to tell it that it no longer initializes a std::initializer_list. 1406 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1407 const_cast<InitListExpr*>(init)->getInits(), 1408 init->getNumInits(), 1409 init->getRBraceLoc()); 1410 arrayInit->setType(arrayType); 1411 1412 if (!cleanups.empty()) 1413 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1414 1415 backingArray->setInit(arrayInit); 1416 1417 // Emit the definition of the array. 1418 EmitGlobalVarDefinition(backingArray); 1419 1420 // Inspect the initializer list to validate it and determine its type. 1421 // FIXME: doing this every time is probably inefficient; caching would be nice 1422 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1423 RecordDecl::field_iterator field = record->field_begin(); 1424 if (field == record->field_end()) { 1425 ErrorUnsupported(D, "weird std::initializer_list"); 1426 return 0; 1427 } 1428 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1429 // Start pointer. 1430 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1431 ErrorUnsupported(D, "weird std::initializer_list"); 1432 return 0; 1433 } 1434 ++field; 1435 if (field == record->field_end()) { 1436 ErrorUnsupported(D, "weird std::initializer_list"); 1437 return 0; 1438 } 1439 bool isStartEnd = false; 1440 if (ctx.hasSameType(field->getType(), elementPtr)) { 1441 // End pointer. 1442 isStartEnd = true; 1443 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1444 ErrorUnsupported(D, "weird std::initializer_list"); 1445 return 0; 1446 } 1447 1448 // Now build an APValue representing the std::initializer_list. 1449 APValue initListValue(APValue::UninitStruct(), 0, 2); 1450 APValue &startField = initListValue.getStructField(0); 1451 APValue::LValuePathEntry startOffsetPathEntry; 1452 startOffsetPathEntry.ArrayIndex = 0; 1453 startField = APValue(APValue::LValueBase(backingArray), 1454 CharUnits::fromQuantity(0), 1455 llvm::makeArrayRef(startOffsetPathEntry), 1456 /*IsOnePastTheEnd=*/false, 0); 1457 1458 if (isStartEnd) { 1459 APValue &endField = initListValue.getStructField(1); 1460 APValue::LValuePathEntry endOffsetPathEntry; 1461 endOffsetPathEntry.ArrayIndex = numInits; 1462 endField = APValue(APValue::LValueBase(backingArray), 1463 ctx.getTypeSizeInChars(elementType) * numInits, 1464 llvm::makeArrayRef(endOffsetPathEntry), 1465 /*IsOnePastTheEnd=*/true, 0); 1466 } else { 1467 APValue &sizeField = initListValue.getStructField(1); 1468 sizeField = APValue(llvm::APSInt(numElements)); 1469 } 1470 1471 // Emit the constant for the initializer_list. 1472 llvm::Constant *llvmInit = 1473 EmitConstantValueForMemory(initListValue, D->getType()); 1474 assert(llvmInit && "failed to initialize as constant"); 1475 return llvmInit; 1476 } 1477 1478 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1479 llvm::Constant *Init = 0; 1480 QualType ASTTy = D->getType(); 1481 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1482 bool NeedsGlobalCtor = false; 1483 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1484 1485 const VarDecl *InitDecl; 1486 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1487 1488 if (!InitExpr) { 1489 // This is a tentative definition; tentative definitions are 1490 // implicitly initialized with { 0 }. 1491 // 1492 // Note that tentative definitions are only emitted at the end of 1493 // a translation unit, so they should never have incomplete 1494 // type. In addition, EmitTentativeDefinition makes sure that we 1495 // never attempt to emit a tentative definition if a real one 1496 // exists. A use may still exists, however, so we still may need 1497 // to do a RAUW. 1498 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1499 Init = EmitNullConstant(D->getType()); 1500 } else { 1501 // If this is a std::initializer_list, emit the special initializer. 1502 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1503 // An empty init list will perform zero-initialization, which happens 1504 // to be exactly what we want. 1505 // FIXME: It does so in a global constructor, which is *not* what we 1506 // want. 1507 1508 if (!Init) 1509 Init = EmitConstantInit(*InitDecl); 1510 if (!Init) { 1511 QualType T = InitExpr->getType(); 1512 if (D->getType()->isReferenceType()) 1513 T = D->getType(); 1514 1515 if (getLangOpts().CPlusPlus) { 1516 Init = EmitNullConstant(T); 1517 NeedsGlobalCtor = true; 1518 } else { 1519 ErrorUnsupported(D, "static initializer"); 1520 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1521 } 1522 } else { 1523 // We don't need an initializer, so remove the entry for the delayed 1524 // initializer position (just in case this entry was delayed) if we 1525 // also don't need to register a destructor. 1526 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1527 DelayedCXXInitPosition.erase(D); 1528 } 1529 } 1530 1531 llvm::Type* InitType = Init->getType(); 1532 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1533 1534 // Strip off a bitcast if we got one back. 1535 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1536 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1537 // all zero index gep. 1538 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1539 Entry = CE->getOperand(0); 1540 } 1541 1542 // Entry is now either a Function or GlobalVariable. 1543 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1544 1545 // We have a definition after a declaration with the wrong type. 1546 // We must make a new GlobalVariable* and update everything that used OldGV 1547 // (a declaration or tentative definition) with the new GlobalVariable* 1548 // (which will be a definition). 