1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 81 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 82 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 83 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 84 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 85 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 86 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 87 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 88 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 89 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 90 LifetimeEndFn(nullptr), 91 SanitizerBlacklist( 92 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 113 if (LangOpts.ObjC1) 114 createObjCRuntime(); 115 if (LangOpts.OpenCL) 116 createOpenCLRuntime(); 117 if (LangOpts.OpenMP) 118 createOpenMPRuntime(); 119 if (LangOpts.CUDA) 120 createCUDARuntime(); 121 122 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 123 if (LangOpts.Sanitize.Thread || 124 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 125 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 126 getCXXABI().getMangleContext()); 127 128 // If debug info or coverage generation is enabled, create the CGDebugInfo 129 // object. 130 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 131 CodeGenOpts.EmitGcovArcs || 132 CodeGenOpts.EmitGcovNotes) 133 DebugInfo = new CGDebugInfo(*this); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjCAutoRefCount) 138 ARCData = new ARCEntrypoints(); 139 RRData = new RREntrypoints(); 140 141 if (!CodeGenOpts.InstrProfileInput.empty()) { 142 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.InstrProfileInput, PGOReader)) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile: %0"); 146 getDiags().Report(DiagID) << EC.message(); 147 } 148 } 149 } 150 151 CodeGenModule::~CodeGenModule() { 152 delete ObjCRuntime; 153 delete OpenCLRuntime; 154 delete OpenMPRuntime; 155 delete CUDARuntime; 156 delete TheTargetCodeGenInfo; 157 delete TBAA; 158 delete DebugInfo; 159 delete ARCData; 160 delete RRData; 161 } 162 163 void CodeGenModule::createObjCRuntime() { 164 // This is just isGNUFamily(), but we want to force implementors of 165 // new ABIs to decide how best to do this. 166 switch (LangOpts.ObjCRuntime.getKind()) { 167 case ObjCRuntime::GNUstep: 168 case ObjCRuntime::GCC: 169 case ObjCRuntime::ObjFW: 170 ObjCRuntime = CreateGNUObjCRuntime(*this); 171 return; 172 173 case ObjCRuntime::FragileMacOSX: 174 case ObjCRuntime::MacOSX: 175 case ObjCRuntime::iOS: 176 ObjCRuntime = CreateMacObjCRuntime(*this); 177 return; 178 } 179 llvm_unreachable("bad runtime kind"); 180 } 181 182 void CodeGenModule::createOpenCLRuntime() { 183 OpenCLRuntime = new CGOpenCLRuntime(*this); 184 } 185 186 void CodeGenModule::createOpenMPRuntime() { 187 OpenMPRuntime = new CGOpenMPRuntime(*this); 188 } 189 190 void CodeGenModule::createCUDARuntime() { 191 CUDARuntime = CreateNVCUDARuntime(*this); 192 } 193 194 void CodeGenModule::applyReplacements() { 195 for (ReplacementsTy::iterator I = Replacements.begin(), 196 E = Replacements.end(); 197 I != E; ++I) { 198 StringRef MangledName = I->first(); 199 llvm::Constant *Replacement = I->second; 200 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 201 if (!Entry) 202 continue; 203 auto *OldF = cast<llvm::Function>(Entry); 204 auto *NewF = dyn_cast<llvm::Function>(Replacement); 205 if (!NewF) { 206 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 207 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 208 } else { 209 auto *CE = cast<llvm::ConstantExpr>(Replacement); 210 assert(CE->getOpcode() == llvm::Instruction::BitCast || 211 CE->getOpcode() == llvm::Instruction::GetElementPtr); 212 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 213 } 214 } 215 216 // Replace old with new, but keep the old order. 217 OldF->replaceAllUsesWith(Replacement); 218 if (NewF) { 219 NewF->removeFromParent(); 220 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 221 } 222 OldF->eraseFromParent(); 223 } 224 } 225 226 // This is only used in aliases that we created and we know they have a 227 // linear structure. 228 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 229 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 230 const llvm::Constant *C = &GA; 231 for (;;) { 232 C = C->stripPointerCasts(); 233 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 234 return GO; 235 // stripPointerCasts will not walk over weak aliases. 236 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 237 if (!GA2) 238 return nullptr; 239 if (!Visited.insert(GA2)) 240 return nullptr; 241 C = GA2->getAliasee(); 242 } 243 } 244 245 void CodeGenModule::checkAliases() { 246 // Check if the constructed aliases are well formed. It is really unfortunate 247 // that we have to do this in CodeGen, but we only construct mangled names 248 // and aliases during codegen. 249 bool Error = false; 250 DiagnosticsEngine &Diags = getDiags(); 251 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 252 E = Aliases.end(); I != E; ++I) { 253 const GlobalDecl &GD = *I; 254 const auto *D = cast<ValueDecl>(GD.getDecl()); 255 const AliasAttr *AA = D->getAttr<AliasAttr>(); 256 StringRef MangledName = getMangledName(GD); 257 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 258 auto *Alias = cast<llvm::GlobalAlias>(Entry); 259 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 260 if (!GV) { 261 Error = true; 262 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 263 } else if (GV->isDeclaration()) { 264 Error = true; 265 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 266 } 267 268 llvm::Constant *Aliasee = Alias->getAliasee(); 269 llvm::GlobalValue *AliaseeGV; 270 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 271 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 272 else 273 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 274 275 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 276 StringRef AliasSection = SA->getName(); 277 if (AliasSection != AliaseeGV->getSection()) 278 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 279 << AliasSection; 280 } 281 282 // We have to handle alias to weak aliases in here. LLVM itself disallows 283 // this since the object semantics would not match the IL one. For 284 // compatibility with gcc we implement it by just pointing the alias 285 // to its aliasee's aliasee. We also warn, since the user is probably 286 // expecting the link to be weak. 287 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 288 if (GA->mayBeOverridden()) { 289 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 290 << GV->getName() << GA->getName(); 291 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 292 GA->getAliasee(), Alias->getType()); 293 Alias->setAliasee(Aliasee); 294 } 295 } 296 } 297 if (!Error) 298 return; 299 300 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 301 E = Aliases.end(); I != E; ++I) { 302 const GlobalDecl &GD = *I; 303 StringRef MangledName = getMangledName(GD); 304 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 305 auto *Alias = cast<llvm::GlobalAlias>(Entry); 306 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 307 Alias->eraseFromParent(); 308 } 309 } 310 311 void CodeGenModule::clear() { 312 DeferredDeclsToEmit.clear(); 313 } 314 315 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 316 StringRef MainFile) { 317 if (!hasDiagnostics()) 318 return; 319 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 320 if (MainFile.empty()) 321 MainFile = "<stdin>"; 322 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 323 } else 324 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 325 << Mismatched; 326 } 327 328 void CodeGenModule::Release() { 329 EmitDeferred(); 330 applyReplacements(); 331 checkAliases(); 332 EmitCXXGlobalInitFunc(); 333 EmitCXXGlobalDtorFunc(); 334 EmitCXXThreadLocalInitFunc(); 335 if (ObjCRuntime) 336 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 337 AddGlobalCtor(ObjCInitFunction); 338 if (getCodeGenOpts().ProfileInstrGenerate) 339 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 340 AddGlobalCtor(PGOInit, 0); 341 if (PGOReader && PGOStats.hasDiagnostics()) 342 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 343 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 344 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 345 EmitGlobalAnnotations(); 346 EmitStaticExternCAliases(); 347 emitLLVMUsed(); 348 349 if (CodeGenOpts.Autolink && 350 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 351 EmitModuleLinkOptions(); 352 } 353 if (CodeGenOpts.DwarfVersion) 354 // We actually want the latest version when there are conflicts. 355 // We can change from Warning to Latest if such mode is supported. 356 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 357 CodeGenOpts.DwarfVersion); 358 if (DebugInfo) 359 // We support a single version in the linked module. The LLVM 360 // parser will drop debug info with a different version number 361 // (and warn about it, too). 362 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 363 llvm::DEBUG_METADATA_VERSION); 364 365 // We need to record the widths of enums and wchar_t, so that we can generate 366 // the correct build attributes in the ARM backend. 367 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 368 if ( Arch == llvm::Triple::arm 369 || Arch == llvm::Triple::armeb 370 || Arch == llvm::Triple::thumb 371 || Arch == llvm::Triple::thumbeb) { 372 // Width of wchar_t in bytes 373 uint64_t WCharWidth = 374 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 375 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 376 377 // The minimum width of an enum in bytes 378 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 379 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 380 } 381 382 SimplifyPersonality(); 383 384 if (getCodeGenOpts().EmitDeclMetadata) 385 EmitDeclMetadata(); 386 387 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 388 EmitCoverageFile(); 389 390 if (DebugInfo) 391 DebugInfo->finalize(); 392 393 EmitVersionIdentMetadata(); 394 395 EmitTargetMetadata(); 396 } 397 398 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 399 // Make sure that this type is translated. 400 Types.UpdateCompletedType(TD); 401 } 402 403 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 404 if (!TBAA) 405 return nullptr; 406 return TBAA->getTBAAInfo(QTy); 407 } 408 409 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 410 if (!TBAA) 411 return nullptr; 412 return TBAA->getTBAAInfoForVTablePtr(); 413 } 414 415 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 416 if (!TBAA) 417 return nullptr; 418 return TBAA->getTBAAStructInfo(QTy); 419 } 420 421 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 422 if (!TBAA) 423 return nullptr; 424 return TBAA->getTBAAStructTypeInfo(QTy); 425 } 426 427 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 428 llvm::MDNode *AccessN, 429 uint64_t O) { 430 if (!TBAA) 431 return nullptr; 432 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 433 } 434 435 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 436 /// and struct-path aware TBAA, the tag has the same format: 437 /// base type, access type and offset. 438 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 439 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 440 llvm::MDNode *TBAAInfo, 441 bool ConvertTypeToTag) { 442 if (ConvertTypeToTag && TBAA) 443 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 444 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 445 else 446 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 447 } 448 449 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 450 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 451 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 452 } 453 454 /// ErrorUnsupported - Print out an error that codegen doesn't support the 455 /// specified stmt yet. 456 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 457 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 458 "cannot compile this %0 yet"); 459 std::string Msg = Type; 460 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 461 << Msg << S->getSourceRange(); 462 } 463 464 /// ErrorUnsupported - Print out an error that codegen doesn't support the 465 /// specified decl yet. 466 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 467 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 468 "cannot compile this %0 yet"); 469 std::string Msg = Type; 470 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 471 } 472 473 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 474 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 475 } 476 477 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 478 const NamedDecl *D) const { 479 // Internal definitions always have default visibility. 480 if (GV->hasLocalLinkage()) { 481 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 482 return; 483 } 484 485 // Set visibility for definitions. 486 LinkageInfo LV = D->getLinkageAndVisibility(); 487 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 488 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 489 } 490 491 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 492 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 493 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 494 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 495 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 496 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 497 } 498 499 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 500 CodeGenOptions::TLSModel M) { 501 switch (M) { 502 case CodeGenOptions::GeneralDynamicTLSModel: 503 return llvm::GlobalVariable::GeneralDynamicTLSModel; 504 case CodeGenOptions::LocalDynamicTLSModel: 505 return llvm::GlobalVariable::LocalDynamicTLSModel; 506 case CodeGenOptions::InitialExecTLSModel: 507 return llvm::GlobalVariable::InitialExecTLSModel; 508 case CodeGenOptions::LocalExecTLSModel: 509 return llvm::GlobalVariable::LocalExecTLSModel; 510 } 511 llvm_unreachable("Invalid TLS model!"); 512 } 513 514 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 515 const VarDecl &D) const { 516 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 517 518 llvm::GlobalVariable::ThreadLocalMode TLM; 519 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 520 521 // Override the TLS model if it is explicitly specified. 