1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 } 184 185 CodeGenModule::~CodeGenModule() {} 186 187 void CodeGenModule::createObjCRuntime() { 188 // This is just isGNUFamily(), but we want to force implementors of 189 // new ABIs to decide how best to do this. 190 switch (LangOpts.ObjCRuntime.getKind()) { 191 case ObjCRuntime::GNUstep: 192 case ObjCRuntime::GCC: 193 case ObjCRuntime::ObjFW: 194 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 195 return; 196 197 case ObjCRuntime::FragileMacOSX: 198 case ObjCRuntime::MacOSX: 199 case ObjCRuntime::iOS: 200 case ObjCRuntime::WatchOS: 201 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 202 return; 203 } 204 llvm_unreachable("bad runtime kind"); 205 } 206 207 void CodeGenModule::createOpenCLRuntime() { 208 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 209 } 210 211 void CodeGenModule::createOpenMPRuntime() { 212 // Select a specialized code generation class based on the target, if any. 213 // If it does not exist use the default implementation. 214 switch (getTriple().getArch()) { 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 assert(getLangOpts().OpenMPIsDevice && 218 "OpenMP NVPTX is only prepared to deal with device code."); 219 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 220 break; 221 case llvm::Triple::amdgcn: 222 assert(getLangOpts().OpenMPIsDevice && 223 "OpenMP AMDGCN is only prepared to deal with device code."); 224 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 225 break; 226 default: 227 if (LangOpts.OpenMPSimd) 228 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 229 else 230 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 231 break; 232 } 233 } 234 235 void CodeGenModule::createCUDARuntime() { 236 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 237 } 238 239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 240 Replacements[Name] = C; 241 } 242 243 void CodeGenModule::applyReplacements() { 244 for (auto &I : Replacements) { 245 StringRef MangledName = I.first(); 246 llvm::Constant *Replacement = I.second; 247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 248 if (!Entry) 249 continue; 250 auto *OldF = cast<llvm::Function>(Entry); 251 auto *NewF = dyn_cast<llvm::Function>(Replacement); 252 if (!NewF) { 253 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 254 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 255 } else { 256 auto *CE = cast<llvm::ConstantExpr>(Replacement); 257 assert(CE->getOpcode() == llvm::Instruction::BitCast || 258 CE->getOpcode() == llvm::Instruction::GetElementPtr); 259 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 260 } 261 } 262 263 // Replace old with new, but keep the old order. 264 OldF->replaceAllUsesWith(Replacement); 265 if (NewF) { 266 NewF->removeFromParent(); 267 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 268 NewF); 269 } 270 OldF->eraseFromParent(); 271 } 272 } 273 274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 275 GlobalValReplacements.push_back(std::make_pair(GV, C)); 276 } 277 278 void CodeGenModule::applyGlobalValReplacements() { 279 for (auto &I : GlobalValReplacements) { 280 llvm::GlobalValue *GV = I.first; 281 llvm::Constant *C = I.second; 282 283 GV->replaceAllUsesWith(C); 284 GV->eraseFromParent(); 285 } 286 } 287 288 // This is only used in aliases that we created and we know they have a 289 // linear structure. 290 static const llvm::GlobalObject *getAliasedGlobal( 291 const llvm::GlobalIndirectSymbol &GIS) { 292 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 293 const llvm::Constant *C = &GIS; 294 for (;;) { 295 C = C->stripPointerCasts(); 296 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 297 return GO; 298 // stripPointerCasts will not walk over weak aliases. 299 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 300 if (!GIS2) 301 return nullptr; 302 if (!Visited.insert(GIS2).second) 303 return nullptr; 304 C = GIS2->getIndirectSymbol(); 305 } 306 } 307 308 void CodeGenModule::checkAliases() { 309 // Check if the constructed aliases are well formed. It is really unfortunate 310 // that we have to do this in CodeGen, but we only construct mangled names 311 // and aliases during codegen. 312 bool Error = false; 313 DiagnosticsEngine &Diags = getDiags(); 314 for (const GlobalDecl &GD : Aliases) { 315 const auto *D = cast<ValueDecl>(GD.getDecl()); 316 SourceLocation Location; 317 bool IsIFunc = D->hasAttr<IFuncAttr>(); 318 if (const Attr *A = D->getDefiningAttr()) 319 Location = A->getLocation(); 320 else 321 llvm_unreachable("Not an alias or ifunc?"); 322 StringRef MangledName = getMangledName(GD); 323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 324 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 325 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 326 if (!GV) { 327 Error = true; 328 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 329 } else if (GV->isDeclaration()) { 330 Error = true; 331 Diags.Report(Location, diag::err_alias_to_undefined) 332 << IsIFunc << IsIFunc; 333 } else if (IsIFunc) { 334 // Check resolver function type. 335 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 336 GV->getType()->getPointerElementType()); 337 assert(FTy); 338 if (!FTy->getReturnType()->isPointerTy()) 339 Diags.Report(Location, diag::err_ifunc_resolver_return); 340 } 341 342 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 343 llvm::GlobalValue *AliaseeGV; 344 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 345 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 346 else 347 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 348 349 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 350 StringRef AliasSection = SA->getName(); 351 if (AliasSection != AliaseeGV->getSection()) 352 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 353 << AliasSection << IsIFunc << IsIFunc; 354 } 355 356 // We have to handle alias to weak aliases in here. LLVM itself disallows 357 // this since the object semantics would not match the IL one. For 358 // compatibility with gcc we implement it by just pointing the alias 359 // to its aliasee's aliasee. We also warn, since the user is probably 360 // expecting the link to be weak. 361 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 362 if (GA->isInterposable()) { 363 Diags.Report(Location, diag::warn_alias_to_weak_alias) 364 << GV->getName() << GA->getName() << IsIFunc; 365 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 366 GA->getIndirectSymbol(), Alias->getType()); 367 Alias->setIndirectSymbol(Aliasee); 368 } 369 } 370 } 371 if (!Error) 372 return; 373 374 for (const GlobalDecl &GD : Aliases) { 375 StringRef MangledName = getMangledName(GD); 376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 377 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 378 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 379 Alias->eraseFromParent(); 380 } 381 } 382 383 void CodeGenModule::clear() { 384 DeferredDeclsToEmit.clear(); 385 if (OpenMPRuntime) 386 OpenMPRuntime->clear(); 387 } 388 389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 390 StringRef MainFile) { 391 if (!hasDiagnostics()) 392 return; 393 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 394 if (MainFile.empty()) 395 MainFile = "<stdin>"; 396 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 397 } else { 398 if (Mismatched > 0) 399 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 400 401 if (Missing > 0) 402 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 403 } 404 } 405 406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 407 llvm::Module &M) { 408 if (!LO.VisibilityFromDLLStorageClass) 409 return; 410 411 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 413 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 416 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 417 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 418 CodeGenModule::GetLLVMVisibility( 419 LO.getExternDeclNoDLLStorageClassVisibility()); 420 421 for (llvm::GlobalValue &GV : M.global_values()) { 422 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 423 continue; 424 425 // Reset DSO locality before setting the visibility. This removes 426 // any effects that visibility options and annotations may have 427 // had on the DSO locality. Setting the visibility will implicitly set 428 // appropriate globals to DSO Local; however, this will be pessimistic 429 // w.r.t. to the normal compiler IRGen. 430 GV.setDSOLocal(false); 431 432 if (GV.isDeclarationForLinker()) { 433 GV.setVisibility(GV.getDLLStorageClass() == 434 llvm::GlobalValue::DLLImportStorageClass 435 ? ExternDeclDLLImportVisibility 436 : ExternDeclNoDLLStorageClassVisibility); 437 } else { 438 GV.setVisibility(GV.getDLLStorageClass() == 439 llvm::GlobalValue::DLLExportStorageClass 440 ? DLLExportVisibility 441 : NoDLLStorageClassVisibility); 442 } 443 444 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 445 } 446 } 447 448 void CodeGenModule::Release() { 449 EmitDeferred(); 450 EmitVTablesOpportunistically(); 451 applyGlobalValReplacements(); 452 applyReplacements(); 453 checkAliases(); 454 emitMultiVersionFunctions(); 455 EmitCXXGlobalInitFunc(); 456 EmitCXXGlobalCleanUpFunc(); 457 registerGlobalDtorsWithAtExit(); 458 EmitCXXThreadLocalInitFunc(); 459 if (ObjCRuntime) 460 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 461 AddGlobalCtor(ObjCInitFunction); 462 if (Context.getLangOpts().CUDA && CUDARuntime) { 463 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (CodeGenOpts.Dwarf64) 535 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 536 537 if (Context.getLangOpts().SemanticInterposition) 538 // Require various optimization to respect semantic interposition. 539 getModule().setSemanticInterposition(1); 540 541 if (CodeGenOpts.EmitCodeView) { 542 // Indicate that we want CodeView in the metadata. 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 544 } 545 if (CodeGenOpts.CodeViewGHash) { 546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 547 } 548 if (CodeGenOpts.ControlFlowGuard) { 549 // Function ID tables and checks for Control Flow Guard (cfguard=2). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 552 // Function ID tables for Control Flow Guard (cfguard=1). 553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 554 } 555 if (CodeGenOpts.EHContGuard) { 556 // Function ID tables for EH Continuation Guard. 557 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 558 } 559 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 560 // We don't support LTO with 2 with different StrictVTablePointers 561 // FIXME: we could support it by stripping all the information introduced 562 // by StrictVTablePointers. 563 564 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 565 566 llvm::Metadata *Ops[2] = { 567 llvm::MDString::get(VMContext, "StrictVTablePointers"), 568 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 569 llvm::Type::getInt32Ty(VMContext), 1))}; 570 571 getModule().addModuleFlag(llvm::Module::Require, 572 "StrictVTablePointersRequirement", 573 llvm::MDNode::get(VMContext, Ops)); 574 } 575 if (getModuleDebugInfo()) 576 // We support a single version in the linked module. The LLVM 577 // parser will drop debug info with a different version number 578 // (and warn about it, too). 579 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 580 llvm::DEBUG_METADATA_VERSION); 581 582 // We need to record the widths of enums and wchar_t, so that we can generate 583 // the correct build attributes in the ARM backend. wchar_size is also used by 584 // TargetLibraryInfo. 585 uint64_t WCharWidth = 586 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 587 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 588 589 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 590 if ( Arch == llvm::Triple::arm 591 || Arch == llvm::Triple::armeb 592 || Arch == llvm::Triple::thumb 593 || Arch == llvm::Triple::thumbeb) { 594 // The minimum width of an enum in bytes 595 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 596 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 597 } 598 599 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 600 StringRef ABIStr = Target.getABI(); 601 llvm::LLVMContext &Ctx = TheModule.getContext(); 602 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 603 llvm::MDString::get(Ctx, ABIStr)); 604 } 605 606 if (CodeGenOpts.SanitizeCfiCrossDso) { 607 // Indicate that we want cross-DSO control flow integrity checks. 608 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 609 } 610 611 if (CodeGenOpts.WholeProgramVTables) { 612 // Indicate whether VFE was enabled for this module, so that the 613 // vcall_visibility metadata added under whole program vtables is handled 614 // appropriately in the optimizer. 615 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 616 CodeGenOpts.VirtualFunctionElimination); 617 } 618 619 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 620 getModule().addModuleFlag(llvm::Module::Override, 621 "CFI Canonical Jump Tables", 622 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 623 } 624 625 if (CodeGenOpts.CFProtectionReturn && 626 Target.checkCFProtectionReturnSupported(getDiags())) { 627 // Indicate that we want to instrument return control flow protection. 628 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 629 1); 630 } 631 632 if (CodeGenOpts.CFProtectionBranch && 633 Target.checkCFProtectionBranchSupported(getDiags())) { 634 // Indicate that we want to instrument branch control flow protection. 635 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 636 1); 637 } 638 639 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 640 Arch == llvm::Triple::aarch64_be) { 641 getModule().addModuleFlag(llvm::Module::Error, 642 "branch-target-enforcement", 643 LangOpts.BranchTargetEnforcement); 644 645 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 646 LangOpts.hasSignReturnAddress()); 647 648 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 649 LangOpts.isSignReturnAddressScopeAll()); 650 651 getModule().addModuleFlag(llvm::Module::Error, 652 "sign-return-address-with-bkey", 653 !LangOpts.isSignReturnAddressWithAKey()); 654 } 655 656 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 657 llvm::LLVMContext &Ctx = TheModule.getContext(); 658 getModule().addModuleFlag( 659 llvm::Module::Error, "MemProfProfileFilename", 660 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 661 } 662 663 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 664 // Indicate whether __nvvm_reflect should be configured to flush denormal 665 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 666 // property.) 667 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 668 CodeGenOpts.FP32DenormalMode.Output != 669 llvm::DenormalMode::IEEE); 670 } 671 672 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 673 if (LangOpts.OpenCL) { 674 EmitOpenCLMetadata(); 675 // Emit SPIR version. 676 if (getTriple().isSPIR()) { 677 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 678 // opencl.spir.version named metadata. 679 // C++ is backwards compatible with OpenCL v2.0. 680 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 681 llvm::Metadata *SPIRVerElts[] = { 682 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 683 Int32Ty, Version / 100)), 684 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 685 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 686 llvm::NamedMDNode *SPIRVerMD = 687 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 688 llvm::LLVMContext &Ctx = TheModule.getContext(); 689 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 690 } 691 } 692 693 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 694 assert(PLevel < 3 && "Invalid PIC Level"); 695 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 696 if (Context.getLangOpts().PIE) 697 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 698 } 699 700 if (getCodeGenOpts().CodeModel.size() > 0) { 701 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 702 .Case("tiny", llvm::CodeModel::Tiny) 703 .Case("small", llvm::CodeModel::Small) 704 .Case("kernel", llvm::CodeModel::Kernel) 705 .Case("medium", llvm::CodeModel::Medium) 706 .Case("large", llvm::CodeModel::Large) 707 .Default(~0u); 708 if (CM != ~0u) { 709 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 710 getModule().setCodeModel(codeModel); 711 } 712 } 713 714 if (CodeGenOpts.NoPLT) 715 getModule().setRtLibUseGOT(); 716 717 SimplifyPersonality(); 718 719 if (getCodeGenOpts().EmitDeclMetadata) 720 EmitDeclMetadata(); 721 722 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 723 EmitCoverageFile(); 724 725 if (CGDebugInfo *DI = getModuleDebugInfo()) 726 DI->finalize(); 727 728 if (getCodeGenOpts().EmitVersionIdentMetadata) 729 EmitVersionIdentMetadata(); 730 731 if (!getCodeGenOpts().RecordCommandLine.empty()) 732 EmitCommandLineMetadata(); 733 734 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 735 736 EmitBackendOptionsMetadata(getCodeGenOpts()); 737 738 // Set visibility from DLL storage class 739 // We do this at the end of LLVM IR generation; after any operation 740 // that might affect the DLL storage class or the visibility, and 741 // before anything that might act on these. 742 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 743 } 744 745 void CodeGenModule::EmitOpenCLMetadata() { 746 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 747 // opencl.ocl.version named metadata node. 748 // C++ is backwards compatible with OpenCL v2.0. 749 // FIXME: We might need to add CXX version at some point too? 750 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 751 llvm::Metadata *OCLVerElts[] = { 752 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 753 Int32Ty, Version / 100)), 754 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 755 Int32Ty, (Version % 100) / 10))}; 756 llvm::NamedMDNode *OCLVerMD = 757 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 758 llvm::LLVMContext &Ctx = TheModule.getContext(); 759 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 760 } 761 762 void CodeGenModule::EmitBackendOptionsMetadata( 763 const CodeGenOptions CodeGenOpts) { 764 switch (getTriple().getArch()) { 765 default: 766 break; 767 case llvm::Triple::riscv32: 768 case llvm::Triple::riscv64: 769 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 770 CodeGenOpts.SmallDataLimit); 771 break; 772 } 773 } 774 775 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 776 // Make sure that this type is translated. 777 Types.UpdateCompletedType(TD); 778 } 779 780 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 781 // Make sure that this type is translated. 782 Types.RefreshTypeCacheForClass(RD); 783 } 784 785 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 786 if (!TBAA) 787 return nullptr; 788 return TBAA->getTypeInfo(QTy); 789 } 790 791 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 792 if (!TBAA) 793 return TBAAAccessInfo(); 794 if (getLangOpts().CUDAIsDevice) { 795 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 796 // access info. 797 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 799 nullptr) 800 return TBAAAccessInfo(); 801 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 802 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 803 nullptr) 804 return TBAAAccessInfo(); 805 } 806 } 807 return TBAA->getAccessInfo(AccessType); 808 } 809 810 TBAAAccessInfo 811 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 812 if (!TBAA) 813 return TBAAAccessInfo(); 814 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 815 } 816 817 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 818 if (!TBAA) 819 return nullptr; 820 return TBAA->getTBAAStructInfo(QTy); 821 } 822 823 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 824 if (!TBAA) 825 return nullptr; 826 return TBAA->getBaseTypeInfo(QTy); 827 } 828 829 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 830 if (!TBAA) 831 return nullptr; 832 return TBAA->getAccessTagInfo(Info); 833 } 834 835 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 836 TBAAAccessInfo TargetInfo) { 837 if (!TBAA) 838 return TBAAAccessInfo(); 839 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 840 } 841 842 TBAAAccessInfo 843 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 844 TBAAAccessInfo InfoB) { 845 if (!TBAA) 846 return TBAAAccessInfo(); 847 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 848 } 849 850 TBAAAccessInfo 851 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 852 TBAAAccessInfo SrcInfo) { 853 if (!TBAA) 854 return TBAAAccessInfo(); 855 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 856 } 857 858 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 859 TBAAAccessInfo TBAAInfo) { 860 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 861 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 862 } 863 864 void CodeGenModule::DecorateInstructionWithInvariantGroup( 865 llvm::Instruction *I, const CXXRecordDecl *RD) { 866 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 867 llvm::MDNode::get(getLLVMContext(), {})); 868 } 869 870 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 871 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 872 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 873 } 874 875 /// ErrorUnsupported - Print out an error that codegen doesn't support the 876 /// specified stmt yet. 877 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 878 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 879 "cannot compile this %0 yet"); 880 std::string Msg = Type; 881 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 882 << Msg << S->getSourceRange(); 883 } 884 885 /// ErrorUnsupported - Print out an error that codegen doesn't support the 886 /// specified decl yet. 887 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 888 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 889 "cannot compile this %0 yet"); 890 std::string Msg = Type; 891 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 892 } 893 894 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 895 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 896 } 897 898 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 899 const NamedDecl *D) const { 900 if (GV->hasDLLImportStorageClass()) 901 return; 902 // Internal definitions always have default visibility. 903 if (GV->hasLocalLinkage()) { 904 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 905 return; 906 } 907 if (!D) 908 return; 909 // Set visibility for definitions, and for declarations if requested globally 910 // or set explicitly. 911 LinkageInfo LV = D->getLinkageAndVisibility(); 912 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 913 !GV->isDeclarationForLinker()) 914 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 915 } 916 917 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 918 llvm::GlobalValue *GV) { 919 if (GV->hasLocalLinkage()) 920 return true; 921 922 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 923 return true; 924 925 // DLLImport explicitly marks the GV as external. 926 if (GV->hasDLLImportStorageClass()) 927 return false; 928 929 const llvm::Triple &TT = CGM.getTriple(); 930 if (TT.isWindowsGNUEnvironment()) { 931 // In MinGW, variables without DLLImport can still be automatically 932 // imported from a DLL by the linker; don't mark variables that 933 // potentially could come from another DLL as DSO local. 934 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 935 !GV->isThreadLocal()) 936 return false; 937 } 938 939 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 940 // remain unresolved in the link, they can be resolved to zero, which is 941 // outside the current DSO. 942 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 943 return false; 944 945 // Every other GV is local on COFF. 946 // Make an exception for windows OS in the triple: Some firmware builds use 947 // *-win32-macho triples. This (accidentally?) produced windows relocations 948 // without GOT tables in older clang versions; Keep this behaviour. 949 // FIXME: even thread local variables? 950 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 951 return true; 952 953 const auto &CGOpts = CGM.getCodeGenOpts(); 954 llvm::Reloc::Model RM = CGOpts.RelocationModel; 955 const auto &LOpts = CGM.getLangOpts(); 956 957 if (TT.isOSBinFormatMachO()) { 958 if (RM == llvm::Reloc::Static) 959 return true; 960 return GV->isStrongDefinitionForLinker(); 961 } 962 963 // Only handle COFF and ELF for now. 964 if (!TT.isOSBinFormatELF()) 965 return false; 966 967 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 968 // On ELF, if -fno-semantic-interposition is specified and the target 969 // supports local aliases, there will be neither CC1 970 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 971 // dso_local if using a local alias is preferable (can avoid GOT 972 // indirection). 973 if (!GV->canBenefitFromLocalAlias()) 974 return false; 975 return !(CGM.getLangOpts().SemanticInterposition || 976 CGM.getLangOpts().HalfNoSemanticInterposition); 977 } 978 979 // A definition cannot be preempted from an executable. 980 if (!GV->isDeclarationForLinker()) 981 return true; 982 983 // Most PIC code sequences that assume that a symbol is local cannot produce a 984 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 985 // depended, it seems worth it to handle it here. 986 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 987 return false; 988 989 // PowerPC64 prefers TOC indirection to avoid copy relocations. 990 if (TT.isPPC64()) 991 return false; 992 993 if (CGOpts.DirectAccessExternalData) { 994 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 995 // for non-thread-local variables. If the symbol is not defined in the 996 // executable, a copy relocation will be needed at link time. dso_local is 997 // excluded for thread-local variables because they generally don't support 998 // copy relocations. 999 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1000 if (!Var->isThreadLocal()) 1001 return true; 1002 1003 // -fno-pic sets dso_local on a function declaration to allow direct 1004 // accesses when taking its address (similar to a data symbol). If the 1005 // function is not defined in the executable, a canonical PLT entry will be 1006 // needed at link time. -fno-direct-access-external-data can avoid the 1007 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1008 // it could just cause trouble without providing perceptible benefits. 1009 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1010 return true; 1011 } 1012 1013 // If we can use copy relocations we can assume it is local. 1014 1015 // Otherwise don't assume it is local. 1016 return false; 1017 } 1018 1019 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1020 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1021 } 1022 1023 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1024 GlobalDecl GD) const { 1025 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1026 // C++ destructors have a few C++ ABI specific special cases. 