1549 // 1550 // This happens if there is a prototype for a global (e.g. 1551 // "extern int x[];") and then a definition of a different type (e.g. 1552 // "int x[10];"). This also happens when an initializer has a different type 1553 // from the type of the global (this happens with unions). 1554 if (GV == 0 || 1555 GV->getType()->getElementType() != InitType || 1556 GV->getType()->getAddressSpace() != 1557 getContext().getTargetAddressSpace(ASTTy)) { 1558 1559 // Move the old entry aside so that we'll create a new one. 1560 Entry->setName(StringRef()); 1561 1562 // Make a new global with the correct type, this is now guaranteed to work. 1563 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1564 1565 // Replace all uses of the old global with the new global 1566 llvm::Constant *NewPtrForOldDecl = 1567 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1568 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1569 1570 // Erase the old global, since it is no longer used. 1571 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1572 } 1573 1574 if (D->hasAttr<AnnotateAttr>()) 1575 AddGlobalAnnotations(D, GV); 1576 1577 GV->setInitializer(Init); 1578 1579 // If it is safe to mark the global 'constant', do so now. 1580 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1581 isTypeConstant(D->getType(), true)); 1582 1583 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1584 1585 // Set the llvm linkage type as appropriate. 1586 llvm::GlobalValue::LinkageTypes Linkage = 1587 GetLLVMLinkageVarDefinition(D, GV); 1588 GV->setLinkage(Linkage); 1589 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1590 // common vars aren't constant even if declared const. 1591 GV->setConstant(false); 1592 1593 SetCommonAttributes(D, GV); 1594 1595 // Emit the initializer function if necessary. 1596 if (NeedsGlobalCtor || NeedsGlobalDtor) 1597 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1598 1599 // Emit global variable debug information. 1600 if (CGDebugInfo *DI = getModuleDebugInfo()) 1601 DI->EmitGlobalVariable(GV, D); 1602 } 1603 1604 llvm::GlobalValue::LinkageTypes 1605 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1606 llvm::GlobalVariable *GV) { 1607 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1608 if (Linkage == GVA_Internal) 1609 return llvm::Function::InternalLinkage; 1610 else if (D->hasAttr<DLLImportAttr>()) 1611 return llvm::Function::DLLImportLinkage; 1612 else if (D->hasAttr<DLLExportAttr>()) 1613 return llvm::Function::DLLExportLinkage; 1614 else if (D->hasAttr<WeakAttr>()) { 1615 if (GV->isConstant()) 1616 return llvm::GlobalVariable::WeakODRLinkage; 1617 else 1618 return llvm::GlobalVariable::WeakAnyLinkage; 1619 } else if (Linkage == GVA_TemplateInstantiation || 1620 Linkage == GVA_ExplicitTemplateInstantiation) 1621 return llvm::GlobalVariable::WeakODRLinkage; 1622 else if (!getLangOpts().CPlusPlus && 1623 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1624 D->getAttr<CommonAttr>()) && 1625 !D->hasExternalStorage() && !D->getInit() && 1626 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1627 !D->getAttr<WeakImportAttr>()) { 1628 // Thread local vars aren't considered common linkage. 1629 return llvm::GlobalVariable::CommonLinkage; 1630 } 1631 return llvm::GlobalVariable::ExternalLinkage; 1632 } 1633 1634 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1635 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1636 /// existing call uses of the old function in the module, this adjusts them to 1637 /// call the new function directly. 1638 /// 1639 /// This is not just a cleanup: the always_inline pass requires direct calls to 1640 /// functions to be able to inline them. If there is a bitcast in the way, it 1641 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1642 /// run at -O0. 1643 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1644 llvm::Function *NewFn) { 1645 // If we're redefining a global as a function, don't transform it. 1646 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1647 if (OldFn == 0) return; 1648 1649 llvm::Type *NewRetTy = NewFn->getReturnType(); 1650 SmallVector<llvm::Value*, 4> ArgList; 1651 1652 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1653 UI != E; ) { 1654 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1655 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1656 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1657 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1658 llvm::CallSite CS(CI); 1659 if (!CI || !CS.isCallee(I)) continue; 1660 1661 // If the return types don't match exactly, and if the call isn't dead, then 1662 // we can't transform this call. 1663 if (CI->getType() != NewRetTy && !CI->use_empty()) 1664 continue; 1665 1666 // Get the attribute list. 1667 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1668 llvm::AttrListPtr AttrList = CI->getAttributes(); 1669 1670 // Get any return attributes. 1671 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1672 1673 // Add the return attributes. 1674 if (RAttrs) 1675 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1676 1677 // If the function was passed too few arguments, don't transform. If extra 1678 // arguments were passed, we silently drop them. If any of the types 1679 // mismatch, we don't transform. 1680 unsigned ArgNo = 0; 1681 bool DontTransform = false; 1682 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1683 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1684 if (CS.arg_size() == ArgNo || 1685 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1686 DontTransform = true; 1687 break; 1688 } 1689 1690 // Add any parameter attributes. 