522 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 523 TLM = GetLLVMTLSModel(Attr->getModel()); 524 } 525 526 GV->setThreadLocalMode(TLM); 527 } 528 529 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 530 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 531 if (!FoundStr.empty()) 532 return FoundStr; 533 534 const auto *ND = cast<NamedDecl>(GD.getDecl()); 535 SmallString<256> Buffer; 536 StringRef Str; 537 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 538 llvm::raw_svector_ostream Out(Buffer); 539 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 540 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 541 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 542 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 543 else 544 getCXXABI().getMangleContext().mangleName(ND, Out); 545 Str = Out.str(); 546 } else { 547 IdentifierInfo *II = ND->getIdentifier(); 548 assert(II && "Attempt to mangle unnamed decl."); 549 Str = II->getName(); 550 } 551 552 auto &Mangled = Manglings.GetOrCreateValue(Str); 553 Mangled.second = GD; 554 return FoundStr = Mangled.first(); 555 } 556 557 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 558 const BlockDecl *BD) { 559 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 560 const Decl *D = GD.getDecl(); 561 562 SmallString<256> Buffer; 563 llvm::raw_svector_ostream Out(Buffer); 564 if (!D) 565 MangleCtx.mangleGlobalBlock(BD, 566 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 567 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 568 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 569 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 570 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 571 else 572 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 573 574 auto &Mangled = Manglings.GetOrCreateValue(Out.str()); 575 Mangled.second = BD; 576 return Mangled.first(); 577 } 578 579 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 580 return getModule().getNamedValue(Name); 581 } 582 583 /// AddGlobalCtor - Add a function to the list that will be called before 584 /// main() runs. 585 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 586 llvm::Constant *AssociatedData) { 587 // FIXME: Type coercion of void()* types. 588 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 589 } 590 591 /// AddGlobalDtor - Add a function to the list that will be called 592 /// when the module is unloaded. 593 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 594 // FIXME: Type coercion of void()* types. 595 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 596 } 597 598 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 599 // Ctor function type is void()*. 600 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 601 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 602 603 // Get the type of a ctor entry, { i32, void ()*, i8* }. 604 llvm::StructType *CtorStructTy = llvm::StructType::get( 605 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 606 607 // Construct the constructor and destructor arrays. 608 SmallVector<llvm::Constant*, 8> Ctors; 609 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 610 llvm::Constant *S[] = { 611 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 612 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 613 (I->AssociatedData 614 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 615 : llvm::Constant::getNullValue(VoidPtrTy)) 616 }; 617 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 618 } 619 620 if (!Ctors.empty()) { 621 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 622 new llvm::GlobalVariable(TheModule, AT, false, 623 llvm::GlobalValue::AppendingLinkage, 624 llvm::ConstantArray::get(AT, Ctors), 625 GlobalName); 626 } 627 } 628 629 llvm::GlobalValue::LinkageTypes 630 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 631 const auto *D = cast<FunctionDecl>(GD.getDecl()); 632 633 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 634 635 if (isa<CXXDestructorDecl>(D) && 636 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 637 GD.getDtorType())) { 638 // Destructor variants in the Microsoft C++ ABI are always internal or 639 // linkonce_odr thunks emitted on an as-needed basis. 640 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 641 : llvm::GlobalValue::LinkOnceODRLinkage; 642 } 643 644 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 645 } 646 647 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 648 llvm::Function *F) { 649 setNonAliasAttributes(D, F); 650 } 651 652 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 653 const CGFunctionInfo &Info, 654 llvm::Function *F) { 655 unsigned CallingConv; 656 AttributeListType AttributeList; 657 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 658 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 659 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 660 } 661 662 /// Determines whether the language options require us to model 663 /// unwind exceptions. We treat -fexceptions as mandating this 664 /// except under the fragile ObjC ABI with only ObjC exceptions 665 /// enabled. This means, for example, that C with -fexceptions 666 /// enables this. 667 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 668 // If exceptions are completely disabled, obviously this is false. 669 if (!LangOpts.Exceptions) return false; 670 671 // If C++ exceptions are enabled, this is true. 672 if (LangOpts.CXXExceptions) return true; 673 674 // If ObjC exceptions are enabled, this depends on the ABI. 675 if (LangOpts.ObjCExceptions) { 676 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 677 } 678 679 return true; 680 } 681 682 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 683 llvm::Function *F) { 684 llvm::AttrBuilder B; 685 686 if (CodeGenOpts.UnwindTables) 687 B.addAttribute(llvm::Attribute::UWTable); 688 689 if (!hasUnwindExceptions(LangOpts)) 690 B.addAttribute(llvm::Attribute::NoUnwind); 691 692 if (D->hasAttr<NakedAttr>()) { 693 // Naked implies noinline: we should not be inlining such functions. 694 B.addAttribute(llvm::Attribute::Naked); 695 B.addAttribute(llvm::Attribute::NoInline); 696 } else if (D->hasAttr<OptimizeNoneAttr>()) { 697 // OptimizeNone implies noinline; we should not be inlining such functions. 698 B.addAttribute(llvm::Attribute::OptimizeNone); 699 B.addAttribute(llvm::Attribute::NoInline); 700 } else if (D->hasAttr<NoDuplicateAttr>()) { 701 B.addAttribute(llvm::Attribute::NoDuplicate); 702 } else if (D->hasAttr<NoInlineAttr>()) { 703 B.addAttribute(llvm::Attribute::NoInline); 704 } else if (D->hasAttr<AlwaysInlineAttr>() && 705 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 706 llvm::Attribute::NoInline)) { 707 // (noinline wins over always_inline, and we can't specify both in IR) 708 B.addAttribute(llvm::Attribute::AlwaysInline); 709 } 710 711 if (D->hasAttr<ColdAttr>()) { 712 B.addAttribute(llvm::Attribute::OptimizeForSize); 713 B.addAttribute(llvm::Attribute::Cold); 714 } 715 716 if (D->hasAttr<MinSizeAttr>()) 717 B.addAttribute(llvm::Attribute::MinSize); 718 719 if (D->hasAttr<OptimizeNoneAttr>()) { 720 // OptimizeNone wins over OptimizeForSize and MinSize. 721 B.removeAttribute(llvm::Attribute::OptimizeForSize); 722 B.removeAttribute(llvm::Attribute::MinSize); 723 } 724 725 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 726 B.addAttribute(llvm::Attribute::StackProtect); 727 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 728 B.addAttribute(llvm::Attribute::StackProtectStrong); 729 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 730 B.addAttribute(llvm::Attribute::StackProtectReq); 731 732 // Add sanitizer attributes if function is not blacklisted. 733 if (!SanitizerBlacklist->isIn(*F)) { 734 // When AddressSanitizer is enabled, set SanitizeAddress attribute 735 // unless __attribute__((no_sanitize_address)) is used. 736 if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 737 B.addAttribute(llvm::Attribute::SanitizeAddress); 738 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 739 if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) 740 B.addAttribute(llvm::Attribute::SanitizeThread); 741 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 742 if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 743 B.addAttribute(llvm::Attribute::SanitizeMemory); 744 } 745 746 F->addAttributes(llvm::AttributeSet::FunctionIndex, 747 llvm::AttributeSet::get( 748 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 749 750 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 751 F->setUnnamedAddr(true); 752 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 753 if (MD->isVirtual()) 754 F->setUnnamedAddr(true); 755 756 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 757 if (alignment) 758 F->setAlignment(alignment); 759 760 // C++ ABI requires 2-byte alignment for member functions. 761 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 762 F->setAlignment(2); 763 } 764 765 void CodeGenModule::SetCommonAttributes(const Decl *D, 766 llvm::GlobalValue *GV) { 767 if (const auto *ND = dyn_cast<NamedDecl>(D)) 768 setGlobalVisibility(GV, ND); 769 else 770 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 771 772 if (D->hasAttr<UsedAttr>()) 773 addUsedGlobal(GV); 774 } 775 776 void CodeGenModule::setNonAliasAttributes(const Decl *D, 777 llvm::GlobalObject *GO) { 778 SetCommonAttributes(D, GO); 779 780 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 781 GO->setSection(SA->getName()); 782 783 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 784 } 785 786 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 787 llvm::Function *F, 788 const CGFunctionInfo &FI) { 789 SetLLVMFunctionAttributes(D, FI, F); 790 SetLLVMFunctionAttributesForDefinition(D, F); 791 792 F->setLinkage(llvm::Function::InternalLinkage); 793 794 setNonAliasAttributes(D, F); 795 } 796 797 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 798 const NamedDecl *ND) { 799 // Set linkage and visibility in case we never see a definition. 800 LinkageInfo LV = ND->getLinkageAndVisibility(); 801 if (LV.getLinkage() != ExternalLinkage) { 802 // Don't set internal linkage on declarations. 803 } else { 804 if (ND->hasAttr<DLLImportAttr>()) { 805 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 806 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 807 } else if (ND->hasAttr<DLLExportAttr>()) { 808 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 809 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 810 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 811 // "extern_weak" is overloaded in LLVM; we probably should have 812 // separate linkage types for this. 813 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 814 } 815 816 // Set visibility on a declaration only if it's explicit. 817 if (LV.isVisibilityExplicit()) 818 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 819 } 820 } 821 822 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 823 llvm::Function *F, 824 bool IsIncompleteFunction) { 825 if (unsigned IID = F->getIntrinsicID()) { 826 // If this is an intrinsic function, set the function's attributes 827 // to the intrinsic's attributes. 828 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 829 (llvm::Intrinsic::ID)IID)); 830 return; 831 } 832 833 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 834 835 if (!IsIncompleteFunction) 836 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 837 838 // Add the Returned attribute for "this", except for iOS 5 and earlier 839 // where substantial code, including the libstdc++ dylib, was compiled with 840 // GCC and does not actually return "this". 841 if (getCXXABI().HasThisReturn(GD) && 842 !(getTarget().getTriple().isiOS() && 843 getTarget().getTriple().isOSVersionLT(6))) { 844 assert(!F->arg_empty() && 845 F->arg_begin()->getType() 846 ->canLosslesslyBitCastTo(F->getReturnType()) && 847 "unexpected this return"); 848 F->addAttribute(1, llvm::Attribute::Returned); 849 } 850 851 // Only a few attributes are set on declarations; these may later be 852 // overridden by a definition. 853 854 setLinkageAndVisibilityForGV(F, FD); 855 856 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 857 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 858 // Don't dllexport/import destructor thunks. 859 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 860 } 861 } 862 863 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 864 F->setSection(SA->getName()); 865 866 // A replaceable global allocation function does not act like a builtin by 867 // default, only if it is invoked by a new-expression or delete-expression. 868 if (FD->isReplaceableGlobalAllocationFunction()) 869 F->addAttribute(llvm::AttributeSet::FunctionIndex, 870 llvm::Attribute::NoBuiltin); 871 } 872 873 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 874 assert(!GV->isDeclaration() && 875 "Only globals with definition can force usage."); 876 LLVMUsed.push_back(GV); 877 } 878 879 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 880 assert(!GV->isDeclaration() && 881 "Only globals with definition can force usage."); 882 LLVMCompilerUsed.push_back(GV); 883 } 884 885 static void emitUsed(CodeGenModule &CGM, StringRef Name, 886 std::vector<llvm::WeakVH> &List) { 887 // Don't create llvm.used if there is no need. 888 if (List.empty()) 889 return; 890 891 // Convert List to what ConstantArray needs. 892 SmallVector<llvm::Constant*, 8> UsedArray; 893 UsedArray.resize(List.size()); 894 for (unsigned i = 0, e = List.size(); i != e; ++i) { 895 UsedArray[i] = 896 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 897 CGM.Int8PtrTy); 898 } 899 900 if (UsedArray.empty()) 901 return; 902 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 903 904 auto *GV = new llvm::GlobalVariable( 905 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 906 llvm::ConstantArray::get(ATy, UsedArray), Name); 907 908 GV->setSection("llvm.metadata"); 909 } 910 911 void CodeGenModule::emitLLVMUsed() { 912 emitUsed(*this, "llvm.used", LLVMUsed); 913 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 914 } 915 916 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 917 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 918 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 919 } 920 921 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 922 llvm::SmallString<32> Opt; 923 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 924 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 925 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 926 } 927 928 void CodeGenModule::AddDependentLib(StringRef Lib) { 929 llvm::SmallString<24> Opt; 930 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 931 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 932 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 933 } 934 935 /// \brief Add link options implied by the given module, including modules 936 /// it depends on, using a postorder walk. 937 static void addLinkOptionsPostorder(CodeGenModule &CGM, 938 Module *Mod, 939 SmallVectorImpl<llvm::Value *> &Metadata, 940 llvm::SmallPtrSet<Module *, 16> &Visited) { 941 // Import this module's parent. 942 if (Mod->Parent && Visited.insert(Mod->Parent)) { 943 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 944 } 945 946 // Import this module's dependencies. 