1027 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1028 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1029 return; 1030 } 1031 setDLLImportDLLExport(GV, D); 1032 } 1033 1034 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1035 const NamedDecl *D) const { 1036 if (D && D->isExternallyVisible()) { 1037 if (D->hasAttr<DLLImportAttr>()) 1038 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1039 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1040 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1041 } 1042 } 1043 1044 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1045 GlobalDecl GD) const { 1046 setDLLImportDLLExport(GV, GD); 1047 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1048 } 1049 1050 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1051 const NamedDecl *D) const { 1052 setDLLImportDLLExport(GV, D); 1053 setGVPropertiesAux(GV, D); 1054 } 1055 1056 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1057 const NamedDecl *D) const { 1058 setGlobalVisibility(GV, D); 1059 setDSOLocal(GV); 1060 GV->setPartition(CodeGenOpts.SymbolPartition); 1061 } 1062 1063 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1064 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1065 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1066 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1067 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1068 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1069 } 1070 1071 llvm::GlobalVariable::ThreadLocalMode 1072 CodeGenModule::GetDefaultLLVMTLSModel() const { 1073 switch (CodeGenOpts.getDefaultTLSModel()) { 1074 case CodeGenOptions::GeneralDynamicTLSModel: 1075 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1076 case CodeGenOptions::LocalDynamicTLSModel: 1077 return llvm::GlobalVariable::LocalDynamicTLSModel; 1078 case CodeGenOptions::InitialExecTLSModel: 1079 return llvm::GlobalVariable::InitialExecTLSModel; 1080 case CodeGenOptions::LocalExecTLSModel: 1081 return llvm::GlobalVariable::LocalExecTLSModel; 1082 } 1083 llvm_unreachable("Invalid TLS model!"); 1084 } 1085 1086 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1087 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1088 1089 llvm::GlobalValue::ThreadLocalMode TLM; 1090 TLM = GetDefaultLLVMTLSModel(); 1091 1092 // Override the TLS model if it is explicitly specified. 1093 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1094 TLM = GetLLVMTLSModel(Attr->getModel()); 1095 } 1096 1097 GV->setThreadLocalMode(TLM); 1098 } 1099 1100 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1101 StringRef Name) { 1102 const TargetInfo &Target = CGM.getTarget(); 1103 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1104 } 1105 1106 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1107 const CPUSpecificAttr *Attr, 1108 unsigned CPUIndex, 1109 raw_ostream &Out) { 1110 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1111 // supported. 1112 if (Attr) 1113 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1114 else if (CGM.getTarget().supportsIFunc()) 1115 Out << ".resolver"; 1116 } 1117 1118 static void AppendTargetMangling(const CodeGenModule &CGM, 1119 const TargetAttr *Attr, raw_ostream &Out) { 1120 if (Attr->isDefaultVersion()) 1121 return; 1122 1123 Out << '.'; 1124 const TargetInfo &Target = CGM.getTarget(); 1125 ParsedTargetAttr Info = 1126 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1127 // Multiversioning doesn't allow "no-${feature}", so we can 1128 // only have "+" prefixes here. 1129 assert(LHS.startswith("+") && RHS.startswith("+") && 1130 "Features should always have a prefix."); 1131 return Target.multiVersionSortPriority(LHS.substr(1)) > 1132 Target.multiVersionSortPriority(RHS.substr(1)); 1133 }); 1134 1135 bool IsFirst = true; 1136 1137 if (!Info.Architecture.empty()) { 1138 IsFirst = false; 1139 Out << "arch_" << Info.Architecture; 1140 } 1141 1142 for (StringRef Feat : Info.Features) { 1143 if (!IsFirst) 1144 Out << '_'; 1145 IsFirst = false; 1146 Out << Feat.substr(1); 1147 } 1148 } 1149 1150 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1151 const NamedDecl *ND, 1152 bool OmitMultiVersionMangling = false) { 1153 SmallString<256> Buffer; 1154 llvm::raw_svector_ostream Out(Buffer); 1155 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1156 if (MC.shouldMangleDeclName(ND)) 1157 MC.mangleName(GD.getWithDecl(ND), Out); 1158 else { 1159 IdentifierInfo *II = ND->getIdentifier(); 1160 assert(II && "Attempt to mangle unnamed decl."); 1161 const auto *FD = dyn_cast<FunctionDecl>(ND); 1162 1163 if (FD && 1164 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1165 Out << "__regcall3__" << II->getName(); 1166 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1167 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1168 Out << "__device_stub__" << II->getName(); 1169 } else { 1170 Out << II->getName(); 1171 } 1172 } 1173 1174 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1175 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1176 switch (FD->getMultiVersionKind()) { 1177 case MultiVersionKind::CPUDispatch: 1178 case MultiVersionKind::CPUSpecific: 1179 AppendCPUSpecificCPUDispatchMangling(CGM, 1180 FD->getAttr<CPUSpecificAttr>(), 1181 GD.getMultiVersionIndex(), Out); 1182 break; 1183 case MultiVersionKind::Target: 1184 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1185 break; 1186 case MultiVersionKind::None: 1187 llvm_unreachable("None multiversion type isn't valid here"); 1188 } 1189 } 1190 1191 // Make unique name for device side static file-scope variable for HIP. 1192 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1193 CGM.getLangOpts().GPURelocatableDeviceCode && 1194 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1195 CGM.printPostfixForExternalizedStaticVar(Out); 1196 return std::string(Out.str()); 1197 } 1198 1199 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1200 const FunctionDecl *FD) { 1201 if (!FD->isMultiVersion()) 1202 return; 1203 1204 // Get the name of what this would be without the 'target' attribute. This 1205 // allows us to lookup the version that was emitted when this wasn't a 1206 // multiversion function. 1207 std::string NonTargetName = 1208 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1209 GlobalDecl OtherGD; 1210 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1211 assert(OtherGD.getCanonicalDecl() 1212 .getDecl() 1213 ->getAsFunction() 1214 ->isMultiVersion() && 1215 "Other GD should now be a multiversioned function"); 1216 // OtherFD is the version of this function that was mangled BEFORE 1217 // becoming a MultiVersion function. It potentially needs to be updated. 1218 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1219 .getDecl() 1220 ->getAsFunction() 1221 ->getMostRecentDecl(); 1222 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1223 // This is so that if the initial version was already the 'default' 1224 // version, we don't try to update it. 1225 if (OtherName != NonTargetName) { 1226 // Remove instead of erase, since others may have stored the StringRef 1227 // to this. 1228 const auto ExistingRecord = Manglings.find(NonTargetName); 1229 if (ExistingRecord != std::end(Manglings)) 1230 Manglings.remove(&(*ExistingRecord)); 1231 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1232 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1233 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1234 Entry->setName(OtherName); 1235 } 1236 } 1237 } 1238 1239 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1240 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1241 1242 // Some ABIs don't have constructor variants. Make sure that base and 1243 // complete constructors get mangled the same. 1244 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1245 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1246 CXXCtorType OrigCtorType = GD.getCtorType(); 1247 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1248 if (OrigCtorType == Ctor_Base) 1249 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1250 } 1251 } 1252 1253 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1254 // static device variable depends on whether the variable is referenced by 1255 // a host or device host function. Therefore the mangled name cannot be 1256 // cached. 1257 if (!LangOpts.CUDAIsDevice || 1258 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1259 auto FoundName = MangledDeclNames.find(CanonicalGD); 1260 if (FoundName != MangledDeclNames.end()) 1261 return FoundName->second; 1262 } 1263 1264 // Keep the first result in the case of a mangling collision. 1265 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1266 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1267 1268 // Ensure either we have different ABIs between host and device compilations, 1269 // says host compilation following MSVC ABI but device compilation follows 1270 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1271 // mangling should be the same after name stubbing. The later checking is 1272 // very important as the device kernel name being mangled in host-compilation 1273 // is used to resolve the device binaries to be executed. Inconsistent naming 1274 // result in undefined behavior. Even though we cannot check that naming 1275 // directly between host- and device-compilations, the host- and 1276 // device-mangling in host compilation could help catching certain ones. 1277 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1278 getLangOpts().CUDAIsDevice || 1279 (getContext().getAuxTargetInfo() && 1280 (getContext().getAuxTargetInfo()->getCXXABI() != 1281 getContext().getTargetInfo().getCXXABI())) || 1282 getCUDARuntime().getDeviceSideName(ND) == 1283 getMangledNameImpl( 1284 *this, 1285 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1286 ND)); 1287 1288 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1289 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1290 } 1291 1292 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1293 const BlockDecl *BD) { 1294 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1295 const Decl *D = GD.getDecl(); 1296 1297 SmallString<256> Buffer; 1298 llvm::raw_svector_ostream Out(Buffer); 1299 if (!D) 1300 MangleCtx.mangleGlobalBlock(BD, 1301 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1302 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1303 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1304 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1305 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1306 else 1307 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1308 1309 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1310 return Result.first->first(); 1311 } 1312 1313 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1314 return getModule().getNamedValue(Name); 1315 } 1316 1317 /// AddGlobalCtor - Add a function to the list that will be called before 1318 /// main() runs. 1319 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1320 llvm::Constant *AssociatedData) { 1321 // FIXME: Type coercion of void()* types. 1322 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1323 } 1324 1325 /// AddGlobalDtor - Add a function to the list that will be called 1326 /// when the module is unloaded. 1327 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1328 bool IsDtorAttrFunc) { 1329 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1330 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1331 DtorsUsingAtExit[Priority].push_back(Dtor); 1332 return; 1333 } 1334 1335 // FIXME: Type coercion of void()* types. 1336 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1337 } 1338 1339 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1340 if (Fns.empty()) return; 1341 1342 // Ctor function type is void()*. 1343 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1344 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1345 TheModule.getDataLayout().getProgramAddressSpace()); 1346 1347 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1348 llvm::StructType *CtorStructTy = llvm::StructType::get( 1349 Int32Ty, CtorPFTy, VoidPtrTy); 1350 1351 // Construct the constructor and destructor arrays. 1352 ConstantInitBuilder builder(*this); 1353 auto ctors = builder.beginArray(CtorStructTy); 1354 for (const auto &I : Fns) { 1355 auto ctor = ctors.beginStruct(CtorStructTy); 1356 ctor.addInt(Int32Ty, I.Priority); 1357 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1358 if (I.AssociatedData) 1359 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1360 else 1361 ctor.addNullPointer(VoidPtrTy); 1362 ctor.finishAndAddTo(ctors); 1363 } 1364 1365 auto list = 1366 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1367 /*constant*/ false, 1368 llvm::GlobalValue::AppendingLinkage); 1369 1370 // The LTO linker doesn't seem to like it when we set an alignment 1371 // on appending variables. Take it off as a workaround. 1372 list->setAlignment(llvm::None); 1373 1374 Fns.clear(); 1375 } 1376 1377 llvm::GlobalValue::LinkageTypes 1378 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1379 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1380 1381 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1382 1383 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1384 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1385 1386 if (isa<CXXConstructorDecl>(D) && 1387 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1388 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1389 // Our approach to inheriting constructors is fundamentally different from 1390 // that used by the MS ABI, so keep our inheriting constructor thunks 1391 // internal rather than trying to pick an unambiguous mangling for them. 1392 return llvm::GlobalValue::InternalLinkage; 1393 } 1394 1395 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1396 } 1397 1398 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1399 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1400 if (!MDS) return nullptr; 1401 1402 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1403 } 1404 1405 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1406 const CGFunctionInfo &Info, 1407 llvm::Function *F) { 1408 unsigned CallingConv; 1409 llvm::AttributeList PAL; 1410 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1411 F->setAttributes(PAL); 1412 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1413 } 1414 1415 static void removeImageAccessQualifier(std::string& TyName) { 1416 std::string ReadOnlyQual("__read_only"); 1417 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1418 if (ReadOnlyPos != std::string::npos) 1419 // "+ 1" for the space after access qualifier. 1420 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1421 else { 1422 std::string WriteOnlyQual("__write_only"); 1423 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1424 if (WriteOnlyPos != std::string::npos) 1425 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1426 else { 1427 std::string ReadWriteQual("__read_write"); 1428 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1429 if (ReadWritePos != std::string::npos) 1430 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1431 } 1432 } 1433 } 1434 1435 // Returns the address space id that should be produced to the 1436 // kernel_arg_addr_space metadata. This is always fixed to the ids 1437 // as specified in the SPIR 2.0 specification in order to differentiate 1438 // for example in clGetKernelArgInfo() implementation between the address 1439 // spaces with targets without unique mapping to the OpenCL address spaces 1440 // (basically all single AS CPUs). 1441 static unsigned ArgInfoAddressSpace(LangAS AS) { 1442 switch (AS) { 1443 case LangAS::opencl_global: 1444 return 1; 1445 case LangAS::opencl_constant: 1446 return 2; 1447 case LangAS::opencl_local: 1448 return 3; 1449 case LangAS::opencl_generic: 1450 return 4; // Not in SPIR 2.0 specs. 1451 case LangAS::opencl_global_device: 1452 return 5; 1453 case LangAS::opencl_global_host: 1454 return 6; 1455 default: 1456 return 0; // Assume private. 1457 } 1458 } 1459 1460 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1461 const FunctionDecl *FD, 1462 CodeGenFunction *CGF) { 1463 assert(((FD && CGF) || (!FD && !CGF)) && 1464 "Incorrect use - FD and CGF should either be both null or not!"); 1465 // Create MDNodes that represent the kernel arg metadata. 1466 // Each MDNode is a list in the form of "key", N number of values which is 1467 // the same number of values as their are kernel arguments. 1468 1469 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1470 1471 // MDNode for the kernel argument address space qualifiers. 1472 SmallVector<llvm::Metadata *, 8> addressQuals; 1473 1474 // MDNode for the kernel argument access qualifiers (images only). 1475 SmallVector<llvm::Metadata *, 8> accessQuals; 1476 1477 // MDNode for the kernel argument type names. 1478 SmallVector<llvm::Metadata *, 8> argTypeNames; 1479 1480 // MDNode for the kernel argument base type names. 1481 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1482 1483 // MDNode for the kernel argument type qualifiers. 1484 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1485 1486 // MDNode for the kernel argument names. 1487 SmallVector<llvm::Metadata *, 8> argNames; 1488 1489 if (FD && CGF) 1490 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1491 const ParmVarDecl *parm = FD->getParamDecl(i); 1492 QualType ty = parm->getType(); 1493 std::string typeQuals; 1494 1495 // Get image and pipe access qualifier: 1496 if (ty->isImageType() || ty->isPipeType()) { 1497 const Decl *PDecl = parm; 1498 if (auto *TD = dyn_cast<TypedefType>(ty)) 1499 PDecl = TD->getDecl(); 1500 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1501 if (A && A->isWriteOnly()) 1502 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1503 else if (A && A->isReadWrite()) 1504 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1505 else 1506 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1507 } else 1508 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1509 1510 // Get argument name. 1511 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1512 1513 auto getTypeSpelling = [&](QualType Ty) { 1514 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1515 1516 if (Ty.isCanonical()) { 1517 StringRef typeNameRef = typeName; 1518 // Turn "unsigned type" to "utype" 1519 if (typeNameRef.consume_front("unsigned ")) 1520 return std::string("u") + typeNameRef.str(); 1521 if (typeNameRef.consume_front("signed ")) 1522 return typeNameRef.str(); 1523 } 1524 1525 return typeName; 1526 }; 1527 1528 if (ty->isPointerType()) { 1529 QualType pointeeTy = ty->getPointeeType(); 1530 1531 // Get address qualifier. 1532 addressQuals.push_back( 1533 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1534 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1535 1536 // Get argument type name. 1537 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1538 std::string baseTypeName = 1539 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1540 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1541 argBaseTypeNames.push_back( 1542 llvm::MDString::get(VMContext, baseTypeName)); 1543 1544 // Get argument type qualifiers: 1545 if (ty.isRestrictQualified()) 1546 typeQuals = "restrict"; 1547 if (pointeeTy.isConstQualified() || 1548 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1549 typeQuals += typeQuals.empty() ? "const" : " const"; 1550 if (pointeeTy.isVolatileQualified()) 1551 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1552 } else { 1553 uint32_t AddrSpc = 0; 1554 bool isPipe = ty->isPipeType(); 1555 if (ty->isImageType() || isPipe) 1556 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1557 1558 addressQuals.push_back( 1559 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1560 1561 // Get argument type name. 1562 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1563 std::string typeName = getTypeSpelling(ty); 1564 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1565 1566 // Remove access qualifiers on images 1567 // (as they are inseparable from type in clang implementation, 1568 // but OpenCL spec provides a special query to get access qualifier 1569 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1570 if (ty->isImageType()) { 1571 removeImageAccessQualifier(typeName); 1572 removeImageAccessQualifier(baseTypeName); 1573 } 1574 1575 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1576 argBaseTypeNames.push_back( 1577 llvm::MDString::get(VMContext, baseTypeName)); 1578 1579 if (isPipe) 1580 typeQuals = "pipe"; 1581 } 1582 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1583 } 1584 1585 Fn->setMetadata("kernel_arg_addr_space", 1586 llvm::MDNode::get(VMContext, addressQuals)); 1587 Fn->setMetadata("kernel_arg_access_qual", 1588 llvm::MDNode::get(VMContext, accessQuals)); 1589 Fn->setMetadata("kernel_arg_type", 1590 llvm::MDNode::get(VMContext, argTypeNames)); 1591 Fn->setMetadata("kernel_arg_base_type", 1592 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1593 Fn->setMetadata("kernel_arg_type_qual", 1594 llvm::MDNode::get(VMContext, argTypeQuals)); 1595 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1596 Fn->setMetadata("kernel_arg_name", 1597 llvm::MDNode::get(VMContext, argNames)); 1598 } 1599 1600 /// Determines whether the language options require us to model 1601 /// unwind exceptions. We treat -fexceptions as mandating this 1602 /// except under the fragile ObjC ABI with only ObjC exceptions 1603 /// enabled. This means, for example, that C with -fexceptions 1604 /// enables this. 1605 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1606 // If exceptions are completely disabled, obviously this is false. 1607 if (!LangOpts.Exceptions) return false; 1608 1609 // If C++ exceptions are enabled, this is true. 1610 if (LangOpts.CXXExceptions) return true; 1611 1612 // If ObjC exceptions are enabled, this depends on the ABI. 1613 if (LangOpts.ObjCExceptions) { 1614 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1615 } 1616 1617 return true; 1618 } 1619 1620 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1621 const CXXMethodDecl *MD) { 1622 // Check that the type metadata can ever actually be used by a call. 1623 if (!CGM.getCodeGenOpts().LTOUnit || 1624 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1625 return false; 1626 1627 // Only functions whose address can be taken with a member function pointer 1628 // need this sort of type metadata. 1629 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1630 !isa<CXXDestructorDecl>(MD); 1631 } 1632 1633 std::vector<const CXXRecordDecl *> 1634 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1635 llvm::SetVector<const CXXRecordDecl *> MostBases; 1636 1637 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1638 CollectMostBases = [&](const CXXRecordDecl *RD) { 1639 if (RD->getNumBases() == 0) 1640 MostBases.insert(RD); 1641 for (const CXXBaseSpecifier &B : RD->bases()) 1642 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1643 }; 1644 CollectMostBases(RD); 1645 return MostBases.takeVector(); 1646 } 1647 1648 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1649 llvm::Function *F) { 1650 llvm::AttrBuilder B; 1651 1652 if (CodeGenOpts.UnwindTables) 1653 B.addAttribute(llvm::Attribute::UWTable); 1654 1655 if (CodeGenOpts.StackClashProtector) 1656 B.addAttribute("probe-stack", "inline-asm"); 1657 1658 if (!hasUnwindExceptions(LangOpts)) 1659 B.addAttribute(llvm::Attribute::NoUnwind); 1660 1661 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1662 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1663 B.addAttribute(llvm::Attribute::StackProtect); 1664 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1665 B.addAttribute(llvm::Attribute::StackProtectStrong); 1666 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1667 B.addAttribute(llvm::Attribute::StackProtectReq); 1668 } 1669 1670 if (!D) { 1671 // If we don't have a declaration to control inlining, the function isn't 1672 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1673 // disabled, mark the function as noinline. 1674 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1675 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1676 B.addAttribute(llvm::Attribute::NoInline); 1677 1678 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1679 return; 1680 } 1681 1682 // Track whether we need to add the optnone LLVM attribute, 1683 // starting with the default for this optimization level. 1684 bool ShouldAddOptNone = 1685 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1686 // We can't add optnone in the following cases, it won't pass the verifier. 1687 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1688 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1689 1690 // Add optnone, but do so only if the function isn't always_inline. 1691 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1692 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1693 B.addAttribute(llvm::Attribute::OptimizeNone); 1694 1695 // OptimizeNone implies noinline; we should not be inlining such functions. 1696 B.addAttribute(llvm::Attribute::NoInline); 1697 1698 // We still need to handle naked functions even though optnone subsumes 1699 // much of their semantics. 1700 if (D->hasAttr<NakedAttr>()) 1701 B.addAttribute(llvm::Attribute::Naked); 1702 1703 // OptimizeNone wins over OptimizeForSize and MinSize. 1704 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1705 F->removeFnAttr(llvm::Attribute::MinSize); 1706 } else if (D->hasAttr<NakedAttr>()) { 1707 // Naked implies noinline: we should not be inlining such functions. 1708 B.addAttribute(llvm::Attribute::Naked); 1709 B.addAttribute(llvm::Attribute::NoInline); 1710 } else if (D->hasAttr<NoDuplicateAttr>()) { 1711 B.addAttribute(llvm::Attribute::NoDuplicate); 1712 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1713 // Add noinline if the function isn't always_inline. 1714 B.addAttribute(llvm::Attribute::NoInline); 1715 } else if (D->hasAttr<AlwaysInlineAttr>() && 1716 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1717 // (noinline wins over always_inline, and we can't specify both in IR) 1718 B.addAttribute(llvm::Attribute::AlwaysInline); 1719 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1720 // If we're not inlining, then force everything that isn't always_inline to 1721 // carry an explicit noinline attribute. 1722 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1723 B.addAttribute(llvm::Attribute::NoInline); 1724 } else { 1725 // Otherwise, propagate the inline hint attribute and potentially use its 1726 // absence to mark things as noinline. 1727 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1728 // Search function and template pattern redeclarations for inline. 1729 auto CheckForInline = [](const FunctionDecl *FD) { 1730 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1731 return Redecl->isInlineSpecified(); 1732 }; 1733 if (any_of(FD->redecls(), CheckRedeclForInline)) 1734 return true; 1735 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1736 if (!Pattern) 1737 return false; 1738 return any_of(Pattern->redecls(), CheckRedeclForInline); 1739 }; 1740 if (CheckForInline(FD)) { 1741 B.addAttribute(llvm::Attribute::InlineHint); 1742 } else if (CodeGenOpts.getInlining() == 1743 CodeGenOptions::OnlyHintInlining && 1744 !FD->isInlined() && 1745 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1746 B.addAttribute(llvm::Attribute::NoInline); 1747 } 1748 } 1749 } 1750 1751 // Add other optimization related attributes if we are optimizing this 1752 // function. 1753 if (!D->hasAttr<OptimizeNoneAttr>()) { 1754 if (D->hasAttr<ColdAttr>()) { 1755 if (!ShouldAddOptNone) 1756 B.addAttribute(llvm::Attribute::OptimizeForSize); 1757 B.addAttribute(llvm::Attribute::Cold); 1758 } 1759 if (D->hasAttr<HotAttr>()) 1760 B.addAttribute(llvm::Attribute::Hot); 1761 if (D->hasAttr<MinSizeAttr>()) 1762 B.addAttribute(llvm::Attribute::MinSize); 1763 } 1764 1765 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1766 1767 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1768 if (alignment) 1769 F->setAlignment(llvm::Align(alignment)); 1770 1771 if (!D->hasAttr<AlignedAttr>()) 1772 if (LangOpts.FunctionAlignment) 1773 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1774 1775 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1776 // reserve a bit for differentiating between virtual and non-virtual member 1777 // functions. If the current target's C++ ABI requires this and this is a 1778 // member function, set its alignment accordingly. 