1691 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1692 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1693 } 1694 if (DontTransform) 1695 continue; 1696 1697 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1698 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1699 1700 // Okay, we can transform this. Create the new call instruction and copy 1701 // over the required information. 1702 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1703 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1704 ArgList.clear(); 1705 if (!NewCall->getType()->isVoidTy()) 1706 NewCall->takeName(CI); 1707 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1708 AttrVec.end())); 1709 NewCall->setCallingConv(CI->getCallingConv()); 1710 1711 // Finally, remove the old call, replacing any uses with the new one. 1712 if (!CI->use_empty()) 1713 CI->replaceAllUsesWith(NewCall); 1714 1715 // Copy debug location attached to CI. 1716 if (!CI->getDebugLoc().isUnknown()) 1717 NewCall->setDebugLoc(CI->getDebugLoc()); 1718 CI->eraseFromParent(); 1719 } 1720 } 1721 1722 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1723 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1724 // If we have a definition, this might be a deferred decl. If the 1725 // instantiation is explicit, make sure we emit it at the end. 1726 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1727 GetAddrOfGlobalVar(VD); 1728 } 1729 1730 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1731 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1732 1733 // Compute the function info and LLVM type. 1734 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1735 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1736 1737 // Get or create the prototype for the function. 1738 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1739 1740 // Strip off a bitcast if we got one back. 1741 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1742 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1743 Entry = CE->getOperand(0); 1744 } 1745 1746 1747 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1748 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1749 1750 // If the types mismatch then we have to rewrite the definition. 1751 assert(OldFn->isDeclaration() && 1752 "Shouldn't replace non-declaration"); 1753 1754 // F is the Function* for the one with the wrong type, we must make a new 1755 // Function* and update everything that used F (a declaration) with the new 1756 // Function* (which will be a definition). 1757 // 1758 // This happens if there is a prototype for a function 1759 // (e.g. "int f()") and then a definition of a different type 1760 // (e.g. "int f(int x)"). Move the old function aside so that it 1761 // doesn't interfere with GetAddrOfFunction. 1762 OldFn->setName(StringRef()); 1763 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1764 1765 // If this is an implementation of a function without a prototype, try to 1766 // replace any existing uses of the function (which may be calls) with uses 1767 // of the new function 1768 if (D->getType()->isFunctionNoProtoType()) { 1769 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1770 OldFn->removeDeadConstantUsers(); 1771 } 1772 1773 // Replace uses of F with the Function we will endow with a body. 1774 if (!Entry->use_empty()) { 1775 llvm::Constant *NewPtrForOldDecl = 1776 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1777 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1778 } 1779 1780 // Ok, delete the old function now, which is dead. 1781 OldFn->eraseFromParent(); 1782 1783 Entry = NewFn; 1784 } 1785 1786 // We need to set linkage and visibility on the function before 1787 // generating code for it because various parts of IR generation 1788 // want to propagate this information down (e.g. to local static 1789 // declarations). 1790 llvm::Function *Fn = cast<llvm::Function>(Entry); 1791 setFunctionLinkage(D, Fn); 1792 1793 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1794 setGlobalVisibility(Fn, D); 1795 1796 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1797 1798 SetFunctionDefinitionAttributes(D, Fn); 1799 SetLLVMFunctionAttributesForDefinition(D, Fn); 1800 1801 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1802 AddGlobalCtor(Fn, CA->getPriority()); 1803 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1804 AddGlobalDtor(Fn, DA->getPriority()); 1805 if (D->hasAttr<AnnotateAttr>()) 1806 AddGlobalAnnotations(D, Fn); 1807 } 1808 1809 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1810 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1811 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1812 assert(AA && "Not an alias?"); 1813 1814 StringRef MangledName = getMangledName(GD); 1815 1816 // If there is a definition in the module, then it wins over the alias. 1817 // This is dubious, but allow it to be safe. Just ignore the alias. 1818 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1819 if (Entry && !Entry->isDeclaration()) 1820 return; 1821 1822 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1823 1824 // Create a reference to the named value. This ensures that it is emitted 1825 // if a deferred decl. 1826 llvm::Constant *Aliasee; 1827 if (isa<llvm::FunctionType>(DeclTy)) 1828 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1829 /*ForVTable=*/false); 1830 else 1831 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1832 llvm::PointerType::getUnqual(DeclTy), 0); 1833 1834 // Create the new alias itself, but don't set a name yet. 1835 llvm::GlobalValue *GA = 1836 new llvm::GlobalAlias(Aliasee->getType(), 1837 llvm::Function::ExternalLinkage, 1838 "", Aliasee, &getModule()); 1839 1840 if (Entry) { 1841 assert(Entry->isDeclaration()); 1842 1843 // If there is a declaration in the module, then we had an extern followed 1844 // by the alias, as in: 1845 // extern int test6(); 1846 // ... 