xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e894e09e704d760af47389c1a17927c8d848c2f8)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed.
106   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
107     TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(),
108                            ABI.getMangleContext());
109 
110   // If debug info or coverage generation is enabled, create the CGDebugInfo
111   // object.
112   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
113       CodeGenOpts.EmitGcovNotes)
114     DebugInfo = new CGDebugInfo(*this);
115 
116   Block.GlobalUniqueCount = 0;
117 
118   if (C.getLangOpts().ObjCAutoRefCount)
119     ARCData = new ARCEntrypoints();
120   RRData = new RREntrypoints();
121 }
122 
123 CodeGenModule::~CodeGenModule() {
124   delete ObjCRuntime;
125   delete OpenCLRuntime;
126   delete CUDARuntime;
127   delete TheTargetCodeGenInfo;
128   delete &ABI;
129   delete TBAA;
130   delete DebugInfo;
131   delete ARCData;
132   delete RRData;
133 }
134 
135 void CodeGenModule::createObjCRuntime() {
136   if (!LangOpts.NeXTRuntime)
137     ObjCRuntime = CreateGNUObjCRuntime(*this);
138   else
139     ObjCRuntime = CreateMacObjCRuntime(*this);
140 }
141 
142 void CodeGenModule::createOpenCLRuntime() {
143   OpenCLRuntime = new CGOpenCLRuntime(*this);
144 }
145 
146 void CodeGenModule::createCUDARuntime() {
147   CUDARuntime = CreateNVCUDARuntime(*this);
148 }
149 
150 void CodeGenModule::Release() {
151   EmitDeferred();
152   EmitCXXGlobalInitFunc();
153   EmitCXXGlobalDtorFunc();
154   if (ObjCRuntime)
155     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
156       AddGlobalCtor(ObjCInitFunction);
157   EmitCtorList(GlobalCtors, "llvm.global_ctors");
158   EmitCtorList(GlobalDtors, "llvm.global_dtors");
159   EmitGlobalAnnotations();
160   EmitLLVMUsed();
161 
162   SimplifyPersonality();
163 
164   if (getCodeGenOpts().EmitDeclMetadata)
165     EmitDeclMetadata();
166 
167   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
168     EmitCoverageFile();
169 
170   if (DebugInfo)
171     DebugInfo->finalize();
172 }
173 
174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
175   // Make sure that this type is translated.
176   Types.UpdateCompletedType(TD);
177 }
178 
179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
180   if (!TBAA)
181     return 0;
182   return TBAA->getTBAAInfo(QTy);
183 }
184 
185 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
186                                         llvm::MDNode *TBAAInfo) {
187   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
188 }
189 
190 bool CodeGenModule::isTargetDarwin() const {
191   return getContext().getTargetInfo().getTriple().isOSDarwin();
192 }
193 
194 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
195   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
196   getDiags().Report(Context.getFullLoc(loc), diagID);
197 }
198 
199 /// ErrorUnsupported - Print out an error that codegen doesn't support the
200 /// specified stmt yet.
201 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
202                                      bool OmitOnError) {
203   if (OmitOnError && getDiags().hasErrorOccurred())
204     return;
205   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
206                                                "cannot compile this %0 yet");
207   std::string Msg = Type;
208   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
209     << Msg << S->getSourceRange();
210 }
211 
212 /// ErrorUnsupported - Print out an error that codegen doesn't support the
213 /// specified decl yet.
214 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
215                                      bool OmitOnError) {
216   if (OmitOnError && getDiags().hasErrorOccurred())
217     return;
218   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
219                                                "cannot compile this %0 yet");
220   std::string Msg = Type;
221   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
222 }
223 
224 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
225   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
226 }
227 
228 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
229                                         const NamedDecl *D) const {
230   // Internal definitions always have default visibility.
231   if (GV->hasLocalLinkage()) {
232     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
233     return;
234   }
235 
236   // Set visibility for definitions.
237   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
238   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
239     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
240 }
241 
242 /// Set the symbol visibility of type information (vtable and RTTI)
243 /// associated with the given type.
244 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
245                                       const CXXRecordDecl *RD,
246                                       TypeVisibilityKind TVK) const {
247   setGlobalVisibility(GV, RD);
248 
249   if (!CodeGenOpts.HiddenWeakVTables)
250     return;
251 
252   // We never want to drop the visibility for RTTI names.
253   if (TVK == TVK_ForRTTIName)
254     return;
255 
256   // We want to drop the visibility to hidden for weak type symbols.
257   // This isn't possible if there might be unresolved references
258   // elsewhere that rely on this symbol being visible.
259 
260   // This should be kept roughly in sync with setThunkVisibility
261   // in CGVTables.cpp.
262 
263   // Preconditions.
264   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
265       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
266     return;
267 
268   // Don't override an explicit visibility attribute.
269   if (RD->getExplicitVisibility())
270     return;
271 
272   switch (RD->getTemplateSpecializationKind()) {
273   // We have to disable the optimization if this is an EI definition
274   // because there might be EI declarations in other shared objects.
275   case TSK_ExplicitInstantiationDefinition:
276   case TSK_ExplicitInstantiationDeclaration:
277     return;
278 
279   // Every use of a non-template class's type information has to emit it.
280   case TSK_Undeclared:
281     break;
282 
283   // In theory, implicit instantiations can ignore the possibility of
284   // an explicit instantiation declaration because there necessarily
285   // must be an EI definition somewhere with default visibility.  In
286   // practice, it's possible to have an explicit instantiation for
287   // an arbitrary template class, and linkers aren't necessarily able
288   // to deal with mixed-visibility symbols.
289   case TSK_ExplicitSpecialization:
290   case TSK_ImplicitInstantiation:
291     if (!CodeGenOpts.HiddenWeakTemplateVTables)
292       return;
293     break;
294   }
295 
296   // If there's a key function, there may be translation units
297   // that don't have the key function's definition.  But ignore
298   // this if we're emitting RTTI under -fno-rtti.
299   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
300     if (Context.getKeyFunction(RD))
301       return;
302   }
303 
304   // Otherwise, drop the visibility to hidden.
305   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
306   GV->setUnnamedAddr(true);
307 }
308 
309 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
310   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
311 
312   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
313   if (!Str.empty())
314     return Str;
315 
316   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
317     IdentifierInfo *II = ND->getIdentifier();
318     assert(II && "Attempt to mangle unnamed decl.");
319 
320     Str = II->getName();
321     return Str;
322   }
323 
324   SmallString<256> Buffer;
325   llvm::raw_svector_ostream Out(Buffer);
326   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
327     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
328   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
329     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
330   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
331     getCXXABI().getMangleContext().mangleBlock(BD, Out);
332   else
333     getCXXABI().getMangleContext().mangleName(ND, Out);
334 
335   // Allocate space for the mangled name.
336   Out.flush();
337   size_t Length = Buffer.size();
338   char *Name = MangledNamesAllocator.Allocate<char>(Length);
339   std::copy(Buffer.begin(), Buffer.end(), Name);
340 
341   Str = StringRef(Name, Length);
342 
343   return Str;
344 }
345 
346 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
347                                         const BlockDecl *BD) {
348   MangleContext &MangleCtx = getCXXABI().getMangleContext();
349   const Decl *D = GD.getDecl();
350   llvm::raw_svector_ostream Out(Buffer.getBuffer());
351   if (D == 0)
352     MangleCtx.mangleGlobalBlock(BD, Out);
353   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
354     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
355   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
356     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
357   else
358     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
359 }
360 
361 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
362   return getModule().getNamedValue(Name);
363 }
364 
365 /// AddGlobalCtor - Add a function to the list that will be called before
366 /// main() runs.
367 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
368   // FIXME: Type coercion of void()* types.
369   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
370 }
371 
372 /// AddGlobalDtor - Add a function to the list that will be called
373 /// when the module is unloaded.
374 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
375   // FIXME: Type coercion of void()* types.
376   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
377 }
378 
379 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
380   // Ctor function type is void()*.
381   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
382   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
383 
384   // Get the type of a ctor entry, { i32, void ()* }.
385   llvm::StructType *CtorStructTy =
386     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
387 
388   // Construct the constructor and destructor arrays.
389   SmallVector<llvm::Constant*, 8> Ctors;
390   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
391     llvm::Constant *S[] = {
392       llvm::ConstantInt::get(Int32Ty, I->second, false),
393       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
394     };
395     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
396   }
397 
398   if (!Ctors.empty()) {
399     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
400     new llvm::GlobalVariable(TheModule, AT, false,
401                              llvm::GlobalValue::AppendingLinkage,
402                              llvm::ConstantArray::get(AT, Ctors),
403                              GlobalName);
404   }
405 }
406 
407 llvm::GlobalValue::LinkageTypes
408 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
409   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
410 
411   if (Linkage == GVA_Internal)
412     return llvm::Function::InternalLinkage;
413 
414   if (D->hasAttr<DLLExportAttr>())
415     return llvm::Function::DLLExportLinkage;
416 
417   if (D->hasAttr<WeakAttr>())
418     return llvm::Function::WeakAnyLinkage;
419 
420   // In C99 mode, 'inline' functions are guaranteed to have a strong
421   // definition somewhere else, so we can use available_externally linkage.
422   if (Linkage == GVA_C99Inline)
423     return llvm::Function::AvailableExternallyLinkage;
424 
425   // Note that Apple's kernel linker doesn't support symbol
426   // coalescing, so we need to avoid linkonce and weak linkages there.
427   // Normally, this means we just map to internal, but for explicit
428   // instantiations we'll map to external.
429 
430   // In C++, the compiler has to emit a definition in every translation unit
431   // that references the function.  We should use linkonce_odr because
432   // a) if all references in this translation unit are optimized away, we
433   // don't need to codegen it.  b) if the function persists, it needs to be
434   // merged with other definitions. c) C++ has the ODR, so we know the
435   // definition is dependable.
436   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
437     return !Context.getLangOpts().AppleKext
438              ? llvm::Function::LinkOnceODRLinkage
439              : llvm::Function::InternalLinkage;
440 
441   // An explicit instantiation of a template has weak linkage, since
442   // explicit instantiations can occur in multiple translation units
443   // and must all be equivalent. However, we are not allowed to
444   // throw away these explicit instantiations.