1779 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1780 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1781 F->setAlignment(llvm::Align(2)); 1782 } 1783 1784 // In the cross-dso CFI mode with canonical jump tables, we want !type 1785 // attributes on definitions only. 1786 if (CodeGenOpts.SanitizeCfiCrossDso && 1787 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1788 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1789 // Skip available_externally functions. They won't be codegen'ed in the 1790 // current module anyway. 1791 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1792 CreateFunctionTypeMetadataForIcall(FD, F); 1793 } 1794 } 1795 1796 // Emit type metadata on member functions for member function pointer checks. 1797 // These are only ever necessary on definitions; we're guaranteed that the 1798 // definition will be present in the LTO unit as a result of LTO visibility. 1799 auto *MD = dyn_cast<CXXMethodDecl>(D); 1800 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1801 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1802 llvm::Metadata *Id = 1803 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1804 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1805 F->addTypeMetadata(0, Id); 1806 } 1807 } 1808 } 1809 1810 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1811 llvm::Function *F) { 1812 if (D->hasAttr<StrictFPAttr>()) { 1813 llvm::AttrBuilder FuncAttrs; 1814 FuncAttrs.addAttribute("strictfp"); 1815 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1816 } 1817 } 1818 1819 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1820 const Decl *D = GD.getDecl(); 1821 if (dyn_cast_or_null<NamedDecl>(D)) 1822 setGVProperties(GV, GD); 1823 else 1824 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1825 1826 if (D && D->hasAttr<UsedAttr>()) 1827 addUsedOrCompilerUsedGlobal(GV); 1828 1829 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1830 const auto *VD = cast<VarDecl>(D); 1831 if (VD->getType().isConstQualified() && 1832 VD->getStorageDuration() == SD_Static) 1833 addUsedOrCompilerUsedGlobal(GV); 1834 } 1835 } 1836 1837 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1838 llvm::AttrBuilder &Attrs) { 1839 // Add target-cpu and target-features attributes to functions. If 1840 // we have a decl for the function and it has a target attribute then 1841 // parse that and add it to the feature set. 1842 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1843 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1844 std::vector<std::string> Features; 1845 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1846 FD = FD ? FD->getMostRecentDecl() : FD; 1847 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1848 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1849 bool AddedAttr = false; 1850 if (TD || SD) { 1851 llvm::StringMap<bool> FeatureMap; 1852 getContext().getFunctionFeatureMap(FeatureMap, GD); 1853 1854 // Produce the canonical string for this set of features. 1855 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1856 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1857 1858 // Now add the target-cpu and target-features to the function. 1859 // While we populated the feature map above, we still need to 1860 // get and parse the target attribute so we can get the cpu for 1861 // the function. 1862 if (TD) { 1863 ParsedTargetAttr ParsedAttr = TD->parse(); 1864 if (!ParsedAttr.Architecture.empty() && 1865 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1866 TargetCPU = ParsedAttr.Architecture; 1867 TuneCPU = ""; // Clear the tune CPU. 1868 } 1869 if (!ParsedAttr.Tune.empty() && 1870 getTarget().isValidCPUName(ParsedAttr.Tune)) 1871 TuneCPU = ParsedAttr.Tune; 1872 } 1873 } else { 1874 // Otherwise just add the existing target cpu and target features to the 1875 // function. 1876 Features = getTarget().getTargetOpts().Features; 1877 } 1878 1879 if (!TargetCPU.empty()) { 1880 Attrs.addAttribute("target-cpu", TargetCPU); 1881 AddedAttr = true; 1882 } 1883 if (!TuneCPU.empty()) { 1884 Attrs.addAttribute("tune-cpu", TuneCPU); 1885 AddedAttr = true; 1886 } 1887 if (!Features.empty()) { 1888 llvm::sort(Features); 1889 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1890 AddedAttr = true; 1891 } 1892 1893 return AddedAttr; 1894 } 1895 1896 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1897 llvm::GlobalObject *GO) { 1898 const Decl *D = GD.getDecl(); 1899 SetCommonAttributes(GD, GO); 1900 1901 if (D) { 1902 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1903 if (D->hasAttr<RetainAttr>()) 1904 addUsedGlobal(GV); 1905 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1906 GV->addAttribute("bss-section", SA->getName()); 1907 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1908 GV->addAttribute("data-section", SA->getName()); 1909 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1910 GV->addAttribute("rodata-section", SA->getName()); 1911 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1912 GV->addAttribute("relro-section", SA->getName()); 1913 } 1914 1915 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1916 if (D->hasAttr<RetainAttr>()) 1917 addUsedGlobal(F); 1918 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1919 if (!D->getAttr<SectionAttr>()) 1920 F->addFnAttr("implicit-section-name", SA->getName()); 1921 1922 llvm::AttrBuilder Attrs; 1923 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1924 // We know that GetCPUAndFeaturesAttributes will always have the 1925 // newest set, since it has the newest possible FunctionDecl, so the 1926 // new ones should replace the old. 1927 llvm::AttrBuilder RemoveAttrs; 1928 RemoveAttrs.addAttribute("target-cpu"); 1929 RemoveAttrs.addAttribute("target-features"); 1930 RemoveAttrs.addAttribute("tune-cpu"); 1931 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1932 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1933 } 1934 } 1935 1936 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1937 GO->setSection(CSA->getName()); 1938 else if (const auto *SA = D->getAttr<SectionAttr>()) 1939 GO->setSection(SA->getName()); 1940 } 1941 1942 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1943 } 1944 1945 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1946 llvm::Function *F, 1947 const CGFunctionInfo &FI) { 1948 const Decl *D = GD.getDecl(); 1949 SetLLVMFunctionAttributes(GD, FI, F); 1950 SetLLVMFunctionAttributesForDefinition(D, F); 1951 1952 F->setLinkage(llvm::Function::InternalLinkage); 1953 1954 setNonAliasAttributes(GD, F); 1955 } 1956 1957 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1958 // Set linkage and visibility in case we never see a definition. 1959 LinkageInfo LV = ND->getLinkageAndVisibility(); 1960 // Don't set internal linkage on declarations. 1961 // "extern_weak" is overloaded in LLVM; we probably should have 1962 // separate linkage types for this. 1963 if (isExternallyVisible(LV.getLinkage()) && 1964 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1965 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1966 } 1967 1968 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1969 llvm::Function *F) { 1970 // Only if we are checking indirect calls. 1971 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1972 return; 1973 1974 // Non-static class methods are handled via vtable or member function pointer 1975 // checks elsewhere. 1976 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1977 return; 1978 1979 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1980 F->addTypeMetadata(0, MD); 1981 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1982 1983 // Emit a hash-based bit set entry for cross-DSO calls. 1984 if (CodeGenOpts.SanitizeCfiCrossDso) 1985 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1986 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1987 } 1988 1989 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1990 bool IsIncompleteFunction, 1991 bool IsThunk) { 1992 1993 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1994 // If this is an intrinsic function, set the function's attributes 1995 // to the intrinsic's attributes. 1996 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1997 return; 1998 } 1999 2000 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2001 2002 if (!IsIncompleteFunction) 2003 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2004 2005 // Add the Returned attribute for "this", except for iOS 5 and earlier 2006 // where substantial code, including the libstdc++ dylib, was compiled with 2007 // GCC and does not actually return "this". 2008 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2009 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2010 assert(!F->arg_empty() && 2011 F->arg_begin()->getType() 2012 ->canLosslesslyBitCastTo(F->getReturnType()) && 2013 "unexpected this return"); 2014 F->addAttribute(1, llvm::Attribute::Returned); 2015 } 2016 2017 // Only a few attributes are set on declarations; these may later be 2018 // overridden by a definition. 2019 2020 setLinkageForGV(F, FD); 2021 setGVProperties(F, FD); 2022 2023 // Setup target-specific attributes. 2024 if (!IsIncompleteFunction && F->isDeclaration()) 2025 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2026 2027 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2028 F->setSection(CSA->getName()); 2029 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2030 F->setSection(SA->getName()); 2031 2032 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2033 if (FD->isInlineBuiltinDeclaration()) { 2034 const FunctionDecl *FDBody; 2035 bool HasBody = FD->hasBody(FDBody); 2036 (void)HasBody; 2037 assert(HasBody && "Inline builtin declarations should always have an " 2038 "available body!"); 2039 if (shouldEmitFunction(FDBody)) 2040 F->addAttribute(llvm::AttributeList::FunctionIndex, 2041 llvm::Attribute::NoBuiltin); 2042 } 2043 2044 if (FD->isReplaceableGlobalAllocationFunction()) { 2045 // A replaceable global allocation function does not act like a builtin by 2046 // default, only if it is invoked by a new-expression or delete-expression. 2047 F->addAttribute(llvm::AttributeList::FunctionIndex, 2048 llvm::Attribute::NoBuiltin); 2049 } 2050 2051 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2052 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2053 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2054 if (MD->isVirtual()) 2055 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2056 2057 // Don't emit entries for function declarations in the cross-DSO mode. This 2058 // is handled with better precision by the receiving DSO. But if jump tables 2059 // are non-canonical then we need type metadata in order to produce the local 2060 // jump table. 2061 if (!CodeGenOpts.SanitizeCfiCrossDso || 2062 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2063 CreateFunctionTypeMetadataForIcall(FD, F); 2064 2065 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2066 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2067 2068 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2069 // Annotate the callback behavior as metadata: 2070 // - The callback callee (as argument number). 2071 // - The callback payloads (as argument numbers). 2072 llvm::LLVMContext &Ctx = F->getContext(); 2073 llvm::MDBuilder MDB(Ctx); 2074 2075 // The payload indices are all but the first one in the encoding. The first 2076 // identifies the callback callee. 2077 int CalleeIdx = *CB->encoding_begin(); 2078 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2079 F->addMetadata(llvm::LLVMContext::MD_callback, 2080 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2081 CalleeIdx, PayloadIndices, 2082 /* VarArgsArePassed */ false)})); 2083 } 2084 } 2085 2086 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2087 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2088 "Only globals with definition can force usage."); 2089 LLVMUsed.emplace_back(GV); 2090 } 2091 2092 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2093 assert(!GV->isDeclaration() && 2094 "Only globals with definition can force usage."); 2095 LLVMCompilerUsed.emplace_back(GV); 2096 } 2097 2098 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2099 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2100 "Only globals with definition can force usage."); 2101 if (getTriple().isOSBinFormatELF()) 2102 LLVMCompilerUsed.emplace_back(GV); 2103 else 2104 LLVMUsed.emplace_back(GV); 2105 } 2106 2107 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2108 std::vector<llvm::WeakTrackingVH> &List) { 2109 // Don't create llvm.used if there is no need. 2110 if (List.empty()) 2111 return; 2112 2113 // Convert List to what ConstantArray needs. 2114 SmallVector<llvm::Constant*, 8> UsedArray; 2115 UsedArray.resize(List.size()); 2116 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2117 UsedArray[i] = 2118 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2119 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2120 } 2121 2122 if (UsedArray.empty()) 2123 return; 2124 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2125 2126 auto *GV = new llvm::GlobalVariable( 2127 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2128 llvm::ConstantArray::get(ATy, UsedArray), Name); 2129 2130 GV->setSection("llvm.metadata"); 2131 } 2132 2133 void CodeGenModule::emitLLVMUsed() { 2134 emitUsed(*this, "llvm.used", LLVMUsed); 2135 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2136 } 2137 2138 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2139 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2140 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2141 } 2142 2143 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2144 llvm::SmallString<32> Opt; 2145 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2146 if (Opt.empty()) 2147 return; 2148 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2149 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2150 } 2151 2152 void CodeGenModule::AddDependentLib(StringRef Lib) { 2153 auto &C = getLLVMContext(); 2154 if (getTarget().getTriple().isOSBinFormatELF()) { 2155 ELFDependentLibraries.push_back( 2156 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2157 return; 2158 } 2159 2160 llvm::SmallString<24> Opt; 2161 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2162 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2163 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2164 } 2165 2166 /// Add link options implied by the given module, including modules 2167 /// it depends on, using a postorder walk. 2168 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2169 SmallVectorImpl<llvm::MDNode *> &Metadata, 2170 llvm::SmallPtrSet<Module *, 16> &Visited) { 2171 // Import this module's parent. 2172 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2173 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2174 } 2175 2176 // Import this module's dependencies. 2177 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2178 if (Visited.insert(Mod->Imports[I - 1]).second) 2179 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2180 } 2181 2182 // Add linker options to link against the libraries/frameworks 2183 // described by this module. 2184 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2185 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2186 2187 // For modules that use export_as for linking, use that module 2188 // name instead. 2189 if (Mod->UseExportAsModuleLinkName) 2190 return; 2191 2192 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2193 // Link against a framework. Frameworks are currently Darwin only, so we 2194 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2195 if (Mod->LinkLibraries[I-1].IsFramework) { 2196 llvm::Metadata *Args[2] = { 2197 llvm::MDString::get(Context, "-framework"), 2198 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2199 2200 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2201 continue; 2202 } 2203 2204 // Link against a library. 2205 if (IsELF) { 2206 llvm::Metadata *Args[2] = { 2207 llvm::MDString::get(Context, "lib"), 2208 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2209 }; 2210 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2211 } else { 2212 llvm::SmallString<24> Opt; 2213 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2214 Mod->LinkLibraries[I - 1].Library, Opt); 2215 auto *OptString = llvm::MDString::get(Context, Opt); 2216 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2217 } 2218 } 2219 } 2220 2221 void CodeGenModule::EmitModuleLinkOptions() { 2222 // Collect the set of all of the modules we want to visit to emit link 2223 // options, which is essentially the imported modules and all of their 2224 // non-explicit child modules. 2225 llvm::SetVector<clang::Module *> LinkModules; 2226 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2227 SmallVector<clang::Module *, 16> Stack; 2228 2229 // Seed the stack with imported modules. 2230 for (Module *M : ImportedModules) { 2231 // Do not add any link flags when an implementation TU of a module imports 2232 // a header of that same module. 2233 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2234 !getLangOpts().isCompilingModule()) 2235 continue; 2236 if (Visited.insert(M).second) 2237 Stack.push_back(M); 2238 } 2239 2240 // Find all of the modules to import, making a little effort to prune 2241 // non-leaf modules. 2242 while (!Stack.empty()) { 2243 clang::Module *Mod = Stack.pop_back_val(); 2244 2245 bool AnyChildren = false; 2246 2247 // Visit the submodules of this module. 2248 for (const auto &SM : Mod->submodules()) { 2249 // Skip explicit children; they need to be explicitly imported to be 2250 // linked against. 2251 if (SM->IsExplicit) 2252 continue; 2253 2254 if (Visited.insert(SM).second) { 2255 Stack.push_back(SM); 2256 AnyChildren = true; 2257 } 2258 } 2259 2260 // We didn't find any children, so add this module to the list of 2261 // modules to link against. 2262 if (!AnyChildren) { 2263 LinkModules.insert(Mod); 2264 } 2265 } 2266 2267 // Add link options for all of the imported modules in reverse topological 2268 // order. We don't do anything to try to order import link flags with respect 2269 // to linker options inserted by things like #pragma comment(). 2270 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2271 Visited.clear(); 2272 for (Module *M : LinkModules) 2273 if (Visited.insert(M).second) 2274 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2275 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2276 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2277 2278 // Add the linker options metadata flag. 2279 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2280 for (auto *MD : LinkerOptionsMetadata) 2281 NMD->addOperand(MD); 2282 } 2283 2284 void CodeGenModule::EmitDeferred() { 2285 // Emit deferred declare target declarations. 2286 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2287 getOpenMPRuntime().emitDeferredTargetDecls(); 2288 2289 // Emit code for any potentially referenced deferred decls. Since a 2290 // previously unused static decl may become used during the generation of code 2291 // for a static function, iterate until no changes are made. 2292 2293 if (!DeferredVTables.empty()) { 2294 EmitDeferredVTables(); 2295 2296 // Emitting a vtable doesn't directly cause more vtables to 2297 // become deferred, although it can cause functions to be 2298 // emitted that then need those vtables. 2299 assert(DeferredVTables.empty()); 2300 } 2301 2302 // Emit CUDA/HIP static device variables referenced by host code only. 2303 if (getLangOpts().CUDA) 2304 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2305 DeferredDeclsToEmit.push_back(V); 2306 2307 // Stop if we're out of both deferred vtables and deferred declarations. 2308 if (DeferredDeclsToEmit.empty()) 2309 return; 2310 2311 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2312 // work, it will not interfere with this. 2313 std::vector<GlobalDecl> CurDeclsToEmit; 2314 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2315 2316 for (GlobalDecl &D : CurDeclsToEmit) { 2317 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2318 // to get GlobalValue with exactly the type we need, not something that 2319 // might had been created for another decl with the same mangled name but 2320 // different type. 2321 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2322 GetAddrOfGlobal(D, ForDefinition)); 2323 2324 // In case of different address spaces, we may still get a cast, even with 2325 // IsForDefinition equal to true. Query mangled names table to get 2326 // GlobalValue. 2327 if (!GV) 2328 GV = GetGlobalValue(getMangledName(D)); 2329 2330 // Make sure GetGlobalValue returned non-null. 2331 assert(GV); 2332 2333 // Check to see if we've already emitted this. This is necessary 2334 // for a couple of reasons: first, decls can end up in the 2335 // deferred-decls queue multiple times, and second, decls can end 2336 // up with definitions in unusual ways (e.g. by an extern inline 2337 // function acquiring a strong function redefinition). Just 2338 // ignore these cases. 2339 if (!GV->isDeclaration()) 2340 continue; 2341 2342 // If this is OpenMP, check if it is legal to emit this global normally. 2343 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2344 continue; 2345 2346 // Otherwise, emit the definition and move on to the next one. 2347 EmitGlobalDefinition(D, GV); 2348 2349 // If we found out that we need to emit more decls, do that recursively. 2350 // This has the advantage that the decls are emitted in a DFS and related 2351 // ones are close together, which is convenient for testing. 2352 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2353 EmitDeferred(); 2354 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2355 } 2356 } 2357 } 2358 2359 void CodeGenModule::EmitVTablesOpportunistically() { 2360 // Try to emit external vtables as available_externally if they have emitted 2361 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2362 // is not allowed to create new references to things that need to be emitted 2363 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2364 2365 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2366 && "Only emit opportunistic vtables with optimizations"); 2367 2368 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2369 assert(getVTables().isVTableExternal(RD) && 2370 "This queue should only contain external vtables"); 2371 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2372 VTables.GenerateClassData(RD); 2373 } 2374 OpportunisticVTables.clear(); 2375 } 2376 2377 void CodeGenModule::EmitGlobalAnnotations() { 2378 if (Annotations.empty()) 2379 return; 2380 2381 // Create a new global variable for the ConstantStruct in the Module. 2382 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2383 Annotations[0]->getType(), Annotations.size()), Annotations); 2384 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2385 llvm::GlobalValue::AppendingLinkage, 2386 Array, "llvm.global.annotations"); 2387 gv->setSection(AnnotationSection); 2388 } 2389 2390 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2391 llvm::Constant *&AStr = AnnotationStrings[Str]; 2392 if (AStr) 2393 return AStr; 2394 2395 // Not found yet, create a new global. 2396 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2397 auto *gv = 2398 new llvm::GlobalVariable(getModule(), s->getType(), true, 2399 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2400 gv->setSection(AnnotationSection); 2401 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2402 AStr = gv; 2403 return gv; 2404 } 2405 2406 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2407 SourceManager &SM = getContext().getSourceManager(); 2408 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2409 if (PLoc.isValid()) 2410 return EmitAnnotationString(PLoc.getFilename()); 2411 return EmitAnnotationString(SM.getBufferName(Loc)); 2412 } 2413 2414 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2415 SourceManager &SM = getContext().getSourceManager(); 2416 PresumedLoc PLoc = SM.getPresumedLoc(L); 2417 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2418 SM.getExpansionLineNumber(L); 2419 return llvm::ConstantInt::get(Int32Ty, LineNo); 2420 } 2421 2422 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2423 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2424 if (Exprs.empty()) 2425 return llvm::ConstantPointerNull::get(Int8PtrTy); 2426 2427 llvm::FoldingSetNodeID ID; 2428 for (Expr *E : Exprs) { 2429 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2430 } 2431 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2432 if (Lookup) 2433 return Lookup; 2434 2435 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2436 LLVMArgs.reserve(Exprs.size()); 2437 ConstantEmitter ConstEmiter(*this); 2438 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2439 const auto *CE = cast<clang::ConstantExpr>(E); 2440 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2441 CE->getType()); 2442 }); 2443 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2444 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2445 llvm::GlobalValue::PrivateLinkage, Struct, 2446 ".args"); 2447 GV->setSection(AnnotationSection); 2448 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2449 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2450 2451 Lookup = Bitcasted; 2452 return Bitcasted; 2453 } 2454 2455 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2456 const AnnotateAttr *AA, 2457 SourceLocation L) { 2458 // Get the globals for file name, annotation, and the line number. 2459 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2460 *UnitGV = EmitAnnotationUnit(L), 2461 *LineNoCst = EmitAnnotationLineNo(L), 2462 *Args = EmitAnnotationArgs(AA); 2463 2464 llvm::Constant *ASZeroGV = GV; 2465 if (GV->getAddressSpace() != 0) { 2466 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2467 GV, GV->getValueType()->getPointerTo(0)); 2468 } 2469 2470 // Create the ConstantStruct for the global annotation. 2471 llvm::Constant *Fields[] = { 2472 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2473 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2474 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2475 LineNoCst, 2476 Args, 2477 }; 2478 return llvm::ConstantStruct::getAnon(Fields); 2479 } 2480 2481 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2482 llvm::GlobalValue *GV) { 2483 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2484 // Get the struct elements for these annotations. 2485 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2486 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2487 } 2488 2489 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2490 SourceLocation Loc) const { 2491 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2492 // NoSanitize by function name. 2493 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2494 return true; 2495 // NoSanitize by location. 2496 if (Loc.isValid()) 2497 return NoSanitizeL.containsLocation(Kind, Loc); 2498 // If location is unknown, this may be a compiler-generated function. Assume 2499 // it's located in the main file. 2500 auto &SM = Context.getSourceManager(); 2501 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2502 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2503 } 2504 return false; 2505 } 2506 2507 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2508 SourceLocation Loc, QualType Ty, 2509 StringRef Category) const { 2510 // For now globals can be ignored only in ASan and KASan. 