1847 // int test6() __attribute__((alias("test7"))); 1848 // 1849 // Remove it and replace uses of it with the alias. 1850 GA->takeName(Entry); 1851 1852 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1853 Entry->getType())); 1854 Entry->eraseFromParent(); 1855 } else { 1856 GA->setName(MangledName); 1857 } 1858 1859 // Set attributes which are particular to an alias; this is a 1860 // specialization of the attributes which may be set on a global 1861 // variable/function. 1862 if (D->hasAttr<DLLExportAttr>()) { 1863 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1864 // The dllexport attribute is ignored for undefined symbols. 1865 if (FD->hasBody()) 1866 GA->setLinkage(llvm::Function::DLLExportLinkage); 1867 } else { 1868 GA->setLinkage(llvm::Function::DLLExportLinkage); 1869 } 1870 } else if (D->hasAttr<WeakAttr>() || 1871 D->hasAttr<WeakRefAttr>() || 1872 D->isWeakImported()) { 1873 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1874 } 1875 1876 SetCommonAttributes(D, GA); 1877 } 1878 1879 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1880 ArrayRef<llvm::Type*> Tys) { 1881 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1882 Tys); 1883 } 1884 1885 static llvm::StringMapEntry<llvm::Constant*> & 1886 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1887 const StringLiteral *Literal, 1888 bool TargetIsLSB, 1889 bool &IsUTF16, 1890 unsigned &StringLength) { 1891 StringRef String = Literal->getString(); 1892 unsigned NumBytes = String.size(); 1893 1894 // Check for simple case. 1895 if (!Literal->containsNonAsciiOrNull()) { 1896 StringLength = NumBytes; 1897 return Map.GetOrCreateValue(String); 1898 } 1899 1900 // Otherwise, convert the UTF8 literals into a byte string. 1901 SmallVector<UTF16, 128> ToBuf(NumBytes); 1902 const UTF8 *FromPtr = (UTF8 *)String.data(); 1903 UTF16 *ToPtr = &ToBuf[0]; 1904 1905 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1906 &ToPtr, ToPtr + NumBytes, 1907 strictConversion); 1908 1909 // ConvertUTF8toUTF16 returns the length in ToPtr. 1910 StringLength = ToPtr - &ToBuf[0]; 1911 1912 // Render the UTF-16 string into a byte array and convert to the target byte 1913 // order. 1914 // 1915 // FIXME: This isn't something we should need to do here. 1916 SmallString<128> AsBytes; 1917 AsBytes.reserve(StringLength * 2); 1918 for (unsigned i = 0; i != StringLength; ++i) { 1919 unsigned short Val = ToBuf[i]; 1920 if (TargetIsLSB) { 1921 AsBytes.push_back(Val & 0xFF); 1922 AsBytes.push_back(Val >> 8); 1923 } else { 1924 AsBytes.push_back(Val >> 8); 1925 AsBytes.push_back(Val & 0xFF); 1926 } 1927 } 1928 // Append one extra null character, the second is automatically added by our 1929 // caller. 1930 AsBytes.push_back(0); 1931 1932 IsUTF16 = true; 1933 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1934 } 1935 1936 static llvm::StringMapEntry<llvm::Constant*> & 1937 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1938 const StringLiteral *Literal, 1939 unsigned &StringLength) 1940 { 1941 StringRef String = Literal->getString(); 1942 StringLength = String.size(); 1943 return Map.GetOrCreateValue(String); 1944 } 1945 1946 llvm::Constant * 1947 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1948 unsigned StringLength = 0; 1949 bool isUTF16 = false; 1950 llvm::StringMapEntry<llvm::Constant*> &Entry = 1951 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1952 getTargetData().isLittleEndian(), 1953 isUTF16, StringLength); 1954 1955 if (llvm::Constant *C = Entry.getValue()) 1956 return C; 1957 1958 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1959 llvm::Constant *Zeros[] = { Zero, Zero }; 1960 1961 // If we don't already have it, get __CFConstantStringClassReference. 1962 if (!CFConstantStringClassRef) { 1963 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1964 Ty = llvm::ArrayType::get(Ty, 0); 1965 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1966 "__CFConstantStringClassReference"); 1967 // Decay array -> ptr 1968 CFConstantStringClassRef = 1969 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1970 } 1971 1972 QualType CFTy = getContext().getCFConstantStringType(); 1973 1974 llvm::StructType *STy = 1975 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1976 1977 llvm::Constant *Fields[4]; 1978 1979 // Class pointer. 1980 Fields[0] = CFConstantStringClassRef; 1981 1982 // Flags. 1983 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1984 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1985 llvm::ConstantInt::get(Ty, 0x07C8); 1986 1987 // String pointer. 1988 llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext, 1989 Entry.getKey()); 1990 1991 llvm::GlobalValue::LinkageTypes Linkage; 1992 if (isUTF16) 1993 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1994 Linkage = llvm::GlobalValue::InternalLinkage; 1995 else 1996 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1997 // when using private linkage. It is not clear if this is a bug in ld 1998 // or a reasonable new restriction. 1999 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2000 2001 // Note: -fwritable-strings doesn't make the backing store strings of 2002 // CFStrings writable. (See <rdar://problem/10657500>) 2003 llvm::GlobalVariable *GV = 2004 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2005 Linkage, C, ".str"); 2006 GV->setUnnamedAddr(true); 2007 if (isUTF16) { 2008 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2009 GV->setAlignment(Align.getQuantity()); 2010 } else { 2011 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2012 GV->setAlignment(Align.getQuantity()); 2013 } 2014 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2015 2016 // String length. 