947 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 948 if (Visited.insert(Mod->Imports[I-1])) 949 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 950 } 951 952 // Add linker options to link against the libraries/frameworks 953 // described by this module. 954 llvm::LLVMContext &Context = CGM.getLLVMContext(); 955 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 956 // Link against a framework. Frameworks are currently Darwin only, so we 957 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 958 if (Mod->LinkLibraries[I-1].IsFramework) { 959 llvm::Value *Args[2] = { 960 llvm::MDString::get(Context, "-framework"), 961 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 962 }; 963 964 Metadata.push_back(llvm::MDNode::get(Context, Args)); 965 continue; 966 } 967 968 // Link against a library. 969 llvm::SmallString<24> Opt; 970 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 971 Mod->LinkLibraries[I-1].Library, Opt); 972 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 973 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 974 } 975 } 976 977 void CodeGenModule::EmitModuleLinkOptions() { 978 // Collect the set of all of the modules we want to visit to emit link 979 // options, which is essentially the imported modules and all of their 980 // non-explicit child modules. 981 llvm::SetVector<clang::Module *> LinkModules; 982 llvm::SmallPtrSet<clang::Module *, 16> Visited; 983 SmallVector<clang::Module *, 16> Stack; 984 985 // Seed the stack with imported modules. 986 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 987 MEnd = ImportedModules.end(); 988 M != MEnd; ++M) { 989 if (Visited.insert(*M)) 990 Stack.push_back(*M); 991 } 992 993 // Find all of the modules to import, making a little effort to prune 994 // non-leaf modules. 995 while (!Stack.empty()) { 996 clang::Module *Mod = Stack.pop_back_val(); 997 998 bool AnyChildren = false; 999 1000 // Visit the submodules of this module. 1001 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1002 SubEnd = Mod->submodule_end(); 1003 Sub != SubEnd; ++Sub) { 1004 // Skip explicit children; they need to be explicitly imported to be 1005 // linked against. 1006 if ((*Sub)->IsExplicit) 1007 continue; 1008 1009 if (Visited.insert(*Sub)) { 1010 Stack.push_back(*Sub); 1011 AnyChildren = true; 1012 } 1013 } 1014 1015 // We didn't find any children, so add this module to the list of 1016 // modules to link against. 1017 if (!AnyChildren) { 1018 LinkModules.insert(Mod); 1019 } 1020 } 1021 1022 // Add link options for all of the imported modules in reverse topological 1023 // order. We don't do anything to try to order import link flags with respect 1024 // to linker options inserted by things like #pragma comment(). 1025 SmallVector<llvm::Value *, 16> MetadataArgs; 1026 Visited.clear(); 1027 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1028 MEnd = LinkModules.end(); 1029 M != MEnd; ++M) { 1030 if (Visited.insert(*M)) 1031 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1032 } 1033 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1034 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1035 1036 // Add the linker options metadata flag. 1037 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1038 llvm::MDNode::get(getLLVMContext(), 1039 LinkerOptionsMetadata)); 1040 } 1041 1042 void CodeGenModule::EmitDeferred() { 1043 // Emit code for any potentially referenced deferred decls. Since a 1044 // previously unused static decl may become used during the generation of code 1045 // for a static function, iterate until no changes are made. 1046 1047 while (true) { 1048 if (!DeferredVTables.empty()) { 1049 EmitDeferredVTables(); 1050 1051 // Emitting a v-table doesn't directly cause more v-tables to 1052 // become deferred, although it can cause functions to be 1053 // emitted that then need those v-tables. 1054 assert(DeferredVTables.empty()); 1055 } 1056 1057 // Stop if we're out of both deferred v-tables and deferred declarations. 1058 if (DeferredDeclsToEmit.empty()) break; 1059 1060 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1061 GlobalDecl D = G.GD; 1062 llvm::GlobalValue *GV = G.GV; 1063 DeferredDeclsToEmit.pop_back(); 1064 1065 assert(GV == GetGlobalValue(getMangledName(D))); 1066 // Check to see if we've already emitted this. This is necessary 1067 // for a couple of reasons: first, decls can end up in the 1068 // deferred-decls queue multiple times, and second, decls can end 1069 // up with definitions in unusual ways (e.g. by an extern inline 1070 // function acquiring a strong function redefinition). Just 1071 // ignore these cases. 1072 if(!GV->isDeclaration()) 1073 continue; 1074 1075 // Otherwise, emit the definition and move on to the next one. 1076 EmitGlobalDefinition(D, GV); 1077 } 1078 } 1079 1080 void CodeGenModule::EmitGlobalAnnotations() { 1081 if (Annotations.empty()) 1082 return; 1083 1084 // Create a new global variable for the ConstantStruct in the Module. 1085 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1086 Annotations[0]->getType(), Annotations.size()), Annotations); 1087 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1088 llvm::GlobalValue::AppendingLinkage, 1089 Array, "llvm.global.annotations"); 1090 gv->setSection(AnnotationSection); 1091 } 1092 1093 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1094 llvm::Constant *&AStr = AnnotationStrings[Str]; 1095 if (AStr) 1096 return AStr; 1097 1098 // Not found yet, create a new global. 1099 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1100 auto *gv = 1101 new llvm::GlobalVariable(getModule(), s->getType(), true, 1102 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1103 gv->setSection(AnnotationSection); 1104 gv->setUnnamedAddr(true); 1105 AStr = gv; 1106 return gv; 1107 } 1108 1109 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1110 SourceManager &SM = getContext().getSourceManager(); 1111 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1112 if (PLoc.isValid()) 1113 return EmitAnnotationString(PLoc.getFilename()); 1114 return EmitAnnotationString(SM.getBufferName(Loc)); 1115 } 1116 1117 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1118 SourceManager &SM = getContext().getSourceManager(); 1119 PresumedLoc PLoc = SM.getPresumedLoc(L); 1120 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1121 SM.getExpansionLineNumber(L); 1122 return llvm::ConstantInt::get(Int32Ty, LineNo); 1123 } 1124 1125 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1126 const AnnotateAttr *AA, 1127 SourceLocation L) { 1128 // Get the globals for file name, annotation, and the line number. 1129 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1130 *UnitGV = EmitAnnotationUnit(L), 1131 *LineNoCst = EmitAnnotationLineNo(L); 1132 1133 // Create the ConstantStruct for the global annotation. 1134 llvm::Constant *Fields[4] = { 1135 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1136 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1137 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1138 LineNoCst 1139 }; 1140 return llvm::ConstantStruct::getAnon(Fields); 1141 } 1142 1143 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1144 llvm::GlobalValue *GV) { 1145 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1146 // Get the struct elements for these annotations. 1147 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1148 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1149 } 1150 1151 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1152 // Never defer when EmitAllDecls is specified. 1153 if (LangOpts.EmitAllDecls) 1154 return false; 1155 1156 return !getContext().DeclMustBeEmitted(Global); 1157 } 1158 1159 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1160 const CXXUuidofExpr* E) { 1161 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1162 // well-formed. 1163 StringRef Uuid = E->getUuidAsStringRef(Context); 1164 std::string Name = "_GUID_" + Uuid.lower(); 1165 std::replace(Name.begin(), Name.end(), '-', '_'); 1166 1167 // Look for an existing global. 1168 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1169 return GV; 1170 1171 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1172 assert(Init && "failed to initialize as constant"); 1173 1174 auto *GV = new llvm::GlobalVariable( 1175 getModule(), Init->getType(), 1176 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1177 return GV; 1178 } 1179 1180 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1181 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1182 assert(AA && "No alias?"); 1183 1184 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1185 1186 // See if there is already something with the target's name in the module. 1187 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1188 if (Entry) { 1189 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1190 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1191 } 1192 1193 llvm::Constant *Aliasee; 1194 if (isa<llvm::FunctionType>(DeclTy)) 1195 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1196 GlobalDecl(cast<FunctionDecl>(VD)), 1197 /*ForVTable=*/false); 1198 else 1199 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1200 llvm::PointerType::getUnqual(DeclTy), 1201 nullptr); 1202 1203 auto *F = cast<llvm::GlobalValue>(Aliasee); 1204 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1205 WeakRefReferences.insert(F); 1206 1207 return Aliasee; 1208 } 1209 1210 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1211 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1212 1213 // Weak references don't produce any output by themselves. 1214 if (Global->hasAttr<WeakRefAttr>()) 1215 return; 1216 1217 // If this is an alias definition (which otherwise looks like a declaration) 1218 // emit it now. 1219 if (Global->hasAttr<AliasAttr>()) 1220 return EmitAliasDefinition(GD); 1221 1222 // If this is CUDA, be selective about which declarations we emit. 1223 if (LangOpts.CUDA) { 1224 if (CodeGenOpts.CUDAIsDevice) { 1225 if (!Global->hasAttr<CUDADeviceAttr>() && 1226 !Global->hasAttr<CUDAGlobalAttr>() && 1227 !Global->hasAttr<CUDAConstantAttr>() && 1228 !Global->hasAttr<CUDASharedAttr>()) 1229 return; 1230 } else { 1231 if (!Global->hasAttr<CUDAHostAttr>() && ( 1232 Global->hasAttr<CUDADeviceAttr>() || 1233 Global->hasAttr<CUDAConstantAttr>() || 1234 Global->hasAttr<CUDASharedAttr>())) 1235 return; 1236 } 1237 } 1238 1239 // Ignore declarations, they will be emitted on their first use. 1240 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1241 // Forward declarations are emitted lazily on first use. 1242 if (!FD->doesThisDeclarationHaveABody()) { 1243 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1244 return; 1245 1246 StringRef MangledName = getMangledName(GD); 1247 1248 // Compute the function info and LLVM type. 1249 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1250 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1251 1252 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1253 /*DontDefer=*/false); 1254 return; 1255 } 1256 } else { 1257 const auto *VD = cast<VarDecl>(Global); 1258 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1259 1260 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1261 return; 1262 } 1263 1264 // Defer code generation when possible if this is a static definition, inline 1265 // function etc. These we only want to emit if they are used. 1266 if (!MayDeferGeneration(Global)) { 1267 // Emit the definition if it can't be deferred. 1268 EmitGlobalDefinition(GD); 1269 return; 1270 } 1271 1272 // If we're deferring emission of a C++ variable with an 1273 // initializer, remember the order in which it appeared in the file. 1274 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1275 cast<VarDecl>(Global)->hasInit()) { 1276 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1277 CXXGlobalInits.push_back(nullptr); 1278 } 1279 1280 // If the value has already been used, add it directly to the 1281 // DeferredDeclsToEmit list. 1282 StringRef MangledName = getMangledName(GD); 1283 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1284 addDeferredDeclToEmit(GV, GD); 1285 else { 1286 // Otherwise, remember that we saw a deferred decl with this name. The 1287 // first use of the mangled name will cause it to move into 1288 // DeferredDeclsToEmit. 1289 DeferredDecls[MangledName] = GD; 1290 } 1291 } 1292 1293 namespace { 1294 struct FunctionIsDirectlyRecursive : 1295 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1296 const StringRef Name; 1297 const Builtin::Context &BI; 1298 bool Result; 1299 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1300 Name(N), BI(C), Result(false) { 1301 } 1302 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1303 1304 bool TraverseCallExpr(CallExpr *E) { 1305 const FunctionDecl *FD = E->getDirectCallee(); 1306 if (!FD) 1307 return true; 1308 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1309 if (Attr && Name == Attr->getLabel()) { 1310 Result = true; 1311 return false; 1312 } 1313 unsigned BuiltinID = FD->getBuiltinID(); 1314 if (!BuiltinID) 1315 return true; 1316 StringRef BuiltinName = BI.GetName(BuiltinID); 1317 if (BuiltinName.startswith("__builtin_") && 1318 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1319 Result = true; 1320 return false; 1321 } 1322 return true; 1323 } 1324 }; 1325 } 1326 1327 // isTriviallyRecursive - Check if this function calls another 1328 // decl that, because of the asm attribute or the other decl being a builtin, 1329 // ends up pointing to itself. 1330 bool 1331 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1332 StringRef Name; 1333 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1334 // asm labels are a special kind of mangling we have to support. 1335 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1336 if (!Attr) 1337 return false; 1338 Name = Attr->getLabel(); 1339 } else { 1340 Name = FD->getName(); 1341 } 1342 1343 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1344 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1345 return Walker.Result; 1346 } 1347 1348 bool 1349 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1350 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1351 return true; 1352 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1353 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1354 return false; 1355 // PR9614. Avoid cases where the source code is lying to us. An available 1356 // externally function should have an equivalent function somewhere else, 1357 // but a function that calls itself is clearly not equivalent to the real 1358 // implementation. 1359 // This happens in glibc's btowc and in some configure checks. 