445   if (Linkage == GVA_ExplicitTemplateInstantiation)
446     return !Context.getLangOpts().AppleKext
447              ? llvm::Function::WeakODRLinkage
448              : llvm::Function::ExternalLinkage;
449 
450   // Otherwise, we have strong external linkage.
451   assert(Linkage == GVA_StrongExternal);
452   return llvm::Function::ExternalLinkage;
453 }
454 
455 
456 /// SetFunctionDefinitionAttributes - Set attributes for a global.
457 ///
458 /// FIXME: This is currently only done for aliases and functions, but not for
459 /// variables (these details are set in EmitGlobalVarDefinition for variables).
460 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
461                                                     llvm::GlobalValue *GV) {
462   SetCommonAttributes(D, GV);
463 }
464 
465 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
466                                               const CGFunctionInfo &Info,
467                                               llvm::Function *F) {
468   unsigned CallingConv;
469   AttributeListType AttributeList;
470   ConstructAttributeList(Info, D, AttributeList, CallingConv);
471   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
472                                           AttributeList.size()));
473   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
474 }
475 
476 /// Determines whether the language options require us to model
477 /// unwind exceptions.  We treat -fexceptions as mandating this
478 /// except under the fragile ObjC ABI with only ObjC exceptions
479 /// enabled.  This means, for example, that C with -fexceptions
480 /// enables this.
481 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
482   // If exceptions are completely disabled, obviously this is false.
483   if (!LangOpts.Exceptions) return false;
484 
485   // If C++ exceptions are enabled, this is true.
486   if (LangOpts.CXXExceptions) return true;
487 
488   // If ObjC exceptions are enabled, this depends on the ABI.
489   if (LangOpts.ObjCExceptions) {
490     if (!LangOpts.ObjCNonFragileABI) return false;
491   }
492 
493   return true;
494 }
495 
496 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
497                                                            llvm::Function *F) {
498   if (CodeGenOpts.UnwindTables)
499     F->setHasUWTable();
500 
501   if (!hasUnwindExceptions(LangOpts))
502     F->addFnAttr(llvm::Attribute::NoUnwind);
503 
504   if (D->hasAttr<NakedAttr>()) {
505     // Naked implies noinline: we should not be inlining such functions.
506     F->addFnAttr(llvm::Attribute::Naked);
507     F->addFnAttr(llvm::Attribute::NoInline);
508   }
509 
510   if (D->hasAttr<NoInlineAttr>())
511     F->addFnAttr(llvm::Attribute::NoInline);
512 
513   // (noinline wins over always_inline, and we can't specify both in IR)
514   if (D->hasAttr<AlwaysInlineAttr>() &&
515       !F->hasFnAttr(llvm::Attribute::NoInline))
516     F->addFnAttr(llvm::Attribute::AlwaysInline);
517 
518   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
519     F->setUnnamedAddr(true);
520 
521   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
522     F->addFnAttr(llvm::Attribute::StackProtect);
523   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
524     F->addFnAttr(llvm::Attribute::StackProtectReq);
525 
526   if (LangOpts.AddressSanitizer) {
527     // When AddressSanitizer is enabled, set AddressSafety attribute
528     // unless __attribute__((no_address_safety_analysis)) is used.
529     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
530       F->addFnAttr(llvm::Attribute::AddressSafety);
531   }
532 
533   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
534   if (alignment)
535     F->setAlignment(alignment);
536 
537   // C++ ABI requires 2-byte alignment for member functions.
538   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
539     F->setAlignment(2);
540 }
541 
542 void CodeGenModule::SetCommonAttributes(const Decl *D,
543                                         llvm::GlobalValue *GV) {
544   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
545     setGlobalVisibility(GV, ND);
546   else
547     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
548 
549   if (D->hasAttr<UsedAttr>())
550     AddUsedGlobal(GV);
551 
552   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
553     GV->setSection(SA->getName());
554 
555   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
556 }
557 
558 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
559                                                   llvm::Function *F,
560                                                   const CGFunctionInfo &FI) {
561   SetLLVMFunctionAttributes(D, FI, F);
562   SetLLVMFunctionAttributesForDefinition(D, F);
563 
564   F->setLinkage(llvm::Function::InternalLinkage);
565 
566   SetCommonAttributes(D, F);
567 }
568 
569 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
570                                           llvm::Function *F,
571                                           bool IsIncompleteFunction) {
572   if (unsigned IID = F->getIntrinsicID()) {
573     // If this is an intrinsic function, set the function's attributes
574     // to the intrinsic's attributes.
575     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
576     return;
577   }
578 
579   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
580 
581   if (!IsIncompleteFunction)
582     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
583 
584   // Only a few attributes are set on declarations; these may later be
585   // overridden by a definition.
586 
587   if (FD->hasAttr<DLLImportAttr>()) {
588     F->setLinkage(llvm::Function::DLLImportLinkage);
589   } else if (FD->hasAttr<WeakAttr>() ||
590              FD->isWeakImported()) {
591     // "extern_weak" is overloaded in LLVM; we probably should have
592     // separate linkage types for this.
593     F->setLinkage(llvm::Function::ExternalWeakLinkage);
594   } else {
595     F->setLinkage(llvm::Function::ExternalLinkage);
596 
597     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
598     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
599       F->setVisibility(GetLLVMVisibility(LV.visibility()));
600     }
601   }
602 
603   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
604     F->setSection(SA->getName());
605 }
606 
607 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
608   assert(!GV->isDeclaration() &&
609          "Only globals with definition can force usage.");
610   LLVMUsed.push_back(GV);
611 }
612 
613 void CodeGenModule::EmitLLVMUsed() {
614   // Don't create llvm.used if there is no need.
615   if (LLVMUsed.empty())
616     return;
617 
618   // Convert LLVMUsed to what ConstantArray needs.
619   SmallVector<llvm::Constant*, 8> UsedArray;
620   UsedArray.resize(LLVMUsed.size());
621   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
622     UsedArray[i] =
623      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
624                                     Int8PtrTy);
625   }
626 
627   if (UsedArray.empty())
628     return;
629   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
630 
631   llvm::GlobalVariable *GV =
632     new llvm::GlobalVariable(getModule(), ATy, false,
633                              llvm::GlobalValue::AppendingLinkage,
634                              llvm::ConstantArray::get(ATy, UsedArray),
635                              "llvm.used");
636 
637   GV->setSection("llvm.metadata");
638 }
639 
640 void CodeGenModule::EmitDeferred() {
641   // Emit code for any potentially referenced deferred decls.  Since a
642   // previously unused static decl may become used during the generation of code
643   // for a static function, iterate until no changes are made.
644 
645   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
646     if (!DeferredVTables.empty()) {
647       const CXXRecordDecl *RD = DeferredVTables.back();
648       DeferredVTables.pop_back();
649       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
650       continue;
651     }
652 
653     GlobalDecl D = DeferredDeclsToEmit.back();
654     DeferredDeclsToEmit.pop_back();
655 
656     // Check to see if we've already emitted this.  This is necessary
657     // for a couple of reasons: first, decls can end up in the
658     // deferred-decls queue multiple times, and second, decls can end
659     // up with definitions in unusual ways (e.g. by an extern inline
660     // function acquiring a strong function redefinition).  Just
661     // ignore these cases.
662     //
663     // TODO: That said, looking this up multiple times is very wasteful.
664     StringRef Name = getMangledName(D);
665     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
666     assert(CGRef && "Deferred decl wasn't referenced?");
667 
668     if (!CGRef->isDeclaration())
669       continue;
670 
671     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
672     // purposes an alias counts as a definition.
673     if (isa<llvm::GlobalAlias>(CGRef))
674       continue;
675 
676     // Otherwise, emit the definition and move on to the next one.
677     EmitGlobalDefinition(D);
678   }
679 }
680 
681 void CodeGenModule::EmitGlobalAnnotations() {
682   if (Annotations.empty())
683     return;
684 
685   // Create a new global variable for the ConstantStruct in the Module.
686   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
687     Annotations[0]->getType(), Annotations.size()), Annotations);
688   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
689     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
690     "llvm.global.annotations");
691   gv->setSection(AnnotationSection);
692 }
693 
694 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
695   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
696   if (i != AnnotationStrings.end())
697     return i->second;
698 
699   // Not found yet, create a new global.
700   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
701   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
702     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
703   gv->setSection(AnnotationSection);
704   gv->setUnnamedAddr(true);
705   AnnotationStrings[Str] = gv;
706   return gv;
707 }
708 
709 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
710   SourceManager &SM = getContext().getSourceManager();
711   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
712   if (PLoc.isValid())
713     return EmitAnnotationString(PLoc.getFilename());
714   return EmitAnnotationString(SM.getBufferName(Loc));
715 }
716 
717 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
718   SourceManager &SM = getContext().getSourceManager();
719   PresumedLoc PLoc = SM.getPresumedLoc(L);
720   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
721     SM.getExpansionLineNumber(L);
722   return llvm::ConstantInt::get(Int32Ty, LineNo);
723 }
724 
725 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
726                                                 const AnnotateAttr *AA,
727                                                 SourceLocation L) {
728   // Get the globals for file name, annotation, and the line number.
729   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
730                  *UnitGV = EmitAnnotationUnit(L),
731                  *LineNoCst = EmitAnnotationLineNo(L);
732 
733   // Create the ConstantStruct for the global annotation.
734   llvm::Constant *Fields[4] = {
735     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
736     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
737     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
738     LineNoCst
739   };
740   return llvm::ConstantStruct::getAnon(Fields);
741 }
742 
743 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
744                                          llvm::GlobalValue *GV) {
745   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
746   // Get the struct elements for these annotations.
747   for (specific_attr_iterator<AnnotateAttr>
748        ai = D->specific_attr_begin<AnnotateAttr>(),
749        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
750     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
751 }
752 
753 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
754   // Never defer when EmitAllDecls is specified.
755   if (LangOpts.EmitAllDecls)
756     return false;
757 
758   return !getContext().DeclMustBeEmitted(Global);
759 }
760 
761 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
762   const AliasAttr *AA = VD->getAttr<AliasAttr>();
763   assert(AA && "No alias?");
764 
765   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
766 
767   // See if there is already something with the target's name in the module.