2017 Ty = getTypes().ConvertType(getContext().LongTy); 2018 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2019 2020 // The struct. 2021 C = llvm::ConstantStruct::get(STy, Fields); 2022 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2023 llvm::GlobalVariable::PrivateLinkage, C, 2024 "_unnamed_cfstring_"); 2025 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2026 GV->setSection(Sect); 2027 Entry.setValue(GV); 2028 2029 return GV; 2030 } 2031 2032 static RecordDecl * 2033 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2034 DeclContext *DC, IdentifierInfo *Id) { 2035 SourceLocation Loc; 2036 if (Ctx.getLangOpts().CPlusPlus) 2037 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2038 else 2039 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2040 } 2041 2042 llvm::Constant * 2043 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2044 unsigned StringLength = 0; 2045 llvm::StringMapEntry<llvm::Constant*> &Entry = 2046 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2047 2048 if (llvm::Constant *C = Entry.getValue()) 2049 return C; 2050 2051 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2052 llvm::Constant *Zeros[] = { Zero, Zero }; 2053 2054 // If we don't already have it, get _NSConstantStringClassReference. 2055 if (!ConstantStringClassRef) { 2056 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2057 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2058 llvm::Constant *GV; 2059 if (LangOpts.ObjCNonFragileABI) { 2060 std::string str = 2061 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2062 : "OBJC_CLASS_$_" + StringClass; 2063 GV = getObjCRuntime().GetClassGlobal(str); 2064 // Make sure the result is of the correct type. 2065 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2066 ConstantStringClassRef = 2067 llvm::ConstantExpr::getBitCast(GV, PTy); 2068 } else { 2069 std::string str = 2070 StringClass.empty() ? "_NSConstantStringClassReference" 2071 : "_" + StringClass + "ClassReference"; 2072 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2073 GV = CreateRuntimeVariable(PTy, str); 2074 // Decay array -> ptr 2075 ConstantStringClassRef = 2076 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2077 } 2078 } 2079 2080 if (!NSConstantStringType) { 2081 // Construct the type for a constant NSString. 2082 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2083 Context.getTranslationUnitDecl(), 2084 &Context.Idents.get("__builtin_NSString")); 2085 D->startDefinition(); 2086 2087 QualType FieldTypes[3]; 2088 2089 // const int *isa; 2090 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2091 // const char *str; 2092 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2093 // unsigned int length; 2094 FieldTypes[2] = Context.UnsignedIntTy; 2095 2096 // Create fields 2097 for (unsigned i = 0; i < 3; ++i) { 2098 FieldDecl *Field = FieldDecl::Create(Context, D, 2099 SourceLocation(), 2100 SourceLocation(), 0, 2101 FieldTypes[i], /*TInfo=*/0, 2102 /*BitWidth=*/0, 2103 /*Mutable=*/false, 2104 /*HasInit=*/false); 2105 Field->setAccess(AS_public); 2106 D->addDecl(Field); 2107 } 2108 2109 D->completeDefinition(); 2110 QualType NSTy = Context.getTagDeclType(D); 2111 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2112 } 2113 2114 llvm::Constant *Fields[3]; 2115 2116 // Class pointer. 2117 Fields[0] = ConstantStringClassRef; 2118 2119 // String pointer. 2120 llvm::Constant *C = 2121 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2122 2123 llvm::GlobalValue::LinkageTypes Linkage; 2124 bool isConstant; 2125 Linkage = llvm::GlobalValue::PrivateLinkage; 2126 isConstant = !LangOpts.WritableStrings; 2127 2128 llvm::GlobalVariable *GV = 2129 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2130 ".str"); 2131 GV->setUnnamedAddr(true); 2132 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2133 GV->setAlignment(Align.getQuantity()); 2134 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2135 2136 // String length. 2137 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2138 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2139 2140 // The struct. 2141 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2142 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2143 llvm::GlobalVariable::PrivateLinkage, C, 2144 "_unnamed_nsstring_"); 2145 // FIXME. Fix section. 2146 if (const char *Sect = 2147 LangOpts.ObjCNonFragileABI 2148 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2149 : getContext().getTargetInfo().getNSStringSection()) 2150 GV->setSection(Sect); 2151 Entry.setValue(GV); 2152 2153 return GV; 2154 } 2155 2156 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2157 if (ObjCFastEnumerationStateType.isNull()) { 2158 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2159 Context.getTranslationUnitDecl(), 2160 &Context.Idents.get("__objcFastEnumerationState")); 2161 D->startDefinition(); 2162 2163 QualType FieldTypes[] = { 2164 Context.UnsignedLongTy, 2165 Context.getPointerType(Context.getObjCIdType()), 2166 Context.getPointerType(Context.UnsignedLongTy), 2167 Context.getConstantArrayType(Context.UnsignedLongTy, 2168 llvm::APInt(32, 5), ArrayType::Normal, 0) 2169 }; 2170 2171 for (size_t i = 0; i < 4; ++i) { 2172 FieldDecl *Field = FieldDecl::Create(Context, 2173 D, 2174 SourceLocation(), 2175 SourceLocation(), 0, 2176 FieldTypes[i], /*TInfo=*/0, 2177 /*BitWidth=*/0, 2178 /*Mutable=*/false, 2179 /*HasInit=*/false); 2180 Field->setAccess(AS_public); 2181 D->addDecl(Field); 2182 } 2183 2184 D->completeDefinition(); 2185 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2186 } 2187 2188 return ObjCFastEnumerationStateType; 2189 } 2190 2191 llvm::Constant * 2192 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2193 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2194 2195 // Don't emit it as the address of the string, emit the string data itself 2196 // as an inline array. 