1360 return !isTriviallyRecursive(F); 1361 } 1362 1363 /// If the type for the method's class was generated by 1364 /// CGDebugInfo::createContextChain(), the cache contains only a 1365 /// limited DIType without any declarations. Since EmitFunctionStart() 1366 /// needs to find the canonical declaration for each method, we need 1367 /// to construct the complete type prior to emitting the method. 1368 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1369 if (!D->isInstance()) 1370 return; 1371 1372 if (CGDebugInfo *DI = getModuleDebugInfo()) 1373 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1374 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1375 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1376 } 1377 } 1378 1379 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1380 const auto *D = cast<ValueDecl>(GD.getDecl()); 1381 1382 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1383 Context.getSourceManager(), 1384 "Generating code for declaration"); 1385 1386 if (isa<FunctionDecl>(D)) { 1387 // At -O0, don't generate IR for functions with available_externally 1388 // linkage. 1389 if (!shouldEmitFunction(GD)) 1390 return; 1391 1392 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1393 CompleteDIClassType(Method); 1394 // Make sure to emit the definition(s) before we emit the thunks. 1395 // This is necessary for the generation of certain thunks. 1396 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1397 EmitCXXConstructor(CD, GD.getCtorType()); 1398 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1399 EmitCXXDestructor(DD, GD.getDtorType()); 1400 else 1401 EmitGlobalFunctionDefinition(GD, GV); 1402 1403 if (Method->isVirtual()) 1404 getVTables().EmitThunks(GD); 1405 1406 return; 1407 } 1408 1409 return EmitGlobalFunctionDefinition(GD, GV); 1410 } 1411 1412 if (const auto *VD = dyn_cast<VarDecl>(D)) 1413 return EmitGlobalVarDefinition(VD); 1414 1415 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1416 } 1417 1418 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1419 /// module, create and return an llvm Function with the specified type. If there 1420 /// is something in the module with the specified name, return it potentially 1421 /// bitcasted to the right type. 1422 /// 1423 /// If D is non-null, it specifies a decl that correspond to this. This is used 1424 /// to set the attributes on the function when it is first created. 1425 llvm::Constant * 1426 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1427 llvm::Type *Ty, 1428 GlobalDecl GD, bool ForVTable, 1429 bool DontDefer, 1430 llvm::AttributeSet ExtraAttrs) { 1431 const Decl *D = GD.getDecl(); 1432 1433 // Lookup the entry, lazily creating it if necessary. 1434 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1435 if (Entry) { 1436 if (WeakRefReferences.erase(Entry)) { 1437 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1438 if (FD && !FD->hasAttr<WeakAttr>()) 1439 Entry->setLinkage(llvm::Function::ExternalLinkage); 1440 } 1441 1442 if (Entry->getType()->getElementType() == Ty) 1443 return Entry; 1444 1445 // Make sure the result is of the correct type. 1446 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1447 } 1448 1449 // This function doesn't have a complete type (for example, the return 1450 // type is an incomplete struct). Use a fake type instead, and make 1451 // sure not to try to set attributes. 1452 bool IsIncompleteFunction = false; 1453 1454 llvm::FunctionType *FTy; 1455 if (isa<llvm::FunctionType>(Ty)) { 1456 FTy = cast<llvm::FunctionType>(Ty); 1457 } else { 1458 FTy = llvm::FunctionType::get(VoidTy, false); 1459 IsIncompleteFunction = true; 1460 } 1461 1462 llvm::Function *F = llvm::Function::Create(FTy, 1463 llvm::Function::ExternalLinkage, 1464 MangledName, &getModule()); 1465 assert(F->getName() == MangledName && "name was uniqued!"); 1466 if (D) 1467 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1468 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1469 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1470 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1471 llvm::AttributeSet::get(VMContext, 1472 llvm::AttributeSet::FunctionIndex, 1473 B)); 1474 } 1475 1476 if (!DontDefer) { 1477 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1478 // each other bottoming out with the base dtor. Therefore we emit non-base 1479 // dtors on usage, even if there is no dtor definition in the TU. 1480 if (D && isa<CXXDestructorDecl>(D) && 1481 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1482 GD.getDtorType())) 1483 addDeferredDeclToEmit(F, GD); 1484 1485 // This is the first use or definition of a mangled name. If there is a 1486 // deferred decl with this name, remember that we need to emit it at the end 1487 // of the file. 1488 auto DDI = DeferredDecls.find(MangledName); 1489 if (DDI != DeferredDecls.end()) { 1490 // Move the potentially referenced deferred decl to the 1491 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1492 // don't need it anymore). 1493 addDeferredDeclToEmit(F, DDI->second); 1494 DeferredDecls.erase(DDI); 1495 1496 // Otherwise, if this is a sized deallocation function, emit a weak 1497 // definition 1498 // for it at the end of the translation unit. 1499 } else if (D && cast<FunctionDecl>(D) 1500 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1501 addDeferredDeclToEmit(F, GD); 1502 1503 // Otherwise, there are cases we have to worry about where we're 1504 // using a declaration for which we must emit a definition but where 1505 // we might not find a top-level definition: 1506 // - member functions defined inline in their classes 1507 // - friend functions defined inline in some class 1508 // - special member functions with implicit definitions 1509 // If we ever change our AST traversal to walk into class methods, 1510 // this will be unnecessary. 1511 // 1512 // We also don't emit a definition for a function if it's going to be an 1513 // entry 1514 // in a vtable, unless it's already marked as used. 1515 } else if (getLangOpts().CPlusPlus && D) { 1516 // Look for a declaration that's lexically in a record. 1517 const auto *FD = cast<FunctionDecl>(D); 1518 FD = FD->getMostRecentDecl(); 1519 do { 1520 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1521 if (FD->isImplicit() && !ForVTable) { 1522 assert(FD->isUsed() && 1523 "Sema didn't mark implicit function as used!"); 1524 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1525 break; 1526 } else if (FD->doesThisDeclarationHaveABody()) { 1527 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1528 break; 1529 } 1530 } 1531 FD = FD->getPreviousDecl(); 1532 } while (FD); 1533 } 1534 } 1535 1536 // Make sure the result is of the requested type. 1537 if (!IsIncompleteFunction) { 1538 assert(F->getType()->getElementType() == Ty); 1539 return F; 1540 } 1541 1542 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1543 return llvm::ConstantExpr::getBitCast(F, PTy); 1544 } 1545 1546 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1547 /// non-null, then this function will use the specified type if it has to 1548 /// create it (this occurs when we see a definition of the function). 1549 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1550 llvm::Type *Ty, 1551 bool ForVTable, 1552 bool DontDefer) { 1553 // If there was no specific requested type, just convert it now. 1554 if (!Ty) 1555 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1556 1557 StringRef MangledName = getMangledName(GD); 1558 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1559 } 1560 1561 /// CreateRuntimeFunction - Create a new runtime function with the specified 1562 /// type and name. 1563 llvm::Constant * 1564 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1565 StringRef Name, 1566 llvm::AttributeSet ExtraAttrs) { 1567 llvm::Constant *C = 1568 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1569 /*DontDefer=*/false, ExtraAttrs); 1570 if (auto *F = dyn_cast<llvm::Function>(C)) 1571 if (F->empty()) 1572 F->setCallingConv(getRuntimeCC()); 1573 return C; 1574 } 1575 1576 /// isTypeConstant - Determine whether an object of this type can be emitted 1577 /// as a constant. 1578 /// 1579 /// If ExcludeCtor is true, the duration when the object's constructor runs 1580 /// will not be considered. The caller will need to verify that the object is 1581 /// not written to during its construction. 1582 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1583 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1584 return false; 1585 1586 if (Context.getLangOpts().CPlusPlus) { 1587 if (const CXXRecordDecl *Record 1588 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1589 return ExcludeCtor && !Record->hasMutableFields() && 1590 Record->hasTrivialDestructor(); 1591 } 1592 1593 return true; 1594 } 1595 1596 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1597 if (!VD->isStaticDataMember()) 1598 return false; 1599 const VarDecl *InitDecl; 1600 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1601 if (!InitExpr) 1602 return false; 1603 if (InitDecl->isThisDeclarationADefinition()) 1604 return false; 1605 return true; 1606 } 1607 1608 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1609 /// create and return an llvm GlobalVariable with the specified type. If there 1610 /// is something in the module with the specified name, return it potentially 1611 /// bitcasted to the right type. 1612 /// 1613 /// If D is non-null, it specifies a decl that correspond to this. This is used 1614 /// to set the attributes on the global when it is first created. 1615 llvm::Constant * 1616 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1617 llvm::PointerType *Ty, 1618 const VarDecl *D) { 1619 // Lookup the entry, lazily creating it if necessary. 1620 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1621 if (Entry) { 1622 if (WeakRefReferences.erase(Entry)) { 1623 if (D && !D->hasAttr<WeakAttr>()) 1624 Entry->setLinkage(llvm::Function::ExternalLinkage); 1625 } 1626 1627 if (Entry->getType() == Ty) 1628 return Entry; 1629 1630 // Make sure the result is of the correct type. 1631 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1632 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1633 1634 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1635 } 1636 1637 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1638 auto *GV = new llvm::GlobalVariable( 1639 getModule(), Ty->getElementType(), false, 1640 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1641 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1642 1643 // This is the first use or definition of a mangled name. If there is a 1644 // deferred decl with this name, remember that we need to emit it at the end 1645 // of the file. 1646 auto DDI = DeferredDecls.find(MangledName); 1647 if (DDI != DeferredDecls.end()) { 1648 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1649 // list, and remove it from DeferredDecls (since we don't need it anymore). 1650 addDeferredDeclToEmit(GV, DDI->second); 1651 DeferredDecls.erase(DDI); 1652 } 1653 1654 // Handle things which are present even on external declarations. 1655 if (D) { 1656 // FIXME: This code is overly simple and should be merged with other global 1657 // handling. 1658 GV->setConstant(isTypeConstant(D->getType(), false)); 1659 1660 setLinkageAndVisibilityForGV(GV, D); 1661 1662 if (D->getTLSKind()) { 1663 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1664 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1665 setTLSMode(GV, *D); 1666 } 1667 1668 // If required by the ABI, treat declarations of static data members with 1669 // inline initializers as definitions. 1670 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1671 isVarDeclInlineInitializedStaticDataMember(D)) 1672 EmitGlobalVarDefinition(D); 1673 1674 // Handle XCore specific ABI requirements. 1675 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1676 D->getLanguageLinkage() == CLanguageLinkage && 1677 D->getType().isConstant(Context) && 1678 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1679 GV->setSection(".cp.rodata"); 1680 } 1681 1682 if (AddrSpace != Ty->getAddressSpace()) 1683 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1684 1685 return GV; 1686 } 1687 1688 1689 llvm::GlobalVariable * 1690 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1691 llvm::Type *Ty, 1692 llvm::GlobalValue::LinkageTypes Linkage) { 1693 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1694 llvm::GlobalVariable *OldGV = nullptr; 1695 1696 if (GV) { 1697 // Check if the variable has the right type. 1698 if (GV->getType()->getElementType() == Ty) 1699 return GV; 1700 1701 // Because C++ name mangling, the only way we can end up with an already 1702 // existing global with the same name is if it has been declared extern "C". 1703 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1704 OldGV = GV; 1705 } 1706 1707 // Create a new variable. 1708 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1709 Linkage, nullptr, Name); 1710 1711 if (OldGV) { 1712 // Replace occurrences of the old variable if needed. 1713 GV->takeName(OldGV); 1714 1715 if (!OldGV->use_empty()) { 1716 llvm::Constant *NewPtrForOldDecl = 1717 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1718 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1719 } 1720 1721 OldGV->eraseFromParent(); 1722 } 1723 1724 return GV; 1725 } 1726 1727 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1728 /// given global variable. If Ty is non-null and if the global doesn't exist, 1729 /// then it will be created with the specified type instead of whatever the 1730 /// normal requested type would be. 1731 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1732 llvm::Type *Ty) { 1733 assert(D->hasGlobalStorage() && "Not a global variable"); 1734 QualType ASTTy = D->getType(); 1735 if (!Ty) 1736 Ty = getTypes().ConvertTypeForMem(ASTTy); 1737 1738 llvm::PointerType *PTy = 1739 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1740 1741 StringRef MangledName = getMangledName(D); 1742 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1743 } 1744 1745 /// CreateRuntimeVariable - Create a new runtime global variable with the 1746 /// specified type and name. 1747 llvm::Constant * 1748 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1749 StringRef Name) { 1750 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1751 } 1752 1753 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1754 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1755 1756 if (MayDeferGeneration(D)) { 1757 // If we have not seen a reference to this variable yet, place it 1758 // into the deferred declarations table to be emitted if needed 1759 // later. 1760 StringRef MangledName = getMangledName(D); 1761 if (!GetGlobalValue(MangledName)) { 1762 DeferredDecls[MangledName] = D; 1763 return; 1764 } 1765 } 1766 1767 // The tentative definition is the only definition. 