768   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
769 
770   llvm::Constant *Aliasee;
771   if (isa<llvm::FunctionType>(DeclTy))
772     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
773                                       /*ForVTable=*/false);
774   else
775     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
776                                     llvm::PointerType::getUnqual(DeclTy), 0);
777   if (!Entry) {
778     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
779     F->setLinkage(llvm::Function::ExternalWeakLinkage);
780     WeakRefReferences.insert(F);
781   }
782 
783   return Aliasee;
784 }
785 
786 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
787   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
788 
789   // Weak references don't produce any output by themselves.
790   if (Global->hasAttr<WeakRefAttr>())
791     return;
792 
793   // If this is an alias definition (which otherwise looks like a declaration)
794   // emit it now.
795   if (Global->hasAttr<AliasAttr>())
796     return EmitAliasDefinition(GD);
797 
798   // If this is CUDA, be selective about which declarations we emit.
799   if (LangOpts.CUDA) {
800     if (CodeGenOpts.CUDAIsDevice) {
801       if (!Global->hasAttr<CUDADeviceAttr>() &&
802           !Global->hasAttr<CUDAGlobalAttr>() &&
803           !Global->hasAttr<CUDAConstantAttr>() &&
804           !Global->hasAttr<CUDASharedAttr>())
805         return;
806     } else {
807       if (!Global->hasAttr<CUDAHostAttr>() && (
808             Global->hasAttr<CUDADeviceAttr>() ||
809             Global->hasAttr<CUDAConstantAttr>() ||
810             Global->hasAttr<CUDASharedAttr>()))
811         return;
812     }
813   }
814 
815   // Ignore declarations, they will be emitted on their first use.
816   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
817     // Forward declarations are emitted lazily on first use.
818     if (!FD->doesThisDeclarationHaveABody()) {
819       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
820         return;
821 
822       const FunctionDecl *InlineDefinition = 0;
823       FD->getBody(InlineDefinition);
824 
825       StringRef MangledName = getMangledName(GD);
826       DeferredDecls.erase(MangledName);
827       EmitGlobalDefinition(InlineDefinition);
828       return;
829     }
830   } else {
831     const VarDecl *VD = cast<VarDecl>(Global);
832     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
833 
834     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
835       return;
836   }
837 
838   // Defer code generation when possible if this is a static definition, inline
839   // function etc.  These we only want to emit if they are used.
840   if (!MayDeferGeneration(Global)) {
841     // Emit the definition if it can't be deferred.
842     EmitGlobalDefinition(GD);
843     return;
844   }
845 
846   // If we're deferring emission of a C++ variable with an
847   // initializer, remember the order in which it appeared in the file.
848   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
849       cast<VarDecl>(Global)->hasInit()) {
850     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
851     CXXGlobalInits.push_back(0);
852   }
853 
854   // If the value has already been used, add it directly to the
855   // DeferredDeclsToEmit list.
856   StringRef MangledName = getMangledName(GD);
857   if (GetGlobalValue(MangledName))
858     DeferredDeclsToEmit.push_back(GD);
859   else {
860     // Otherwise, remember that we saw a deferred decl with this name.  The
861     // first use of the mangled name will cause it to move into
862     // DeferredDeclsToEmit.
863     DeferredDecls[MangledName] = GD;
864   }
865 }
866 
867 namespace {
868   struct FunctionIsDirectlyRecursive :
869     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
870     const StringRef Name;
871     const Builtin::Context &BI;
872     bool Result;
873     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
874       Name(N), BI(C), Result(false) {
875     }
876     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
877 
878     bool TraverseCallExpr(CallExpr *E) {
879       const FunctionDecl *FD = E->getDirectCallee();
880       if (!FD)
881         return true;
882       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
883       if (Attr && Name == Attr->getLabel()) {
884         Result = true;
885         return false;
886       }
887       unsigned BuiltinID = FD->getBuiltinID();
888       if (!BuiltinID)
889         return true;
890       StringRef BuiltinName = BI.GetName(BuiltinID);
891       if (BuiltinName.startswith("__builtin_") &&
892           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
893         Result = true;
894         return false;
895       }
896       return true;
897     }
898   };
899 }
900 
901 // isTriviallyRecursive - Check if this function calls another
902 // decl that, because of the asm attribute or the other decl being a builtin,
903 // ends up pointing to itself.
904 bool
905 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
906   StringRef Name;
907   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
908     // asm labels are a special kind of mangling we have to support.
909     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
910     if (!Attr)
911       return false;
912     Name = Attr->getLabel();
913   } else {
914     Name = FD->getName();
915   }
916 
917   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
918   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
919   return Walker.Result;
920 }
921 
922 bool
923 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
924   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
925     return true;
926   if (CodeGenOpts.OptimizationLevel == 0 &&
927       !F->hasAttr<AlwaysInlineAttr>())
928     return false;
929   // PR9614. Avoid cases where the source code is lying to us. An available
930   // externally function should have an equivalent function somewhere else,
931   // but a function that calls itself is clearly not equivalent to the real
932   // implementation.
933   // This happens in glibc's btowc and in some configure checks.
934   return !isTriviallyRecursive(F);
935 }
936 
937 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
938   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
939 
940   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
941                                  Context.getSourceManager(),
942                                  "Generating code for declaration");
943 
944   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
945     // At -O0, don't generate IR for functions with available_externally
946     // linkage.
947     if (!shouldEmitFunction(Function))
948       return;
949 
950     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
951       // Make sure to emit the definition(s) before we emit the thunks.
952       // This is necessary for the generation of certain thunks.
953       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
954         EmitCXXConstructor(CD, GD.getCtorType());
955       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
956         EmitCXXDestructor(DD, GD.getDtorType());
957       else
958         EmitGlobalFunctionDefinition(GD);
959 
960       if (Method->isVirtual())
961         getVTables().EmitThunks(GD);
962 
963       return;
964     }
965 
966     return EmitGlobalFunctionDefinition(GD);
967   }
968 
969   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
970     return EmitGlobalVarDefinition(VD);
971 
972   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
973 }
974 
975 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
976 /// module, create and return an llvm Function with the specified type. If there
977 /// is something in the module with the specified name, return it potentially
978 /// bitcasted to the right type.
979 ///
980 /// If D is non-null, it specifies a decl that correspond to this.  This is used
981 /// to set the attributes on the function when it is first created.
982 llvm::Constant *
983 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
984                                        llvm::Type *Ty,
985                                        GlobalDecl D, bool ForVTable,
986                                        llvm::Attributes ExtraAttrs) {
987   // Lookup the entry, lazily creating it if necessary.
988   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
989   if (Entry) {
990     if (WeakRefReferences.count(Entry)) {
991       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
992       if (FD && !FD->hasAttr<WeakAttr>())
993         Entry->setLinkage(llvm::Function::ExternalLinkage);
994 
995       WeakRefReferences.erase(Entry);
996     }
997 
998     if (Entry->getType()->getElementType() == Ty)
999       return Entry;
1000 
1001     // Make sure the result is of the correct type.
1002     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1003   }
1004 
1005   // This function doesn't have a complete type (for example, the return
1006   // type is an incomplete struct). Use a fake type instead, and make
1007   // sure not to try to set attributes.
1008   bool IsIncompleteFunction = false;
1009 
1010   llvm::FunctionType *FTy;
1011   if (isa<llvm::FunctionType>(Ty)) {
1012     FTy = cast<llvm::FunctionType>(Ty);
1013   } else {
1014     FTy = llvm::FunctionType::get(VoidTy, false);
1015     IsIncompleteFunction = true;
1016   }
1017 
1018   llvm::Function *F = llvm::Function::Create(FTy,
1019                                              llvm::Function::ExternalLinkage,
1020                                              MangledName, &getModule());
1021   assert(F->getName() == MangledName && "name was uniqued!");
1022   if (D.getDecl())
1023     SetFunctionAttributes(D, F, IsIncompleteFunction);
1024   if (ExtraAttrs != llvm::Attribute::None)
1025     F->addFnAttr(ExtraAttrs);
1026 
1027   // This is the first use or definition of a mangled name.  If there is a
1028   // deferred decl with this name, remember that we need to emit it at the end
1029   // of the file.
1030   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1031   if (DDI != DeferredDecls.end()) {
1032     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1033     // list, and remove it from DeferredDecls (since we don't need it anymore).
1034     DeferredDeclsToEmit.push_back(DDI->second);
1035     DeferredDecls.erase(DDI);
1036 
1037   // Otherwise, there are cases we have to worry about where we're
1038   // using a declaration for which we must emit a definition but where
1039   // we might not find a top-level definition:
1040   //   - member functions defined inline in their classes
1041   //   - friend functions defined inline in some class
1042   //   - special member functions with implicit definitions
1043   // If we ever change our AST traversal to walk into class methods,
1044   // this will be unnecessary.
1045   //
1046   // We also don't emit a definition for a function if it's going to be an entry
1047   // in a vtable, unless it's already marked as used.
1048   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1049     // Look for a declaration that's lexically in a record.
1050     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1051     do {
1052       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1053         if (FD->isImplicit() && !ForVTable) {
1054           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1055           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1056           break;
1057         } else if (FD->doesThisDeclarationHaveABody()) {
1058           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1059           break;
1060         }
1061       }
1062       FD = FD->getPreviousDecl();
1063     } while (FD);
1064   }
1065 
1066   // Make sure the result is of the requested type.
1067   if (!IsIncompleteFunction) {
1068     assert(F->getType()->getElementType() == Ty);
1069     return F;
1070   }
1071 
1072   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1073   return llvm::ConstantExpr::getBitCast(F, PTy);
1074 }
1075 
1076 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1077 /// non-null, then this function will use the specified type if it has to
1078 /// create it (this occurs when we see a definition of the function).
1079 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1080                                                  llvm::Type *Ty,
1081                                                  bool ForVTable) {
1082   // If there was no specific requested type, just convert it now.
1083   if (!Ty)
1084     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1085 
1086   StringRef MangledName = getMangledName(GD);
1087   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1088 }
1089 
1090 /// CreateRuntimeFunction - Create a new runtime function with the specified
1091 /// type and name.