2197 if (E->getCharByteWidth() == 1) { 2198 SmallString<64> Str(E->getString()); 2199 2200 // Resize the string to the right size, which is indicated by its type. 2201 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2202 Str.resize(CAT->getSize().getZExtValue()); 2203 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2204 } 2205 2206 llvm::ArrayType *AType = 2207 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2208 llvm::Type *ElemTy = AType->getElementType(); 2209 unsigned NumElements = AType->getNumElements(); 2210 2211 // Wide strings have either 2-byte or 4-byte elements. 2212 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2213 SmallVector<uint16_t, 32> Elements; 2214 Elements.reserve(NumElements); 2215 2216 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2217 Elements.push_back(E->getCodeUnit(i)); 2218 Elements.resize(NumElements); 2219 return llvm::ConstantDataArray::get(VMContext, Elements); 2220 } 2221 2222 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2223 SmallVector<uint32_t, 32> Elements; 2224 Elements.reserve(NumElements); 2225 2226 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2227 Elements.push_back(E->getCodeUnit(i)); 2228 Elements.resize(NumElements); 2229 return llvm::ConstantDataArray::get(VMContext, Elements); 2230 } 2231 2232 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2233 /// constant array for the given string literal. 2234 llvm::Constant * 2235 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2236 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2237 if (S->isAscii() || S->isUTF8()) { 2238 SmallString<64> Str(S->getString()); 2239 2240 // Resize the string to the right size, which is indicated by its type. 2241 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2242 Str.resize(CAT->getSize().getZExtValue()); 2243 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2244 } 2245 2246 // FIXME: the following does not memoize wide strings. 2247 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2248 llvm::GlobalVariable *GV = 2249 new llvm::GlobalVariable(getModule(),C->getType(), 2250 !LangOpts.WritableStrings, 2251 llvm::GlobalValue::PrivateLinkage, 2252 C,".str"); 2253 2254 GV->setAlignment(Align.getQuantity()); 2255 GV->setUnnamedAddr(true); 2256 return GV; 2257 } 2258 2259 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2260 /// array for the given ObjCEncodeExpr node. 2261 llvm::Constant * 2262 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2263 std::string Str; 2264 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2265 2266 return GetAddrOfConstantCString(Str); 2267 } 2268 2269 2270 /// GenerateWritableString -- Creates storage for a string literal. 2271 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2272 bool constant, 2273 CodeGenModule &CGM, 2274 const char *GlobalName, 2275 unsigned Alignment) { 2276 // Create Constant for this string literal. Don't add a '\0'. 2277 llvm::Constant *C = 2278 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2279 2280 // Create a global variable for this string 2281 llvm::GlobalVariable *GV = 2282 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2283 llvm::GlobalValue::PrivateLinkage, 2284 C, GlobalName); 2285 GV->setAlignment(Alignment); 2286 GV->setUnnamedAddr(true); 2287 return GV; 2288 } 2289 2290 /// GetAddrOfConstantString - Returns a pointer to a character array 2291 /// containing the literal. This contents are exactly that of the 2292 /// given string, i.e. it will not be null terminated automatically; 2293 /// see GetAddrOfConstantCString. Note that whether the result is 2294 /// actually a pointer to an LLVM constant depends on 2295 /// Feature.WriteableStrings. 2296 /// 2297 /// The result has pointer to array type. 2298 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2299 const char *GlobalName, 2300 unsigned Alignment) { 2301 // Get the default prefix if a name wasn't specified. 2302 if (!GlobalName) 2303 GlobalName = ".str"; 2304 2305 // Don't share any string literals if strings aren't constant. 2306 if (LangOpts.WritableStrings) 2307 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2308 2309 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2310 ConstantStringMap.GetOrCreateValue(Str); 2311 2312 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2313 if (Alignment > GV->getAlignment()) { 2314 GV->setAlignment(Alignment); 2315 } 2316 return GV; 2317 } 2318 2319 // Create a global variable for this. 2320 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2321 Alignment); 2322 Entry.setValue(GV); 2323 return GV; 2324 } 2325 2326 /// GetAddrOfConstantCString - Returns a pointer to a character 2327 /// array containing the literal and a terminating '\0' 2328 /// character. The result has pointer to array type. 2329 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2330 const char *GlobalName, 2331 unsigned Alignment) { 2332 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2333 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2334 } 2335 2336 /// EmitObjCPropertyImplementations - Emit information for synthesized 2337 /// properties for an implementation. 