1768 EmitGlobalVarDefinition(D); 1769 } 1770 1771 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1772 return Context.toCharUnitsFromBits( 1773 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1774 } 1775 1776 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1777 unsigned AddrSpace) { 1778 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1779 if (D->hasAttr<CUDAConstantAttr>()) 1780 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1781 else if (D->hasAttr<CUDASharedAttr>()) 1782 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1783 else 1784 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1785 } 1786 1787 return AddrSpace; 1788 } 1789 1790 template<typename SomeDecl> 1791 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1792 llvm::GlobalValue *GV) { 1793 if (!getLangOpts().CPlusPlus) 1794 return; 1795 1796 // Must have 'used' attribute, or else inline assembly can't rely on 1797 // the name existing. 1798 if (!D->template hasAttr<UsedAttr>()) 1799 return; 1800 1801 // Must have internal linkage and an ordinary name. 1802 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1803 return; 1804 1805 // Must be in an extern "C" context. Entities declared directly within 1806 // a record are not extern "C" even if the record is in such a context. 1807 const SomeDecl *First = D->getFirstDecl(); 1808 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1809 return; 1810 1811 // OK, this is an internal linkage entity inside an extern "C" linkage 1812 // specification. Make a note of that so we can give it the "expected" 1813 // mangled name if nothing else is using that name. 1814 std::pair<StaticExternCMap::iterator, bool> R = 1815 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1816 1817 // If we have multiple internal linkage entities with the same name 1818 // in extern "C" regions, none of them gets that name. 1819 if (!R.second) 1820 R.first->second = nullptr; 1821 } 1822 1823 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1824 llvm::Constant *Init = nullptr; 1825 QualType ASTTy = D->getType(); 1826 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1827 bool NeedsGlobalCtor = false; 1828 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1829 1830 const VarDecl *InitDecl; 1831 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1832 1833 if (!InitExpr) { 1834 // This is a tentative definition; tentative definitions are 1835 // implicitly initialized with { 0 }. 1836 // 1837 // Note that tentative definitions are only emitted at the end of 1838 // a translation unit, so they should never have incomplete 1839 // type. In addition, EmitTentativeDefinition makes sure that we 1840 // never attempt to emit a tentative definition if a real one 1841 // exists. A use may still exists, however, so we still may need 1842 // to do a RAUW. 1843 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1844 Init = EmitNullConstant(D->getType()); 1845 } else { 1846 initializedGlobalDecl = GlobalDecl(D); 1847 Init = EmitConstantInit(*InitDecl); 1848 1849 if (!Init) { 1850 QualType T = InitExpr->getType(); 1851 if (D->getType()->isReferenceType()) 1852 T = D->getType(); 1853 1854 if (getLangOpts().CPlusPlus) { 1855 Init = EmitNullConstant(T); 1856 NeedsGlobalCtor = true; 1857 } else { 1858 ErrorUnsupported(D, "static initializer"); 1859 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1860 } 1861 } else { 1862 // We don't need an initializer, so remove the entry for the delayed 1863 // initializer position (just in case this entry was delayed) if we 1864 // also don't need to register a destructor. 1865 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1866 DelayedCXXInitPosition.erase(D); 1867 } 1868 } 1869 1870 llvm::Type* InitType = Init->getType(); 1871 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1872 1873 // Strip off a bitcast if we got one back. 1874 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1875 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1876 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1877 // All zero index gep. 1878 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1879 Entry = CE->getOperand(0); 1880 } 1881 1882 // Entry is now either a Function or GlobalVariable. 1883 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1884 1885 // We have a definition after a declaration with the wrong type. 1886 // We must make a new GlobalVariable* and update everything that used OldGV 1887 // (a declaration or tentative definition) with the new GlobalVariable* 1888 // (which will be a definition). 1889 // 1890 // This happens if there is a prototype for a global (e.g. 1891 // "extern int x[];") and then a definition of a different type (e.g. 1892 // "int x[10];"). This also happens when an initializer has a different type 1893 // from the type of the global (this happens with unions). 1894 if (!GV || 1895 GV->getType()->getElementType() != InitType || 1896 GV->getType()->getAddressSpace() != 1897 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1898 1899 // Move the old entry aside so that we'll create a new one. 1900 Entry->setName(StringRef()); 1901 1902 // Make a new global with the correct type, this is now guaranteed to work. 1903 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1904 1905 // Replace all uses of the old global with the new global 1906 llvm::Constant *NewPtrForOldDecl = 1907 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1908 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1909 1910 // Erase the old global, since it is no longer used. 1911 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1912 } 1913 1914 MaybeHandleStaticInExternC(D, GV); 1915 1916 if (D->hasAttr<AnnotateAttr>()) 1917 AddGlobalAnnotations(D, GV); 1918 1919 GV->setInitializer(Init); 1920 1921 // If it is safe to mark the global 'constant', do so now. 1922 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1923 isTypeConstant(D->getType(), true)); 1924 1925 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1926 1927 // Set the llvm linkage type as appropriate. 1928 llvm::GlobalValue::LinkageTypes Linkage = 1929 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1930 1931 // On Darwin, the backing variable for a C++11 thread_local variable always 1932 // has internal linkage; all accesses should just be calls to the 1933 // Itanium-specified entry point, which has the normal linkage of the 1934 // variable. 1935 if (const auto *VD = dyn_cast<VarDecl>(D)) 1936 if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic && 1937 Context.getTargetInfo().getTriple().isMacOSX()) 1938 Linkage = llvm::GlobalValue::InternalLinkage; 1939 1940 GV->setLinkage(Linkage); 1941 if (D->hasAttr<DLLImportAttr>()) 1942 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1943 else if (D->hasAttr<DLLExportAttr>()) 1944 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1945 1946 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1947 // common vars aren't constant even if declared const. 1948 GV->setConstant(false); 1949 1950 setNonAliasAttributes(D, GV); 1951 1952 // Emit the initializer function if necessary. 1953 if (NeedsGlobalCtor || NeedsGlobalDtor) 1954 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1955 1956 reportGlobalToASan(GV, D->getLocation(), NeedsGlobalCtor); 1957 1958 // Emit global variable debug information. 1959 if (CGDebugInfo *DI = getModuleDebugInfo()) 1960 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1961 DI->EmitGlobalVariable(GV, D); 1962 } 1963 1964 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 1965 SourceLocation Loc, bool IsDynInit) { 1966 if (!LangOpts.Sanitize.Address) 1967 return; 1968 IsDynInit &= !SanitizerBlacklist->isIn(*GV, "init"); 1969 bool IsBlacklisted = SanitizerBlacklist->isIn(*GV); 1970 1971 llvm::LLVMContext &LLVMCtx = TheModule.getContext(); 1972 1973 llvm::GlobalVariable *LocDescr = nullptr; 1974 if (!IsBlacklisted) { 1975 // Don't generate source location if a global is blacklisted - it won't 1976 // be instrumented anyway. 1977 PresumedLoc PLoc = Context.getSourceManager().getPresumedLoc(Loc); 1978 if (PLoc.isValid()) { 1979 llvm::Constant *LocData[] = { 1980 GetAddrOfConstantCString(PLoc.getFilename()), 1981 llvm::ConstantInt::get(llvm::Type::getInt32Ty(LLVMCtx), PLoc.getLine()), 1982 llvm::ConstantInt::get(llvm::Type::getInt32Ty(LLVMCtx), 1983 PLoc.getColumn()), 1984 }; 1985 auto LocStruct = llvm::ConstantStruct::getAnon(LocData); 1986 LocDescr = new llvm::GlobalVariable(TheModule, LocStruct->getType(), true, 1987 llvm::GlobalValue::PrivateLinkage, 1988 LocStruct, ".asan_loc_descr"); 1989 LocDescr->setUnnamedAddr(true); 1990 // Add LocDescr to llvm.compiler.used, so that it won't be removed by 1991 // the optimizer before the ASan instrumentation pass. 1992 addCompilerUsedGlobal(LocDescr); 1993 } 1994 } 1995 1996 llvm::Value *GlobalMetadata[] = { 1997 GV, 1998 LocDescr, 1999 llvm::ConstantInt::get(llvm::Type::getInt1Ty(LLVMCtx), IsDynInit), 2000 llvm::ConstantInt::get(llvm::Type::getInt1Ty(LLVMCtx), IsBlacklisted) 2001 }; 2002 2003 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalMetadata); 2004 llvm::NamedMDNode *AsanGlobals = 2005 TheModule.getOrInsertNamedMetadata("llvm.asan.globals"); 2006 AsanGlobals->addOperand(ThisGlobal); 2007 } 2008 2009 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 2010 // Don't give variables common linkage if -fno-common was specified unless it 2011 // was overridden by a NoCommon attribute. 2012 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2013 return true; 2014 2015 // C11 6.9.2/2: 2016 // A declaration of an identifier for an object that has file scope without 2017 // an initializer, and without a storage-class specifier or with the 2018 // storage-class specifier static, constitutes a tentative definition. 2019 if (D->getInit() || D->hasExternalStorage()) 2020 return true; 2021 2022 // A variable cannot be both common and exist in a section. 2023 if (D->hasAttr<SectionAttr>()) 2024 return true; 2025 2026 // Thread local vars aren't considered common linkage. 2027 if (D->getTLSKind()) 2028 return true; 2029 2030 // Tentative definitions marked with WeakImportAttr are true definitions. 2031 if (D->hasAttr<WeakImportAttr>()) 2032 return true; 2033 2034 return false; 2035 } 2036 2037 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2038 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2039 if (Linkage == GVA_Internal) 2040 return llvm::Function::InternalLinkage; 2041 2042 if (D->hasAttr<WeakAttr>()) { 2043 if (IsConstantVariable) 2044 return llvm::GlobalVariable::WeakODRLinkage; 2045 else 2046 return llvm::GlobalVariable::WeakAnyLinkage; 2047 } 2048 2049 // We are guaranteed to have a strong definition somewhere else, 2050 // so we can use available_externally linkage. 2051 if (Linkage == GVA_AvailableExternally) 2052 return llvm::Function::AvailableExternallyLinkage; 2053 2054 // Note that Apple's kernel linker doesn't support symbol 2055 // coalescing, so we need to avoid linkonce and weak linkages there. 2056 // Normally, this means we just map to internal, but for explicit 2057 // instantiations we'll map to external. 2058 2059 // In C++, the compiler has to emit a definition in every translation unit 2060 // that references the function. We should use linkonce_odr because 2061 // a) if all references in this translation unit are optimized away, we 2062 // don't need to codegen it. b) if the function persists, it needs to be 2063 // merged with other definitions. c) C++ has the ODR, so we know the 2064 // definition is dependable. 2065 if (Linkage == GVA_DiscardableODR) 2066 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2067 : llvm::Function::InternalLinkage; 2068 2069 // An explicit instantiation of a template has weak linkage, since 2070 // explicit instantiations can occur in multiple translation units 2071 // and must all be equivalent. However, we are not allowed to 2072 // throw away these explicit instantiations. 2073 if (Linkage == GVA_StrongODR) 2074 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2075 : llvm::Function::ExternalLinkage; 2076 2077 // If required by the ABI, give definitions of static data members with inline 2078 // initializers at least linkonce_odr linkage. 2079 auto const VD = dyn_cast<VarDecl>(D); 2080 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 2081 VD && isVarDeclInlineInitializedStaticDataMember(VD)) { 2082 if (VD->hasAttr<DLLImportAttr>()) 2083 return llvm::GlobalValue::AvailableExternallyLinkage; 2084 if (VD->hasAttr<DLLExportAttr>()) 2085 return llvm::GlobalValue::WeakODRLinkage; 2086 return llvm::GlobalValue::LinkOnceODRLinkage; 2087 } 2088 2089 // C++ doesn't have tentative definitions and thus cannot have common 2090 // linkage. 2091 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2092 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2093 return llvm::GlobalVariable::CommonLinkage; 2094 2095 // selectany symbols are externally visible, so use weak instead of 2096 // linkonce. MSVC optimizes away references to const selectany globals, so 2097 // all definitions should be the same and ODR linkage should be used. 2098 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2099 if (D->hasAttr<SelectAnyAttr>()) 2100 return llvm::GlobalVariable::WeakODRLinkage; 2101 2102 // Otherwise, we have strong external linkage. 2103 assert(Linkage == GVA_StrongExternal); 2104 return llvm::GlobalVariable::ExternalLinkage; 2105 } 2106 2107 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2108 const VarDecl *VD, bool IsConstant) { 2109 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2110 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2111 } 2112 2113 /// Replace the uses of a function that was declared with a non-proto type. 2114 /// We want to silently drop extra arguments from call sites 2115 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2116 llvm::Function *newFn) { 2117 // Fast path. 2118 if (old->use_empty()) return; 2119 2120 llvm::Type *newRetTy = newFn->getReturnType(); 2121 SmallVector<llvm::Value*, 4> newArgs; 2122 2123 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2124 ui != ue; ) { 2125 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2126 llvm::User *user = use->getUser(); 2127 2128 // Recognize and replace uses of bitcasts. Most calls to 2129 // unprototyped functions will use bitcasts. 2130 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2131 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2132 replaceUsesOfNonProtoConstant(bitcast, newFn); 2133 continue; 2134 } 2135 2136 // Recognize calls to the function. 