1092 llvm::Constant *
1093 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1094                                      StringRef Name,
1095                                      llvm::Attributes ExtraAttrs) {
1096   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1097                                  ExtraAttrs);
1098 }
1099 
1100 /// isTypeConstant - Determine whether an object of this type can be emitted
1101 /// as a constant.
1102 ///
1103 /// If ExcludeCtor is true, the duration when the object's constructor runs
1104 /// will not be considered. The caller will need to verify that the object is
1105 /// not written to during its construction.
1106 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1107   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1108     return false;
1109 
1110   if (Context.getLangOpts().CPlusPlus) {
1111     if (const CXXRecordDecl *Record
1112           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1113       return ExcludeCtor && !Record->hasMutableFields() &&
1114              Record->hasTrivialDestructor();
1115   }
1116 
1117   return true;
1118 }
1119 
1120 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1121 /// create and return an llvm GlobalVariable with the specified type.  If there
1122 /// is something in the module with the specified name, return it potentially
1123 /// bitcasted to the right type.
1124 ///
1125 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1126 /// to set the attributes on the global when it is first created.
1127 llvm::Constant *
1128 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1129                                      llvm::PointerType *Ty,
1130                                      const VarDecl *D,
1131                                      bool UnnamedAddr) {
1132   // Lookup the entry, lazily creating it if necessary.
1133   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1134   if (Entry) {
1135     if (WeakRefReferences.count(Entry)) {
1136       if (D && !D->hasAttr<WeakAttr>())
1137         Entry->setLinkage(llvm::Function::ExternalLinkage);
1138 
1139       WeakRefReferences.erase(Entry);
1140     }
1141 
1142     if (UnnamedAddr)
1143       Entry->setUnnamedAddr(true);
1144 
1145     if (Entry->getType() == Ty)
1146       return Entry;
1147 
1148     // Make sure the result is of the correct type.
1149     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1150   }
1151 
1152   // This is the first use or definition of a mangled name.  If there is a
1153   // deferred decl with this name, remember that we need to emit it at the end
1154   // of the file.
1155   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1156   if (DDI != DeferredDecls.end()) {
1157     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1158     // list, and remove it from DeferredDecls (since we don't need it anymore).
1159     DeferredDeclsToEmit.push_back(DDI->second);
1160     DeferredDecls.erase(DDI);
1161   }
1162 
1163   llvm::GlobalVariable *GV =
1164     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1165                              llvm::GlobalValue::ExternalLinkage,
1166                              0, MangledName, 0,
1167                              false, Ty->getAddressSpace());
1168 
1169   // Handle things which are present even on external declarations.
1170   if (D) {
1171     // FIXME: This code is overly simple and should be merged with other global
1172     // handling.
1173     GV->setConstant(isTypeConstant(D->getType(), false));
1174 
1175     // Set linkage and visibility in case we never see a definition.
1176     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1177     if (LV.linkage() != ExternalLinkage) {
1178       // Don't set internal linkage on declarations.
1179     } else {
1180       if (D->hasAttr<DLLImportAttr>())
1181         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1182       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1183         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1184 
1185       // Set visibility on a declaration only if it's explicit.
1186       if (LV.visibilityExplicit())
1187         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1188     }
1189 
1190     GV->setThreadLocal(D->isThreadSpecified());
1191   }
1192 
1193   return GV;
1194 }
1195 
1196 
1197 llvm::GlobalVariable *
1198 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1199                                       llvm::Type *Ty,
1200                                       llvm::GlobalValue::LinkageTypes Linkage) {
1201   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1202   llvm::GlobalVariable *OldGV = 0;
1203 
1204 
1205   if (GV) {
1206     // Check if the variable has the right type.
1207     if (GV->getType()->getElementType() == Ty)
1208       return GV;
1209 
1210     // Because C++ name mangling, the only way we can end up with an already
1211     // existing global with the same name is if it has been declared extern "C".
1212       assert(GV->isDeclaration() && "Declaration has wrong type!");
1213     OldGV = GV;
1214   }
1215 
1216   // Create a new variable.
1217   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1218                                 Linkage, 0, Name);
1219 
1220   if (OldGV) {
1221     // Replace occurrences of the old variable if needed.
1222     GV->takeName(OldGV);
1223 
1224     if (!OldGV->use_empty()) {
1225       llvm::Constant *NewPtrForOldDecl =
1226       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1227       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1228     }
1229 
1230     OldGV->eraseFromParent();
1231   }
1232 
1233   return GV;
1234 }
1235 
1236 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1237 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1238 /// then it will be greated with the specified type instead of whatever the
1239 /// normal requested type would be.
1240 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1241                                                   llvm::Type *Ty) {
1242   assert(D->hasGlobalStorage() && "Not a global variable");
1243   QualType ASTTy = D->getType();
1244   if (Ty == 0)
1245     Ty = getTypes().ConvertTypeForMem(ASTTy);
1246 
1247   llvm::PointerType *PTy =
1248     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1249 
1250   StringRef MangledName = getMangledName(D);
1251   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1252 }
1253 
1254 /// CreateRuntimeVariable - Create a new runtime global variable with the
1255 /// specified type and name.
1256 llvm::Constant *
1257 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1258                                      StringRef Name) {
1259   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1260                                true);
1261 }
1262 
1263 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1264   assert(!D->getInit() && "Cannot emit definite definitions here!");
1265 
1266   if (MayDeferGeneration(D)) {
1267     // If we have not seen a reference to this variable yet, place it
1268     // into the deferred declarations table to be emitted if needed
1269     // later.
1270     StringRef MangledName = getMangledName(D);
1271     if (!GetGlobalValue(MangledName)) {
1272       DeferredDecls[MangledName] = D;
1273       return;
1274     }
1275   }
1276 
1277   // The tentative definition is the only definition.
1278   EmitGlobalVarDefinition(D);
1279 }
1280 
1281 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1282   if (DefinitionRequired)
1283     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1284 }
1285 
1286 llvm::GlobalVariable::LinkageTypes
1287 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1288   if (RD->getLinkage() != ExternalLinkage)
1289     return llvm::GlobalVariable::InternalLinkage;
1290 
1291   if (const CXXMethodDecl *KeyFunction
1292                                     = RD->getASTContext().getKeyFunction(RD)) {
1293     // If this class has a key function, use that to determine the linkage of
1294     // the vtable.
1295     const FunctionDecl *Def = 0;
1296     if (KeyFunction->hasBody(Def))
1297       KeyFunction = cast<CXXMethodDecl>(Def);
1298 
1299     switch (KeyFunction->getTemplateSpecializationKind()) {
1300       case TSK_Undeclared:
1301       case TSK_ExplicitSpecialization:
1302         // When compiling with optimizations turned on, we emit all vtables,
1303         // even if the key function is not defined in the current translation
1304         // unit. If this is the case, use available_externally linkage.
1305         if (!Def && CodeGenOpts.OptimizationLevel)
1306           return llvm::GlobalVariable::AvailableExternallyLinkage;
1307 
1308         if (KeyFunction->isInlined())
1309           return !Context.getLangOpts().AppleKext ?
1310                    llvm::GlobalVariable::LinkOnceODRLinkage :
1311                    llvm::Function::InternalLinkage;
1312 
1313         return llvm::GlobalVariable::ExternalLinkage;
1314 
1315       case TSK_ImplicitInstantiation:
1316         return !Context.getLangOpts().AppleKext ?
1317                  llvm::GlobalVariable::LinkOnceODRLinkage :
1318                  llvm::Function::InternalLinkage;
1319 
1320       case TSK_ExplicitInstantiationDefinition:
1321         return !Context.getLangOpts().AppleKext ?
1322                  llvm::GlobalVariable::WeakODRLinkage :
1323                  llvm::Function::InternalLinkage;
1324 
1325       case TSK_ExplicitInstantiationDeclaration:
1326         // FIXME: Use available_externally linkage. However, this currently
1327         // breaks LLVM's build due to undefined symbols.
1328         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1329         return !Context.getLangOpts().AppleKext ?
1330                  llvm::GlobalVariable::LinkOnceODRLinkage :
1331                  llvm::Function::InternalLinkage;
1332     }
1333   }
1334 
1335   if (Context.getLangOpts().AppleKext)
1336     return llvm::Function::InternalLinkage;
1337 
1338   switch (RD->getTemplateSpecializationKind()) {
1339   case TSK_Undeclared:
1340   case TSK_ExplicitSpecialization:
1341   case TSK_ImplicitInstantiation:
1342     // FIXME: Use available_externally linkage. However, this currently
1343     // breaks LLVM's build due to undefined symbols.
1344     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1345   case TSK_ExplicitInstantiationDeclaration:
1346     return llvm::GlobalVariable::LinkOnceODRLinkage;
1347 
1348   case TSK_ExplicitInstantiationDefinition:
1349       return llvm::GlobalVariable::WeakODRLinkage;
1350   }
1351 
1352   llvm_unreachable("Invalid TemplateSpecializationKind!");
1353 }
1354 
1355 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1356     return Context.toCharUnitsFromBits(
1357       TheTargetData.getTypeStoreSizeInBits(Ty));
1358 }
1359 
1360 llvm::Constant *
1361 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1362                                                        const Expr *rawInit) {
1363   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1364   if (const ExprWithCleanups *withCleanups =
1365           dyn_cast<ExprWithCleanups>(rawInit)) {
1366     cleanups = withCleanups->getObjects();
1367     rawInit = withCleanups->getSubExpr();
1368   }
1369 
1370   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1371   if (!init || !init->initializesStdInitializerList() ||
1372       init->getNumInits() == 0)
1373     return 0;
1374 
1375   ASTContext &ctx = getContext();
1376   unsigned numInits = init->getNumInits();
1377   // FIXME: This check is here because we would otherwise silently miscompile
1378   // nested global std::initializer_lists. Better would be to have a real
1379   // implementation.
1380   for (unsigned i = 0; i < numInits; ++i) {
1381     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1382     if (inner && inner->initializesStdInitializerList()) {
1383       ErrorUnsupported(inner, "nested global std::initializer_list");
1384       return 0;
1385     }
1386   }
1387 
1388   // Synthesize a fake VarDecl for the array and initialize that.