2338 void CodeGenModule::EmitObjCPropertyImplementations(const 2339 ObjCImplementationDecl *D) { 2340 for (ObjCImplementationDecl::propimpl_iterator 2341 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2342 ObjCPropertyImplDecl *PID = *i; 2343 2344 // Dynamic is just for type-checking. 2345 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2346 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2347 2348 // Determine which methods need to be implemented, some may have 2349 // been overridden. Note that ::isSynthesized is not the method 2350 // we want, that just indicates if the decl came from a 2351 // property. What we want to know is if the method is defined in 2352 // this implementation. 2353 if (!D->getInstanceMethod(PD->getGetterName())) 2354 CodeGenFunction(*this).GenerateObjCGetter( 2355 const_cast<ObjCImplementationDecl *>(D), PID); 2356 if (!PD->isReadOnly() && 2357 !D->getInstanceMethod(PD->getSetterName())) 2358 CodeGenFunction(*this).GenerateObjCSetter( 2359 const_cast<ObjCImplementationDecl *>(D), PID); 2360 } 2361 } 2362 } 2363 2364 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2365 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2366 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2367 ivar; ivar = ivar->getNextIvar()) 2368 if (ivar->getType().isDestructedType()) 2369 return true; 2370 2371 return false; 2372 } 2373 2374 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2375 /// for an implementation. 2376 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2377 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2378 if (needsDestructMethod(D)) { 2379 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2380 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2381 ObjCMethodDecl *DTORMethod = 2382 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2383 cxxSelector, getContext().VoidTy, 0, D, 2384 /*isInstance=*/true, /*isVariadic=*/false, 2385 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2386 /*isDefined=*/false, ObjCMethodDecl::Required); 2387 D->addInstanceMethod(DTORMethod); 2388 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2389 D->setHasCXXStructors(true); 2390 } 2391 2392 // If the implementation doesn't have any ivar initializers, we don't need 2393 // a .cxx_construct. 2394 if (D->getNumIvarInitializers() == 0) 2395 return; 2396 2397 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2398 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2399 // The constructor returns 'self'. 2400 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2401 D->getLocation(), 2402 D->getLocation(), 2403 cxxSelector, 2404 getContext().getObjCIdType(), 0, 2405 D, /*isInstance=*/true, 2406 /*isVariadic=*/false, 2407 /*isSynthesized=*/true, 2408 /*isImplicitlyDeclared=*/true, 2409 /*isDefined=*/false, 2410 ObjCMethodDecl::Required); 2411 D->addInstanceMethod(CTORMethod); 2412 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2413 D->setHasCXXStructors(true); 2414 } 2415 2416 /// EmitNamespace - Emit all declarations in a namespace. 2417 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2418 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2419 I != E; ++I) 2420 EmitTopLevelDecl(*I); 2421 } 2422 2423 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2424 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2425 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2426 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2427 ErrorUnsupported(LSD, "linkage spec"); 2428 return; 2429 } 2430 2431 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2432 I != E; ++I) 2433 EmitTopLevelDecl(*I); 2434 } 2435 2436 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2437 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2438 // If an error has occurred, stop code generation, but continue 2439 // parsing and semantic analysis (to ensure all warnings and errors 2440 // are emitted). 2441 if (Diags.hasErrorOccurred()) 2442 return; 2443 2444 // Ignore dependent declarations. 2445 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2446 return; 2447 2448 switch (D->getKind()) { 2449 case Decl::CXXConversion: 2450 case Decl::CXXMethod: 2451 case Decl::Function: 2452 // Skip function templates 2453 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2454 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2455 return; 2456 2457 EmitGlobal(cast<FunctionDecl>(D)); 2458 break; 2459 2460 case Decl::Var: 2461 EmitGlobal(cast<VarDecl>(D)); 2462 break; 2463 2464 // Indirect fields from global anonymous structs and unions can be 2465 // ignored; only the actual variable requires IR gen support. 2466 case Decl::IndirectField: 2467 break; 2468 2469 // C++ Decls 2470 case Decl::Namespace: 2471 EmitNamespace(cast<NamespaceDecl>(D)); 2472 break; 2473 // No code generation needed. 2474 case Decl::UsingShadow: 2475 case Decl::Using: 2476 case Decl::UsingDirective: 2477 case Decl::ClassTemplate: 2478 case Decl::FunctionTemplate: 2479 case Decl::TypeAliasTemplate: 2480 case Decl::NamespaceAlias: 2481 case Decl::Block: 2482 case Decl::Import: 2483 break; 2484 case Decl::CXXConstructor: 2485 // Skip function templates 2486 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2487 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2488 return; 2489 2490 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2491 break; 2492 case Decl::CXXDestructor: 2493 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2494 return; 2495 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2496 break; 2497 2498 case Decl::StaticAssert: 2499 // Nothing to do. 2500 break; 2501 2502 // Objective-C Decls 2503 2504 // Forward declarations, no (immediate) code generation. 