2511 const SanitizerMask EnabledAsanMask = 2512 LangOpts.Sanitize.Mask & 2513 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2514 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2515 SanitizerKind::MemTag); 2516 if (!EnabledAsanMask) 2517 return false; 2518 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2519 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2520 return true; 2521 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2522 return true; 2523 // Check global type. 2524 if (!Ty.isNull()) { 2525 // Drill down the array types: if global variable of a fixed type is 2526 // not sanitized, we also don't instrument arrays of them. 2527 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2528 Ty = AT->getElementType(); 2529 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2530 // Only record types (classes, structs etc.) are ignored. 2531 if (Ty->isRecordType()) { 2532 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2533 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2534 return true; 2535 } 2536 } 2537 return false; 2538 } 2539 2540 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2541 StringRef Category) const { 2542 const auto &XRayFilter = getContext().getXRayFilter(); 2543 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2544 auto Attr = ImbueAttr::NONE; 2545 if (Loc.isValid()) 2546 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2547 if (Attr == ImbueAttr::NONE) 2548 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2549 switch (Attr) { 2550 case ImbueAttr::NONE: 2551 return false; 2552 case ImbueAttr::ALWAYS: 2553 Fn->addFnAttr("function-instrument", "xray-always"); 2554 break; 2555 case ImbueAttr::ALWAYS_ARG1: 2556 Fn->addFnAttr("function-instrument", "xray-always"); 2557 Fn->addFnAttr("xray-log-args", "1"); 2558 break; 2559 case ImbueAttr::NEVER: 2560 Fn->addFnAttr("function-instrument", "xray-never"); 2561 break; 2562 } 2563 return true; 2564 } 2565 2566 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2567 SourceLocation Loc) const { 2568 const auto &ProfileList = getContext().getProfileList(); 2569 // If the profile list is empty, then instrument everything. 2570 if (ProfileList.isEmpty()) 2571 return false; 2572 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2573 // First, check the function name. 2574 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2575 if (V.hasValue()) 2576 return *V; 2577 // Next, check the source location. 2578 if (Loc.isValid()) { 2579 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2580 if (V.hasValue()) 2581 return *V; 2582 } 2583 // If location is unknown, this may be a compiler-generated function. Assume 2584 // it's located in the main file. 2585 auto &SM = Context.getSourceManager(); 2586 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2587 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2588 if (V.hasValue()) 2589 return *V; 2590 } 2591 return ProfileList.getDefault(); 2592 } 2593 2594 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2595 // Never defer when EmitAllDecls is specified. 2596 if (LangOpts.EmitAllDecls) 2597 return true; 2598 2599 if (CodeGenOpts.KeepStaticConsts) { 2600 const auto *VD = dyn_cast<VarDecl>(Global); 2601 if (VD && VD->getType().isConstQualified() && 2602 VD->getStorageDuration() == SD_Static) 2603 return true; 2604 } 2605 2606 return getContext().DeclMustBeEmitted(Global); 2607 } 2608 2609 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2610 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2611 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2612 // Implicit template instantiations may change linkage if they are later 2613 // explicitly instantiated, so they should not be emitted eagerly. 2614 return false; 2615 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2616 // not emit them eagerly unless we sure that the function must be emitted on 2617 // the host. 2618 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2619 !LangOpts.OpenMPIsDevice && 2620 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2621 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2622 return false; 2623 } 2624 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2625 if (Context.getInlineVariableDefinitionKind(VD) == 2626 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2627 // A definition of an inline constexpr static data member may change 2628 // linkage later if it's redeclared outside the class. 2629 return false; 2630 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2631 // codegen for global variables, because they may be marked as threadprivate. 2632 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2633 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2634 !isTypeConstant(Global->getType(), false) && 2635 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2636 return false; 2637 2638 return true; 2639 } 2640 2641 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2642 StringRef Name = getMangledName(GD); 2643 2644 // The UUID descriptor should be pointer aligned. 2645 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2646 2647 // Look for an existing global. 2648 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2649 return ConstantAddress(GV, Alignment); 2650 2651 ConstantEmitter Emitter(*this); 2652 llvm::Constant *Init; 2653 2654 APValue &V = GD->getAsAPValue(); 2655 if (!V.isAbsent()) { 2656 // If possible, emit the APValue version of the initializer. In particular, 2657 // this gets the type of the constant right. 2658 Init = Emitter.emitForInitializer( 2659 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2660 } else { 2661 // As a fallback, directly construct the constant. 2662 // FIXME: This may get padding wrong under esoteric struct layout rules. 2663 // MSVC appears to create a complete type 'struct __s_GUID' that it 2664 // presumably uses to represent these constants. 2665 MSGuidDecl::Parts Parts = GD->getParts(); 2666 llvm::Constant *Fields[4] = { 2667 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2668 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2669 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2670 llvm::ConstantDataArray::getRaw( 2671 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2672 Int8Ty)}; 2673 Init = llvm::ConstantStruct::getAnon(Fields); 2674 } 2675 2676 auto *GV = new llvm::GlobalVariable( 2677 getModule(), Init->getType(), 2678 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2679 if (supportsCOMDAT()) 2680 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2681 setDSOLocal(GV); 2682 2683 llvm::Constant *Addr = GV; 2684 if (!V.isAbsent()) { 2685 Emitter.finalize(GV); 2686 } else { 2687 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2688 Addr = llvm::ConstantExpr::getBitCast( 2689 GV, Ty->getPointerTo(GV->getAddressSpace())); 2690 } 2691 return ConstantAddress(Addr, Alignment); 2692 } 2693 2694 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2695 const TemplateParamObjectDecl *TPO) { 2696 StringRef Name = getMangledName(TPO); 2697 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2698 2699 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2700 return ConstantAddress(GV, Alignment); 2701 2702 ConstantEmitter Emitter(*this); 2703 llvm::Constant *Init = Emitter.emitForInitializer( 2704 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2705 2706 if (!Init) { 2707 ErrorUnsupported(TPO, "template parameter object"); 2708 return ConstantAddress::invalid(); 2709 } 2710 2711 auto *GV = new llvm::GlobalVariable( 2712 getModule(), Init->getType(), 2713 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2714 if (supportsCOMDAT()) 2715 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2716 Emitter.finalize(GV); 2717 2718 return ConstantAddress(GV, Alignment); 2719 } 2720 2721 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2722 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2723 assert(AA && "No alias?"); 2724 2725 CharUnits Alignment = getContext().getDeclAlign(VD); 2726 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2727 2728 // See if there is already something with the target's name in the module. 2729 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2730 if (Entry) { 2731 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2732 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2733 return ConstantAddress(Ptr, Alignment); 2734 } 2735 2736 llvm::Constant *Aliasee; 2737 if (isa<llvm::FunctionType>(DeclTy)) 2738 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2739 GlobalDecl(cast<FunctionDecl>(VD)), 2740 /*ForVTable=*/false); 2741 else 2742 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2743 llvm::PointerType::getUnqual(DeclTy), 2744 nullptr); 2745 2746 auto *F = cast<llvm::GlobalValue>(Aliasee); 2747 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2748 WeakRefReferences.insert(F); 2749 2750 return ConstantAddress(Aliasee, Alignment); 2751 } 2752 2753 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2754 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2755 2756 // Weak references don't produce any output by themselves. 2757 if (Global->hasAttr<WeakRefAttr>()) 2758 return; 2759 2760 // If this is an alias definition (which otherwise looks like a declaration) 2761 // emit it now. 2762 if (Global->hasAttr<AliasAttr>()) 2763 return EmitAliasDefinition(GD); 2764 2765 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2766 if (Global->hasAttr<IFuncAttr>()) 2767 return emitIFuncDefinition(GD); 2768 2769 // If this is a cpu_dispatch multiversion function, emit the resolver. 2770 if (Global->hasAttr<CPUDispatchAttr>()) 2771 return emitCPUDispatchDefinition(GD); 2772 2773 // If this is CUDA, be selective about which declarations we emit. 2774 if (LangOpts.CUDA) { 2775 if (LangOpts.CUDAIsDevice) { 2776 if (!Global->hasAttr<CUDADeviceAttr>() && 2777 !Global->hasAttr<CUDAGlobalAttr>() && 2778 !Global->hasAttr<CUDAConstantAttr>() && 2779 !Global->hasAttr<CUDASharedAttr>() && 2780 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2781 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2782 return; 2783 } else { 2784 // We need to emit host-side 'shadows' for all global 2785 // device-side variables because the CUDA runtime needs their 2786 // size and host-side address in order to provide access to 2787 // their device-side incarnations. 2788 2789 // So device-only functions are the only things we skip. 2790 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2791 Global->hasAttr<CUDADeviceAttr>()) 2792 return; 2793 2794 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2795 "Expected Variable or Function"); 2796 } 2797 } 2798 2799 if (LangOpts.OpenMP) { 2800 // If this is OpenMP, check if it is legal to emit this global normally. 2801 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2802 return; 2803 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2804 if (MustBeEmitted(Global)) 2805 EmitOMPDeclareReduction(DRD); 2806 return; 2807 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2808 if (MustBeEmitted(Global)) 2809 EmitOMPDeclareMapper(DMD); 2810 return; 2811 } 2812 } 2813 2814 // Ignore declarations, they will be emitted on their first use. 2815 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2816 // Forward declarations are emitted lazily on first use. 2817 if (!FD->doesThisDeclarationHaveABody()) { 2818 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2819 return; 2820 2821 StringRef MangledName = getMangledName(GD); 2822 2823 // Compute the function info and LLVM type. 2824 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2825 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2826 2827 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2828 /*DontDefer=*/false); 2829 return; 2830 } 2831 } else { 2832 const auto *VD = cast<VarDecl>(Global); 2833 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2834 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2835 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2836 if (LangOpts.OpenMP) { 2837 // Emit declaration of the must-be-emitted declare target variable. 2838 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2839 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2840 bool UnifiedMemoryEnabled = 2841 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2842 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2843 !UnifiedMemoryEnabled) { 2844 (void)GetAddrOfGlobalVar(VD); 2845 } else { 2846 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2847 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2848 UnifiedMemoryEnabled)) && 2849 "Link clause or to clause with unified memory expected."); 2850 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2851 } 2852 2853 return; 2854 } 2855 } 2856 // If this declaration may have caused an inline variable definition to 2857 // change linkage, make sure that it's emitted. 2858 if (Context.getInlineVariableDefinitionKind(VD) == 2859 ASTContext::InlineVariableDefinitionKind::Strong) 2860 GetAddrOfGlobalVar(VD); 2861 return; 2862 } 2863 } 2864 2865 // Defer code generation to first use when possible, e.g. if this is an inline 2866 // function. If the global must always be emitted, do it eagerly if possible 2867 // to benefit from cache locality. 2868 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2869 // Emit the definition if it can't be deferred. 2870 EmitGlobalDefinition(GD); 2871 return; 2872 } 2873 2874 // If we're deferring emission of a C++ variable with an 2875 // initializer, remember the order in which it appeared in the file. 2876 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2877 cast<VarDecl>(Global)->hasInit()) { 2878 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2879 CXXGlobalInits.push_back(nullptr); 2880 } 2881 2882 StringRef MangledName = getMangledName(GD); 2883 if (GetGlobalValue(MangledName) != nullptr) { 2884 // The value has already been used and should therefore be emitted. 2885 addDeferredDeclToEmit(GD); 2886 } else if (MustBeEmitted(Global)) { 2887 // The value must be emitted, but cannot be emitted eagerly. 2888 assert(!MayBeEmittedEagerly(Global)); 2889 addDeferredDeclToEmit(GD); 2890 } else { 2891 // Otherwise, remember that we saw a deferred decl with this name. The 2892 // first use of the mangled name will cause it to move into 2893 // DeferredDeclsToEmit. 2894 DeferredDecls[MangledName] = GD; 2895 } 2896 } 2897 2898 // Check if T is a class type with a destructor that's not dllimport. 2899 static bool HasNonDllImportDtor(QualType T) { 2900 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2901 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2902 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2903 return true; 2904 2905 return false; 2906 } 2907 2908 namespace { 2909 struct FunctionIsDirectlyRecursive 2910 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2911 const StringRef Name; 2912 const Builtin::Context &BI; 2913 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2914 : Name(N), BI(C) {} 2915 2916 bool VisitCallExpr(const CallExpr *E) { 2917 const FunctionDecl *FD = E->getDirectCallee(); 2918 if (!FD) 2919 return false; 2920 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2921 if (Attr && Name == Attr->getLabel()) 2922 return true; 2923 unsigned BuiltinID = FD->getBuiltinID(); 2924 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2925 return false; 2926 StringRef BuiltinName = BI.getName(BuiltinID); 2927 if (BuiltinName.startswith("__builtin_") && 2928 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2929 return true; 2930 } 2931 return false; 2932 } 2933 2934 bool VisitStmt(const Stmt *S) { 2935 for (const Stmt *Child : S->children()) 2936 if (Child && this->Visit(Child)) 2937 return true; 2938 return false; 2939 } 2940 }; 2941 2942 // Make sure we're not referencing non-imported vars or functions. 2943 struct DLLImportFunctionVisitor 2944 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2945 bool SafeToInline = true; 2946 2947 bool shouldVisitImplicitCode() const { return true; } 2948 2949 bool VisitVarDecl(VarDecl *VD) { 2950 if (VD->getTLSKind()) { 2951 // A thread-local variable cannot be imported. 2952 SafeToInline = false; 2953 return SafeToInline; 2954 } 2955 2956 // A variable definition might imply a destructor call. 2957 if (VD->isThisDeclarationADefinition()) 2958 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2959 2960 return SafeToInline; 2961 } 2962 2963 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2964 if (const auto *D = E->getTemporary()->getDestructor()) 2965 SafeToInline = D->hasAttr<DLLImportAttr>(); 2966 return SafeToInline; 2967 } 2968 2969 bool VisitDeclRefExpr(DeclRefExpr *E) { 2970 ValueDecl *VD = E->getDecl(); 2971 if (isa<FunctionDecl>(VD)) 2972 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2973 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2974 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2975 return SafeToInline; 2976 } 2977 2978 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2979 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2980 return SafeToInline; 2981 } 2982 2983 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2984 CXXMethodDecl *M = E->getMethodDecl(); 2985 if (!M) { 2986 // Call through a pointer to member function. This is safe to inline. 2987 SafeToInline = true; 2988 } else { 2989 SafeToInline = M->hasAttr<DLLImportAttr>(); 2990 } 2991 return SafeToInline; 2992 } 2993 2994 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2995 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2996 return SafeToInline; 2997 } 2998 2999 bool VisitCXXNewExpr(CXXNewExpr *E) { 3000 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3001 return SafeToInline; 3002 } 3003 }; 3004 } 3005 3006 // isTriviallyRecursive - Check if this function calls another 3007 // decl that, because of the asm attribute or the other decl being a builtin, 3008 // ends up pointing to itself. 3009 bool 3010 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3011 StringRef Name; 3012 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3013 // asm labels are a special kind of mangling we have to support. 3014 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3015 if (!Attr) 3016 return false; 3017 Name = Attr->getLabel(); 3018 } else { 3019 Name = FD->getName(); 3020 } 3021 3022 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3023 const Stmt *Body = FD->getBody(); 3024 return Body ? Walker.Visit(Body) : false; 3025 } 3026 3027 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3028 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3029 return true; 3030 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3031 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3032 return false; 3033 3034 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3035 // Check whether it would be safe to inline this dllimport function. 3036 DLLImportFunctionVisitor Visitor; 3037 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3038 if (!Visitor.SafeToInline) 3039 return false; 3040 3041 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3042 // Implicit destructor invocations aren't captured in the AST, so the 3043 // check above can't see them. Check for them manually here. 3044 for (const Decl *Member : Dtor->getParent()->decls()) 3045 if (isa<FieldDecl>(Member)) 3046 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3047 return false; 3048 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3049 if (HasNonDllImportDtor(B.getType())) 3050 return false; 3051 } 3052 } 3053 3054 // PR9614. Avoid cases where the source code is lying to us. An available 3055 // externally function should have an equivalent function somewhere else, 3056 // but a function that calls itself through asm label/`__builtin_` trickery is 3057 // clearly not equivalent to the real implementation. 3058 // This happens in glibc's btowc and in some configure checks. 3059 return !isTriviallyRecursive(F); 3060 } 3061 3062 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3063 return CodeGenOpts.OptimizationLevel > 0; 3064 } 3065 3066 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3067 llvm::GlobalValue *GV) { 3068 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3069 3070 if (FD->isCPUSpecificMultiVersion()) { 3071 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3072 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3073 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3074 // Requires multiple emits. 3075 } else 3076 EmitGlobalFunctionDefinition(GD, GV); 3077 } 3078 3079 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3080 const auto *D = cast<ValueDecl>(GD.getDecl()); 3081 3082 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3083 Context.getSourceManager(), 3084 "Generating code for declaration"); 3085 3086 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3087 // At -O0, don't generate IR for functions with available_externally 3088 // linkage. 3089 if (!shouldEmitFunction(GD)) 3090 return; 3091 3092 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3093 std::string Name; 3094 llvm::raw_string_ostream OS(Name); 3095 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3096 /*Qualified=*/true); 3097 return Name; 3098 }); 3099 3100 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3101 // Make sure to emit the definition(s) before we emit the thunks. 3102 // This is necessary for the generation of certain thunks. 3103 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3104 ABI->emitCXXStructor(GD); 3105 else if (FD->isMultiVersion()) 3106 EmitMultiVersionFunctionDefinition(GD, GV); 3107 else 3108 EmitGlobalFunctionDefinition(GD, GV); 3109 3110 if (Method->isVirtual()) 3111 getVTables().EmitThunks(GD); 3112 3113 return; 3114 } 3115 3116 if (FD->isMultiVersion()) 3117 return EmitMultiVersionFunctionDefinition(GD, GV); 3118 return EmitGlobalFunctionDefinition(GD, GV); 3119 } 3120 3121 if (const auto *VD = dyn_cast<VarDecl>(D)) 3122 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3123 3124 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3125 } 3126 3127 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3128 llvm::Function *NewFn); 3129 3130 static unsigned 3131 TargetMVPriority(const TargetInfo &TI, 3132 const CodeGenFunction::MultiVersionResolverOption &RO) { 3133 unsigned Priority = 0; 3134 for (StringRef Feat : RO.Conditions.Features) 3135 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3136 3137 if (!RO.Conditions.Architecture.empty()) 3138 Priority = std::max( 3139 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3140 return Priority; 3141 } 3142 3143 void CodeGenModule::emitMultiVersionFunctions() { 3144 for (GlobalDecl GD : MultiVersionFuncs) { 3145 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3146 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3147 getContext().forEachMultiversionedFunctionVersion( 3148 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3149 GlobalDecl CurGD{ 3150 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3151 StringRef MangledName = getMangledName(CurGD); 3152 llvm::Constant *Func = GetGlobalValue(MangledName); 3153 if (!Func) { 3154 if (CurFD->isDefined()) { 3155 EmitGlobalFunctionDefinition(CurGD, nullptr); 3156 Func = GetGlobalValue(MangledName); 3157 } else { 3158 const CGFunctionInfo &FI = 3159 getTypes().arrangeGlobalDeclaration(GD); 3160 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3161 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3162 /*DontDefer=*/false, ForDefinition); 3163 } 3164 assert(Func && "This should have just been created"); 3165 } 3166 3167 const auto *TA = CurFD->getAttr<TargetAttr>(); 3168 llvm::SmallVector<StringRef, 8> Feats; 3169 TA->getAddedFeatures(Feats); 3170 3171 Options.emplace_back(cast<llvm::Function>(Func), 3172 TA->getArchitecture(), Feats); 3173 }); 3174 3175 llvm::Function *ResolverFunc; 3176 const TargetInfo &TI = getTarget(); 3177 3178 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3179 ResolverFunc = cast<llvm::Function>( 3180 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3181 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3182 } else { 3183 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3184 } 3185 3186 if (supportsCOMDAT()) 3187 ResolverFunc->setComdat( 3188 getModule().getOrInsertComdat(ResolverFunc->getName())); 3189 3190 llvm::stable_sort( 3191 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3192 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3193 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3194 }); 3195 CodeGenFunction CGF(*this); 3196 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3197 } 3198 } 3199 3200 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3201 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3202 assert(FD && "Not a FunctionDecl?"); 3203 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3204 assert(DD && "Not a cpu_dispatch Function?"); 3205 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3206 3207 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3208 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3209 DeclTy = getTypes().GetFunctionType(FInfo); 3210 } 3211 3212 StringRef ResolverName = getMangledName(GD); 3213 3214 llvm::Type *ResolverType; 3215 GlobalDecl ResolverGD; 3216 if (getTarget().supportsIFunc()) 3217 ResolverType = llvm::FunctionType::get( 3218 llvm::PointerType::get(DeclTy, 3219 Context.getTargetAddressSpace(FD->getType())), 3220 false); 3221 else { 3222 ResolverType = DeclTy; 3223 ResolverGD = GD; 3224 } 3225 3226 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3227 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3228 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3229 if (supportsCOMDAT()) 3230 ResolverFunc->setComdat( 3231 getModule().getOrInsertComdat(ResolverFunc->getName())); 3232 3233 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3234 const TargetInfo &Target = getTarget(); 3235 unsigned Index = 0; 3236 for (const IdentifierInfo *II : DD->cpus()) { 3237 // Get the name of the target function so we can look it up/create it. 3238 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3239 getCPUSpecificMangling(*this, II->getName()); 3240 3241 llvm::Constant *Func = GetGlobalValue(MangledName); 3242 3243 if (!Func) { 3244 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3245 if (ExistingDecl.getDecl() && 3246 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3247 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3248 Func = GetGlobalValue(MangledName); 3249 } else { 3250 if (!ExistingDecl.getDecl()) 3251 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3252 3253 Func = GetOrCreateLLVMFunction( 3254 MangledName, DeclTy, ExistingDecl, 3255 /*ForVTable=*/false, /*DontDefer=*/true, 3256 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3257 } 3258 } 3259 3260 llvm::SmallVector<StringRef, 32> Features; 3261 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3262 llvm::transform(Features, Features.begin(), 3263 [](StringRef Str) { return Str.substr(1); }); 3264 Features.erase(std::remove_if( 3265 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3266 return !Target.validateCpuSupports(Feat); 3267 }), Features.end()); 3268 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3269 ++Index; 3270 } 3271 3272 llvm::sort( 3273 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3274 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3275 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3276 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3277 }); 3278 3279 // If the list contains multiple 'default' versions, such as when it contains 3280 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3281 // always run on at least a 'pentium'). We do this by deleting the 'least 3282 // advanced' (read, lowest mangling letter). 