1389   QualType elementType = init->getInit(0)->getType();
1390   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1391   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1392                                                 ArrayType::Normal, 0);
1393 
1394   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1395   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1396                                               arrayType, D->getLocation());
1397   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1398                                                           D->getDeclContext()),
1399                                           D->getLocStart(), D->getLocation(),
1400                                           name, arrayType, sourceInfo,
1401                                           SC_Static, SC_Static);
1402 
1403   // Now clone the InitListExpr to initialize the array instead.
1404   // Incredible hack: we want to use the existing InitListExpr here, so we need
1405   // to tell it that it no longer initializes a std::initializer_list.
1406   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(),
1407                                     const_cast<InitListExpr*>(init)->getInits(),
1408                                                    init->getNumInits(),
1409                                                    init->getRBraceLoc());
1410   arrayInit->setType(arrayType);
1411 
1412   if (!cleanups.empty())
1413     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1414 
1415   backingArray->setInit(arrayInit);
1416 
1417   // Emit the definition of the array.
1418   EmitGlobalVarDefinition(backingArray);
1419 
1420   // Inspect the initializer list to validate it and determine its type.
1421   // FIXME: doing this every time is probably inefficient; caching would be nice
1422   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1423   RecordDecl::field_iterator field = record->field_begin();
1424   if (field == record->field_end()) {
1425     ErrorUnsupported(D, "weird std::initializer_list");
1426     return 0;
1427   }
1428   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1429   // Start pointer.
1430   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1431     ErrorUnsupported(D, "weird std::initializer_list");
1432     return 0;
1433   }
1434   ++field;
1435   if (field == record->field_end()) {
1436     ErrorUnsupported(D, "weird std::initializer_list");
1437     return 0;
1438   }
1439   bool isStartEnd = false;
1440   if (ctx.hasSameType(field->getType(), elementPtr)) {
1441     // End pointer.
1442     isStartEnd = true;
1443   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1444     ErrorUnsupported(D, "weird std::initializer_list");
1445     return 0;
1446   }
1447 
1448   // Now build an APValue representing the std::initializer_list.
1449   APValue initListValue(APValue::UninitStruct(), 0, 2);
1450   APValue &startField = initListValue.getStructField(0);
1451   APValue::LValuePathEntry startOffsetPathEntry;
1452   startOffsetPathEntry.ArrayIndex = 0;
1453   startField = APValue(APValue::LValueBase(backingArray),
1454                        CharUnits::fromQuantity(0),
1455                        llvm::makeArrayRef(startOffsetPathEntry),
1456                        /*IsOnePastTheEnd=*/false, 0);
1457 
1458   if (isStartEnd) {
1459     APValue &endField = initListValue.getStructField(1);
1460     APValue::LValuePathEntry endOffsetPathEntry;
1461     endOffsetPathEntry.ArrayIndex = numInits;
1462     endField = APValue(APValue::LValueBase(backingArray),
1463                        ctx.getTypeSizeInChars(elementType) * numInits,
1464                        llvm::makeArrayRef(endOffsetPathEntry),
1465                        /*IsOnePastTheEnd=*/true, 0);
1466   } else {
1467     APValue &sizeField = initListValue.getStructField(1);
1468     sizeField = APValue(llvm::APSInt(numElements));
1469   }
1470 
1471   // Emit the constant for the initializer_list.
1472   llvm::Constant *llvmInit =
1473       EmitConstantValueForMemory(initListValue, D->getType());
1474   assert(llvmInit && "failed to initialize as constant");
1475   return llvmInit;
1476 }
1477 
1478 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1479   llvm::Constant *Init = 0;
1480   QualType ASTTy = D->getType();
1481   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1482   bool NeedsGlobalCtor = false;
1483   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1484 
1485   const VarDecl *InitDecl;
1486   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1487 
1488   if (!InitExpr) {
1489     // This is a tentative definition; tentative definitions are
1490     // implicitly initialized with { 0 }.
1491     //
1492     // Note that tentative definitions are only emitted at the end of
1493     // a translation unit, so they should never have incomplete
1494     // type. In addition, EmitTentativeDefinition makes sure that we
1495     // never attempt to emit a tentative definition if a real one
1496     // exists. A use may still exists, however, so we still may need
1497     // to do a RAUW.
1498     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1499     Init = EmitNullConstant(D->getType());
1500   } else {
1501     // If this is a std::initializer_list, emit the special initializer.
1502     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1503     // An empty init list will perform zero-initialization, which happens
1504     // to be exactly what we want.
1505     // FIXME: It does so in a global constructor, which is *not* what we
1506     // want.
1507 
1508     if (!Init)
1509       Init = EmitConstantInit(*InitDecl);
1510     if (!Init) {
1511       QualType T = InitExpr->getType();
1512       if (D->getType()->isReferenceType())
1513         T = D->getType();
1514 
1515       if (getLangOpts().CPlusPlus) {
1516         Init = EmitNullConstant(T);
1517         NeedsGlobalCtor = true;
1518       } else {
1519         ErrorUnsupported(D, "static initializer");
1520         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1521       }
1522     } else {
1523       // We don't need an initializer, so remove the entry for the delayed
1524       // initializer position (just in case this entry was delayed) if we
1525       // also don't need to register a destructor.
1526       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1527         DelayedCXXInitPosition.erase(D);
1528     }
1529   }
1530 
1531   llvm::Type* InitType = Init->getType();
1532   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1533 
1534   // Strip off a bitcast if we got one back.
1535   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1536     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1537            // all zero index gep.
1538            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1539     Entry = CE->getOperand(0);
1540   }
1541 
1542   // Entry is now either a Function or GlobalVariable.
1543   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1544 
1545   // We have a definition after a declaration with the wrong type.
1546   // We must make a new GlobalVariable* and update everything that used OldGV
1547   // (a declaration or tentative definition) with the new GlobalVariable*
1548   // (which will be a definition).
1549   //
1550   // This happens if there is a prototype for a global (e.g.
1551   // "extern int x[];") and then a definition of a different type (e.g.
1552   // "int x[10];"). This also happens when an initializer has a different type
1553   // from the type of the global (this happens with unions).
1554   if (GV == 0 ||
1555       GV->getType()->getElementType() != InitType ||
1556       GV->getType()->getAddressSpace() !=
1557         getContext().getTargetAddressSpace(ASTTy)) {
1558 
1559     // Move the old entry aside so that we'll create a new one.
1560     Entry->setName(StringRef());
1561 
1562     // Make a new global with the correct type, this is now guaranteed to work.
1563     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1564 
1565     // Replace all uses of the old global with the new global
1566     llvm::Constant *NewPtrForOldDecl =
1567         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1568     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1569 
1570     // Erase the old global, since it is no longer used.
1571     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1572   }
1573 
1574   if (D->hasAttr<AnnotateAttr>())
1575     AddGlobalAnnotations(D, GV);
1576 
1577   GV->setInitializer(Init);
1578 
1579   // If it is safe to mark the global 'constant', do so now.
1580   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1581                   isTypeConstant(D->getType(), true));
1582 
1583   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1584 
1585   // Set the llvm linkage type as appropriate.
1586   llvm::GlobalValue::LinkageTypes Linkage =
1587     GetLLVMLinkageVarDefinition(D, GV);
1588   GV->setLinkage(Linkage);
1589   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1590     // common vars aren't constant even if declared const.
1591     GV->setConstant(false);
1592 
1593   SetCommonAttributes(D, GV);
1594 
1595   // Emit the initializer function if necessary.
1596   if (NeedsGlobalCtor || NeedsGlobalDtor)
1597     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1598 
1599   // Emit global variable debug information.
1600   if (CGDebugInfo *DI = getModuleDebugInfo())
1601     DI->EmitGlobalVariable(GV, D);
1602 }
1603 
1604 llvm::GlobalValue::LinkageTypes
1605 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1606                                            llvm::GlobalVariable *GV) {
1607   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1608   if (Linkage == GVA_Internal)
1609     return llvm::Function::InternalLinkage;
1610   else if (D->hasAttr<DLLImportAttr>())
1611     return llvm::Function::DLLImportLinkage;
1612   else if (D->hasAttr<DLLExportAttr>())
1613     return llvm::Function::DLLExportLinkage;
1614   else if (D->hasAttr<WeakAttr>()) {
1615     if (GV->isConstant())
1616       return llvm::GlobalVariable::WeakODRLinkage;
1617     else
1618       return llvm::GlobalVariable::WeakAnyLinkage;
1619   } else if (Linkage == GVA_TemplateInstantiation ||
1620              Linkage == GVA_ExplicitTemplateInstantiation)
1621     return llvm::GlobalVariable::WeakODRLinkage;
1622   else if (!getLangOpts().CPlusPlus &&
1623            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1624              D->getAttr<CommonAttr>()) &&
1625            !D->hasExternalStorage() && !D->getInit() &&
1626            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1627            !D->getAttr<WeakImportAttr>()) {
1628     // Thread local vars aren't considered common linkage.
1629     return llvm::GlobalVariable::CommonLinkage;
1630   }
1631   return llvm::GlobalVariable::ExternalLinkage;
1632 }
1633 
1634 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1635 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1636 /// existing call uses of the old function in the module, this adjusts them to
1637 /// call the new function directly.
1638 ///
1639 /// This is not just a cleanup: the always_inline pass requires direct calls to
1640 /// functions to be able to inline them.  If there is a bitcast in the way, it
1641 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1642 /// run at -O0.
1643 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1644                                                       llvm::Function *NewFn) {
1645   // If we're redefining a global as a function, don't transform it.
1646   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1647   if (OldFn == 0) return;
1648 
1649   llvm::Type *NewRetTy = NewFn->getReturnType();
1650   SmallVector<llvm::Value*, 4> ArgList;
1651 
1652   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1653        UI != E; ) {
1654     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1655     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1656     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1657     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1658     llvm::CallSite CS(CI);
1659     if (!CI || !CS.isCallee(I)) continue;
1660 
1661     // If the return types don't match exactly, and if the call isn't dead, then
1662     // we can't transform this call.
1663     if (CI->getType() != NewRetTy && !CI->use_empty())
1664       continue;
1665 
1666     // Get the attribute list.
1667     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1668     llvm::AttrListPtr AttrList = CI->getAttributes();
1669 
1670     // Get any return attributes.
1671     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1672 
1673     // Add the return attributes.