2137 llvm::CallSite callSite(user); 2138 if (!callSite) continue; 2139 if (!callSite.isCallee(&*use)) continue; 2140 2141 // If the return types don't match exactly, then we can't 2142 // transform this call unless it's dead. 2143 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2144 continue; 2145 2146 // Get the call site's attribute list. 2147 SmallVector<llvm::AttributeSet, 8> newAttrs; 2148 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2149 2150 // Collect any return attributes from the call. 2151 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2152 newAttrs.push_back( 2153 llvm::AttributeSet::get(newFn->getContext(), 2154 oldAttrs.getRetAttributes())); 2155 2156 // If the function was passed too few arguments, don't transform. 2157 unsigned newNumArgs = newFn->arg_size(); 2158 if (callSite.arg_size() < newNumArgs) continue; 2159 2160 // If extra arguments were passed, we silently drop them. 2161 // If any of the types mismatch, we don't transform. 2162 unsigned argNo = 0; 2163 bool dontTransform = false; 2164 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2165 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2166 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2167 dontTransform = true; 2168 break; 2169 } 2170 2171 // Add any parameter attributes. 2172 if (oldAttrs.hasAttributes(argNo + 1)) 2173 newAttrs. 2174 push_back(llvm:: 2175 AttributeSet::get(newFn->getContext(), 2176 oldAttrs.getParamAttributes(argNo + 1))); 2177 } 2178 if (dontTransform) 2179 continue; 2180 2181 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2182 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2183 oldAttrs.getFnAttributes())); 2184 2185 // Okay, we can transform this. Create the new call instruction and copy 2186 // over the required information. 2187 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2188 2189 llvm::CallSite newCall; 2190 if (callSite.isCall()) { 2191 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2192 callSite.getInstruction()); 2193 } else { 2194 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2195 newCall = llvm::InvokeInst::Create(newFn, 2196 oldInvoke->getNormalDest(), 2197 oldInvoke->getUnwindDest(), 2198 newArgs, "", 2199 callSite.getInstruction()); 2200 } 2201 newArgs.clear(); // for the next iteration 2202 2203 if (!newCall->getType()->isVoidTy()) 2204 newCall->takeName(callSite.getInstruction()); 2205 newCall.setAttributes( 2206 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2207 newCall.setCallingConv(callSite.getCallingConv()); 2208 2209 // Finally, remove the old call, replacing any uses with the new one. 2210 if (!callSite->use_empty()) 2211 callSite->replaceAllUsesWith(newCall.getInstruction()); 2212 2213 // Copy debug location attached to CI. 2214 if (!callSite->getDebugLoc().isUnknown()) 2215 newCall->setDebugLoc(callSite->getDebugLoc()); 2216 callSite->eraseFromParent(); 2217 } 2218 } 2219 2220 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2221 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2222 /// existing call uses of the old function in the module, this adjusts them to 2223 /// call the new function directly. 2224 /// 2225 /// This is not just a cleanup: the always_inline pass requires direct calls to 2226 /// functions to be able to inline them. If there is a bitcast in the way, it 2227 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2228 /// run at -O0. 2229 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2230 llvm::Function *NewFn) { 2231 // If we're redefining a global as a function, don't transform it. 2232 if (!isa<llvm::Function>(Old)) return; 2233 2234 replaceUsesOfNonProtoConstant(Old, NewFn); 2235 } 2236 2237 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2238 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2239 // If we have a definition, this might be a deferred decl. If the 2240 // instantiation is explicit, make sure we emit it at the end. 2241 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2242 GetAddrOfGlobalVar(VD); 2243 2244 EmitTopLevelDecl(VD); 2245 } 2246 2247 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2248 llvm::GlobalValue *GV) { 2249 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2250 2251 // Compute the function info and LLVM type. 2252 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2253 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2254 2255 // Get or create the prototype for the function. 2256 if (!GV) { 2257 llvm::Constant *C = 2258 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2259 2260 // Strip off a bitcast if we got one back. 2261 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2262 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2263 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2264 } else { 2265 GV = cast<llvm::GlobalValue>(C); 2266 } 2267 } 2268 2269 if (!GV->isDeclaration()) { 2270 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2271 return; 2272 } 2273 2274 if (GV->getType()->getElementType() != Ty) { 2275 // If the types mismatch then we have to rewrite the definition. 2276 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2277 2278 // F is the Function* for the one with the wrong type, we must make a new 2279 // Function* and update everything that used F (a declaration) with the new 2280 // Function* (which will be a definition). 2281 // 2282 // This happens if there is a prototype for a function 2283 // (e.g. "int f()") and then a definition of a different type 2284 // (e.g. "int f(int x)"). Move the old function aside so that it 2285 // doesn't interfere with GetAddrOfFunction. 2286 GV->setName(StringRef()); 2287 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2288 2289 // This might be an implementation of a function without a 2290 // prototype, in which case, try to do special replacement of 2291 // calls which match the new prototype. The really key thing here 2292 // is that we also potentially drop arguments from the call site 2293 // so as to make a direct call, which makes the inliner happier 2294 // and suppresses a number of optimizer warnings (!) about 2295 // dropping arguments. 2296 if (!GV->use_empty()) { 2297 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2298 GV->removeDeadConstantUsers(); 2299 } 2300 2301 // Replace uses of F with the Function we will endow with a body. 2302 if (!GV->use_empty()) { 2303 llvm::Constant *NewPtrForOldDecl = 2304 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2305 GV->replaceAllUsesWith(NewPtrForOldDecl); 2306 } 2307 2308 // Ok, delete the old function now, which is dead. 2309 GV->eraseFromParent(); 2310 2311 GV = NewFn; 2312 } 2313 2314 // We need to set linkage and visibility on the function before 2315 // generating code for it because various parts of IR generation 2316 // want to propagate this information down (e.g. to local static 2317 // declarations). 2318 auto *Fn = cast<llvm::Function>(GV); 2319 setFunctionLinkage(GD, Fn); 2320 2321 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2322 setGlobalVisibility(Fn, D); 2323 2324 MaybeHandleStaticInExternC(D, Fn); 2325 2326 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2327 2328 setFunctionDefinitionAttributes(D, Fn); 2329 SetLLVMFunctionAttributesForDefinition(D, Fn); 2330 2331 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2332 AddGlobalCtor(Fn, CA->getPriority()); 2333 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2334 AddGlobalDtor(Fn, DA->getPriority()); 2335 if (D->hasAttr<AnnotateAttr>()) 2336 AddGlobalAnnotations(D, Fn); 2337 } 2338 2339 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2340 const auto *D = cast<ValueDecl>(GD.getDecl()); 2341 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2342 assert(AA && "Not an alias?"); 2343 2344 StringRef MangledName = getMangledName(GD); 2345 2346 // If there is a definition in the module, then it wins over the alias. 2347 // This is dubious, but allow it to be safe. Just ignore the alias. 2348 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2349 if (Entry && !Entry->isDeclaration()) 2350 return; 2351 2352 Aliases.push_back(GD); 2353 2354 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2355 2356 // Create a reference to the named value. This ensures that it is emitted 2357 // if a deferred decl. 2358 llvm::Constant *Aliasee; 2359 if (isa<llvm::FunctionType>(DeclTy)) 2360 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2361 /*ForVTable=*/false); 2362 else 2363 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2364 llvm::PointerType::getUnqual(DeclTy), 2365 nullptr); 2366 2367 // Create the new alias itself, but don't set a name yet. 2368 auto *GA = llvm::GlobalAlias::create( 2369 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2370 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2371 2372 if (Entry) { 2373 if (GA->getAliasee() == Entry) { 2374 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2375 return; 2376 } 2377 2378 assert(Entry->isDeclaration()); 2379 2380 // If there is a declaration in the module, then we had an extern followed 2381 // by the alias, as in: 2382 // extern int test6(); 2383 // ... 2384 // int test6() __attribute__((alias("test7"))); 2385 // 2386 // Remove it and replace uses of it with the alias. 2387 GA->takeName(Entry); 2388 2389 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2390 Entry->getType())); 2391 Entry->eraseFromParent(); 2392 } else { 2393 GA->setName(MangledName); 2394 } 2395 2396 // Set attributes which are particular to an alias; this is a 2397 // specialization of the attributes which may be set on a global 2398 // variable/function. 2399 if (D->hasAttr<DLLExportAttr>()) { 2400 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2401 // The dllexport attribute is ignored for undefined symbols. 2402 if (FD->hasBody()) 2403 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2404 } else { 2405 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2406 } 2407 } else if (D->hasAttr<WeakAttr>() || 2408 D->hasAttr<WeakRefAttr>() || 2409 D->isWeakImported()) { 2410 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2411 } 2412 2413 SetCommonAttributes(D, GA); 2414 } 2415 2416 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2417 ArrayRef<llvm::Type*> Tys) { 2418 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2419 Tys); 2420 } 2421 2422 static llvm::StringMapEntry<llvm::Constant*> & 2423 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2424 const StringLiteral *Literal, 2425 bool TargetIsLSB, 2426 bool &IsUTF16, 2427 unsigned &StringLength) { 2428 StringRef String = Literal->getString(); 2429 unsigned NumBytes = String.size(); 2430 2431 // Check for simple case. 2432 if (!Literal->containsNonAsciiOrNull()) { 2433 StringLength = NumBytes; 2434 return Map.GetOrCreateValue(String); 2435 } 2436 2437 // Otherwise, convert the UTF8 literals into a string of shorts. 2438 IsUTF16 = true; 2439 2440 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2441 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2442 UTF16 *ToPtr = &ToBuf[0]; 2443 2444 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2445 &ToPtr, ToPtr + NumBytes, 2446 strictConversion); 2447 2448 // ConvertUTF8toUTF16 returns the length in ToPtr. 2449 StringLength = ToPtr - &ToBuf[0]; 2450 2451 // Add an explicit null. 2452 *ToPtr = 0; 2453 return Map. 2454 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2455 (StringLength + 1) * 2)); 2456 } 2457 2458 static llvm::StringMapEntry<llvm::Constant*> & 2459 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2460 const StringLiteral *Literal, 2461 unsigned &StringLength) { 2462 StringRef String = Literal->getString(); 2463 StringLength = String.size(); 2464 return Map.GetOrCreateValue(String); 2465 } 2466 2467 llvm::Constant * 2468 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2469 unsigned StringLength = 0; 2470 bool isUTF16 = false; 2471 llvm::StringMapEntry<llvm::Constant*> &Entry = 2472 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2473 getDataLayout().isLittleEndian(), 2474 isUTF16, StringLength); 2475 2476 if (llvm::Constant *C = Entry.getValue()) 2477 return C; 2478 2479 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2480 llvm::Constant *Zeros[] = { Zero, Zero }; 2481 llvm::Value *V; 2482 2483 // If we don't already have it, get __CFConstantStringClassReference. 2484 if (!CFConstantStringClassRef) { 2485 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2486 Ty = llvm::ArrayType::get(Ty, 0); 2487 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2488 "__CFConstantStringClassReference"); 2489 // Decay array -> ptr 2490 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2491 CFConstantStringClassRef = V; 2492 } 2493 else 2494 V = CFConstantStringClassRef; 2495 2496 QualType CFTy = getContext().getCFConstantStringType(); 2497 2498 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2499 2500 llvm::Constant *Fields[4]; 2501 2502 // Class pointer. 2503 Fields[0] = cast<llvm::ConstantExpr>(V); 2504 2505 // Flags. 2506 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2507 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2508 llvm::ConstantInt::get(Ty, 0x07C8); 2509 2510 // String pointer. 2511 llvm::Constant *C = nullptr; 2512 if (isUTF16) { 2513 ArrayRef<uint16_t> Arr = 2514 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2515 const_cast<char *>(Entry.getKey().data())), 2516 Entry.getKey().size() / 2); 2517 C = llvm::ConstantDataArray::get(VMContext, Arr); 2518 } else { 2519 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2520 } 2521 2522 // Note: -fwritable-strings doesn't make the backing store strings of 2523 // CFStrings writable. (See <rdar://problem/10657500>) 2524 auto *GV = 2525 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2526 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2527 GV->setUnnamedAddr(true); 2528 // Don't enforce the target's minimum global alignment, since the only use 2529 // of the string is via this class initializer. 2530 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2531 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2532 // that changes the section it ends in, which surprises ld64. 2533 if (isUTF16) { 2534 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2535 GV->setAlignment(Align.getQuantity()); 2536 GV->setSection("__TEXT,__ustring"); 2537 } else { 2538 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2539 GV->setAlignment(Align.getQuantity()); 2540 GV->setSection("__TEXT,__cstring,cstring_literals"); 2541 } 2542 2543 // String. 2544 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2545 2546 if (isUTF16) 2547 // Cast the UTF16 string to the correct type. 2548 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2549 2550 // String length. 2551 Ty = getTypes().ConvertType(getContext().LongTy); 2552 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2553 2554 // The struct. 