3283 while (Options.size() > 1 && 3284 CodeGenFunction::GetX86CpuSupportsMask( 3285 (Options.end() - 2)->Conditions.Features) == 0) { 3286 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3287 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3288 if (LHSName.compare(RHSName) < 0) 3289 Options.erase(Options.end() - 2); 3290 else 3291 Options.erase(Options.end() - 1); 3292 } 3293 3294 CodeGenFunction CGF(*this); 3295 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3296 3297 if (getTarget().supportsIFunc()) { 3298 std::string AliasName = getMangledNameImpl( 3299 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3300 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3301 if (!AliasFunc) { 3302 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3303 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3304 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3305 auto *GA = llvm::GlobalAlias::create( 3306 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3307 GA->setLinkage(llvm::Function::WeakODRLinkage); 3308 SetCommonAttributes(GD, GA); 3309 } 3310 } 3311 } 3312 3313 /// If a dispatcher for the specified mangled name is not in the module, create 3314 /// and return an llvm Function with the specified type. 3315 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3316 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3317 std::string MangledName = 3318 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3319 3320 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3321 // a separate resolver). 3322 std::string ResolverName = MangledName; 3323 if (getTarget().supportsIFunc()) 3324 ResolverName += ".ifunc"; 3325 else if (FD->isTargetMultiVersion()) 3326 ResolverName += ".resolver"; 3327 3328 // If this already exists, just return that one. 3329 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3330 return ResolverGV; 3331 3332 // Since this is the first time we've created this IFunc, make sure 3333 // that we put this multiversioned function into the list to be 3334 // replaced later if necessary (target multiversioning only). 3335 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3336 MultiVersionFuncs.push_back(GD); 3337 3338 if (getTarget().supportsIFunc()) { 3339 llvm::Type *ResolverType = llvm::FunctionType::get( 3340 llvm::PointerType::get( 3341 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3342 false); 3343 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3344 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3345 /*ForVTable=*/false); 3346 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3347 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3348 GIF->setName(ResolverName); 3349 SetCommonAttributes(FD, GIF); 3350 3351 return GIF; 3352 } 3353 3354 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3355 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3356 assert(isa<llvm::GlobalValue>(Resolver) && 3357 "Resolver should be created for the first time"); 3358 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3359 return Resolver; 3360 } 3361 3362 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3363 /// module, create and return an llvm Function with the specified type. If there 3364 /// is something in the module with the specified name, return it potentially 3365 /// bitcasted to the right type. 3366 /// 3367 /// If D is non-null, it specifies a decl that correspond to this. This is used 3368 /// to set the attributes on the function when it is first created. 3369 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3370 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3371 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3372 ForDefinition_t IsForDefinition) { 3373 const Decl *D = GD.getDecl(); 3374 3375 // Any attempts to use a MultiVersion function should result in retrieving 3376 // the iFunc instead. Name Mangling will handle the rest of the changes. 3377 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3378 // For the device mark the function as one that should be emitted. 3379 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3380 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3381 !DontDefer && !IsForDefinition) { 3382 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3383 GlobalDecl GDDef; 3384 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3385 GDDef = GlobalDecl(CD, GD.getCtorType()); 3386 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3387 GDDef = GlobalDecl(DD, GD.getDtorType()); 3388 else 3389 GDDef = GlobalDecl(FDDef); 3390 EmitGlobal(GDDef); 3391 } 3392 } 3393 3394 if (FD->isMultiVersion()) { 3395 if (FD->hasAttr<TargetAttr>()) 3396 UpdateMultiVersionNames(GD, FD); 3397 if (!IsForDefinition) 3398 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3399 } 3400 } 3401 3402 // Lookup the entry, lazily creating it if necessary. 3403 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3404 if (Entry) { 3405 if (WeakRefReferences.erase(Entry)) { 3406 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3407 if (FD && !FD->hasAttr<WeakAttr>()) 3408 Entry->setLinkage(llvm::Function::ExternalLinkage); 3409 } 3410 3411 // Handle dropped DLL attributes. 3412 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3413 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3414 setDSOLocal(Entry); 3415 } 3416 3417 // If there are two attempts to define the same mangled name, issue an 3418 // error. 3419 if (IsForDefinition && !Entry->isDeclaration()) { 3420 GlobalDecl OtherGD; 3421 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3422 // to make sure that we issue an error only once. 3423 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3424 (GD.getCanonicalDecl().getDecl() != 3425 OtherGD.getCanonicalDecl().getDecl()) && 3426 DiagnosedConflictingDefinitions.insert(GD).second) { 3427 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3428 << MangledName; 3429 getDiags().Report(OtherGD.getDecl()->getLocation(), 3430 diag::note_previous_definition); 3431 } 3432 } 3433 3434 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3435 (Entry->getValueType() == Ty)) { 3436 return Entry; 3437 } 3438 3439 // Make sure the result is of the correct type. 3440 // (If function is requested for a definition, we always need to create a new 3441 // function, not just return a bitcast.) 3442 if (!IsForDefinition) 3443 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3444 } 3445 3446 // This function doesn't have a complete type (for example, the return 3447 // type is an incomplete struct). Use a fake type instead, and make 3448 // sure not to try to set attributes. 3449 bool IsIncompleteFunction = false; 3450 3451 llvm::FunctionType *FTy; 3452 if (isa<llvm::FunctionType>(Ty)) { 3453 FTy = cast<llvm::FunctionType>(Ty); 3454 } else { 3455 FTy = llvm::FunctionType::get(VoidTy, false); 3456 IsIncompleteFunction = true; 3457 } 3458 3459 llvm::Function *F = 3460 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3461 Entry ? StringRef() : MangledName, &getModule()); 3462 3463 // If we already created a function with the same mangled name (but different 3464 // type) before, take its name and add it to the list of functions to be 3465 // replaced with F at the end of CodeGen. 3466 // 3467 // This happens if there is a prototype for a function (e.g. "int f()") and 3468 // then a definition of a different type (e.g. "int f(int x)"). 3469 if (Entry) { 3470 F->takeName(Entry); 3471 3472 // This might be an implementation of a function without a prototype, in 3473 // which case, try to do special replacement of calls which match the new 3474 // prototype. The really key thing here is that we also potentially drop 3475 // arguments from the call site so as to make a direct call, which makes the 3476 // inliner happier and suppresses a number of optimizer warnings (!) about 3477 // dropping arguments. 3478 if (!Entry->use_empty()) { 3479 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3480 Entry->removeDeadConstantUsers(); 3481 } 3482 3483 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3484 F, Entry->getValueType()->getPointerTo()); 3485 addGlobalValReplacement(Entry, BC); 3486 } 3487 3488 assert(F->getName() == MangledName && "name was uniqued!"); 3489 if (D) 3490 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3491 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3492 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3493 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3494 } 3495 3496 if (!DontDefer) { 3497 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3498 // each other bottoming out with the base dtor. Therefore we emit non-base 3499 // dtors on usage, even if there is no dtor definition in the TU. 3500 if (D && isa<CXXDestructorDecl>(D) && 3501 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3502 GD.getDtorType())) 3503 addDeferredDeclToEmit(GD); 3504 3505 // This is the first use or definition of a mangled name. If there is a 3506 // deferred decl with this name, remember that we need to emit it at the end 3507 // of the file. 3508 auto DDI = DeferredDecls.find(MangledName); 3509 if (DDI != DeferredDecls.end()) { 3510 // Move the potentially referenced deferred decl to the 3511 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3512 // don't need it anymore). 3513 addDeferredDeclToEmit(DDI->second); 3514 DeferredDecls.erase(DDI); 3515 3516 // Otherwise, there are cases we have to worry about where we're 3517 // using a declaration for which we must emit a definition but where 3518 // we might not find a top-level definition: 3519 // - member functions defined inline in their classes 3520 // - friend functions defined inline in some class 3521 // - special member functions with implicit definitions 3522 // If we ever change our AST traversal to walk into class methods, 3523 // this will be unnecessary. 3524 // 3525 // We also don't emit a definition for a function if it's going to be an 3526 // entry in a vtable, unless it's already marked as used. 3527 } else if (getLangOpts().CPlusPlus && D) { 3528 // Look for a declaration that's lexically in a record. 3529 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3530 FD = FD->getPreviousDecl()) { 3531 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3532 if (FD->doesThisDeclarationHaveABody()) { 3533 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3534 break; 3535 } 3536 } 3537 } 3538 } 3539 } 3540 3541 // Make sure the result is of the requested type. 3542 if (!IsIncompleteFunction) { 3543 assert(F->getFunctionType() == Ty); 3544 return F; 3545 } 3546 3547 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3548 return llvm::ConstantExpr::getBitCast(F, PTy); 3549 } 3550 3551 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3552 /// non-null, then this function will use the specified type if it has to 3553 /// create it (this occurs when we see a definition of the function). 3554 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3555 llvm::Type *Ty, 3556 bool ForVTable, 3557 bool DontDefer, 3558 ForDefinition_t IsForDefinition) { 3559 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3560 "consteval function should never be emitted"); 3561 // If there was no specific requested type, just convert it now. 3562 if (!Ty) { 3563 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3564 Ty = getTypes().ConvertType(FD->getType()); 3565 } 3566 3567 // Devirtualized destructor calls may come through here instead of via 3568 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3569 // of the complete destructor when necessary. 3570 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3571 if (getTarget().getCXXABI().isMicrosoft() && 3572 GD.getDtorType() == Dtor_Complete && 3573 DD->getParent()->getNumVBases() == 0) 3574 GD = GlobalDecl(DD, Dtor_Base); 3575 } 3576 3577 StringRef MangledName = getMangledName(GD); 3578 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3579 /*IsThunk=*/false, llvm::AttributeList(), 3580 IsForDefinition); 3581 // Returns kernel handle for HIP kernel stub function. 3582 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3583 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3584 auto *Handle = getCUDARuntime().getKernelHandle( 3585 cast<llvm::Function>(F->stripPointerCasts()), GD); 3586 if (IsForDefinition) 3587 return F; 3588 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3589 } 3590 return F; 3591 } 3592 3593 static const FunctionDecl * 3594 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3595 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3596 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3597 3598 IdentifierInfo &CII = C.Idents.get(Name); 3599 for (const auto &Result : DC->lookup(&CII)) 3600 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3601 return FD; 3602 3603 if (!C.getLangOpts().CPlusPlus) 3604 return nullptr; 3605 3606 // Demangle the premangled name from getTerminateFn() 3607 IdentifierInfo &CXXII = 3608 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3609 ? C.Idents.get("terminate") 3610 : C.Idents.get(Name); 3611 3612 for (const auto &N : {"__cxxabiv1", "std"}) { 3613 IdentifierInfo &NS = C.Idents.get(N); 3614 for (const auto &Result : DC->lookup(&NS)) { 3615 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3616 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3617 for (const auto &Result : LSD->lookup(&NS)) 3618 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3619 break; 3620 3621 if (ND) 3622 for (const auto &Result : ND->lookup(&CXXII)) 3623 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3624 return FD; 3625 } 3626 } 3627 3628 return nullptr; 3629 } 3630 3631 /// CreateRuntimeFunction - Create a new runtime function with the specified 3632 /// type and name. 3633 llvm::FunctionCallee 3634 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3635 llvm::AttributeList ExtraAttrs, bool Local, 3636 bool AssumeConvergent) { 3637 if (AssumeConvergent) { 3638 ExtraAttrs = 3639 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3640 llvm::Attribute::Convergent); 3641 } 3642 3643 llvm::Constant *C = 3644 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3645 /*DontDefer=*/false, /*IsThunk=*/false, 3646 ExtraAttrs); 3647 3648 if (auto *F = dyn_cast<llvm::Function>(C)) { 3649 if (F->empty()) { 3650 F->setCallingConv(getRuntimeCC()); 3651 3652 // In Windows Itanium environments, try to mark runtime functions 3653 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3654 // will link their standard library statically or dynamically. Marking 3655 // functions imported when they are not imported can cause linker errors 3656 // and warnings. 3657 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3658 !getCodeGenOpts().LTOVisibilityPublicStd) { 3659 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3660 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3661 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3662 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3663 } 3664 } 3665 setDSOLocal(F); 3666 } 3667 } 3668 3669 return {FTy, C}; 3670 } 3671 3672 /// isTypeConstant - Determine whether an object of this type can be emitted 3673 /// as a constant. 3674 /// 3675 /// If ExcludeCtor is true, the duration when the object's constructor runs 3676 /// will not be considered. The caller will need to verify that the object is 3677 /// not written to during its construction. 3678 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3679 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3680 return false; 3681 3682 if (Context.getLangOpts().CPlusPlus) { 3683 if (const CXXRecordDecl *Record 3684 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3685 return ExcludeCtor && !Record->hasMutableFields() && 3686 Record->hasTrivialDestructor(); 3687 } 3688 3689 return true; 3690 } 3691 3692 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3693 /// create and return an llvm GlobalVariable with the specified type. If there 3694 /// is something in the module with the specified name, return it potentially 3695 /// bitcasted to the right type. 3696 /// 3697 /// If D is non-null, it specifies a decl that correspond to this. This is used 3698 /// to set the attributes on the global when it is first created. 3699 /// 3700 /// If IsForDefinition is true, it is guaranteed that an actual global with 3701 /// type Ty will be returned, not conversion of a variable with the same 3702 /// mangled name but some other type. 3703 llvm::Constant * 3704 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3705 llvm::PointerType *Ty, 3706 const VarDecl *D, 3707 ForDefinition_t IsForDefinition) { 3708 // Lookup the entry, lazily creating it if necessary. 3709 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3710 if (Entry) { 3711 if (WeakRefReferences.erase(Entry)) { 3712 if (D && !D->hasAttr<WeakAttr>()) 3713 Entry->setLinkage(llvm::Function::ExternalLinkage); 3714 } 3715 3716 // Handle dropped DLL attributes. 3717 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3718 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3719 3720 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3721 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3722 3723 if (Entry->getType() == Ty) 3724 return Entry; 3725 3726 // If there are two attempts to define the same mangled name, issue an 3727 // error. 3728 if (IsForDefinition && !Entry->isDeclaration()) { 3729 GlobalDecl OtherGD; 3730 const VarDecl *OtherD; 3731 3732 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3733 // to make sure that we issue an error only once. 3734 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3735 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3736 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3737 OtherD->hasInit() && 3738 DiagnosedConflictingDefinitions.insert(D).second) { 3739 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3740 << MangledName; 3741 getDiags().Report(OtherGD.getDecl()->getLocation(), 3742 diag::note_previous_definition); 3743 } 3744 } 3745 3746 // Make sure the result is of the correct type. 3747 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3748 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3749 3750 // (If global is requested for a definition, we always need to create a new 3751 // global, not just return a bitcast.) 3752 if (!IsForDefinition) 3753 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3754 } 3755 3756 auto AddrSpace = GetGlobalVarAddressSpace(D); 3757 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3758 3759 auto *GV = new llvm::GlobalVariable( 3760 getModule(), Ty->getElementType(), false, 3761 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3762 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3763 3764 // If we already created a global with the same mangled name (but different 3765 // type) before, take its name and remove it from its parent. 3766 if (Entry) { 3767 GV->takeName(Entry); 3768 3769 if (!Entry->use_empty()) { 3770 llvm::Constant *NewPtrForOldDecl = 3771 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3772 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3773 } 3774 3775 Entry->eraseFromParent(); 3776 } 3777 3778 // This is the first use or definition of a mangled name. If there is a 3779 // deferred decl with this name, remember that we need to emit it at the end 3780 // of the file. 3781 auto DDI = DeferredDecls.find(MangledName); 3782 if (DDI != DeferredDecls.end()) { 3783 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3784 // list, and remove it from DeferredDecls (since we don't need it anymore). 3785 addDeferredDeclToEmit(DDI->second); 3786 DeferredDecls.erase(DDI); 3787 } 3788 3789 // Handle things which are present even on external declarations. 3790 if (D) { 3791 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3792 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3793 3794 // FIXME: This code is overly simple and should be merged with other global 3795 // handling. 3796 GV->setConstant(isTypeConstant(D->getType(), false)); 3797 3798 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3799 3800 setLinkageForGV(GV, D); 3801 3802 if (D->getTLSKind()) { 3803 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3804 CXXThreadLocals.push_back(D); 3805 setTLSMode(GV, *D); 3806 } 3807 3808 setGVProperties(GV, D); 3809 3810 // If required by the ABI, treat declarations of static data members with 3811 // inline initializers as definitions. 3812 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3813 EmitGlobalVarDefinition(D); 3814 } 3815 3816 // Emit section information for extern variables. 3817 if (D->hasExternalStorage()) { 3818 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3819 GV->setSection(SA->getName()); 3820 } 3821 3822 // Handle XCore specific ABI requirements. 3823 if (getTriple().getArch() == llvm::Triple::xcore && 3824 D->getLanguageLinkage() == CLanguageLinkage && 3825 D->getType().isConstant(Context) && 3826 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3827 GV->setSection(".cp.rodata"); 3828 3829 // Check if we a have a const declaration with an initializer, we may be 3830 // able to emit it as available_externally to expose it's value to the 3831 // optimizer. 3832 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3833 D->getType().isConstQualified() && !GV->hasInitializer() && 3834 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3835 const auto *Record = 3836 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3837 bool HasMutableFields = Record && Record->hasMutableFields(); 3838 if (!HasMutableFields) { 3839 const VarDecl *InitDecl; 3840 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3841 if (InitExpr) { 3842 ConstantEmitter emitter(*this); 3843 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3844 if (Init) { 3845 auto *InitType = Init->getType(); 3846 if (GV->getValueType() != InitType) { 3847 // The type of the initializer does not match the definition. 3848 // This happens when an initializer has a different type from 3849 // the type of the global (because of padding at the end of a 3850 // structure for instance). 3851 GV->setName(StringRef()); 3852 // Make a new global with the correct type, this is now guaranteed 3853 // to work. 3854 auto *NewGV = cast<llvm::GlobalVariable>( 3855 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3856 ->stripPointerCasts()); 3857 3858 // Erase the old global, since it is no longer used. 3859 GV->eraseFromParent(); 3860 GV = NewGV; 3861 } else { 3862 GV->setInitializer(Init); 3863 GV->setConstant(true); 3864 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3865 } 3866 emitter.finalize(GV); 3867 } 3868 } 3869 } 3870 } 3871 } 3872 3873 if (GV->isDeclaration()) { 3874 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3875 // External HIP managed variables needed to be recorded for transformation 3876 // in both device and host compilations. 3877 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 3878 D->hasExternalStorage()) 3879 getCUDARuntime().handleVarRegistration(D, *GV); 3880 } 3881 3882 LangAS ExpectedAS = 3883 D ? D->getType().getAddressSpace() 3884 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3885 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3886 Ty->getPointerAddressSpace()); 3887 if (AddrSpace != ExpectedAS) 3888 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3889 ExpectedAS, Ty); 3890 3891 return GV; 3892 } 3893 3894 llvm::Constant * 3895 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3896 const Decl *D = GD.getDecl(); 3897 3898 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3899 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3900 /*DontDefer=*/false, IsForDefinition); 3901 3902 if (isa<CXXMethodDecl>(D)) { 3903 auto FInfo = 3904 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3905 auto Ty = getTypes().GetFunctionType(*FInfo); 3906 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3907 IsForDefinition); 3908 } 3909 3910 if (isa<FunctionDecl>(D)) { 3911 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3912 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3913 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3914 IsForDefinition); 3915 } 3916 3917 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3918 } 3919 3920 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3921 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3922 unsigned Alignment) { 3923 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3924 llvm::GlobalVariable *OldGV = nullptr; 3925 3926 if (GV) { 3927 // Check if the variable has the right type. 3928 if (GV->getValueType() == Ty) 3929 return GV; 3930 3931 // Because C++ name mangling, the only way we can end up with an already 3932 // existing global with the same name is if it has been declared extern "C". 3933 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3934 OldGV = GV; 3935 } 3936 3937 // Create a new variable. 3938 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3939 Linkage, nullptr, Name); 3940 3941 if (OldGV) { 3942 // Replace occurrences of the old variable if needed. 3943 GV->takeName(OldGV); 3944 3945 if (!OldGV->use_empty()) { 3946 llvm::Constant *NewPtrForOldDecl = 3947 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3948 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3949 } 3950 3951 OldGV->eraseFromParent(); 3952 } 3953 3954 if (supportsCOMDAT() && GV->isWeakForLinker() && 3955 !GV->hasAvailableExternallyLinkage()) 3956 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3957 3958 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3959 3960 return GV; 3961 } 3962 3963 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3964 /// given global variable. If Ty is non-null and if the global doesn't exist, 3965 /// then it will be created with the specified type instead of whatever the 3966 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3967 /// that an actual global with type Ty will be returned, not conversion of a 3968 /// variable with the same mangled name but some other type. 3969 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3970 llvm::Type *Ty, 3971 ForDefinition_t IsForDefinition) { 3972 assert(D->hasGlobalStorage() && "Not a global variable"); 3973 QualType ASTTy = D->getType(); 3974 if (!Ty) 3975 Ty = getTypes().ConvertTypeForMem(ASTTy); 3976 3977 llvm::PointerType *PTy = 3978 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3979 3980 StringRef MangledName = getMangledName(D); 3981 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3982 } 3983 3984 /// CreateRuntimeVariable - Create a new runtime global variable with the 3985 /// specified type and name. 3986 llvm::Constant * 3987 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3988 StringRef Name) { 3989 auto PtrTy = 3990 getContext().getLangOpts().OpenCL 3991 ? llvm::PointerType::get( 3992 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3993 : llvm::PointerType::getUnqual(Ty); 3994 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3995 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3996 return Ret; 3997 } 3998 3999 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4000 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4001 4002 StringRef MangledName = getMangledName(D); 4003 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4004 4005 // We already have a definition, not declaration, with the same mangled name. 4006 // Emitting of declaration is not required (and actually overwrites emitted 4007 // definition). 4008 if (GV && !GV->isDeclaration()) 4009 return; 4010 4011 // If we have not seen a reference to this variable yet, place it into the 4012 // deferred declarations table to be emitted if needed later. 4013 if (!MustBeEmitted(D) && !GV) { 4014 DeferredDecls[MangledName] = D; 4015 return; 4016 } 4017 4018 // The tentative definition is the only definition. 