1674     if (RAttrs)
1675       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1676 
1677     // If the function was passed too few arguments, don't transform.  If extra
1678     // arguments were passed, we silently drop them.  If any of the types
1679     // mismatch, we don't transform.
1680     unsigned ArgNo = 0;
1681     bool DontTransform = false;
1682     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1683          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1684       if (CS.arg_size() == ArgNo ||
1685           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1686         DontTransform = true;
1687         break;
1688       }
1689 
1690       // Add any parameter attributes.
1691       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1692         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1693     }
1694     if (DontTransform)
1695       continue;
1696 
1697     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1698       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1699 
1700     // Okay, we can transform this.  Create the new call instruction and copy
1701     // over the required information.
1702     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1703     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1704     ArgList.clear();
1705     if (!NewCall->getType()->isVoidTy())
1706       NewCall->takeName(CI);
1707     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1708                                                   AttrVec.end()));
1709     NewCall->setCallingConv(CI->getCallingConv());
1710 
1711     // Finally, remove the old call, replacing any uses with the new one.
1712     if (!CI->use_empty())
1713       CI->replaceAllUsesWith(NewCall);
1714 
1715     // Copy debug location attached to CI.
1716     if (!CI->getDebugLoc().isUnknown())
1717       NewCall->setDebugLoc(CI->getDebugLoc());
1718     CI->eraseFromParent();
1719   }
1720 }
1721 
1722 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1723   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1724   // If we have a definition, this might be a deferred decl. If the
1725   // instantiation is explicit, make sure we emit it at the end.
1726   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1727     GetAddrOfGlobalVar(VD);
1728 }
1729 
1730 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1731   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1732 
1733   // Compute the function info and LLVM type.
1734   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1735   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1736 
1737   // Get or create the prototype for the function.
1738   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1739 
1740   // Strip off a bitcast if we got one back.
1741   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1742     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1743     Entry = CE->getOperand(0);
1744   }
1745 
1746 
1747   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1748     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1749 
1750     // If the types mismatch then we have to rewrite the definition.
1751     assert(OldFn->isDeclaration() &&
1752            "Shouldn't replace non-declaration");
1753 
1754     // F is the Function* for the one with the wrong type, we must make a new
1755     // Function* and update everything that used F (a declaration) with the new
1756     // Function* (which will be a definition).
1757     //
1758     // This happens if there is a prototype for a function
1759     // (e.g. "int f()") and then a definition of a different type
1760     // (e.g. "int f(int x)").  Move the old function aside so that it
1761     // doesn't interfere with GetAddrOfFunction.
1762     OldFn->setName(StringRef());
1763     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1764 
1765     // If this is an implementation of a function without a prototype, try to
1766     // replace any existing uses of the function (which may be calls) with uses
1767     // of the new function
1768     if (D->getType()->isFunctionNoProtoType()) {
1769       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1770       OldFn->removeDeadConstantUsers();
1771     }
1772 
1773     // Replace uses of F with the Function we will endow with a body.
1774     if (!Entry->use_empty()) {
1775       llvm::Constant *NewPtrForOldDecl =
1776         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1777       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1778     }
1779 
1780     // Ok, delete the old function now, which is dead.
1781     OldFn->eraseFromParent();
1782 
1783     Entry = NewFn;
1784   }
1785 
1786   // We need to set linkage and visibility on the function before
1787   // generating code for it because various parts of IR generation
1788   // want to propagate this information down (e.g. to local static
1789   // declarations).
1790   llvm::Function *Fn = cast<llvm::Function>(Entry);
1791   setFunctionLinkage(D, Fn);
1792 
1793   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1794   setGlobalVisibility(Fn, D);
1795 
1796   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1797 
1798   SetFunctionDefinitionAttributes(D, Fn);
1799   SetLLVMFunctionAttributesForDefinition(D, Fn);
1800 
1801   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1802     AddGlobalCtor(Fn, CA->getPriority());
1803   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1804     AddGlobalDtor(Fn, DA->getPriority());
1805   if (D->hasAttr<AnnotateAttr>())
1806     AddGlobalAnnotations(D, Fn);
1807 }
1808 
1809 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1810   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1811   const AliasAttr *AA = D->getAttr<AliasAttr>();
1812   assert(AA && "Not an alias?");
1813 
1814   StringRef MangledName = getMangledName(GD);
1815 
1816   // If there is a definition in the module, then it wins over the alias.
1817   // This is dubious, but allow it to be safe.  Just ignore the alias.
1818   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1819   if (Entry && !Entry->isDeclaration())
1820     return;
1821 
1822   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1823 
1824   // Create a reference to the named value.  This ensures that it is emitted
1825   // if a deferred decl.
1826   llvm::Constant *Aliasee;
1827   if (isa<llvm::FunctionType>(DeclTy))
1828     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1829                                       /*ForVTable=*/false);
1830   else
1831     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1832                                     llvm::PointerType::getUnqual(DeclTy), 0);
1833 
1834   // Create the new alias itself, but don't set a name yet.
1835   llvm::GlobalValue *GA =
1836     new llvm::GlobalAlias(Aliasee->getType(),
1837                           llvm::Function::ExternalLinkage,
1838                           "", Aliasee, &getModule());
1839 
1840   if (Entry) {
1841     assert(Entry->isDeclaration());
1842 
1843     // If there is a declaration in the module, then we had an extern followed
1844     // by the alias, as in:
1845     //   extern int test6();
1846     //   ...
1847     //   int test6() __attribute__((alias("test7")));
1848     //
1849     // Remove it and replace uses of it with the alias.
1850     GA->takeName(Entry);
1851 
1852     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1853                                                           Entry->getType()));
1854     Entry->eraseFromParent();
1855   } else {
1856     GA->setName(MangledName);
1857   }
1858 
1859   // Set attributes which are particular to an alias; this is a
1860   // specialization of the attributes which may be set on a global
1861   // variable/function.
1862   if (D->hasAttr<DLLExportAttr>()) {
1863     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1864       // The dllexport attribute is ignored for undefined symbols.
1865       if (FD->hasBody())
1866         GA->setLinkage(llvm::Function::DLLExportLinkage);
1867     } else {
1868       GA->setLinkage(llvm::Function::DLLExportLinkage);
1869     }
1870   } else if (D->hasAttr<WeakAttr>() ||
1871              D->hasAttr<WeakRefAttr>() ||
1872              D->isWeakImported()) {
1873     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1874   }
1875 
1876   SetCommonAttributes(D, GA);
1877 }
1878 
1879 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1880                                             ArrayRef<llvm::Type*> Tys) {
1881   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1882                                          Tys);
1883 }
1884 
1885 static llvm::StringMapEntry<llvm::Constant*> &
1886 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1887                          const StringLiteral *Literal,
1888                          bool TargetIsLSB,
1889                          bool &IsUTF16,
1890                          unsigned &StringLength) {
1891   StringRef String = Literal->getString();
1892   unsigned NumBytes = String.size();
1893 
1894   // Check for simple case.
1895   if (!Literal->containsNonAsciiOrNull()) {
1896     StringLength = NumBytes;
1897     return Map.GetOrCreateValue(String);
1898   }
1899 
1900   // Otherwise, convert the UTF8 literals into a byte string.
1901   SmallVector<UTF16, 128> ToBuf(NumBytes);
1902   const UTF8 *FromPtr = (UTF8 *)String.data();
1903   UTF16 *ToPtr = &ToBuf[0];
1904 
1905   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1906                            &ToPtr, ToPtr + NumBytes,
1907                            strictConversion);
1908 
1909   // ConvertUTF8toUTF16 returns the length in ToPtr.
1910   StringLength = ToPtr - &ToBuf[0];
1911 
1912   // Render the UTF-16 string into a byte array and convert to the target byte
1913   // order.
1914   //
1915   // FIXME: This isn't something we should need to do here.
1916   SmallString<128> AsBytes;
1917   AsBytes.reserve(StringLength * 2);
1918   for (unsigned i = 0; i != StringLength; ++i) {
1919     unsigned short Val = ToBuf[i];
1920     if (TargetIsLSB) {
1921       AsBytes.push_back(Val & 0xFF);
1922       AsBytes.push_back(Val >> 8);
1923     } else {
1924       AsBytes.push_back(Val >> 8);
1925       AsBytes.push_back(Val & 0xFF);
1926     }
1927   }
1928   // Append one extra null character, the second is automatically added by our
1929   // caller.
1930   AsBytes.push_back(0);
1931 
1932   IsUTF16 = true;
1933   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1934 }
1935 
1936 static llvm::StringMapEntry<llvm::Constant*> &
1937 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1938 		       const StringLiteral *Literal,
1939 		       unsigned &StringLength)
1940 {
1941 	StringRef String = Literal->getString();
1942 	StringLength = String.size();
1943 	return Map.GetOrCreateValue(String);
1944 }
1945 
1946 llvm::Constant *
1947 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1948   unsigned StringLength = 0;
1949   bool isUTF16 = false;
1950   llvm::StringMapEntry<llvm::Constant*> &Entry =
1951     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1952                              getTargetData().isLittleEndian(),
1953                              isUTF16, StringLength);
1954 
1955   if (llvm::Constant *C = Entry.getValue())
1956     return C;
1957 
1958   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1959   llvm::Constant *Zeros[] = { Zero, Zero };
1960 
1961   // If we don't already have it, get __CFConstantStringClassReference.
1962   if (!CFConstantStringClassRef) {
1963     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1964     Ty = llvm::ArrayType::get(Ty, 0);
1965     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1966                                            "__CFConstantStringClassReference");
1967     // Decay array -> ptr
1968     CFConstantStringClassRef =
1969       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1970   }
1971 
1972   QualType CFTy = getContext().getCFConstantStringType();
1973 
1974   llvm::StructType *STy =
1975     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1976 
1977   llvm::Constant *Fields[4];
1978 
1979   // Class pointer.
1980   Fields[0] = CFConstantStringClassRef;
1981 
1982   // Flags.
1983   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1984   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1985     llvm::ConstantInt::get(Ty, 0x07C8);
1986 
1987   // String pointer.