2555 C = llvm::ConstantStruct::get(STy, Fields); 2556 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2557 llvm::GlobalVariable::PrivateLinkage, C, 2558 "_unnamed_cfstring_"); 2559 GV->setSection("__DATA,__cfstring"); 2560 Entry.setValue(GV); 2561 2562 return GV; 2563 } 2564 2565 llvm::Constant * 2566 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2567 unsigned StringLength = 0; 2568 llvm::StringMapEntry<llvm::Constant*> &Entry = 2569 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2570 2571 if (llvm::Constant *C = Entry.getValue()) 2572 return C; 2573 2574 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2575 llvm::Constant *Zeros[] = { Zero, Zero }; 2576 llvm::Value *V; 2577 // If we don't already have it, get _NSConstantStringClassReference. 2578 if (!ConstantStringClassRef) { 2579 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2580 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2581 llvm::Constant *GV; 2582 if (LangOpts.ObjCRuntime.isNonFragile()) { 2583 std::string str = 2584 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2585 : "OBJC_CLASS_$_" + StringClass; 2586 GV = getObjCRuntime().GetClassGlobal(str); 2587 // Make sure the result is of the correct type. 2588 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2589 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2590 ConstantStringClassRef = V; 2591 } else { 2592 std::string str = 2593 StringClass.empty() ? "_NSConstantStringClassReference" 2594 : "_" + StringClass + "ClassReference"; 2595 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2596 GV = CreateRuntimeVariable(PTy, str); 2597 // Decay array -> ptr 2598 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2599 ConstantStringClassRef = V; 2600 } 2601 } 2602 else 2603 V = ConstantStringClassRef; 2604 2605 if (!NSConstantStringType) { 2606 // Construct the type for a constant NSString. 2607 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2608 D->startDefinition(); 2609 2610 QualType FieldTypes[3]; 2611 2612 // const int *isa; 2613 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2614 // const char *str; 2615 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2616 // unsigned int length; 2617 FieldTypes[2] = Context.UnsignedIntTy; 2618 2619 // Create fields 2620 for (unsigned i = 0; i < 3; ++i) { 2621 FieldDecl *Field = FieldDecl::Create(Context, D, 2622 SourceLocation(), 2623 SourceLocation(), nullptr, 2624 FieldTypes[i], /*TInfo=*/nullptr, 2625 /*BitWidth=*/nullptr, 2626 /*Mutable=*/false, 2627 ICIS_NoInit); 2628 Field->setAccess(AS_public); 2629 D->addDecl(Field); 2630 } 2631 2632 D->completeDefinition(); 2633 QualType NSTy = Context.getTagDeclType(D); 2634 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2635 } 2636 2637 llvm::Constant *Fields[3]; 2638 2639 // Class pointer. 2640 Fields[0] = cast<llvm::ConstantExpr>(V); 2641 2642 // String pointer. 2643 llvm::Constant *C = 2644 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2645 2646 llvm::GlobalValue::LinkageTypes Linkage; 2647 bool isConstant; 2648 Linkage = llvm::GlobalValue::PrivateLinkage; 2649 isConstant = !LangOpts.WritableStrings; 2650 2651 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2652 Linkage, C, ".str"); 2653 GV->setUnnamedAddr(true); 2654 // Don't enforce the target's minimum global alignment, since the only use 2655 // of the string is via this class initializer. 2656 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2657 GV->setAlignment(Align.getQuantity()); 2658 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2659 2660 // String length. 2661 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2662 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2663 2664 // The struct. 2665 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2666 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2667 llvm::GlobalVariable::PrivateLinkage, C, 2668 "_unnamed_nsstring_"); 2669 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2670 const char *NSStringNonFragileABISection = 2671 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2672 // FIXME. Fix section. 2673 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2674 ? NSStringNonFragileABISection 2675 : NSStringSection); 2676 Entry.setValue(GV); 2677 2678 return GV; 2679 } 2680 2681 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2682 if (ObjCFastEnumerationStateType.isNull()) { 2683 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2684 D->startDefinition(); 2685 2686 QualType FieldTypes[] = { 2687 Context.UnsignedLongTy, 2688 Context.getPointerType(Context.getObjCIdType()), 2689 Context.getPointerType(Context.UnsignedLongTy), 2690 Context.getConstantArrayType(Context.UnsignedLongTy, 2691 llvm::APInt(32, 5), ArrayType::Normal, 0) 2692 }; 2693 2694 for (size_t i = 0; i < 4; ++i) { 2695 FieldDecl *Field = FieldDecl::Create(Context, 2696 D, 2697 SourceLocation(), 2698 SourceLocation(), nullptr, 2699 FieldTypes[i], /*TInfo=*/nullptr, 2700 /*BitWidth=*/nullptr, 2701 /*Mutable=*/false, 2702 ICIS_NoInit); 2703 Field->setAccess(AS_public); 2704 D->addDecl(Field); 2705 } 2706 2707 D->completeDefinition(); 2708 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2709 } 2710 2711 return ObjCFastEnumerationStateType; 2712 } 2713 2714 llvm::Constant * 2715 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2716 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2717 2718 // Don't emit it as the address of the string, emit the string data itself 2719 // as an inline array. 2720 if (E->getCharByteWidth() == 1) { 2721 SmallString<64> Str(E->getString()); 2722 2723 // Resize the string to the right size, which is indicated by its type. 2724 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2725 Str.resize(CAT->getSize().getZExtValue()); 2726 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2727 } 2728 2729 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2730 llvm::Type *ElemTy = AType->getElementType(); 2731 unsigned NumElements = AType->getNumElements(); 2732 2733 // Wide strings have either 2-byte or 4-byte elements. 2734 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2735 SmallVector<uint16_t, 32> Elements; 2736 Elements.reserve(NumElements); 2737 2738 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2739 Elements.push_back(E->getCodeUnit(i)); 2740 Elements.resize(NumElements); 2741 return llvm::ConstantDataArray::get(VMContext, Elements); 2742 } 2743 2744 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2745 SmallVector<uint32_t, 32> Elements; 2746 Elements.reserve(NumElements); 2747 2748 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2749 Elements.push_back(E->getCodeUnit(i)); 2750 Elements.resize(NumElements); 2751 return llvm::ConstantDataArray::get(VMContext, Elements); 2752 } 2753 2754 static llvm::GlobalVariable * 2755 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2756 CodeGenModule &CGM, StringRef GlobalName, 2757 unsigned Alignment) { 2758 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2759 unsigned AddrSpace = 0; 2760 if (CGM.getLangOpts().OpenCL) 2761 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2762 2763 // Create a global variable for this string 2764 auto *GV = new llvm::GlobalVariable( 2765 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2766 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2767 GV->setAlignment(Alignment); 2768 GV->setUnnamedAddr(true); 2769 return GV; 2770 } 2771 2772 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2773 /// constant array for the given string literal. 2774 llvm::Constant * 2775 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2776 auto Alignment = 2777 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2778 2779 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2780 if (!LangOpts.WritableStrings) { 2781 Entry = getConstantStringMapEntry(S->getBytes(), S->getCharByteWidth()); 2782 if (auto GV = Entry->getValue()) { 2783 if (Alignment > GV->getAlignment()) 2784 GV->setAlignment(Alignment); 2785 return GV; 2786 } 2787 } 2788 2789 SmallString<256> MangledNameBuffer; 2790 StringRef GlobalVariableName; 2791 llvm::GlobalValue::LinkageTypes LT; 2792 2793 // Mangle the string literal if the ABI allows for it. However, we cannot 2794 // do this if we are compiling with ASan or -fwritable-strings because they 2795 // rely on strings having normal linkage. 2796 if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address && 2797 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2798 llvm::raw_svector_ostream Out(MangledNameBuffer); 2799 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2800 Out.flush(); 2801 2802 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2803 GlobalVariableName = MangledNameBuffer; 2804 } else { 2805 LT = llvm::GlobalValue::PrivateLinkage; 2806 GlobalVariableName = ".str"; 2807 } 2808 2809 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2810 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2811 if (Entry) 2812 Entry->setValue(GV); 2813 2814 reportGlobalToASan(GV, S->getStrTokenLoc(0)); 2815 return GV; 2816 } 2817 2818 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2819 /// array for the given ObjCEncodeExpr node. 2820 llvm::Constant * 2821 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2822 std::string Str; 2823 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2824 2825 return GetAddrOfConstantCString(Str); 2826 } 2827 2828 2829 llvm::StringMapEntry<llvm::GlobalVariable *> *CodeGenModule::getConstantStringMapEntry( 2830 StringRef Str, int CharByteWidth) { 2831 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2832 switch (CharByteWidth) { 2833 case 1: 2834 ConstantStringMap = &Constant1ByteStringMap; 2835 break; 2836 case 2: 2837 ConstantStringMap = &Constant2ByteStringMap; 2838 break; 2839 case 4: 2840 ConstantStringMap = &Constant4ByteStringMap; 2841 break; 2842 default: 2843 llvm_unreachable("unhandled byte width!"); 2844 } 2845 return &ConstantStringMap->GetOrCreateValue(Str); 2846 } 2847 2848 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2849 /// the literal and a terminating '\0' character. 2850 /// The result has pointer to array type. 2851 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2852 const char *GlobalName, 2853 unsigned Alignment) { 2854 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2855 if (Alignment == 0) { 2856 Alignment = getContext() 2857 .getAlignOfGlobalVarInChars(getContext().CharTy) 2858 .getQuantity(); 2859 } 2860 2861 // Don't share any string literals if strings aren't constant. 2862 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2863 if (!LangOpts.WritableStrings) { 2864 Entry = getConstantStringMapEntry(StrWithNull, 1); 2865 if (auto GV = Entry->getValue()) { 2866 if (Alignment > GV->getAlignment()) 2867 GV->setAlignment(Alignment); 2868 return GV; 2869 } 2870 } 2871 2872 llvm::Constant *C = 2873 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2874 // Get the default prefix if a name wasn't specified. 2875 if (!GlobalName) 2876 GlobalName = ".str"; 2877 // Create a global variable for this. 2878 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2879 GlobalName, Alignment); 2880 if (Entry) 2881 Entry->setValue(GV); 2882 return GV; 2883 } 2884 2885 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2886 const MaterializeTemporaryExpr *E, const Expr *Init) { 2887 assert((E->getStorageDuration() == SD_Static || 2888 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2889 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2890 2891 // If we're not materializing a subobject of the temporary, keep the 2892 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2893 QualType MaterializedType = Init->getType(); 2894 if (Init == E->GetTemporaryExpr()) 2895 MaterializedType = E->getType(); 2896 2897 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2898 if (Slot) 2899 return Slot; 2900 2901 // FIXME: If an externally-visible declaration extends multiple temporaries, 2902 // we need to give each temporary the same name in every translation unit (and 2903 // we also need to make the temporaries externally-visible). 2904 SmallString<256> Name; 2905 llvm::raw_svector_ostream Out(Name); 2906 getCXXABI().getMangleContext().mangleReferenceTemporary( 2907 VD, E->getManglingNumber(), Out); 2908 Out.flush(); 2909 2910 APValue *Value = nullptr; 2911 if (E->getStorageDuration() == SD_Static) { 2912 // We might have a cached constant initializer for this temporary. Note 2913 // that this might have a different value from the value computed by 2914 // evaluating the initializer if the surrounding constant expression 2915 // modifies the temporary. 2916 Value = getContext().getMaterializedTemporaryValue(E, false); 2917 if (Value && Value->isUninit()) 2918 Value = nullptr; 2919 } 2920 2921 // Try evaluating it now, it might have a constant initializer. 2922 Expr::EvalResult EvalResult; 2923 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2924 !EvalResult.hasSideEffects()) 2925 Value = &EvalResult.Val; 2926 2927 llvm::Constant *InitialValue = nullptr; 2928 bool Constant = false; 2929 llvm::Type *Type; 2930 if (Value) { 2931 // The temporary has a constant initializer, use it. 2932 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2933 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2934 Type = InitialValue->getType(); 2935 } else { 2936 // No initializer, the initialization will be provided when we 2937 // initialize the declaration which performed lifetime extension. 2938 Type = getTypes().ConvertTypeForMem(MaterializedType); 2939 } 2940 2941 // Create a global variable for this lifetime-extended temporary. 2942 llvm::GlobalValue::LinkageTypes Linkage = 2943 getLLVMLinkageVarDefinition(VD, Constant); 2944 // There is no need for this temporary to have global linkage if the global 2945 // variable has external linkage. 2946 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2947 Linkage = llvm::GlobalVariable::PrivateLinkage; 2948 unsigned AddrSpace = GetGlobalVarAddressSpace( 2949 VD, getContext().getTargetAddressSpace(MaterializedType)); 2950 auto *GV = new llvm::GlobalVariable( 2951 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2952 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2953 AddrSpace); 2954 setGlobalVisibility(GV, VD); 2955 GV->setAlignment( 2956 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2957 if (VD->getTLSKind()) 2958 setTLSMode(GV, *VD); 2959 Slot = GV; 2960 return GV; 2961 } 2962 2963 /// EmitObjCPropertyImplementations - Emit information for synthesized 2964 /// properties for an implementation. 2965 void CodeGenModule::EmitObjCPropertyImplementations(const 2966 ObjCImplementationDecl *D) { 2967 for (const auto *PID : D->property_impls()) { 2968 // Dynamic is just for type-checking. 2969 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2970 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2971 2972 // Determine which methods need to be implemented, some may have 2973 // been overridden. Note that ::isPropertyAccessor is not the method 2974 // we want, that just indicates if the decl came from a 2975 // property. What we want to know is if the method is defined in 2976 // this implementation. 