4019 EmitGlobalVarDefinition(D); 4020 } 4021 4022 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4023 EmitExternalVarDeclaration(D); 4024 } 4025 4026 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4027 return Context.toCharUnitsFromBits( 4028 getDataLayout().getTypeStoreSizeInBits(Ty)); 4029 } 4030 4031 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4032 LangAS AddrSpace = LangAS::Default; 4033 if (LangOpts.OpenCL) { 4034 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4035 assert(AddrSpace == LangAS::opencl_global || 4036 AddrSpace == LangAS::opencl_global_device || 4037 AddrSpace == LangAS::opencl_global_host || 4038 AddrSpace == LangAS::opencl_constant || 4039 AddrSpace == LangAS::opencl_local || 4040 AddrSpace >= LangAS::FirstTargetAddressSpace); 4041 return AddrSpace; 4042 } 4043 4044 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4045 if (D && D->hasAttr<CUDAConstantAttr>()) 4046 return LangAS::cuda_constant; 4047 else if (D && D->hasAttr<CUDASharedAttr>()) 4048 return LangAS::cuda_shared; 4049 else if (D && D->hasAttr<CUDADeviceAttr>()) 4050 return LangAS::cuda_device; 4051 else if (D && D->getType().isConstQualified()) 4052 return LangAS::cuda_constant; 4053 else 4054 return LangAS::cuda_device; 4055 } 4056 4057 if (LangOpts.OpenMP) { 4058 LangAS AS; 4059 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4060 return AS; 4061 } 4062 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4063 } 4064 4065 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4066 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4067 if (LangOpts.OpenCL) 4068 return LangAS::opencl_constant; 4069 if (auto AS = getTarget().getConstantAddressSpace()) 4070 return AS.getValue(); 4071 return LangAS::Default; 4072 } 4073 4074 // In address space agnostic languages, string literals are in default address 4075 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4076 // emitted in constant address space in LLVM IR. To be consistent with other 4077 // parts of AST, string literal global variables in constant address space 4078 // need to be casted to default address space before being put into address 4079 // map and referenced by other part of CodeGen. 4080 // In OpenCL, string literals are in constant address space in AST, therefore 4081 // they should not be casted to default address space. 4082 static llvm::Constant * 4083 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4084 llvm::GlobalVariable *GV) { 4085 llvm::Constant *Cast = GV; 4086 if (!CGM.getLangOpts().OpenCL) { 4087 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4088 if (AS != LangAS::Default) 4089 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4090 CGM, GV, AS.getValue(), LangAS::Default, 4091 GV->getValueType()->getPointerTo( 4092 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4093 } 4094 } 4095 return Cast; 4096 } 4097 4098 template<typename SomeDecl> 4099 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4100 llvm::GlobalValue *GV) { 4101 if (!getLangOpts().CPlusPlus) 4102 return; 4103 4104 // Must have 'used' attribute, or else inline assembly can't rely on 4105 // the name existing. 4106 if (!D->template hasAttr<UsedAttr>()) 4107 return; 4108 4109 // Must have internal linkage and an ordinary name. 4110 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4111 return; 4112 4113 // Must be in an extern "C" context. Entities declared directly within 4114 // a record are not extern "C" even if the record is in such a context. 4115 const SomeDecl *First = D->getFirstDecl(); 4116 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4117 return; 4118 4119 // OK, this is an internal linkage entity inside an extern "C" linkage 4120 // specification. Make a note of that so we can give it the "expected" 4121 // mangled name if nothing else is using that name. 4122 std::pair<StaticExternCMap::iterator, bool> R = 4123 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4124 4125 // If we have multiple internal linkage entities with the same name 4126 // in extern "C" regions, none of them gets that name. 4127 if (!R.second) 4128 R.first->second = nullptr; 4129 } 4130 4131 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4132 if (!CGM.supportsCOMDAT()) 4133 return false; 4134 4135 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4136 // them being "merged" by the COMDAT Folding linker optimization. 4137 if (D.hasAttr<CUDAGlobalAttr>()) 4138 return false; 4139 4140 if (D.hasAttr<SelectAnyAttr>()) 4141 return true; 4142 4143 GVALinkage Linkage; 4144 if (auto *VD = dyn_cast<VarDecl>(&D)) 4145 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4146 else 4147 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4148 4149 switch (Linkage) { 4150 case GVA_Internal: 4151 case GVA_AvailableExternally: 4152 case GVA_StrongExternal: 4153 return false; 4154 case GVA_DiscardableODR: 4155 case GVA_StrongODR: 4156 return true; 4157 } 4158 llvm_unreachable("No such linkage"); 4159 } 4160 4161 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4162 llvm::GlobalObject &GO) { 4163 if (!shouldBeInCOMDAT(*this, D)) 4164 return; 4165 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4166 } 4167 4168 /// Pass IsTentative as true if you want to create a tentative definition. 4169 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4170 bool IsTentative) { 4171 // OpenCL global variables of sampler type are translated to function calls, 4172 // therefore no need to be translated. 4173 QualType ASTTy = D->getType(); 4174 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4175 return; 4176 4177 // If this is OpenMP device, check if it is legal to emit this global 4178 // normally. 4179 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4180 OpenMPRuntime->emitTargetGlobalVariable(D)) 4181 return; 4182 4183 llvm::Constant *Init = nullptr; 4184 bool NeedsGlobalCtor = false; 4185 bool NeedsGlobalDtor = 4186 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4187 4188 const VarDecl *InitDecl; 4189 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4190 4191 Optional<ConstantEmitter> emitter; 4192 4193 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4194 // as part of their declaration." Sema has already checked for 4195 // error cases, so we just need to set Init to UndefValue. 4196 bool IsCUDASharedVar = 4197 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4198 // Shadows of initialized device-side global variables are also left 4199 // undefined. 4200 // Managed Variables should be initialized on both host side and device side. 4201 bool IsCUDAShadowVar = 4202 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4203 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4204 D->hasAttr<CUDASharedAttr>()); 4205 bool IsCUDADeviceShadowVar = 4206 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4207 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4208 D->getType()->isCUDADeviceBuiltinTextureType()); 4209 if (getLangOpts().CUDA && 4210 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4211 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4212 else if (D->hasAttr<LoaderUninitializedAttr>()) 4213 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4214 else if (!InitExpr) { 4215 // This is a tentative definition; tentative definitions are 4216 // implicitly initialized with { 0 }. 4217 // 4218 // Note that tentative definitions are only emitted at the end of 4219 // a translation unit, so they should never have incomplete 4220 // type. In addition, EmitTentativeDefinition makes sure that we 4221 // never attempt to emit a tentative definition if a real one 4222 // exists. A use may still exists, however, so we still may need 4223 // to do a RAUW. 4224 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4225 Init = EmitNullConstant(D->getType()); 4226 } else { 4227 initializedGlobalDecl = GlobalDecl(D); 4228 emitter.emplace(*this); 4229 Init = emitter->tryEmitForInitializer(*InitDecl); 4230 4231 if (!Init) { 4232 QualType T = InitExpr->getType(); 4233 if (D->getType()->isReferenceType()) 4234 T = D->getType(); 4235 4236 if (getLangOpts().CPlusPlus) { 4237 Init = EmitNullConstant(T); 4238 NeedsGlobalCtor = true; 4239 } else { 4240 ErrorUnsupported(D, "static initializer"); 4241 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4242 } 4243 } else { 4244 // We don't need an initializer, so remove the entry for the delayed 4245 // initializer position (just in case this entry was delayed) if we 4246 // also don't need to register a destructor. 4247 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4248 DelayedCXXInitPosition.erase(D); 4249 } 4250 } 4251 4252 llvm::Type* InitType = Init->getType(); 4253 llvm::Constant *Entry = 4254 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4255 4256 // Strip off pointer casts if we got them. 4257 Entry = Entry->stripPointerCasts(); 4258 4259 // Entry is now either a Function or GlobalVariable. 4260 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4261 4262 // We have a definition after a declaration with the wrong type. 4263 // We must make a new GlobalVariable* and update everything that used OldGV 4264 // (a declaration or tentative definition) with the new GlobalVariable* 4265 // (which will be a definition). 4266 // 4267 // This happens if there is a prototype for a global (e.g. 4268 // "extern int x[];") and then a definition of a different type (e.g. 4269 // "int x[10];"). This also happens when an initializer has a different type 4270 // from the type of the global (this happens with unions). 4271 if (!GV || GV->getValueType() != InitType || 4272 GV->getType()->getAddressSpace() != 4273 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4274 4275 // Move the old entry aside so that we'll create a new one. 4276 Entry->setName(StringRef()); 4277 4278 // Make a new global with the correct type, this is now guaranteed to work. 4279 GV = cast<llvm::GlobalVariable>( 4280 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4281 ->stripPointerCasts()); 4282 4283 // Replace all uses of the old global with the new global 4284 llvm::Constant *NewPtrForOldDecl = 4285 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4286 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4287 4288 // Erase the old global, since it is no longer used. 4289 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4290 } 4291 4292 MaybeHandleStaticInExternC(D, GV); 4293 4294 if (D->hasAttr<AnnotateAttr>()) 4295 AddGlobalAnnotations(D, GV); 4296 4297 // Set the llvm linkage type as appropriate. 4298 llvm::GlobalValue::LinkageTypes Linkage = 4299 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4300 4301 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4302 // the device. [...]" 4303 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4304 // __device__, declares a variable that: [...] 4305 // Is accessible from all the threads within the grid and from the host 4306 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4307 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4308 if (GV && LangOpts.CUDA) { 4309 if (LangOpts.CUDAIsDevice) { 4310 if (Linkage != llvm::GlobalValue::InternalLinkage && 4311 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4312 GV->setExternallyInitialized(true); 4313 } else { 4314 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4315 } 4316 getCUDARuntime().handleVarRegistration(D, *GV); 4317 } 4318 4319 GV->setInitializer(Init); 4320 if (emitter) 4321 emitter->finalize(GV); 4322 4323 // If it is safe to mark the global 'constant', do so now. 4324 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4325 isTypeConstant(D->getType(), true)); 4326 4327 // If it is in a read-only section, mark it 'constant'. 4328 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4329 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4330 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4331 GV->setConstant(true); 4332 } 4333 4334 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4335 4336 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4337 // function is only defined alongside the variable, not also alongside 4338 // callers. Normally, all accesses to a thread_local go through the 4339 // thread-wrapper in order to ensure initialization has occurred, underlying 4340 // variable will never be used other than the thread-wrapper, so it can be 4341 // converted to internal linkage. 4342 // 4343 // However, if the variable has the 'constinit' attribute, it _can_ be 4344 // referenced directly, without calling the thread-wrapper, so the linkage 4345 // must not be changed. 4346 // 4347 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4348 // weak or linkonce, the de-duplication semantics are important to preserve, 4349 // so we don't change the linkage. 4350 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4351 Linkage == llvm::GlobalValue::ExternalLinkage && 4352 Context.getTargetInfo().getTriple().isOSDarwin() && 4353 !D->hasAttr<ConstInitAttr>()) 4354 Linkage = llvm::GlobalValue::InternalLinkage; 4355 4356 GV->setLinkage(Linkage); 4357 if (D->hasAttr<DLLImportAttr>()) 4358 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4359 else if (D->hasAttr<DLLExportAttr>()) 4360 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4361 else 4362 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4363 4364 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4365 // common vars aren't constant even if declared const. 4366 GV->setConstant(false); 4367 // Tentative definition of global variables may be initialized with 4368 // non-zero null pointers. In this case they should have weak linkage 4369 // since common linkage must have zero initializer and must not have 4370 // explicit section therefore cannot have non-zero initial value. 4371 if (!GV->getInitializer()->isNullValue()) 4372 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4373 } 4374 4375 setNonAliasAttributes(D, GV); 4376 4377 if (D->getTLSKind() && !GV->isThreadLocal()) { 4378 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4379 CXXThreadLocals.push_back(D); 4380 setTLSMode(GV, *D); 4381 } 4382 4383 maybeSetTrivialComdat(*D, *GV); 4384 4385 // Emit the initializer function if necessary. 4386 if (NeedsGlobalCtor || NeedsGlobalDtor) 4387 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4388 4389 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4390 4391 // Emit global variable debug information. 4392 if (CGDebugInfo *DI = getModuleDebugInfo()) 4393 if (getCodeGenOpts().hasReducedDebugInfo()) 4394 DI->EmitGlobalVariable(GV, D); 4395 } 4396 4397 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4398 if (CGDebugInfo *DI = getModuleDebugInfo()) 4399 if (getCodeGenOpts().hasReducedDebugInfo()) { 4400 QualType ASTTy = D->getType(); 4401 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4402 llvm::PointerType *PTy = 4403 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4404 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4405 DI->EmitExternalVariable( 4406 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4407 } 4408 } 4409 4410 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4411 CodeGenModule &CGM, const VarDecl *D, 4412 bool NoCommon) { 4413 // Don't give variables common linkage if -fno-common was specified unless it 4414 // was overridden by a NoCommon attribute. 4415 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4416 return true; 4417 4418 // C11 6.9.2/2: 4419 // A declaration of an identifier for an object that has file scope without 4420 // an initializer, and without a storage-class specifier or with the 4421 // storage-class specifier static, constitutes a tentative definition. 4422 if (D->getInit() || D->hasExternalStorage()) 4423 return true; 4424 4425 // A variable cannot be both common and exist in a section. 4426 if (D->hasAttr<SectionAttr>()) 4427 return true; 4428 4429 // A variable cannot be both common and exist in a section. 4430 // We don't try to determine which is the right section in the front-end. 4431 // If no specialized section name is applicable, it will resort to default. 4432 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4433 D->hasAttr<PragmaClangDataSectionAttr>() || 4434 D->hasAttr<PragmaClangRelroSectionAttr>() || 4435 D->hasAttr<PragmaClangRodataSectionAttr>()) 4436 return true; 4437 4438 // Thread local vars aren't considered common linkage. 4439 if (D->getTLSKind()) 4440 return true; 4441 4442 // Tentative definitions marked with WeakImportAttr are true definitions. 4443 if (D->hasAttr<WeakImportAttr>()) 4444 return true; 4445 4446 // A variable cannot be both common and exist in a comdat. 4447 if (shouldBeInCOMDAT(CGM, *D)) 4448 return true; 4449 4450 // Declarations with a required alignment do not have common linkage in MSVC 4451 // mode. 4452 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4453 if (D->hasAttr<AlignedAttr>()) 4454 return true; 4455 QualType VarType = D->getType(); 4456 if (Context.isAlignmentRequired(VarType)) 4457 return true; 4458 4459 if (const auto *RT = VarType->getAs<RecordType>()) { 4460 const RecordDecl *RD = RT->getDecl(); 4461 for (const FieldDecl *FD : RD->fields()) { 4462 if (FD->isBitField()) 4463 continue; 4464 if (FD->hasAttr<AlignedAttr>()) 4465 return true; 4466 if (Context.isAlignmentRequired(FD->getType())) 4467 return true; 4468 } 4469 } 4470 } 4471 4472 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4473 // common symbols, so symbols with greater alignment requirements cannot be 4474 // common. 4475 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4476 // alignments for common symbols via the aligncomm directive, so this 4477 // restriction only applies to MSVC environments. 4478 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4479 Context.getTypeAlignIfKnown(D->getType()) > 4480 Context.toBits(CharUnits::fromQuantity(32))) 4481 return true; 4482 4483 return false; 4484 } 4485 4486 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4487 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4488 if (Linkage == GVA_Internal) 4489 return llvm::Function::InternalLinkage; 4490 4491 if (D->hasAttr<WeakAttr>()) { 4492 if (IsConstantVariable) 4493 return llvm::GlobalVariable::WeakODRLinkage; 4494 else 4495 return llvm::GlobalVariable::WeakAnyLinkage; 4496 } 4497 4498 if (const auto *FD = D->getAsFunction()) 4499 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4500 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4501 4502 // We are guaranteed to have a strong definition somewhere else, 4503 // so we can use available_externally linkage. 4504 if (Linkage == GVA_AvailableExternally) 4505 return llvm::GlobalValue::AvailableExternallyLinkage; 4506 4507 // Note that Apple's kernel linker doesn't support symbol 4508 // coalescing, so we need to avoid linkonce and weak linkages there. 4509 // Normally, this means we just map to internal, but for explicit 4510 // instantiations we'll map to external. 4511 4512 // In C++, the compiler has to emit a definition in every translation unit 4513 // that references the function. We should use linkonce_odr because 4514 // a) if all references in this translation unit are optimized away, we 4515 // don't need to codegen it. b) if the function persists, it needs to be 4516 // merged with other definitions. c) C++ has the ODR, so we know the 4517 // definition is dependable. 4518 if (Linkage == GVA_DiscardableODR) 4519 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4520 : llvm::Function::InternalLinkage; 4521 4522 // An explicit instantiation of a template has weak linkage, since 4523 // explicit instantiations can occur in multiple translation units 4524 // and must all be equivalent. However, we are not allowed to 4525 // throw away these explicit instantiations. 4526 // 4527 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4528 // so say that CUDA templates are either external (for kernels) or internal. 4529 // This lets llvm perform aggressive inter-procedural optimizations. For 4530 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4531 // therefore we need to follow the normal linkage paradigm. 4532 if (Linkage == GVA_StrongODR) { 4533 if (getLangOpts().AppleKext) 4534 return llvm::Function::ExternalLinkage; 4535 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4536 !getLangOpts().GPURelocatableDeviceCode) 4537 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4538 : llvm::Function::InternalLinkage; 4539 return llvm::Function::WeakODRLinkage; 4540 } 4541 4542 // C++ doesn't have tentative definitions and thus cannot have common 4543 // linkage. 4544 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4545 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4546 CodeGenOpts.NoCommon)) 4547 return llvm::GlobalVariable::CommonLinkage; 4548 4549 // selectany symbols are externally visible, so use weak instead of 4550 // linkonce. MSVC optimizes away references to const selectany globals, so 4551 // all definitions should be the same and ODR linkage should be used. 4552 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4553 if (D->hasAttr<SelectAnyAttr>()) 4554 return llvm::GlobalVariable::WeakODRLinkage; 4555 4556 // Otherwise, we have strong external linkage. 4557 assert(Linkage == GVA_StrongExternal); 4558 return llvm::GlobalVariable::ExternalLinkage; 4559 } 4560 4561 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4562 const VarDecl *VD, bool IsConstant) { 4563 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4564 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4565 } 4566 4567 /// Replace the uses of a function that was declared with a non-proto type. 4568 /// We want to silently drop extra arguments from call sites 4569 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4570 llvm::Function *newFn) { 4571 // Fast path. 4572 if (old->use_empty()) return; 4573 4574 llvm::Type *newRetTy = newFn->getReturnType(); 4575 SmallVector<llvm::Value*, 4> newArgs; 4576 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4577 4578 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4579 ui != ue; ) { 4580 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4581 llvm::User *user = use->getUser(); 4582 4583 // Recognize and replace uses of bitcasts. Most calls to 4584 // unprototyped functions will use bitcasts. 4585 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4586 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4587 replaceUsesOfNonProtoConstant(bitcast, newFn); 4588 continue; 4589 } 4590 4591 // Recognize calls to the function. 4592 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4593 if (!callSite) continue; 4594 if (!callSite->isCallee(&*use)) 4595 continue; 4596 4597 // If the return types don't match exactly, then we can't 4598 // transform this call unless it's dead. 4599 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4600 continue; 4601 4602 // Get the call site's attribute list. 4603 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4604 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4605 4606 // If the function was passed too few arguments, don't transform. 4607 unsigned newNumArgs = newFn->arg_size(); 4608 if (callSite->arg_size() < newNumArgs) 4609 continue; 4610 4611 // If extra arguments were passed, we silently drop them. 4612 // If any of the types mismatch, we don't transform. 4613 unsigned argNo = 0; 4614 bool dontTransform = false; 4615 for (llvm::Argument &A : newFn->args()) { 4616 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4617 dontTransform = true; 4618 break; 4619 } 4620 4621 // Add any parameter attributes. 4622 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4623 argNo++; 4624 } 4625 if (dontTransform) 4626 continue; 4627 4628 // Okay, we can transform this. Create the new call instruction and copy 4629 // over the required information. 4630 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4631 4632 // Copy over any operand bundles. 4633 callSite->getOperandBundlesAsDefs(newBundles); 4634 4635 llvm::CallBase *newCall; 4636 if (dyn_cast<llvm::CallInst>(callSite)) { 4637 newCall = 4638 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4639 } else { 4640 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4641 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4642 oldInvoke->getUnwindDest(), newArgs, 4643 newBundles, "", callSite); 4644 } 4645 newArgs.clear(); // for the next iteration 4646 4647 if (!newCall->getType()->isVoidTy()) 4648 newCall->takeName(callSite); 4649 newCall->setAttributes(llvm::AttributeList::get( 4650 newFn->getContext(), oldAttrs.getFnAttributes(), 4651 oldAttrs.getRetAttributes(), newArgAttrs)); 4652 newCall->setCallingConv(callSite->getCallingConv()); 4653 4654 // Finally, remove the old call, replacing any uses with the new one. 4655 if (!callSite->use_empty()) 4656 callSite->replaceAllUsesWith(newCall); 4657 4658 // Copy debug location attached to CI. 4659 if (callSite->getDebugLoc()) 4660 newCall->setDebugLoc(callSite->getDebugLoc()); 4661 4662 callSite->eraseFromParent(); 4663 } 4664 } 4665 4666 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4667 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4668 /// existing call uses of the old function in the module, this adjusts them to 4669 /// call the new function directly. 4670 /// 4671 /// This is not just a cleanup: the always_inline pass requires direct calls to 4672 /// functions to be able to inline them. If there is a bitcast in the way, it 4673 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4674 /// run at -O0. 4675 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4676 llvm::Function *NewFn) { 4677 // If we're redefining a global as a function, don't transform it. 4678 if (!isa<llvm::Function>(Old)) return; 4679 4680 replaceUsesOfNonProtoConstant(Old, NewFn); 4681 } 4682 4683 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4684 auto DK = VD->isThisDeclarationADefinition(); 4685 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4686 return; 4687 4688 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4689 // If we have a definition, this might be a deferred decl. If the 4690 // instantiation is explicit, make sure we emit it at the end. 4691 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4692 GetAddrOfGlobalVar(VD); 4693 4694 EmitTopLevelDecl(VD); 4695 } 4696 4697 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4698 llvm::GlobalValue *GV) { 4699 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4700 4701 // Compute the function info and LLVM type. 4702 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4703 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4704 4705 // Get or create the prototype for the function. 4706 if (!GV || (GV->getValueType() != Ty)) 4707 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4708 /*DontDefer=*/true, 4709 ForDefinition)); 4710 4711 // Already emitted. 4712 if (!GV->isDeclaration()) 4713 return; 4714 4715 // We need to set linkage and visibility on the function before 4716 // generating code for it because various parts of IR generation 4717 // want to propagate this information down (e.g. to local static 4718 // declarations). 4719 auto *Fn = cast<llvm::Function>(GV); 4720 setFunctionLinkage(GD, Fn); 4721 4722 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4723 setGVProperties(Fn, GD); 4724 4725 MaybeHandleStaticInExternC(D, Fn); 4726 4727 maybeSetTrivialComdat(*D, *Fn); 4728 4729 // Set CodeGen attributes that represent floating point environment. 4730 setLLVMFunctionFEnvAttributes(D, Fn); 4731 4732 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4733 4734 setNonAliasAttributes(GD, Fn); 4735 SetLLVMFunctionAttributesForDefinition(D, Fn); 4736 4737 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4738 AddGlobalCtor(Fn, CA->getPriority()); 4739 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4740 AddGlobalDtor(Fn, DA->getPriority(), true); 4741 if (D->hasAttr<AnnotateAttr>()) 4742 AddGlobalAnnotations(D, Fn); 4743 } 4744 4745 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4746 const auto *D = cast<ValueDecl>(GD.getDecl()); 4747 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4748 assert(AA && "Not an alias?"); 4749 4750 StringRef MangledName = getMangledName(GD); 4751 4752 if (AA->getAliasee() == MangledName) { 4753 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4754 return; 4755 } 4756 4757 // If there is a definition in the module, then it wins over the alias. 