1988   llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext,
1989                                                          Entry.getKey());
1990 
1991   llvm::GlobalValue::LinkageTypes Linkage;
1992   if (isUTF16)
1993     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1994     Linkage = llvm::GlobalValue::InternalLinkage;
1995   else
1996     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1997     // when using private linkage. It is not clear if this is a bug in ld
1998     // or a reasonable new restriction.
1999     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2000 
2001   // Note: -fwritable-strings doesn't make the backing store strings of
2002   // CFStrings writable. (See <rdar://problem/10657500>)
2003   llvm::GlobalVariable *GV =
2004     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2005                              Linkage, C, ".str");
2006   GV->setUnnamedAddr(true);
2007   if (isUTF16) {
2008     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2009     GV->setAlignment(Align.getQuantity());
2010   } else {
2011     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2012     GV->setAlignment(Align.getQuantity());
2013   }
2014   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2015 
2016   // String length.
2017   Ty = getTypes().ConvertType(getContext().LongTy);
2018   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2019 
2020   // The struct.
2021   C = llvm::ConstantStruct::get(STy, Fields);
2022   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2023                                 llvm::GlobalVariable::PrivateLinkage, C,
2024                                 "_unnamed_cfstring_");
2025   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2026     GV->setSection(Sect);
2027   Entry.setValue(GV);
2028 
2029   return GV;
2030 }
2031 
2032 static RecordDecl *
2033 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2034                  DeclContext *DC, IdentifierInfo *Id) {
2035   SourceLocation Loc;
2036   if (Ctx.getLangOpts().CPlusPlus)
2037     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2038   else
2039     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2040 }
2041 
2042 llvm::Constant *
2043 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2044   unsigned StringLength = 0;
2045   llvm::StringMapEntry<llvm::Constant*> &Entry =
2046     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2047 
2048   if (llvm::Constant *C = Entry.getValue())
2049     return C;
2050 
2051   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2052   llvm::Constant *Zeros[] = { Zero, Zero };
2053 
2054   // If we don't already have it, get _NSConstantStringClassReference.
2055   if (!ConstantStringClassRef) {
2056     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2057     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2058     llvm::Constant *GV;
2059     if (LangOpts.ObjCNonFragileABI) {
2060       std::string str =
2061         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2062                             : "OBJC_CLASS_$_" + StringClass;
2063       GV = getObjCRuntime().GetClassGlobal(str);
2064       // Make sure the result is of the correct type.
2065       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2066       ConstantStringClassRef =
2067         llvm::ConstantExpr::getBitCast(GV, PTy);
2068     } else {
2069       std::string str =
2070         StringClass.empty() ? "_NSConstantStringClassReference"
2071                             : "_" + StringClass + "ClassReference";
2072       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2073       GV = CreateRuntimeVariable(PTy, str);
2074       // Decay array -> ptr
2075       ConstantStringClassRef =
2076         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2077     }
2078   }
2079 
2080   if (!NSConstantStringType) {
2081     // Construct the type for a constant NSString.
2082     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2083                                      Context.getTranslationUnitDecl(),
2084                                    &Context.Idents.get("__builtin_NSString"));
2085     D->startDefinition();
2086 
2087     QualType FieldTypes[3];
2088 
2089     // const int *isa;
2090     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2091     // const char *str;
2092     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2093     // unsigned int length;
2094     FieldTypes[2] = Context.UnsignedIntTy;
2095 
2096     // Create fields
2097     for (unsigned i = 0; i < 3; ++i) {
2098       FieldDecl *Field = FieldDecl::Create(Context, D,
2099                                            SourceLocation(),
2100                                            SourceLocation(), 0,
2101                                            FieldTypes[i], /*TInfo=*/0,
2102                                            /*BitWidth=*/0,
2103                                            /*Mutable=*/false,
2104                                            /*HasInit=*/false);
2105       Field->setAccess(AS_public);
2106       D->addDecl(Field);
2107     }
2108 
2109     D->completeDefinition();
2110     QualType NSTy = Context.getTagDeclType(D);
2111     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2112   }
2113 
2114   llvm::Constant *Fields[3];
2115 
2116   // Class pointer.
2117   Fields[0] = ConstantStringClassRef;
2118 
2119   // String pointer.
2120   llvm::Constant *C =
2121     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2122 
2123   llvm::GlobalValue::LinkageTypes Linkage;
2124   bool isConstant;
2125   Linkage = llvm::GlobalValue::PrivateLinkage;
2126   isConstant = !LangOpts.WritableStrings;
2127 
2128   llvm::GlobalVariable *GV =
2129   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2130                            ".str");
2131   GV->setUnnamedAddr(true);
2132   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2133   GV->setAlignment(Align.getQuantity());
2134   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2135 
2136   // String length.
2137   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2138   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2139 
2140   // The struct.
2141   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2142   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2143                                 llvm::GlobalVariable::PrivateLinkage, C,
2144                                 "_unnamed_nsstring_");
2145   // FIXME. Fix section.
2146   if (const char *Sect =
2147         LangOpts.ObjCNonFragileABI
2148           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2149           : getContext().getTargetInfo().getNSStringSection())
2150     GV->setSection(Sect);
2151   Entry.setValue(GV);
2152 
2153   return GV;
2154 }
2155 
2156 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2157   if (ObjCFastEnumerationStateType.isNull()) {
2158     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2159                                      Context.getTranslationUnitDecl(),
2160                       &Context.Idents.get("__objcFastEnumerationState"));
2161     D->startDefinition();
2162 
2163     QualType FieldTypes[] = {
2164       Context.UnsignedLongTy,
2165       Context.getPointerType(Context.getObjCIdType()),
2166       Context.getPointerType(Context.UnsignedLongTy),
2167       Context.getConstantArrayType(Context.UnsignedLongTy,
2168                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2169     };
2170 
2171     for (size_t i = 0; i < 4; ++i) {
2172       FieldDecl *Field = FieldDecl::Create(Context,
2173                                            D,
2174                                            SourceLocation(),
2175                                            SourceLocation(), 0,
2176                                            FieldTypes[i], /*TInfo=*/0,
2177                                            /*BitWidth=*/0,
2178                                            /*Mutable=*/false,
2179                                            /*HasInit=*/false);
2180       Field->setAccess(AS_public);
2181       D->addDecl(Field);
2182     }
2183 
2184     D->completeDefinition();
2185     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2186   }
2187 
2188   return ObjCFastEnumerationStateType;
2189 }
2190 
2191 llvm::Constant *
2192 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2193   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2194 
2195   // Don't emit it as the address of the string, emit the string data itself
2196   // as an inline array.
2197   if (E->getCharByteWidth() == 1) {
2198     SmallString<64> Str(E->getString());
2199 
2200     // Resize the string to the right size, which is indicated by its type.
2201     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2202     Str.resize(CAT->getSize().getZExtValue());
2203     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2204   }
2205 
2206   llvm::ArrayType *AType =
2207     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2208   llvm::Type *ElemTy = AType->getElementType();
2209   unsigned NumElements = AType->getNumElements();
2210 
2211   // Wide strings have either 2-byte or 4-byte elements.
2212   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2213     SmallVector<uint16_t, 32> Elements;
2214     Elements.reserve(NumElements);
2215 
2216     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2217       Elements.push_back(E->getCodeUnit(i));
2218     Elements.resize(NumElements);
2219     return llvm::ConstantDataArray::get(VMContext, Elements);
2220   }
2221 
2222   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2223   SmallVector<uint32_t, 32> Elements;
2224   Elements.reserve(NumElements);
2225 
2226   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2227     Elements.push_back(E->getCodeUnit(i));
2228   Elements.resize(NumElements);
2229   return llvm::ConstantDataArray::get(VMContext, Elements);
2230 }
2231 
2232 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2233 /// constant array for the given string literal.
2234 llvm::Constant *
2235 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2236   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2237   if (S->isAscii() || S->isUTF8()) {
2238     SmallString<64> Str(S->getString());
2239 
2240     // Resize the string to the right size, which is indicated by its type.
2241     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2242     Str.resize(CAT->getSize().getZExtValue());
2243     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2244   }
2245 
2246   // FIXME: the following does not memoize wide strings.
2247   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2248   llvm::GlobalVariable *GV =
2249     new llvm::GlobalVariable(getModule(),C->getType(),
2250                              !LangOpts.WritableStrings,
2251                              llvm::GlobalValue::PrivateLinkage,
2252                              C,".str");
2253 
2254   GV->setAlignment(Align.getQuantity());
2255   GV->setUnnamedAddr(true);
2256   return GV;
2257 }
2258 
2259 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2260 /// array for the given ObjCEncodeExpr node.
2261 llvm::Constant *
2262 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2263   std::string Str;
2264   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2265 
2266   return GetAddrOfConstantCString(Str);
2267 }
2268 
2269 
2270 /// GenerateWritableString -- Creates storage for a string literal.
2271 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2272                                              bool constant,
2273                                              CodeGenModule &CGM,
2274                                              const char *GlobalName,
2275                                              unsigned Alignment) {
2276   // Create Constant for this string literal. Don't add a '\0'.
2277   llvm::Constant *C =
2278       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2279 
2280   // Create a global variable for this string
2281   llvm::GlobalVariable *GV =
2282     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2283                              llvm::GlobalValue::PrivateLinkage,
2284                              C, GlobalName);
2285   GV->setAlignment(Alignment);
2286   GV->setUnnamedAddr(true);
2287   return GV;
2288 }
2289 
2290 /// GetAddrOfConstantString - Returns a pointer to a character array
2291 /// containing the literal. This contents are exactly that of the
2292 /// given string, i.e. it will not be null terminated automatically;
2293 /// see GetAddrOfConstantCString. Note that whether the result is
2294 /// actually a pointer to an LLVM constant depends on
2295 /// Feature.WriteableStrings.
2296 ///
2297 /// The result has pointer to array type.
2298 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2299                                                        const char *GlobalName,
2300                                                        unsigned Alignment) {
2301   // Get the default prefix if a name wasn't specified.
2302   if (!GlobalName)
2303     GlobalName = ".str";
2304 
2305   // Don't share any string literals if strings aren't constant.
2306   if (LangOpts.WritableStrings)
2307     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2308 
2309   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2310     ConstantStringMap.GetOrCreateValue(Str);
2311 
2312   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2313     if (Alignment > GV->getAlignment()) {
2314       GV->setAlignment(Alignment);
2315     }
2316     return GV;
2317   }
2318 
2319   // Create a global variable for this.