2977 if (!D->getInstanceMethod(PD->getGetterName())) 2978 CodeGenFunction(*this).GenerateObjCGetter( 2979 const_cast<ObjCImplementationDecl *>(D), PID); 2980 if (!PD->isReadOnly() && 2981 !D->getInstanceMethod(PD->getSetterName())) 2982 CodeGenFunction(*this).GenerateObjCSetter( 2983 const_cast<ObjCImplementationDecl *>(D), PID); 2984 } 2985 } 2986 } 2987 2988 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2989 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2990 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2991 ivar; ivar = ivar->getNextIvar()) 2992 if (ivar->getType().isDestructedType()) 2993 return true; 2994 2995 return false; 2996 } 2997 2998 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2999 /// for an implementation. 3000 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3001 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3002 if (needsDestructMethod(D)) { 3003 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3004 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3005 ObjCMethodDecl *DTORMethod = 3006 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3007 cxxSelector, getContext().VoidTy, nullptr, D, 3008 /*isInstance=*/true, /*isVariadic=*/false, 3009 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3010 /*isDefined=*/false, ObjCMethodDecl::Required); 3011 D->addInstanceMethod(DTORMethod); 3012 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3013 D->setHasDestructors(true); 3014 } 3015 3016 // If the implementation doesn't have any ivar initializers, we don't need 3017 // a .cxx_construct. 3018 if (D->getNumIvarInitializers() == 0) 3019 return; 3020 3021 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3022 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3023 // The constructor returns 'self'. 3024 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3025 D->getLocation(), 3026 D->getLocation(), 3027 cxxSelector, 3028 getContext().getObjCIdType(), 3029 nullptr, D, /*isInstance=*/true, 3030 /*isVariadic=*/false, 3031 /*isPropertyAccessor=*/true, 3032 /*isImplicitlyDeclared=*/true, 3033 /*isDefined=*/false, 3034 ObjCMethodDecl::Required); 3035 D->addInstanceMethod(CTORMethod); 3036 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3037 D->setHasNonZeroConstructors(true); 3038 } 3039 3040 /// EmitNamespace - Emit all declarations in a namespace. 3041 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3042 for (auto *I : ND->decls()) { 3043 if (const auto *VD = dyn_cast<VarDecl>(I)) 3044 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3045 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3046 continue; 3047 EmitTopLevelDecl(I); 3048 } 3049 } 3050 3051 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3052 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3053 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3054 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3055 ErrorUnsupported(LSD, "linkage spec"); 3056 return; 3057 } 3058 3059 for (auto *I : LSD->decls()) { 3060 // Meta-data for ObjC class includes references to implemented methods. 3061 // Generate class's method definitions first. 3062 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3063 for (auto *M : OID->methods()) 3064 EmitTopLevelDecl(M); 3065 } 3066 EmitTopLevelDecl(I); 3067 } 3068 } 3069 3070 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3071 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3072 // Ignore dependent declarations. 3073 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3074 return; 3075 3076 switch (D->getKind()) { 3077 case Decl::CXXConversion: 3078 case Decl::CXXMethod: 3079 case Decl::Function: 3080 // Skip function templates 3081 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3082 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3083 return; 3084 3085 EmitGlobal(cast<FunctionDecl>(D)); 3086 break; 3087 3088 case Decl::Var: 3089 // Skip variable templates 3090 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3091 return; 3092 case Decl::VarTemplateSpecialization: 3093 EmitGlobal(cast<VarDecl>(D)); 3094 break; 3095 3096 // Indirect fields from global anonymous structs and unions can be 3097 // ignored; only the actual variable requires IR gen support. 3098 case Decl::IndirectField: 3099 break; 3100 3101 // C++ Decls 3102 case Decl::Namespace: 3103 EmitNamespace(cast<NamespaceDecl>(D)); 3104 break; 3105 // No code generation needed. 3106 case Decl::UsingShadow: 3107 case Decl::ClassTemplate: 3108 case Decl::VarTemplate: 3109 case Decl::VarTemplatePartialSpecialization: 3110 case Decl::FunctionTemplate: 3111 case Decl::TypeAliasTemplate: 3112 case Decl::Block: 3113 case Decl::Empty: 3114 break; 3115 case Decl::Using: // using X; [C++] 3116 if (CGDebugInfo *DI = getModuleDebugInfo()) 3117 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3118 return; 3119 case Decl::NamespaceAlias: 3120 if (CGDebugInfo *DI = getModuleDebugInfo()) 3121 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3122 return; 3123 case Decl::UsingDirective: // using namespace X; [C++] 3124 if (CGDebugInfo *DI = getModuleDebugInfo()) 3125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3126 return; 3127 case Decl::CXXConstructor: 3128 // Skip function templates 3129 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3130 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3131 return; 3132 3133 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3134 break; 3135 case Decl::CXXDestructor: 3136 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3137 return; 3138 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3139 break; 3140 3141 case Decl::StaticAssert: 3142 // Nothing to do. 3143 break; 3144 3145 // Objective-C Decls 3146 3147 // Forward declarations, no (immediate) code generation. 3148 case Decl::ObjCInterface: 3149 case Decl::ObjCCategory: 3150 break; 3151 3152 case Decl::ObjCProtocol: { 3153 auto *Proto = cast<ObjCProtocolDecl>(D); 3154 if (Proto->isThisDeclarationADefinition()) 3155 ObjCRuntime->GenerateProtocol(Proto); 3156 break; 3157 } 3158 3159 case Decl::ObjCCategoryImpl: 3160 // Categories have properties but don't support synthesize so we 3161 // can ignore them here. 3162 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3163 break; 3164 3165 case Decl::ObjCImplementation: { 3166 auto *OMD = cast<ObjCImplementationDecl>(D); 3167 EmitObjCPropertyImplementations(OMD); 3168 EmitObjCIvarInitializations(OMD); 3169 ObjCRuntime->GenerateClass(OMD); 3170 // Emit global variable debug information. 3171 if (CGDebugInfo *DI = getModuleDebugInfo()) 3172 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3173 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3174 OMD->getClassInterface()), OMD->getLocation()); 3175 break; 3176 } 3177 case Decl::ObjCMethod: { 3178 auto *OMD = cast<ObjCMethodDecl>(D); 3179 // If this is not a prototype, emit the body. 3180 if (OMD->getBody()) 3181 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3182 break; 3183 } 3184 case Decl::ObjCCompatibleAlias: 3185 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3186 break; 3187 3188 case Decl::LinkageSpec: 3189 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3190 break; 3191 3192 case Decl::FileScopeAsm: { 3193 auto *AD = cast<FileScopeAsmDecl>(D); 3194 StringRef AsmString = AD->getAsmString()->getString(); 3195 3196 const std::string &S = getModule().getModuleInlineAsm(); 3197 if (S.empty()) 3198 getModule().setModuleInlineAsm(AsmString); 3199 else if (S.end()[-1] == '\n') 3200 getModule().setModuleInlineAsm(S + AsmString.str()); 3201 else 3202 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3203 break; 3204 } 3205 3206 case Decl::Import: { 3207 auto *Import = cast<ImportDecl>(D); 3208 3209 // Ignore import declarations that come from imported modules. 3210 if (clang::Module *Owner = Import->getOwningModule()) { 3211 if (getLangOpts().CurrentModule.empty() || 3212 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3213 break; 3214 } 3215 3216 ImportedModules.insert(Import->getImportedModule()); 3217 break; 3218 } 3219 3220 case Decl::ClassTemplateSpecialization: { 3221 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3222 if (DebugInfo && 3223 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3224 DebugInfo->completeTemplateDefinition(*Spec); 3225 } 3226 3227 default: 3228 // Make sure we handled everything we should, every other kind is a 3229 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3230 // function. Need to recode Decl::Kind to do that easily. 3231 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3232 } 3233 } 3234 3235 /// Turns the given pointer into a constant. 3236 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3237 const void *Ptr) { 3238 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3239 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3240 return llvm::ConstantInt::get(i64, PtrInt); 3241 } 3242 3243 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3244 llvm::NamedMDNode *&GlobalMetadata, 3245 GlobalDecl D, 3246 llvm::GlobalValue *Addr) { 3247 if (!GlobalMetadata) 3248 GlobalMetadata = 3249 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3250 3251 // TODO: should we report variant information for ctors/dtors? 3252 llvm::Value *Ops[] = { 3253 Addr, 3254 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3255 }; 3256 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3257 } 3258 3259 /// For each function which is declared within an extern "C" region and marked 3260 /// as 'used', but has internal linkage, create an alias from the unmangled 3261 /// name to the mangled name if possible. People expect to be able to refer 3262 /// to such functions with an unmangled name from inline assembly within the 3263 /// same translation unit. 3264 void CodeGenModule::EmitStaticExternCAliases() { 3265 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3266 E = StaticExternCValues.end(); 3267 I != E; ++I) { 3268 IdentifierInfo *Name = I->first; 3269 llvm::GlobalValue *Val = I->second; 3270 if (Val && !getModule().getNamedValue(Name->getName())) 3271 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3272 } 3273 } 3274 3275 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3276 GlobalDecl &Result) const { 3277 auto Res = Manglings.find(MangledName); 3278 if (Res == Manglings.end()) 3279 return false; 3280 Result = Res->getValue(); 3281 return true; 3282 } 3283 3284 /// Emits metadata nodes associating all the global values in the 3285 /// current module with the Decls they came from. This is useful for 3286 /// projects using IR gen as a subroutine. 3287 /// 3288 /// Since there's currently no way to associate an MDNode directly 3289 /// with an llvm::GlobalValue, we create a global named metadata 3290 /// with the name 'clang.global.decl.ptrs'. 3291 void CodeGenModule::EmitDeclMetadata() { 3292 llvm::NamedMDNode *GlobalMetadata = nullptr; 3293 3294 // StaticLocalDeclMap 3295 for (auto &I : MangledDeclNames) { 3296 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3297 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3298 } 3299 } 3300 3301 /// Emits metadata nodes for all the local variables in the current 3302 /// function. 3303 void CodeGenFunction::EmitDeclMetadata() { 3304 if (LocalDeclMap.empty()) return; 3305 3306 llvm::LLVMContext &Context = getLLVMContext(); 3307 3308 // Find the unique metadata ID for this name. 3309 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3310 3311 llvm::NamedMDNode *GlobalMetadata = nullptr; 3312 3313 for (auto &I : LocalDeclMap) { 3314 const Decl *D = I.first; 3315 llvm::Value *Addr = I.second; 3316 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3317 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3318 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3319 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3320 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3321 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3322 } 3323 } 3324 } 3325 3326 void CodeGenModule::EmitVersionIdentMetadata() { 3327 llvm::NamedMDNode *IdentMetadata = 3328 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3329 std::string Version = getClangFullVersion(); 3330 llvm::LLVMContext &Ctx = TheModule.getContext(); 3331 3332 llvm::Value *IdentNode[] = { 3333 llvm::MDString::get(Ctx, Version) 3334 }; 3335 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3336 } 3337 3338 void CodeGenModule::EmitTargetMetadata() { 3339 for (auto &I : MangledDeclNames) { 3340 const Decl *D = I.first.getDecl()->getMostRecentDecl(); 3341 llvm::GlobalValue *GV = GetGlobalValue(I.second); 3342 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3343 } 3344 } 3345 3346 void CodeGenModule::EmitCoverageFile() { 3347 if (!getCodeGenOpts().CoverageFile.empty()) { 3348 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3349 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3350 llvm::LLVMContext &Ctx = TheModule.getContext(); 3351 llvm::MDString *CoverageFile = 3352 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3353 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3354 llvm::MDNode *CU = CUNode->getOperand(i); 3355 llvm::Value *node[] = { CoverageFile, CU }; 3356 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3357 GCov->addOperand(N); 3358 } 3359 } 3360 } 3361 } 3362 3363 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3364 QualType GuidType) { 3365 // Sema has checked that all uuid strings are of the form 3366 // "12345678-1234-1234-1234-1234567890ab". 3367 assert(Uuid.size() == 36); 3368 for (unsigned i = 0; i < 36; ++i) { 3369 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3370 else assert(isHexDigit(Uuid[i])); 3371 } 3372 3373 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3374 3375 llvm::Constant *Field3[8]; 3376 for (unsigned Idx = 0; Idx < 8; ++Idx) 3377 Field3[Idx] = llvm::ConstantInt::get( 3378 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3379 3380 llvm::Constant *Fields[4] = { 3381 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3382 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3383 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3384 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3385 }; 3386 3387 return llvm::ConstantStruct::getAnon(Fields); 3388 } 3389 3390 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3391 bool ForEH) { 3392 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3393 // FIXME: should we even be calling this method if RTTI is disabled 3394 // and it's not for EH? 3395 if (!ForEH && !getLangOpts().RTTI) 3396 return llvm::Constant::getNullValue(Int8PtrTy); 3397 3398 if (ForEH && Ty->isObjCObjectPointerType() && 3399 LangOpts.ObjCRuntime.isGNUFamily()) 3400 return ObjCRuntime->GetEHType(Ty); 3401 3402 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3403 } 3404 3405