4758 // This is dubious, but allow it to be safe. Just ignore the alias. 4759 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4760 if (Entry && !Entry->isDeclaration()) 4761 return; 4762 4763 Aliases.push_back(GD); 4764 4765 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4766 4767 // Create a reference to the named value. This ensures that it is emitted 4768 // if a deferred decl. 4769 llvm::Constant *Aliasee; 4770 llvm::GlobalValue::LinkageTypes LT; 4771 if (isa<llvm::FunctionType>(DeclTy)) { 4772 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4773 /*ForVTable=*/false); 4774 LT = getFunctionLinkage(GD); 4775 } else { 4776 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4777 llvm::PointerType::getUnqual(DeclTy), 4778 /*D=*/nullptr); 4779 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4780 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4781 else 4782 LT = getFunctionLinkage(GD); 4783 } 4784 4785 // Create the new alias itself, but don't set a name yet. 4786 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4787 auto *GA = 4788 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4789 4790 if (Entry) { 4791 if (GA->getAliasee() == Entry) { 4792 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4793 return; 4794 } 4795 4796 assert(Entry->isDeclaration()); 4797 4798 // If there is a declaration in the module, then we had an extern followed 4799 // by the alias, as in: 4800 // extern int test6(); 4801 // ... 4802 // int test6() __attribute__((alias("test7"))); 4803 // 4804 // Remove it and replace uses of it with the alias. 4805 GA->takeName(Entry); 4806 4807 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4808 Entry->getType())); 4809 Entry->eraseFromParent(); 4810 } else { 4811 GA->setName(MangledName); 4812 } 4813 4814 // Set attributes which are particular to an alias; this is a 4815 // specialization of the attributes which may be set on a global 4816 // variable/function. 4817 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4818 D->isWeakImported()) { 4819 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4820 } 4821 4822 if (const auto *VD = dyn_cast<VarDecl>(D)) 4823 if (VD->getTLSKind()) 4824 setTLSMode(GA, *VD); 4825 4826 SetCommonAttributes(GD, GA); 4827 } 4828 4829 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4830 const auto *D = cast<ValueDecl>(GD.getDecl()); 4831 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4832 assert(IFA && "Not an ifunc?"); 4833 4834 StringRef MangledName = getMangledName(GD); 4835 4836 if (IFA->getResolver() == MangledName) { 4837 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4838 return; 4839 } 4840 4841 // Report an error if some definition overrides ifunc. 4842 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4843 if (Entry && !Entry->isDeclaration()) { 4844 GlobalDecl OtherGD; 4845 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4846 DiagnosedConflictingDefinitions.insert(GD).second) { 4847 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4848 << MangledName; 4849 Diags.Report(OtherGD.getDecl()->getLocation(), 4850 diag::note_previous_definition); 4851 } 4852 return; 4853 } 4854 4855 Aliases.push_back(GD); 4856 4857 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4858 llvm::Constant *Resolver = 4859 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4860 /*ForVTable=*/false); 4861 llvm::GlobalIFunc *GIF = 4862 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4863 "", Resolver, &getModule()); 4864 if (Entry) { 4865 if (GIF->getResolver() == Entry) { 4866 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4867 return; 4868 } 4869 assert(Entry->isDeclaration()); 4870 4871 // If there is a declaration in the module, then we had an extern followed 4872 // by the ifunc, as in: 4873 // extern int test(); 4874 // ... 4875 // int test() __attribute__((ifunc("resolver"))); 4876 // 4877 // Remove it and replace uses of it with the ifunc. 4878 GIF->takeName(Entry); 4879 4880 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4881 Entry->getType())); 4882 Entry->eraseFromParent(); 4883 } else 4884 GIF->setName(MangledName); 4885 4886 SetCommonAttributes(GD, GIF); 4887 } 4888 4889 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4890 ArrayRef<llvm::Type*> Tys) { 4891 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4892 Tys); 4893 } 4894 4895 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4896 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4897 const StringLiteral *Literal, bool TargetIsLSB, 4898 bool &IsUTF16, unsigned &StringLength) { 4899 StringRef String = Literal->getString(); 4900 unsigned NumBytes = String.size(); 4901 4902 // Check for simple case. 4903 if (!Literal->containsNonAsciiOrNull()) { 4904 StringLength = NumBytes; 4905 return *Map.insert(std::make_pair(String, nullptr)).first; 4906 } 4907 4908 // Otherwise, convert the UTF8 literals into a string of shorts. 4909 IsUTF16 = true; 4910 4911 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4912 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4913 llvm::UTF16 *ToPtr = &ToBuf[0]; 4914 4915 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4916 ToPtr + NumBytes, llvm::strictConversion); 4917 4918 // ConvertUTF8toUTF16 returns the length in ToPtr. 4919 StringLength = ToPtr - &ToBuf[0]; 4920 4921 // Add an explicit null. 4922 *ToPtr = 0; 4923 return *Map.insert(std::make_pair( 4924 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4925 (StringLength + 1) * 2), 4926 nullptr)).first; 4927 } 4928 4929 ConstantAddress 4930 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4931 unsigned StringLength = 0; 4932 bool isUTF16 = false; 4933 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4934 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4935 getDataLayout().isLittleEndian(), isUTF16, 4936 StringLength); 4937 4938 if (auto *C = Entry.second) 4939 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4940 4941 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4942 llvm::Constant *Zeros[] = { Zero, Zero }; 4943 4944 const ASTContext &Context = getContext(); 4945 const llvm::Triple &Triple = getTriple(); 4946 4947 const auto CFRuntime = getLangOpts().CFRuntime; 4948 const bool IsSwiftABI = 4949 static_cast<unsigned>(CFRuntime) >= 4950 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4951 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4952 4953 // If we don't already have it, get __CFConstantStringClassReference. 4954 if (!CFConstantStringClassRef) { 4955 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4956 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4957 Ty = llvm::ArrayType::get(Ty, 0); 4958 4959 switch (CFRuntime) { 4960 default: break; 4961 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4962 case LangOptions::CoreFoundationABI::Swift5_0: 4963 CFConstantStringClassName = 4964 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4965 : "$s10Foundation19_NSCFConstantStringCN"; 4966 Ty = IntPtrTy; 4967 break; 4968 case LangOptions::CoreFoundationABI::Swift4_2: 4969 CFConstantStringClassName = 4970 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4971 : "$S10Foundation19_NSCFConstantStringCN"; 4972 Ty = IntPtrTy; 4973 break; 4974 case LangOptions::CoreFoundationABI::Swift4_1: 4975 CFConstantStringClassName = 4976 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4977 : "__T010Foundation19_NSCFConstantStringCN"; 4978 Ty = IntPtrTy; 4979 break; 4980 } 4981 4982 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4983 4984 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4985 llvm::GlobalValue *GV = nullptr; 4986 4987 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4988 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4989 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4990 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4991 4992 const VarDecl *VD = nullptr; 4993 for (const auto &Result : DC->lookup(&II)) 4994 if ((VD = dyn_cast<VarDecl>(Result))) 4995 break; 4996 4997 if (Triple.isOSBinFormatELF()) { 4998 if (!VD) 4999 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5000 } else { 5001 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5002 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5003 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5004 else 5005 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5006 } 5007 5008 setDSOLocal(GV); 5009 } 5010 } 5011 5012 // Decay array -> ptr 5013 CFConstantStringClassRef = 5014 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5015 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5016 } 5017 5018 QualType CFTy = Context.getCFConstantStringType(); 5019 5020 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5021 5022 ConstantInitBuilder Builder(*this); 5023 auto Fields = Builder.beginStruct(STy); 5024 5025 // Class pointer. 5026 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5027 5028 // Flags. 5029 if (IsSwiftABI) { 5030 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5031 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5032 } else { 5033 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5034 } 5035 5036 // String pointer. 5037 llvm::Constant *C = nullptr; 5038 if (isUTF16) { 5039 auto Arr = llvm::makeArrayRef( 5040 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5041 Entry.first().size() / 2); 5042 C = llvm::ConstantDataArray::get(VMContext, Arr); 5043 } else { 5044 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5045 } 5046 5047 // Note: -fwritable-strings doesn't make the backing store strings of 5048 // CFStrings writable. (See <rdar://problem/10657500>) 5049 auto *GV = 5050 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5051 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5052 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5053 // Don't enforce the target's minimum global alignment, since the only use 5054 // of the string is via this class initializer. 5055 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5056 : Context.getTypeAlignInChars(Context.CharTy); 5057 GV->setAlignment(Align.getAsAlign()); 5058 5059 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5060 // Without it LLVM can merge the string with a non unnamed_addr one during 5061 // LTO. Doing that changes the section it ends in, which surprises ld64. 5062 if (Triple.isOSBinFormatMachO()) 5063 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5064 : "__TEXT,__cstring,cstring_literals"); 5065 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5066 // the static linker to adjust permissions to read-only later on. 5067 else if (Triple.isOSBinFormatELF()) 5068 GV->setSection(".rodata"); 5069 5070 // String. 5071 llvm::Constant *Str = 5072 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5073 5074 if (isUTF16) 5075 // Cast the UTF16 string to the correct type. 5076 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5077 Fields.add(Str); 5078 5079 // String length. 5080 llvm::IntegerType *LengthTy = 5081 llvm::IntegerType::get(getModule().getContext(), 5082 Context.getTargetInfo().getLongWidth()); 5083 if (IsSwiftABI) { 5084 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5085 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5086 LengthTy = Int32Ty; 5087 else 5088 LengthTy = IntPtrTy; 5089 } 5090 Fields.addInt(LengthTy, StringLength); 5091 5092 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5093 // properly aligned on 32-bit platforms. 5094 CharUnits Alignment = 5095 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5096 5097 // The struct. 5098 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5099 /*isConstant=*/false, 5100 llvm::GlobalVariable::PrivateLinkage); 5101 GV->addAttribute("objc_arc_inert"); 5102 switch (Triple.getObjectFormat()) { 5103 case llvm::Triple::UnknownObjectFormat: 5104 llvm_unreachable("unknown file format"); 5105 case llvm::Triple::GOFF: 5106 llvm_unreachable("GOFF is not yet implemented"); 5107 case llvm::Triple::XCOFF: 5108 llvm_unreachable("XCOFF is not yet implemented"); 5109 case llvm::Triple::COFF: 5110 case llvm::Triple::ELF: 5111 case llvm::Triple::Wasm: 5112 GV->setSection("cfstring"); 5113 break; 5114 case llvm::Triple::MachO: 5115 GV->setSection("__DATA,__cfstring"); 5116 break; 5117 } 5118 Entry.second = GV; 5119 5120 return ConstantAddress(GV, Alignment); 5121 } 5122 5123 bool CodeGenModule::getExpressionLocationsEnabled() const { 5124 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5125 } 5126 5127 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5128 if (ObjCFastEnumerationStateType.isNull()) { 5129 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5130 D->startDefinition(); 5131 5132 QualType FieldTypes[] = { 5133 Context.UnsignedLongTy, 5134 Context.getPointerType(Context.getObjCIdType()), 5135 Context.getPointerType(Context.UnsignedLongTy), 5136 Context.getConstantArrayType(Context.UnsignedLongTy, 5137 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5138 }; 5139 5140 for (size_t i = 0; i < 4; ++i) { 5141 FieldDecl *Field = FieldDecl::Create(Context, 5142 D, 5143 SourceLocation(), 5144 SourceLocation(), nullptr, 5145 FieldTypes[i], /*TInfo=*/nullptr, 5146 /*BitWidth=*/nullptr, 5147 /*Mutable=*/false, 5148 ICIS_NoInit); 5149 Field->setAccess(AS_public); 5150 D->addDecl(Field); 5151 } 5152 5153 D->completeDefinition(); 5154 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5155 } 5156 5157 return ObjCFastEnumerationStateType; 5158 } 5159 5160 llvm::Constant * 5161 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5162 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5163 5164 // Don't emit it as the address of the string, emit the string data itself 5165 // as an inline array. 5166 if (E->getCharByteWidth() == 1) { 5167 SmallString<64> Str(E->getString()); 5168 5169 // Resize the string to the right size, which is indicated by its type. 5170 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5171 Str.resize(CAT->getSize().getZExtValue()); 5172 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5173 } 5174 5175 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5176 llvm::Type *ElemTy = AType->getElementType(); 5177 unsigned NumElements = AType->getNumElements(); 5178 5179 // Wide strings have either 2-byte or 4-byte elements. 5180 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5181 SmallVector<uint16_t, 32> Elements; 5182 Elements.reserve(NumElements); 5183 5184 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5185 Elements.push_back(E->getCodeUnit(i)); 5186 Elements.resize(NumElements); 5187 return llvm::ConstantDataArray::get(VMContext, Elements); 5188 } 5189 5190 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5191 SmallVector<uint32_t, 32> Elements; 5192 Elements.reserve(NumElements); 5193 5194 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5195 Elements.push_back(E->getCodeUnit(i)); 5196 Elements.resize(NumElements); 5197 return llvm::ConstantDataArray::get(VMContext, Elements); 5198 } 5199 5200 static llvm::GlobalVariable * 5201 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5202 CodeGenModule &CGM, StringRef GlobalName, 5203 CharUnits Alignment) { 5204 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5205 CGM.getStringLiteralAddressSpace()); 5206 5207 llvm::Module &M = CGM.getModule(); 5208 // Create a global variable for this string 5209 auto *GV = new llvm::GlobalVariable( 5210 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5211 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5212 GV->setAlignment(Alignment.getAsAlign()); 5213 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5214 if (GV->isWeakForLinker()) { 5215 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5216 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5217 } 5218 CGM.setDSOLocal(GV); 5219 5220 return GV; 5221 } 5222 5223 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5224 /// constant array for the given string literal. 5225 ConstantAddress 5226 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5227 StringRef Name) { 5228 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5229 5230 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5231 llvm::GlobalVariable **Entry = nullptr; 5232 if (!LangOpts.WritableStrings) { 5233 Entry = &ConstantStringMap[C]; 5234 if (auto GV = *Entry) { 5235 if (Alignment.getQuantity() > GV->getAlignment()) 5236 GV->setAlignment(Alignment.getAsAlign()); 5237 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5238 Alignment); 5239 } 5240 } 5241 5242 SmallString<256> MangledNameBuffer; 5243 StringRef GlobalVariableName; 5244 llvm::GlobalValue::LinkageTypes LT; 5245 5246 // Mangle the string literal if that's how the ABI merges duplicate strings. 5247 // Don't do it if they are writable, since we don't want writes in one TU to 5248 // affect strings in another. 5249 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5250 !LangOpts.WritableStrings) { 5251 llvm::raw_svector_ostream Out(MangledNameBuffer); 5252 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5253 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5254 GlobalVariableName = MangledNameBuffer; 5255 } else { 5256 LT = llvm::GlobalValue::PrivateLinkage; 5257 GlobalVariableName = Name; 5258 } 5259 5260 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5261 if (Entry) 5262 *Entry = GV; 5263 5264 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5265 QualType()); 5266 5267 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5268 Alignment); 5269 } 5270 5271 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5272 /// array for the given ObjCEncodeExpr node. 5273 ConstantAddress 5274 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5275 std::string Str; 5276 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5277 5278 return GetAddrOfConstantCString(Str); 5279 } 5280 5281 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5282 /// the literal and a terminating '\0' character. 5283 /// The result has pointer to array type. 5284 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5285 const std::string &Str, const char *GlobalName) { 5286 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5287 CharUnits Alignment = 5288 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5289 5290 llvm::Constant *C = 5291 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5292 5293 // Don't share any string literals if strings aren't constant. 5294 llvm::GlobalVariable **Entry = nullptr; 5295 if (!LangOpts.WritableStrings) { 5296 Entry = &ConstantStringMap[C]; 5297 if (auto GV = *Entry) { 5298 if (Alignment.getQuantity() > GV->getAlignment()) 5299 GV->setAlignment(Alignment.getAsAlign()); 5300 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5301 Alignment); 5302 } 5303 } 5304 5305 // Get the default prefix if a name wasn't specified. 5306 if (!GlobalName) 5307 GlobalName = ".str"; 5308 // Create a global variable for this. 5309 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5310 GlobalName, Alignment); 5311 if (Entry) 5312 *Entry = GV; 5313 5314 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5315 Alignment); 5316 } 5317 5318 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5319 const MaterializeTemporaryExpr *E, const Expr *Init) { 5320 assert((E->getStorageDuration() == SD_Static || 5321 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5322 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5323 5324 // If we're not materializing a subobject of the temporary, keep the 5325 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5326 QualType MaterializedType = Init->getType(); 5327 if (Init == E->getSubExpr()) 5328 MaterializedType = E->getType(); 5329 5330 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5331 5332 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5333 if (!InsertResult.second) { 5334 // We've seen this before: either we already created it or we're in the 5335 // process of doing so. 5336 if (!InsertResult.first->second) { 5337 // We recursively re-entered this function, probably during emission of 5338 // the initializer. Create a placeholder. We'll clean this up in the 5339 // outer call, at the end of this function. 5340 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5341 InsertResult.first->second = new llvm::GlobalVariable( 5342 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5343 nullptr); 5344 } 5345 return ConstantAddress(InsertResult.first->second, Align); 5346 } 5347 5348 // FIXME: If an externally-visible declaration extends multiple temporaries, 5349 // we need to give each temporary the same name in every translation unit (and 5350 // we also need to make the temporaries externally-visible). 5351 SmallString<256> Name; 5352 llvm::raw_svector_ostream Out(Name); 5353 getCXXABI().getMangleContext().mangleReferenceTemporary( 5354 VD, E->getManglingNumber(), Out); 5355 5356 APValue *Value = nullptr; 5357 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5358 // If the initializer of the extending declaration is a constant 5359 // initializer, we should have a cached constant initializer for this 5360 // temporary. Note that this might have a different value from the value 5361 // computed by evaluating the initializer if the surrounding constant 5362 // expression modifies the temporary. 5363 Value = E->getOrCreateValue(false); 5364 } 5365 5366 // Try evaluating it now, it might have a constant initializer. 5367 Expr::EvalResult EvalResult; 5368 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5369 !EvalResult.hasSideEffects()) 5370 Value = &EvalResult.Val; 5371 5372 LangAS AddrSpace = 5373 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5374 5375 Optional<ConstantEmitter> emitter; 5376 llvm::Constant *InitialValue = nullptr; 5377 bool Constant = false; 5378 llvm::Type *Type; 5379 if (Value) { 5380 // The temporary has a constant initializer, use it. 5381 emitter.emplace(*this); 5382 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5383 MaterializedType); 5384 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5385 Type = InitialValue->getType(); 5386 } else { 5387 // No initializer, the initialization will be provided when we 5388 // initialize the declaration which performed lifetime extension. 5389 Type = getTypes().ConvertTypeForMem(MaterializedType); 5390 } 5391 5392 // Create a global variable for this lifetime-extended temporary. 5393 llvm::GlobalValue::LinkageTypes Linkage = 5394 getLLVMLinkageVarDefinition(VD, Constant); 5395 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5396 const VarDecl *InitVD; 5397 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5398 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5399 // Temporaries defined inside a class get linkonce_odr linkage because the 5400 // class can be defined in multiple translation units. 5401 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5402 } else { 5403 // There is no need for this temporary to have external linkage if the 5404 // VarDecl has external linkage. 5405 Linkage = llvm::GlobalVariable::InternalLinkage; 5406 } 5407 } 5408 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5409 auto *GV = new llvm::GlobalVariable( 5410 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5411 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5412 if (emitter) emitter->finalize(GV); 5413 setGVProperties(GV, VD); 5414 GV->setAlignment(Align.getAsAlign()); 5415 if (supportsCOMDAT() && GV->isWeakForLinker()) 5416 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5417 if (VD->getTLSKind()) 5418 setTLSMode(GV, *VD); 5419 llvm::Constant *CV = GV; 5420 if (AddrSpace != LangAS::Default) 5421 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5422 *this, GV, AddrSpace, LangAS::Default, 5423 Type->getPointerTo( 5424 getContext().getTargetAddressSpace(LangAS::Default))); 5425 5426 // Update the map with the new temporary. If we created a placeholder above, 5427 // replace it with the new global now. 5428 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5429 if (Entry) { 5430 Entry->replaceAllUsesWith( 5431 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5432 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5433 } 5434 Entry = CV; 5435 5436 return ConstantAddress(CV, Align); 5437 } 5438 5439 /// EmitObjCPropertyImplementations - Emit information for synthesized 5440 /// properties for an implementation. 5441 void CodeGenModule::EmitObjCPropertyImplementations(const 5442 ObjCImplementationDecl *D) { 5443 for (const auto *PID : D->property_impls()) { 5444 // Dynamic is just for type-checking. 5445 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5446 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5447 5448 // Determine which methods need to be implemented, some may have 5449 // been overridden. Note that ::isPropertyAccessor is not the method 5450 // we want, that just indicates if the decl came from a 5451 // property. What we want to know is if the method is defined in 5452 // this implementation. 5453 auto *Getter = PID->getGetterMethodDecl(); 5454 if (!Getter || Getter->isSynthesizedAccessorStub()) 5455 CodeGenFunction(*this).GenerateObjCGetter( 5456 const_cast<ObjCImplementationDecl *>(D), PID); 5457 auto *Setter = PID->getSetterMethodDecl(); 5458 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5459 CodeGenFunction(*this).GenerateObjCSetter( 5460 const_cast<ObjCImplementationDecl *>(D), PID); 5461 } 5462 } 5463 } 5464 5465 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5466 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5467 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5468 ivar; ivar = ivar->getNextIvar()) 5469 if (ivar->getType().isDestructedType()) 5470 return true; 5471 5472 return false; 5473 } 5474 5475 static bool AllTrivialInitializers(CodeGenModule &CGM, 5476 ObjCImplementationDecl *D) { 5477 CodeGenFunction CGF(CGM); 5478 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5479 E = D->init_end(); B != E; ++B) { 5480 CXXCtorInitializer *CtorInitExp = *B; 5481 Expr *Init = CtorInitExp->getInit(); 5482 if (!CGF.isTrivialInitializer(Init)) 5483 return false; 5484 } 5485 return true; 5486 } 5487 5488 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5489 /// for an implementation. 5490 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5491 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5492 if (needsDestructMethod(D)) { 5493 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5494 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5495 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5496 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5497 getContext().VoidTy, nullptr, D, 5498 /*isInstance=*/true, /*isVariadic=*/false, 5499 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5500 /*isImplicitlyDeclared=*/true, 5501 /*isDefined=*/false, ObjCMethodDecl::Required); 5502 D->addInstanceMethod(DTORMethod); 5503 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5504 D->setHasDestructors(true); 5505 } 5506 5507 // If the implementation doesn't have any ivar initializers, we don't need 5508 // a .cxx_construct. 5509 if (D->getNumIvarInitializers() == 0 || 5510 AllTrivialInitializers(*this, D)) 5511 return; 5512 5513 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5514 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5515 // The constructor returns 'self'. 