2320   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2321                                                    Alignment);
2322   Entry.setValue(GV);
2323   return GV;
2324 }
2325 
2326 /// GetAddrOfConstantCString - Returns a pointer to a character
2327 /// array containing the literal and a terminating '\0'
2328 /// character. The result has pointer to array type.
2329 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2330                                                         const char *GlobalName,
2331                                                         unsigned Alignment) {
2332   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2333   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2334 }
2335 
2336 /// EmitObjCPropertyImplementations - Emit information for synthesized
2337 /// properties for an implementation.
2338 void CodeGenModule::EmitObjCPropertyImplementations(const
2339                                                     ObjCImplementationDecl *D) {
2340   for (ObjCImplementationDecl::propimpl_iterator
2341          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2342     ObjCPropertyImplDecl *PID = *i;
2343 
2344     // Dynamic is just for type-checking.
2345     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2346       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2347 
2348       // Determine which methods need to be implemented, some may have
2349       // been overridden. Note that ::isSynthesized is not the method
2350       // we want, that just indicates if the decl came from a
2351       // property. What we want to know is if the method is defined in
2352       // this implementation.
2353       if (!D->getInstanceMethod(PD->getGetterName()))
2354         CodeGenFunction(*this).GenerateObjCGetter(
2355                                  const_cast<ObjCImplementationDecl *>(D), PID);
2356       if (!PD->isReadOnly() &&
2357           !D->getInstanceMethod(PD->getSetterName()))
2358         CodeGenFunction(*this).GenerateObjCSetter(
2359                                  const_cast<ObjCImplementationDecl *>(D), PID);
2360     }
2361   }
2362 }
2363 
2364 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2365   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2366   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2367        ivar; ivar = ivar->getNextIvar())
2368     if (ivar->getType().isDestructedType())
2369       return true;
2370 
2371   return false;
2372 }
2373 
2374 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2375 /// for an implementation.
2376 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2377   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2378   if (needsDestructMethod(D)) {
2379     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2380     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2381     ObjCMethodDecl *DTORMethod =
2382       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2383                              cxxSelector, getContext().VoidTy, 0, D,
2384                              /*isInstance=*/true, /*isVariadic=*/false,
2385                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2386                              /*isDefined=*/false, ObjCMethodDecl::Required);
2387     D->addInstanceMethod(DTORMethod);
2388     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2389     D->setHasCXXStructors(true);
2390   }
2391 
2392   // If the implementation doesn't have any ivar initializers, we don't need
2393   // a .cxx_construct.
2394   if (D->getNumIvarInitializers() == 0)
2395     return;
2396 
2397   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2398   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2399   // The constructor returns 'self'.
2400   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2401                                                 D->getLocation(),
2402                                                 D->getLocation(),
2403                                                 cxxSelector,
2404                                                 getContext().getObjCIdType(), 0,
2405                                                 D, /*isInstance=*/true,
2406                                                 /*isVariadic=*/false,
2407                                                 /*isSynthesized=*/true,
2408                                                 /*isImplicitlyDeclared=*/true,
2409                                                 /*isDefined=*/false,
2410                                                 ObjCMethodDecl::Required);
2411   D->addInstanceMethod(CTORMethod);
2412   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2413   D->setHasCXXStructors(true);
2414 }
2415 
2416 /// EmitNamespace - Emit all declarations in a namespace.
2417 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2418   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2419        I != E; ++I)
2420     EmitTopLevelDecl(*I);
2421 }
2422 
2423 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2424 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2425   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2426       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2427     ErrorUnsupported(LSD, "linkage spec");
2428     return;
2429   }
2430 
2431   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2432        I != E; ++I)
2433     EmitTopLevelDecl(*I);
2434 }
2435 
2436 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2437 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2438   // If an error has occurred, stop code generation, but continue
2439   // parsing and semantic analysis (to ensure all warnings and errors
2440   // are emitted).
2441   if (Diags.hasErrorOccurred())
2442     return;
2443 
2444   // Ignore dependent declarations.
2445   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2446     return;
2447 
2448   switch (D->getKind()) {
2449   case Decl::CXXConversion:
2450   case Decl::CXXMethod:
2451   case Decl::Function:
2452     // Skip function templates
2453     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2454         cast<FunctionDecl>(D)->isLateTemplateParsed())
2455       return;
2456 
2457     EmitGlobal(cast<FunctionDecl>(D));
2458     break;
2459 
2460   case Decl::Var:
2461     EmitGlobal(cast<VarDecl>(D));
2462     break;
2463 
2464   // Indirect fields from global anonymous structs and unions can be
2465   // ignored; only the actual variable requires IR gen support.
2466   case Decl::IndirectField:
2467     break;
2468 
2469   // C++ Decls
2470   case Decl::Namespace:
2471     EmitNamespace(cast<NamespaceDecl>(D));
2472     break;
2473     // No code generation needed.
2474   case Decl::UsingShadow:
2475   case Decl::Using:
2476   case Decl::UsingDirective:
2477   case Decl::ClassTemplate:
2478   case Decl::FunctionTemplate:
2479   case Decl::TypeAliasTemplate:
2480   case Decl::NamespaceAlias:
2481   case Decl::Block:
2482   case Decl::Import:
2483     break;
2484   case Decl::CXXConstructor:
2485     // Skip function templates
2486     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2487         cast<FunctionDecl>(D)->isLateTemplateParsed())
2488       return;
2489 
2490     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2491     break;
2492   case Decl::CXXDestructor:
2493     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2494       return;
2495     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2496     break;
2497 
2498   case Decl::StaticAssert:
2499     // Nothing to do.
2500     break;
2501 
2502   // Objective-C Decls
2503 
2504   // Forward declarations, no (immediate) code generation.
2505   case Decl::ObjCInterface:
2506     break;
2507 
2508   case Decl::ObjCCategory: {
2509     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2510     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2511       Context.ResetObjCLayout(CD->getClassInterface());
2512     break;
2513   }
2514 
2515   case Decl::ObjCProtocol: {
2516     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2517     if (Proto->isThisDeclarationADefinition())
2518       ObjCRuntime->GenerateProtocol(Proto);
2519     break;
2520   }
2521 
2522   case Decl::ObjCCategoryImpl:
2523     // Categories have properties but don't support synthesize so we
2524     // can ignore them here.
2525     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2526     break;
2527 
2528   case Decl::ObjCImplementation: {
2529     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2530     if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2531       Context.ResetObjCLayout(OMD->getClassInterface());
2532     EmitObjCPropertyImplementations(OMD);
2533     EmitObjCIvarInitializations(OMD);
2534     ObjCRuntime->GenerateClass(OMD);
2535     break;
2536   }
2537   case Decl::ObjCMethod: {
2538     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2539     // If this is not a prototype, emit the body.
2540     if (OMD->getBody())
2541       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2542     break;
2543   }
2544   case Decl::ObjCCompatibleAlias:
2545     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2546     break;
2547 
2548   case Decl::LinkageSpec:
2549     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2550     break;
2551 
2552   case Decl::FileScopeAsm: {
2553     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2554     StringRef AsmString = AD->getAsmString()->getString();
2555 
2556     const std::string &S = getModule().getModuleInlineAsm();
2557     if (S.empty())
2558       getModule().setModuleInlineAsm(AsmString);
2559     else if (*--S.end() == '\n')
2560       getModule().setModuleInlineAsm(S + AsmString.str());
2561     else
2562       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2563     break;
2564   }
2565 
2566   default:
2567     // Make sure we handled everything we should, every other kind is a
2568     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2569     // function. Need to recode Decl::Kind to do that easily.
2570     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2571   }
2572 }
2573 
2574 /// Turns the given pointer into a constant.
2575 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2576                                           const void *Ptr) {
2577   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2578   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2579   return llvm::ConstantInt::get(i64, PtrInt);
2580 }
2581 
2582 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2583                                    llvm::NamedMDNode *&GlobalMetadata,
2584                                    GlobalDecl D,
2585                                    llvm::GlobalValue *Addr) {
2586   if (!GlobalMetadata)
2587     GlobalMetadata =
2588       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2589 
2590   // TODO: should we report variant information for ctors/dtors?
2591   llvm::Value *Ops[] = {
2592     Addr,
2593     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2594   };
2595   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2596 }
2597 
2598 /// Emits metadata nodes associating all the global values in the
2599 /// current module with the Decls they came from.  This is useful for
2600 /// projects using IR gen as a subroutine.
2601 ///
2602 /// Since there's currently no way to associate an MDNode directly
2603 /// with an llvm::GlobalValue, we create a global named metadata
2604 /// with the name 'clang.global.decl.ptrs'.
2605 void CodeGenModule::EmitDeclMetadata() {
2606   llvm::NamedMDNode *GlobalMetadata = 0;
2607 
2608   // StaticLocalDeclMap
2609   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2610          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2611        I != E; ++I) {
2612     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2613     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2614   }
2615 }
2616 
2617 /// Emits metadata nodes for all the local variables in the current
2618 /// function.
2619 void CodeGenFunction::EmitDeclMetadata() {
2620   if (LocalDeclMap.empty()) return;
2621 
2622   llvm::LLVMContext &Context = getLLVMContext();
2623 
2624   // Find the unique metadata ID for this name.
2625   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2626 
2627   llvm::NamedMDNode *GlobalMetadata = 0;
2628 
2629   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2630          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2631     const Decl *D = I->first;
2632     llvm::Value *Addr = I->second;
2633 
2634     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2635       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2636       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2637     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2638       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2639       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2640     }
2641   }
2642 }
2643 
2644 void CodeGenModule::EmitCoverageFile() {
2645   if (!getCodeGenOpts().CoverageFile.empty()) {
2646     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2647       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2648       llvm::LLVMContext &Ctx = TheModule.getContext();
2649       llvm::MDString *CoverageFile =
2650           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2651       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2652         llvm::MDNode *CU = CUNode->getOperand(i);
2653         llvm::Value *node[] = { CoverageFile, CU };
2654         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2655         GCov->addOperand(N);
2656       }
2657     }
2658   }
2659 }
2660