2505 case Decl::ObjCInterface: 2506 break; 2507 2508 case Decl::ObjCCategory: { 2509 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2510 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2511 Context.ResetObjCLayout(CD->getClassInterface()); 2512 break; 2513 } 2514 2515 case Decl::ObjCProtocol: { 2516 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2517 if (Proto->isThisDeclarationADefinition()) 2518 ObjCRuntime->GenerateProtocol(Proto); 2519 break; 2520 } 2521 2522 case Decl::ObjCCategoryImpl: 2523 // Categories have properties but don't support synthesize so we 2524 // can ignore them here. 2525 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2526 break; 2527 2528 case Decl::ObjCImplementation: { 2529 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2530 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2531 Context.ResetObjCLayout(OMD->getClassInterface()); 2532 EmitObjCPropertyImplementations(OMD); 2533 EmitObjCIvarInitializations(OMD); 2534 ObjCRuntime->GenerateClass(OMD); 2535 break; 2536 } 2537 case Decl::ObjCMethod: { 2538 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2539 // If this is not a prototype, emit the body. 2540 if (OMD->getBody()) 2541 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2542 break; 2543 } 2544 case Decl::ObjCCompatibleAlias: 2545 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2546 break; 2547 2548 case Decl::LinkageSpec: 2549 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2550 break; 2551 2552 case Decl::FileScopeAsm: { 2553 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2554 StringRef AsmString = AD->getAsmString()->getString(); 2555 2556 const std::string &S = getModule().getModuleInlineAsm(); 2557 if (S.empty()) 2558 getModule().setModuleInlineAsm(AsmString); 2559 else if (*--S.end() == '\n') 2560 getModule().setModuleInlineAsm(S + AsmString.str()); 2561 else 2562 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2563 break; 2564 } 2565 2566 default: 2567 // Make sure we handled everything we should, every other kind is a 2568 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2569 // function. Need to recode Decl::Kind to do that easily. 2570 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2571 } 2572 } 2573 2574 /// Turns the given pointer into a constant. 2575 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2576 const void *Ptr) { 2577 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2578 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2579 return llvm::ConstantInt::get(i64, PtrInt); 2580 } 2581 2582 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2583 llvm::NamedMDNode *&GlobalMetadata, 2584 GlobalDecl D, 2585 llvm::GlobalValue *Addr) { 2586 if (!GlobalMetadata) 2587 GlobalMetadata = 2588 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2589 2590 // TODO: should we report variant information for ctors/dtors? 2591 llvm::Value *Ops[] = { 2592 Addr, 2593 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2594 }; 2595 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2596 } 2597 2598 /// Emits metadata nodes associating all the global values in the 2599 /// current module with the Decls they came from. This is useful for 2600 /// projects using IR gen as a subroutine. 2601 /// 2602 /// Since there's currently no way to associate an MDNode directly 2603 /// with an llvm::GlobalValue, we create a global named metadata 2604 /// with the name 'clang.global.decl.ptrs'. 2605 void CodeGenModule::EmitDeclMetadata() { 2606 llvm::NamedMDNode *GlobalMetadata = 0; 2607 2608 // StaticLocalDeclMap 2609 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2610 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2611 I != E; ++I) { 2612 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2613 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2614 } 2615 } 2616 2617 /// Emits metadata nodes for all the local variables in the current 2618 /// function. 2619 void CodeGenFunction::EmitDeclMetadata() { 2620 if (LocalDeclMap.empty()) return; 2621 2622 llvm::LLVMContext &Context = getLLVMContext(); 2623 2624 // Find the unique metadata ID for this name. 2625 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2626 2627 llvm::NamedMDNode *GlobalMetadata = 0; 2628 2629 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2630 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2631 const Decl *D = I->first; 2632 llvm::Value *Addr = I->second; 2633 2634 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2635 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2636 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2637 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2638 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2639 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2640 } 2641 } 2642 } 2643 2644 void CodeGenModule::EmitCoverageFile() { 2645 if (!getCodeGenOpts().CoverageFile.empty()) { 2646 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2647 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2648 llvm::LLVMContext &Ctx = TheModule.getContext(); 2649 llvm::MDString *CoverageFile = 2650 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2651 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2652 llvm::MDNode *CU = CUNode->getOperand(i); 2653 llvm::Value *node[] = { CoverageFile, CU }; 2654 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2655 GCov->addOperand(N); 2656 } 2657 } 2658 } 2659 } 2660