5516 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5517 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5518 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5519 /*isVariadic=*/false, 5520 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5521 /*isImplicitlyDeclared=*/true, 5522 /*isDefined=*/false, ObjCMethodDecl::Required); 5523 D->addInstanceMethod(CTORMethod); 5524 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5525 D->setHasNonZeroConstructors(true); 5526 } 5527 5528 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5529 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5530 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5531 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5532 ErrorUnsupported(LSD, "linkage spec"); 5533 return; 5534 } 5535 5536 EmitDeclContext(LSD); 5537 } 5538 5539 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5540 for (auto *I : DC->decls()) { 5541 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5542 // are themselves considered "top-level", so EmitTopLevelDecl on an 5543 // ObjCImplDecl does not recursively visit them. We need to do that in 5544 // case they're nested inside another construct (LinkageSpecDecl / 5545 // ExportDecl) that does stop them from being considered "top-level". 5546 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5547 for (auto *M : OID->methods()) 5548 EmitTopLevelDecl(M); 5549 } 5550 5551 EmitTopLevelDecl(I); 5552 } 5553 } 5554 5555 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5556 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5557 // Ignore dependent declarations. 5558 if (D->isTemplated()) 5559 return; 5560 5561 // Consteval function shouldn't be emitted. 5562 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5563 if (FD->isConsteval()) 5564 return; 5565 5566 switch (D->getKind()) { 5567 case Decl::CXXConversion: 5568 case Decl::CXXMethod: 5569 case Decl::Function: 5570 EmitGlobal(cast<FunctionDecl>(D)); 5571 // Always provide some coverage mapping 5572 // even for the functions that aren't emitted. 5573 AddDeferredUnusedCoverageMapping(D); 5574 break; 5575 5576 case Decl::CXXDeductionGuide: 5577 // Function-like, but does not result in code emission. 5578 break; 5579 5580 case Decl::Var: 5581 case Decl::Decomposition: 5582 case Decl::VarTemplateSpecialization: 5583 EmitGlobal(cast<VarDecl>(D)); 5584 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5585 for (auto *B : DD->bindings()) 5586 if (auto *HD = B->getHoldingVar()) 5587 EmitGlobal(HD); 5588 break; 5589 5590 // Indirect fields from global anonymous structs and unions can be 5591 // ignored; only the actual variable requires IR gen support. 5592 case Decl::IndirectField: 5593 break; 5594 5595 // C++ Decls 5596 case Decl::Namespace: 5597 EmitDeclContext(cast<NamespaceDecl>(D)); 5598 break; 5599 case Decl::ClassTemplateSpecialization: { 5600 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5601 if (CGDebugInfo *DI = getModuleDebugInfo()) 5602 if (Spec->getSpecializationKind() == 5603 TSK_ExplicitInstantiationDefinition && 5604 Spec->hasDefinition()) 5605 DI->completeTemplateDefinition(*Spec); 5606 } LLVM_FALLTHROUGH; 5607 case Decl::CXXRecord: { 5608 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5609 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5610 if (CRD->hasDefinition()) 5611 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5612 if (auto *ES = D->getASTContext().getExternalSource()) 5613 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5614 DI->completeUnusedClass(*CRD); 5615 } 5616 // Emit any static data members, they may be definitions. 5617 for (auto *I : CRD->decls()) 5618 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5619 EmitTopLevelDecl(I); 5620 break; 5621 } 5622 // No code generation needed. 5623 case Decl::UsingShadow: 5624 case Decl::ClassTemplate: 5625 case Decl::VarTemplate: 5626 case Decl::Concept: 5627 case Decl::VarTemplatePartialSpecialization: 5628 case Decl::FunctionTemplate: 5629 case Decl::TypeAliasTemplate: 5630 case Decl::Block: 5631 case Decl::Empty: 5632 case Decl::Binding: 5633 break; 5634 case Decl::Using: // using X; [C++] 5635 if (CGDebugInfo *DI = getModuleDebugInfo()) 5636 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5637 break; 5638 case Decl::NamespaceAlias: 5639 if (CGDebugInfo *DI = getModuleDebugInfo()) 5640 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5641 break; 5642 case Decl::UsingDirective: // using namespace X; [C++] 5643 if (CGDebugInfo *DI = getModuleDebugInfo()) 5644 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5645 break; 5646 case Decl::CXXConstructor: 5647 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5648 break; 5649 case Decl::CXXDestructor: 5650 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5651 break; 5652 5653 case Decl::StaticAssert: 5654 // Nothing to do. 5655 break; 5656 5657 // Objective-C Decls 5658 5659 // Forward declarations, no (immediate) code generation. 5660 case Decl::ObjCInterface: 5661 case Decl::ObjCCategory: 5662 break; 5663 5664 case Decl::ObjCProtocol: { 5665 auto *Proto = cast<ObjCProtocolDecl>(D); 5666 if (Proto->isThisDeclarationADefinition()) 5667 ObjCRuntime->GenerateProtocol(Proto); 5668 break; 5669 } 5670 5671 case Decl::ObjCCategoryImpl: 5672 // Categories have properties but don't support synthesize so we 5673 // can ignore them here. 5674 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5675 break; 5676 5677 case Decl::ObjCImplementation: { 5678 auto *OMD = cast<ObjCImplementationDecl>(D); 5679 EmitObjCPropertyImplementations(OMD); 5680 EmitObjCIvarInitializations(OMD); 5681 ObjCRuntime->GenerateClass(OMD); 5682 // Emit global variable debug information. 5683 if (CGDebugInfo *DI = getModuleDebugInfo()) 5684 if (getCodeGenOpts().hasReducedDebugInfo()) 5685 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5686 OMD->getClassInterface()), OMD->getLocation()); 5687 break; 5688 } 5689 case Decl::ObjCMethod: { 5690 auto *OMD = cast<ObjCMethodDecl>(D); 5691 // If this is not a prototype, emit the body. 5692 if (OMD->getBody()) 5693 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5694 break; 5695 } 5696 case Decl::ObjCCompatibleAlias: 5697 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5698 break; 5699 5700 case Decl::PragmaComment: { 5701 const auto *PCD = cast<PragmaCommentDecl>(D); 5702 switch (PCD->getCommentKind()) { 5703 case PCK_Unknown: 5704 llvm_unreachable("unexpected pragma comment kind"); 5705 case PCK_Linker: 5706 AppendLinkerOptions(PCD->getArg()); 5707 break; 5708 case PCK_Lib: 5709 AddDependentLib(PCD->getArg()); 5710 break; 5711 case PCK_Compiler: 5712 case PCK_ExeStr: 5713 case PCK_User: 5714 break; // We ignore all of these. 5715 } 5716 break; 5717 } 5718 5719 case Decl::PragmaDetectMismatch: { 5720 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5721 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5722 break; 5723 } 5724 5725 case Decl::LinkageSpec: 5726 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5727 break; 5728 5729 case Decl::FileScopeAsm: { 5730 // File-scope asm is ignored during device-side CUDA compilation. 5731 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5732 break; 5733 // File-scope asm is ignored during device-side OpenMP compilation. 5734 if (LangOpts.OpenMPIsDevice) 5735 break; 5736 // File-scope asm is ignored during device-side SYCL compilation. 5737 if (LangOpts.SYCLIsDevice) 5738 break; 5739 auto *AD = cast<FileScopeAsmDecl>(D); 5740 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5741 break; 5742 } 5743 5744 case Decl::Import: { 5745 auto *Import = cast<ImportDecl>(D); 5746 5747 // If we've already imported this module, we're done. 5748 if (!ImportedModules.insert(Import->getImportedModule())) 5749 break; 5750 5751 // Emit debug information for direct imports. 5752 if (!Import->getImportedOwningModule()) { 5753 if (CGDebugInfo *DI = getModuleDebugInfo()) 5754 DI->EmitImportDecl(*Import); 5755 } 5756 5757 // Find all of the submodules and emit the module initializers. 5758 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5759 SmallVector<clang::Module *, 16> Stack; 5760 Visited.insert(Import->getImportedModule()); 5761 Stack.push_back(Import->getImportedModule()); 5762 5763 while (!Stack.empty()) { 5764 clang::Module *Mod = Stack.pop_back_val(); 5765 if (!EmittedModuleInitializers.insert(Mod).second) 5766 continue; 5767 5768 for (auto *D : Context.getModuleInitializers(Mod)) 5769 EmitTopLevelDecl(D); 5770 5771 // Visit the submodules of this module. 5772 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5773 SubEnd = Mod->submodule_end(); 5774 Sub != SubEnd; ++Sub) { 5775 // Skip explicit children; they need to be explicitly imported to emit 5776 // the initializers. 5777 if ((*Sub)->IsExplicit) 5778 continue; 5779 5780 if (Visited.insert(*Sub).second) 5781 Stack.push_back(*Sub); 5782 } 5783 } 5784 break; 5785 } 5786 5787 case Decl::Export: 5788 EmitDeclContext(cast<ExportDecl>(D)); 5789 break; 5790 5791 case Decl::OMPThreadPrivate: 5792 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5793 break; 5794 5795 case Decl::OMPAllocate: 5796 break; 5797 5798 case Decl::OMPDeclareReduction: 5799 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5800 break; 5801 5802 case Decl::OMPDeclareMapper: 5803 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5804 break; 5805 5806 case Decl::OMPRequires: 5807 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5808 break; 5809 5810 case Decl::Typedef: 5811 case Decl::TypeAlias: // using foo = bar; [C++11] 5812 if (CGDebugInfo *DI = getModuleDebugInfo()) 5813 DI->EmitAndRetainType( 5814 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5815 break; 5816 5817 case Decl::Record: 5818 if (CGDebugInfo *DI = getModuleDebugInfo()) 5819 if (cast<RecordDecl>(D)->getDefinition()) 5820 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5821 break; 5822 5823 case Decl::Enum: 5824 if (CGDebugInfo *DI = getModuleDebugInfo()) 5825 if (cast<EnumDecl>(D)->getDefinition()) 5826 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5827 break; 5828 5829 default: 5830 // Make sure we handled everything we should, every other kind is a 5831 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5832 // function. Need to recode Decl::Kind to do that easily. 5833 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5834 break; 5835 } 5836 } 5837 5838 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5839 // Do we need to generate coverage mapping? 5840 if (!CodeGenOpts.CoverageMapping) 5841 return; 5842 switch (D->getKind()) { 5843 case Decl::CXXConversion: 5844 case Decl::CXXMethod: 5845 case Decl::Function: 5846 case Decl::ObjCMethod: 5847 case Decl::CXXConstructor: 5848 case Decl::CXXDestructor: { 5849 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5850 break; 5851 SourceManager &SM = getContext().getSourceManager(); 5852 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5853 break; 5854 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5855 if (I == DeferredEmptyCoverageMappingDecls.end()) 5856 DeferredEmptyCoverageMappingDecls[D] = true; 5857 break; 5858 } 5859 default: 5860 break; 5861 }; 5862 } 5863 5864 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5865 // Do we need to generate coverage mapping? 5866 if (!CodeGenOpts.CoverageMapping) 5867 return; 5868 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5869 if (Fn->isTemplateInstantiation()) 5870 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5871 } 5872 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5873 if (I == DeferredEmptyCoverageMappingDecls.end()) 5874 DeferredEmptyCoverageMappingDecls[D] = false; 5875 else 5876 I->second = false; 5877 } 5878 5879 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5880 // We call takeVector() here to avoid use-after-free. 5881 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5882 // we deserialize function bodies to emit coverage info for them, and that 5883 // deserializes more declarations. How should we handle that case? 5884 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5885 if (!Entry.second) 5886 continue; 5887 const Decl *D = Entry.first; 5888 switch (D->getKind()) { 5889 case Decl::CXXConversion: 5890 case Decl::CXXMethod: 5891 case Decl::Function: 5892 case Decl::ObjCMethod: { 5893 CodeGenPGO PGO(*this); 5894 GlobalDecl GD(cast<FunctionDecl>(D)); 5895 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5896 getFunctionLinkage(GD)); 5897 break; 5898 } 5899 case Decl::CXXConstructor: { 5900 CodeGenPGO PGO(*this); 5901 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5902 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5903 getFunctionLinkage(GD)); 5904 break; 5905 } 5906 case Decl::CXXDestructor: { 5907 CodeGenPGO PGO(*this); 5908 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5909 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5910 getFunctionLinkage(GD)); 5911 break; 5912 } 5913 default: 5914 break; 5915 }; 5916 } 5917 } 5918 5919 void CodeGenModule::EmitMainVoidAlias() { 5920 // In order to transition away from "__original_main" gracefully, emit an 5921 // alias for "main" in the no-argument case so that libc can detect when 5922 // new-style no-argument main is in used. 5923 if (llvm::Function *F = getModule().getFunction("main")) { 5924 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5925 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5926 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5927 } 5928 } 5929 5930 /// Turns the given pointer into a constant. 5931 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5932 const void *Ptr) { 5933 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5934 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5935 return llvm::ConstantInt::get(i64, PtrInt); 5936 } 5937 5938 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5939 llvm::NamedMDNode *&GlobalMetadata, 5940 GlobalDecl D, 5941 llvm::GlobalValue *Addr) { 5942 if (!GlobalMetadata) 5943 GlobalMetadata = 5944 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5945 5946 // TODO: should we report variant information for ctors/dtors? 5947 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5948 llvm::ConstantAsMetadata::get(GetPointerConstant( 5949 CGM.getLLVMContext(), D.getDecl()))}; 5950 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5951 } 5952 5953 /// For each function which is declared within an extern "C" region and marked 5954 /// as 'used', but has internal linkage, create an alias from the unmangled 5955 /// name to the mangled name if possible. People expect to be able to refer 5956 /// to such functions with an unmangled name from inline assembly within the 5957 /// same translation unit. 5958 void CodeGenModule::EmitStaticExternCAliases() { 5959 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5960 return; 5961 for (auto &I : StaticExternCValues) { 5962 IdentifierInfo *Name = I.first; 5963 llvm::GlobalValue *Val = I.second; 5964 if (Val && !getModule().getNamedValue(Name->getName())) 5965 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5966 } 5967 } 5968 5969 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5970 GlobalDecl &Result) const { 5971 auto Res = Manglings.find(MangledName); 5972 if (Res == Manglings.end()) 5973 return false; 5974 Result = Res->getValue(); 5975 return true; 5976 } 5977 5978 /// Emits metadata nodes associating all the global values in the 5979 /// current module with the Decls they came from. This is useful for 5980 /// projects using IR gen as a subroutine. 5981 /// 5982 /// Since there's currently no way to associate an MDNode directly 5983 /// with an llvm::GlobalValue, we create a global named metadata 5984 /// with the name 'clang.global.decl.ptrs'. 5985 void CodeGenModule::EmitDeclMetadata() { 5986 llvm::NamedMDNode *GlobalMetadata = nullptr; 5987 5988 for (auto &I : MangledDeclNames) { 5989 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5990 // Some mangled names don't necessarily have an associated GlobalValue 5991 // in this module, e.g. if we mangled it for DebugInfo. 5992 if (Addr) 5993 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5994 } 5995 } 5996 5997 /// Emits metadata nodes for all the local variables in the current 5998 /// function. 5999 void CodeGenFunction::EmitDeclMetadata() { 6000 if (LocalDeclMap.empty()) return; 6001 6002 llvm::LLVMContext &Context = getLLVMContext(); 6003 6004 // Find the unique metadata ID for this name. 6005 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6006 6007 llvm::NamedMDNode *GlobalMetadata = nullptr; 6008 6009 for (auto &I : LocalDeclMap) { 6010 const Decl *D = I.first; 6011 llvm::Value *Addr = I.second.getPointer(); 6012 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6013 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6014 Alloca->setMetadata( 6015 DeclPtrKind, llvm::MDNode::get( 6016 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6017 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6018 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6019 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6020 } 6021 } 6022 } 6023 6024 void CodeGenModule::EmitVersionIdentMetadata() { 6025 llvm::NamedMDNode *IdentMetadata = 6026 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6027 std::string Version = getClangFullVersion(); 6028 llvm::LLVMContext &Ctx = TheModule.getContext(); 6029 6030 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6031 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6032 } 6033 6034 void CodeGenModule::EmitCommandLineMetadata() { 6035 llvm::NamedMDNode *CommandLineMetadata = 6036 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6037 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6038 llvm::LLVMContext &Ctx = TheModule.getContext(); 6039 6040 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6041 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6042 } 6043 6044 void CodeGenModule::EmitCoverageFile() { 6045 if (getCodeGenOpts().CoverageDataFile.empty() && 6046 getCodeGenOpts().CoverageNotesFile.empty()) 6047 return; 6048 6049 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6050 if (!CUNode) 6051 return; 6052 6053 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6054 llvm::LLVMContext &Ctx = TheModule.getContext(); 6055 auto *CoverageDataFile = 6056 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6057 auto *CoverageNotesFile = 6058 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6059 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6060 llvm::MDNode *CU = CUNode->getOperand(i); 6061 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6062 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6063 } 6064 } 6065 6066 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6067 bool ForEH) { 6068 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6069 // FIXME: should we even be calling this method if RTTI is disabled 6070 // and it's not for EH? 6071 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6072 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6073 getTriple().isNVPTX())) 6074 return llvm::Constant::getNullValue(Int8PtrTy); 6075 6076 if (ForEH && Ty->isObjCObjectPointerType() && 6077 LangOpts.ObjCRuntime.isGNUFamily()) 6078 return ObjCRuntime->GetEHType(Ty); 6079 6080 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6081 } 6082 6083 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6084 // Do not emit threadprivates in simd-only mode. 6085 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6086 return; 6087 for (auto RefExpr : D->varlists()) { 6088 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6089 bool PerformInit = 6090 VD->getAnyInitializer() && 6091 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6092 /*ForRef=*/false); 6093 6094 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6095 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6096 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6097 CXXGlobalInits.push_back(InitFunction); 6098 } 6099 } 6100 6101 llvm::Metadata * 6102 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6103 StringRef Suffix) { 6104 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6105 if (InternalId) 6106 return InternalId; 6107 6108 if (isExternallyVisible(T->getLinkage())) { 6109 std::string OutName; 6110 llvm::raw_string_ostream Out(OutName); 6111 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6112 Out << Suffix; 6113 6114 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6115 } else { 6116 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6117 llvm::ArrayRef<llvm::Metadata *>()); 6118 } 6119 6120 return InternalId; 6121 } 6122 6123 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6124 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6125 } 6126 6127 llvm::Metadata * 6128 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6129 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6130 } 6131 6132 // Generalize pointer types to a void pointer with the qualifiers of the 6133 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6134 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6135 // 'void *'. 6136 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6137 if (!Ty->isPointerType()) 6138 return Ty; 6139 6140 return Ctx.getPointerType( 6141 QualType(Ctx.VoidTy).withCVRQualifiers( 6142 Ty->getPointeeType().getCVRQualifiers())); 6143 } 6144 6145 // Apply type generalization to a FunctionType's return and argument types 6146 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6147 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6148 SmallVector<QualType, 8> GeneralizedParams; 6149 for (auto &Param : FnType->param_types()) 6150 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6151 6152 return Ctx.getFunctionType( 6153 GeneralizeType(Ctx, FnType->getReturnType()), 6154 GeneralizedParams, FnType->getExtProtoInfo()); 6155 } 6156 6157 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6158 return Ctx.getFunctionNoProtoType( 6159 GeneralizeType(Ctx, FnType->getReturnType())); 6160 6161 llvm_unreachable("Encountered unknown FunctionType"); 6162 } 6163 6164 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6165 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6166 GeneralizedMetadataIdMap, ".generalized"); 6167 } 6168 6169 /// Returns whether this module needs the "all-vtables" type identifier. 6170 bool CodeGenModule::NeedAllVtablesTypeId() const { 6171 // Returns true if at least one of vtable-based CFI checkers is enabled and 6172 // is not in the trapping mode. 6173 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6174 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6175 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6176 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6177 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6178 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6179 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6180 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6181 } 6182 6183 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6184 CharUnits Offset, 6185 const CXXRecordDecl *RD) { 6186 llvm::Metadata *MD = 6187 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6188 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6189 6190 if (CodeGenOpts.SanitizeCfiCrossDso) 6191 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6192 VTable->addTypeMetadata(Offset.getQuantity(), 6193 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6194 6195 if (NeedAllVtablesTypeId()) { 6196 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6197 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6198 } 6199 } 6200 6201 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6202 if (!SanStats) 6203 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6204 6205 return *SanStats; 6206 } 6207 llvm::Value * 6208 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6209 CodeGenFunction &CGF) { 6210 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6211 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6212 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6213 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6214 "__translate_sampler_initializer"), 6215 {C}); 6216 } 6217 6218 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6219 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6220 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6221 /* forPointeeType= */ true); 6222 } 6223 6224 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6225 LValueBaseInfo *BaseInfo, 6226 TBAAAccessInfo *TBAAInfo, 6227 bool forPointeeType) { 6228 if (TBAAInfo) 6229 *TBAAInfo = getTBAAAccessInfo(T); 6230 6231 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6232 // that doesn't return the information we need to compute BaseInfo. 6233 6234 // Honor alignment typedef attributes even on incomplete types. 6235 // We also honor them straight for C++ class types, even as pointees; 6236 // there's an expressivity gap here. 6237 if (auto TT = T->getAs<TypedefType>()) { 6238 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6239 if (BaseInfo) 6240 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6241 return getContext().toCharUnitsFromBits(Align); 6242 } 6243 } 6244 6245 bool AlignForArray = T->isArrayType(); 6246 6247 // Analyze the base element type, so we don't get confused by incomplete 6248 // array types. 6249 T = getContext().getBaseElementType(T); 6250 6251 if (T->isIncompleteType()) { 6252 // We could try to replicate the logic from 6253 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6254 // type is incomplete, so it's impossible to test. We could try to reuse 6255 // getTypeAlignIfKnown, but that doesn't return the information we need 6256 // to set BaseInfo. So just ignore the possibility that the alignment is 6257 // greater than one. 6258 if (BaseInfo) 6259 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6260 return CharUnits::One(); 6261 } 6262 6263 if (BaseInfo) 6264 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6265 6266 CharUnits Alignment; 6267 const CXXRecordDecl *RD; 6268 if (T.getQualifiers().hasUnaligned()) { 6269 Alignment = CharUnits::One(); 6270 } else if (forPointeeType && !AlignForArray && 6271 (RD = T->getAsCXXRecordDecl())) { 6272 // For C++ class pointees, we don't know whether we're pointing at a 6273 // base or a complete object, so we generally need to use the 6274 // non-virtual alignment. 6275 Alignment = getClassPointerAlignment(RD); 6276 } else { 6277 Alignment = getContext().getTypeAlignInChars(T); 6278 } 6279 6280 // Cap to the global maximum type alignment unless the alignment 6281 // was somehow explicit on the type. 6282 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6283 if (Alignment.getQuantity() > MaxAlign && 6284 !getContext().isAlignmentRequired(T)) 6285 Alignment = CharUnits::fromQuantity(MaxAlign); 6286 } 6287 return Alignment; 6288 } 6289 6290 bool CodeGenModule::stopAutoInit() { 6291 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6292 if (StopAfter) { 6293 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6294 // used 6295 if (NumAutoVarInit >= StopAfter) { 6296 return true; 6297 } 6298 if (!NumAutoVarInit) { 6299 unsigned DiagID = getDiags().getCustomDiagID( 6300 DiagnosticsEngine::Warning, 6301 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6302 "number of times ftrivial-auto-var-init=%1 gets applied."); 6303 getDiags().Report(DiagID) 6304 << StopAfter 6305 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6306 LangOptions::TrivialAutoVarInitKind::Zero 6307 ? "zero" 6308 : "pattern"); 6309 } 6310 ++NumAutoVarInit; 6311 } 6312 return false; 6313 } 6314 6315 void CodeGenModule::printPostfixForExternalizedStaticVar( 6316 llvm::raw_ostream &OS) const { 6317 OS << ".static." << getContext().getCUIDHash(); 6318 } 6319